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Committee Members, Abhijit Deshmukh

Eylem Tekin
Ibrahim Karaman

Head of Department, Brett Peters

December 2010

Major Subject: Industrial Engineering



iii

ABSTRACT

Models and Solution Approaches for Efficient Design and Operation

of Wireless Sensor Networks . (December 2010)

Hui Lin, B.S., Tianjin University, Tianjin,China;

M.S., Tianjin University, Tianjin,China

Chair of Advisory Committee: Dr. Halit Üster

Recent advancements in sensory devices are presenting various opportunities for

widespread applications of wireless sensor networks (WSNs). The most distinguishing

characteristic of a WSN is the fact that its sensors have finite and non-renewable

energy resources. Many research efforts aim at developing energy efficient network

topology and routing schemes for prolonging the network lifetime. However, we notice

that, in the majority of the literature, topology control and routing problems are

handled separately, thus overlooking the interrelationships among them.

In this dissertation, we consider an integrated topology control and routing prob-

lem in WSNs which are unique type of data gathering networks characterized by lim-

ited energy resources at the sensor nodes distributed over the network. We suggest an

underlying hierarchical topology and routing structure that aims to achieve the most

prolonged network lifetime via efficient use of limited energy resources and addressing

operational specificities of WSNs such as communication-computation trade-off, data

aggregation, and multi-hop data transfer for better energy efficiency. We develop and

examine three different objectives and their associated mathematical models that de-

fine alternative policies to be employed in each period of a deployment cycle for the

purpose of maximizing the number of periods so that the network lifetime is pro-

longed. On the methodology side, we develop effective solution approaches that are
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based on decomposition techniques, heuristics and parallel heuristic algorithms. Fur-

thermore, we devise visualization tools to support our optimization efforts and demon-

strate that visualization can be very helpful in solving larger and realistic problems

with dynamic nature. This dissertation research provides novel analytical models

and solution methodologies for important practical problems in WSNs. The solution

algorithms developed herein will also contribute to the generalized mixed-discrete

optimization problem, especially for the problems with similar characteristics.



v

To my family



vi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Halit Üster
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CHAPTER I

INTRODUCTION

Recent advances in wireless networking, embedded microprocessors, integration of

micro-electro mechanical system (MEMS) and Nanotechnology have enabled the rapid

development of low-cost, low-power and multi-functional sensors (Chong and Kumar,

2003; Sohraby et al., 2007). Very small in size, sensors are capable of sensing, data

processing and communicating with each other or with user nodes (sinks). Sensors

can be used to sense a wide range of natural or artificial phenomena including tem-

perature, pressure, humidity, light, motion, weight, noise, etc. A group of sensors

communicating in a wireless medium for the purpose of gathering data and trans-

mitting it to a user (sinks) form a wireless sensor network (WSN). Sensor Network

technology is a key technology in the future. Indeed, some claims that the advent of

tiny, cheap and smart sensors will radically change our world in the way micropro-

cessors did in the 1980s and the Internet did in the 1990s (Saffo, 1997).

WSNs represent a paradigm shift in computing (Saffo, 1997; Estrin et al., 2001;

Krishnamachari, 2005). In a traditional computing infrastructure, we interact di-

rectly, one-on-one, with computers. In the near future, hundreds or thousands of

sensors can be embedded deeply around us, placed inside our cars, homes, offices,

hospitals, shopping centers and factories. When we are in control of massive-scale

sensors, it may be impossible to interact directly with each one. Instead, these sensors

can anticipate our needs and interact with the physical world on our behalf. WSNs

provide an interface between the virtual information world and the physical world.

According to America’s National Research Council report entitled embedded, Every-

This dissertation follows the style and format of Operations Research.
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where, the phenomenon of sensor technology could “well dwarf previous milestones

in the information revolution” (Estrin et al., 2001).

WSNs represent a paradigm shift in information extracting (Heinzelman, 2000;

Akyildiz et al., 2002b). In a traditional wired sensor network, there are a very limited

number of sensor nodes extracting information from the environment. Those sensors

are large and expensive and also require large amount of energy for operation. The

positions of the sensors and topology infrastructure must be carefully engineered.

WSNs, on the other hand, consist of a large amount of sensors that are densely

deployed. The position of sensor nodes need not be engineered or pre-determined.

This allows random deployment in inhospitable environments and difficult-to-reach

terrains. Hence, there would be significant economical and environment gains if we

employ WSNs instead of wired sensor network. In fact, there are a wide array of

applications in WSNs for data gathering purposes. For example, WSNs have pro-

found effect on military and civil applications such as forests to combat fires, urban

or rural battlefields, borderlines; in wild habitats and oceans to monitor and observe

natural phenomena; in disaster prevention and relief; in urban environments to mon-

itor and control traffic; and in industrial settings to track inventories and the state of

other resources (Wang et al., 2005). Recently, data gathering WSNs find increasing

widespread applications in ecological and environmental monitoring (Collins et al.,

2006; Hart and Martinez, 2006; Rundel et al., 2009).

WSNs promise to revolutionize the way we conduct business and live our lives.

Indeed, Technology Review, MIT’s magazine of innovation, lists WSNs as one of the

“10 emerging technologies that will change the world ” (MIT’s Technology Review,

2003). Business 2.0 Magazine identifies environmental sensor networks as one of

the “ 8 Technologies for a Green Future ” (Datta and Woody, 2007). WSNs can

have tremendous influence on energy use monitoring and utility management. A
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West Technology Research Solution (WTRS 2010) report titled The WTRS Wireless

Sensor Network Technology Trends Q1 2010 notes that nearly 70% of the average

household utility bill could be affected by WSN temperature and lighting control

applications. In years to come, wireless sensor technology developments will impact

every facet of our life, bringing many new opportunities.

I.1. Characteristics of Wireless Sensor Networks

A wireless sensor is a small device with on-board sensing, data processing and storage,

transceiver (to transmit and receive data) and power units. It can also include a lo-

cation finding system since some applications require accurate knowledge of location

and a mobilizer that moves the sensor to carry out its tasks. Figure I.1 depicts the

typical communication architecture of sensor network. A sensor network is designed

to monitor phenomena or detect events, collect and process data, and transmit to

a user (or the sink nodes). Sensor nodes are usually deployed in various environ-

ments, including remote and hostile regions. The most distinguishing characteristic

of a WSN is the fact that its sensors have finite and non-renewable energy resources.

Thus, innovative techniques to promote energy efficiency so as to prolong the net-

work lifetime are highly preferred. The communication between the sensors usually

exhibits short transmission range. According to Pottie and Kaiser (2000), a multi-

hop data transfer scheme is preferable for reducing energy costs. Sensor nodes should

possess the self-organizing abilities as the operation of WSNs is unattended and the

communication among sensors is in ad-hoc fashion.

There are important challenging issues that distinguish WSNs from other wireless

ad hoc networks (WAHNs) (Akyildiz et al., 2002b; Tilak et al., 2002; Al-Karaki and

Kamal, 2004; Akkaya and Younis, 2005):
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Figure 1: Typical Wireless Sensor Network Architecture. Source: Al-Karaki and

Kamal (2004).

Internet

Sensor Node
Sink Node

1. The number of sensor nodes in WSNs can be several orders of magnitude higher

than the nodes in WAHNs. Sensor nodes are typically densely deployed in

WSNs.

2. Sensor nodes are prone to failure and the topology of WSNs changes frequently.

3. In WAHNs, the network nodes have limited but usually rechargeable energy

whereas in WSNs, which are mostly unattended, a battery powered sensor

node becomes non-operational once its energy is depleted. The limited en-

ergy resources take a more critical role while planning for efficiency in WSNs.

Hence, one of the main objectives in WSNs is to promote energy efficiency so

as to prolong the network lifetime.

4. The communication pattern in WAHNs, is generally a unicast (one-to-one) or its

generalizations including multicast (one-to-many) and broadcast (one-to-all), in

which the flow originates in one node and disseminates to one or more nodes in

the network. However, in WSNs, a communication pattern is such that there is

at least one sink node to which the data flow is directed, i.e., the network flow
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resembles a convergecast. Therefore, the routing problem in WSNs actually

adopts a data gathering purpose rather than providing a pure communication

among the network nodes.

5. The data collected in WSNs is usually based on common phenomena and sen-

sors, that are in close proximity to each other, may produce the same or similar

data, which, in turn, renders the data redundancy issue.

The last two facts highlight another distinctive characteristic of WSNs and that

is the possibility of data aggregation. In particular, WSNs are deployed to obtain

information from a region of interest, and, there is usually significant opportunity for

in-network processing.

From a planning and operations perspective, two problems that are fundamental

to effective and efficient design and operation of sensor networks include Topology

Control, as a tactical problem, and Routing, as an operational problem. Topology

control refers to the determination of an underlying network topology that specifies

the existing linkages (arcs) available for data flow and routing refers to the deter-

mination of paths for transfer of data over the network with this known topology.

The relationship between these problems is emphasized by WSN-specific attributes –

energy efficiency and computation-communication trade-off. Energy-efficiency is im-

portant because each sensor is equipped with an on-board nonrenewable power unit.

The communication-computation trade-off refers to the fact that communication con-

sumes more energy than performing computations on-board in a sensor (Wang and

Hassanein, 2005).
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I.2. Motivation and Scope of the Dissertation

Because of potentially harsh and dynamic environments, along with energy con-

straints, sensor network design will likely encounter many challenges. This disserta-

tion focuses on developing power-aware mathematical models and solution approaches

for the integrated topology control and data routing problems to prolong the network

lifetime. In the light of WSN characteristics presented above, we summarize the

motivations for this dissertation research as follows:

1. As sensor nodes have severe constraints in energy supply and are typically oper-

ated unattended, network lifetime is perhaps the most important performance

metric in WSN design. Innovative techniques to promote energy efficiency so

as to prolong the network lifetime are highly required in WSNs.

2. Due to the frequently changing topology and limited energy provision for each

sensor node, the interrelationships between topology control and routing prob-

lems are more pronounced. In particular, if the issues of designing efficient

routing schemes are not taken into consideration in the topology control prob-

lem, the underlying network topology might not be suited for supporting a

good routing scheme. However, in the majority of the literature most of these

problems are handled separately, thus overlooking the interrelationships among

them.

3. Energy-efficiency is a very important design/operation attribute because of the

special operating characteristics of sensors. Each sensor is equipped with an

on-board nonrenewable power unit. The failure of a sensor due to power deple-

tion affects overall network performance. This is because, in several contexts,

including the one considered in this study, a sensor not only functions to cap-
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ture information in its vicinity, but also functions as a relay node to transfer

the data generated by other sensors to the sink nodes.

4. Communication-Computation trade-off evident in sensor networks is critical as

it relates to the energy efficiency and fault tolerance attributes. Communication

consumes more energy than performing computations in a sensor node that

uses on-board processing capability (Wang and Hassanein, 2005). Although the

direct communication of a sensor node with a sink node is preferable since it

provides a higher fault tolerance for the overall network, this contributes to

the shortening the beneficial network life with excessive energy use. Therefore,

routing schemes where the data size is decreased via data aggregation (using

energy for computation) along the path to a sink node are usually preferred.

Observing that all these attributes and metrics as discussed above are tightly

coupled, in this dissertation, we are motivated to investigate the following research

questions:

• How to promote the energy efficiency so as to extend network lifetime?

• How to design a network that can be constructed and updated efficiently while

ensuring attractive routing schemes?

In this dissertation research, the main goal is aimed at addressing the above

questions via integrating topology control and routing problems under simultaneous

consideration of communication-computation trade-off, data aggregation, and multi-

hop data transfer for better energy efficiency.

In the WSN applications, the main purpose is to monitor and collect data and

then transmit this data to the sink nodes. In general, data sensing and reporting is

dependent on the application. Tilak et al. (2002) categorize the data delivery model
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in WSN as time-driven, event-driven, query-driven and hybrid. In the time-driven

model, the sensor nodes sense their data continuously at a prespecified rate and send it

to the sink periodically. For event-driven and query-driven models, sensor nodes react

when a certain event occurs or a query is generated by the sink. They are well suited

to time-critical applications. A combination of the above methods is also possible.

In our study, we concentrate on time-driven sensor networks whose applications are

found in the continuous data gathering contexts.

In general, the lifetime of a sensor network can be defined as the time frame

between two successive sensor deployments, i.e., a deployment cycle. A deployment

cycle consists of successive periods of fixed time length for which topology and/or

routing decisions are made. Thus, prolonging the network lifetime corresponds to

obtaining the maximum number of successive periods that the data generated at the

sensors can reach the user. In our case, the end of a deployment cycle is reached

when it is not possible to obtain a feasible solution to the problem of transmitting

data generated at the sensors to the user. Based on this definition, the goal of

prolonging network lifetime can be achieved via reducing the energy consumption

while ensuring the energy usage across the network uniformly. This is in contrast to

simply minimizing the energy dissipation, which may leave the network with a wide

disparity in the energy levels of nodes.

I.3. Contributions of this Dissertation

In this dissertation, we contribute to the current literature by investigating the in-

tegrated mathematical models for topology control and routing solutions based on

optimization techniques for the design of WSNs. We adopt a hierarchical data flow

structure in which data generated at the sensors are first routed to the sensors des-
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ignated as clusterheads (CHs). Each sensor is assigned to at least one CH which

reduces the total data size that it receives from sensors via aggregation. Each CH

routes data to a sink either through other CHs, which act only as relays without

aggregation, or directly. Such a structure is beneficial in terms of energy efficiency in

three ways: 1) Since the sensors in close proximity of each other are likely to be in

the same cluster and may generate very similar data, data aggregation at CHs helps

to reduce redundancy and energy consumption in communication; 2) Hierarchical

structure distributes the energy usage to multiple sensors on multi-hop paths, thus

eliminating the quick expiration of the sensors away from the sinks; 3) Since energy

dissipation in communication is proportional to the square of the distance, compared

to direct communication, the total energy dissipation due to communication is less

on a multi-hop route (Santi, 2005a).

We develop and examine three different objectives and their associated math-

ematical models that define alternative policies to be employed in each period of a

deployment cycle for the purpose of maximizing the number of periods so that the

network lifetime is prolonged. The objectives include minimization of 1) total or av-

erage energy usage in the system 2) maximum energy used at a sensor node, and 3) a

weighted sum of the range of end-of-period remaining energy distribution at the sen-

sor nodes and the average energy used in the system. Furthermore, we consider two

important extension models to the setting of the third objective, by incorporating the

fixed CH set-up cost (as in the first case), and the single-sourcing requirements for

CH assignments and the transmission ranges of sensor nodes (as in the second case).

In devising our models, we consider the use of multiple sinks. This is helpful

for energy efficiency since multiple sinks create an opportunity for better proximity

to sensors, thus saving energy in communication. It is possible to route the data so

that the energy drainage in the network is more evenly distributed to the sensors by
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changing the locations of the sinks and the CHs in each period.

Since the models dictate large discrete optimization formulations, exact solutions

are highly impractical using exact optimization methods such as branch-and-cut. On

the methodology side, we develop effective solution approaches that are based on

decomposition techniques, heuristics and parallel heuristic algorithms. Furthermore,

we devise visualization tools to support our optimization efforts and demonstrate that

visualization can be very helpful in solving larger and realistic problems with dynamic

nature. This dissertation research is expected to provide novel analytical models and

solution methodologies for important practical problems in WSNs. We aim to apply

our models on time-driven sensor networks applications pertaining to monitoring

ecological habitats (animals, plants, micro-organisms). In particular, some specific

examples of potential applications are presented as follows:

• Habitat monitoring on Great Duck Island : Since habitat monitoring is very

sensitive to human presence, unattended wireless sensor network provides a

noninvasive approach to obtain the real-time environmental data. Researchers

(Cerpa et al., 2001; Mainwaring et al., 2002) from the University of California

at Berkeley and the College of the Atlantic, deploy sensor networks on Great

Duck Island to monitor the nesting burrows of Leach’s Storm Petrels. Each

sensor collects the data and transmit it to the sink node. The sink node then

connects to the users via a satellite communication link.

• Ecological monitoring on the Big Island of Hawaii : The PODS project (Bia-

gioni and Bridges, 2002) at the University of Hawaii, deploys sensor network in

Volcanoes National Park on the Big Island of Hawaii. The environmental data,

such as temperature, light, wind, humidity, and rainfall, collected by WSNs

is used to monitor the ecological environment and events around the rare and
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endangered species of plants.

I.4. Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter II, we provide

an overview of the topology control and routing studies in wireless sensor network

design problem. In Chapter III, we present three mathematical models for integrating

topology control and routing decisions, and develop a heuristic solution algorithm for

the models. Computational evidence demonstrates that, our proposed model (M3),

which minimizes average energy usage and the range of remaining energy distribution

at the sensors, captures important characteristics of topology control and routing in-

tegration in WSN design. In Chapter IV, we consider an extension model of (M3) by

incorporating the fixed cost associated with locating the CHs. On the methodology

side, we develop a Benders decomposition solution approach that incorporates a sim-

ple heuristic algorithm, the strengthened Benders cuts and an ε-optimal approach.

In Chapter V, we consider another extension model of (M3) by incorporating the

single-sourcing requirements for CH assignments and explicitly specifying the trans-

mission ranges of sensor nodes. We develop the associated mathematical model and a

parallel heuristic algorithm. In Chapter VI, we develop a data visualization toolkit to

support our optimization efforts. Finally, conclusions and future research directions

are summarized in Chapter VII.
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CHAPTER II

LITERATURE REVIEW

In Wireless Sensor Networks (WSNs), the sensors have limited and unchargeable

energy provision and need to operate unattended for a long period of time. Thus,

innovative techniques that can manage energy resources wisely so as to maximize

the network lifetime, are highly preferred. In the literature of WSN design to date,

extensive effort has been invested in developing energy efficient protocols and routing

paradigms to maintain the requested network topology for prolonging the network

lifetime. In this section, we provide an overview of the topology control and routing

literature, and also point out the relevant studies on WSNs.

II.1. Sensor Deployment

Sensor Deployment refers to the implantation of sensors in the region of interest,

and it can be performed in a deterministic or a random fashion. Note that the net-

work topology and routing decisions have to be made with a given deployment. The

deployment of WSNs varies with the application considered. A deterministic sen-

sor placement may be feasible in friendly and accessible environments. Biagioni and

Sasaki (2002) suggest regular deployment strategies for reliability and specifically an-

alyze circular and star deployment topologies and deployments in square, triangular

and hexagonal grids. They conclude that sensor communication radius can signifi-

cantly impact the network coverage. On the other hand, a random sensor deployment

is generally considered in remote or inhospitable areas. Clouqueur et al. (2003) define

a path exposure metric as a deployment measure and discuss deployment strategies

to detect moving targets with random deployment. However, a random placement

can not guarantee the full coverage and may not provide a uniform sensor distri-
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bution. There are some studies that aim to use mobile sensor nodes to enhance

network coverage in the self-deployment methods. Howard et al. (2002) present an

incremental and greedy self-deployment algorithm for mobile sensor networks. Each

node is placed based on the information gathered by the previous deployed nodes.

Zou and Chakrabarty (2003) present a two-step deployment strategy where a ran-

dom deployment is first performed and its coverage is enhanced by a redeployment

using a virtual force algorithm and energy constraints. Heo and Varshney (2005)

propose a distributed energy-efficient deployment algorithm in terms of coverage and

uniformity for intelligent mobile sensor networks. They employ a combination of clus-

tering structure and a peer-to-peer deployment scheme. Cheng et al. (2008) propose

a general network lifetime model and evaluate different deployment strategies so to

maximize the network lifetime. These strategies include transmission power control,

mobile data sink, multiple sinks and different initial energy levels.

Note that, in this research, we assume that the sensors are randomly deployed in

the sensor field and each sensor knows its position information. The study of sensor

deployment problem is beyond the scope of this dissertation.

II.2. Topology Control Problem

Topology control refers to the determination of an underlying network structure so

that a medium is created for the routing of data to take place. Topology control is

one of the main problems in the area of WSNs design in which the energy efficiency

is an important aspect of network operations. Topology control is not an activity

that directly causes energy usage as in the case of routing data. Therefore, an en-

ergy related objective in topology control is essentially a proxy measure adopted for

instilling energy efficiency at this stage of planning with the hope of achieving real
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benefits in the routing stage.

II.2.1. Transmission Range based Topology Control

In the transmission range based studies, topology control is mainly achieved by the

adjustment of the sensors’ transmission ranges, which is related to the power level

settings at the sensors. The transmit range settings at the nodes determine the spatial

extent the nodes can send data and, thus, the connectivity of the network. There are

several studies that consider the topology control problem from this perspective and

aim to setup a strongly connected network by considering an energy usage related

objective. Ramanathan and Hain (2000) consider a static network and address the

problem of adjusting the transmit powers of nodes in a multi-hop setting to minimize

the maximum energy used at a node while maintaining bi-connectivity and present

minimum spanning tree (MST) based algorithms. Tseng et al. (2004) present a mod-

ified MST approach, which builds on an algorithm given in Ramanathan and Hain

(2000), to form k-edge and k-vertex connected topologies for k = 1, 2. Wattenhofer

et al. (2001) introduce a distributed protocol called Cone Based Topology Control,

which aims a minimal energy requirement at the nodes while maintaining global con-

nectivity. Lloyd et al. (2005) address the objectives of minimizing the maximum

energy use at a node and minimizing the total energy use, and suggest a polynomial

algorithm and an approximation algorithm, respectively. Kubisch et al. (2003) sug-

gest two localized algorithms that consider connectivity using a threshold number of

neighbors of nodes without specific objectives on energy usage.

In these above studies, the authors assume that all the sensor nodes are ho-

mogeneous and have the same transmission range. Liu and Li (2003), on the other

hand, consider networks with heterogeneous sensors and present a distributed short-

est path algorithm to calculate the per-node minimum transmission power so that
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the reachability between any two nodes is guaranteed and nodal transmission power

is minimized. Santi (2005b) provides a review of transmission range based topology

control studies and further references can also be found in Santi (2005a). Note that,

as opposed to a hierarchical structure and a convergecast pattern, most of the studies

take the perspective of a flat topology and a unicast or broadcast among the sen-

sors. A topology control approach for a convergecast is given by Rodoplu and Meng

(1999). The authors describe a distributed algorithm which generates a minimum

total energy, a tree rooted at the master-site to which all the sensor can reach.

Furthermore, we observe that the minimization of total energy used and the max-

imum energy used by a sensor are two common metrics for energy efficient topology

in the literature. The first metric may not maximize the network lifetime, because it

does not take the nodes’ remaining energy into account. If some critical nodes happen

to be on more favorable paths requiring less transmission energy, they might suffer

from early failure due to the heavy load in forwarding data packets. The second met-

ric aims to balance the energy consumption by minimizing the highest energy usage

at a sensor node. However, it may create long multi-hop routes and consume more

energy than the minimum-energy route. In both of these cases, we face the issue of

quick energy drainage which occurs at certain nodes in the first case and in the whole

network in the second case.

II.2.2. Joint Consideration of Coverage Preservation and Connectivity

Recently, there are also some researchers addressing the coverage problem for the

desired topology, while maintaining the connectivity. That is, they only choose a

partial set of sensors in the active mode in order to reduce the energy consumption

and prolong network lifetime. Zhang and Hou (2005) present a distributed topology

control algorithm for maintaining sensing coverage and connectivity by keeping a
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minimum number of sensor nodes in the active mode in WSNs. They also show that

“the communication range is at least twice the sensing range ” is a sufficient condition

to ensure a full coverage of a convex area. Tian and Georganas (2005) enhance their

work by proving that “the communication range is twice of the sensing range ” is the

sufficient condition no matter the area is a convex area or not. On the other hand,

there are some studies that jointly consider the coverage and connectivity problem

based on a theoretical formation of the problem. Nakamura et al. (2005) develop a

dynamic mixed integer Linear Programming (LP) model for the multi-period coverage

and connectivity problem under a flat topology, and solve it using the commercial

package CPLEX. Alfieri et al. (2007) present a mixed integer LP model to exploit

data redundancy by defining subset of sensors active in different time periods, to allow

sensors to save energy when inactive. Column generation approach and a heuristic

algorithm are suggested. Cardei and Du (2005) propose a centralized approach for

achieving full coverage by organizing the sensors into a maximal number of disjoint set

covers. These disjoint sets are activated successively, so that only one set is response

for monitoring the targets at a specific time. Soro and Heinzelman (2009), on the

other hand, consider the coverage preservation problem based on cluster-based sensor

networks. Several coverage-aware cost metrics are explored for selecting the set of

Cluster-heads (CHs) and active sensor nodes that provide full network coverage, as

well as the set of routers that forward data to the sink node.

II.3. Routing Problem

Routing refers to the determination of paths for transfer of data over the network

with the given network topology. As discussed in chapter I.2, the main purpose in

WSNs is to monitor and collect data and then transmit this data to the data sink(s).
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An energy-efficient routing paradigm to find proper paths from the sensors to the

sink(s) with the purpose of maximizing the network lifetime is highly required in the

WSNs design problem.

II.3.1. Routing Protocol

The majority of the routing studies focus on developing communications protocols

while others adopt spanning tree, shortest path or multi-commodity flow based ap-

proaches. WSNs usually have a multihop physical topology and this topology can

result in more efficient routing. Clustering protocols have been investigated exten-

sively for designing energy-efficient and scalable sensor networks. The basic idea is to

organize the network into a set of clusters ; within each cluster, sensors transmit their

information to their associated cluster-heads(CHs). The CHs in turn, aggregates the

received data packets and forwards it to the sink node. Instead of using a fixed net-

work topology, the configuration of network topology is dynamic and it varies over

different periods.

Figure 2: LEACH Network Model

A Sink An Clusterhead (CH) A Sensor
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Heinzelman et al. (2000) develop a data aggregating cluster based routing pro-

tocol LEACH (Low Energy Adaptive Clustering Hierarchy) to a single sink at a fixed

known location. Figure 2 depicts a typical data flow pattern in the network model

used by LEACH protocol. Each CH acts as both an aggregator and a relay to the

sink. LEACH aims to maximize the number of periods until either one or all the

sensors die (lifetime) via a localized approach using randomized CH selections and

a minimum energy based assignment of sensors to CHs in each period. A routing

scheme based on 1-hop connections between a sensor and its CH, or to the sink, as

well as between a CH and the sink, is assumed. In the centralized version, LEACH-

C Heinzelman et al. (2002), the sink node determines the CH from a selected group of

sensors with higher energy levels and aims at minimizing the amount of total energy

spent to transmit data to the CHs.

LEACH is one of the first hierarchical routing approaches in WSNs and later,

much work focuses on extending their work with the same general setting. Bandy-

opadhyay and Coyle (2003) modify LEACH via consideration of a multi-level cluster-

ing and a fixed transmission range at the sensors. However, only one period problem

is considered and a better energy dissipation rate is obtained; no comparisons on

lifetime are given. Khan et al. (2003) provide a low energy localized clustering based

routing protocol for the setting in Bandyopadhyay and Coyle (2003), but with 1-

hop connections as in LEACH for improved cluster compactness. A comparison with

LEACH is provided, based on per period energy usage and cluster quality, with no

results on a lifetime measure.

Although LEACH performs better than direct-from-sensor-to-sink routing, the

minimum transmission energy (MTE) based routing (Singh et al., 1998), and a static

clustering based (instead of CH rotations) routing approach, certain issues about its

underlying assumptions remain. LEACH assumes that all nodes can reach the sink
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node with enough power, which is not always true for WSNs, due to the limited

energy provision for each sensor. LEACH adopts the randomized rotation of cluster

heads (CHs) to ensure a balanced energy consumption. It is possible that the elected

CHs will be concentrated in one part of the network, some nodes will not have any

CHs in their vicinity.

Figure 3: HEED Network Model

A Sink An Clusterhead (CH) A Sensor

To account for the shortcoming of LEACH protocol, Younis and Fahmy (2004)

propose a distributed clustering routing protocol HEED (Hybrid Energy-Efficient

Distributed clustering). In HEED, the primary goal is to identify a set of CHs and

organize sensor networks into clusters so as to utilize the limited energy resources

wisely. The CHs are probabilistically selected based on their remaining energy and the

sensor nodes join clusters such that the communication cost is minimized. If a sensor

node falls within the range of multiple candidate CHs, it will select the CH with the

least communication cost. Figure 3 depicts a typical data flow pattern in the network

model used by HEED protocol. A group of sensors define a cluster, and they transmit

the collected data to the associated cluster-head (CH) which in turn transmits the
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data to the data sink either directly or through other CHs. In addition to acting as a

relay node, a CH processes the collected data to eliminate duplications. In comparison

to LEACH, HEED assumes a multi-hop connection between CHs or to the sink node

and at each period, they select CHs with high remaining energy. Simulation results

demonstrate the effectiveness of HEED protocol in terms of network lifetime. HEED

provides an effective method for prolonging the network lifetime. However, it does not

necessarily ensure a balanced energy consumption because of the following reasons:

(1) In HEED, the CHs closer to the sink node may have quick drainage due to their

heavy load in forwarding data packets; (2) At each period, HEED attempts to choose

the highest energy sensors as CHs. However, it may be biased from the long-term

network lifetime perspective.

Liu et al. (2009) provide a distributed energy efficient protocol EAP for the

general setting in Younis and Fahmy (2004). In EAP, each cluster-head is proba-

bilistically selected based on its high ratio of the remaining energy to the average

remaining energy of all the neighbor nodes within its cluster range. This is simply in

contrast to HEED that only chooses CHs based on a node’s own remaining energy.

To further extend the network lifetime, EAP introduces the idea of “intra-cluster

coverage”, which allows a partial set of sensors in the active mode within clusters

while maintaining coverage expectation of the cluster. A comparison with LEACH

and HEED is provided, based on the network lifetime.

As WSNs generally send the collected information to the sinks in a “many to one”

(convergecast) fashion, Haenggi (2003) points out that some critical nodes closer to

the sink have the heavier load for forwarding data packet to the sink. Figure 4 depicts

a critical area in the sensor network whose nodes are present on most forwarding paths

in the network. Specifically, in a multi-hop cluster-based sensor network, the CHs

closer to the sink node may have quick drainage due to their heavy load in forwarding
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Figure 4: Sensor Network with a Data Sink. Source: Haenggi (2003).

sink node

critical nodes

data packets. To ensure a balanced energy consumption, Chen et al. (2009) propose

an Unequal Cluster-based Routing (UCR) protocol. In UCR, CHs closer to the

sink have smaller cluster sizes than those farther from the sink so that “popular”

CHs are protected from quick energy depletion. Simulation results show that UCR

significantly improves the network lifetime in comparison to HEED.

II.3.2. Optimization Approach

As opposed to the routing protocols which are based on localized or heuristic al-

gorithms, some research addresses the routing algorithm based on a theoretical for-

mation of the problem. The typical approaches are to employ shortest path and

multicommodity flow models with modified link costs that incorporate energy re-

quirements and levels at the relay nodes. Chang and Tassiulas (2000, 2004) consider

the problem of maximizing the network lifetime with flat topologies. They present

a Linear Programming (LP) model where the objective is lifetime (single timeframe)

maximization (equivalently maximizing data flow). In fact, they are the first to treat

this problem as a LP problem. Bhardwaj and Chandrakasan (2002) develop upper

bounds on the lifetime of networks based on optimum role assignments to sensors

(e.g., whether they should act as routers or aggregators). Ordónez and Krishna-
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machari (2004) present models both for maximizing the total information gathered

subject to energy constraints, and for minimizing the energy usage subject to infor-

mation constraints. Hua and Yum (2008) aim to maximize the network lifetime by

jointly optimizing data aggregation and routing. The main drawback in these stud-

ies is that they assume the static network topology, which may not be optimal for

balancing the energy consumption over the periods. Kalpakis et al. (2003) study the

maximum lifetime data aggreation (MLDA) problem using the setting in Heinzelman

et al. (2000) and formulate the lifetime as a maximization linear program. The so-

lution gives the overall arc flows and it is later decomposed to determine spanning

(routing) trees, one for each period, rooted at the sink.

Also, it is well acknowledged that mobile sink or multiple sinks can be used to

increase network manageability and to reduce the energy dissipation at each node.

It is possible to route the data so that the energy drainage in the network is more

evenly distributed to the sensors by varying the sink location or employing multiple

sinks. Moreover, multiple sinks create an opportunity for better proximity to sen-

sors, thus saving energy in communication. Gandham et al. (2003) suggest an integer

program to determine sink locations under a flat-routing without CHs and aggrega-

tion. Minimization of total energy used and the maximum energy used by a sensor,

are considered and the value of employing multiple, mobile sinks is illustrated. Xue

et al. (2005) extend the framework of a multicommodity flow problem and suggest

the use of multiple data sinks to increase the network lifetime. However, they do not

consider data aggregation to eliminate redundancy. Papadimitriou and Georgiadis

(2006) present a LP model to exploit the capability of the sink to be located in dif-

ferent places during network operation in order to maximize network lifetime. This

goal is achieved by solving two joint problems: a scheduling problem that determines

the sojourn times of the sink at different locations, and a routing problem that aims



23

to develop an energy-efficient data transfer scheme from the sensor nodes to the sink.

Alfieri et al. (2007) propose to exploit data redundancy by defining subset of

sensors active in different time periods, to allow sensors to save energy when inac-

tive. They also present the mathematical programming model which includes two

subproblems: routing and scheduling problems. Al-Karaki et al. (2009) propose an

energy efficient routing scheme GRASS (Grid-based Routing and Aggregator Selec-

tion Scheme). GRASS aims to maximize the network lifetime by jointly addressing the

cluster-based routing problem with application specific data aggregation. Mathemat-

ical formulation and heuristic solution approaches are suggested. Numerical studies

demonstrate the effectiveness of GRASS in terms of network lifetime performance.

Recently, cross-layer design and optimization in WSNs have received significant

attention. In the cross-layer approach, different layers of the protocol stack can inte-

grate and share information among each other to enhance network performance and

maximize the lifetime. Xing et al. (2005) propose the Minimum Power Configura-

tion (MPC) approach which integrates topology control, energy-efficient routing, and

sleep management as a joint optimization problem. Burri et al. (2007) propose a

data-gathering protocol Dozer, that jointly considers medium access control (MAC)

layer, topology control and routing to save energy. Dozer employs a tree-based net-

work structure to route the data, coordinates the nodes sleep schedules and achieves

low radio duty cycles. Madan et al. (2007) consider the optimization of transmission

schemes to maximize the network lifetime among the link, MAC and routing layer.

A simple network topology is given to compute energy consumption and network life-

time. We note that these studies adopt a predetermined physical topology structure

such as tree-based and linear topology, for data routing. Research on the relation

between topology control and routing is very limited. Specifically, if the issues of

routing are not taken into consideration in the topology control problem, then the
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underlying topology might not be suited for supporting an efficient routing paradigm.

Reviews on routing are given in Akkaya and Younis (2005); Al-Karaki and Kamal

(2004); Abbasi and Younis (2007) and excellent reviews of WSNs include Akyildiz

et al. (2002a,b); Karl and Willig (2005); Yick et al. (2008).

II.4. Positioning in the Current Literature

In the light of the discussion above, we summarize the position of this dissertation

research in the current literature as follows:

1. In the literature of WSN design, extensive effort has been invested in reduc-

ing energy consumption and balancing the energy usage of the network so as

to prolong sensor network lifetime. However, in the majority of the literature,

topology control and routing problems are handled separately, thus overlook-

ing the interrelationships among them. For this purpose, we have studied an

integrated topology control and routing problem in WSNs to promote energy

efficiency so as to extend network lifetime.

2. Clustering method has been shown effective for prolonging the network lifetime

in the literature. This is beneficial in terms of energy efficiency in three ways:

(1) Hierarchical structure distributes the energy usage to multiple sensors on

multi-hop paths, thus, eliminating the quick expiration of the sensors away from

the sink node; (2) Data aggregation at CHs is used to reduce redundancy and

energy consumption in communication; (3) Periodic re-clustering can balance

the energy consumption. However, we note that most of the studies in the

clustered sensor network adopt the heuristic and/or localized method to select

and vary CHs over the periods. Such methods may be biased from the long-term

network lifetime perspective. Therefore, we are motivated to develop power-
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aware mathematical models for a hierarchical cluster-based data flow structure.

3. Minimization of total energy consumption and the maximum energy used by a

sensor are two common metrics for energy efficient topology and routing scheme.

However, as discussed in section II.2.1, they do not always lead to a uniform

energy consumption pattern. In both of these cases, we may face the issue

of quick energy drainage which occurs at certain nodes in the first case and

in the whole network in the second case. In this dissertation, we devise three

mathematical models for integrated topology and routing decisions for data-

gathering WSNs. The first two models include minimization of total energy

usage in the system and the maximum energy used at a sensor node, respectively.

Though they are commonly considered in devising communication protocols,

this has not been done from an integrated mathematical modelling perspective

as in our case. We consider these two models as benchmark models for our third

proposed model, which minimizes the total energy and the range of remaining

energy distribution in the network.

4. In devising our models, we consider the use of multiple sinks. Xue et al. (2005)

consider multiple sinks, however, with known locations as opposed to our case

where the locations are also determined. Gandham et al. (2003) illustrate the

benefit of employing multiple sinks via suggesting an integer program to deter-

mine sink locations. However they adopt a flat-routing structure without CHs

and aggregation.

5. In previous studies with data aggregation (e.g. Heinzelman et al. (2000, 2002);

Kalpakis et al. (2003); Younis and Fahmy (2004)), we observe that aggregation

of data into a single signal at each CH, i.e., regardless of the amount of data

received, is common which is applicable in such cases as monitoring maximum



26

temperature in the sensor field. We consider cases where an overall view of a

measure, such as spatial and temporal temperature/humidiy/pressure gradients

in a large sensor field deployed for environmental monitoring, is of interest.

To this end, we employ a general data aggregation approach at the CHs that

represents the elimination of data redundancy.

In summary, we contribute to the current literature by developing the integrated

mathematical models and their solution algorithms for cluster-based topology control

and routing, along with consideration of multiple sinks, based on optimization tech-

niques for the design of WSNs. Furthermore, we employ a generalized aggregation

approach suitable for data-gathering related applications such as in environmental

monitoring. To the best of our knowledge, this dissertation research is the first one in

the design of WSNs to investigate the integrated topology control and routing based

on optimization techniques with a unified generalization to the various settings in the

literature summarized above.



27

CHAPTER III

INTEGRATED TOPOLOGY CONTROL AND ROUTING DECISIONS: A

CLUSTER-BASED SENSOR NETWORK DESIGN PROBLEM

In this chapter, we address wireless sensor network design problem as an integrated

topology control and routing model. We develop and examine three different objec-

tives and their associated mathematical models where each defines a different decision

policy. We aim to identify the one that provides the most prolonged network lifetime

in a multi-period setting. The objectives include minimization of 1) total or aver-

age energy usage in the system 2) maximum energy used at a sensor node, and 3) a

weighted sum of the range of end-of-period remaining energy distribution at the sensor

nodes and the average energy used in the system.

Since our mathematical models dictate discrete optimization formulations, even

small size instances are highly impractical to be solved using exact optimization

methods. Thus, we develop efficient heuristic methods, including feasible solution

construction heuristics and improvement heuristic approaches, that also incorporate

exact optimization methods for solving subproblems. On the other hand, we also uti-

lize our heuristic solutions in order to define effective cuts that improve the solution

time of exact approaches. Among the objectives that we examine, we identify one

that utilizes both the average energy use in the system and the range of remaining

energy distribution at the sensor nodes as the most effective approach as a policy.

III.1. Problem Setting

In this dissertation, we concentrate on time-driven sensor networks applications per-

taining to monitoring ecological habitats (animals, plants, micro-organisms) where

data collection is performed periodically. Once the sensors are randomly deployed
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in the region of interest, they approximate their positions via, for example, trian-

gulation utilizing some of the sensors with GPS units (Bulusu et al., 2000), and in

some cases, without relying on GPS capabilities (Savvides et al., 2001). This sensor

location information along with pre-configured sensor ids are routed to the sink nodes

using, for example, a minimum cost forwarding protocol (Ye et al., 2001), they are

used throughout the network lifetime by the user who, being also the main controller,

typically has access to the information at the sink nodes via, for example, a satellite

or fiber connections.

In a given period, we consider a hierarchical setting where data flow from sen-

sor nodes to the sink nodes occurs via intermediate transfer (cluster-head) nodes.

Figure 5 depicts a typical data flow pattern in the network and also the location

and flow variables associated with the model. A group of sensors define a cluster,

and they transmit the collected data to the associated cluster-head (CH) which in

turn transmits the data to the sink nodes either directly or through other CHs. In

addition to acting as a relay node, a CH processes collected data to eliminate dupli-

cations. Since, for a sensor, performing computations is much less energy consuming

than communications, a hierarchial underlying topology results in higher energy effi-

ciency. We also employ multiple sink nodes as they create an opportunity for better

proximity to sensor nodes, thus, effectively reducing the energy consumption. In ad-

dition to the data flows, the sink and CH locations are selected from the associated

candidate set and are determined by a centralized mathematical formulation in each

period. This setting gives a dynamic topology where, at the end of each period, the

energy information will be updated and the configuration will change in each period

accordingly. Such a structure is beneficial in terms of energy efficiency in two ways.

First, data-aggregation is applied within a cluster to reduce the amount of data to be

transmitted. Second, the rotation of CHs and sink nodes helps to ensure a balanced
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energy consumption.

Figure 5: An Example Solution and Notation for Topological Variables

A Sink A Clusterhead (CH) A Sensor
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The main task of a sensor node is to detect events, perform data processing, and

then transmit the data. Power consumption can hence be divided into three parts:

sensing, communication, and data processing. In WSNs, sensing energy represents

only a small percentage of the total energy consumption and the majority of the

consumed power is in computing and communication. Thus, we consider the energy

dissipation only for communication and data processing in this dissertation study. We

employ a widely adopted first order radio model (e.g. see Heinzelman et al. (2000))

in which energy dissipation is w (joules/bit) to run the circuitry and v (joules/bit/m2)

for the transmit amplifier. Then, transmitting xab (bits) of data from node a to node

b dissipates (w + v D2
ab) xab and to receive the same amount of data dissipates w xab

where Dab is the distance (in meters) between a and b. In addition, to account for

the power dissipation due to data aggregation/processing efforts at a CH, we employ

a dissipation rate of c (joules/bit). We employ the values of the energy dissipation

related parameters as in Heinzelman et al. (2000); specifically, v = 100 pJ/bit/m2,

w = 50 nJ/bit, and we use a c value of 5 nJ/bit (note that pJ=pico-joules and
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nJ=nano-joules).

III.2. The Integrated Topology Control and Routing Models

In the models that follow, we assume that the sensors are randomly deployed in a two-

dimensional field of finite area and each sensor node knows its position information

either through a low-power Global Position System (GPS) receiver (Savvides et al.,

2001) or some other way (such as location service and localization algorithms (Bulusu

et al., 2000)). We assume that the sinks are not energy-constrained and are accessible

by a user. The sink are located around the periphery of the sensor field. We also

assume that a sensor collects data at an average rate and forwards this information to

its CH for data aggregation and transmission. We assume that each wireless sensor

node has an omni-directional antenna, so that a single transmission of a node can be

received by all nodes within its vicinity which is a disk centered at the node.

We use an average aggregation ratio at a CH, mainly to reflect the elimination

of data overlap, and note that this ratio is highly dependent on the specific appli-

cation and network parameters such as deployment density. We also assume a fixed

number of CHs being active in a period which can be controlled by the user. In our

computational studies, similar to previous studies (Heinzelman et al., 2002; Soro and

Heinzelman, 2009; Younis and Fahmy, 2004), we consider varying number of CHs,

approximately 8-20% of the number of sensors.

We limit the usable energy that a sensor or a CH can use. We represent the

usable amount as a fraction p of the total available energy at a sensor and refer to

it also as topology control parameter. This provides the ability to manage topology

control implicitly. This is an important characteristic because allowing a sensor’s

whole energy to be usable can easily make the sensor vulnerable to quick energy
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depletion since it can be selected as a CH repeatedly.

We define the following notation:

Model Parameters

I set of sensors, i ∈ I,

J set of candidate CHs, j ∈ J ,

K set of candidate sinks, k ∈ K,

Ri data generation rate (bits/unit-time) at a sensor i,

Dpq distance (m) between any two nodes p and q,

H number of required CHs,

U number of required sinks,

s an average data aggregation ratio,

Ei available energy (Joules) at a sensor i,

p fraction of Ei reserved for usage at a sensor,

T the length of a period.
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Decision Variables

xc
ij fraction of data flow per unit time from a sensor i to a CH j,

xcc
ij data flow per unit time from a CH i to a CH j,

xu
jk data flow per unit time from a CH j to a sink node k,

zc
j 1 if a node j is setup as a CH, 0 o.w.,

zu
k 1 if a node k is setup as a sink, 0 o.w.,

ei energy consumed by a sensor node i,

ec
m energy consumed by a CH m,

EC
max maximum energy consumed at a sensor,

ER
max maximum remaining energy at a sensor,

ER
min minimum remaining energy at a sensor.

Due to common characteristics such as underlying network topology and flow struc-

ture and energy consumption calculations, we have the following set of common con-

straints for our models.

Common Constraints

∑

k∈K

(w + v D2
mk) T xu

mk +
∑

j∈J\{m}

(w + v D2
mj) T xcc

mj

+
∑

j∈J\{m}

w T xcc
jm +

∑

i∈I

(w + c s) Ri T xc
im = ec

m ∀m ∈ J (3.1)

∑

j∈J

(w + v D2
ij) Ri Txc

ij = ei ∀ i ∈ I (3.2)

∑

k∈K

xu
mk +

∑

j∈J\{m}

xcc
mj −





∑

j∈J\{m}

xcc
jm + (1 − s)

∑

i∈I

Ri x
c
im



 = 0 ∀m ∈ J (3.3)

∑

j∈J

xc
ij = 1 ∀ i ∈ I (3.4)
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xc
ij ≤ zc

j ∀ i ∈ I, ∀ j ∈ J (3.5)

xcc
mj ≤

∑

i∈I

Ri z
c
j ∀m, j ∈ J (3.6)

xu
jk ≤

∑

i∈I

Ri z
u
k ∀ j ∈ J , ∀ k ∈ K (3.7)

xc
jk ≤

∑

i∈I

Ri z
c
j ∀ j ∈ J , ∀ k ∈ K (3.8)

ei ≤ p Ei ∀ i ∈ I (3.9)

ec
j ≤ p Ej ∀ j ∈ J (3.10)

∑

j∈J

zc
j = H (3.11)

∑

k∈K

zu
k = U (3.12)

zc
j , zu

k ∈ {0, 1} ∀ i ∈ I, j ∈ J (3.13)

xc
ij, xcc

ij , xu
jk, ei, ec

j ≥ 0 ∀ i ∈ I, j ∈ J , k ∈ K (3.14)

Constraints (3.1) and (3.2) assign the values of the total energy consumed by a CH

and a sensor, respectively. Note that the energy dissipation due to data aggregation is

embedded in the last term of the left-hand side in constraint (3.1) in such a way that

more aggregation (a higher s value) results in higher energy dissipation. Constraints

(3.3) state the data flow balance at each CH , which also ensure that the data collected

at a sensor node is aggregated with data from other sensors only once after it is

transferred to the associated CH. The aggregation ratio s represents the ratio of

the data eliminated due to redundancy. Constraint (3.4) guarantees that the data

generated at each sensor node reaches some CH. Constraints (3.5)–(3.8) assign the

values of binary variables related to CH and sink location selections. Constraint
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sets (3.9) and (3.10) ensure that the total energy consumed at a node cannot exceed

the total available energy at the corresponding sensors. Constraints (3.11) and (3.12)

establish the required number of CHs and sinks, respectively, and (3.13)-(3.14) include

the integrality and non-negativity of the decision variables.

Alternative Models

(M1) Minimize the total energy used:

Min
∑

m∈J

ec
m +

∑

i∈I

ei (3.15)

subject to (3.1) − (3.14)

(M2) Minimize the maximum energy consumed by a sensor node:

Min EC
max (3.16)

subject to (3.1) − (3.14)

ei ≤ EC
max ∀ i ∈ I (3.17)

ec
j ≤ EC

max ∀ j ∈ J (3.18)

EC
max ≥ 0 (3.19)

Constraint sets (3.17) and (3.18) impose a variable upper bound on the energy

consumed by any sensor node.

(M3) Minimize the weighted (where t is the weight) sum of average energy con-

sumption and range of remaining energy levels:

Min t

(

∑

m∈J

ec
m +

∑

i∈I

ei

)

/|I| + ER
max − ER

min (3.20)
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subject to (3.1) − (3.14)

ER
min ≤ Ej − ec

j ∀ j ∈ J (3.21)

ER
min ≤ Ei − ei ∀ i ∈ I (3.22)

zc
j Ej − ec

j ≤ ER
max ∀ j ∈ J (3.23)

(1 − zc
i ) Ei − ei ≤ ER

max ∀ i ∈ I (3.24)

ER
max, ER

min ≥ 0 (3.25)

Constraint set pairs (3.21)-(3.22) and (3.23)-(3.24) express the the minimum

and the maximum remaining energy levels for each sensor node, respectively.

Recall that once a model is adopted, it is solved successively for each period

until the end of the deployment cycle marked by the infeasibility of the model. The

objectives in (M1) and (M2) are commonly considered both in topology control and

routing studies, although not necessarily in a mathematical modelling context as in

this study. However, we observe that, when a lifetime measure is considered, they

do not exactly capture the energy depletion pattern that we would like to see in the

network.

More specifically, (M1) minimizes the overall energy dissipation, which may lead

to an energy drainage at certain nodes due to their successive usage in several periods

if they happen to be on more favorable paths requiring less transmission energy. On

the other hand, since (M2) aims to minimize the highest energy usage at a sensor

node, it can do so by creating long multi-hop routes from sensors to the sinks so that

each sensor dissipates only a small amount of energy. In both of these cases, we face

the issue of quick energy drainage which occurs at certain nodes in (M1) case and in

the whole network in (M2) case. Limiting the usable energy reserve at sensor node
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can alleviate this problem by only making a fraction of the energy available at the

sensor nodes in each period.

We develop the third model in order to address the drawbacks of (M1) and (M2)

via the objective function formation that promotes, from the perspective of lifetime

maximization, a more favorable energy depletion pattern in a network. Specifically,

the objective in (M3) directly addresses the energy usage and also the variation in

the remaining energy distribution at the sensor nodes by minimizing its range. That

is, (M3) aims to distribute the energy usage across the network uniformly.

III.3. Experiment Data

In our following numerical studies, we generate |I| sensor coordinates randomly using

a uniform distribution in a square of size N meters(m). The candidate sites for sinks,

K, are also generated randomly on the periphery of the sensor field. We set the period

length as T = 4000 time-units and the aggregation ratio as s = 0.3. In addition, we

set the weight for the average energy dissipation component of the objectives (M3) as

t = 5 which we determined as a reasonably good value after some empirical testing.

The computational studies are performed on a machine with Pentium D 3.2 GHz

CPU and 2.0GB RAM and the algorithms are implemented in C++ utilizing STL

(Standard Template Library) and Concert Technology when CPLEX was used.

III.4. Preliminary Analysis of the Models

In order to gain insights into the characteristics of the models and as well as compare

them based on various criteria both in single-period and multi-period settings, we

solve a set of small size instances to optimality using the exact branch-and-cut im-

plementation in CPLEX 9.0 with default parameters. In particular, the preliminary
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analysis is aimed to examine the remaining energy distribution characteristics (mean

and variance) at the end of the single-period solutions associated with these models;

the impact of considering a high-energy subset of I as the set of candidate CHs, which

we denote by IR, and the effects of parameters including the number of user nodes

and usable energy percentage on network lifetime.

III.4.1. Single-Period Characteristics

Due to our specific objective of prolonging the network lifetime by obtaining the

maximum number of fixed-length periods under limited energy resources, it is very

important to understand the energy status characteristics in the system as we move

from one period to another. For this reason, we examine the remaining energy dis-

tribution after a typical period for which we solve our models to determine CH as

well as the sink locations and data routing. Furthermore, it is also important for

the purposes of computational efficiency in solving the optimization models that we

understand the impact of considering IR on the the optimum solution of the mod-

els. Employing IR instead of I is also useful from the energy efficiency perspective

for a prolonged network lifetime since it promotes, in each period, the protection of

low energy sensors from depleting their energy quickly. To determine the set of high

energy sensors in a period, IR, we use a threshold value THΨ calculated as Ψ% of

the average initial energy level at the sensors, i.e., THΨ = (Ψ/100) ∗ (
∑

i∈I Ei/|I|).

We consider 18 problem sets where each includes 10 instances generated randomly

with fixed N and |K| values of 50 and 8, respectively. We vary values of |I|, U , and

H as summarized in Table 1. Note that, in all of the instances, we assume that the

initial energy levels at the sensors are uniformly distributed in the range [0.1, 0.5] J

and fully available.

In examining the remaining energy distribution moments, we employ the set I
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Table 1: Parameter values for the data sets

Set |I| U H Set |I| U H Set |I| U H

1

15

1

2 7

20

1

2 13

25

1

2

2 3 8 3 14 3

3 4 9 4 15 4

4

2

2 10

2

2 16

2

2

5 3 11 3 17 3

6 4 12 4 18 4

as J and solve the random instances using our models. The averages of means and

the variances of the corresponding distributions for each data set are given in Figures

6(a) and 6(b), respectively. In Figure 6(a), we observe that there is not a substantial

difference among the models in terms of mean remaining energy values. For each

model, a slight difference occurs when the |I| value changes in such a way that the

remaining energy means decrease as the |I| increases (every six data sets), however,

this is expected since the larger number of sensors generates more data and lead to a

higher energy consumption in the system. Also, we observe that, for a fixed |I| value

corresponding to six data sets, there is an upward trend in remaining energies due to

the increase in U and H values. On the other hand, in Figure 6(b), it is clear that the

model (M3) provides a significantly less variance in remaining energy distribution.

Given the variation in the initial energy distribution at the sensors, this observation

is particularly interesting in showing the impact of minimizing the range along with

the average of remaining energy distribution.

To examine the impact of employing an IR that involves only the sensors whose

energy level is higher than THΨ=60, we solve each model first assuming J = I and,

then, J = IR with objective values of ZI and ZIR, respectively. Hence, we compute

the percentage gap between objective function values as GR(%) = 100∗(ZIR−ZI)/ZI.
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For each model and data set, we compute the average GR values over ten instances,

as reported them in Figure 6(c). We observe that the (M3) tends to heavily utilize

high energy sensors as CHs in their optimal solutions. This is illustrated by the fact

that the optimal objective function values with J = I and J = IR are very close,

as shown in Figure 6(c).

III.4.2. Multiple-Period Characteristics

In our multi-period setting, we empirically examine three specific network attributes

– the number of user nodes U , the usable energy percentage p and the period length

T – that we specifically incorporate for the purpose of prolonging network lifetime.

For this, we employ a data set of 10 sample instances and optimally solve our mod-

els for each instance with varying p, U and T values using exact branch-and-cut

implementation in CPLEX 9.0 with default parameters. We use the data set 5 in

Table 1.

The Impact of Usable Energy Fraction p on Network Lifetime

First, we specifically examine the impact of topology control parameter p, which is

the fraction of total energy available at a sensor made usable in a period, on network

lifetime under the three models (M1), (M2), and (M3). For a given model, we run

each instance in the data set for a full deployment cycle (lifetime) ten times, where

each one of ten runs corresponds to initial p values (pI) ranging from 0.1 to 1.0. We

start an instance with an initial pI value as the current p value and, whenever in a

period the solution to the model is infeasible, we increase the current p value by an

increment (inc) value for which we assume a value of 0.1. The most recent value of p

in a period is carried as the current p value for the next period. The condition in which

the p reaches a value of 1.0 and the model’s solution is infeasible marks the end of
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Figure 6: Comparison of Models using Single-Period Solutions
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the deployment cycle for the instance. In general, a topology control scheme specified

as such can be represented as (pI, inc) and it should be calibrated, i.e., the values

of pI and inc should be determined for a specific application via experimentation.

In Figure 7, we summarize the results for all three models where the lifetimes are

averaged over 10 instances for each initial p value.

Figure 7: Average Network Lifetimes under Varying Initial p Values

10

20

30

40

50

60

70

80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Initial p

A
ve

ra
ge

 N
um

be
r o

f P
er

io
ds

(M1)

(M2)

(M3)

We observe that the performance of (M1) is highly sensitive to the initial value

of p. If we do not restrict the maximum energy usage for each node, i.e. start the

deployment cycle with a large p value, the (M1) performs very poorly. It seems

that determining a good p value, possibly via a conservative use of energy from the

beginning of a deployment cycle and a calibration of its increments, provides a good

lifetime measure. Although not as significant, (M2) is also sensitive to the initial

value of p. On the other hand, it is interesting to observe that (M3) is influenced

very little, if at all, by the choice of pI value, i.e., it is highly robust to changes

in the amount of energy reserved for usage at the sensors. We can explain these

differences in the performance of the models with respect to the p value as follows.

If the energy usage is not constrained in (M1), then the same underlying network,
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given by the optimum model solution, is repeatedly obtained. This leads to a quick

energy depletion at certain sensors, and, thus, shortening the network lifetime. (M2),

which minimizes the maximum energy depletion at a sensor node, does not have any

particular means to avoid a similar repetitive use of certain nodes when coupled with

the use of a conservative p; therefore, even having a conservative strategy with a

low p is not very helpful in terms of prolonging the network lifetime. (M3) is a

multi-objective approach and, in general, it incorporates remaining energy measures

into the optimization and attempt to address energy dissipation both in terms of

minimizing its average in the network and its variation among sensor nodes. Thus,

it promotes a favorable transition in terms of energy status in the network from

period-to-period. The choice of p is insignificant in (M3) because its role is already

embedded in the models very effectively, leaving no question about how the value of

p should be calibrated from period-to-period in order to prolong network lifetime.

The Impact of Number of Sinks U on Network Lifetime

Second, to study the effect on network lifetime of employing multiple sink nodes, we

consider the varying values of number of sinks U in the [1, 4] range. Based on our

above observations on the (pI , inc), we consider two cases including (1.0, 0.0) and (0.1,

0.1). We further note that although in the first period of the first deployment cycle

the initial energy levels at the sensors are equal, when a redeployment in a WSN is

performed, the initial energy levels at the sensors are expected to be varying. Thus, to

also examine any bias on the impact of p and U due to having different initial energy

levels at the sensors at the beginning of a deployment cycle, we consider cases where

the initial energy levels at the sensors are equal to 0.5 J, and they are randomly drawn

from a uniform distribution in the range [0.1, 0.5] J. The average network lifetimes

over the 10 instances is summarized in Table 2.
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Table 2: Average network lifetimes under varying Ei, U , and p values

Same Initial Different Initial

Energy Levels Energy Levels

Model (pI , inc) /U 1 2 3 4 1 2 3 4

(M1)
(1.0, 0.0) 19 21 23 23 8 10 10 10

(0.1, 0.1) 55 63 64 64 27 31 31 31

(M2)
(1.0, 0.0) 27 28 28 28 8 9 9 9

(0.1, 0.1) 50 51 51 51 24 25 26 26

(M3)
(1.0, 0.0) 61 69 71 71 26 30 30 31

(0.1, 0.1) 61 69 71 71 29 32 33 33

We observe that employing multiple sink nodes helps to achieve longer network

lifetimes. This is generally true for each model, independent of the initial energy

levels. However, the added benefit from multiple sinks diminishes after a certain

value of U . Thus, there appears a critical value of U that provides the most prolonged

network lifetime. In a real application, multiple sinks also provide added benefits due

to the better fault tolerance abilities they offer. Furthermore, (M3) outperform the

other models in terms of lifetime, and, clearly, it is very little, if any, impacted by the

choice of p regardless of the nature of initial energy levels.

III.5. Heuristic Approaches

Our models of interest dictate mixed integer programming problems and, for relatively

large-scale instances, the use of branch-and-cut solution algorithms (as in CPLEX)

is not helpful due to high memory and runtime requirements. Therefore, we study

the development of efficient heuristic solution approaches which take advantage of

the availability of explicit model formulations and underlying model and solution

characteristics.
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While developing our solution approaches and conducting our computational

studies using both the heuristic methods and the exact branch-and-cut approach,

we also incorporate objective function value-based cuts into the models (in exact

approach) or subproblems (in heuristic approach) in order to significantly improve

their solution times. In particular, supposing that an upper bound Ẑ for the model

of interest is available, then for (M1), (M2), and (M3), we utilize the cut inequalities

∑

m∈J

ec
m +

∑

i∈I

ei ≤ Ẑ, (3.26)

EC
max ≤ Ẑ, (3.27)

and

t

(

∑

m∈J

ec
m +

∑

i∈I

ei

)

/|I| + ER
max − ER

min ≤ Ẑ, (3.28)

respectively. Furthermore, for (M3), using the following two logical inequalities

ER
max − ER

min ≥ 0 and
(

∑

i∈I

Ei − (
∑

m∈J

ec
m +

∑

i∈I

ei)

)

/|I| ≤ ER
max

in conjunction with (3.28), we obtain an additional cut inequality given by

t

(

∑

i∈I

Ei/|I| − ER
max

)

≤ Ẑ (3.29)

Thus, we are able to benchmark the quality of our heuristic solutions employing a

wider set of problem instances. We develop an efficient overall solution procedure that

addresses all of the three models, (M1), (M2) and (M3), which differ only in the

initial solution construction component. Before we present this complete procedure,

we discuss its components in detail.



45

III.5.1. Solution Representations and Subproblems

Although the models we consider differ structurally, they embody the same sets of

binary variables. Thus, we utilize the binary variables to obtain two solution repre-

sentations. In the first one, we represent a solution by a set of fixed CH locations

given by C = {j ∈ J : zc
j = 1}. To evaluate the goodness (objective value) of

such a solution, we solve a subproblem, denoted by (SubC), by simply fixing the

corresponding binary variables zc
j at 1 in the model of interest. Thus, we obtain the

sink locations and data routing along with the objective value Z(C). In the second

case, we represent a solution by the fixed sink locations, i.e., D = {k ∈ K : zu
k = 1}.

Similarly to the previous representation, in order to evaluate the goodness of a given

solution, we solve a subproblem (SubU), which is derived from the model of interest

by using D, and obtain the CH locations and data routing along with the objective

value Z(D). Note that thirdly we can consider the combination of the above two

representations, however, our numerical studies indicate that adoption of this rep-

resentation of solution algorithms is highly ineffective, thus, we do not pursue its

use. Because the solution space is smaller due to a smaller number of candidate sink

locations compared to candidate CH locations, a solution search approach based on

D and (SubU), in general, is expected to provide better quality solutions. However,

solution times are expected to be longer since the solution of a subproblem (SubU)

is more time-consuming than the solution time of a (SubC) due to the larger number

of variables.

III.5.1.1. Construction Heuristics

We devise two different construction heuristic methods, one for (M2) and the other

for (M1) and (M3). In doing so, we try to utilize the model characteristics to obtain

good initial solutions which contribute to better performance during the improvement
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stage of the overall procedure.

Construction Heuristic for (M2)

Recall that in (M2), we aim to minimize the maximum energy consumed by a sensor.

Then, in a solution, there is at least one sensor whose energy consumption (highest

in all the sensors) uniquely determines the objective value. Since the energy con-

sumption is largely due to data transmission, it makes sense to employ a set of CHs

that are spread all over the sensor field. This way, no individual sensor or a small

set of sensors are subjected to exceptionally high energy consumption. To ensure this

spread of CHs over the sensor field, in the ConstructM2() heuristic, given in Algo-

rithm 1, we proceed as follows. First, we note that ConstructM2() is a multi-start

approach, i.e., its core algorithm (lines 3-15) is run Maxiter times; and the best of all

the Maxiter solutions obtained is the final solution.

Each start first randomly picks a single node as a CH from the candidate set

of CHs (lines 4-5). Then the rest of the CHs (H − 1 of them) is picked based on

distance in such a way that a good spread of CHs in the sensor field is promoted.

Distance d(j, C) between a node j and the set of already selected CHs (C) is measured

as mini∈C d(j, i). We pick the next CH as being the farthest away from the already

selected CHs (lines 7-9). Once a solution Sc is obtained after all of the CHs are picked

this way, its goodness is evaluated by solving the problem SubC described above.

If Sc is better than the best solution so far (Sb), then it becomes the new Sb (lines

11-14). In our computational studies, we use a Maxiter value of |J |/2 if |J | < 100

and |J |/5 otherwise.
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Algorithm 1 Procedure ConstructM2()

1: initialize Z(Sb) = ∞, Maxiter ;

2: while Maxiter > 0 do

3: C = ∅, h = 1;

4: Randomly pick a node i from J ;

5: C = C
⋃

{i}, C̄ = J \ {i};

6: while h < H do

7: j∗ = arg max{d(j, C) : j ∈ C̄};

8: C = C
⋃

{j∗}, C̄ = C̄ \ {j∗};

9: h = h + 1;

10: end while

11: Sc = C, solve (SubC) to obtain Z(Sc);

12: if Z(Sc) < Z(Sb) then

13: Sb = Sc, Z(Sb) = Z(Sc);

14: end if

15: Maxiter = Maxiter−1;

16: end while

17: Return Sb and Z(Sb)

Construction Heuristic for (M1) and (M3)

Both (M1) and (M3) mainly aim to minimize energy consumption with an additional

requirement for (M3), whereby the range of the remaining energy distribution is also

minimized. Since the data flow in the network is toward the sinks, it is preferable to

ensure that some CHs are selected close to the periphery while the remaining CHs are

chosen from the center of the sensor field so that energy efficient natural paths can

be established towards sinks. The ConstructM1M3() heuristic, given in Algorithm

2, aims to achieve this by dividing the whole sensor field in two nested parts, a box

centered in the sensor field and the band around it. In particular, the candidate CHs

in the first part, denoted by F1, are the ones that are in a square of size β centered in

the sensor field. Then, the set of candidate CHs in the second part (close to periphery

of the field), called F2, is simply given by J \ F1.
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In this process, we also attempt to avoid coincidentally well-positioned sensors

(from an energy dissipation minimization point-of-view) being selected as CHs repeat-

edly in successive periods and to protect low-energy sensors from being selected as

CHs. For this purpose, we consider only a subset of sensors with higher-energy as the

set of candidate CHs J . We denote this subset as IR since it is a subset of sensor set I.

Specifically, to determine the IR set, we use a threshold value THΨ calculated as Ψ%

of the average initial energy level at the sensors, i.e., THΨ = (Ψ/100) ∗ (
∑

i∈I Ei/|I|)

and IR = {i ∈ I : Ei ≥ THΨ}.

The ConstructM1M3() heuristic is also a multi-start approach as ConstructM2()

and we use the same maximum number of iterations, Maxiter, as in ConstructM2().

In each start, we proceed as follows (lines 5-23 in Algorithm 2). We first pick about a

fraction α of total required CHs in F2 (periphery band), specifically we pick a total of

bα ∗Hc CHs from F2. For this, we start by randomly picking a CH and then choose

the rest of the CHs one at a time at the median distance from the currently selected

ones (lines 5-12). Then, the rest of the CHs (i.e., H − bα ∗ Hc) are picked from set

F1 similarly (lines 13-18). We determine the goodness of the obtained solution S c

by solving the associated SubC. We update the best solution Sb by Sc if necessary

(lines 19-23).

In our implementations, before we choose the CHs, we check the number of

candidates in F1 and F2 starting with an α value of 0.80 and a β (size of the center

box) value determined as bN/2c − 2 where N is the size of a square sensor field. If

there are not enough candidates in sets F1 or F2, we increase or decrease β by one

unit. Note that, by changing the value of α, the ratio of CHs located around the

periphery to those in the inner part of the sensor field can be changed. Also, we use

a Ψ value of 60 in our numerical studies.
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Algorithm 2 Procedure ConstructM1M3()

1: initialize F1 = F2 = ∅, Z(Sb) = ∞, Maxiter ;

2: Form F1 ⊆ J using the center square of size β;

3: F2 = J \ F1;

4: while Maxiter> 0 do

5: C = ∅, h = 1;

6: Randomly pick a node i from F2;

7: C = C
⋃

{i}, C̄ = F2 \ {i};

8: while h < bH ∗ αc do

9: Pick j∗ which has the median d(j, C), ∀ j ∈ C̄;

10: C = C
⋃

{j∗}, C̄ = C̄ \ {j∗};

11: h = h + 1;

12: end while

13: C̄ = F1;

14: while h < H do

15: Pick j∗ which has the median d(j, C), ∀ j ∈ C̄;

16: C = C
⋃

{j∗}, C̄ = C̄ \ {j∗};

17: h = h + 1;

18: end while

19: Sc = C, solve (SubC) to obtain Z(Sc);

20: if Z(Sc) < Z(Sb) then

21: Sb = Sc, Z(Sb) = Z(Sc);

22: end if

23: Maxiter = Maxiter−1;

24: end while

25: Return Sb and Z(Sb)

III.5.2. Solution Improvement Procedures

In this section, we devise two search procedures that we later utilize in our com-

plete procedure for improvement purposes after applying the construction heuristic

described above. In the first method, we employ the CH set C as the solution rep-

resentation and accordingly utilize subproblem (SubC) to evaluate the goodness of

the solution. In the second one, we represent a solution by a set of selected sink

locations D and employ subproblem (SubU) and the solution value obtained in the
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first search procedure. The second procedure is similar to the construction heuris-

tic ConstructM2() which operates using only C and generates an initial solution

without using any a priori solution information.

The SearchSubC() Procedure

This procedure starts with a feasible solution, denoted by Sb
init, which includes the

CHs as determined by a construction heuristic. Inspired by the variable depth search

approach presented by Lin and Kernighan (1973), it searches the solution space by

applying an extended form of exchange neighborhood on C. In each iteration of the

algorithm, CH set is modified by making a number of non-CHs serve as CHs while

unassigning the same number of CHs as non-CHs in the current solution.

In particular, we employ an h-exchange neighborhood function where, in general

terms, starting with a 1-exchange (a single pair-exchange of a CH and a non-CH

sensor), h is increased up to hmax as long as the solution goodness is monotonously

improved. However, as we explain later in Section III.5.3, we assume that only a

subset of the existing CHs can be exchanged (assigned as non-CH) in generating

neighborhood solutions. For a current solution Sc, we use a derived set, Sc
free, to

represent this subset of exchangeable CHs. Furthermore, we note that the variable

depth search approach is a technique that searches a large solution space as it gener-

ates a large number of neighboring solutions of a current solution in each iteration.

We enhance its efficiency further by utilizing both the proximity and the energy level

information at the sensor nodes leading to a consideration of restricted and dynamic

neighborhoods for CHs. In particular, we use distance and energy information as

follows: for a CH to be exchanged, we consider only the non-CH sensors in J which

are within its ρ radius and have at least a THΨ energy level. Then, the neighbor-

hood for each node is clearly restricted to a subset of J . Also, it is very likely that
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the possible non-CHs that can be exchanged with a CH vary in each period due to

changing energy levels. This neighborhood generation approach helps to limit the

neighborhood size with only a small impact on the network lifetime since the low

energy sensors are prevented from being repeatedly employed as CHs.

Algorithm 3 Procedure SearchSubC()

1: initialize h = 1, hmax, G∗ = 0, g0 = ∞,

Sb
init (from a construction heuristic),

Maxiter, Gmax, ρ, ρmin, J ;

2: while h ≤ hmax and G∗ = gh−1 do

3: for j = 1 to h do

4: Sc = Sb
init

5: for i = 1 to Maxiter do

6: Randomly pick j nodes from Sc
free

7: Generate a neighborhood solutions set Ωi;

8: For each C ∈ Ωi, solve (SubC) to obtain Z(C);

9: Si = arg min{Z(C) : C ∈ Ωi}

10: if Z(Si) < Z(Sc) then

11: Sc = Si;

12: end if

13: end for

14: gj = Z(Sb) − Z(Sc);

15: if gj > 0 then

16: Sb = Sc, Z(Sb) = Z(Sc);

17: end if

18: end for

19: gh =
∑h

j=1 gj;

20: if gh > G∗ then

21: G∗ = gh ;

22: end if

23: if G∗ > Gmax and ρ ≥ ρmin then

24: ρ = ρ − 1;

25: end if

26: h = h + 1;

27: end while

28: Return Sb and Z(Sb)
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The SearchSubC() heuristic proceeds as detailed in Algorithm 3. The out-

side while loop, lines 2–28, controls the search procedure by conditioning on the

maximum allowable exchange neighborhood size and the continuity of improvements

over the best solution Sb. Since, as h increases, the generation of a neighborhood

and the evaluation of the solutions require longer runtimes, we limit the exchange

neighborhood size by hmax. For a given h value, we generate the neighborhoods of

j-exchange, j = 1, . . . , h, in order (lines 3–18). For each j, we perform at most Max-

iter j-exchanges (lines 5–13). For each such exchange i, we randomly pick j nodes

from the Sc
free set of the current solution and generate a neighborhood solution set

Ωi. The generation of Ωi for j = 1 is straightforward. For j ≥ 2, we proceed by gen-

erating individual neighborhoods of j CHs (as in j = 1 case) and then, we consider

all feasible combinations for a j-exchange. To evaluate the goodness of a solution

generated, we employ the subproblem SubC and assign the most improving solution

after Maxiter iterations as the current solution Sc. If an improvement gj over the

best solution Sb (line 14) is obtained, then we update the best solution (lines 15–17).

After this for loop is completed, considering all possible j values (lines 3–18), in line

19, we calculate the cumulative improvement gh for h-exchange neighborhood search,

and if it improves the highest so far improvement quantity G∗, G∗ is also updated

(lines 20–22). The operations on lines 23–25 aim mainly at improving the solution

time in the neighborhood search. Specifically, if the highest objective improvement

amount is greater than a maximum preset value Gmax and the neighborhood radius

ρ is greater than a preset minimum value, we decrease ρ by one unit so that, in the

next maximum neighborhood size h, the generation and evaluation of neighboring

solutions in each iteration i (lines 6–9) are less time consuming.

We note that, while evaluating a neighboring solution via solving SubC on line

8, we also employ the cut inequalities (3.26) for (M1), (3.27) for (M2), and (3.28)



53

and (3.29) for (M3). In all cases, we replace Ẑ with Z(Sb) and observe significant

improvement in solution times. In our numerical studies, given in Section III.6, we set

the values of hmax, initial ρ, ρmin, and Gmax as 3, 5, 2 and 0.1 ∗Z(Sb
init). In addition,

we use a Maxiter value of H if |J | < 100, H/5 if |J | > 200, and H/2 otherwise.

The SearchSubU() Procedure

In this method, we use a solution representation based on sink selection. Finding

the optimum solution of SubU (subproblem for fixed sinks D) is generally a time-

consuming process. Although the candidate set of sink nodes K is typically not very

large when compared to the set of candidate CHs J , a neighborhood search procedure

based on exchanges, similar to the one described above, is still very time-consuming.

On the other hand, we observe that the solution space over a set K can efficiently be

searched by embedding a randomized construction component into an algorithm and

by employing the cut inequalities while solving a SubU whenever needed.

More specifically, the procedure SearchSubU(), given in Algorithm 4, includes

a fixed number of iterations, Maxiter, which we recommend to be set much less than

the |K|, e.g. |K|/2 as in Section III.6. The procedure involves mainly two components.

In the first part (lines 3–9), we generate a solution by picking the first sink location

randomly and the others by ensuring a good separation between them. The approach

in this first part is motivated by the observation that sinks that are significantly

separated from each other will promote a divergent data flow to well-apart locations;

thus, utilizing a spread set of sinks leads to more uniform energy depletion in the

network. In the second part (lines 10–14), we assign the solution obtained from the

first part as the current solution, and solve the associated subproblem SubU by also

incorporating the cut inequality corresponding to the particular model being solved,

specifically, (3.26) for (M1), (3.27) for (M2), and (3.28) and (3.29) for (M3), with
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a Ẑ value equivalent to Z(Sb). While solving the subproblem, again to alleviate

the problem of excessive runtimes, we employ a stopping criterion given by a EpGap

optimality gap or TiLim time limit, whichever is reached first (EpGap and TiLim

are CPLEX parameters). The best solution so far, Sb, is updated if improved by the

current solution Sc, and a new iteration is started. Once the iterations are completed,

we attempt to improve the final solution again by solving the subproblem SubU with

the best cut inequality; however, this time we consider TiLim only as the stopping

criterion, i.e., EpGap is the default CPLEX value of 10−6. Although this procedure

is simple, it is very effective in terms of solution quality and serves the purpose of

exploring the solution space efficiently with inexpensive computational times. This is

especially true when it is embedded in the overall procedure that we describe next.

Algorithm 4 Procedure SearchSubU()

1: initialize Sb (the best available solution),

Maxiter, D = ∅, u = 1;

2: while Maxiter > 0 do

3: Randomly pick a node k from K;

4: D = D
⋃

{k}, D̄ = K \ {k};

5: while u < U do

6: k∗ = arg max{d(k,D) : k ∈ D̄};

7: D = D
⋃

{k∗}, D̄ = D̄ \ {k∗};

8: u = u + 1;

9: end while

10: Sc = D, solve (SubU) with θ, τ , and

cut with Ẑ = Z(Sb) to obtain Z(Sc);

11: if Z(Sc) < Z(Sb) then

12: Sb = Sc, Z(Sb) = Z(Sc);

13: end if

14: Maxiter = Maxiter−1;

15: end while

16: Solve (SubU) with τ and cut with Ẑ = Z(Sb);

17: Return Sb and Z(Sb).



55

III.5.3. The Complete Procedure

Our complete procedure brings together the above components including construc-

tion and improvement heuristics. We apply the complete procedure to solve (M1),

(M2), and (M3) by varying only the construction heuristic component, denoted by

ConstructM·(), in Algorithm 5.

Algorithm 5 Complete Procedure

1: initialize Algorithmic parameters for

ConstructM·(), SearchSubC() , and SearchSubU();

2: Generate an initial solution using ConstructM·()

3: Generate Q − 1 CH based initial solutions randomly;

4: Improve each of Q solutions using SearchSubC();

5: Assign the best of Q solutions as the S b;

6: Determine the Sb
free associated with Sb;

7: Apply SearchSubC() to Sb and record Z(Sb);

8: Apply SearchSubU() using S b as the input solution.

9: Return Sb and Z(Sb)

In particular, to obtain diversification in searching the solution space, we ini-

tially generate Q solutions where each solution is represented by a set of CHs, C

(lines 2-3). One of these Q solutions is found by using the appropriate construction

heuristic and the others are generated randomly. Note that both ConstructM2()

and ConstructM1M3() already employ the C set to represent a solution. We then

apply the neighborhood search procedure SearchSubC() to each of these solutions

independently, assuming Sb
free = Sb (line 4). That is, we perform an intensified search

in the exchange neighborhood of each of Q solutions. Upon completion, we identify

the common, if any, CHs that appear in all of the Q solutions obtained; these CHs are
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clearly favored in each solution, thus, we choose to keep them in the final solution.

We also identify the best solution among the Q solutions, assign it as the S b (line 5),

and form the set Sb
free as the CHs in Sb that are not common in all of the Q solutions

(line 6). As mentioned in Section III.5.2, subset Sb
free represents the exchangeable

CHs in a solution Sb. We treat the CHs that are common to all of the Q solutions

as a preferable (non-exchangeable) CHs, and, thus, we do not engage them in the

improvement procedure SearchSubC(). We then apply the SearchSubC() with

initial solution Sb and record the objective value Z(Sb) (line 7). In the last stage

(line 8), we utilize the procedure SearchSubU() with Sb used in the initialization

step.

III.6. Computational Study

The objective of our computational studies in this section is twofold. First, we con-

sider a single-period setting and evaluate the performance of our algorithms on the

basis of solution quality and time via utilizing exact solutions for benchmarking. Sec-

ondly, now utilizing our algorithms, we evaluate the effectiveness of the three policies

in prolonging the network lifetime in a multi-period setting. To this end, we com-

pare (M3) with both our benchmark models (M1) and (M2) as well as with HEED

Younis and Fahmy (2004).

Note that, unless stated otherwise, all of the input and algorithmic parameter

values are set as mentioned in the previous sections, specifically, the input parameters

as in Section III.3 and the algorithmic parameters as in Section III.5. Additional

instance-based parameter values are given in the results tables that follow.
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III.6.1. Performance of Heuristics

Table 3 summarizes the results for all three models where we assume that |K| is 8

and the U is 2 for settings with |I| less than 100 and 3 for the ones with |I| values

greater than or equal to 100. We also assume that the N is 50 for all the settings,

except the ones with |I| equal to 150 for which N is 75. Furthermore, we set the

data generation rate Ri to 10 for settings with |I| less than 75, and to 9, 8, and 7 for

the ones with |I| values of 75, 100, and 150, respectively. For each problem setting,

where we have 15 different instance sets for (M1), 18 for (M2), and 12 for (M3)

obtained by varying the values of |I| and the number of required CHs H, we solve 30

randomly generated instances.

The values reported in columns 4 to 7 of the table are averaged over these ten

instances. The fourth (T O
ave) and the fifth (T O−C

ave ) columns concern the exact solution

times (in seconds) for these instances. In the former, we report the average solution

times for optimality (ns represents the instances are not solved in 20 hours of runtime),

whereas in the latter, we report the same measure, however, this time incorporating

the complete heuristic solution value into the formulation as a cut inequality as de-

scribed in (3.26) for (M1), (3.27) for (M2), and (3.28) and (3.29) for (M3). Clearly,

for an instance, the optimum objective function values, ZO, for both of these cases are

the same. However, the solution times are significantly improved, as observed in col-

umn for T O−C
ave , if the heuristic solution (Algorithm 5) is obtained first and is utilized in

solving a model to optimality. The sixth column (T H
ave) includes the average solution

times obtained using our complete heuristic given in Algorithm 5. We observe that

they are very significantly lower than the solution times for exact solutions. In our

tests, we consider only one additional random initial solution which provides enough

diversification and notable improvements in solution quality. In terms of solution
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quality, we calculate the optimality gap as ∆ = 100 ∗ (ZH −ZO)/ZO, where ZH rep-

resents the heuristic objective function value for an instance. The average optimality

gaps, ∆ave, are reported in the last column of Table 3, and they illustrate that our

heuristic approach, which amalgamates various problem and solution characteristics,

is very effective in addressing a rather complex problem.

III.6.2. Network Lifetime Comparison of Models

We use our heuristic procedure to solve the associated problems in each period of a

multi-period setting to examine the performance of the models in terms of network

lifetime measure. For this purpose, we consider, as before, a Ψ value of 60 in each pe-

riod to obtain a candidate CH set of J given by IR, and two topology control schemes

(pI , inc) as (1.0, 0.0) and (0.1, 0.1). In Table 4, we present our results for a number

of problem settings, each given in a row, and ten randomly generated instances for

each setting. The first part of the table corresponds to the case where we consider no

calibration for usable energy reserve by setting p to 1.0 so that the complete energy

level at each sensor node is available for usage. Similarly to the results we obtained

in our preliminary analysis, where we solved each period’s problem to optimality in

small instances, (M3) performs significantly better in terms of network lifetime than

(M1) and (M2) which perform particularly poorly.

Thus, we further consider the calibration of p as reported in the second part

of Table 4 under (pI , inc) = (0.1, 0.1) scheme. In this case, lifetime performance

with both (M1) and (M2) improves dramatically, illustrating the effectiveness of

incorporating topology control via parameter p. Notably, the improvement in (M1)

is more significant than the (M2). Observe that while (M2) performs better than

(M1) under p = 1.0, this is reversed under the (0.1, 0.1) scheme. On the other

hand, it is clear that even (M1) still cannot perform as good as (M3). Although we
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Table 3: Performance results for solving single period problems

Model |I| H T O
ave T O−C

ave T H
ave ∆ave

(M1)

25

2 0.63 0.98 2.05 0.87

4 2.16 2.32 2.21 0.66

5 2.53 2.75 2.41 0.58

50

4 22.42 24.69 13.09 0.79

8 19.09 24.48 13.05 0.11

10 17.78 19.00 13.96 0.21

75

6 112.52 127.15 82.81 0.13

12 83.90 82.63 67.67 0.30

15 63.53 79.31 63.34 0.19

100

8 963.07 902.92 220.51 0.50

16 567.52 649.54 132.20 0.12

20 377.12 472.15 122.78 0.12

150

12 6646.53 5962.81 427.96 1.16

24 3600.35 3227.57 245.97 0.27

30 2620.82 3483.89 274.84 0.41

(M2)

15

2 5.10 2.80 1.98 1.09

3 25.22 2.30 2.08 1.39

4 58.98 2.54 1.99 1.33

20

2 19.23 3.28 4.35 1.04

3 123.47 5.87 4.63 1.13

4 424.37 6.68 4.57 1.10

25

2 87.14 15.75 9.09 0.70

4 1845.17 22.31 9.27 0.82

5 7698.09 33.88 9.14 0.89

30

2 220.04 20.72 16.66 0.53

4 8339.40 77.84 17.64 0.70

6 ns 179.87 16.57 0.79

40

4 ns 300.36 52.10 0.52

6 ns 944.07 49.71 0.57

8 ns 1241.67 49.07 0.67

50

4 ns 1186.85 126.37 0.61

8 ns 848.82 108.19 0.84

10 ns 4938.61 106.98 1.11

(M3)

15

2 2.79 2.68 3.06 0.00

3 7.53 7.15 11.77 0.14

4 17.09 16.12 29.30 0.16

20

2 8.36 6.72 8.81 0.21

3 38.26 29.27 23.69 1.09

4 125.15 145.50 72.65 0.26

25

2 23.50 23.38 13.22 0.12

4 755.86 82.20 70.22 0.10

5 3105.96 1081.02 99.12 1.26

30

2 56.02 50.87 52.16 1.40

4 2243.28 212.30 60.01 0.22

6 ns 8233.12 279.70 0.66
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try only one scheme out of many possible ones, it is clear that a good strategy for

adjusting the value of p in the course of a deployment cycle is useful for extending

network lifetimes. However, there are two issues associated with such an approach.

First, with changing problem size and environment depending on the application,

calibrating for a good value p for (M1) and an inc for a (pI , inc) scheme during a

deployment cycle are very difficult and impractical. Second, even if a topology control

scheme, such as (0.1, 0.1), is employed, finding the feasible p in each period implies

solving the same problem multiple times with varying p values. On the other hand,

we observe that none of these difficulties is associated with our (M3) since it is very

robust to the changes in p, and, thus, it truly integrates the topology control and the

routing problems effectively.

We next examine the remaining energy distributions in a relatively large prob-

lem setting both from the models’ performance perspective and their impact on the

redeployment strategies. For this purpose, we consider the setting given by |I| = 200,

|K|=16, U=3, N=75, Ri=6, and H=16 values. In Figures 8(a), 8(b), and 8(c), we

plot the minimum, the average, and the maximum remaining energy levels (ER
min,

ER
ave, and ER

max, respectively) at the sensor nodes after each period for each model.

Furthermore, in Figures 9(a), 9(b), and 9(c), we give the remaining energy levels of

the sensor nodes at the end of the deployment cycle.

In Figures 8(a) – 8(c), we observe that the variations in remaining energy levels

for (M1) and (M2) are very large when compared to (M3). More specifically, for

(M1), the ER
min and ER

max values are apart from each other, thus implying a large

variation in remaining energy levels. This is also illustrated by the end-of-deployment-

cycle energy levels, which are quite scattered for the sensors as observed in Figure

9(a). Since (M1) concentrates on minimizing the total energy usage, some sensors

are more frequently chosen as CHs and deplete their energy more. On the other hand,
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Table 4: Comparison of different objective in the multi-period based on heuristic

method

p = 1.0 p = 0.1+

Problem Setting H (M1) (M2) (M3) (M1) (M2)

|I| = 25, |K|=8,

U=2, N=50, Ri=10

2 9 13 61 60 49

4 11 22 66 59 57

5 12 26 69 63 51

|I| = 50, |K|=8,

U=2, N=50, Ri=10

4 7 12 62 50 53

8 9 20 67 58 55

10 11 25 69 51 54

|I| = 75, |K|=8,

U=2, N=50, Ri=9

6 5 13 71 59 51

12 12 21 76 62 59

15 14 26 78 54 55

|I| = 100, |K|=16,

U=3, N=50, Ri=8

8 20 15 87 77 58

16 15 25 93 81 63

20 13 31 93 67 65

|I| = 150, |K|=16,

U=3, N=75, Ri=7

12 10 14 78 63 44

24 12 25 85 70 52

30 18 30 87 56 58

|I| = 200, |K|=16,

U=3, N=75, Ri=6

16 13 16 92 80 53

32 10 28 100 78 58

40 22 34 102 78 65

|I| = 250, |K|=16,

U=3, N=100, Ri=5

20 7 16 92 62 43

40 9 28 100 80 57

50 12 36 103 74 64

|I| = 300, |K|=16,

U=3, N=100, Ri=4

24 11 19 115 95 54

48 24 36 126 91 68

60 20 44 130 87 61
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Figure 8: Remaining Energy Characteristics – Progression
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Figure 9: Remaining Energy Distributions – End-of-Deployment-Cycle Snapshot
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since (M2) does not address any network-wide energy usage measures, the objective

of minimizing the maximum energy usage implies one or a few critical sensors whose

energy usage is determinant of the overall performance. The usage level determined

for the critical sensor(s) also dictates the energy usage allowance (upper bound) for

other sensors, and the relative closeness of the end-of-period ER
ave and ER

min values in

Figures 8(a) and 8(b) show that the sensors dissipate their energy at similar rates.

This is also observed in Figure 9(b) where most of the sensors have remaining energy

levels, although somewhat scattered, more clustered close to zero. In both (M1)

and (M2), the energy depletion rate at the sensors is also implicitly determined

by the (pI , inc) = (0.1, 0.1) scheme. We note that the use of more stringent schemes

generally causes infeasibilities, and, thus, the p is incremented early in the deployment

cycle; and an exact calibration of p is very difficult. Coupled with the results given

in Table 4, it is clear that the energy reserve scheme is the main reason we obtain

relatively better lifetime measures with (M1) and (M2). In Figures 8(a) and 8(c),

we clearly observe that (M3) always has the highest ER
min and the lowest ER

max.

Furthermore, these values are very close to each other, presenting a narrow range

(a small variation) in the remaining energy levels, which implies that most of the

sensors deplete their energy more or less at the same rate during the progression

of the deployment cycle. This is also clearly reflected in Figure 9(c) in which the

remaining energy levels form a very narrow band. Since the minimization of total

energy usage is also considered in (M3), the depletion rate is slow, providing a good

network lifetime measure without relying on an explicit control of the usable energy

reserve scheme. This is not unexpected, since we formulate the objective function of

(M3) to incorporate this characteristic as well.

We finally note that, from a redeployment strategy perspective, (M3) is appeal-

ing since it contains primarily low energy sensors at the end of the deployment cycle.
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This can facilitate a random deployment in the beginning of each cycle, so as to start

with similar initial settings. On the other hand, (M1) and (M2) require special

deployment and/or further attention to topology control in successive deployment

cycles due to a relatively high overall variation in the end-of-deployment-cycle energy

levels.

III.6.3. Network Lifetime Comparison of M3 and HEED

To further evaluate the performance of our proposed model, we compare model (M3)

with HEED (Hybrid Energy-Efficient Distributed clustering) Younis and Fahmy (2004)

which is a well-known method for its performance in terms of network lifetime. As

mentioned in Section II.3.1, HEED’s main goal is to identify CHs and assign sensors

to clusters for better energy efficiency. The CHs are probabilistically selected based

on their remaining energy and the sensors join clusters so as to minimize the commu-

nication cost. HEED does not specify a particular scheme for routing CHs to the sink

after the clusters and CHs are determined; however, the authors specifically mention

routing to achieve minimum power usage across the network as a possible approach

among others. For detailed description on HEED protocol, we refer the reader to

Younis and Fahmy (2004).

We choose HEED for comparison because it has the following features similar to

the setting we consider: (1) It is a cluster-based routing protocol for data gathering

purpose; HEED assumes a multi-hop connection between CHs and to the sink and,

at each period, it selects CHs with high remaining energy; (2) Data collection is per-

formed periodically which is suitable for continuous monitoring; (3) Data aggregation

is performed at each cluster-head for energy efficiency.

On the other hand, there are also some differences in the model assumptions of

HEED and (M3) : (1) In HEED, only one sink node is considered and each sensor
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can only choose one CH to transmit its data; (2) The cluster radius is explicitly

specified, i.e., each sensor can only transmit its data to a CH within the specified

range; (3) The data is aggregated into a single representation signal at each CH, i.e.,

regardless of the amount of data received, a CH transmits a fixed amount of data out

towards the sink, thus the sink eventually receives this fixed amount of data from the

network (e.g., maximum temperature in the sensor field); (4) HEED adopts the radio

model where both the free space (typical D2 power loss) and the multipath fading (

D4 power loss) models are used. To transmit xij (bits) of data from node i to node j

dissipates f(Dij) xij, where f(Dij) is defined as

f(Dij) =















w + v1D
2
ij if Dij < d0

w + v2D
4
ij if Dij ≥ d0

(3.30)

with parameters set as d0 = 75m, v1 = 10 pJ/bit/m2 , v2 = 0.0013 pJ/bit/m4, and

w = 50 nJ/bit.

In the (M3) model, we consider multiple sinks and a general aggregation scheme

in which, instead of a single representative data for the sensor field, a more general

view of a measure is of interest, e.g., temperature/humidiy/pressure gradients in a

large sensor field employed for environmental monitoring. More importantly, (M3)

also integrates selection of CHs and sinks with routing decisions. Therefore, for

comparison purposes, we modify model (M3) to handle the several characteristics of

the setting in HEED by introducing cluster radius, single sink, and the new distance

representation as follows.

First, we introduce two new parameters into (M3): r as the cluster radius and

k as the total amount of data per period generated at each sensor. Furthermore, we

redefine the variable xc
ij as a binary variable with a value of 1 if a sensor i is assigned
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to a CH j, and 0 otherwise. We also note that since there is a single sink we use the

variable xu
m0, where index 0 represents the sink, for flow from CH j to the sink. Then,

the modified formulation, called (eM3), is (i ∈ I, j, m ∈ J unless stated otherwise)

Min t(1/|I|)(
∑

m∈J

ec
m +

∑

i∈I

ei) + (ER
max − ER

min) (3.31)

subject to

f(Dm0) k xu
m0 +

∑

j∈J\{m}

f(Dmj) k xcc
mj

+
∑

j∈J\{m}

w k xcc
jm + (w + c s) k

∑

i∈I

xc
im = ec

m ∀m (3.32)

∑

j∈J

f(Dij) k xc
ij = ei ∀ i (3.33)

xu
m0 +

∑

j∈J\{m}

xcc
mj − (

∑

j∈J\{m}

xcc
jm + (1 − s)

∑

i∈I

k xc
im) = 0 ∀m (3.34)

∑

j∈J

xc
ij = 1 ∀ i (3.35)

xc
ij ≤ br/Dijcz

c
j ∀i, ∀j (3.36)

xcc
mj ≤ k |I| zc

j ∀m, j (3.37)

xc
j0 ≤ k |I|zc

j ∀j (3.38)

ei ≤ p Ei ∀ i (3.39)

ec
j ≤ p Ej ∀ j (3.40)

∑

j∈J

zc
j = H (3.41)
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zc
j Ej − ec

j ≤ ER
max ∀ j (3.42)

(1 − zc
i ) Ei − ei ≤ ER

max ∀ i (3.43)

ER
min ≤ Ei − ei ∀ i (3.44)

ER
min ≤ Ej − ec

j ∀ j (3.45)

xc
ij, zc

j ,∈ {0, 1} ∀ i, j (3.46)

xcc
ij , xu

j0, ei, ec
j, ER

max, ER
min ≥ 0 ∀ i, j (3.47)

Constraints (3.32) and (3.33) assign the values of the total energy consumed by a

CH and a sensor node, respectively. Constraints (3.34) state the data flow balance

at each CH node and constraint (3.35) guarantees that each sensor is assigned to

one CH. Constraints (3.36)–(3.38) assign the values of binary variables related to CH

location selections. Note that constraints (3.36) also ensure that only the sensors

within the cluster radius r can transmit the data to the associated CH. Constraint

sets (3.39) and (3.40) ensure that the total energy consumed at a node cannot exceed

the total available energy at the corresponding sensors. Constraints (3.41) establish

the required number of CHs. Constraint sets (3.42)–(3.45) give the maximum and

minimum remaining energy at a sensor node. Finally, (3.46) and (3.47) include the

integrality and non-negativity of the decision variables.

Our solution approach in Section III.5 is directly applicable to solve the modified

model as well. However, since only one sink is employed in eM3, steps 7 and 8 in

the Algorithm 5 are excluded.

As mentioned above, the main component of the HEED is the selection of CHs

and the assignment of sensors to CHs i.e., forming the clusters); no specific routing

protocol to compute inter-cluster paths between CHs or to the sink is given in HEED.
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Thus, as suggested in the context of HEED, we minimize energy usage by employing

a subproblem of our (M1) model (which minimizes average energy usage in the

network) while determining data routing from sensors to the sink via CHs. In doing

so, we readily incorporate the same general aggregation in (M3) in the routing scheme

since (M1) employs the same aggregation approach. In each period, we obtain the

formation of clusters, i.e., the values of xc
ij and zc

j using HEED algorithm, then we

solve the model (M1) by fixing the binary variables xc
ij and zc

j to these values to

obtain data routing given by variables xcc
ij and xu

j0.

For our studies, similar to the setting in HEED, we assume the nodes are ran-

domly distributed in square of size 100m sensor field (with its lower left one corner at

the origin) and the sink node is located at coordinates (50,175). The cluster radius

r is set 25m and the amount of sensor data generated per period, k, is taken as 2000

bits. The aggregation ratio, s, values of 0.15, 0.20, 0.25, and 0.30; and the number

of CHs, H, of 9, 10, 13, and 15 are used for sensor fields with the number of sensors,

I, of 150, 200, 250, and 300, respectively. In doing so, we ensure that the number

of CHs is about 5% of the number of sensors, similar to HEED, and the aggregation

ratio increases (i.e., amount of data eliminated increases) as the sensor density in

the field increases. Finally, as before, the initial energy at the sensors are randomly

drawn from U[0.1,0.5].

We summarize the average lifetime results over our instances in Table 5. It

can easily be observed that the integrated approach, which we devise via integrating

topology and routing decisions, significantly performs better than HEED; the network

lifetime is about six-fold longer on average with the integrated approach eM3.
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Table 5: Network lifetime via HEED and (eM3) approaches

Number of nodes, |I|

Approach 150 200 250 300

HEED 42 50 55 50

eM3 264 283 294 302

III.7. Summary and Conclusions

In this chapter, we introduce three alternative mathematical models for integrated

topology and routing decisions for data-gathering WSNs so as to prolong their lifetime

subject to limited energy at the sensors. In doing so, we also consider a hierarchical

network structure with multi-hop routing, multiple sinks, and a general data ag-

gregation approach and devise the models to determine clusterhead and active sink

locations as well as data flow routes from sensors to sinks in each period. We also

describe a topology control scheme on how the usable energy fraction (of the available

energy) at a sensor changes from period to period in a deployment cycle.

The first two approaches, (M1) and (M2), which have the objectives of aver-

age energy usage minimization and minimization of the maximum energy usage at a

sensor, are considered previously in the literature while prescribing communication

protocols as opposed to an integrated mathematical modelling perspective as in this

study. Thus, these models can be considered as benchmark models for the perfor-

mance of the proposed third model, (M3), which has an objective of the minimizing

the total energy and the range of remaining energy distribution at the sensors.

Since the models dictate large discrete optimization formulations, employing ex-

act optimization approaches is highly impractical, thus, we develop a general heuris-

tic algorithm, applicable for each model, that performs very well in our computa-
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tional tests. Our procedure utilizes efficient construction heuristics, two types of

solution representations, a combination of multiple neighborhoods, and an objective

value based on cut inequalities for better efficiency in evaluating candidate solutions.

Heuristic solutions are also employed via cut inequalities to improve the time perfor-

mance and alleviate the memory difficulties associated with an exact branch-and-cut

implementation.

Using our heuristic approach, we conduct numerical tests and analyses of the

models in a multi-period setting. We observe that (M2) and especially (M1) perform

very poorly when usable energy fraction p is set to 1.0 during a deployment cycle.

When the usable energy scheme is changed to a conservative one given by (pI , inc) =

(0.1, 0.1), i.e. initial p is 0.1 and increased by 0.1 whenever energy levels are insufficient

in a period, both (M1) (which now performs better than (M2)) and (M2) exhibit

better network lifetime performance; however, they still perform inferior to (M3) and

appear to be highly sensitive to the topology control scheme.

Our proposed model (M3) is highly insensitive to the setting of usable energy

fraction p and performs very well in terms of network lifetime. It incorporates both

energy usage and variation in the end-of-period remaining energy levels in its objec-

tive, and, thus, truly integrates topology control and routing decisions without the

need to exogenously set and calibrate a p value. In our numerical tests, we also ob-

serve that, even when the first period energy levels in a deployment cycle are varied,

(M3) performs very well with a full available energy (i.e. p = 1.0). This property

also contributes to efficiencies in terms of redeployment since the reconfiguration via

topology and routing decisions in each period leads to a self-adjustment in the net-

work. As a result, the energy levels at the end of a deployment cycle are confined in

a narrow band which implies that uniform deployment strategies can be effectively

employed.
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Finally, we also compare the performance of the proposed (M3) model to a well-

known protocol HEED devised specifically to determine CH locations and sensor-to-

CH assignments in a WSN. For data routing in HEED, we employ a mathematical

optimization model based on our models; and we also slightly modify (M3) to obtain

a special case, which is still solvable by our algorithm, so that the two approaches

can be compared. In our computational studies, we show that our proposed model

performs significantly better in this comparison as well.

In summary, our modelling approaches, solution algorithms, and extensive analy-

ses illustrate that (M3) has attractive properties capturing important characteristics

of integrated topology and routing decisions to improve energy efficiency and prolong

lifetime of data-gathering WSNs.
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CHAPTER IV

SENSOR NETWORK DESIGN/ROUTING PROBLEM WITH FIXED

CLUSTER-HEAD SET-UP COST

In this chapter, we consider an important extension model (M3-E1) to the setting

of (M3) by incorporating the fixed cost associated with locating the Cluster-heads

(CHs) into the objective function. In our proposed model, we consider a hierarchical

setting where data flow from sensor nodes to the sink nodes occurs via CHs. A CH

not only functions to capture information in its vicinity, but also functions as an

aggregator/relay node to process and transfer the data generated by other sensors to

the sinks. It is well known that CHs consume more energy than regular sensors. By

setting a higher fixed cost with lower energy nodes, (M3-E1) attempts to avoid some

well-positioned sensors, being selected as CHs repeatedly in successive periods and

to protect low-energy sensors from quick energy depletion. This will further balance

the energy dissipation among the nodes.

Since our mathematical model dictates discrete optimization formulation, even

small size instances are highly impractical to be solved using the commercial Branch-

and-cut software such as CPLEX. On the other hand, we note that the formula-

tion of (M3-E1) is amenable to the efficient Benders decomposition (BD) method.

Thus, we develop a BD solution approach that incorporates a simple heuristic algo-

rithm, strengthened Benders cuts and an ε-optimal approach. Computational evi-

dence demonstrates the efficient performance of the BD approach in terms of solution

quality and time, especially for large-size instances. In particular, our heuristic al-

gorithm provides good initial upper bounds and facilitates the generation of initial

Benders cuts; strengthen Benders cuts and ε-optimal approach accelerate the conver-

gence of classical BD algorithm.
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IV.1. The Model

We adopt the same problem setting and model notations as presented in section III.

The mathematical formulation for (M3-E1) is as follows:

Min t1(1/|I|)(
∑

m∈J

ec
m +

∑

i∈I

ei) + (ER
max − ER

min) + t2(
∑

m∈J

zc
m/Em) (4.1)

subject to

∑

k∈K

(w + v D2
mk) T xu

mk +
∑

j∈J\{m}

(w + v D2
mj) T xcc

mj

+
∑

j∈J\{m}

w T xcc
jm +

∑

i∈I

(w + c s) Ri T xc
im = ec

m ∀m ∈ J (4.2)

∑

j∈J

(w + v D2
ij) Ri Txc

ij = ei ∀ i ∈ I (4.3)

∑

k∈K

xu
mk +

∑

j∈J\{m}

xcc
mj −





∑

j∈J\{m}

xcc
jm + (1 − s)

∑

i∈I

Ri x
c
im



 = 0 ∀m ∈ J (4.4)

∑

j∈J

xc
ij = 1 ∀ i ∈ I (4.5)

xc
ij ≤ zc

j ∀i ∈ I, j ∈ J (4.6)

xcc
mj ≤

∑

i∈I

Riz
c
j ∀m, j ∈ J (4.7)

xu
jk ≤

∑

i∈I

Riz
u
k ∀j ∈ J , k ∈ K (4.8)

xc
jk ≤

∑

i∈I

Riz
c
j ∀j ∈ J , k ∈ K (4.9)

∑

j∈J

zc
j = H (4.10)

∑

k∈K

zu
k = U (4.11)
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ei ≤ p Ei ∀i ∈ I (4.12)

ec
j ≤ p Ej ∀j ∈ J (4.13)

zc
j Ej − ec

j ≤ ER
max ∀j ∈ J (4.14)

(1 − zc
i ) Ei − ei ≤ ER

max ∀i ∈ I (4.15)

ER
min ≤ Ei − ei ∀i ∈ I (4.16)

ER
min ≤ Ej − ec

j ∀j ∈ J (4.17)

zc
j , zu

k ∈ {0, 1} ∀ i ∈ I, j ∈ J , k ∈ K (4.18)

xc
ij, xcc

ij , xu
jk, ei, ec

j, ER
max, ER

min ≥ 0 ∀ i ∈ I, j ∈ J , k ∈ K (4.19)

The first term in the objection function represents the weighted (where t1 is the

weight) sum of average energy consumption. The second term gives the range of

remaining energy levels and the last term represents the fixed cost associated with

locating the CHs. Constraints (4.2) and (4.3) assign the values of the total energy

consumed by a CH and a sensor node, respectively. Constraints (4.4) state the data

flow balance at each CH node and constraint (4.5) guarantees that each sensor is

assigned to one CH. Constraints (4.6)–(4.9) assign the values of binary variables re-

lated to CH and sink node location selections. Constraints (4.10) and (4.11) establish

the required number of CHs and sink nodes, respectively. Constraint sets (4.12) and

(4.13) ensure that the total energy consumed at a node cannot exceed the total avail-

able energy at the corresponding sensors. Constraint sets (4.14) and (4.15) give the

maximum remaining energy at a sensor node and constraint sets (4.16) and (4.17) give

the minimum remaining energy at a sensor node. Finally, (4.18) and (4.19) include

the integrality and non-negativity of the decision variables.
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IV.2. Benders Decomposition Based Solution Approach

Benders decomposition (Benders, 1962) is a classical solution approach for combina-

torial optimization problems and it has been successfully solving a wide array of large-

scale mathematical formulations. This technique is based on the idea of exploiting

the special structure of the problem so that it can partition the original formulation

into two smaller problems, denoted as a master problem and a subproblem, respec-

tively. The master problem is obtained by removing a number of constraints of the

original model and it is expected to provide the optimal solution after the addition

of a sequence of cuts, denoted as Benders cuts. The master problem accounts for all

the integer variables of the original problem and one additional (continuous) auxil-

iary variable associated with the Benders cuts. On the other hand, the subproblem

includes all continuous variables and the associated constraints, and the Benders cuts

are derived from the solutions of the dual subproblem. In each iteration, the master

problem is resolved to optimality with the addition of a Benders cut. It gives a lower

bound for the original problem and a set of values for the integer variables that are

then substituted into the subproblem. Next, the dual subproblem is solved to obtain

an upper bound and a set of dual variables values that are used to generate a new

Benders cut for the master problem in the next iteration. This process is repeated

until a termination condition, usually a small optimality gap between the lower bound

and the upper bound, is met.

In contrast to the heuristic methods that only give feasible solutions and can not

guarantee the solution quality , BD approach provides both lower and upper bounds.

At each iteration, the master problem and the subproblem are solved to obtain lower

and upper bounds on the objective value of the original problem. Since each iteration

of the algorithm adds a new Benders cut to the master problem, the lower bound is
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therefore non-decreasing.

Our formulation in (M3-E1) employs the binary variables zc
j and zu

k (z for

brevity) associated with CH and sink nodes selection, continuous variables xc
ij, xcc

ij and

xu
jk (x for brevity) for routing decisions and energy characteristics related variables ei,

ec
m , ER

max and ER
min (e for brevity). The structure of our problem presents a natural

decomposition scheme for the Benders approach: the routing problem (for fixed z

variables) is a linear program which can be solved efficiently, and the master problem

(excluding routing decisions) is an integer program involving much smaller numbers

of variables and constraints which is easier to solve. Therefore, at each iteration, the

solution of the master problem gives a tentative network configuration (the selection

of CH and sink locations) for which the subproblem finds the optimal data routing

with the given network topology.

In the section that follows, we provide detailed description of each component of

BD framework.

IV.2.1. Benders Subproblem and Its Dual

For given binary variables ẑ associated with fixed CH and sink nodes locations, the

subproblem SP (x, e|ẑ) is essentially a minimization problem that determines the data

routing scheme from sensors to the sinks via CHs. The subproblem SP (x, e|ẑ) can

be stated as follows:

Min ZSP = t1(1/|I|)(
∑

m∈J

ec
m +

∑

i∈I

ei) + ER
max − ER

min (4.20)
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∑

k∈K

(w + v D2
mk) T xu

mk +
∑

j∈J\{m}

(w + v D2
mj) T xcc

mj

+
∑

j∈J\{m}

w T xcc
jm +

∑

i∈I

(w + c s) Ri T xc
im = ec

m ∀m ∈ J (4.21)

∑

j∈J

(w + v D2
ij) Ri Txc

ij = ei ∀ i ∈ I (4.22)

∑

k∈K

xu
mk +

∑

j∈J\{m}

xcc
mj −





∑

j∈J\{m}

xcc
jm + (1 − s)

∑

i∈I

Ri x
c
im



 = 0∀m ∈ J (4.23)

∑

j∈J

xc
ij = 1 ∀ i ∈ I (4.24)

xc
ij ≤ ẑc

j ∀i ∈ I, ∀j ∈ J (4.25)

xcc
mj ≤

∑

i∈I

Riẑ
c
j ∀m, j ∈ J (4.26)

xu
jk ≤

∑

i∈I

Riẑu
k ∀j ∈ J , ∀k ∈ K (4.27)

xc
jk ≤

∑

i∈I

Riẑc
j ∀j ∈ J , ∀k ∈ K (4.28)

ei ≤ p Ei ∀ i ∈ I (4.29)

ec
j ≤ p Ej ∀ j ∈ J (4.30)

ER
max + ec

j ≥ ẑc
j Ej ∀ j ∈ J (4.31)

ER
max + ei ≥ (1 − ẑc

i ) Ei ∀ i ∈ I (4.32)

ER
min ≤ Ei − ei ∀ i ∈ I (4.33)

ER
min ≤ Ej − ec

j ∀ j ∈ J (4.34)

xc
ij, xcc

ij , xu
jk, ei, ec

j, ER
max, ER

min ≥ 0 ∀ i ∈ I, j ∈ J , k ∈ K (4.35)
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In order to generate the Benders cuts for the master problem, we solve the dual

problem of SP (x, e|ẑ). We define the dual variables Aj, Bi, αj, βi, γij,δjm, λjk, µjk,

ρi, τj, θj, ηi, πi and σj corresponding to the constraints (4.21)-(4.34), respectively.

Then the dual subproblem, DSP (·|ẑ) can be stated as follows:

Max ZDSP =
∑

i∈I

βi −
∑

i∈I

∑

j∈J

ẑc
jγij −

∑

j∈J

∑

m∈J \{j}

(
∑

i∈I

Riẑ
c
j)δjm

+
∑

j∈J

Ej{ẑc
j θj − σj − p τj} +

∑

i∈I

Ei{(1 − ẑc
i ) ηi − πi − p ρi}

−
∑

j∈J

∑

k∈K

(
∑

i∈I

Ri){ẑ
u
k λjk + ẑc

j µjk} (4.36)

subject to

(w + v D2
jk) T Aj + αj − λjk − µjk ≤ 0 ∀ j ∈ J , k ∈ K (4.37)

(w + v D2
jm) T Aj + w T Am + αj − αm − δjm ≤ 0 ∀ j, m ∈ J (4.38)

(w + c s)Ri T Aj + (w + v D2
ij)Ri T Bi

− (1 − s) Ri αj + βi − γij ≤ 0 ∀ i ∈ I, j ∈ J (4.39)

− Aj + θj − σj − τj ≤ t1(1/|I|) ∀ j ∈ J (4.40)

− Bi + ηi − πi − ρi ≤ t1(1/|I|) ∀ i ∈ I (4.41)

∑

j∈J

θj +
∑

i∈I

ηi ≤ 1 (4.42)

∑

j∈J

σj +
∑

i∈I

πi ≥ 1 (4.43)

γij, δjm, λjk, µjk, θj, ηi, πi, σj ≥ 0 ∀ i ∈ I, j, m ∈ J , k ∈ K (4.44)

Aj, Bi, αj, βi unrestricted ∀ i ∈ I, j ∈ J (4.45)
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The Benders cut

After solving the dual subproblem DSP (·|ẑ), the Benders cuts (BCuts) can be gen-

erated using the values of dual variables and an auxiliary continuous variable B as

follows:

B ≥
∑

i∈I

β̂i −
∑

j∈J

Ej (σ̂j + p τ̂j) +
∑

i∈I

Ei (η̂i − π̂i − p ρ̂i) −
∑

i∈I

∑

j∈J

γ̂ijz
c
j

−
∑

j∈J

∑

m∈J \{j}

(
∑

i∈I

Ri δ̂jm zc
j) +

∑

j∈J

Ej θ̂j zc
j −

∑

i∈I

Ei η̂i z
c
i

−
∑

j∈J

∑

k∈K

(
∑

i∈I

Ri){λ̂jk zu
k + µ̂jk zc

j} (4.46)

IV.2.2. Benders Master Problem

For given the values of all dual variables from the dual subproblem DSP (·|ẑ), the

Benders master problem MP (z|·) is essentially a minimization problem that gives a

tentative network configuration (the selection of CH and sink locations) and a lower

bound of the original model (M3-E1). The master problem MP (z|·) can be stated

as follows:

Min ZMP = t2(
∑

j∈J

zc
j/Ej) + B (4.47)

subject to

∑

j∈J

zc
j = H (4.48)

∑

k∈K

zu
k = U (4.49)

(constraints for the set of BCuts) (4.50)

zc
j , zu

k ∈ {0, 1}, B ≥ 0 ∀ j ∈ J , k ∈ K (4.51)
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At each iteration, MP (z|·) incorporates a new Benders cut and solve an integer

program to obtain the values of the binary variables zc
j and zu

k . In particular, con-

straints (4.50) are the same as constraints (4.46). At each iteration, we obtain a new

dual solution of DSP (·|ẑ), substitute it into constraints (4.46) and then add it to the

MP (z|·) and resolve the master problem.

IV.3. Approaches for Accelerating the BD Algorithm

We observe that, the direct implementation of classical BD approach in our model

(M3-E1) often converges slowly. This is due to the following reasons: (1) BD ap-

proach starts the iterative procedure by solving the master problem without any

Benders cuts. However, the initial selection of cuts can have a profound effect upon

the performance of Benders algorithm (Magnanti and Wong, 1981). (2) Due to the

degeneracy of the subproblem SP (x, e|ẑ), there exists multiple dual optimal solu-

tions for DSP (·|ẑ). The first obtained optimal solution to DSP (·|ẑ) may not lead

to a strong cut. (3) The master problem MP(z|·) must be solved each time a new

Benders cut is added. As the number of iteration increases, the complexity and the

size of MP(z|·) increases dramatically, and consequently makes solving MP(z|·) time-

consuming. In order to circumvent these difficulties, we explore several techniques

(as discussed below) to accelerate the convergence of the BD algorithm.

IV.3.1. The Upper Bound Heuristic Algorithm

In this section, we present an efficient heuristic algorithm that provides a good fea-

sible solution in reason above mentioned. The aim of our heuristic algorithm is to

find a good upper bound and facilitate the generation of good initial Benders cuts.

Specifically, we use the solution obtained from the heuristic as an input solution and
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solve the dual subproblem DSP (·|ẑ) for generating an initial Benders cut so that it

can be added to the master problem MP (z|·) in the next iteration. This is in contrast

to initially solving the MP (z|·) without any cuts in a typical BD implementation.

In this heuristic, we attempt to avoid coincidentally well-positioned sensors being

selected as CHs repeatedly in successive periods and to protect low-energy sensors

from being selected as CHs. For this purpose, we consider only a subset of sensors

with higher-energy as the set of candidate CHs J . This is preferable from an energy

dissipation minimization point-of-view. We denote this subset as IR since it is a

subset of sensor set I. Specifically, to determine the IR set, we use a threshold

value THΨ calculated as Ψ% of the average initial energy level at the sensors, i.e.,

THΨ = (Ψ/100) ∗ (
∑

i∈I Ei/|I|) and IR = {i ∈ I : Ei ≥ THΨ}.

In the Upper Bound Heuristic, given in Algorithm 6, we proceed as follows.

First, we note that its core algorithm (lines 3-10) works in an iterative fashion. At

each iteration, we determine the set IR based on a threshold value THΨ (line 3);

solve the model (M3-E1) assuming J = IR (line 4). Thus, we obtain the current

solution Sc represented by the CH and sink locations C = {j ∈ I : zc
j = 1} and

D = {k ∈ K : zu
k = 1}, along with the objective value Z(Sc) (line 4). While solving

(M3-E1) , we employ a stopping criterion given by a TiLim (CPLEX parameter)

time limit to alleviate the problem of excessive runtimes. If an improvement Ĝ∗ (line

5) over the best solution Sb is obtained, then Sc becomes the new Sb (lines 6-8). We

decrease Ψ by a constant gradient g (line 10), update the set IR and then resolve the

problem. The algorithm terminates when no improving solution is found or it reaches

the maximum iteration MaxIter. In our numerical studies, given in Section IV.4, we

set the values of Maxiter, initial Ψ, and g as 30, 140 and 10, respectively.
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Algorithm 6 The Upper Bound Heuristic

1: initialize Maxiter, Ψ, g, Z(S b) = ∞ ;

2: while Maxiter> 0 and G∗ > 0 do

3: IR = {i ∈ I : Ei ≥ THΨ};

4: J = IR, solve (M3−E1) with TiLim to obtain Z(S c);

5: G∗ = Z(Sb) − Z(Sc);

6: if G∗ > 0 then

7: Sb = Sc, Z(Sb) = Z(Sc);

8: end if

9: Maxiter = Maxiter−1;

10: Ψ = Ψ − g;

11: end while

12: Return Sb and Z(Sb)

Although this procedure is simple, it is very effective in terms of solution quality

and serves the purpose of generating the initial Benders cut with inexpensive com-

putational times. As illustrated later in section IV.4, combining the upper bound

heuristic and BD framework promotes faster convergence, especially for larger in-

stances.

IV.3.2. Strengthening the Benders Cuts

Due to the degeneracy of the subproblem SP (x, e|ẑ), there exists multiple dual

optimal solutions for DSP (·|ẑ), each defining a different Benders cut; some cuts

dominate the others. Hence, it is important to identify the optimal dual solu-

tion corresponding to a stronger Benders cut. Magnanti and Wong (1981) define

the strongness (or dominance) of a Benders cut for a general optimization prob-

lem given by Miny∈Y,z∈R{z : z ≥ f(u) + y g(u), ∀u ∈ U} as follows: The cut

z ≥ f(u1) + yg(u1) dominates or is stronger than the cut, z ≥ f(u) + y g(u) if
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f(u1) + yg(u1) ≥ f(u) + y g(u), ∀u ∈ U with a strict inequality for at least one point

y ∈ Y . The use of the strong Benders cuts can facilitate better lower bounds and

increase the algorithm efficiency, as shown for various problem settings in Magnanti

and Wong (1981), Roy (1986), Wentges (1996), Üster et al. (2007).

For our problem, we adopt a two-phase approach presented in Üster et al. (2007)

to strengthen the Benders cuts. This is based on the observation that, in the cut given

in (4.46), if z̄j = 0 , one can modify its coefficient without changing the objective

function value, provided feasibility is maintained. Hence, to strengthen the Benders

cuts, we aim to modify the values of dual variables associated with z̄j = 0 to make

the zj coefficient larger. Specifically, in the first phase, for solving DSP (·|ẑ), we only

obtain the values of the dual variables for which the associated binary variables zc
j and

zu
k have values equal to 1. Note that, for the rest of the dual variables, the associated

zc
j and zu

k values are 0. Hence, the elimination of the remaining dual variables in the

first phase cannot affect the objective function value (4.36). In the second phase,

we fix the values of the dual variables obtained from the first phase and then solve

for other dual variables using a modified version of DSP (·|ẑ) given in (4.52). The

detailed description of two-phase approach is given as follows.

In Phase I, we only obtain the values of the dual variables for which the associated

binary variables zc
j and zu

k have values equal to 1. We denote the reduced J set JR

and the reduced K set KR as JR = {j ∈ J : zc
j = 1} and KR = {k ∈ K : zu

k = 1}.

We solve the dual subproblem DSP (·|ẑ), assuming that J = J R and K = KR. In

Phase II, we focus on computing the dual variables for which the associated binary

variables zc
j and zu

k have values equal to 0. To this end, we solve the following linear

programming problem for strong Benders cuts.
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Max
∑

j∈J

Ejθj −
∑

i∈I

∑

j∈J

γij −
∑

j∈J

∑

m∈J\{j}

(
∑

i∈I

Ri) δjm −
∑

i∈I

Ei ηi

−
∑

j∈J

∑

k∈K

(
∑

i∈I

Ri){λjk + µjk} (4.52)

subject to (4.37)-(4.45)

Note that, in the problem (4.52), the objection function represents the sum of all the

coefficient associated with z̄j = 0 given in the Bender cut (4.46) and the constraints

are the same as DSP (·|ẑ). Also, in order not to affect the objective function value

in DSP (·|ẑ), the values of the dual variables associated with z̄j = 1 in Phase II need

to remain the same as in Phase I. Specifically, the values of the dual variables found

in Phase I are substituted in the problem (4.52). Then we solve the problem (4.52)

to obtain the values of the dual variables for which the associated binary variables zc
j

and zu
k have values equal to 0.

IV.3.3. ε-Optimal Approach

In the BD algorithm, we add a new Benders cut into the master problem MP(z|·)

at each iteration. As the number of iterations increases, the complexity and the size

of MP(z|·) increases dramatically, and consequently makes MP(z|·) difficult to solve.

In order to decrease the solution time of MP(z|·), we utilize the ε-optimal approach

introduced in Geoffrion and Graves (1974). Specifically, we add one additional con-

straint in the MP(z|·), given as

t2(
∑

j∈J

zc
j/Ej) + B ≤ UB(1 − ε) (4.53)
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where UB and ε denote the best upper bound and the acceptable optimality gap,

respectively. In an iteration, instead of solving the MP(z|·) to optimality, we stop

the branch-and-cut (using CPLEX) once a feasible solution is obtained. Using the

values of the z variables given by this feasible solution, we then solve DSP (·|ẑ)

and generate new Benders cuts. By doing so, the runtime for the MP(z|·) can be

substantially reduced at each iteration. Note that the feasible solution obtained is no

longer a valid lower bound and the algorithm terminates when MP (z|·) cannot find a

feasible solution, which verifies that the best upper bound is within ε from optimality.

IV.3.4. ε-Optimal BD Framework

In order to improve the computational efficiency of the typical BD algorithm, our

algorithm brings together the above components including the upper bound heuristic,

strengthening the Benders cuts and ε-optimal approach to speed up the convergence of

the BD algorithm. We outline the overall framework of the ε-Optimal BD Algorithm

given in Algorithm 7. We denote Iterno, UB, LB, and (x̄best, ēbest, z̄best) as the

number of iterations, the best upper bound, the best lower bound, and the best

feasible solution, respectively.

In particular, we first apply the upper bound heuristic to obtain a feasible solution

(an upper bound) and solve the dual subproblem DSP (·|ẑ) for generating an initial

Benders cut so that it can be added to the master problem MP (z|·) in the beginning

(line 1-6). This is in contrast to initially solving the MP (z|·) without any cuts in a

typical BD implementation. Then we incorporate ε-optimal approach, i.e., instead of

solving the MP(z|·) to optimality, we stop the branch-and-cut using CPLEX once a

feasible solution is obtained (line 6 and 16). Using the values of the z variables given

by this feasible solution, we then solve DSP (·|ẑ) and generate new Benders cuts via

a two-phase approach (line 4-5, 9 and 15). The best upper bound UB and the best



87

solution z̄best are updated if improved by the current solution ẑ (line 10-14), and a

new iteration is started. The algorithm terminates when the MP(z|·) cannot find a

feasible solution, which verifies the best upper bound UB is within ε from the optimal

solution. Once the iterations are completed, we solve the subproblem SP (x, e|z̄best)

to obtain the values of continuous variables (line 18). Upon the completion of the

algorithm, we report the best feasible solution along with the best upper bound (line

19).

Algorithm 7 ε-Optimal BD Algorithm

1: initialize Algorithmic parameters for The Upper Bound Heuristic,

Iterno = 0;

2: Apply The Upper Bound Heuristic to S b and record Z(Sb);

3: Set UB= Z(Sb) and z̄best = Sb;

4: Solve DSP (·|ẑ) to obtain the values for all dual variables;

5: Generate the initial Benders cut and incorporate it into MP (z|·);

6: Solve MP (z|·) to obtain the values for ẑ and ZMP;

7: while MP (z|·) has a feasible solution do

8: Iterno = Iterno + 1;

9: Solve DSP (·|ẑ) to obtain the values for all dual variables and ZDSP.

10: if ZMP − B + ZDSP < UB then

11: UB = ZMP − B + ZDSP;

12: z̄best = ẑ;

13: Update the incumbent value UB in constraint (4.53);

14: end if

15: Generate BCuts and incorporate them into MP (z|·);

16: Solve MP (z|·) to obtain the value for ẑ and ZMP.

17: end while

18: Solve SP (x, e|z̄best) for all continuous variables x̄best and ēbest;

19: Return (x̄best, ēbest, z̄best) and the UB.
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Note that, if we do not incorporate ε-optimal approach into the BD framework,

we will solve the master problem MP(z|·) to optimality at each iteration. The al-

gorithm terminates when the optimality gap, ((UB - LB)/ LB), is no greater than

ε ≥ 0.

IV.4. Computational Results

In this section, we conduct a computational study to establish the performance of

Benders decomposition algorithm in a single-period setting. The comparisons illus-

trate the benefit of utilizing the upper bound heuristic, strengthened Benders cuts and

ε-optimal framework. The computational experiments are performed on a machine

with two 2.66-GHz Intel XEON precessors and 12.0 GB RAM and the algorithms

are implemented in C++ utilizing STL (Standard Template Library) and Concert

Technology when CPLEX 11 was used.

IV.4.1. Random Test Instance Generation

We generate our random test instances in such a way that a wide range of input

data value for the problem parameters is considered. In particular, we generate test

instances under two data settings (Setting I – Small instances and Setting II – Large

instances) by varying the number of sensors |I|, the number of candidate sinks |K|,

the number of required CHs H, and the number of required sinks U . We provide

48 problem classes, as shown in Table 6. For each of problem class, we generate 10

random instances. In all of the instances, we assume that the initial energy levels at

the sensors are uniformly distributed in the range [0.1, 0.5] J.

Unless stated otherwise, all of the input and algorithmic parameter values are set

as mentioned previously. Furthermore, we randomly generate |I| sensor coordinates
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uniformly distributed in a square of size N (m). Also, the candidate sites for sinks,

K, are generated randomly on the periphery of the sensor field. We set the period

length as T = 4000 time-units; and the aggregation ratio as s = 0.3. In addition, we

set the weight t = 5 due to some empirical testing.

IV.4.2. Computational Experiments

We consider a single-period setting and evaluate the performance of Benders decom-

position algorithm on the basis of solution quality and time, where the optimality

gap is within 2%. In addition, we evaluate the performance of our upper bound

heuristic via utilizing two different benchmarks: (1) For Setting I – small instances,

we utilize the exact solutions for benchmarking. We obtain the optimal solution for

model (M3-E1) by using the exact branch-and-cut implementation in CPLEX 11

with default parameters. (2) For Setting II – large instances, we resort to obtain

the lower bound from BD approach as another benchmark solution to evaluate the

effectiveness of the heuristic algorithm.

Table 7 summarizes the computational results for Setting I – small instances.

The values reported in columns 2 to 6 are averaged over ten instances. The second

column (T O
ave) concerns the exact solution times (in seconds) for these instances using

CPLEX 11. The third column (T H
ave) includes the average solution times obtained

using our upper bound heuristic given in Algorithm 6. We observe that they are very

significantly lower than the solution times for exact solutions. In terms of solution

quality, we calculate the optimality gap as ∆O = 100∗ (ZH −ZO)/ZO, where ZO and

ZH represent the optimal objective function value and heuristic value for an instance,

respectively. The average optimality gaps, ∆O
ave, are reported in the fourth column

of Table 7. We observe that the gaps are significantly small for all the instances,

illustrating that the upper bound heuristic approach provides near-optimal solutions
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Table 6: Problem setting used in computational testing

Setting I – Small instances Setting II – Large instances

Class |I| |K| H U Class |I| |K| H U

SS1

50

8

3
1 LS1

150

8

9
1

SS2 2 LS2 2

SS3
6

1 LS3
18

1

SS4 2 LS4 2

SS5

16

3
1 LS5

16

9
1

SS6 2 LS6 2

SS7
6

1 LS7
18

1

SS8 2 LS8 2

SS9

75

8

5
1 LS9

200

8

12
1

SS10 2 LS10 2

SS11
9

1 LS11
24

1

SS12 2 LS12 2

SS13

16

5
1 LS13

16

12
1

SS14 2 LS14 2

SS15
9

1 LS15
24

1

SS16 2 LS16 2

SS17

100

8

6
1 LS17

250

8

15
1

SS18 2 LS18 2

SS19
12

1 LS19
30

1

SS20 2 LS20 2

SS21

16

6
1 LS21

16

15
1

SS22 2 LS22 2

SS23
12

1 LS23
30

1

SS24 2 LS24 2
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compared with the exact solutions.

The fifth column (T BD
ave ) in Table 7 concerns the average solution time using BD

framework reinforced with the upper bound heuristic and the strengthened Benders

cuts. In the last column, we report the average runtimes performed by ε-Optimality

BD approach given in Algorithm 7. As mentioned before, the termination criterion

is set to 2% optimality gap. We observe that they are very significantly lower than

the solution times for exact solutions.

As the run time increases exponentially with the instance size, only small in-

stances can be solved to optimality within a reasonable time. Table 8 summarizes

the computational results for Setting II – large instances. In this setting, we found

that CPLEX (using default setting) cannot be solved to optimality for all the in-

stances within 4 hours. As in Table 7, the values reported in columns 2 to 5 are

averaged over ten instances. The second (T H
ave) and third (∆LB

ave) columns concern

the average solution times using the upper bound heuristic and the average opti-

mality gaps, respectively. Similar to Table 7, we calculate the optimality gap as

∆LB = 100 ∗ (ZH − ZLB)/ZLB, where ZLB and ZH represent the lower bound from

Benders approach and the upper bound from the heuristic approach, respectively. In

the last two columns, we report the average runtimes performed by BD algorithm and

ε-Optimality BD approach, respectively. Again, the termination criterion is set to 2%

optimality gap. Based on the results in Table 8, we fist note that the optimality gap

∆LB
ave is significantly small for all the problem instances. This demonstrates that the

upper bound heuristic provides consistently good quality solutions with small amount

of time. Second, the computational times for all the instances in the BD approach

are much less than CPLEX, in which the instances are not solved in 4 hours of run-

time. This illustrates the effectiveness of our BD approach in addressing a large-size

problem. Third, the ε-Optimal BD approach performs better than the BD approach
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Table 7: Computational results for small-size problems

Class T O
ave TH

ave ∆O
ave TBD

ave T ε−Opt
ave

SS1 19.90 1.79 0.51 6.97 2.41

SS2 12.69 1.52 0.42 4.07 2.17

SS3 8.11 0.88 0.18 3.71 2.76

SS4 6.57 0.65 0.16 3.24 2.83

SS5 37.12 2.24 0.42 7.88 2.40

SS6 11.13 1.13 0.17 4.11 3.29

SS7 20.00 1.74 0.49 4.54 2.26

SS8 8.49 0.83 0.11 3.79 2.89

SS9 179.74 0.44 0.20 3.47 3.56

SS10 200.24 0.74 0.23 12.89 9.28

SS11 59.04 0.40 0.15 2.97 3.37

SS12 60.86 0.66 0.14 10.41 11.60

SS13 269.70 0.57 0.25 3.82 3.75

SS14 349.99 1.10 0.22 14.35 9.48

SS15 73.86 0.49 0.14 3.19 3.67

SS16 94.43 1.27 0.12 12.48 11.99

SS17 1185.85 6.64 0.21 13.33 6.41

SS18 976.98 18.17 0.05 94.56 29.89

SS19 421.41 5.10 0.09 10.57 6.75

SS20 291.35 10.72 0.05 58.32 33.76

SS21 2058.64 8.79 0.16 15.76 7.49

SS22 1609.08 44.48 0.05 126.85 31.28

SS23 669.96 8.33 0.09 15.61 7.28

SS24 295.45 17.56 0.05 77.31 38.40
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Table 8: Computational results for large-size problems

Class T H
ave ∆LB

ave TBD
ave T ε−Opt

ave

LS1 48.11 2.03 177.90 126.49

LS2 25.38 1.98 221.02 114.88

LS3 18.18 2.08 952.34 304.56

LS4 14.34 2.07 1294.80 368.78

LS5 52.86 2.01 212.89 153.95

LS6 40.40 2.02 230.22 152.19

LS7 29.79 2.09 950.64 321.52

LS8 32.78 2.05 953.85 339.17

LS9 1.62 2.27 109.76 124.86

LS10 1.35 2.13 173.92 159.55

LS11 47.75 2.14 941.55 568.72

LS12 31.32 2.05 1785.13 799.03

LS13 1.97 2.20 135.48 100.73

LS14 2.01 2.08 185.45 167.95

LS15 50.79 2.11 1349.47 551.26

LS16 53.19 2.05 1516.96 831.53

LS17 22.59 2.04 701.30 287.12

LS18 24.85 2.06 593.62 394.33

LS19 68.08 2.14 1021.50 359.28

LS20 68.81 2.03 1544.10 757.07

LS21 45.28 2.01 686.81 277.00

LS22 53.94 2.03 707.67 412.63

LS23 71.00 2.11 1610.62 444.78

LS24 74.06 2.10 2149.65 640.31
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in terms of solution times .

In general, we can conclude that: (1) Our upper bound heuristic approach pro-

vides high-quality solutions with much less runtime than CPLEX; (2) Benders decom-

position method, which amalgamates various problem and solution characteristics, is

very effective in addressing a rather complex problem; (3) ε-Optimality framework

further improves the performance of the algorithm; (4)Combining the heuristics, ε-

Optimal approach and BD framework promotes faster convergence, especially for

larger instances.

IV.5. Summary and Conclusions

In this chapter, we study an integrated topology control and routing problem in

WSNs, while incorporating the fixed cost associated with locating the CHs into the

objective function. We develop a mixed-integer linear programming (MILP) model

to determine the sink and cluster-head locations as well as the data flow, over a time

horizon. We adopt the objective as the combination of the average energy usage, the

range of remaining energy distribution and the fixed cost associated with locating the

CHs. By setting a higher fixed cost with lower energy nodes, our model attempts

to avoid some well-positioned sensors, being selected as CHs repeatedly in successive

periods and to protect low-energy sensors from quick energy depletion.

On the methodology side, we develop an effective Benders decomposition solu-

tion approach that incorporates an upper bound heuristic algorithm, the strengthened

Benders cuts and an ε-optimal approach. Specifically, we devise a simple efficient

heuristic algorithm that provides a good feasible solution (an upper bound) so as

to facilitate the generation of initial Benders cuts. We adopt a two-phase approach

to strengthen the Benders cuts and utilize the ε-optimal approach to decrease the
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solution time of the master problem at each iteration. We note that the optimal so-

lutions obtained by CPLEX and the lower bounds obtained by the Benders approach

verify the high quality of the heuristic solutions for small and large instances, respec-

tively. The availability of good lower bounds is facilitated by the good initial Benders

cut and the strengthened Benders cuts. Furthermore, ε-Optimality framework sig-

nificantly improves the performance of the BD algorithm. Computational evidence

demonstrates that the upper bound heuristic approach provides high-quality solu-

tions in a timely manner. Combining the heuristics, ε-Optimal approach and BD

framework promotes faster convergence, especially for larger instances.

In summary, our proposed BD algorithm, which amalgamates various problem

and solution characteristics, is very effective in addressing a rather complex problem.
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CHAPTER V

SENSOR NETWORK DESIGN/ROUTING PROBLEM WITH

SINGLE-SOURCING ASSIGNMENTS

In this chapter, we consider another important extension model (M3-E2) to the

setting of (M3) by incorporating the single-sourcing requirements for CH assignments

and explicitly specifying the transmission ranges of sensor nodes. In the light of

WSN characteristics, the motivation for the extension model studies in this section

is twofold.

1. As the number of sensor nodes in WSNs can be in the order of hundreds or

thousands, system scalability is an important factor, i.e., it is crucial to ensure

that the network performance does not significantly degrade as the network

size increases. According to Tilak et al. (2002); Akkaya and Younis (2005),

hierarchical routing and data aggregation can greatly contribute to the overall

system scalability and energy efficiency. Specifically, in a cluster-based struc-

ture, organizing sensor networks into disjoint clusters can facilitate scalability

by constraining the communications between the sensors to a CH within a clus-

ter. For this purpose, we consider the single-sourcing assignments, i.e., each

sensor’s data is handled by only one CH.

2. WSNs usually exhibit short transmission ranges and their limited operating

power also imposes restrictions on the maximum allowable distance between

the sensors and the sink nodes (Raghavendra et al., 2006). To overcome this

difficulty, we explicitly specify the transmission ranges of sensor nodes for better

topology control.
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Note that, the objective in (M3) directly addresses the energy usage and the

variation in the remaining energy distribution, thus it implicitly provides us the ability

to efficiently manage CH selections associated with energy levels of sensors. Therefore,

for simplicity, we do not consider the fixed cost associated with locating the CHs in

model (M3-E2).

V.1. The Model

We next give the additional notations and the mathematical formation for (M3-E2).

Additional Notations

r Maximum transmission distance (transmission range)

xc
ij 1 if a node i is assigned to a CH j, 0 o.w.

Formulation

(M3-E2) Minimize t(1/|I|)(
∑

m∈J

ec
m +

∑

i∈I

ei) + (ER
max − ER

min) (5.1)

subject to

∑

k∈K

(w + v D2
mk) T xu

mk +
∑

j∈J\{m}

(w + v D2
mj) T xcc

mj

+
∑

j∈J\{m}

w T xcc
jm +

∑

i∈I

(w + c s) Ri T xc
im = ec

m ∀m ∈ J (5.2)

∑

j∈J

(w + v D2
ij) Ri Txc

ij = ei ∀ i ∈ I (5.3)

∑

k∈K

xu
mk +

∑

j∈J\{m}

xcc
mj −





∑

j∈J\{m}

xcc
jm + (1 − s)

∑

i∈I

Ri x
c
im



 = 0 ∀m ∈ J (5.4)

∑

j∈J

xc
ij = 1 ∀ i ∈ I (5.5)
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xc
ij ≤ br/Dijcz

c
j ∀i ∈ I, j ∈ J (5.6)

xcc
mj ≤

∑

i∈I

br/DmjcRiz
c
j ∀m, j ∈ J (5.7)

xu
jk ≤

∑

i∈I

br/DjkcRiz
u
k ∀j ∈ J , k ∈ K (5.8)

xc
jk ≤

∑

i∈I

br/DjkcRiz
c
j ∀j ∈ J , k ∈ K (5.9)

∑

j∈J

zc
j = H (5.10)

∑

k∈K

zu
k = U (5.11)

ei ≤ p Ei ∀i ∈ I (5.12)

ec
j ≤ p Ej ∀j ∈ J (5.13)

zc
j Ej − ec

j ≤ ER
max ∀j ∈ J (5.14)

(1 − zc
i ) Ei − ei ≤ ER

max ∀i ∈ I (5.15)

ER
min ≤ Ei − ei ∀i ∈ I (5.16)

ER
min ≤ Ej − ec

j ∀j ∈ J (5.17)

xc
ij, zc

j , zu
k ∈ {0, 1} ∀ i ∈ I, j ∈ J , k ∈ K (5.18)

xcc
ij , xu

jk, ei, ec
j, ER

max, ER
min ≥ 0 ∀ i ∈ I, j ∈ J , k ∈ K (5.19)

The objective function minimizes the weighted sum of average energy consump-

tion and range of remaining energy levels. Constraints (5.2) and (5.3) assign the values

of the total energy consumed by a CH and a sensor node, respectively. Constraints

(5.4) state the data flow balance at each CH node and constraint (5.5) guarantees that
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each sensor is assigned to one CH. Constraints (5.6)–(5.9) assign the values of binary

variables related to CH and sink node location selections. Note that these constraints

also ensure that only the nodes within the transmission range can communicate with

each other. Constraints (5.10) and (5.11) establish the required number of CHs and

sink nodes, respectively. Constraint sets (5.12) and (5.13) ensure that the total energy

consumed at a node cannot exceed the total available energy at the corresponding

sensors. Constraint sets (5.14) and (5.15) give the maximum remaining energy at a

sensor node and constraint sets (5.16) and (5.17) give the minimum remaining energy

at a sensor node. Finally, (5.18) and (5.19) include the integrality and non-negativity

of the decision variables.

In the model (M3-E2), having single-source constraints xc
ij ∈ {0, 1} is one of

the critical reasons to make the problem difficult to solve. If we replace them by the

simpler requirement that xc
ij ≥ 0, we get a relaxation problem, denoted by (MR),

which, in turn, provide a lower bound for the overall model. On the other hand,

model (M3-E2) can be viewed as a combination of three energy metrics: total energy

consumption, maximum remaining energy and minimum remaining energy. To gain

insights into the characteristics of the model and solve larger and realistic instances

efficiently as discussed later, we introduce the following reduced models.

(RP1) Minimize the total energy used in the network:

Min
∑

m∈J

ec
m +

∑

i∈I

ei s.t. (5.2) − (5.19).

(RP2) Minimize the maximum remaining energy at a sensor node:

Min ER
max s.t. (5.2) − (5.19).
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(RP3) Maximize the minimum remaining energy at a sensor node:

Max ER
min s.t. (5.2) − (5.19).

Note that for reduced model (RP1), constraint sets (5.14)–(5.17) are redundant

and can be omitted from the formulation. Similarly, for (RP2) and (RP3), we have

redundant constraint sets (5.14)–(5.15) and (5.16)–(5.17), respectively.

V.2. Parallel Heuristic Algorithm

Due to the wide practical applications in WSN, solving the problem in a reasonable

amount of time is important. Our mathematical model dictates discrete optimization

formulation, even small size problems are highly impractical to be solved using exact

optimization methods. In fact, a heuristic method often is the only practical approach

for solving complex problems in realistic scale. However, the computation times

associated with the exploration of the solution space during the search procedure may

be very large. Consequently, we may encounter the difficulty of offering a consistently

high level of performance over a wide variety of problem settings and characteristics.

Therefore, we aim to adapt the heuristic solution approach developed in section III.5

to a parallel computing architecture in order to address the above issue. Our goal is

to find near-optimal solutions in a short amount of time and to exploit parallelism to

improve the algorithm effectiveness and robustness.

Although the original model (M3-E2) , the reduced models (RP1), (RP2), and

(RP3) and relaxed model (MR) differ structurally, they embody the same sets of

binary variables. For this purpose, we utilize the same solution representations pre-

sented in section III.5.1. First, we represent a solution by a finite set of fixed CH

locations, which we denote it as the set C = {j ∈ J : zc
j = 1} and |C| = H.
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We fix the corresponding binary variables zc
j at 1 by using C, and solve associated

subproblem, denoted by (SubC), to evaluate the goodness of such a solution. Sim-

ilarly, in the second case, we represent a solution by the fixed sink locations, i.e.,

D = {k ∈ K : zu
k = 1} and |D| = U , and, in turn, we have the associated subproblem

(SubU) obtained by fixing binary variables zu
k at 1 from the set D.

The algorithm presented in the paper has three main computing tasks: (1) the

heuristic search procedure ; (2) cut generation; and (3) model relaxation. Below, we

provide the details of how each of the computing tasks is performed as well as the

parallel implementation.

V.2.1. The Heuristic Search Procedure

The general heuristic search procedure that we use in this chapter is based on a vari-

ance of the solution approach presented in section III.5. The difference is summarized

as follows. (1) To simplify the heuristic method, we exclude step 6 and 7 in the com-

plete procedure presented in section III.5.3. (2) In addition to the objective function

value-based cuts, we also incorporate the cut inequalities generating from the reduced

models (RP1), (RP2), and (RP3) to the models.

We consider a combination of multiple neighborhoods based on two solution rep-

resentations and employ a multi-start scheme to instill diversification in searching the

solution space in the start. We generate Q initial solutions where each is represented

by a set of CHs, C. One of these Q solutions is found by using the construction

heuristic and the others are generated randomly. In the next step, we apply the

solution improvement procedure which is devoted to improving the initial solutions.

In particular, based on two solution representations, we devise two search procedures

SearchSubC() and SearchSubU(), each is also reinforced with cut generation. The

order in which the components are executed is indicated in Figure 10. Specifically,



102

we apply the neighborhood search procedure SearchSubC() to each of Q solutions

independently. Upon completion of the search procedures, we identify the best solu-

tion Sb among the Q solutions. Then we apply the SearchSubU() procedure and

also utilize the best solution Sb as the input solution. We also incorporate cut gener-

ation for the purpose of effectiveness. Next, we discuss how each of the components

is performed.

Figure 10: The Heuristic Search Structure

 0.Initialization 4. SearchSubU()2. SearchSubC()  1.Generation 3. Best Solution

Type I  Cuts Type I &II  Cuts

Construction Heuristic

In WSN, communication is normally carried from multiple data sources to the sink

node (i.e., many to one). Thus, it is preferable to have some CHs close to the sink

nodes. Since we assume that the sink nodes are around the periphery of the sensor

field, the basic topology desired in data-gathering is to ensure that some CHs are

selected close to the periphery while the remaining CHs are chosen from the center

area of the sensor field. Also, the model aims to distribute the energy usage across

the network uniformly and, in turn, the high energy level nodes are more promising

to be selected as CHs at a period.

To achieve the goals mentioned above, we consider the subset IR (a high-energy
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subset of I) as the set of candidate CHs, J , and also identify two disjoint sets

of candidate CHs as (1) F1 ⊂ J , close to the center of the sensor field, and (2)

F2 = J \F1, close to periphery. We define a parameter α where α = |F2|/(|F1|+|F2|).

The construction heuristic works in an iterative fashion by successively replacing the

current solution with a better solution within a certain iterations. At each iteration,

it builds a feasible solution starting by randomly picking a node from F2 as a CH

and determines a total of bα ∗Hc CHs from F2, one at a time at the median distance

from the current C. Then, the rest of the CHs are picked from set F1 similarly. The

best overall solution is determined as the final initial solution.

The SearchSubC() Procedure

In our first procedure, we characterize a solution C based on the CH selection and

accordingly utilize the subproblem (SubC) to evaluate the goodness of a solution.

We adopt the same procedure as the algorithm 3 presented in section III.5.2.

We employ an h-exchange neighborhood function starting with a 1-exchange, h

is increased up to hmax under the condition that the solution can be monotonously

improved. As the high energy level nodes are preferred to be selected as CHs, we

also consider the subset IR (a high-energy subset of I) as the set of candidate CHs,

J in the improvement stage. We apply the best-improving strategy to this search

procedure, in other words, all neighbors are investigated and the current solution is

replaced by the best neighbor. However this may be a time-consuming process due

to the complex and extensive search space. Therefore, we are motivated to pursue

the use of a restricted candidate list. Specifically, for a CH to be exchanged, we

consider only the non-CH candidates in J which are within its ρ radius. Then,

the neighborhood for each node is clearly restricted to a subset of J and it is very

likely to be different in each period, since the set J will be updated based on the
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sensors’ remaining energy information at the end of each period. Moveover, in order to

quickly evaluate the possible solutions in the neighborhood, we incorporate a simple

objective function value based on cut inequality (Type I cuts) into the subproblems

for computing efficiency. The detail about the cut generation will be discussed later.

The SearchSubU() Procedure

In our second procedure, we characterize a solution D based on the sink node selection.

The solutions are found by a greedy randomized construction method. In particular,

we generate a solution by picking the first sink location randomly and the others by

ensuring a good separation between them at each iteration. Employing multiple sink

nodes in a well-spread pattern is desirable in terms of energy efficiency due to the

fact that, such setting will promote a data flow converging to well-apart locations

and the energy drainage in the network is more evenly distributed to the sensors. As

the optimum solution of (SubU) for a given set of sink nodes D is generally a time-

consuming process, we employ a stopping criterion given by a θ optimality gap or τ

time limit , whichever is reached first. We update the best solution, if necessary, in

an iterative fashion. This is a simple procedure, but it appears very effective in terms

of solution quality and serves the purpose of exploring the solution space efficiently

with inexpensive computational times. This is especially true when it incorporates

two types of cut inequalities that we describe next.

V.2.2. Cut Generation

In our algorithm, we use two types of valid inequalities that have been shown effec-

tiveness in improving the computing efficiency and solution quality.
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Type I Cuts

The first type of cut inequalities is based on simple objective function value as pre-

sented in section III.5. Moreover, we can apply Type I Cuts into (RP1), (RP2), and

(RP3) and their associated subproblems. In particular, let Z̄RP1 and Z̄RP2 denote an

upper bound in (RP1) and (RP2) respectively and let ZRP3 denote a lower bound in

(RP3), then we can utilize the following cut inequalities:

∑

m∈J

ec
m +

∑

i∈I

ei ≤ Z̄RP1 (5.20)

ER
max ≤ Z̄RP2 (5.21)

ER
min ≥ ZRP3 (5.22)

For (M3-E2) or associated subproblems, supposing that Z̄ is an upper bound,

we have

t

(

∑

m∈J

ec
m +

∑

i∈I

ei

)

/|I| + ER
max − ER

min ≤ Z̄, (5.23)

Furthermore, an additional cut inequality is given by

t

(

∑

i∈I

Ei/|I| − ER
max

)

≤ Z̄ (5.24)

Type II Cuts

The second type of inequalities used in our algorithm generates from the reduced

models that we have presented in section V.1. Model (M3-E2) and the reduced

models (RP1), (RP2), and (RP3) mainly differ in their objective functions and share

the same feasible region. They have very useful properties, as shown in Proposition

1,2 and 3, that we can utilize in generating the valid inequalities for Type II cuts.
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Proposition 1

Let Z1
LR denote the optimal solution (or a lower bound) in model (RP1), then

∑

m∈J

ec
m +

∑

i∈I

ei ≥ Z1
LR (5.25)

is a valid inequality for model (M3-E2) and other models (RP2) and (RP3).

Proposition 2

Let Z2
LR denote the optimal solution (or a lower bound) in model (RP2), then

ER
max ≥ Z2

LR (5.26)

is a valid inequality for model (M3-E2).

Proposition 3

Let Z3
UR denote the optimal solution (or an upper bound) in model (RP3), then

ER
min ≤ Z3

UR (5.27)

is a valid inequality for model (M3-E2).

Proof

The proofs of Proposition 1, 2 and 3 are similar, based on the following observation.

Consider an optimization problem (Q) over a discrete set X, given as

(Q) Min f(x) + g(y)

x, y ∈ X

Furthermore, consider a reduced problem (Q1):

(Q1) Min f(x)

x, y ∈ X
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Let (x, y) be any feasible solution in problem (Q) and it is easy to show that x is

also a feasible solution in (Q1). Let Z(Q1) be the optimal objective value (or a lower

bound) of (Q1), then

f(x) ≥ Z(Q1)

In particular, let f(x) and Z(Q1) represent the mathematical terms
∑

m∈J ec
m +

∑

i∈I ei and Z1
LR, respectively. It is straightforward to prove that (5.25) is a valid

inequality for model (M3-E2). Similarly, let f(x) represent the term ER
max (or −ER

min),

and let Z(Q1) represent Z2
LR (or −Z3

UR), we have Proposition 2 and 3 respectively.

Next we prove that (5.25) is also a valid inequality for the models (RP2) and

(RP3). We consider another reduced problem (Q2):

(Q2) Min g(y)

x, y ∈ X

Since the problems (Q), (Q1) and (Q2) share the same feasible region, (x, y) can

be an arbitrary feasible solution in (Q2) which in turn, guarantees that x is also a

feasible solution in (Q1). Thus, we can complete the proof of Proposition 1 following

the same logic reasoning discussed above.

Preliminary Analysis of the Reduced Models

To gain insights into the characteristics of the reduced models, we solve a set of small

size instances to optimality using the exact branch-and-cut implementation (as in

CPLEX). We have the following important observations:

1. For model (RP1), it is much easier to be solved compared with (RP2) and (RP3).

If we relax the binary variables zc
j and xc

ij to flow variables, the optimality gap

between the optimal solution and the lower bound is significantly small (within
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5%). This observation is important as we might obtain a strong lower bound

for (RP1) in a relative short time by solving the relaxed model of (RP1).

2. There is no substantial difference among the models (RP1),(RP2) and (RP3)

in terms of mean remaining energy values, showing that cut inequality (5.25)

might be a strong cut for models (M3-E2), (RP2) and (RP3).

3. The high quality solutions (represented by the selected CH set, C) from (RP2)

and (RP3) are also good candidate solutions for the original problem (M3-E2),

which shows that cut inequalities (5.26) and (5.27) might be strong cuts for

model (M3-E2). This is expected since both of the objectives attempt to use

the residual energy information at nodes as a routing metric to balance the

energy consumption over the network.

The reduced models are useful for two reasons. First, they help generate valid

inequalities and improve time performance and alleviate the memory difficulties asso-

ciated with CPLEX implementation. Second, models (RP2) and (RP3) can provide

the high quality solutions. We solve the subproblem (SubC) of model (M3-E2) by

utilizing the solutions obtained from (RP2) and (RP3), which, in turn, gives good

upper bounds for model (M3-E2). Since this is a totally different mechanism for

obtaining a good solution from the heuristic search approach mentioned above, com-

bining together will significantly improve the algorithm robustness.

In order to solve model (RP1), we generate a random initial solution and apply

SearchSubC() procedure. Then we solve this problem to optimality using CPLEX

via incorporating Type I cut inequality (5.20). For a large-size problem, we relax

the binary variables zc
j and xc

ij to flow variables, and solve the associated relaxation

problem to optimality using the same approach. Therefore, we obtain the optimal

solution (or a lower bound) Z1
LR in model (RP1) and generate Type II cut inequality
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(5.25) for the models (M3-E2), (RP2) and (RP3). To solve models (RP2) and (RP3),

we first start with a random initial solution and apply SearchSubC() procedure to

obtain the heuristic solution for (RP2) and (RP3) respectively. Then, we employ a

stopping criteria given by a time limit to solve (RP2) and (RP3) using CPLEX, while

incorporating Type I cut inequality (5.21) for (RP2), (5.22) for (RP3) and Type II

cut inequality (5.25) for computing efficiency.

V.2.3. Model Relaxation

As the model (M3-E2) is an NP-hard problem, we set out to find good lower and

upper bounds. The lower bounds are based on relaxation of single-source constraints

xc
ij. Our numerical studies indicate that the effect of relaxing the binary constraint on

xc
ij is beneficial in terms of solution characteristics in two ways. First, the optimality

gap between the optimal solution and the lower bound is significantly small (within

5%). This can be interpreted as most of the sensors preferably choosing the only one

CH to transmit the collected data even without mandatory requirement. Second, the

solution of the problem (MR) (represented by the selected CH set, C) exhibits the

same or very similar pattern as the optimal solution in the model (M3-E2). This is

an important characteristic because we can obtain a good upper bound for model

(M3-E2) by utilizing the solution from (MR) and solving the subproblem (SubC) of

model (M3-E2).

To solve (MR), we use the similar method applied in model (M3), but in

a simpler way. First, we generate an initial solution by the construction heuristic

and apply SearchSubC() to improve the solution. Next, using the best solution

from SearchSubC() as the input solution, we apply the SearchSubU() procedure.

Upon the completion of the search procedures, we identify the best solution. Then

we employ a stopping criteria given by a time limit to solve (MR) using CPLEX
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reinforced with objective value based cut inequalities. By doing this, (MR) provides

both a good lower bound and a high quality solution for (M3-E2).

V.2.4. Parallel Implementation

In this section, we discuss how to parallelize the solution procedure described in the

previous sections. Parallel computers have two basic architectures: distributed mem-

ory and shared memory (Cung et al., 2001). Distributed memory parallel computers

are essentially a collection of serial computers (nodes) working together to solve a

problem. In a shared memory computer, multiple processor units share access to a

global memory space via a high-speed memory bus. With a shared-memory multipro-

cessor, different processors can access the same variables. Message Passing Interface

(MPI), is an interface for a set of library functions that processors in a distributed-

memory multiprocessor can use to communicate with each other (Pacheco, 1996). In

this research, we consider a mixed shared/distributed memory architecture. We paral-

lelize the sequential algorithm via Master-Worker-Model which bases on distributed

memory architecture. On the other hand, in each subproblem, we solve it using

ILOG parallel CPLEX. The CPLEX parallel optimizer is built based on Symmetric

Multiprocessor (SMP) shared-memory systems (ILOG, 2006), which takes advantage

of multiple processors to solve large linear and difficult mixed integer programs in

substantially reduced time.

Crainic and Toulouse (2003) have classified the parallelization strategies applied

to meta-heuristics into three categories: (1) low-level parallelism; (2) domain de-

composition; and (3) multiple search. Low-level parallelism aims solely at speeding

up computations by executing in parallel one or several computing-intensive tasks

within one or multiple iterations of the method. Domain decomposition is gener-

ally implemented by partitioning the vector of decision variables. The partitioning
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reduces the size of the solution space, but it needs to be repeated to allow the ex-

ploration of the complete space. The first two parallelization strategies yield a single

search path. Parallelization approaches that consist of several concurrent searches

in the solution space are classified as multiple search. Concurrent searches may or

may not execute the same heuristic method, and may start from the same or from

different initial solutions. They may share information during the search, which are

often called cooperative multi-search methods, or only at the end to identify the best

overall solution, in which they are known as independent search methods. For many

difficult optimization problems, multiple search method has been implemented and

been shown to be effective ( Adenso-Dı́az et al. (2006); Crainic et al. (2004)).

Our algorithm has three main computing tasks: (1) the heuristic search proce-

dure; (2) cut generation; and (3) model relaxation. Initially, they are performed in a

sequential manner. However, we observe that there is a great opportunity to reduce

the amount of synchronization by performing the multiple search parallelism. Solving

the reduced models (RP1), (RP2) and (RP3) and the relaxed model (MR) can be im-

plemented in the independent processors. As the heuristic search procedure employs

a multi-start scheme starting from different initial solutions, it also fits perfectly into

multiple concurrent explorations of the solution space.

We use the multiple search parallelism in our algorithm. Specifically, we employ

the Master-Worker paradigm where a master process delegates tasks to worker pro-

cesses, and the workers perform the algorithmic components , then report the results

back to the master. The parallel framework is depicted in Figure 11. To begin the

algorithm, the master sends initial solutions to p individual worker processes and each

worker receives its initial solution, selects a neighborhood and explores it followed by

the associated SearchSubC() procedure. The master is responsible for managing

the overall flow of the heuristic and solving (RP1). Once the procedure for solving
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Figure 11: Parallel Framework

Proc p

Proc 4

Proc p

Warm Start based on CHs

... ...
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SearchSubC() 
 for (M3-E2)

SearchSubC() 
 for (M3-E2)

SearchSubU() 
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SearchSubU() 
 for (M3-E2)

... ...

(RP1) is completed, the master will send the value of Z1
LR to worker 2 and 3 for

them to generate Type II cut inequality (5.25). The worker process 1 ,2 and 3 are

assigned to solve (MR), (RP2) and (RP3) respectively. Also, worker 2 and 3 will

send the values of Z2
LR and Z3

UR to master process respectively, once they receive the

request from the master. The remaining worker processes are delegated to perform

the heuristic search procedure in parallel. Below, we provide the details of how this

computing task is parallelized.

As the heuristic search procedure employs a multi-start scheme, each worker

(from process 4 to process p) can apply SearchSubC() for (M3-E2) using different

initial solutions. For the search procedure to be effective, it is important that each

worker can share the information that can be used to guide the heuristics. To avoid

unnecessary information overhead, each worker only passes the best solution obtained

to the master periodically. The master then keeps and updates the best solution and

send it back to each worker. Once each worker receives the overall best solution,

the search is then continued starting from this solution. Upon the completion of the
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SearchSubC() procedure for worker 4 to worker p, the master updates the current

overall best solution so that it can be used as an input solution for SearchSubU().

On the other hand, the master will request the values of Z2
LR and Z3

UR from worker

processes 2 and 3 as they can be used to generate Type II valid inequalities (5.26) and

(5.27). Furthermore, we employ independent search method to solve SearchSubU()

of (M3-E2). In particular, the master generates different combination of initial

solution D from candidate set of sink nodes, assigns them to each worker (process 4

to p) and broadcasts the current best solution and the values of Z1
LR, Z2

LR and Z3
UR .

Using the current best solution as an input solution, each worker then incorporates

Type I & II cut inequalities and apply SearchSubU() independently.

Upon the completion of parallel implementation, the master will receive four

solutions from (MR), (RP2) and (RP3), and the heuristic search procedure for

(M3-E2) respectively. The master, in turn, picks the best one and record the as-

sociated objective function value. In doing so, it will significantly help us to exploit

information to find good solutions on the various processes.

V.3. Computational Results

To examine the computational performance of the proposed parallel heuristic ap-

proach, we carry out a computational study, which is performed on Datastar machine

in San Diego Supercomputer Center. The computational environment was a cluster of

176 8-way SMP nodes using IBM POWER4+ chip, where each node has 8 processors

and 16GB of memory. The nodes are interconnected by Federation high-performance

network switch, support both intranode (shared-memory and MPI) and internode

(MPI). In this study, we use 8 nodes where the master process is run on one node,

and worker processes are run on the remaining nodes. Each node was coded in C++
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and process communications was handled by MPI. Furthermore, we solve the sub-

problems using parallel CPLEX 10.2 and use 8 threads to solve one MIP problem

during the parallel optimization.

V.3.1. A Comparison of Parallel and Sequential Methods

To verify the effectiveness of the high performance computing technique, we solve a set

of instances using both the sequential and parallel method. Note that, unless stated

otherwise, all of the input and algorithmic parameter values are set as mentioned

in the previous sections. We assume that the initial energy levels at the sensors are

equal to 0.5 J and the N is 7 for settings with |I| equal to 30.

Table 9: A comparison of parallel and sequential Methods

Sequential Performance Parallel Performance

|I| H T O
S T H

S ∆S(%) T O
P1 T O

P2 T H
P ∆P (%)

( 8 threads) ( 32 threads)

30

6 917.60 152.84 0.55 131.08 32.60 11.80 0.00

9 5555.30 258.15 0.42 761.44 268.10 27.30 0.21

12 3501.60 202.68 0.09 583.50 493.80 36.10 0.09

Table 9 summarizes the computational results using the sequential and parallel

methods. The values reported in columns 3 to 9 are averaged over ten instances. The

third column (T O
S ) and fourth column (T H

S ) concern the exact solution times (in sec-

onds) using CPLEX and the heuristic solution times using the sequential algorithm,

repespectively. The fifth column (∆S) represents the optimality gap between the ex-

act solution and the sequential heuristic solution. The sixth column (T O
P1) and the
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seventh column (T O
P2) concern the solution times for 8 threads and 32 threads using

parallel CPLEX, respectively. The eighth column (T H
P ) represents the parallel heuris-

tic solution times and the ninth column (∆P ) represents the optimality gap between

the exact solution and parallel heuristic solution. Based on the computational re-

sults, we can conclude that: (1) Parallel CPLEX significantly improves solution time.

(2) Our parallel implementation not only achieves a speed-up of the computations,

but also yields better solutions compared with the sequential algorithm. (3) We can

generate a larger test-bed and obtain more benchmark results via cyberinfrastructure

resources.

V.3.2. Random Test Instance Generation

We generate our random test instances in such a way that a wide range of input data

value for the problem parameters is considered. We randomly generate |I| sensor

coordinates uniformly distributed in a square of size N (m). Also, the candidate sites

for sinks, K, are generated randomly on the periphery of the sensor field. We present

our results for a number of problem settings as shown in Table 10. For each problem

setting, we consider three levels for H and hence we have 36 different problem classes.

For each of problem class, we generate 10 random instances. We set the period length

as T = 4000 time-units; the maximum transmission distance as r = 30 m; and the

aggregation ratio as s = 0.3. In addition, we set the weight t = 5 due to some

empirical testing. For the energy dissipation related parameters, we set the values

similar to the studies in Heinzelman et al. (2000) as v = 100 pJ/bit/m2 , w = 50

nJ/bit, and c = 5 nJ/bit. In all of the instances, we assume that the initial energy

levels at the sensors are uniformly distributed in the range [0.3, 0.5] J. Note that,

our algorithm can be extended to account for nonuniform energy nodes since we use

energy-based threshold in the solution approach.
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Table 10: Problem setting used in computational testing

Setting |I| |K| U N Ri

S1 30

8 2 50

10

S2 40

S3 50

S4 60

S5 70

S6 80

9S7 90

S8 100

S9 150

16 3

75
8

S10 200 7

S11 250
100

6

S12 300 5

V.3.3. Computational Experiments

We consider a single-period setting and evaluate the performance of our algorithm on

the basis of solution quality and time via utilizing two different benchmarks:

• Exact solutions

We obtain the optimal solution for the original model (M3-E2) by using the

exact branch-and-cut implementation in parallel CPLEX 10.2 with default pa-

rameters. To obtain more benchmark results from (M3-E2), we also solve the

problem to optimality with parallel CPLEX, while incorporating two different

cuts as described in (5.23), (5.24), (5.25), (5.26) and (5.27).

• Lower bounds from solving the relaxed model (MR).

As the run time increases exponentially with the instance size, only small in-

stances can be solved to optimality within a reasonable time. We resort to

obtain the lower bound from the model (MR) as another benchmark solution
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to evaluate the effectiveness of the parallel algorithm.

Our first set of problems is of the size that parallel CPLEX, yields an optimal

solution to the test instance within 4 hours of CPU time, while using MIP branch-and-

bound routine reinforced with cut generation. Our goal is to see how the results can

be influenced by the data structure and to evaluate the quality of heuristic solutions

in terms of their deviation from the optimum and from the best lower bound as well

as the solution time. The results of these problem sets are summarized in Table 11.

Table 11: Computational results for small-size problems

Setting H T O
ave TO−C

ave TH
ave ∆O

ave ∆LB
ave

S1

3 7.3 50.1 13.0 0.00 0.03

4 4.0 41.8 17.8 0.00 0.04

6 2.4 35.0 10.7 0.00 0.26

S2

4 14.7 116.4 29.5 0.00 0.00

6 11.6 81.7 22.7 0.00 0.15

8 13.7 61.3 27.0 0.00 0.13

S3

5 35.8 191.2 40.9 0.00 0.05

7 899.7 179.2 29.9 0.00 0.09

10 477.7 100.7 69.6 0.00 0.11

S4

6 892.9 192.4 70.5 0.00 0.02

9 7201.1 340.5 79.1 0.00 0.05

12 ns 1371.0 104.1 0.00 0.09

S5

7 162.0 153.0 138.0 0.00 0.03

10 ns 4398.8 106.5 0.12 0.10

14 ns 6661.7 102.9 0.08 0.05

We consider the problem sizes varying from 30 to 70 sensor nodes and for each

size of the problem, we consider three different levels for parameter H (10%, 15% and

20% of |I|) regarding the number of clusters. The values reported in columns 3 to

7 of the table are averaged over the ten instances. The third (T O
ave) and the fourth

(T O−C
ave ) columns concern the exact solution times (in seconds) for these instances.
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In the former, we report the average solution times for optimality (ns represents the

instances are not solved in 4 hours of runtime), whereas in the latter, we report the

same measure, however, this time reinforced with cut generation. Clearly, for an

instance, the optimum objective function values, ZO, for both of these cases are the

same. However, the solution times are significantly improved for the problem settings

S4 and S5, as observed in column for T O−C
ave , if the heuristic solution is obtained

first and utilized in solving a model to optimality. The fifth column (T H
ave) includes

the average solution times obtained using our parallel heuristic described in Section

V.2.4. We observe that they are very significantly lower than the solution times

for exact solutions. The sixth (∆O
ave) and the seventh (∆LB

ave) columns concern the

optimality gaps based on two different benchmarks for these instances. We calculate

the optimality gap between the heuristic solution and the optimum as ∆O
ave = 100 ∗

(ZH − ZO)/ZO, and the gap between the upper bound and lower bound as ∆LB
ave =

100 ∗ (ZH − ZLB)/ZLB where ZO , ZH and ZLB represent the optimal objective

function value, heuristic value and lower bound for an instance, respectively. Based

on the results in Table 11, we have the following observations:

• Our heuristic solutions can provide near-optimal solutions compared with the

exact solutions. For problem settings varying from S1 to S4, they can actually

find the optimal solutions. Even for problem setting S5, the optimality gap

∆O
ave is significantly small.

• The optimality gap ∆LB
ave is also very small for all the problems. This verifies

the effectiveness of relaxing the binary constraint on xc
ij in terms of solution

characteristics. Most of variables xc
ij in the relaxation problem (MR) often has

integer solutions or yield integer solutions with relatively little branching in a

branch-and-bound procedure.
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• Cut generation is also effective in terms of alleviating memory difficulties and

runtime restrictions.

In general, we can conclude that our heuristic approach provides high-quality

solutions with much less runtime than CPLEX. Our second set of problems is focused

on larger size. The scenario that we uses has the number of sensor nodes varying from

80 to 300, the number of potential sink locations between 8 and 16, the number of

sinks between 2 and 3 and the sensor field size varying from 50∗50 to 100∗100 m2 as

shown in Table 10. Similarly, we also consider three different H values (10%, 15% and

20% of |I|). For these instances, we found that parallel CPLEX (both using default

setting and incorporating cut generation) cannot be solved to optimality within 4

hours. Hence we only consider the lower bound for benchmarking. Again, the third

column (T H
ave) concerns the average solution times using the parallel heuristic and the

fourth column (∆LB
ave) presents the optimality gap between the upper bound and the

lower bound.

Table 12 shows the effectiveness of heuristic method for large size problems in

terms of solution time and quality. The optimality gap ∆LB
ave is significantly small

when we solve the problem up to 200 sensor nodes. For problem settings S11 and

S12, the gap is relatively high, but is still within 6%. This is mainly due to the lower

bound procedure in section V.2.3. We observe that solving the relaxed model (MR)

requires a considerable computational effort for setting S11 and S12. Therefore we

are not able to obtain a tight lower bound when a stopping criterion (given by a time

limit) for solving (MR) is employed.

From the results of our performance experiments, we conclude that our approach,

is very effective in addressing a complex problem. Parallelism is helpful in solving

large size problem in a reasonable amount of time. The main benefit from parallel
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implementation is that we are able to run different computing tasks or the same task

starting from different initial solutions concurrently and can share the information

that helps to guide the overall heuristic method. Also, the algorithm can find high

quality solutions for different classes of instances of the same problem, and increase

its robustness by utilizing different combinations of strategies and parameter settings.

Table 12: Computational results for large-size problems

Setting H T H
ave ∆LB

ave

S6

8 213.5 0.04

12 230.6 0.06

16 267.6 0.01

S7

9 288.2 0.03

14 360.2 0.06

18 327.5 0.04

S8

10 316.1 0.02

15 399.1 0.04

20 387.2 0.02

S9

15 561.4 0.03

22 542.1 0.03

30 739.6 0.43

S10

20 1031.6 0.47

30 1041.4 0.58

40 1000.4 1.06

S11

25 1101.4 3.47

35 1130.7 2.08

50 1090.1 3.40

S12

30 1201.2 5.95

45 1187.5 2.03

60 1235.6 4.40
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V.4. Summary and Conclusions

In this chapter, we study an integrated topology control and routing problem in

WSNs, while incorporating the single-sourcing requirements for CH assignments and

explicitly specifying the transmission ranges of sensor nodes for better topology con-

trol. We develop a mixed-integer linear programming (MILP) model to determine

the sink and cluster-head locations as well as the data flow, over a time horizon. We

adopt the objective as the combination of the average energy usage with the range of

remaining energy distribution at the sensor nodes.

Our mathematical model dictates discrete optimization formulation, even small

size problems are highly impractical to be solved using exact optimization methods.

Therefore, we devise an effective parallel heuristic algorithm, to greatest advantage

in utilizing the unique model characteristics, cut generation and model relaxation.

We consider a mixed shared/distributed memory architecture. We parallelize the

sequential algorithm via Master-Worker-Model which bases on distributed memory

architecture. On the other hand, in each subproblem, we solve it using parallel

CPLEX which is shared-memory based.

Based on the results of our performance experiments, we conclude that our ap-

proach, which includes various problems and solution characteristics, is very effective

in addressing a complex problem. Our parallel implementation not only achieves a

speed-up of the computations, but also yields better solutions as it can explore the so-

lution space more effectively. Furthermore, robust implementations can be obtained

by the use of different combinations of strategies and parameter settings at each pro-

cess, leading to high quality solutions for different classes of instances of the same

problem, without too much effort in parameter tuning.
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CHAPTER VI

DATA VISUALIZATION

Due to the complexity of large-scale WSN problem, we consider visualization tools to

support our optimization efforts. Visualization can be very helpful to solve larger and

realistic problems with dynamic nature and gain insights into the problem domain.

In particular, for the multi-period setting, it would be helpful to see graphically the

network status in the beginning of the period (e.g. the energy levels at sensor nodes)

and the solution generated (i.e., the underlying network topology including CH and

sink locations for a period and the routing schemes over the network).

In this chapter, we aim to use Prefuse Visualization Toolkit (Heer et al., 2005)

to develop the methods that can handle visualization tasks for a wide variety of data.

Specifically, we combine the network diagram and scatter plot methods to visualize

the multi-period data on sensor network topology and routing. By integrating and

analyzing the data, we can better understand and gain intuition regarding the oper-

ational characteristics of the algorithms. This will facilitate to find a better solution

in a timely manner.

VI.1. Visualization Features

Prefuse is an interactive graphical open source toolkit that supports a rich set of

features for data modeling, visualization, and interaction (Heer et al., 2005). Prefuse

is written in Java, using the Java 2D graphics library. The data can be stored in a

graph or tree structure (interrelated information) or within a data table (not related

data). In our case, the data set includes the locations of sensor and candidate sink

nodes and also a sequence of files that correspond to the solutions generated at each

period, i.e.,CH and sink location assignment for a period and the routing schemes
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over the network.

In this chapter, we aim to develop the methods to visualize the network configu-

ration and routing schemes at each period and how they change over the periods. In

particular, we consider the following two different methods via using prefuse toolkit.

• Network Diagram

In a network diagram, entities are connected to each other in the form of a node

and link diagram.

• Scatter Plot

A scatter plot is a classic statistical diagram that visualizes the relationship

between numeric variables.

There are pros and cons of these two methods. In the network diagram, the

overall arrangement of nodes in the network is very telling of the structure of the

connections between nodes. Also, it is easy to see the network status graphically in

the beginning of the period. However, this method may suffer from visual confusion

caused by the many nodes and interconnections between them. On the other hand,

scatter plots can show correlations between features and their interactions in an in-

tuitive and simple way. The limitation for the scatter plot is that, it cannot provide

the connections between nodes and routing schemes over the network. Therefore,

we combine these two methods so as to better understand and gain intuition regard-

ing the operational characteristics of the algorithm. In the section that follows, we

provide the detail descriptions of each method.

VI.1.1. Network Diagram

To make our data amenable for a network diagram, we first transform it to a graph

structure. In our study, we adopt the node-link representation. The data includes
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a graph topology and data attributes, which is written in XML format. We define

the data attributes as tuples associated with node and link data types. In particular,

a node type can be described as “node name ”, “node type”, “energy level”, “x-

coordinate”, and “y-coordinate”; a link type can have “link type” attribute.

We visualize the data in two-dimensional Euclidean geometry. Specifically, we

load a graph data set from a sequence of XML files. Then, we generate the corre-

sponding visual analogues (called VisualItems), which record visual properties such

as node name, location and type. Next, individual Renderers for node and link items

are created and a default RendererFactory is created to assign these renderers to the

appropriate items. Note that, although drawn in two dimensions, network diagram

can present many features simultaneously by adding colors, shapes, sizes, textures

and so on.

To aid visualization, we include color maps for assigning colors to the data el-

ements. As in WSN application, energy efficiency plays a critical role in prolonging

network lifetime, we generate the color maps by analyzing the energy level attribute

values. Given the sensor energy distribution at each period, we characterize five break

points: (1) a – the minimum remaining energy value; (2) b – the average remaining

energy value; (3) c – the maximum remaining energy value; (4) a1 – the energy value

is equal to a ∗ 1.02; (5) c1 – the energy value is equal to c ∗ 0.98. Furthermore, we

define six different energy levels (corresponding to six different colors) based on these

5 break points:

• Level 1 - gray color : the node with minimum remaining energy value a;

• Level 2 - pink : the node whose remaining energy value is in the interval (a, a1];

• Level 3 - yellowgreen: the node whose remaining energy is in the interval (a1, b];

• Level 4 - purple: the node whose remaining energy is in the interval (b, c1);
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Figure 12: An Example Snapshot of Network Diagram

Search  >>

• Level 5 - maroon: the node whose remaining energy is in the interval [c1, c);

• Level 6 - red : the node with maximum remaining energy value c.

In addition, we add different shapes based on node type. Figure 12 depicts an example

snapshot of network diagram. Specifically, the star shape represents the regular sensor

node, the eclipse represents the node selected as a CH, the rectangle represents the

selected sink node, and the hexagon represent the candidate sink. Also, the links

are colored depending on different communication linkages. (1) If a sensor sends

information to a CH, we have a pink link. (2) If a CH sends information to another

CH, we have a brown link. (3) If a CH sends information to a sink node, we have a

cyan link.
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In node-link visualization applications, we may suffer from visual confusion due

to many nodes and interconnections between them. Hence, we embed interactive

controls to filter and search among the nodes so that the visualization can be more

useful and easy to understand. In particular, we provide controls which includes:

• Drag : Click and drag an item to reposition it.

• Select : Click an item to place it at the center of the display.

• Pan: Left-click and drag the background to pan the display view.

• Zoom: Right-click and drag the mouse up or down or use the scroll wheel to

zoom the display view.

• Zoom-To-Fit : Right-click once to zoom the display to fit the whole graph.

• Search: Type in a search box to search for the energy levels over the nodes.

For large network visualization examples, we can zoom and pan to obtain a

detailed view of different sections of the graph. Also, we can move the mouse over

any node to read the relevant information. In summary, we develop a network diagram

whose display features include layout, color maps and interactive controls. It is easy

to navigate and use for integrating and analyzing the data.

VI.1.2. Scatter Plot

Similar to section VI.1.1, we transform the data to a table structure to make it

amenable for a scatter plot method. The input data file is written in txt format.

A table organizes a collection of data into rows and columns, each row containing a

data record with multiple attributes, and each column containing the corresponding

data value for a named attribute. In each row, we define the data attributes as tuples

associated with multi-period node characteristics. In particular, each row can have
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multiple attributes such as node location (“x-coordinate’ and “y-coordinate”), “node

type at period 1”, “energy level at period 1”, “node type at period 2”, “energy level

at period 2”, and so on.

We visualize the data in two-dimensional Euclidean geometry. We first load a

data set from a text file and then place the nodes based on their coordinate infor-

mation provided in the input file. Note that, for each node, we adopt the same color

and shape features as section VI.1.1.

Figure 13: An Example Snapshot of Scatter Plot

Level: 50_8_4_2_L2 Type: 50_8_4_2_T2
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In the scatter plot visualization, it is difficult to manipulate data set interactively.

Therefore, we develop the user interface that allows visual encodings to be changed

at different periods via placing two drop-down menus in the layout. By doing so,

we can present the node energy levels (represented as different colors) and the node

types (represented as different shapes) for each period. Figure 13 depicts an example

snapshot of scatter plot at period 2. The name “50 8 4 2 L2”, in the first drop

down menu, represents “50 sensor nodes, 8 candidate sinks, 4 CHs and 2 sinks,

energy level at period 2”. Similarly, “50 8 4 2 T2”, in the second drop down menu,

represents “50 sensor nodes, 8 candidate sinks, 4 CHs and 2 sinks, node type at period

2”. The drop down list gives us options such as “50 8 4 2 L1”, “50 8 4 2 T1”,

“50 8 4 2 L5”, “50 8 4 2 T5”. The powerful part of this visualization is that we

can present various algorithm solutions in one simple form, by selecting the energy

level and node type for any period from the drop down list. Hence it allows us to

study the relationship among data points and how they change over the periods. A

scatter plot is a simple approach, but it demonstrates how compelling it could be for

data exploration.

VI.2. Multi-period Data Analysis

In order to gain insights into the operational characteristics of the model, we solve

model (M3) under the setting given by |I| = 50, |K|=8, U=2, N=50, Ri=10, and

H=4 values. The initial energy levels at the sensors are uniformly distributed in the

range [0.1, 0.5] J. We optimally solve model (M3) using exact branch-and-cut imple-

mentation in CPLEX with default parameters. We use both the network diagram and

scatter plot methods to visualize the multi-period solutions obtained from CPLEX on

sensor network topology and routing. Figure 14 and 15 depict the first four period
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Figure 14: Different Period Snapshots of Network Diagram

Search  >>Search  >>

Search  >> Search  >>

Period 1 Period 2

Period 3 Period 4
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Figure 15: Different Period Snapshots of Scatter Plot

Level: 50_8_4_2_L2 Type: 50_8_4_2_T2Level: 50_8_4_2_L1 Type: 50_8_4_2_T1

Level: 50_8_4_2_L3 Type: 50_8_4_2_T3 Level: 50_8_4_2_L4 Type: 50_8_4_2_T4

Period 1 Period 2

Period 3 Period 4
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snapshots using the network diagram and scatter plot methods, respectively.

By integrating and analyzing these data, we have the following important obser-

vations:

1. The energy efficient topology where some CHs are selected close to the sinks and

the remaining CHs are chosen from the center of the sensor field, are commonly

observed at different periods. Furthermore, we note that the sensor nodes with

higher energy (level 5 & 6) and also close to the periphery are strong candidates

for CHs; the sink nodes are selected in a well spread fashion. This will help us

develop a simple rule or a localized algorithm on how to choose the CH and

sink locations across the network.

2. The network topology changes from period to period, which results in a balance

energy dissipation. As illustrated in figure 14 and 15, the CH and sink locations

and the routing schemes vary significantly in successive periods.

3. The sensor nodes with higher-energy (level 5 & 6) are more likely selected

as CHs. This verifies the effectiveness of our heuristic algorithm proposed in

section III.5. By considering only a subset of sensors with higher-energy as the

set of candidate CHs, we can significantly reduce the number of variables and

constraints in model (M3) and hence facilitate to find a better solution in much

less time.

4. As shown in figure 14 and 15, the solutions generated from (M3) do not nec-

essarily give the equal size clusters. This is an illustration of a pitfall in using

the equal size cluster, as it may not promote a balanced energy consumption

pattern.

5. The solutions generated from (M3) do not necessarily select the most H high-
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est energy nodes as CHs. This observation points out the deficiency in some

studies (Younis and Fahmy, 2004), as they mainly attempt to choose the highest

energy sensors as CHs. This may be biased from the long-term network lifetime

perspective.

6. In model (M3), we consider the multi-sourcing assignments, i.e., each sensor can

choose more than one CHs to transmit the collected information. As illustrated

in figure 14 and 15, most of the sensors preferably choose the only one CH to

transmit the collected data even without mandatory requirement. Based on

the discussion in chapter V, organizing sensor networks into disjoint clusters

may ensure scalability so that the network performance does not significantly

degrade with the increase of the network size. This is an important finding as

it demonstrates that our solutions generated from (M3) facilitate the system

scalability even without explicitly considering the single-sourcing assignments.

VI.3. Summary and Conclusions

In this chapter, we aim to utilize the data visualization techniques to support our

optimization efforts. We use Prefuse Visualization Toolkit (Heer et al., 2005) to

develop the methods that can handle visualization tasks for a wide variety of data.

Specifically, we combine the network diagram and scatter plot methods to visualize

the multi-period data on sensor network topology and routing. By integrating and

analyzing the data, we gain intuition regarding the operational characteristics of

the algorithms and verify the effectiveness of our heuristic algorithm proposed in

section III.5. Furthermore, we demonstrate that visualization can be very helpful in

facilitating to find a better solution in a timely manner.
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CHAPTER VII

CONCLUSIONS AND FUTURE DIRECTIONS

Recent advancements in sensory devices are presenting various opportunities for

widespread applications of sensor networks. Wireless sensor networks (WSNs) can be

deployed in inhospitable environments and difficult-to-reach terrains such as urban

or rural battlefields, borderlines, forest fires; in wild habitats and oceans to moni-

tor and observe natural phenomena; in disaster prevention and relief; in ecological

and environmental monitoring. The most challenging issue in WSNs is limited and

unrechargeable energy provision. Many research efforts aim at developing energy

efficient network topology and routing schemes for prolonging the network lifetime.

However, we notice that, in the majority of the literature, topology control and rout-

ing problems are handled separately, thus overlooking the interrelationships among

them. In particular, if the issues of routing are not taken into consideration in the

topology control problem, then the underlying topology might not be suited for sup-

porting an efficient routing scheme.

Considering this deficiency in the current literature, we investigate the integrated

mathematical models and their solution algorithms for topology control and routing,

along with consideration of multiple sinks, based on optimization techniques for the

design of WSNs. To this end, we consider three models that differ mainly in terms

of their objective functions. The objectives include minimization of (1) total energy

usage in the system, (2) maximum energy used at a sensor node, and (3) a weighted

sum of the range of end-of-period remaining energy distribution at the sensor nodes

and the average energy used in the system. We determine that the third model

captures important characteristics of topology control and routing integration in WSN

design and exhibits significantly better performance than the first two models and a
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well-known protocol HEED in extending network lifetime.

VII.1. Summary of Contributions

Our contributions in this dissertation can be summarized as follows.

1. We devise three mathematical models for integrated topology and routing deci-

sions for data-gathering WSNs. The first two objectives are commonly consid-

ered in devising communication protocols (e.g. Heinzelman et al. (2000, 2002);

Lloyd et al. (2005); Ramanathan and Hain (2000); Rodoplu and Meng (1999);

Wattenhofer et al. (2001)). However, this has not been done from an integrated

mathematical modelling perspective as in our case. We consider these two

models as benchmark models for our third proposed model, which minimizes

the total energy and the range of remaining energy distribution in the network.

The models developed herein provide new insights in the theory of WSNs and

introduce new modelling approaches for important practical problems in this

developing area.

2. In devising our models, we consider the use of multiple sinks. This is helpful for

energy efficiency since multiple sinks create an opportunity for better proximity

to sensors, thus saving energy in communication. It is possible to route the

data so that the energy drainage in the network is more evenly distributed to

the sensors by changing the locations of the sinks and the CHs in each period.

3. We suggest a new approach to achieve topology control via limiting the usable

energy at a sensor as a fraction of its total available energy. We show that how

this usable energy determined is important and difficult in our two benchmark

models. On the other hand, the solution in the proposed third model is in-
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sensitive to this characteristic as the control of energy distribution is implicitly

accounted in the objective.

4. We consider cases where an overall view of a measure, such as spatial and tem-

poral temperature/humidiy/pressure gradients in a large sensor field deployed

for environmental monitoring, is of interest. To this end, we employ a gen-

eral data aggregation approach at the CHs that represents the elimination of

data redundancy. In previous studies with data aggregation (e.g. Heinzelman

et al. (2000, 2002); Kalpakis et al. (2003); Younis and Fahmy (2004)), we ob-

serve that aggregation of data into a single signal at each CH, i.e., regardless

of the amount of data received, is common which is applicable in such cases as

monitoring maximum temperature in the sensor field.

5. We consider two important extension models to the setting of the third model,

by incorporating the fixed CH set-up cost (as in the first case), and the single-

sourcing requirements for CH assignments and the transmission ranges of sensor

nodes (as in the second case). On the methodology side, we develop effective so-

lution approaches that are based on Benders decomposition techniques, heuris-

tics and parallel heuristic algorithms. The proposed solution approaches will

also contribute to the generalized mixed-discrete optimization problem, espe-

cially for the problems with similar characteristics.

6. The data visualization toolkit developed herein will be very helpful in solving

larger and realistic problems with dynamic nature.
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VII.2. Foundation for Future Research

Research in this dissertation can be extended in several directions in the future, as

outlined below.

1. One extension of our work, from the modeling perspective, is to incorporate the

coverage problem into the integrated topology control and routing problems,

i.e., we exploit the high spatial redundancy of sensors by only allowing a subset

of sensors active for a given period of time, whereas all other sensors save energy

being in inactive state.

2. This dissertation study focuses on time-driven sensor networks applications per-

taining to continuously monitoring ecological habitats (animals, plants, micro-

organisms). Another interesting extension of our work, from the modeling per-

spective, is to reformulate the models to suit for the time critical applications.

3. The solution methods that we have developed in this dissertation may also apply

to the generalized mixed-discrete optimization problem, such as the capacitated

p-center problem, the multicommodity network design problem and the multi-

objective optimization problem.

4. For data visualization, we plan to provide additional components and poten-

tially develop a visual environment for animating a time-series of values from a

single aggregated input file and displaying real-time data.
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