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ABSTRACT 

 

In Vitro Function of Frozen-Thawed Bottlenose Dolphin (Tursiops truncatus) 

Spermatozoa Undergoing Sorting and Recyopreservation. (December 2010) 

Gisele Angelica Montano Pedroso, BVM, Universidad Nacional Autonoma de México 

Co-Chairs of Advisory Committee: Dr. Duane C. Kraemer 

        
Dr.

 
Justine

 
K.

 
O’Brien

 

 

 

 Artificial insemination (AI) with sex-sorted bottlenose dolphin spermatozoa 

provides female calves for obtaining more cohesive social groups and optimum genetic 

management of captive populations.  However, distance of animals to the sorting facility 

represents a limit to the procedure.  Although one bottlenose dolphin calf has been born 

using spermatozoa from frozen-thawed, sorted and recryopreserved spermatozoa, 

critical evaluation of the steps involved in this process is required to maximize its 

efficiency for future AIs and expansion of the technology to other species.   

Two experiments were designed to determine the efficiency of the sorting 

process and the quality of frozen-thawed bottlenose dolphin spermatozoa during sorting 

and recryopreservation.  In experiment 1, the effect of two washing media (with and 

without 4% egg yolk, v/v) following density gradient centrifugation (DGC) on sperm 

recovery rate and in vitro characteristics of cryopreserved spermatozoa was examined.  

In experiment 2, cryopreserved semen was used to compare the effects of two 

recryopreservation methods (conventional straw freezing and directional freezing) on in 

vitro sperm characteristics of control (non-sorted) and sorted spermatozoa.  Egg yolk 

supplementation of the washing medium in experiment 1 did not influence (P > 0.05) the 
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sperm recovery rate, however, sperm motility parameters and viability were improved (P 

< 0.05).  For Experiment 2, motility parameters and viability were influenced by stage of 

sex-sorting process, sperm type (non-sorted and sorted) and freezing method (P < 

0.05).  After recryopreservation, sorted spermatozoa frozen with the directional freezing 

method maintained higher (P < 0.05) motility parameters over the 24 h incubation 

period compared to spermatozoa frozen using straws.  Quality of sperm DNA of non-

sorted spermatozoa, as assessed by the SCSA, remained unchanged throughout the 

process.   However, a possible interaction between Hoechst 33342 and acridine orange 

was observed in sorted samples.  After recryopreservation, viability of sorted 

spermatozoa was higher (P < 0.05) than that of non-sorted spermatozoa across all time 

points.  The percentages of viable spermatozoa determined by light (eosin-nigrosin) and 

fluorescence microscopy (propidium iodide) techniques were correlated (R2=0.79, P < 

0.001).   

Collective results indicate that bottlenose dolphin spermatozoa undergoing 

cryopreservation, sorting and recryopreservation are of adequate quality for use in AI.  
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1INTRODUCTION 

 

Although, the bottlenose dolphin (Tursiops truncatus) is not reported in the Red 

List of the IUCN (International Union for Conservation of Nature), it is protected under 

Appendix II of CITES (Convention on International Trade in Endangered Species of 

Wild Flora and Fauna), which limits the movement of  animals or their products between 

countries [1].  These limitations, which were originally designed to protect susceptible 

species from exploitation, combined with country specific regulations targeted toward 

marine mammals such as the Marine Mammal Protection Act of 1972 (MMPA; 16 

U.S.C. 1361 et seq.), have created artificial barriers for international animal exchange.  

As a result, breeding and genetic management of captive bottlenose dolphin 

populations is usually limited to individual companies within a country.  An example of a 

small cetacean population in captivity in the United States is the Pacific white-sided 

dolphin (Lagenorhyncus obliquidens).  Only ten per cent of the estimated 119 animals 

belong to American aquaria and the majority of the natural breeding has been 

conducted by one male [2].  For the Pacific white-sided dolphins and other zoological 

cetacean populations, inter-facility animal exchange could temporarily relieve genetic 

bottlenecks within organizations.  However, variations among inter-institutional 

management policies, animal and facility location, and behavioral factors related to the 

integration of new animals into the existing colony have largely prevented these animal 

exchanges from occurring [3].  In addition, transportation of animals across long 

distances can be expensive and potentially dangerous for the animals [3].  The ability to 

apply assisted reproductive technologies (ART) such as semen cryopreservation and AI 

can reduce or eliminate animal transportation for reproductive reasons, and can provide 

a modern tool for the genetic management of captive bottlenose dolphin populations 

across nations and international borders. 

Sex pre-selection of spermatozoa using flow cytometric techniques [4] combined 

with AI offers an unprecedented ability to optimize population genetics and sex ratio 

simultaneously.  These techniques are invaluable for species management in captivity 

where limited population size requires female skewed sex ratios fchaor maximum 
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reproductive rates.  In the wild, bottlenose dolphin adult males form small groups that 

typically associate with females only during the breeding season [5,6].  Therefore, a 

population in captivity with more females than males maintains similarities to wild 

groups, resulting in a more normal social population that reduces inter-male competition 

and potential associated injuries. 

Production of sexed spermatozoa from fresh semen has been successful in 

dolphins.  However, it is limited by the distance of the sorting facility to the source of the 

gametes (sperm samples should undergo sorting after a 12 to 18 h transport period [7]).  

Thus, widespread application of this technology could occur only with the construction 

of multiple sorting facilities around the world.  An alternative strategy would be to 

develop adequate methods for the sorting and cryopreservation of previously 

cryopreserved spermatozoa.  In this case, semen could be cryobanked and shipped 

frozen from any location to the sorting facility where it would undergo a second 

cryopreservation process following sorting.  The method of sorting cryopreserved 

spermatozoa was first established in sheep [8,9] and then adapted for sorting of frozen-

thawed spermatozoa from humans [10], non-human primates [8;10]) and domestic 

cattle [11]. One dolphin calf has been produced using frozen-thawed, sorted and 

recryopreserved spermatozoa [7], but efforts are required to ensure that both the 

efficiency of use of spermatozoa and sorted sperm quality are maximized for this 

species.  It is estimated that sperm losses during sorting and cryopreservation 

processes can exceed 30%, depending upon the species and the number of 

cryopreservation processes performed; in the case of dolphins, less than 5% of 

spermatozoa originating from one ejaculate can be obtained after the frozen/thawed-

sexed-frozen/thawed cycle [7]. 

The first step where a significant loss of spermatozoa occurs is after the first 

post-thaw.  Non-viable (dead) spermatozoa and cryoprotectants must be removed 

before staining and sorting, as they interfere with the correct orientation of spermatozoa 

in the flow cytometer, resulting in lower sorting rates [8,9].  In order to identify the best 

method for cryodiluent removal and the efficient recovery of viable, progressively motile 

spermatozoa for sorting, three pilot trials were performed prior to the two experiments.  

Pilot trials were conducted to identify the most appropriate volume of thawed semen for 
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density gradient centrifugation, tube size for centrifugation, and sperm washing 

medium.   

In this study, it is hypothesized that egg yolk, included in the staining medium, 

improves in vitro characteristics of dolphin spermatozoa after the DGC step. A second 

hypothesis is that the sorting and recryopreservation processes significantly affect in 

vitro sperm characteristics.  During the processing of frozen-thawed spermatozoa for 

sorting and recryopreservation, cells must undergo cryopreservation using a directional 

freezing method, thawing, staining with Hoechst 33342, flow cytometric sorting, 

centrifugation, and recryopreservation/thawing. 

Experiment 1 was conducted to test if egg yolk, as one of the components of 

stain medium, could improve the recovery rate and sperm characteristics after density 

gradient centrifugation by protecting the cell membranes without compromising the 

staining process and subsequent sorting parameters.  The following in vitro assays 

were used: (i) computer assisted sperm analysis of motility, (ii) plasma membrane 

integrity (viability) using light microscopy (eosin-nigrosin staining) and (iii) simultaneous 

assessment of viability and acrosome integrity using fluorescence microscopy 

(propidium iodide and FITC-PNA staining). 

In an effort to identify the main steps that cause damage to sperm cells, 

Experiment 2 was performed to evaluate in vitro characteristics of spermatozoa 

throughout different steps of the cryopreservation and sorting processes, with 

comparison to control (non-sorted) spermatozoa undergoing only recryopreservation 

and thawing.  The following in vitro assays were used at fixed time points during the 

processing of control and sorted spermatozoa, prior to the second cryopreservation: (i) 

computer assisted sperm analysis of motility parameters, (ii) plasma membrane integrity 

(viability) using light microscopy (eosin-nigrosin staining), (iii) simultaneous assessment 

of viability and acrosome integrity using fluorescence microscopy (propidium iodide and 

FITC-PNA staining) and (iv) DNA denaturation using the flow cytometric-based sperm 

chromatin structure assay (SCSA).  For the purpose of determining the in vitro longevity 

of spermatozoa post-thawing, the same assays were used at fixed times, over a 24 h 

period, following the second thawing step. 

The overall goal of this research was to optimize methodologies for the sorting 

and recryopreservation of frozen-thawed bottlenose dolphin spermatozoa, and to use 
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such methodologies as a base for future research in other wildlife species.  The specific 

objective of this study was to maximize both the recovery rate and the in vitro quality of 

frozen-thawed spermatozoa during sorting and recryopreservation to facilitate the 

efficient production of functional spermatozoa for future use in AI. 
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OBJECTIVES 

 

The objective of this study was to improve methodologies for the sorting and re-

cryopreservation of frozen-thawed bottlenose dolphin spermatozoa.  Specifically, 

experiments were designed to determine in vitro quality of dolphin spermatozoa after: 

density gradient centrifugation, staining with Hoechst 33342, sorting and centrifugation, 

cooling and equilibration with the cryodiluent, and at fixed times post-thaw (0 h, 6 h,12 

h,18 h and 24 h). 

 The overall goal of the study was to identify the steps that cause the most 

damage to spermatozoa during processes required for the sorting and 

recryopreservation of frozen-thawed spermatozoa, and thereby allow for the 

development of modifications to the methods which will result in an increased 

availability of sorted spermatozoa for future inseminations. 
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LITERATURE REVIEW 

 

 

Male reproduction  

 

In accordance with male reproductive anatomical descriptions of bottlenose 

dolphins, the genital slit, which contains the penis in the male and vaginal opening in 

the female, is cranial to and separated from the anal orifice.  The fibroelastic penis, 

which has a sigmoid flexure that can be retracted with the aid of the retractor penis 

muscle, is retained in an intra-abdominal position, lying within the body wall, caudally to 

the kidneys [12,13].  The penis can be extended voluntarily from the genital slit during 

erection with the aid of the retractor penis muscles [3]. 

Sexual maturity in males typically occurs from 9 to 13 years of age [14], 

although one male has sired an offspring at 5 years of age [15].  Serum testosterone 

concentrations increase during puberty from less than 1 ng/mL to greater than 10 ng/mL 

[14].  However, data from ultrasonographic examinations of testes indicate that the 

degree of echogenicity of testicular tissue may provide a more reliable indicator of 

maturation than testosterone concentrations [16].  As evidence, Brook et al, [16] 

described a male which had sonographically compatible adult testes (relative to size 

and echogenicity) while simultaneously having testosterone levels below 1 ng/mL.  

Although the effect of seasonality on male reproduction requires more 

investigation, it is evident that in some bottlenose dolphins, seasonality is a primary 

factor responsible for variations in testosterone concentrations and breeding activity 

[17].  As an example of seasonal trends in sperm production, several bottlenose dolphin 

males housed at SeaWorld San Diego (CA, USA) produce ejaculates with significantly 

higher numbers of spermatozoa during the spring and summer months compared to fall 

and winter months [O’Brien JK and Robeck TR, unpublished data].  Other factors like 

presence or absence of cycling females or other males, hierarchy, group size, 

environment and nutrition can also be involved in the control of spermatogenesis in 

bottlenose dolphins.  Thus, in a managed population, fecundity and ejaculate quality 

can improve during predictable periods of the year [14,18]. 
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Artificial insemination 

 

The application of ART, specifically AI, to marine mammals has been successful 

in an increasing number of cetacean species, such as the bottlenose dolphin [6,19], 

Pacific white-sided dolphin [2], killer whale (Orcinus orca) [20] and beluga 

(Delphinapterus leucas) [21,22].  

Artificial insemination was developed in the bottlenose dolphin after basic 

research had been undertaken to characterize the species’ reproductive physiology. 

Longitudinal studies enabled prediction of ovulation and characterization of female 

reproductive cycles through transabdominal ovary ultrasound [23] and urinary hormone 

monitoring [19].  Optimum methods for sperm cryopreservation were also devised [13] 

followed by the development of a hysteroscopic insemination technique culminating in 

the production of calves [19]. 

The ability to predict the timing of ovulation in relation to the LH surge (i.e. 9.4 ± 

3 h from LH surge onset to LH peak, 24.3 ± 7 h from LH peak to ovulation [19]) led to 

the successful development of hysteroscopic inseminations performed once within 

hours prior to ovulation with an AI dose as low as 270 x106 progressively motile 

spermatozoa [19].  In a subsequent study with sexed spermatozoa, O’Brien and Robeck 

[6] achieved pregnancies using a lower dose of 150 x106 progressively motile sexed 

frozen-thawed spermatozoa.  The number of progressively motile sexed spermatozoa 

that constitutes a bottlenose dolphin AI dose is considerably high compared with sexed 

AI doses for cattle (1 x106) [7,24] or horses (25 x106) [25].  However, recent research in 

bottlenose dolphins on deep intrauterine inseminations with low doses (≤ 50 x106) of 

motile sexed spermatozoa is ongoing and already yielding positive results (2/4 

pregnancies) [26]. 

 

 

Semen cryopreservation  

 

Bottlenose dolphins produce high quality spermatozoa with motility, viability, 

normal acrosome and normal morphology reported to exceed 80% [6,13,19]. 
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 The first method used to cryopreserve semen of dolphins was pellets on dry ice 

using a canine cryodiluent comprised of egg yolk, lactose and glycerol [27].  Methods 

were later developed for cryopreservation of semen in straws using a diluent that 

contained egg yolk, buffers (TES, Tris), glucose and gentamicin (Test Yolk buffer, TYB) 

supplemented with glycerol [13].  In that study, high levels of initial sperm 

characteristics were maintained (0 h post-thaw, 0.5 mL straws: total motility of 53.8 ± 

4.8%; percent progressive motility: 89.2 ± 1.4%) during a 6 h post-thaw incubation 

period with the use of a TYB/glycerol cryodiluent, slow cooling rate from 21 °C to 4 °C, 

rapid freezing rate, and medium (for 0.5 mL straw: 35 °C for 60 sec) or fast (for 0.5 mL: 

50 °C for 10 sec) thawing rate [13].  Using a new trend in reproductive technology, 

O’Brien and Robeck [6] demonstrated that directional solidification using specialized 

cryopreservation equipment improved dolphin in vitro sperm characteristics at 6 h post-

thaw (progressive motility: 54.1 ± 4.0%; viability: 63.4 ± 7.9%) when compared with the 

straw method (progressive motility: 48.7± 7.5%; viability: 52.0 ± 9.0%). 

The recently developed freezing method, directional solidification, provides 

controlled seeding, cooling rates and ice front propagation [28].  The use of this 

technology allows large volume samples (up to 9 mL) to move through a linear 

temperature gradient, facilitating fine control of nucleation and ice crystal morphology 

[28].  In contrast, without the seeding process, uncontrolled ice crystal formation during 

cryopreservation using the straw method is believed to physically damage sperm 

membranes thus reducing in vitro sperm quality.  In the aforementioned dolphin study, 

the quality of sexed dolphin spermatozoa, based on in vitro parameters of progressive 

motility, kinetic rating, viability and acrosome integrity, was significantly improved when 

samples were frozen using directional solidification compared with the straw method [6].  

Improvements in post-thaw motility of non-sexed samples were also found when 

directional solidification was compared to conventional freezing methods in horses 

[29,30], and white rhinoceroses (Ceratotherium simum) [31].  Cryopreservation of Asian 

elephant (Elephas maximus) semen was not possible using conventional freezing 

methods.  Semen from this species was cryopreserved for the first time using a 

directional freezer and a post-thaw sperm motility of 30% to 40% was achieved [32]. 

 In addition to the dolphin, the use of directional solidification has been recently 

extended to two other cetaceans, also improving post-thaw in vitro sperm 
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characteristics.  For the Pacific white-sided dolphin, 94% of initial motility was 

maintained post-thaw, compared with 50% using the straw method [2].  In beluga, 

spermatozoa exhibited greater susceptibility to damage during freeze-thaw processes 

(52.6% of raw progressive motility maintained) and the ejaculate volumes are 

substantially lower (1.6 ± 0.9 mL) than those for the previously described cetaceans 

[22,33], thereby resulting in low numbers of progressively motile beluga spermatozoa 

using conventional straw methods.  A successful semen cryopreservation method for 

the beluga was recently achieved with the use of directional freezing and a trehalose-

based cryodiluent [33]. With this combination of methods, sperm samples maintained 

52.6% of their raw progressive motility, 95.1% of their raw kinetic rating and 67.4% of 

their raw viability [22].  These studies demonstrate that directional solidification provides 

superior maintenance of in vitro parameters during the freeze-thaw process compared 

to conventional straw freezing.  Consequently, the technology has been integrated into 

semen freezing protocols for the bottlenose dolphin, Pacific white-sided dolphin, beluga 

and killer whale, with offspring produced using such samples from all four species after 

AI [18]. 

 

 

Sex pre-selection 

 

Sorting of spermatozoa into X and Y chromosome-bearing populations using 

flow cytometry is the most efficient technique for sex pre-selection.  It relies on the 

difference in DNA content of X- and Y-sperm cells.  The method is widely used in the 

bovine industry; however, in order to be used in wild animals, some modifications in the 

flow cytometer settings for the correct orientation of gametes are necessary [7].  The 

DNA content varies among species and even breeds; cattle 3.7% (Brahman) and 4.22% 

(Jersey); possum (Trichosurus sp.) 2.3%, chinchilla (Chinchilla sp.) 7.5% and 

bottlenose dolphins 4.1% X-Y difference in DNA content [34].  This difference has been 

analyzed in many non-domestic species using flow cytometry and it can predict with 

some success the potential for spermatozoa to be successfully sorted (Table 1).  

However, it cannot predict the species and male-specific susceptibility of spermatozoa 

to the sorting process. 
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Table 1. Percentage of difference in DNA content between X and Y chromosome-bearing sperm 
nuclei (from O’Brien et al, 2009 [7]). 

Order Species common name (scientific 
name) 

X-Y Difference 
(%) 

Artiodactyla Dromedary camel (Camelus 
dromedarius) 

3.3 

 Bison (Bos bison) 3.6 
 Yak (Bos mutus grunniens) 3.6 
 Pig (Sus scrofa) 3.6 
 Hippopotamus (Hippopotamus 

amphibius) 
3.7 

 Cattle (Bos indicus) 3.7 
 Cattle (Bos Taurus) 3.8, 4.0-4.2 
 Elk (Cervus elaphus nelsoni) 3.8 
 Sheep (Ovis aries) 4.2 
 Dorcas gazelle (Gazella dorcas) 4.3 
 Giraffe (Giraffa camelopardalis) 4.4 
 White-tailed deer (Odocoileus 

virginianus) 
4.4 

 Reeve’s muntjac (Muntiacus 
reevesi) 

6.3 

Carnivora Dog (Canis lupis familiaris)  3.9 
 Tiger (Panthera tigris tigris) 4.1 
 Cat (Felis catus) 4.2 
Cetacea Bottlenose dolphin (Tursiops 

truncatus) 
4.0, 4.1 

 Pacific white-sided dolphin 
(Lagenorhynchus obliqudens) 

4.0, 4.1 

Diprotodontia Brushtail possum (Trichosurus 
vulpecula) 

2.3 

Perissodactyla Domestic horse (Equus caballas) 3.7 
 Zebra (Equus zebra hartmannae) 3.7 
 White rhinoceros (Ceratotherium 

simum simum) 
4.1 

 Black rhinoceros (Diceros bicornis) 4.1 
 Indian rhinoceros (Rhinoceros 

unicornis) 
4.1 

Primates Western lowland gorilla (Gorilla 
gorilla gorilla) 

2.7-2.8 

 Human (Homo sapiens) 2.8 
 Bornean orangutan (Pongo 

pygmaeus pygmaeus) 
3.2 

 Common chimpanzee (Pan 
troglodytes) 

3.3 

 Ring-tailed lemur (Lemur catta) 4.3 
 Rhesus macaque (Macaca 

mulatta) 
4.3 

Proboscidea Asian elephant (Elephas maximus) 3.4 
 African elephant (Loxodonta 

africana) 
3.9 

Rodentia Rabbit (Oryctolagus Cuniculas) 3.0 
 Mouse (Mus musculus) 3.3 
 Plains rat (Pseudomys australis) 4.2 
 Chinchilla (Chinchilla laniger) 7.5 

 

 

 

Sperm sexing technology has been developed for use in numerous livestock 

species [34,35,36] and is also used in humans to avoid sex-linked diseases [37,38].   
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For non-domestic species, only elk (Cervus canadensis), buffalo (Bubalus bubalis) and 

dolphin spermatozoa have been sorted and offspring of pre-determined sex produced 

[7].  As a result of the potential benefits toward management of captive populations that 

AI with sex-selected spermatozoa offered bottlenose dolphin managers, a sperm sorting 

and reproductive physiology research facility (SeaWorld and Busch Gardens 

Reproductive Research Center (SWBGRRC), San Diego, CA, USA) was created.  

Successful efforts at developing sperm sorting and subsequent cryopreservation 

techniques combined with previously developed AI, led to the first pre-sexed bottlenose 

dolphin born in 2005 at SeaWorld San Diego [6].  The insemination was performed 

using sexed, frozen-thawed spermatozoa derived from liquid-stored semen.  To date, 

eleven dolphin calves of pre-determined sex have been produced using 

cryopreservation and AI technology [O’Brien JK, Robeck TR personal communication].  

Important research efforts are being made to overcome the challenges that 

some species present at sorting.  For example, western lowland gorillas (Gorilla gorilla 

gorilla) have low total numbers of viable spermatozoa while Asian elephants present 

very different sorting rates between males [7]. 

 

 

Sorting and recryopreservation of frozen-thawed spermatozoa 

 

Shipment of semen samples using liquid storage technology to a sorting 

laboratory should take less than 12 to 18 h in order to maintain high quality in vitro 

sperm characteristics prior to undergoing sorting and cryopreservation processes [7].  In 

the case of a facility requiring a longer shipping time, the sorting and re-

cryopreservation of frozen-thawed spermatozoa can be performed.  With this method, 

semen is cryopreserved at the site of collection, transported to the sorting facility where 

it is thawed, then processed for sorting and re-cryopreserved.  Thereafter, sexed 

samples can be transported to any location in the cryopreserved state, or banked for 

long term storage.  

From the time of collection to the insemination of the female, spermatozoa 

undergo a series of processes that cause detrimental effects to in vitro sperm 

characteristics [7].  The first and second cryopreservation/ thawing steps combined with 
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the sorting process are the most harmful stressors to the cells since these steps 

increase the number of spermatozoa with damaged membranes [11].  The sorting and 

recryopreservation of frozen-thawed spermatozoa has resulted in the total number of 

usable, sorted spermatozoa of a particular sex decreasing to less than 5% of the 

original number of spermatozoa in the fresh ejaculate [7,11].  

Post-thaw spermatozoa are typically of lower quality (lower motility, viability and 

acrosome integrity) than fresh samples. In addition, they are thawed within their 

cryoprotectant medium which often includes glycerol, egg yolk and other diluent 

components.  These lower quality samples and the presence of the cryodiluent can 

adversely affect the staining and sorting of the samples by decreasing the correct 

orientation of spermatozoa and sperm sorting rate.  Therefore, post-thaw samples must 

undergo density gradient centrifugation or washing prior to staining and sorting in order 

to select live spermatozoa and to remove the cryodiluent.  Cryoprotectants can interact 

with Hoechst 33342 (H33342) stain and cause poor resolution at sorting [8,39].  O’Brien 

et al. [8] determined that sorting rates of frozen-thawed ram spermatozoa undergoing 

density gradient processing were greater than samples that did not receive processing 

or washing (75 to 80%, 25 to 35%; respectively).  When western lowland gorilla 

spermatozoa were sorted, the proportion of morphologically normal spermatozoa in 

frozen-thawed samples was increased by 28.3 ± 2.5% after the DGC process [10].  In 

this process both glycerol and egg yolk are removed.  However, egg yolk is known to 

serve as a cell membrane stabilizer [40,41] and its presence in sperm solutions prior to 

staining with H33342 could improve or maintain in vitro sperm characteristics.  

Conversely, there is evidence that egg yolk interferes with H33342 penetration [42]. 

While necessary, the density gradient centrifugation or washing process adds an 

additional step (not including the original freeze thaw process) required to prepare 

spermatozoa for sorting which results in older spermatozoa when compared to fresh 

sorted spermatozoa.  During aging, sperm cells utilize their limited energy storage 

capacity which may result in reduced fertility [43].  Thus, spermatozoa must be thawed 

in multiple batches based on sorting facility capacity to minimize the processing and 

sorting time prior to recryopreservation. 

 Due to the previously mentioned features of increased processing time and 

multiple freeze thaw cycles required to produce frozen-thawed, sorted then re-frozen 
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(FSF) spermatozoa, and the significant loss of gametes, the technology is unlikely to be 

used commercially in AI programs, but it has been recently integrated into commercial 

sorting operations for use with cattle IVF/ET programs [XY Inc., J Moreno, personal 

communication].  Despite its limitations, the sorting and re-cryopreservation of 

previously frozen spermatozoa has great potential for application to wild animals [8,10], 

especially bottlenose dolphins [7] which have multiple small populations located around 

the world that do not have immediate access to sorting facilities.  The ability to sort 

frozen-thawed spermatozoa could also allow the incorporation of sexed spermatozoa 

from post-mortem samples of valuable wild specimens into ex situ populations. This 

potential approach is supported by the findings in several non-human primates where 

frozen-thawed epididymal spermatozoa were sorted without a negative impact on in 

vitro sperm characteristics [8].  So far, frozen-thawed spermatozoa from seven different 

primate species, including humans, have been successfully sorted [7]. 

One bottlenose dolphin was produced using frozen-thawed, sorted, re-

cryopreserved spermatozoa [7].  It was estimated that 35 h of sorting time of frozen-

thawed spermatozoa were required to produce an AI dose of 200 x106 progressively 

motile spermatozoa using one flow cytometer [7].  This calculation does not include time 

to prepare samples for sorting, nor flow cytometer preparation and maintenance times 

(approximately 4 h for every sorting day) [O’Brien JK, personal communication].  

However, with the recent acquisition of a dual flow cytometer, and the use of a lower AI 

dose (150 x106 progressively motile spermatozoa [6]), the SWBGRRC has improved 

the production rate of sexed dolphin spermatozoa and the new estimated sorting time 

for a FSF AI dose is approximately 13 to14 h. 

For domestic species, very little has been published about FSF spermatozoa, 

but the method has been described for bulls [44,45] and rams [9,43,46].  In sheep, FSF 

spermatozoa were used to produce normal offspring using in vitro fertilization and 

embryo transfer [9].  After a 6 h incubation period post-thaw, FSF and control (FNSF: 

frozen-thawed, non-sorted then re-frozen) spermatozoa had similar proportions of 

motile spermatozoa.  However, FSF spermatozoa presented fewer intact acrosomes 

than controls over the same period. 

In an additional study, FSF was compared to fresh sorted then frozen (SF) and 

Control (FNSF) ram spermatozoa.  Sorting efficiency was evaluated by comparing the 
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correct orientation of the cells in the flow cytometer (flat surface of the spermatozoa 

head facing the laser beam) [43].  Similar sorting efficiency between SF (46.0 ± 3.8%) 

and FSF (42.0 ± 1.5%) spermatozoa (P > 0.05) were observed.  However, at sorting, 

the proportion of non-viable cells from FSF (35.0 ± 1.0%) was greater than that of SF 

(29.0 ± 4.2%) (P < 0.05).  Results from the aforementioned study showed evidence of a 

decrease in longevity, motility, viability, acrosome integrity and mitochondrial activity of 

spermatozoa from FSF samples.  Despite the overall decrease in sperm quality, flow 

cytometric sorting produced a highly selected population of spermatozoa with improved 

survival and longevity when compared to the Control spermatozoa that underwent two 

cryopreservations without being sorted [43].  Standard laparoscopic insemination 

techniques using 15 x106 motile spermatozoa that underwent two cycles of 

freezing/thawing and sorting resulted in normal births in sheep [46], demonstrating the 

fertility of frozen-thawed ram spermatozoa which have been sex-sorted before re-

cryopreservation and subsequent intrauterine insemination. 

 Production of lambs using FSF spermatozoa combined with IVF/ET technology 

or laparoscopic AI techniques provides strong evidence that embryos and subsequent 

fetuses development normally in utero [9,46].  However, in sheep, sorted spermatozoa 

derived from fresh semen have a reduced life span after freezing and thawing 

compared with their non-sorted counterparts [47].  Sorted frozen-thawed spermatozoa 

quickly attached to oviduct epithelial cells but for a short period of time, even shorter 

than non-sorted spermatozoa [47].  De Graaf et al. [43] reported that FSF spermatozoa 

were less likely to be bound after 1 h of incubation.  Binding to oviduct cells allow 

spermatozoa to undergo capacitation, and this result suggest that sorted frozen-thawed 

spermatozoa require a short period of attachment to oviduct cells to reach the fully 

capacitated state [47].  Although the reduced lifespan in vitro could indicate a similarly 

short lifespan in vivo, the ability of FSF spermatozoa to migrate to the site of fertilization 

was maintained [47]. 

 Regardless of the species under investigation, characterization of the in vitro 

functional capacity of FSF spermatozoa, determination of the life span of FSF 

spermatozoa and quantification of sperm losses that occur during FSF sperm 

preparation, are all necessary to identify detrimental steps which, if improved, may 

increase the applicability of this sex-preselection technology to species management.  



15 

 

 

MATERIALS AND METHODS 

 

 

Three pilot trials (Pilot trials 1 to 3) and two experiments (Experiment 1 and 2) 

were performed using frozen semen from bottlenose dolphins (Tursiops truncatus) of 

proven fertility.  A multi-male frozen semen pool (comprised of one ejaculate from three 

males) was used for the pilot trials and Experiment 1, and semen from three males, 

frozen individually, was used for Experiment 2.  Semen was frozen using a directional 

solidification freezing method as described in subsequent sections.  For all trials and 

experiments, frozen semen was stored in liquid nitrogen tanks at the SWBGRRC. 

All procedures described within were reviewed and approved by the SeaWorld 

Institutional Animal Care and Use Committee and were performed in accordance with 

the Animal Welfare Act for the care of Marine Mammals.  All samples were collected by 

SeaWorld staff using routine husbandry training and on unrestrained animals.  Training 

of husbandry behavior to facilitate biological sample collection is currently viewed as the 

standard of care for marine mammals. 

 

 

Reagents and media 

 

 All chemicals were of analytical grade.  Disposable plastic ware was 

manufactured by BD Biosciences (BD, Bedford, MA, USA).  Unless otherwise stated, all 

media components were purchased from Sigma-Aldrich (Sigma, St Louis, MO, USA) 

and were prepared with tissue-grade water (Sigma or Millipore, Billerica, MA, USA).  All 

freezing and sorting diluents containing egg yolk (free range eggs < 48 h old) were 

clarified prepared by centrifugation for 1.5 h at 10000 x g at 10 ºC.  The supernatant 

was filtered (0.22 µm; Millipore) and frozen at -80 ºC for a maximum of 18 months. 
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Evaluation of semen and sperm characteristics 

 

Four proven breeding male bottlenose dolphins (Males 1 to 4; aged 23, 21, 20 

and 16 years (in 2009), weighting 364, 230, 224 and 226 kg, respectively) housed at 

SeaWorld San Diego (CA, USA) were used for semen collection. 

The fresh semen was transferred from a sterile Whirlpak® collection bag (Nasco 

International Inc, Fort Atkinson, WI) to a 50 ml polystyrene tube (BD Falcon, Becton 

Dickinson, Franklin Lakes, NJ) and an aliquot was removed for assessment: pH (pH 

indicator strips; EM Science, Gibbstown, NJ, USA), osmolality (freezing point 

depression osmometer, Advanced Instruments Inc., Norwood, MA), sperm 

concentration (haemocytomer, X 400; Olympus, Tokyo, Japan), and motility parameters 

(Computer Assisted Sperm Analysis [CASA, Hamilton–Thorne, HTM-IVOS Version 

12.2]) [48].  Plasma membrane integrity (viability) was assessed using live-dead 

exclusion stains (light microscopy: eosin-nigrosin; IMV International Corp., Maple 

Grove, MN, USA; fluorescence microscopy: propidium iodide).  Acrosome integrity and 

viability were evaluated using a dual stain method (propidium iodide and FITC-PNA) 

[49,50].  An aliquot was frozen at each evaluation step and retrospectively analyzed 

after thawing for susceptibility of spermatozoa to DNA denaturation using the sperm 

chromatin structure assay (SCSA) [51,52].  All evaluations were conducted at the 

SWBGRRC with the exception of the SCSA which was performed at the Texas A&M 

University (Department of Large Animal Clinical Sciences). 

 

 

Sperm concentration 

 

 A hemocytometer (Hausser Scientific, Horsham, PA) was used to determine the 

concentration of samples.  Samples were diluted with a count solution (6% saline 

solution) and vortexed before loading the hemocytometer chambers.  The dilution 

factors varied from 1:20 to 1:200 to avoid inaccuracies in the method by over- or under-

dilution of the sperm sample and thereby allow for an appropriate number of cells for 

counting (approximately 150 to 200 spermatozoa per chamber).  Chambers were 

loaded with 10 µL in standard fashion using a pipette [53].  A new pipette tip was used 
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for placement of the sperm suspension in each chamber, and the outside of the pipette 

tip was wiped with lint-free tissue (Kimwipe®, Kimberly-Clark Corp., Roswell, GA, 

U.S.A.) to prevent any excess volume from being loaded into the chamber.  Before 

evaluation, the hemocytometer was placed for 5 min on a wet surface inside a covered 

petri dish to avoid dehydration.  A minimum of four chambers (two hemocytometers) 

were assessed per sample.  All spermatozoa within five or 25 squares were counted, 

including those touching the lower and right sides of each grid of 16 squares.  

Chambers were cleaned between counts with soap solution, rinsed with water and 

wiped with absorbent paper towels.  Chambers were allowed to dry before reloading.  In 

the case of counting five squares, the sperm concentration (spermatozoa/mL) was 

obtained by multiplying the average of the count by five, multiplying the result by the 

dilution factor and multiplying again by 10000.  In the case of counting all 25 squares, 

the multiplication of the average by five is not necessary, and the average can be 

multiplied by the dilution factor and by 10000. 

 

 

Recovery rate 

 

 Sperm concentration as previously described was used to determine the total 

number of spermatozoa in the resuspended pellet (after DGC) by multiplying the sperm 

concentration of the pellet by the total volume of the pellet.  The total number of 

spermatozoa in the pellet was then multiplied by 100 and divided by the total number of 

spermatozoa in the thawed sample placed on the DGC, resulting in the percentage of 

spermatozoa recovered from the original thawed sample.  This method was used to 

determine the recovery rate in all pilot trials and experiments. 

 

 

Computer-assisted sperm analysis (CASA) 

 

  Sperm motility parameters were objectively assessed using computer-assisted 

sperm analysis (CASA; HTM-IVOS Version 12.2; Hamilton-Thorne, Inc., Beverly, MA, 

USA) in a manner similar to that previously described for beluga [21,33].  Semen was 
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diluted with Androhep Enduraguard™ (AE; Minitube of America, Verona, WI, USA) to a 

concentration of 15 to 25 x 106 spermatozoa/mL and 9 µL was transferred to a glass 

slide and overlaid with a 22 x 22 mm glass coverslip for analysis at 35 °C.  After two to 

three minutes, a total of five to ten microscopic fields representing a minimum of 200 

spermatozoa were randomly selected and examined per sample for the calculation of 

the following motility parameters: average pathway velocity (VAP, µm/sec), straight-line 

velocity (VSL, µm/sec), curvilinear velocity (VCL, µm/sec), amplitude of lateral head 

displacement (ALH, µm), beat cross frequency (BCF, Hz), straightness of sperm 

movement (STR (%, VSL/VAP), total motility (TM, %; VAP > 20 µm), and progressive 

motility (PM, %; VAP> 50 µm/sec and STR > 80%).  Preset values for the instrument 

consisted of the following: 30 frames at a frame rate of 60 frames/sec, minimum 

contrast of 80, minimum cell size (pixels) of five.  Three additional groups based on 

velocity of movement were also determined: rapid (RAP, VAP > 50 µm/sec, %), medium 

(MED, 20 µm/sec < VAP < 50 µm/sec, %) and slow (SLOW, VAP < 20 µm/sec, %).  

 

 

Sperm chromatin structure assay (SCSA) 

  

 This assay measures the susceptibility of sperm DNA to denaturation and has 

been previously described [51,52,54].  Individual samples were thawed in a water bath 

at 38 °C for 15 to 30 sec.  An aliquot of 5 µL to 20 µL of semen was mixed with 180 to 

195 µL of a TRIS buffer (0.186 g disodium EDTA, 0.790 g Tris-HCl, 4.380 g NaCl in 500 

mL deionized water, pH 7.4) to a final volume of 200 µL.  Four hundred microliters of 

acid- detergent solution (2.19 g NaCl, 1.0 mL of 2N HCl, 0.25 mL Triton-X, qs. 250 mL 

deionized water) was immediately added and after 30 seconds the solution was 

quenched with 1.2 mL of an acridine orange solution (3.8869 g citric acid monohydrate, 

8.9429 g Na2HPO4, 4.3850 g NaCl, 0.1700 g disodium EDTA, 4 µg/mL acridine orange 

stock solution (1mg/mL), qs. 500 mL water, pH 6).  Samples were immediately placed 

into the flow cytometer (FACScan; Becton Dickinson, Mountain View, CA, USA) and 

allowed to equilibrate for 30 sec prior to data acquisition.  Samples, tubes and reagents 

were kept on ice during processing.  Sample volume varied to accommodate a flow rate 

of 100 to 200 cells/sec.  Five thousand events were accumulated per sample.  Flow 
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cytometer settings calibrated using spermatozoa from a known fertile dolphin as the 

control.  Using this control sample, settings were adjusted so that mean green 

fluorescence was 500 channels (FL-1@500) and mean red fluorescence at 150 

channels (FL-3@150).  Data were recorded and stored in List Mode and SCSA values 

were calculated using WinList™ software (Verity Software House, Topsham, ME, USA).  

Quantification of DNA denaturation in each spermatozoon was determined by the term 

alpha-t (αt), the ratio of red/(red+green fluorescence) for each individual spermatozoon 

analyzed.  Alpha-t (αt) describes the relationship between the amounts of green 

(double-stranded DNA) and red (single-stranded DNA) fluorescence.  Endpoints 

included the percentage of Cells Outside the Main Population (%COMP-αt), Mean-αt, 

and Standard Deviation (SDαt).  The COMP-αt was determined by selecting those 

spermatozoa located to the right of the control main population, and represents a 

percentage of the total number of spermatozoa with denatured DNA (Fig. 1). 

 

 

 

 

Fig. 1. Examples of data generated by the SCSA. Left: histogram of αt population, right: cytogram of green versus red 
fluorescence. 
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PI/FITC-PNA 

  

 Sperm plasma membrane integrity (viability) and acrosome integrity were 

measured simultaneously using the stains propidium iodide (PI, Sigma 287075) and 

fluorescein isothiocynate-conjugated Arachis hypogaea (peanut) agglutinin (FITC-PNA, 

Sigma L-7381). The PI/FITC-PNA staining method used herein was a combination of 

different dual staining protocols [49,50,55].  Briefly, a 12.5 µL aliquot of sperm sample 

was transferred to a foil covered microcentrifuge tube and mixed with 1 µL of PI (12.5 

mg/mL working stock in PBS).  After 30 sec, 1 µL of FITC-PNA (1 mg/mL working stock 

in PBS) was added to the solution and incubated for 1 min.  Spermatozoa were then 

immobilized and fixed by the addition of 1 µL of 2% glutaraldehyde solution (in PBS, pH 

7.0-7.4) and 12 µL was placed on a glass slide and covered with a 22 x 22 mm glass 

coverslip for evaluation within 5 min.  Spermatozoa were observed using a fluorescence 

microscope (BX51, Olympus, Tokyo, Japan) equipped with a 450-490 nm band pass 

excitation filter and a 535 nm emission filter.  Evaluations were conducted at 400 X 

magnification under a low bright field setting to permit visualization of non-fluorescent 

spermatozoa.  A total of 100 cells were classified per sample using the following 

staining patterns: no stain (viable cells with an intact acrosome), green staining in the 

acrosome region including the equatorial segment (viable cells with a damaged or 

reacted acrosome), red staining (non-viable cells with an intact acrosome), red and 

green staining (non-viable cells with a damaged or reacted acrosome).  The dual 

staining method was validated for dolphin spermatozoa by observing fluorescent 

labeling of samples containing non-viable (killed) and purportedly acrosome damaged 

spermatozoa.  Killed, damaged spermatozoa were obtained by two cycles of snap 

freezing in liquid nitrogen and thawing at room temperature.  Spermatozoa were snap 

frozen in Androhep Enduraguard™ (AE; Minitube of America, Verona, WI, USA) without 

cryoprotectant, and >95% of cells were classified as non-viable and acrosome 

damaged/reacted after the second thawing. 
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Eosin-nigrosin stain 

 

 This assay has been extensively used to evaluate sperm viability [13,56].  In a 

glass slide, 10 µL of sample were mixed with 15 µL of eosin-nigrosin exclusion stain 

(IMV International Corp., Maple Grove, MN) for 30 sec.  A smear was made and 

allowed to air-dry for immediate evaluation using bright field optics (1000 X).  A 

minimum of 100 spermatozoa were examined and placed into one of two groups based 

on stain uptake by the sperm head and/or tail: live (no stain uptake) or dead (partial or 

complete stain uptake). 

 

 

Semen processing and cryopreservation using directional solidification 

 

 Ejaculates were used for the multi-male sample in Pilot trials 1 to 3 (Males 1, 2 

and 3) and in Experiments 1 and 2 (individual ejaculates from Males 2, 3 and 4) if the 

progressive sperm motility was greater than 85%, and the osmolality was within the 

normal range for bottlenose dolphins (330 ± 5 mOsm/kg). 

For ejaculates of low sperm concentration (< 600 x 106 spermatozoa/mL), the 

tube of semen was centrifuged (600 x g, 10 min) and an appropriate volume of 

supernatant was removed to obtain a concentration of 600 x 106 spermatozoa/mL.  For 

ejaculates of high sperm concentration, Part A extender (TYB; modified from Graham et 

al. 1972 [57]; 176 mM TES, 80 mM Trizma base (Tris), 9 mM fructose, 50 µg/mL 

gentamicin sulfate, 20% (v/v) egg yolk, 330 ± 5 mOsm/kg, pH 7.3 ± 0.1) [6] was added 

to raw, non-centrifuged semen in an appropriate volume to obtain the same final 

concentration of 600 x 106 spermatozoa/mL.  Part A was added to semen (1:1, v/v) over 

a 2 to 3 min period at room temperature. 

The sperm suspension was cooled to 5 °C over a 1.5 h to 2 h period (-0.2 

°C/min) then diluted 2:1 (v/v) with Part B extender previously cooled to 5 °C (9% 

Glycerol glycerolated TYB, v/v) in a stepwise fashion over 30 min (three steps of 25%, 

25% and 50% volume) to obtain a final concentration of  200 x 106 spermatozoa/mL and 

3% glycerol.  One hour after the last addition of Part B, the sperm suspension was 

transferred to 9 mL hollow glass tubes (at 5 °C, IMT International, Chester, UK) for 
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cryopreservation using a directional solidification machine (MTG-516, IMT, Ness, Ziona, 

Israel).  The hollow tubes moved through the first block of the machine (5 ºC) for 45 sec 

at a constant velocity (1 mm/sec) before reaching a 2 mm distance inside of the second 

block (second block maintained at -50 °C), where it was held for 60 sec for initiation of 

ice crystal formation (rapid induction of ice nucleation from the seeding point throughout 

the length of the glass tube) [6].  The tubes were then moved at the same velocity 

across the second block for 3 min before entering the collection chamber (-100 ºC to -

110 ºC) followed by transfer to liquid nitrogen. 

 

 

Pilot trials 

 

Pilot trial 1: effect of frozen-thawed semen volume during density gradient 

centrifugation (DGC) on sperm recovery rate and in vitro sperm characteristics  

 

Experimental design: a multi-male frozen semen pool was used to examine the 

effect of four semen volume treatments on sperm recovery rate using DGC.  Three 

replicates were performed. 

A large hollow glass tube containing 8.5 mL of frozen semen suspended at 200 

x 106 spermatozoa/mL was thawed in air (21 °C) for 90 sec then placed at 35 ºC in a 

water bath for 50 sec.  Four 15 mL polystyrene tubes were prepared with 2 mL of 45% 

density gradient medium (DGM) and 2.5 mL of 90% DGM.  Density gradient medium 

was a Percoll-based (Percoll™ Plus, GE Healthcare Biosciences, Pittsburgh, PA) in-

house preparation (320-330 mOsm/kg, pH 7.2-7.4).  The 45% DGM was prepared by 

adding 45 mL of 100% DGM to 55 mL of staining medium, and the 90% DGM was 

prepared by adding 90 mL of 100% DGM to 10 mL of staining medium.  Staining 

medium was a Tyrode’s salt solution containing BSA (0.3%, v/v; Sigma A-4697), 

lactate, pyruvate and HEPES (HEPES-TALP staining medium; modified from Parrish et 

al. 1986 [58] supplemented with gentamycin (50 µg/mL); 330 ± 5 mOsm/kg and pH 7.3 

± 0.1; [6]).  Semen was placed over the gradient at four volumes: 0.5 mL, 1.0 mL, 2.0 

mL and 4.0 mL.  The tubes were centrifuged at 800 x g for 20 min and the supernatant 

was removed using a disposable 3 mL transfer pipette.  Using a calibrated pipettor 
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(Gilson Inc., Middleton, WI, USA) with a 1 mL pipette tip, the sperm pellets (1.6 mL) 

were aspirated and slowly combined in a new 15 mL polystyrene tube followed by 

resuspension with staining medium (1:3 v/v, sperm sample: staining medium).  The 

sample was filtered (35 µm) and tube was then centrifuged at 800 x g for 10 min 

followed by removal of the supernatant (4.8 mL).  The new pellet was then resuspended 

with the same volume (4.8 mL) of fresh staining medium that was removed post-

centrifugation.  Aliquots of each treatment were removed for assessments (comparison 

of motility parameters, viability and sperm recovery rate). 

 

 

Pilot trial 2: effect of tube size during DGC on sperm recovery rate and in vitro 

sperm characteristics 

 

Experimental design: a multi-male frozen semen pool was used to examine the 

effect of two centrifuge tube sizes on sperm recovery rate using DGC.  Three replicates 

were performed.  

 Semen was thawed as described in Pilot trial 1.  Treatments comprised DGC of 

semen in a 15 mL (2 mL of 45% DGM and 2.5 mL of 90% DGM) and 50 mL polystyrene 

centrifuge tube (2 mL of 45% DGM and 3 mL of 90% DGM).  After DGC, the 

supernatant was removed using a 3 mL transfer pipette and the sperm pellet was 

aspirated and slowly combined in a new 15 mL polystyrene tube followed by 

resuspension with staining medium (1:3 v/v, sperm sample: staining medium).  The 

samples were filtered (35 µm) then centrifuged at 800 x g for 10 min followed by 

removal of the supernatant and resuspension with the same volume of staining medium 

that was removed post-centrifugation.  Aliquots of each treatment were removed for 

assessments (comparison of motility parameters, viability and sperm recovery rate).  
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Pilot trial 3: effect of a non-centrifugation (gravity) separation technique on sperm 

recovery rate and in vitro sperm characteristics 

 

Experimental design: a multi-male frozen semen pool was used to examine the 

effect of a gravity separation technique after thawing.  Three replicates were performed. 

Semen was thawed as described previously and divided equally into two 15 mL 

polystyrene tubes.  The first centrifugation of the DGC process was performed for both 

tubes as previously described in Pilot trials 1 and 2. One tube then underwent the 

second centrifugation as described previously for the DGC method.  At the same time, 

the sperm solution in the second tube was resuspended with staining medium (1:3 v/v, 

sperm sample: staining medium) and centrifuged at 750 x g for 8 min.  The supernatant 

was removed and the sperm pellet was resuspended with staining medium (to a final 

concentration of 600 x 106 spermatozoa/mL).  After 30 min at room temperature, the 

supernatant was transferred to a new tube and aliquots were removed from both 

treatment groups for assessments (motility parameters, viability and sperm recovery 

rate). 

 

 

Experiments 

 

Experiment 1: effect of egg yolk as a component of HEPES-TALP medium for 

sperm washing procedures during DGC on sperm recovery and in vitro sperm 

characteristics 

 

Experimental design: a multi-male frozen semen pool was used to examine the 

effect of two washing media (staining medium with and without 4% egg yolk) following 

DGC on sperm recovery rate and in vitro sperm characteristics.  Nine replicates were 

performed.  

A large hollow glass tube containing 8.5 mL of frozen semen from a multi male 

pool suspended at 200 x 106 spermatozoa/mL was thawed in air (21 °C) for 90 sec then 

placed at 35 ºC in a water bath for 50 sec.  The optimum volume of frozen-thawed 

semen determined in Pilot trial 1 (4 mL) was placed in two polystyrene tubes of the 
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optimum tube size determined in Pilot trial 2 (15 mL), previously prepared with 2 mL of 

45% DGM and 2.5 mL of 90% DGM.  The tubes were centrifuged at 800 x g for 20 min 

and the supernatant was removed using a disposable 3 mL transfer pipette.  Sperm 

pellets (1.6 mL) were aspirated using a pipettor and 1 mL pipette tip and transferred to 

new 15 mL polystyrene tubes.  One tube was used to resuspend the sperm sample with 

staining medium (1:3, v/v, sperm sample: staining medium) and the other tube was 

used to resuspend the sperm sample with staining medium containing 4% egg yolk (1:3 

v/v, sperm sample: staining medium plus egg yolk).  The samples were filtered (35 µm) 

and placed in new 15 mL polystyrene tubes.  Tubes were centrifuged at 800 x g for 10 

min followed by removal of the supernatant and resuspension with the same volume of 

staining medium that was removed post-centrifugation.  Aliquots of each treatment were 

removed for assessments (comparison of motility parameters, viability and sperm 

recovery rate). 

 

 

Experiment 2: effect of conventional straw freezing and directional freezing 

technology on in vitro characteristics of non-sorted and sorted spermatozoa after 

recryopreservation 

 

Experimental design:  three cryopreserved ejaculates from three males were 

used to compare the effects of two cryopreservation methods (conventional straw 

freezing and directional freezing) on in vitro sperm characteristics of control (non-

sorted) and sorted spermatozoa (2 × 2 factorial).  

In vitro sperm characteristics were analyzed using aliquots of sperm 

suspensions from both refreezing methods and sperm types, non-sorted (control) and 

sorted spermatozoa, from both re-freezing methods at the following steps: post-DGC, 

post-staining with H33342 (post-stain), post- sorting and centrifugation (post-sort), post-

cooling and cryodiluent equilibration (pre-freeze), and at fixed times post-thaw (0 h, 6 h, 

12 h, 18 h and 24 h post-thaw). 
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Preparation and sorting of frozen-thawed spermatozoa 

 

Frozen-thawed semen was processed for non-sorted (control) and sorted 

treatment groups as shown in Fig 2.  Frozen-thawed spermatozoa destined for sorting 

were prepared using the optimum method devised from the three pilot trials which 

included: (i) the use of 4 mL of semen (or the equivalent volume containing 800 x 106 

spermatozoa), (ii) 15 mL centrifuge tubes for DGC and washing steps, and (iii) re-

suspension of the pellet after DGC in stain medium supplemented with 4% egg yolk. 

Sperm suspensions from each male were diluted to 200 x 106 spermatozoa/mL with 

staining medium and incubated with Hoechst H33342 (Sigma; 89 – 107 µM) for 45 min 

at 32.5 °C.  The H33342 concentration was previously determined by a series of 

optimization experiments.  Immediately before sorting, stained spermatozoa were 

diluted (1:1, v/v) with the staining medium containing 0.002% of food dye (FD&C #40, 

Warner Jenkinson Company Inc., St Louis, MO, USA) to a concentration of 100 x 106 

spermatozoa/mL and filtered (35 µm).  The food dye penetrates the membrane of the 

non-viable spermatozoa and reduces the intensity of the H33342 fluorescence.  

Consequently, only viable spermatozoa (with intact plasma membranes) were selected 

for sorting [59,60]. 

A high speed flow cytometer (SX MoFlo, Dako Colorado Inc., Fort Collins, CO, 

USA) modified for sperm sorting [24,60,61] operated at 207 kPA (30 psi) was used to 

analyze and sort spermatozoa.  The H33342 was excited with UV light from a diode-

pumped solid state pulse laser (Vanguard 350 HMD-355; Spectra Physics, Mountain 

View, CA, USA) (333-363 nm multilines) operated at 175 mW.  The sheath fluid 

contained staining medium without BSA. 

Spermatozoa were sorted into 50 mL polystyrene tubes containing 3 mL of Part 

A (with 1% seminal plasma, v/v) for a maximum of two hours.  Sort gates were placed 

on correctly removed and the pellet was resuspended with the appropriate volume of 

Part A (containing 1% of seminal plasma, v/v) to a final concentration of 30 x 106 

spermatozoa/mL.  An aliquot of 0.1 x 106 sorted spermatozoa was re-stained (9 µM 

H33342), sonicated and re-analyzed by the flow cytometer in order to determine the 

proportions of X- and Y-bearing spermatozoa [62].oriented spermatozoa (spermatozoa 

with the flat surface of their head oriented towards the laser beam) and sorting was 
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performed using Summit® software (Version 4.0, Dako Colorado Inc.).  Sorting was 

performed by placing sort gates on the oriented, viable population to achieve purities of 

greater than 90% X- or Y-chromosome-bearing spermatozoa.  Sexed spermatozoa 

were transferred to 15 mL polystyrene tubes and centrifuged at 850 x g for 25 min at 

room temperature.  The supernatant was removed and the pellet was resuspended with 

the appropriate volume of Part A (containing 1% of seminal plasma, v/v) to a final 

concentration of 30 x 106 spermatozoa/mL.  An aliquot of 0.1 x 106 sorted spermatozoa 

was re-stained (9 µM H33342), sonicated and re-analyzed by the flow cytometer in 

order to determine the proportions of X- and Y-bearing spermatozoa [62]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Processing steps of non-sorted (Control) and sorted (FSF) spermatozoa of Experiment 2. 
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Recryopreservation of non-sorted and sorted spermatozoa using a conventional straw 

method 

 

             Non-sorted and sorted spermatozoa were frozen in straws as follows: 

 

(i) Non-sorted spermatozoa: the sperm suspension was diluted with Part A 

extender at room temperature to obtain a final concentration of 100 x 106 

spermatozoa/mL.  Part A contained 1% (v/v) seminal plasma and 25% (v/v) 

sheath fluid (as used during sperm sorting). 

(ii) Sorted spermatozoa: after sorting and processing as previously described; 

the sperm suspension contained 30 x 106 spermatozoa/mL (prior to cooling). 

 

Non-sorted and sorted sperm suspensions were cooled to 5 °C over a 1.5 h to 2 

h period (-0.2 °C/min) then diluted inside a cool room with Part B extender (with 3% 

glycerol, 1:1, v/v) in a stepwise fashion of 3 steps (25%, 25% and 50% of volume to be 

added) over 30 min (final concentration was 50 x 106 spermatozoa/mL with 1.5% 

glycerol) and equilibrated for 1 h. 

Spermatozoa were loaded into 0.25 ml straws (Minitube of America, Verona, WI, 

USA) using a 1 mL syringe and a sterile 20-200 uL pipette tip attached to the syringe by 

an adaptor.  An air space of 1 cm was left in the middle of the straw to allow for sample 

expansion during freezing.  Straws were sealed with pre-cooled ball bearings (Minitube 

of America, Verona, WI, USA) and placed on a block of dry ice for 10 min and then 

transferred to liquid nitrogen. 
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Recryopreservation of non-sorted and sorted spermatozoa using a directional freezing 

method 

 

            Non-sorted and sorted spermatozoa were frozen in glass vials as follows: 

 

(i) Non-sorted spermatozoa:  the sperm suspension was cooled and diluted as 

previously described for the straw freezing method in order to obtain a final 

concentration of 50 x 106 spermatozoa/mL and 1.5% glycerol (v/v).  

(ii) Sorted spermatozoa: the sperm suspension was cooled and diluted as 

previously described for the straw freezing method in order to obtain a final 

concentration of 15 x 106 spermatozoa/mL and 1.5% glycerol (v/v).  

 

Sperm suspensions were transferred to 2 mL hollow glass tubes and 

cryopreserved using a directional freezing machine as previously described for non-

sorted semen except that tubes were held for 30 sec (instead of 60 sec) to allow proper 

seeding.  After entering the collection chamber, the tubes were transferred to liquid 

nitrogen. 

 

 

Preparation of seminal plasma 

 

Seminal plasma from the three males used in Experiment 2 was individually 

frozen after centrifugation of ejaculates displaying normal osmolality (10,000 x g for 1 h 

at 10 ºC).  Seminal plasma was removed, snap frozen in liquid nitrogen (-196 ºC) and 

stored at -80 ºC until thawing at room temperature for use during the recryopreservation 

step. 

 

 

Thawing of recryopreserved non-sorted and sorted spermatozoa 

 

Straws were thawed in a water bath at 35 °C for 20 sec.  Small hollow tubes 

were thawed in air for 45 sec then transferred to a 35 °C water bath equipped with 



30 

 

 

modifications to enable uniform sample thawing over 45 sec (Harmony CryoCare 

Activator™; IMT International).  

 

 

Dilution of samples after second thawing 

 

 After thawing, samples were transferred to microcentrifuges tubes (Eppendorf 

North America) and diluted (1:0.1, v/v) with Androhep.   

 

 

Statistics 

 

Data for sperm motility parameters, viability, acrosome integrity, sperm recovery 

rate and sperm chromatin integrity across the different time points were analyzed using 

repeated measures analysis of variance (RMANOVA, SigmaStat, Version 3.5, SSPS 

Inc., San Rafael, CA, USA).  All pair wise multiple comparison procedures between 

means were conducted by Student-Newman-Keuls (SNK).  P < 0.05 was considered 

significant.  Data are presented as mean ± SD. 
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RESULTS 

  

 

Pilot trials 

 

Three replicates were performed for each pilot trial. Since a minimum of nine 

replicates is necessary for treatment comparisons, it must be acknowledged that the 

statistical analyses presented below are preliminary, as was the nature of the pilot trials.  

 

 

Pilot trial 1: effect of frozen-thawed semen volume during DGC on sperm 

recovery rate and in vitro sperm characteristics  

 

 After DGC, no differences (P > 0.05) were found in the recovery rate, TM, PM, 

VAP, VSL and VCL when different volumes (0.5 mL, 1 mL, 2 mL and 4 mL) of thawed 

semen were placed on the density gradient (Table 2).  The percentage of viable 

spermatozoa assessed using the eosin-nigrosin stain was higher (P < 0.05) for 4 mL 

than 0.5 mL or 1.0 mL treatment groups, but similar (P > 0.05) to the 2.0 mL group.  

Since motility parameters and recovery rates were similar across treatments, and 

viability was satisfactory for the 2 mL or 4 mL group, the greatest volume (4 mL) was 

used in all subsequent trials and experiments. 

 

 

 

Table 2. Sperm characteristics and recovery rate of different semen volumes used during 
density gradient centrifugation in Pilot trial 1 (mean ± SD, n = 3). 
Sperm Characteristics* Volume of semen  

 0.5 mL 1.0 mL 2.0 mL 4.0 mL 

TM (%) 80.7 ± 5.5 82.3 ± 1.5 83.3 ± 4.2 83.3 ± 5.8 

PM (%) 66.7 ± 8.0 72.3 ± 5.1 63.7 ± 7.6  64.7 ± 11.2 

VAP (µm/sec) 128.1 ± 24.5 143.9 ± 14.2        115.1 ± 7.0 138.2 ± 12.8 

VSL (µm/sec) 117.4 ± 26.2 134.7 ± 16.4 102.2 ± 10.5 124.0 ± 17.5 

VCL (µm/sec) 182.4 ± 13.0        187.1 ± 9.5        171.0 ± 5.2        188.4 ± 6.8 

Viability (%)  82.0 ± 2.0
a
    82.7 ± 3.1

a,c
   89.3 ± 3.0

b,c
 90.5 ± 2.8

b
 

Recovery rate (%) 31.8 ± 4.1 36.1 ± 4.9 31.5 ± 2.5 30.9 ± 2.2 

* TM = total motility (%); PM = progressive motility (%); VAP = average pathway velocity (µm/sec); VSL = straight-line 
velocity (µm/sec); VCL = curvilinear velocity (µm/sec). Viability was assessed using the eosin-nigrosin stain. 
a-c

Values with different superscripts within the same row are different based on preliminary statistics (P < 0.05). 
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Pilot trial 2: effect of tube size during DGC on sperm recovery rate and in vitro 

sperm characteristics 

 

 The recovery rate was greater (P < 0.05) for 50 mL tubes (32.8 ± 0.5%) than 15 

mL tubes (28.1 ± 1.2%). Sperm samples from 15 mL tubes (n=3 per treatment) 

displayed higher (P < 0.05) VAP (148.5 ± 1.5 µm/sec) and VSL (133.1 ± 2.9 µm/sec) 

when compared to 50 mL tubes (VAP: 127.3 ± 6.0 µm/sec, VSL: 115.2 ± 8.1 µm/sec).  

However, TM, PM and VCL remained similar (P > 0.05) for 15 mL tubes (TM: 84.3 ± 

4.9%, PM: 65.3 ± 2.1%, VCL: 199.2 ± 3.1 µm/sec) and 50 mL tubes (TM: 76.3 ± 6.7%, 

PM: 62.0 ± 1.7%, VCL: 178.5 ± 6.5).  Due to the increased velocity parameters, 15 mL 

tubes were used for the remainder of the study. 

 

 

Pilot trial 3: effect of a non-centrifugation (gravity) separation technique on sperm 

recovery rate and in vitro sperm characteristics 

 

 When compared to a gravity separation technique (n=3), DGC showed higher (P 

< 0.05) TM (88.3 ± 1.5% versus 52.0 ± 14.8%), PM (83.3 ± 2.5% versus 49.3 ± 12.7%) 

and sperm recovery rate (29.5 ± 1.4% versus 22.4 ± 9.9%).  However, all velocities 

(VAP, VSL and VCL) remained similar (P > 0.05) for both the gravity separation 

technique (VAP: 180.0 ± 1.4 µm/sec, VSL: 173.7 ± 1.6 µm/sec, VCL: 211.4 ± 1.5 

µm/sec) and DGC (VAP: 178.6 ± 4.8 µm/sec, VSL: 170.8 ± 5.5 µm/sec, VCL: 220.1 ± 

6.4 µm/sec).  Based on these results, DGC was used throughout subsequent 

experiments. 
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Experiments 

 

Experiment 1: effect of egg yolk as a component of HEPES-TALP medium for 

sperm washing procedures during DGC on sperm recovery and in vitro sperm 

characteristics 

 

Recovery rate and motility parameters 

 

Egg yolk supplementation (4%, v/v) of the HEPES-TALP medium used to re-

suspend the sperm pellet after the first centrifugation step during DGC did not influence 

(P > 0.05) the sperm recovery rate.  However, sperm motility was enhanced (P < 0.05) 

for parameters of TM, PM, VAP, VSL, VCL, RAP (RAP) and SLOW velocity groups in 

the presence of egg yolk than in its absence.  The remaining parameters BCF, STR and 

MED velocity group were similar (P > 0.05) between the two media, while ALH was 

higher (P < 0.05) for HEPES-TALP medium without egg yolk (Table 3).   

 

 

 

Table 3. Effect of egg yolk in the HEPES-TALP medium during density gradient centrifugation on 
sperm recovery rate and in vitro sperm characteristics (mean ± SD, n=9). 

*TM = total motility (%); PM = progressive motility (%); VAP = average pathway velocity (µm/sec); VSL = straight-line 
velocity (µm/sec); VCL = curvilinear velocity (µm/sec); ALH = amplitude of lateral head displacement (µm); BCF = beat 
cross frequency (Hz); STR = straightness of sperm movement (%); RAP = rapid velocity group (%); MED= medium 
velocity group (%); SLOW = slow velocity group (%). Viability was assessed using the eosin-nigrosin stain. 
a,b

Values with different  superscripts within the same row are significantly different (P < 0.05). 

  

Sperm motility characteristics* HEPES-TALP medium 

 With egg yolk Without egg yolk  

Total Motility (%) 91.9 ± 3.4
a
  83.4 ± 4.7

b
 

Progressive Motility (%) 82.6 ± 5.9
a
  72.3 ± 6.4

b
 

VAP (µm/sec) 161.9 ± 19.6
a
  142.4 ± 16.3

b
 

VSL (µm/sec) 150.7 ± 21.4
a
  130.3 ± 17.4

b
 

VCL(µm/sec)  217.6 ± 13.2
a
 203.2 ± 9.5

b
 

ALH (µm)    6.1 ± 1.2
a
     6.5 ± 0.9

b
 

BCF (Hz) 37.2 ± 2.0  35.2 ± 2.7 

STR (%) 92.2 ± 2.2  90.5 ± 2.1 

RAP (%)  91.4 ± 3.7
a
   82.1 ± 4.7

b
 

MED (%)   0.8 ± 0.8    1.4 ± 0.5 

SLOW (%)    6.0 ± 2.3
a
     9.7 ± 4.3

b
 

Recovery rate (%) 22.4 ± 7.0  22.6 ± 6.1 

Viability (%)  93.7 ± 2.0
a
   89.5 ± 3.2

b
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Viability 

 

 Viability assessment using the eosin-nigrosin stain showed that inclusion of egg 

yolk in the HEPES-TALP medium improved (P < 0.05) the number of viable 

spermatozoa following DGC (Table 3). 

 

 

Experiment 2: effect of conventional straw freezing and directional freezing 

technology on in vitro characteristics of non-sorted and sorted spermatozoa after 

recryopreservation 

 

Motility parameters 

 

Overall, motility parameters were influenced by stage of processing (post-thaw, 

post-DGC, post-stain, post-sort, pre-freeze and post-second thaw) sperm type (non-

sorted [Control] and sorted [FSF]) and freeze method (P < 0.05).  The effect of sperm 

treatment on motility parameters at various stages of processing following the first 

thawing step and during flow cytometric sorting is displayed in Table 4.  Overall, 

compared with the non-sorted controls, the processing of frozen-thawed spermatozoa 

for sorting resulted in significantly improved motility parameters at the pre-freeze of 

recryopreservation (Table 4).   

 

 

Motility parameters following the first thawing step (first post-thaw) and DGC (post-

DGC) 

  

Post-thaw samples from the first cryopreservation retained high proportions of 

their pre-freeze TM and PM (87.9 ± 7.3% and 92.2 ± 5.9%, respectively).  The post-

DGC sperm characteristics TM, PM, VAP, VSL, VCL, STR, RAP and MED were higher 

(P < 0.05, Table 4) than after the first thaw. SLOW and ALH were lower following DGC 

compared to post-thaw.  
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5
 

Table 4. Motility parameters of spermatozoa after the first post-thaw, during and after flow cytometric sorting, and prior to recryopreservation 
(mean ± SD, n=18). 

*TM = total motility (%); PM = progressive motility (%); VAP = average pathway velocity (µm/sec); VSL = straight-line velocity (µm/sec); VCL = curvilinear velocity (µm/sec); ALH = 
amplitude of lateral head displacement (µm); BCF = beat cross frequency (Hz); STR = straightness of sperm movement (%); RAP = rapid velocity group (%); MED= medium velocity 
group (%); SLOW = slow velocity group (%). 
a-d

Values with different superscripts within the same row are significantly different (P < 0.05). 

 

Sperm motility 
characteristics* 

Processing Stage 

 First Post-thaw Post-DGC Post-Stain Post-Sort Pre-Freeze Sort  Pre-freeze Control 

TM (%) 66.7 ± 7.0
a
 89.0 ± 5.9

b
 91.0 ± 4.3

b
 92.3 ± 3.2

b
 83.9 ± 4.4

b
     54.1 ± 13.6

c
 

PM (%) 55.8 + 6.3
a
 83.0 ± 4.6

b
 79.4 ± 3.6

b
 90.0 ± 2.6

c
 78.8 ± 3.8

b
     48.4 ± 12.9

d
 

VAP (µm/sec) 150.0 ± 17.0
a
 196.0 ± 28.0

b
 189.1 ± 18.4

b
   183.7 ± 14.7

b,c
 173.0 ± 17.9

c
 149.0 ± 0.7

a
 

VSL (µm/sec) 138.0 ± 15.0
a
 187.0 ± 28.0

b
   176.4 ± 21.1

b,c
   177.3 ± 14.5

b,c
 166.2 ± 16.5

c
   141.5 ± 11.4

a
 

VCL (µm/sec) 197.0 ± 22.0
a
 222.0 ± 24.0

b
 222.5 ± 15.9

b
 238.8 ± 21.3

c
   211.1 ± 26.6

a,b
   182.0 ± 17.9

d
 

ALH (µm)     5.3 ± 0.7
a,c

   4.3 ± 0.5
b
       4.8 ± 0.6

a,b,c
   5.5 ± 0.7

c
     4.6 ± 0.7

a,b
     4.2 ± 0.9

b
 

BCF (Hz)   38.0 ± 1.2
a,c

 36.0 ± 4.6
a
 36.5 ± 3.3

a
 43.9 ± 1.3

b
 42.9 ± 1.4

b
   40.0 ± 2.7

c
 

STR (%) 91.0 ± 2.0
a
   95.0 ± 1.0

b,c
 92.2 ± 3.1

a
 96.3 ± 1.0

c
   95.8 ± 0.8

b,c
   94.0 ± 2.4

b
 

RAP (%) 64.7 ± 7.5
a
 88.4 ± 6.2

b
 89.7 ± 4.4

b
 92.0 ± 3.2

b
 82.7 ± 4.9

b
     52.5 ± 13.6

c
 

MED (%)   2.2 ± 1.1
a
   0.4 ± 0.7

b
     1.1 ± 0.9

b,c
   0.2 ± 0.4

b
     1.1 ± 0.9

b,c
     1.4 ± 0.5

c
 

SLOW (%) 21.5 ± 5.9
a
     3.8 ± 2.4

b,c
     5.0 ± 1.2

b,c
   1.0 ± 0.1

b
   7.0 ± 1.9

c
    20.2 ± 7.4

a
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Motility parameters following staining and sorting (post-stain and post-sort) 

 

With the exception of STR, the process of staining (incubation of spermatozoa at 35 °C 

with H33342) did not significantly affect motility parameters of spermatozoa selected by the 

DGC step (Table 4).  Following the sorting process, PM, VCL, BCF and STR were increased 

compared to those observed post-stain (P < 0.05). However, TM, VAP, VSL, ALH, RAP, MED 

and SLOW remained unchanged between the staining and sorting steps (P > 0.05).  As seen 

with samples after DGC, all post-sort motility parameters except ALH, were significantly 

improved compared to those observed at the first post-thaw step (Table 4).   

 

 

Motility parameters prior to recryopreservation (Pre-freeze) 

 

Pre-freeze characteristics of sorted spermatozoa remained similar to post-DGC, post-

stain and post-sort values for TM, PM, VAP, VSL and MED (P > 0.05). Sorted spermatozoa 

VCL and RAP decreased (P < 0.05) and SLOW increased (P < 0.05) at the pre-freeze stage 

compared to the post-sort stage.  Sorted spermatozoa ALH at pre-freeze was similar (P > 0.05) 

to first post-thaw, post-DGC and post-stain, but lower (P < 0.05) than post-sort. Sorted 

spermatozoa BCF at pre-freeze was higher (P < 0.05) than first post-thaw, post-DGC and post-

stain, and similar (P > 0.05) to post-sort.  Sorted spermatozoa STR at pre-freeze was higher (P 

> 0.05) than first post-thaw and post-stain, and similar (P > 0.05) to post-DGC and post-sort.  

Control samples at the pre-freeze step presented a decrease (P < 0.05) in the following 

characteristics when compared to the first post-thaw: TM, PM, VCL, ALH, RAP and MED.  At 

the pre-freeze step, the aforementioned parameters were similarly lower for Control compared 

to sorted spermatozoa (P < 0.05). However, STR of Control samples was higher (P < 0.05) at 

the pre-freeze compared to the first post-thaw step. The parameters VAP, VSL, BCF and SLOW 

remained unchanged for Control samples during the first post-thaw and the pre-freeze steps 

(Table 4). 
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Motility parameters at 0 h after the second thawing step (0 h post-thaw) 

  

The recryopreservation process had a negative impact (P < 0.05) on both Control and 

FSF spermatozoa for TM, PM, VAP, VSL, VCL and RAP.  At 0 h post-thaw, within Control and 

FSF treatments, samples frozen using the straw and DF methods were similar (P > 0.05) in 

VAP, VSL, VCL, ALH and MED.  For Control spermatozoa, TM, PM, BCF and RAP were also 

higher (P < 0.05) for DF than straw samples.  For FSF spermatozoa, TM, PM and RAP were 

higher (P < 0.05) for samples frozen using DF than straws, and BCF was similar for both freeze 

methods (P > 0.05).  When comparisons were made within each freezing method (DF or Straw), 

FSF spermatozoa exhibited higher TM, RAP and MED (P < 0.05), similar (P > 0.05) VAP, VSL, 

VCL, ALH and BCF, and lower (P < 0.05) SLOW than Control spermatozoa (Table 5; Fig. 3 to 

5).  However, compared to the straw method, DF samples of both sperm types displayed higher 

TM, PM, BCF and RAP, whereas VAP, VSL, VCL, ALH, STR and MED were similar across 

freezing methods, and SLOW was higher (P < 0.05) for the straw method (Table 5; Fig. 3 to 5).   

The two combinations of freezing method and sperm treatment that achieved the highest 

TM and PM at 0 h post-thaw were FSF spermatozoa frozen with the DF method (TM: 38.1 ± 

9.3% and PM: 34.3 ± 9.5%) and FSF spermatozoa frozen with the straw method (TM: 30.8 ± 

7.5% and PM: 27.2 ± 6.8%). 

 

 

 
Table 5. Sperm motility characteristics at 0 h post-thaw (mean ± SD, n=18). 

*ALH = amplitude of lateral head displacement (µm); BCF = beat cross frequency (Hz); STR = straightness of sperm movement (%); 
RAP = rapid velocity group (%); MED= medium velocity group (%); SLOW = slow velocity group (%). 
a-d

Values with different  superscripts within the same row are significantly different (P < 0.05).

Sperm motility characteristics* Sperm type and freezing method 

                           Control                                                                                                    Sort 

   Directional             Straw Directional          Straw 

ALH (µm) 4.2 ± 0.4 4.15 ± 0.4     4.3 ± 0.4 4.4 ± 0.5 

BCF (Hz) 38.2 ± 2.2
a
  36.7 ± 2.3

b
       38.4 ± 2.3

a,b
  37.0 ± 2.5

a,b
 

STR (%) 94.3 ± 1.7
a
  94.2 ± 1.8

a
      96.0 ± 1.2

b
 95.1 ± 1.0

b
 

RAP (%)   24.2 ± 10.3
a
    21.1 ± 10.6

b
      35.1 ± 9.6

c
 28.3 ± 7.0

d
 

MED (%)   1.7 ± 1.7
a
    1.5 ± 1.3

a
        2.9 ± 1.6

b
   2.6 ± 1.3

b
 

SLOW (%)    19.0 ± 14.3
a
  17.9 ± 21.2

a
    11.0 ± 5.7

b
            12.3 ± 9.5

b
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Fig. 3.  Total motility (top graph) and progressive motility (bottom graph) of frozen-thawed, non-sorted, frozen-thawed (Control) 
spermatozoa using straws and directional freezing (DF), and frozen-thawed, sorted, re-frozen-thawed (Sort) spermatozoa using 
straws and DF, before recryopreservation (pre-freeze) and during post-thaw incubation for 24 h at room temperature. 

a-d,1-3
Values 

with different letters are significantly different (P < 0.05) across incubation time, and values with different numbers are 
significantly different (P < 0.05) within the same time point. Data are means ± SD.  
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Fig. 4. Average pathway velocity (top graph) and straight line velocity (bottom graph) of frozen-thawed, non-sorted, frozen-
thawed (Control) spermatozoa using straws and directional freezing (DF), and frozen-thawed, sorted, re-frozen-thawed (Sort) 
spermatozoa using straws and DF, before recryopreservation (pre-freeze) and during post-thaw incubation for 24 h at room 
temperature.  

a-d,1-3
Values with different letters are significantly different (P < 0.05) across incubation time, and values with 

different numbers are significantly different (P < 0.05) within the same time point. Data are means ± SD. 
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Fig. 5. Curvilinear velocity (top graph) and  rapid velocity (bottom graph) of frozen-thawed, non-sorted, frozen-thawed (Control) 
spermatozoa using straws and directional freezing (DF), and frozen-thawed, sorted, re-frozen-thawed (Sort) spermatozoa using 
straws and DF, before recryopreservation (pre-freeze) and during post-thaw incubation for 24 h at room temperature. 

a-d,1-3
Values 

with different letters are significantly different (P < 0.05) across incubation time, and values with different numbers are 
significantly different (P < 0.05) within the same time point. Data are means ± SD. 
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Motility parameters at 6 h after the second thawing step (6 h post-thaw) 

 

 Within sperm type (Control or FSF), TM and PM were similar for DF and straw freezing 

methods (P > 0.05).  Within freezing method, FSF spermatozoa presented higher (P < 0.05) 

TM, PM RAP and MED than Control spermatozoa, and similar VAP, VSL, VCL, ALH, BCF, 

STR and SLOW (P > 0.05). Regardless of the sperm type, DF samples displayed higher (P < 

0.05) VAP, VSL and BCF than straw samples, and VCL, ALH, STR, RAP, MED and SLOW  

for both freeze methods were similar (P > 0.05) (Table 6; Fig. 3 to 5). 

As observed at 0 h post-thaw, the two combinations of freezing method and sperm 

type that achieved the highest TM and PM at 6 h post-thaw were FSF spermatozoa frozen 

with the DF method (TM: 39.6 ± 12.2% and PM: 35.2 ± 10.6%) and FSF spermatozoa frozen 

with the straw method (TM: 32.2 ± 15.8% and PM: 28.1 ± 15.0%). 

 
 
 
Table 6. Sperm motility characteristics at 6 h post-thaw (mean ± SD, n=18). 

*ALH = amplitude of lateral head displacement (µm); BCF = beat cross frequency (Hz); STR = straightness of sperm movement 
(%); RAP = rapid velocity group (%); MED= medium velocity group (%); SLOW = slow velocity group (%). 
a,b 

Values with different superscripts within the same row are significantly different (P < 0.05). 

 

 

 

Sperm motility characteristics* Sperm type and freezing method 

                           Control Sort 

 Directional Straw Directional Straw 

ALH (µm)    4.7 ± 0.6    5.0 ± 0.9  5.8 ± 0.5   5.1 ± 0.8 

BCF (Hz)   35.3 ± 2.9
a
   34.1 ± 3.6

a
   36.9 ± 3.4

b
   33.3 ± 3.4

b
 

STR (%)  93.7 ± 2.1  93.3 ± 2.1  94.5 ± 1.5  93.6 ± 2.1 

RAP (%)     26.1 ± 10.0
a
     22.5 ± 11.8

a
      36.6 ± 11.2

b
     29.8 ± 15.6

a,b
 

MED (%)     1.4 ± 1.3
a
     1.3 ± 1.2

a
      2.9 ± 2.3

b
     2.4 ± 1.9

b
 

SLOW (%)  11.7 ± 1.3    14.1 ± 11.3     9.3 ± 6.8    9.7 ± 5.4 
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Motility parameters at 12 h after the second thawing step (12 h post-thaw) 

 

Within sperm type (Control or FSF), all parameters (TM, PM, VAP, VSL, VCL, ALH, 

BCF, STR, RAP, MED and SLOW) were similar (P > 0.05) for DF and straw freezing methods.   

Within freeze method, Control and FSF spermatozoa presented similar (P > 0.05) values for 

all motility parameters: TM, PM, VAP, VSL, VCL, ALH, BCF, STR, RAP, MED and SLOW.  

Regardless of the freezing method, FSF spermatozoa presented higher (P < 0.05) TM, PM, 

VAP, VSL, VCL, BCF, STR and RAP than Control spermatozoa, and similar ALH, MED and 

SLOW (P > 0.05).  For both sperm types, DF samples displayed higher TM, PM, VAP, VSL, 

VCL, BCF, STR and RAP (P < 0.05) than straw samples, and MED and SLOW for both freeze 

methods were similar (P > 0.05).  Control and sorted samples displayed higher ALH after 

freezing with the straw than the DF method (P < 0.05; Table 7, Fig. 3 to 5).  

As observed at 0 h and 6 h post-thaw, the two combinations of freezing method and 

sperm type that achieved the highest TM and PM at 12 h post-thaw were FSF spermatozoa 

frozen with the DF method (TM: 35.4 ± 7.7% and PM: 32.1 ± 7.5%) and FSF spermatozoa 

frozen with the straw method (TM: 28.5 ± 11.6% and PM: 24.5 ± 10.9%).    

 
 
 
 Table 7. Sperm motility characteristics at 12 h post-thaw (mean ± SD, n=18). 

*ALH = amplitude of lateral head displacement (µm); BCF = beat cross frequency (Hz); STR = straightness of sperm movement 
(%); RAP = rapid velocity group (%); MED= medium velocity group (%); SLOW = slow velocity group (%). 
a-e

Values with different superscripts within the same row are significantly different (P < 0.05). 

 

 

 

 

 

 

 

 

 

 

Sperm motility characteristics* Sperm type and freezing method 

 Control    Sort 

 Directional Straw Directional Straw 

ALH (µm)   5.1 ± 0.7
a
   5.3 ± 0.6

b
 4.5 ± 0.5

a
   5.4 ± 1.0

b
 

BCF (Hz) 33.5 ± 3.1
a
 30.4 ± 3.7

b
 36.2 ± 2.5

c
 31.4 ± 3.9

d
 

STR (%) 92.5 ± 1.9
a
 91.6 ± 2.6

b
 93.8 ± 1.5

c
 92.3 ± 2.7

a,d
 

RAP (%) 22.6 ± 9.4
a
 15.7 ± 9.2

b
 34.1 ± 7.8

c
   26.2 ± 11.7

a,d
 

MED (%)  1.1 ± 0.8  1.1 ± 0.9 1.4 ± 0.8  2.1 ± 2.5 

SLOW (%)  9.4 ± 5.8  12.2 ± 18.0 9.9 ± 0.8 10.0 ± 9.8 
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Motility parameters at 18 h after the second thawing step (18 h post-thaw) 

 

Within sperm type (Control or FSF), TM, PM, VAP, VSL, VCL, ALH, BCF, RAP, MED 

and SLOW were similar (P > 0.05) for DF and straw freezing methods, and STR was higher 

(P < 0.05) for DF than the straw method.  Within freeze method, Control and FSF 

spermatozoa presented similar (P > 0.05) values for TM, PM, VAP, VSL, VCL, ALH, BCF, 

RAP, MED and SLOW.  However, STR was higher for FSF than Control spermatozoa within 

freeze method.  Regardless of the freezing method, FSF spermatozoa presented higher (P < 

0.05) TM, PM, VAP, VSL, BCF, STR, RAP and MED than Control spermatozoa, and similar 

VCL, ALH and SLOW (P > 0.05).  For both sperm types, DF samples displayed higher TM, 

PM, VAP, VSL, VCL, BCF, STR and RAP (P < 0.05) than straw samples, and MED and 

SLOW for both freeze methods were similar (P > 0.05). Control and sorted samples displayed 

higher ALH after freezing with the straw method than the DF method (P < 0.05; Table 8, Fig. 3 

to 5). 

As observed at 0 h, 6 h and 12 h post-thaw, the two combinations of freezing method 

and sperm type that achieved the highest TM and PM at 18 h post-thaw were FSF 

spermatozoa frozen with the DF method (TM: 32.8 ± 9.3% and PM: 28.9 ± 9.0%) and FSF 

spermatozoa frozen with the straw method (TM: 23.9 ± 8.6% and PM: 19.4 ± 7.7%). 

 

 

 

Table 8. Sperm motility characteristics at 18 h post-thaw (mean ± SD, n=18). 

*ALH = amplitude of lateral head displacement (µm); BCF = beat cross frequency (Hz); STR = straightness of sperm movement 
(%); RAP = rapid velocity group (%); MED= medium velocity group (%); SLOW = slow velocity group (%). 
a-d

Values with different superscripts within the same row are significantly different (P < 0.05). 

 

 

 

 

 

 

Sperm motility characteristics* Sperm type and freeze method 

 Control Sort 

 Directional Straw Directional Straw 

ALH (µm) 5.23 ± 0.7
a
   5.8 ± 0.5

b
   5.2 ± 0.6

a
   5.7 ± 0.7

b
 

BCF (Hz) 32.1 ± 2.8
a
 27.1 ± 3.0

b
 34.7 ± 3.5

c
  28.3 ± 3.6

b,d
 

STR (%) 91.4 ± 2.0
a
 88.9 ± 2.2

b
 92.9 ± 1.5

c
 90.6 ± 2.4

d
 

RAP (%) 19.1 ± 7.1
a
 12.0 ± 5.8

b
 30.8 ± 9.0

c
  21.1 ± 8.6

d
 

MED (%)   1.0 ± 1.0
a
   1.3 ± 0.6

a
   2.1 ± 1.6

b
   2.8 ± 1.8

b
 

SLOW (%)  17.1 ± 12.2  17.3 ± 20.9  11.8 ± 10.0  15.3 ± 17.8 
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Motility parameters at 24 h after the second freezing step (24 h post-thaw) 

 

Within sperm type (Control or FSF), TM, VSL, VCL, BCF, STR, MED and SLOW were 

similar (P > 0.05) between DF and straw freezing methods, PM, VAP and RAP were higher (P 

< 0.05) for DF than the straw method. Also within sperm type, ALH was higher (P < 0.05) for 

straw than DF method within Control spermatozoa but within FSF spermatozoa, ALH was 

similar (P > 0.05) for DF and Straw methods.  Within freeze method, Control and FSF 

spermatozoa presented similar (P > 0.05) values for TM, VAP, VSL, VCL, ALH, BCF, STR 

and SLOW.  However, PM, RAP and MED were higher (P < 0.05) for FSF than Control 

spermatozoa within freeze method, but MED was higher only within the straw method.  

Regardless of the freezing method, FSF spermatozoa presented higher (P < 0.05) TM, PM, 

VSL, BCF, STR, RAP, MED and SLOW  than Control spermatozoa, and similar VAP, VCL,  

and ALH (P > 0.05).  Regardless of sperm type, DF samples displayed higher TM, PM, VAP, 

VSL, VCL, BCF, STR and RAP (P < 0.05) than straw samples, MED and SLOW for both 

freeze methods were similar (P > 0.05), and ALH was higher for the straw method than the DF 

method (P < 0.05); Table 9; Fig. 3 to 5).   

As observed as 0 h, 6 h, 12 h and 18 h post-thaw, the two combinations of freezing 

method and sperm type that achieved the highest TM and PM at 24 h were FSF spermatozoa 

frozen with the DF method (TM: 35.4 ± 7.3% and PM: 30.2 ± 6.7%) and FSF spermatozoa 

frozen with the straw method (TM: 22.5 ± 11.0% and PM: 17.3 ± 10.4%).    

 
 

 

Table 9. Sperm motility characteristics at 24 h post-thaw (mean ± SD, n=18). 

*ALH = amplitude of lateral head displacement (µm); BCF = beat cross frequency (Hz); STR = straightness of sperm movement 
(%); RAP = rapid velocity group (%); MED= medium velocity group (%); SLOW = slow velocity group (%). 
a-d

Values with different superscripts within the same row are significantly different (P < 0.05). 

 

 

 

Sperm motility characteristics* Sperm type and freezing method 

 Control Sort 

 Directional Straw Directional Straw 

ALH (µm)  5. 2 ± 0.8
a
   5.6 ± 0.8

b
  5.3 ± 0.6

a
   5.7 ± 0.8

b
 

BCF (Hz) 29.7 ± 3.4
a
 24.6 ± 2.9

b
 32.1 ± 4.0

a
 26.6 ± 3.9

b
 

STR (%) 91.2 ± 1.3
a
 86.7 ± 3.4

b
 92.3 ± 1.9

c
 88.9 ± 2.8

d
 

RAP (%) 20.1 ± 8.8
a
 11.1 ± 6.7

b
 33.0 ± 7.0

c
   19.4 ± 10.7

d
 

MED (%)   1.1 ± 1.1
a
   1.1 ± 1.1

a
   3.1 ± 2.6

b
   3.1 ± 1.8

b
 

SLOW (%)   8.7 ± 6.9
a
   9.3 ± 7.4

a
 13.9 ± 9.6

b
   18.1 ± 16.3

b
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Longevity of sperm motility after the second thawing within each treatment method 

  

 During the 24 h post-thaw incubation at room temperature, TM remained unchanged 

(P > 0.05) for Control and FSF spermatozoa frozen with the DF method (Fig. 3).  Control 

spermatozoa frozen with the straw method showed a decrease (P < 0.05) in TM after 12 h of 

incubation.  The FSF spermatozoa frozen with the straw method also showed a decrease (P < 

0.05) in TM, however, the rate of decrease was slower. 

 A constant (P > 0.05) PM was observed for FSF spermatozoa frozen with the DF 

method during the 24 h incubation (Fig. 3).  For Control and FSF spermatozoa frozen with the 

straw method, PM remained unchanged (P > 0.05) during first 6 h post-thaw and the first 

decrease (P < 0.05) was observed at 12 h post-thaw followed by a constant decrease (P < 

0.05) until 24 h post-thaw.  For Control spermatozoa frozen with the DF method, PM remained 

unchanged (P > 0.05) during the first 12 h, decreased (P < 0.05) at 18 h and increased (P < 

0.05) at 24 h. 

 Average pathway velocity remained unchanged (P > 0.05) for FSF spermatozoa 

frozen with the DF method until 18 h post-thaw, presenting a decrease (P < 0.05) in VAP only 

at 24 h post-thaw (Fig. 4).  For FSF spermatozoa frozen with the straw method, the constant 

(P > 0.05) decrease (P < 0.05) in VAP was first observed at 12 h post-thaw.  Control 

spermatozoa frozen with both straw and DF methods showed a decrease (P < 0.05) in VAP at 

12 h and another decrease at 18 h, which remained unchanged (P > 0.05) at 24 h.  

 Straight line velocity decreased after 18 h and again at 24 h of incubation for FSF 

spermatozoa frozen with the DF method (Fig. 4).  For Control spermatozoa frozen with the DF 

method, and Control and FSF spermatozoa frozen with the straw method, the decreases in 

VSL occurred at 12 h and again at 24 h. 

 Both sperm types (Control and FSF) frozen with the DF method showed similar (P > 

0.05) VCL across incubation periods (Fig. 5).  Both sperm types (Control and FSF) frozen with 

the straw method showed a decrease (P < 0.05) in VCL at 24 h post-thaw.  

 Rapid velocity was similar (P > 0.05) throughout the incubation period for Control and 

FSF spermatozoa frozen with the DF method (Fig. 5).  Control spermatozoa frozen with the 

straw method showed a decrease (P < 0.05) in RAP at 12 h post-thaw, whereas the same 

sperm type frozen with the DF method showed a decrease (P < 0.05) in RAP at 18 h post-

thaw.  

 Overall, FSF spermatozoa frozen with the DF method maintained higher (P < 0.05) 

motility parameters across the 24 h post-thaw period than Control spermatozoa frozen with 
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the DF method and both Control and FSF spermatozoa frozen with the straw method (Fig 1 to 

3).  

 

 

Male effect on total and progressive motility  

 

While there were no differences in pre-freeze TM and PM among males, significant 

differences were observed during incubation period post-thaw (Table 10).  Overall, Male 4 

displayed superior TM and PM than other males throughout the 24 h incubation period post-

thaw (P < 0.05).  

 

 

 

Table 10. Male effect on motility parameters during the 24 h incubation period after the second thawing 
step (mean ± SD, n=18). 

Time post-thaw Motility parameter Male 

  2 3 4 

0 h TM (%)         27.2 ± 9.6
a
 26.5 ± 13.2

a
 34.6 ± 8.4

b
 

PM (%)         23.8 ± 8.7
a
 23.1 ± 12.3

a
 31.3 ± 8.4

b
 

6 h TM (%) 28.2 ± 12.2
a
 26.3 ± 12.2

a
   38.5 ± 14.2

b
 

PM (%) 25.5 ± 10.8
a
 22.3 ± 10.2

a
  35.2. ± 13.6

b
 

12 h TM (%)         25.0 ± 8.7
a
 22.0 ± 11.9

a
   31.3 ± 12.3

b
 

PM (%)         22.3 ± 8.1
a
 18.5 ± 11.4

a
   28.4 ± 11.6

b
 

18 h TM (%) 21.4 ± 10.1
a
         18.5 ± 8.2

a
   27.5 ± 11.2

b
 

PM (%)         18.5 ± 9.4
a
         15.0 ± 7.5

a
   23.3 ± 10.4

b
 

24 h TM (%)   23.1 ± 11.0
a,b

 19.8 ± 12.9
a
   25.5 ± 11.5

b
 

PM (%)   19.7 ± 10.2
a,b

 15.3 ± 11.4
a
   21.1 ± 11.0

b
 

*TM = total motility (%); PM = progressive motility (%) 
a,b

Values with different superscripts within the same column are significantly different (P < 0.05). 

 

 

 

Viability and acrosome integrity 

 

Overall, viability and acrosome integrity were influenced by sperm type and stage of 

processing (P < 0.05, Table 11). The effect of sperm treatment on viability and acrosome 

integrity at various stages of processing following the first cryopreservation is displayed in 

Table 11. The effects of sperm treatment and freeze method on viability and acrosome 

integrity during incubation following the second thawing are displayed in Fig. 6. 
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4
7
 

Table 11. Viability and acrosome integrity of spermatozoa after the first post-thaw, during and after flow cytometric sorting, and prior to 
recryopreservation (mean ± SD, n = 18). 

a-e
 Values with different superscripts within the same row are significantly different (P < 0.05). 

 

 

 

 

Sperm characteristics Stage of processing 

 First post-thaw Post-DGC Post-stain Post-sort Pre-freeze Sort Pre-freeze Control  

Eosin-nigrosin       

      Viability (%)  63.4 ± 8.4
a
 81.2 ± 7.7

b,c
 79.4 ± 7.5

b,c
 92.7 ± 3.2

d
 84.0 ± 4.9

b
 54.8 ± 10.7

e
 

PI/FITC-PNA       

    Viable, intact acrosome (%)  46.3 ± 9.1
a
 87.3 ± 6.2

b
 86.3 ± 5.8

b
 88.3 ± 5.9

b
 80.2 ± 5.2

b
 43.2 ± 8.7

a
 

Viable, damaged/reacted         
acrosome (%) 

0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.3 0.1 ± 0.3 

     Non-viable, intact acrosome (%) 50.1 ± 9.2
a
 11.0 ± 6.3

b
 13.2 ± 6.1

b,c
 10.0 ± 5.4

b
 18.9 ± 4.8

c
 51.4 ± 7.6

a
 

Non-viable, damaged/reacted 
acrosome (%) 

3.7 ± 1.6 1.5 ± 0.5 0.4 ± 0.7 1.3 ± 0.9 1.5 ± 1.3 5.0 ± 2.9 
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Fig. 6.Top graph: viable spermatozoa assessed with eosin-nigrosin stain, bottom graph: viable spermatozoa with intact acrosome 
stained with PI/FITC-PNA fluorescent stain before recryopreservation and during post-thaw incubation for 24 h at room 
temperature. 

a-c
Values with different numbers in superscript row are significantly different (P < 0.05) across incubation time, and 

values with different letters in superscript are significantly different (P < 0.05) within the same time point. Data are means ± SD.    
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The percentage of live spermatozoa determined using the eosin-nigrosin stain was 

correlated (R2=0.79, P < 0.001) with the percentage of live spermatozoa using PI (in the 

PI/FITC-PNA staining method).  Photomicrographs of spermatozoa after PI/FITC-PNA 

staining are displayed in Fig. 7. 

  

 

 

 

Fig. 7. Photomicrographs of spermatozoa after staining with PI/FITC-PNA (X 400 original magnification). Top picture: 
(a) two viable spermatozoa with an intact acrosome (no fluorescence) and (b) one non-viable spermatozoon with a 
damage/reacted acrosome (red and green fluorescence), bottom picture: (c) two non-viable spermatozoa with an intact 
acrosome (red fluorescence), one viable spermatozoon with a damaged/reacted acrosome (green fluorescence).
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Viability and acrosome integrity following the first thawing step and density gradient 

centrifugation 

 

The percentage of viable spermatozoa using eosin-nigrosin (percent viable) and 

PI/FITC-PNA (percent viable and acrosome intact) was higher (P < 0.05) after DGC 

than after the first post-thaw.  The percentage of non-viable spermatozoa with an intact 

acrosome was higher (P < 0.05) at the first post-thaw than at the post-DGC step.  The 

proportions of viable and non-viable spermatozoa with a reacted/damaged acrosome 

were similar at the post-thaw and post-DGC steps (Table 11).  

 

 

Viability parameters and acrosome integrity following staining and sorting 

 

 Sperm viability and acrosome integrity remained unchanged (P < 0.05) between 

the DGC and staining steps.  Flow cytometric sorting increased the proportion of viable 

spermatozoa (P < 0.05) when samples were evaluated with eosin-nigrosin.  However, 

when PI/FITC-PNA was used, the post-sort viability and acrosome integrity results were 

similar to those observed at the post-stain step (P > 0.05, Table 11). 

 

 

Viability and acrosome integrity prior to recryopreservation 

 

Before recryopreservation, Control spermatozoa presented a decrease (P < 

0.05) in viability (assessed with eosin-nigrosin) when compared to the post-sort step.  

When assessed using PI/FITC-PNA, Control spermatozoa showed unchanged (P > 

0.05) non-viable and viable spermatozoa with or without damaged/reacted acrosome 

between the post-sort and pre-freeze steps.  

Viability evaluated using eosin-nigrosin was higher for FSF than Control pre-

freeze (P < 0.05).  The percentage of viable spermatozoa with an intact acrosomes 

assessed by Pi/FITC-PNA was higher (P < 0.05) for FSF than Control spermatozoa 

prior to re-cryopreservation.  Non-viable spermatozoa with an intact acrosome were 

higher (P < 0.05) for Control than FSF pre-freeze (Table 11).  
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Longevity of sperm viability and acrosome integrity after the second thawing 

 

A detrimental effect (P < 0.05) of the second freeze-thaw process on sperm 

viability and acrosome integrity was observed after evaluation using eosin-nigrosin and 

PI/FITC-PNA staining, for Control and FSF spermatozoa.  The reduction (P < 0.05) in 

viability between the pre-freeze and 0 h post-thaw step was observed for both sperm 

types (Control and FSF) and freezing methods (straw and DF).  FSF spermatozoa 

showed a constantly higher (P < 0.05) viability than Control spermatozoa across 

incubation period.  The percentage of live spermatozoa with a damaged or reacted 

acrosome was less than 2.1 % across all treatments.   

 

 

Male effect on viability and acrosome integrity 

 

 The percentage of viable, acrosome intact spermatozoa was higher (P < 0.05) 

for Male 4 than Males 2 and 3 at all post-thaw time points (data not shown). 

 

 

Sperm DNA denaturation 

 

Sperm DNA denaturation following the first thawing step and density gradient 

centrifugation 

 

Meanαt and COMPαt of sperm samples were similar (P > 0.05) between first 

post-thaw and post-DGC, whereas SDαt was lower for spermatozoa at post-DGC than 

at first post-thaw (Fig. 8). 
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Fig. 8. Top graph: Meanαt, middle graph: SDαt and bottom graph: COMPαt of sperm samples at first thawing, during 
sorting process and prior to recryopreservation of sorted and control spermatozoa.  Spermatozoa from bilayer samples 
are displayed at the post-DGC time point.  

a,b,1,2
Values with different letters are significantly different (P < 0.05) across 

incubation time, and values with different numbers are significantly different (P < 0.05) within the same time point.  Data 
are means ± SD. 
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Sperm DNA denaturation of bilayer spermatozoa 

  

Spermatozoa from the Bilayer samples (n = 5) showed similar (P > 0.05) Meanαt 

(Power = 0.069) and COMPαt (Power = 0.163) to first post-thaw and post-DGC 

spermatozoa.  Spermatozoa from the bilayer presented higher (P < 0.05) SDαt (Power = 

1.000) than post-DGC spermatozoa and similar (P > 0.05) to first post-thaw 

spermatozoa. 

 

 

Sperm DNA denaturation following staining and sorting 

  

 Sperm samples presented an increase (P < 0.05) in Meanαt and COMPαt for 

post-stain compared to post-DGC, whereas SDαt remained similar (P > 0.05, Fig. 8).  

Post-sort sperm samples exhibited higher (P < 0.05) COMPαt and similar (P > 0.05) 

Meanαt and SDαt compared to post-stain sperm samples (Fig. 8).  

 

 

Sperm DNA denaturation prior to recryopreservation 

 

 Meanαt was similar (P > 0.05) for both sorted and Control spermatozoa and SDαt 

was higher (P < 0.05) for Control than sorted samples (Fig. 8). Sorted spermatozoa 

exhibited higher (P < 0.05) COMPαt than Control spermatozoa (Fig. 8). 

 

 

Sperm DNA denaturation at 0 h post-thaw 

 

 Second cryopreservation decreased (P < 0.05) Meanαt at 0 h post-thaw 

compared to pre-freeze stage for FSF spermatozoa frozen with straw and DF methods 

and Control spermatozoa frozen by the straw method, while Control spermatozoa 

frozen with the DF method presented similar (P > 0.05) Meanαt than Control 

spermatozoa at the pre-freeze stage (Fig. 9).  Regardless of the freezing method, 

COMPαt of FSF and Control spermatozoa was lower compared to the pre-freeze stage 
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(Fig. 9).  Control spermatozoa frozen with the straw and DF methods at 0 h post-thaw 

presented lower (P < 0.05) SDαt compared to Control spermatozoa at the pre-freeze 

stage, while FSF spermatozoa frozen by the straw and DF methods exhibited similar (P 

> 0.95) SDαt for pre-freeze and 0 h post-thaw (Fig 9).   

 Meanαt was similar (P > 0.05) for both sperm type (Control and FSF) frozen with 

both freezing methods (DF and straw).  Control spermatozoa frozen with the DF and 

straw method exhibited higher (P < 0.05) SDαt than FSF frozen with the DF and straw 

method.  Within sperm type, COMPαt was similar (P > 0.05) for DF and straw freezing 

methods. Regardless of the freezing method, COMPαt was higher (P < 0.05) for FSF 

spermatozoa than Control spermatozoa. 

 

 

Sperm DNA denaturation at 6 h post-thaw 

 

 Within sperm type (Control and FSF), Meanαt, SDαt and COMPαt were similar (P 

> 0.05) for both freezing methods, and FSF spermatozoa showed higher (P < 0.05) 

Meanαt, SDαt and COMPαt than Control spermatozoa (Fig. 9).  

  

 

Sperm DNA denaturation at 12 h post-thaw 

 

 As observed at 6 h post-thaw, within sperm type, Meanαt, SDαt and COMPαt were 

similar (P > 0.05) for both freezing methods, and FSF spermatozoa showed higher (P < 

0.05) Meanαt, SDαt and COMPαt than Control spermatozoa (Fig. 9). 

 

 

Sperm DNA denaturation at 18 h post-thaw 

 

As observed at 6 h and 12 h post-thaw, within sperm type, Meanαt, SDαt and 

COMPαt were similar (P > 0.05) for both freezing methods and FSF spermatozoa 

showed higher (P < 0.05) Meanαt, SDαt and COMPαt than Control spermatozoa (Fig. 9). 
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Fig.9. Meanαt (top graph), SDαt (middle graph), and  COMPαt (bottom graph) of frozen-thawed, non-sorted, frozen-thawed 
(Control) spermatozoa using straws and directional freezing (DF), and frozen-thawed, sorted, re-frozen-thawed (Sort) 
spermatozoa using straws and DF, before recryopreservation (pre-freeze) and during post-thaw incubation for 24 h at 
room temperature.  

a,b,1,2
Values with different letters are significantly different (P < 0.05) across incubation time, and 

values with different numbers are significantly different (P < 0.05) within the same time point.  Data are means ± SD. 
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Sperm DNA denaturation at 24 h post-thaw 

 

As observed at 6 h, 12 h and 18 h post-thaw, within sperm type, Meanαt, SDαt 

and COMPαt were similar (P > 0.05) for both freezing methods, and FSF spermatozoa 

showed higher (P < 0.05) Meanαt, SDαt and COMPαt than Control spermatozoa (Fig. 9). 

 

 

Overall changes in sperm DNA denaturation after the second thawing  

 

Meanαt was similar (P > 0.05) at 0 h post-thaw for Control and FSF spermatozoa 

frozen with DF and straw methods. However after 6 h of incubation, Meanαt remained 

similar (P > 0.05) for Control spermatozoa across all time points (Fig. 9).  

Within FSF spermatozoa, Meanαt decreased (P < 0.05) between 0 h and 6 h 

post-thaw for the straw method and remained similar (P > 0.05) from 6 h until the end of 

the 24 h incubation period. Meanαt was similar (P > 0.05) for FSF frozen with the DF 

method between 0 h and 6 h post-thaw. There was a decrease (P < 0.05) in Meanαt at 

12 h post-thaw and thereafter remained similar (P > 0.05) across the remaining 

incubation period (Fig. 9).  

Overall, during the 24 h post-thaw incubation, FSF spermatozoa frozen with the 

DF and straw methods displayed consistently lower (P < 0.05) SDαt and COMPαt than 

Control spermatozoa frozen with DF and straw methods (Fig. 9).   

 

 

Male effect on sperm DNA denaturation  

 

No differences in Meanαt, SDαt and COMPαt (P > 0.05) were observed among 

males during processing of Control and FSF samples prior to re-cryopreservation (data 

not shown).  After the second thawing, no differences in Meanαt, SDαt and COMPαt (P > 

0.05) were observed among males at 0 h post-thaw. However at 6 h, 12 h and 24 h post 

thaw, COMPαt was higher (P < 0.05) for male 4 than males 2 and 3, whereas Meanαt 

and SDαt remained similar (P > 0.05). At 18 h post-thaw, male 4 showed lower Meanαt 
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than male 2 and similar Meanαt to male 3, also male 4 showed higher COMPαt than 

males 2 and 3 (data not shown). 
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DISCUSSION AND SUMMARY 

  

  

 Sex pre-determination has been established in breeding programs of captive 

populations of bottlenose dolphins using fresh sperm sorting, sperm cryopreservation 

and AI technologies [6,19].  Integration of sperm sorting using previously cryopreserved 

semen into such bottlenose dolphin ART programs would allow sorting of banked 

gametes from deceased animals, or from animals housed more than 12 h of 

transportation time away from a semen sorting facility [7].  The present study provides 

new information on the in vitro quality of sorted frozen-thawed bottlenose dolphin 

spermatozoa undergoing a second cryopreservation step (FSF), as well as the 

efficiency of the entire procedure. An optimized sperm recovery methodology using 

density gradient centrifugation was developed herein, and was combined with 

directional solidification.  The results demonstrated that it is feasible to recryopreserve 

and thaw previously frozen-thawed then sorted bottlenose dolphin spermatozoa to 

obtain good in vitro sperm quality for up to 24 h post-second thaw.   

The sorting of cryopreserved spermatozoa can only effectively be performed 

once the frozen-thawed sample is processed by DGC for removal of cryodiluent 

components and non-viable spermatozoa.  This procedure relies on gradient medium 

properties, like the one used in this study, Percoll™ Plus (colloidal silica covalently 

coated with silane, iso-osmotic, pH-neutral) which enables the construction of varying 

layers of density dependent gradients [63].  These density bands will resist penetration 

by organic matter or cells that are less dense [64,65].  Thus, by formation of multiple 

density layers, cells and organic particles can be isolated based on their physical 

properties.  For frozen-thawed semen, a 45% band is layered over a 90% density 

gradient medium forming two distinct concentration bands.  As the frozen-thawed sperm 

suspension is layered over the 45% band and centrifuged, four different layers result.  

Glycerol, egg yolk and seminal fluid remain in the original sample layer while the dead 

and non-viable spermatozoa form a band between the 45% and 90% density layers 

[63,66,67].  Cryopreservation causes alteration in the sperm membrane stability, and it 

has been hypothesized that non-viable spermatozoa manifest a less dense state than 

viable spermatozoa caused by the contraction and swelling associated with addition 
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and removal of cryoprotectants [68,69].  Therefore, only viable and motile spermatozoa 

with a dense and homogenous nucleus [64] penetrate the 90% density gradient 

medium, forming a pellet on the bottom of the tube. 

 The volume of frozen-thawed semen placed on two-step discontinuous density 

gradients is dependent on the species (sperm head morphology), sperm concentration 

of the sample and the application of recovered spermatozoa.  Cheng and Bongso [70] 

placed 3 mL of fresh human semen over a three layer Puresperm® (Nidacon, Göteborg, 

Sweden) column and increased the sperm concentration, total sperm motility, 

percentage viability and percentage normal sperm morphology of the final sperm 

solution compared to the placement of 0.75 mL of semen.  Although there is more 

probability of rafting due to excessive numbers of debris and spermatozoa when a 

larger volume of semen is placed over a density gradient medium [71], pilot trial 1 

provided similar results to those observed by Cheng and Bongso [70].  In the present 

study, it was determined that the most efficient separation technique involved using the 

largest volume of 4 mL frozen-thawed bottlenose dolphin semen (containing 800 x 106 

spermatozoa) on 4.5 mL of density gradient medium  (2 mL of 45% and 2.5 mL of 90%).  

Due to differences in sperm morphology and gradient volumes it is difficult to make 

direct comparisons to results from other species, but the observed recovery rate in this 

study is comparable to the recovery rate observed after DGC of 2 mL of frozen-thawed 

bull semen [72]. 

The directional solidification freezing method can freeze up to five glass tubes, 

each holding approximately 2 mL or 8.5 mL of semen, in one freezing cycle.  The ability 

of the directional freezer to freeze large volumes of bottlenose dolphin semen [2,6] 

makes it the perfect freezing method for processing 4 mL of semen with the optimized 

DGC method.  When compared to the DF method, cryopreserving dolphin semen with 

0.25 mL or 0.5 mL straws would add increased labor required for loading and thawing of 

individual straws.  In addition to the increase in labor required for the use of straws with 

the optimized DGC method, the decrease in quality of thawed spermatozoa using this 

freezing method [6] may change the dynamics of the DGC system.  Thus, if DGC using 

straws was attempted, optimization trials would have to be conducted to determine the 

effect of the decreased semen quality on the efficiency of this system. 
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 Although the recovery rate of spermatozoa at the DGC step was significantly 

greater for 50 mL tubes than 15 mL tubes, additional replicates of this trial (Pilot trial 2) 

were not performed because manipulation of 50 mL tubes was found to be 

inappropriate for the methodologies of this study.  This was due to the sperm pellet at 

the bottom of the density gradient layers being presented with a larger surface area 

from which spermatozoa could swim out of the initial pellet. The recovery of a larger 

pellet volume was therefore required to ensure an equal or greater recovery rate to that 

achieved using the 15 mL tubes. The increased pellet volume using 50 mL tubes would 

subsequently translate into an insufficient pre-stain sperm concentration, and staining 

with H33342 could not be accomplished at the minimum concentration for optimum 

staining for sorting of 200 x 106 spermatozoa/mL [6].  Thus, in an effort to maintain 

adequate sperm concentration for H33342 staining, 15 mL tubes were used throughout 

this study. 

 For pilot trial 3 of this study, a post-thaw sperm processing technique that was 

originally designed as a swim-up method was examined.  The swim-up method typically 

includes a centrifugation step for the removal of cryodiluent components followed by 

incubation (> 30 °C) of the sperm pellet beneath a layer of medium.  Motile 

spermatozoa are then isolated from the upper layers after the incubation period [65].  In 

contrast, dolphin spermatozoa herein were washed, resuspended in staining medium 

then held at room temperature to determine the effectiveness of a gravity separation 

step.  It was theorized that non-viable spermatozoa would remain in the bottom part of 

the tube and motile spermatozoa would be present in the upper layer.  As in the swim 

up technique, spermatozoa from the upper layer would be selected for transfer to a new 

tube.  However in the modification used in the present study, the selection would be 

without increasing the temperature of the sperm sample before the staining process.  

The results from this trial showed that higher motility of spermatozoa from the upper 

layer was not observed.  Swim-up techniques have been proven to provide high quality 

sperm samples in humans [64] and non-human primates [8].  Direct comparisons of the 

DGC and swim-up methods demonstrated that DGC delivers higher numbers of motile 

spermatozoa than the swim-up technique in different species (humans [65], cattle [67] 

and sheep [9,69].  Results from this trial with bottlenose dolphin spermatozoa were 

similar to previous work with bull [67,11] and ram [9] spermatozoa, where DGC 
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separation resulted in significantly higher sperm recovery rates compared to swim-up 

separation techniques.  These results ratify the use of DGC as an optimum technique to 

select high quality dolphin spermatozoa for further staining and sorting. 

  Egg yolk contains lipoproteins, phospholipids, and cholesterol, among other 

less abundant components [73] that provide protection against sperm loss induced by 

the cooling stage prior to cryopreservation and thawing [40].  However, high 

concentrations of egg yolk cause non-uniform H33342 staining and contribute to poor 

X-Y population resolution and reduced sorting rates [8,42].  Thus, it is important to 

remove the egg yolk and glycerol from the post-thaw sperm suspension using DGC 

prior to staining.  However, this removal of egg yolk may decrease the in vitro 

survivability of spermatozoa through the post DGC washing step, and the results of this 

study demonstrated that the addition of a low concentration of egg yolk (4% v/v) to the 

HEPES-TALP washing medium, significantly improved sperm motility parameters and 

viability post-centrifugation.  The positive effects that supplementation of egg yolk 

provided to the sperm cells at this step may have been a result of additional protection 

provided to the sperm membranes prior to the centrifugation.  The low-density 

lipoproteins found in egg yolk have been postulated to increase sperm membrane 

fluidity [74] and thus may make spermatozoa more resilient to physical forces 

encountered during this step.  The addition of 4% egg yolk after staining is commonly 

used for cattle [9,75,76] and ram [43,46] as well as the addition of egg yolk to the 

sheath fluid in the collection tube after sorting, where sorted spermatozoa have to adapt 

to a more concentrated egg yolk medium and maintain their viability [60].   

 In the second experiment, FSF spermatozoa frozen with the DF method showed 

significant superior PM across the 24 h post-thaw incubation than Control spermatozoa 

frozen with the DF method or FSF and Control spermatozoa frozen with the straw 

method.  These results differ from those using chilled dolphin spermatozoa [6] where 

PM was greater for Control than sorted spermatozoa frozen with the DF method during 

6 h of incubation post-thaw.  This difference could be due to damage from the two 

cryopreservation processes that Control spermatozoa underwent in the present study, 

combined with the absence of a DGC procedure and therefore lack of selection for a 

higher quality sperm population prior to recryopreservation. 
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 The improvements in sperm motility parameter (TM, PM, VAP, VSL, VCL, STR, 

RAP, MED and SLOW) during sorting processing of frozen-thawed bottlenose dolphin 

semen were observed at post-DGC and maintained at post-sort stages, as observed in 

studies with frozen-thawed cattle [11] and ram [8] semen.  Maxwell et al. [72] reported a 

similar increase in TM, VAP, VSL, VCL and ALH in bull sperm samples from the first 

post-thaw to post-DGC using Puresperm®.  The DGC and sorting process selected a 

motile, viable sperm population able to maintain in vitro characteristics after 

recryopreservation.  Spermatozoa selected by DGC in the present study presented 

similar characteristics to those seen in fresh-chilled bottlenose dolphin semen 

undergoing sorting and cryopreservation [6]. 

The significant increase in PM post-sorting compared to post-staining in the 

present study was also observed in sorted ram spermatozoa from frozen-thawed semen 

[43], but not in sorted spermatozoa from fresh-chilled bottlenose dolphin semen [6] or 

from frozen-thawed bull semen [11]. 

Although PM of FSF spermatozoa at the pre-freeze stage (78.8 ± 3.8%) was 

similar to sorted spermatozoa of fresh-chilled bottlenose dolphin semen (76.8 ± 5.3%)  

[6], FSF spermatozoa presented lower PM (34.3 ± 9.5%) than sorted spermatozoa from 

fresh-chilled semen (46.2 ± 6.9%) at 0 h of incubation period when sorted spermatozoa 

were frozen with the DF method in both studies.  For sorted spermatozoa frozen with 

the straw method, a lower PM was also observed for FSF spermatozoa (27.2 ± 6.0%) 

than sorted spermatozoa from fresh-chilled semen (38.9 ± 6.0%) at 0 h of incubation 

period.  However, at 6 h of incubation period, PM of FSF spermatozoa (35.2 ± 10.6%) 

was similar to PM of sorted spermatozoa from fresh-chilled semen (36.7 ± 9.4%) within 

DF method.  Similarly, within straw method at 6 h of incubation period, PM of FSF 

spermatozoa was 28.2 ± 15.0% and PM of sorted spermatozoa from fresh-chilled 

semen was 21.4 ± 11.2%.  Although PM was lower at 0 h of incubation period in the 

present study than in the previous study using fresh-chilled semen, PM of FSF 

spermatozoa remained unchanged within freezing methods from 6 h of the incubation 

period until the end of it. 

Even though TM and PM are clearly indispensable for in vitro and in vivo 

fertilization, semen analysis using CASA equipment has been shown to provide 

increased details and improve the accuracy of information collected on sperm motility 
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characteristics.  In cattle, specific aspects of sperm movement such as velocities (VAP, 

VSL and VCL) have been positively associated with fertility rates [77,78].  In the present 

research, there was a tendency for FSF spermatozoa frozen with the DF method to 

present higher velocities (VAP, VSL, VCL) across the 24 h post-thaw incubation than 

Control spermatozoa frozen with the straw or DF methods.  However, ALH was similar 

among freezing treatments until 12 h post-thaw and significantly higher for the straw 

freezing method from 12 h until 24 h of incubation.  The lateral head displacement 

(ALH) is characterized by a side-to-side movement of the sperm head and although it 

does not directly measure the flagellar bend, it is associated with sperm hyperactivation, 

observed as an asymmetrical beat pattern often seen as a circular pathway [79]. 

 In vivo, hyperactivation is a consequence of sperm capacitation in the female 

tract [80], whereas in vitro, hyperactivation of sperm motility is seen when the 

spermatozoon is separated from seminal plasma [65].  Mortimer [65] hypothesized that 

hyperactivated motility serves to benefit the spermatozoon as it decreases the 

probability of the spermatozoon to be trapped in the folds and crypts of the oviduct, 

increases the probability of contact with the oocyte, provides a constant supply of 

nutrients from the environment by the tail movement, allows the spermatozoon to enter 

the cumulus oophorus, and finally, provides enough force required for the 

spermatozoon to penetrate the zona pellucida.  Hyperactivation of spermatozoa has 

been seen in all analyzed eutherian spermatozoa [81], including the bottlenose dolphin 

[82].  However, there are differences between the hyperactive pattern of sperm 

movement among species. When compared to fresh semen, relatively high VCL and 

ALH and low LIN of the trajectories are common features exhibited by hyperactivated 

spermatozoa after an incubation period [81].  For example, hyperactivated motility of 

human spermatozoa is defined as VCL ≥ 150 µm/sec and linearity (LIN) ≤ 50% and 

ALH ≥ 7.0 [65].  Further research on sperm motility using CASA of spermatozoa 

incubated at 35 °C  is warranted to examine sperm hyperactivation in the bottlenose 

dolphin. 

Within spermatozoa frozen with the DF method, BCF was similar for FSF to 

Control spermatozoa at 0 h post-thaw but maintained significantly higher for FSF from 6 

h to 18 h and decreased at 24 h, being similar to Control at this point.  A relationship 

between beat frequency and sperm progressive velocity has been described [83] and 



 

 

64

the constant value of BCF presented by FSF samples indicates that there were no 

gross changes in the flagellar beat pattern [65]. 

Both post-DGC and post-sort steps selected a sperm population with higher 

viability than their previous step.  The improvement in viability parameters following 

DGC has been discussed.  The addition of food-dye to the sperm solution after staining, 

safely quenches the fluorescence of H33342 of dead or damaged spermatozoa to be 

sorted, allowing those cells to be discarded by the flow cytometer [60,84,85].  Control 

samples were not exposed to the DGC or sorting process, and at the pre-freeze stage, 

such samples exhibited lower viability than sorted spermatozoa.  Plasma membrane 

integrity is an indirect indicator of sperm viability and can be evaluated by conventional 

live-dead stains such as eosin-nigrosin, or fluorescent stains using fluorescent 

microscopy or flow cytometry [86,87].  Propidium iodide is a permeable stain that 

crosses the damaged sperm membrane and binds to the chromatin, resulting in red 

fluorescence from the sperm head [88].  Comparable results of plasma membrane 

integrity were achieved using eosin-nigrosin and PI stains [49].  In the present study, it 

was also found that the percentage of viable spermatozoa detected using eosin-nigrosin 

positively correlated (r2 = 0.79) with PI (in the PI/FITC-PNA method) using fluorescent 

microscopy. 

Sperm capacitation occurs in the female tract and involves hyperactivated 

motility (mentioned previously) and biochemical and structural changes of protein and 

lipid membrane organization.  These changes lead to sperm binding the zona pellucida 

and an immediate acrosome reaction, an irreversible event involving the formation of 

multiple vesicles between the sperm plasma membrane and the outer acrosome 

membrane.  The rupture in the sperm membranes causes the release of acrosomal 

enzymes that enables the spermatozoon to penetrate the zona pellucida [89,90,91].  In 

vitro, sperm capacitation can be induced by the addition of small molecules such as 

caffeine, adenosine, or adrenaline to mention a few (reviewed in [92]).  However, 

sorting and cryopreservation processes also can induce sperm capacitation and 

acrosome reaction in vitro [47].  Staining with fluorescein-conjugated lectins as Arachis 

hypogea (peanut) agglutinin (PNA), Pisum sativum agglutinin (PSA) or concanavalin A 

are the most frequently used methods to evaluate acrosome integrity.  While FITC-PSA 

binds to acrosomal glycoprotein contents, the FITC-PNA binding site is located at the 
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outer acrosome membrane, therefore reacted/damaged spermatozoa display green 

fluorescence at the acrosomal region and acrosome intact spermatozoa display no 

fluorescence [49,55,93].  The combination of PI and FITC-PNA generates four 

categories of spermatozoa: viable or non-viable combined with damaged/reacted or 

intact acrosome [55].   

Spermatozoa are exposed to different sources of stress during sex-sorting, 

including staining, exposure to the laser beam, and electrical charge [34].  However, 

passage through the pressurized flow cytometer is the main source of stress for the 

sperm population [34,94].  Lower pressure (40 psi instead of 50 psi) has been used in 

an effort to decrease the damage caused to the bovine sperm membrane in the 

passage through the flow cytometer [95,96].  In this study, a pressure of 30 psi was 

used to sex sort bottlenose dolphin spermatozoa, as opposed to 40 psi used previously 

[6].  The results of the present study indicated that sorted spermatozoa assessed with 

PI/FITC-PNA had significantly higher viability prior to the second cryopreservation than 

Control spermatozoa, and although the difference was not significant when assessed 

using eosin-nigrosin, sorted spermatozoa also displayed higher viability than Control 

spermatozoa.  The significant difference observed in viability with PI/FITC-PNA was 

consistent across incubation time and suggests that the selection of a more viable 

sperm population by DGC and sex-sorting processes can overcome the damage 

caused by the factors related to the sorting process mentioned previously. 

The employment of flow cytometry to determine sperm viability and membrane 

integrity using fluorescent stains would improve the accuracy of the method performed 

in the present study (fluorescent microscopy).  A few advantages of flow cytometry are: 

thousands of cells per sample can be analyzed using the flow cytometer, samples 

require minimum preparation and the analysis is done in a short period of time [49].  

However, if a flow cytometer is used, interference from the binding of FITC-PNA to the 

small vesicles from acrosome reaction can occur and overestimate the sperm 

damaged/reacted acrosome population [97].  To overcome this event, in bulls, a triple-

stain using SYBR-14/PE-PNA/PI was developed and proved to give more accurate 

results than PI/FITC-PNA using flow cytometer since binding of triple-stains occurs 

exclusively to sperm DNA [97].  However, flow cytometric assessment of sperm viability 

utilizing this stain combination has yet to be tested in the bottlenose dolphin. 
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No correlation was established between the PI viability method and in vivo 

fertility using frozen-thawed spermatozoa in horses [87] or pigs [98].  However, it is 

known that damaged/deteriorated spermatozoa are not able to fertilize an oocyte in 

vivo, which can be overcome by using the ICSI method in a laboratory.  Therefore, if the 

spermatozoa are going to be used for a conventional IVF or AI, integrity of the sperm 

membrane is essential.  Although sorting and cryopreservation can cause spermatozoa 

to undergo acrosome damage or an acrosome reaction, in this study less than 5 % of 

spermatozoa, across all treatments, presented a damaged/reacted acrosome. 

 In the present study, the DNA quality was evaluated by the sperm chromatin 

structure assay (SCSA) [51,52].  Though the integrity of the DNA is not critical for 

fertilization of the oocyte, chromatin abnormalities can interfere with further embryo 

development [99].  In addition to this, severe DNA alterations are related to male 

infertility in humans [52], cattle [100], pigs [101] and horses [51].  In a study with rams; 

high DNA fragmentation index (DFI) was related to positive breeding potential [102].  

Sperm chromatin is highly condensed, coated with protamines and presents a toroid 

structure with inter- and intramolecular disulfide cross-links between the cysteine-rich 

protamines that protect the DNA against mechanical and environmental factors 

[99,103].  Each toroid is connected to each other by damage-sensitive chromatin while 

the DNA that is compacted within the toroid is not accessible to damage [103].  Sperm 

DNA compaction reduces the cell volume allowing efficient transportation through the 

female tract, minimization of damage by exogenous agents and inactivation of genome 

transcription [104].  Damage to sperm DNA is reported to be caused by intrinsic factors 

like protamine deficiency, mutations that compromise DNA packaging, aging, reactive 

oxygen species and an incomplete process of apoptosis during spermatogenesis 

[104,105,106].  External factors that result in sperm DNA damage include heat [107], 

chemotherapeutics [108], radiation [109,110], pollution [111] and age [104] as well as in 

vitro semen processing like type of extender, prolonged incubation time [112] and 

cryopreservation [113].  It was speculated that sex-sorting of bull spermatozoa could 

also cause damage to the sperm DNA.  Mechanical stress and exposure to H33342 

combined with 150 mW laser exposure were proved to be safe steps in the process, 

since the damage to the sperm DNA was increased by less than 3% when compared to 
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control spermatozoa [34].  The effect of sex-sorting on sperm DNA quality has not 

previously been examined in bottlenose dolphins. 

 Damage to sperm DNA can be detected by several fluorescent assays.  

Defective packaging of chromatin can be detected by the Comet assay, where 

deprotaminated DNA is identified by a fluorescent dye in agarose gel under an electric 

field [99].  This assay is commonly used to evaluate DNA damage of human 

spermatozoa handled in fertility clinics.  An alkaline Comet assay has been used to 

detect DNA damage of stallion spermatozoa [114] and boar spermatozoa [115].  The 

TUNEL assay (terminal deoxynucleotidyl transferase (TdT) mediated dUTP nick end 

labeling) is commonly used to determine DNA breaks in human spermatozoa, detecting 

both damaged single stranded (ss) and intact double stranded (ds) breaks mainly in the 

toroid linker regions.  The enzyme (TdT) adds uridine residues to the 3’ OH ends of 

nicked and broken DNA [103].  Instead of using an enzyme as for the TUNEL assay, 

SCSA samples are treated with mild acid to denature DNA that has nicks and the 

acridine orange stains ss (damaged) DNA red and ds (intact) DNA green [103].  The 

resulting ratio of red fluorescence/red + green fluorescence determined the DNA 

fragmentation index (DFI), also indicated as COMPαt (Cells outside the main 

population).  The total population evaluated is indicated by alpha-t [αt] and following 

analysis of at least 5000 spermatozoa per sample, is presented as Meanαt) [51].  The 

standard deviation of αt (SDαt) is associated with the extent of sperm DNA denaturation 

in humans [116] while the denatured DNA is indicated by the COMPαt.  The TUNEL 

assay and the SCSA require a flow cytometer to evaluate the florescence of the 

samples [103]. 

 Selection of a sperm population displaying less susceptibility to DNA 

denaturation has been observed after density gradient (Percoll®) centrifugation of 

human spermatozoa [117].  In the present study, density gradient centrifugation did not 

select for spermatozoa with higher DNA quality than frozen-thawed spermatozoa, but 

SDαt was lower for spermatozoa at post-DGC than at first post-thaw, indicating that after 

DGC, DNA quality of the sperm population were more homogenous than that observed 

at the first post-thaw.  A sample of the “bilayer” was removed from the layer formed 

between the 45% and 90% gradient media and although statistic analyses could not be 

performed due to unequal sampling across treatments, results indicated that 
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spermatozoa from the bilayer presented higher COMPαt, Meanαt, and SDαt than 

spermatozoa recovered from the pellet of post-DGC samples.  Morrel et al. [118] 

observed an improvement in the proportion of spermatozoa with high DNA quality 

following colloidal centrifugation of fresh stallion spermatozoa.  However, 

morphologically abnormal stallion spermatozoa in that study were in a higher proportion 

(63-74%) than what has been reported for fresh bottlenose dolphin spermatozoa where 

abnormal forms represent less than 10% of ejaculated cells [13].  Although sperm 

morphology results were not determined in the present study, the morphology status of 

fresh spermatozoa was within the normal range for the bottlenose dolphin (data not 

shown). 

 In the present study, Control spermatozoa did not demonstrate any change in 

DNA quality from the first post-thaw until after the 24 h post second thaw incubation.  

This finding differs from a previous report with human sperm that demonstrated 

increased DNA damage after each of three freeze/thaw cycles [119].  However, in that 

study, spermatozoa that did not undergo processing (DGC, washing, and resuspending) 

demonstrated lower DNA damage than spermatozoa selected by DGC and 

resuspended with new cryoprotectant media [119].  Thus, the results observed herein 

suggest that Control spermatozoa were able to survive a second cycle of 

cryopreservation/thawing without altering sperm DNA quality because 

recryopreservation was performed with minimal post-thaw processing. 

At the post-stain step in the current study, samples presented a significant 

increase in COMPαt and Meanαt, whereas SDαt remained the same compared to the 

post-DGC step.  The proportion of spermatozoa exhibiting potential DNA damage as 

determined by the SCSA did not change between staining, sorting and pre-freeze steps.  

Garner [34] did not observe a significant increase in bull sperm potential DNA damage 

after evaluating sorting of stained spermatozoa with SCSA.  De Ambrogi et al. [94] 

evaluated sex-sorted boar spermatozoa with Sperm-Sus-Halomax® kit (ChromaCell SL, 

Madrid, Spain) and did not observe a significant reduction in DNA integrity during the 

sorting process, while in the present study, COMPαt values after staining and sorting 

were more than double to that observed in the previous step (post-DGC).  

For FSF dolphin spermatozoa, a unique pattern in SCSA parameters was 

observed throughout pre- and post-sorting stages.  Although there was a clear increase 
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in COMPαt and Meanαt during staining of spermatozoa for sorting, the values underwent 

a decrease between the pre-freeze and 0 h post-thaw steps.  Both COMPαt and Meanαt 

continued to decline from 0 h to 6 h post-thaw, after which, they remained unchanged 

throughout the rest of the 24 h incubation period.  It is accepted that mature 

spermatozoa lack the ability to repair DNA abnormalities [120,121]. Thus, the unusual 

trend in SCSA variables exhibited by FSF spermatozoa, whereby the proportion of cells 

with high amounts of denatured DNA was observed to increase then decrease, 

suggests that processing of the sperm samples for sex-sorting introduced an artifact.  It 

is hypothesized that this artifact was caused by an interaction of AO with another 

factor(s) present in sperm chromatin, leading to differences in COMPαt between FSF 

and Control spermatozoa. 

AO forms complexes with ds and ss DNA by intercalating between base pairs 

whereas H33342 binds to base pairs in the minor groove of ds DNA [122]. Though 

some H33342 will diffuse out of the cell via a concentration gradient during the sorting 

and post-sorting processes, some H33342 still remains in the cells as demonstrated by 

the fluorescence of IVF embryos derived from sorted spermatozoa [123].  In the present 

study, the amount of AO bound to ds DNA may have been artificially decreased due to 

H33342 interference but the extent of AO intercalation between base pairs of ss DNA 

was not affected, because H33342 only binds to ds DNA.  Therefore, it suggests that 

Meanαt (determined as [red/red+green]), for each sorted spermatozoon presented lower 

green fluorescence which thereby artificially increased COMPαt.  The hypothesized 

interference of AO staining lasts as long as the H33342 is present in the sperm nucleus, 

and it potentially explains the gradual “normalization” of COMPαt values as the H33342 

diffused out of the cells during the pre-freeze and post-thaw dilution and incubation 

periods.  

Sorted bull spermatozoa are commonly frozen at a concentration of 10 x 106 

spermatozoa/mL [34] as opposed to 15 x 106 spermatozoa/mL in the present study with 

dolphin spermatozoa.  The longer post-sorting time at high dilution, and overall higher 

dilution rate that bull spermatozoa undergo from sorting to freezing would purportedly 

lead to diffusion of H33342 from the cell at a greater rate than that of dolphin 

spermatozoa under the sorting protocol used in this study.  Though the concentration of 

H33342 in dolphin spermatozoa after sorting is unknown, due to the higher dilution 
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effect experienced by bull spermatozoa, H33342 concentration in dolphin spermatozoa 

is likely higher than that of bull spermatozoa after sorting. 

 The dramatic difference of SDαt between Control and FSF spermatozoa before 

recryopreservation and during the 24 h post-thaw incubation indicates that DNA quality 

of sperm populations selected during the sorting process (DGC and flow cytometry) 

were more homogenous than those of Control spermatozoa. 

 Control spermatozoa were frozen approximately 2 h after first thawing, while the 

counterpart spermatozoa was being prepared for sorting and resulted in sorted samples 

being frozen approximately 4 h after Control samples.  A previous study in horses 

demonstrated that temperature at storage can affect sperm DNA quality (ie. COMPαt) 

[124]. However, in the aforementioned study, a rise in SCSA values of sperm samples 

stored at 20°C were detected by 7 h of incubation.  In this study, Control samples 

underwent less handling than FSF samples and FSF spermatozoa presented lower 

COMPαt than Control spermatozoa after 6 h of post-thaw incubation.  Further studies in 

the bottlenose dolphin are needed to evaluate the effects of sperm handling procedures 

(storage temperature and storage time), on sperm DNA quality.  

In humans, the SCSA-derived DFI > 30% was associated with low fertility and 

DFI < 15% corresponded to high fertility status [52]. For pigs, most fresh boar ejaculates 

present DFI values < 5% when evaluated by the SCSA [101] and the Sperm-Sus-

Halomax® kit [94].  In bottlenose dolphins, in 2006 the SCSA was used to compare 

fresh ejaculates of healthy males to an animal with orchitis, which displayed a higher 

DFI (33%) than the healthy males (4%) (O’Brien JK, Robeck TR, Evenson DP, 

unpublished results). 

Although further research is necessary to understand the reasons for the 

possible artifact found herein, this is the first comprehensive study on the use of the 

SCSA as an in vitro indicator of sperm quality in a marine mammal species.  It is very 

likely that a robust and reliable assay such as the SCSA will be incorporated in further 

research on bottlenose dolphin spermatozoa as well as other marine mammal species.  

In conclusion, the present study demonstrated that characteristics of bottlenose 

dolphin spermatozoa undergoing cryopreservation, sorting and recryopreservation 

steps were well maintained in vitro, and that such samples are of suitable quality for AI.  

In addition to this, the large volume of bottlenose dolphin semen that can be frozen with 
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the directional solidification method is a convenient and effective method to bank semen 

for future sorting.  This method also resulted in the highest recovery of frozen-thawed 

bottlenose dolphin semen and should be considered the primary methodology to be 

used with sorted spermatozoa.   

The successful birth of a bottlenose dolphin calf using sorted, frozen-thawed 

spermatozoa from previously cryopreserved semen [7], and the improvements to the 

sperm processing procedures for sex-sorting described herein, provide the potential for 

widespread application of sorting of cryopreserved semen from bottlenose dolphins 

located around the globe. 
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