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ABSTRACT 

 

VLSI Implementation of Low Power Reconfigurable MIMO Detector. (December 2009) 

Rajballav Dash, B.Tech., National Institute of Technology Rourkela                         

Chair of Advisory Committee: Dr. Gwan S. Choi 

 

Multiple Input Multiple Output (MIMO) systems are a key technology for next 

generation high speed wireless communication standards like 802.11n, WiMax etc. 

MIMO enables spatial multiplexing to increase channel bandwidth which requires the 

use of multiple antennas in the receiver and transmitter side. The increase in bandwidth 

comes at the cost of high silicon complexity of MIMO detectors which result, due to the 

intricate algorithms required for the separation of these spatially multiplexed streams. 

Previous implementations of MIMO detector have mainly dealt with the issue of 

complexity reduction, latency minimization and throughput enhancement. Although, 

these detectors have successfully mapped algorithms to relatively simpler circuits but 

still, latency and throughput of these systems need further improvements to meet 

standard requirements. Additionally, most of these implementations don’t deal with the 

requirements of reconfigurability of the detector to multiple modulation schemes and 

different antennae configurations. This necessary requirement provides another 

dimension to the implementation of MIMO detector and adds to the implementation 

complexity.  
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This thesis focuses on the efficient VLSI implementation of the MIMO detector 

with an emphasis on performance and re-configurability to different modulation 

schemes. MIMO decoding in our detector is based on the fixed sphere decoding 

algorithm which has been simplified for an effective VLSI implementation without 

considerably degrading the near optimal bit error rate performance. The regularity of the 

architecture makes it suitable for a highly parallel and pipelined implementation. The 

decoder has intrinsic traits for dynamic re-configurability to different modulation and 

encoding schemes. This detector architecture can be easily tuned for high/low 

performance requirements with slight degradation/improvement in Bit Error Rate (BER) 

depending on needs of the overlying application. Additionally, various architectural 

optimizations like pipelining, parallel processing, hardware scheduling, dynamic voltage 

and frequency scaling have been explored to improve the performance, energy 

requirements and re-configurability of the design.  
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1. INTRODUCTION 

The need for ubiquitous communication has made wireless communication one 

of the most important segments for technological growth. The huge success of portable 

devices like cell phones, personal digital assistants (PDAs), smart phones, net books etc 

provide ample evidence to the importance of wireless communication in the consumer 

market. This has led to the need for evolving wireless standards in order to cater to the 

increasing demands of the consumer market. The wireless communication market has 

slowly transitioned from being predominantly used for voice communication to 

widespread surge in data usage, video downloads, and multimedia messaging which 

enhances the need of high bandwidth wireless links [1]. In order to cater to these high 

bandwidth applications, the wireless standards put in place a range of specifications 

which should be met in order to provide quality support to end users.  Hence, the 

evolution of standards and systems is driven by the emergence of new applications 

which continue to require better quality of service (QoS) and higher data rates and by the 

need to support the growing number of users. This vast user base creates bandwidth 

limitations, affects service costs and also influences the QoS.  

A number of factors affect the quality and capacity of wireless communications 

systems. The scarcity of available bandwidth for wireless communication combined with 

the increasing demand for higher data rates puts an ever increasing demand for high  
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speed communication systems. As increasing the spectrum available for wireless 

communication is not a viable solution, therefore utilizing the spectrum optimally with 

increased spectral efficiency is the key. This impairment is countered by improved 

communication systems which use advanced algorithms and efficient VLSI architectures 

to offer higher data rates and the required QoS.  

1.1 MIMO Systems: An Overview 

Multiple-input multiple-output (MIMO) systems [2] use multiple antennas at 

both the transmitter and at the receiver to allow for spatial multiplexing to increase 

channel bandwidth. This technology is believed to enable the increase in channel 

bandwidth efficiency in future generation wireless systems to cater to the growing 

number of users. MIMO Technology enables the use of higher number of antennas 

which essentially allows for higher spectral efficiency compared to single-input single-

output (SISO) systems with single antenna at transmitter and receiver. The major 

advantages of MIMO are due to the following gain factors [3]: 

1. Array gain: Multiple antenna at the receiver side helps in picking up a larger 

percentage of transmitted power from the transmitter which fundamentally 

increases the range of the communication system and helps in suppressing 

interference from other sources.  

2. Diversity gain: Multiple receivers give us more information about the variations 

in the channel also called fading.  This information allows us to better isolate 

signal component from noise thus increasing link-reliability and QoS. 
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3. Multiplexing gain: With multiple antennas at transmitter and receiver, 

multiplexed data streams can be transmitted together which allows for a linear 

increase in spectral efficiency and peak data rates in the same frequency band. 

The number of multiplexed data streams is limited by the number of antennas at 

the receiver and transmitter side. 

A tradeoff exists between the above mentioned gains, as maximizing each of 

them requires different transmission schemes. The ability of MIMO technology although 

with the aforementioned tradeoffs, to provide these enormous gains has led to the use of 

MIMO in various wireless standards like UMTS, 3G, IEEE 802.11n WLAN and IEEE 

802.16 WMAN among many others.  Thus, MIMO technology theoretically offers 

significant increases in data throughput and link range without additional bandwidth or 

transmit power. 

1.2 Implementation Challenge of MIMO Detector 

Realizing the theoretical capacity boost of MIMO technology is only possible 

with the use of complex signal processing at the transmitter side & receiver side as 

compared to present day SISO systems. Spatially multiplexing the data streams in the 

transmit side requires more processing before the transmit stage in order to ease the 

decoding process. Also, a serial data stream needs to be pushed into a Serial Input 

Parallel Output (SIPO) buffer to be transmitted by multiple antennas. On the receiver 

side, these spatially multiplexed data streams needs to be separated by extremely 

complex signal processing techniques. Most of the MIMO detection techniques should 

cancel the interference of successive channels while keeping all the other advantages 
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associated with MIMO systems. The complexity of transmitter and receiver increases 

rapidly at a far higher rate than the increase in spectral efficiency with the increase in 

number of antennas. Sometimes owing to the complex signal processing required at the 

receiver and transmitter, the gains of linear spectral efficiency is more than countered by 

a higher than linear increase in decoder complexity, even with the most basic processing 

algorithms. In order to fully exploit the advantages of multi-antenna systems, algorithms 

with even higher complexity is needed. Implementing these complex algorithms in an 

efficient VLSI architecture on silicon is an extremely crucial design challenge. However, 

for the successful implementation and widespread use of MIMO systems highly 

integrated and affordable implementations of the MIMO detector is of paramount 

importance. 

1.3 Current Generation MIMO Systems 

MIMO detector is the most complex unit of the MIMO Communication system. 

When spatial multiplexing is used at the transmit side, MIMO detectors task is to 

separate the spatially multiplexed data streams at the receiver side. Earlier most of the 

comparisons of MIMO detectors used to be on the basis of the complexity analysis of the 

signal processing algorithms. This complexity analysis does not relate to the silicon 

complexity of the decoder itself although they are a good metric for analyzing the 

complexity of the decoding process. These analysis show that MIMO systems from 2~6 

antennas are practical from communication standpoint. Hence, case analysis with 

successively increasing number of antennas in communication system doesn’t give us 

any significant information which would help in understanding feasibility of MIMO 
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implementation. Another method used to do analysis and algorithm optimization for 

complexity reduction was with the use of digital signal processor (DSP) which has 

custom functions for signal processing applications. However, the throughput achieved 

through DSP implementations along with implementations on other software 

programmable processing architectures is not sufficient to meet the requirements of next 

generation wireless standards owing to computational overheads associated with 

programmable logic. The analysis of algorithm efficiency done using programmable 

logic proved to be considerably different from dedicated communication circuits. For 

this reason, many algorithms which promised to be low power and computationally 

efficient in DSP architectures turned out to be ill suited for application specific 

integrated circuits (ASICs). Hence, a need for dedicated VLSI architectures for MIMO 

decoding was necessary for successful and efficient implementation. Recently, there has 

been quite some work relating to the actual VLSI implementations of MIMO algorithms 

and of complete MIMO systems. The few presented algorithms and designs provide 

initial reference points for the silicon complexity of MIMO detectors and illustrate 

suitable hardware architectures. Still till date, implementations of MIMO systems are 

band limited due to decoder performance rather than by wireless channel capacity. The 

authors, provide a comprehensive comparison of the true silicon complexity of different 

detection schemes and the associated performance tradeoffs and VLSI architectures 

based on actual VLSI implementations. VLSI implementations of various signal 

processing algorithms for MIMO detection in [4], further deals with the exploration of 

the design space that is available on the algorithmic and architectural level for the ASIC 
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implementation of low-complexity hard-decision MIMO detection for spatial 

multiplexing. A hardware implementation perspective was presented and results for 

various algorithms were compared. Here is a brief summary of the VLSI 

implementations of the following algorithms: 

1. Linear and Successive Interference Cancellation (SIC) Detection: With proper 

implementation strategies SIC algorithms are less costly to implement in terms of 

silicon area than completely linear detectors. In [4] and [5], a linear detection 

architecture is presented which achieves nearly hundred percent hardware 

utilization, low decoding latency and higher throughput. Optimizations for matrix 

inversion and matrix decomposition are considered to enhance the performance 

of these architectures. In particular different architectural and circuit-level 

tradeoffs are discussed for the implementation of QR decomposition.  

2. Exhaustive Search Maximum Likelihood: It is shown how this algorithm which 

achieves optimum bit error rate performance, but with a complexity that grows 

exponentially in rate, can still be implemented economically for higher 

throughput [6]. The reasons for this are a number of lossless (in terms of bit error 

rate) algebraic transformations and an optimized VLSI architecture.  

3. Iterative tree-search algorithms: Tree-search algorithms mostly refer to Sphere 

Decoding and K-Best decoding in terms of MIMO detection although other less 

known search strategies are prevalent as well. VLSI implementation of the K-

Best algorithm is described for a 4 × 4 system with 16-QAM modulation which 

achieves a high throughput compared to other implementations [7]. Additionally, 
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in [8] a one-node-per-cycle VLSI implementation of Sphere Decoding is 

presented. The implementation is shown to operate directly on complex-valued 

constellation points without the use of costly transcendental functions in [9]. A 

new modified-norm implementation is introduced in [10] easing computational 

complexity in norm computation.  

In the past, most of these implementations dealt on the issue of simplifying signal 

processing algorithms for reducing computational complexity, achieving higher 

throughput and reducing latency of MIMO systems. Although these are important metric 

for commercial use, but another important factor is the usability of the architecture over 

different modulation schemes, across different antenna configurations, support for soft 

output detection which enables its use with FEC decoders for better BER performance.  

1.4 Contributions 

In this thesis, we explore the design space that is available on the architectural 

level for the ASIC implementation of low-complexity hard decision MIMO detection for 

spatial multiplexing. Algorithm was chosen on the basis of re-configurability to various 

modulation schemes, hardware reuse, enhanced throughput and lower silicon 

complexity. VLSI architecture has been developed for an iterative tree search decoder 

based on a special case of fixed sphere decoding algorithm for MIMO detection called 

COSIC algorithm. Various architectural optimization techniques and transformation was 

explored to improve the performance of the implementation. Performance improvement 

in terms of silicon complexity, operating power and throughput were considered. The 

VLSI implementation results are insightful from an implementation standpoint as they 
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provide the right metric in deciding the impact of the underlying algorithm and the 

associated architectural transformations used for design optimization.  Here is a 

summary of all the contributions in this thesis: 

1. Dynamic Reconfigurability in MIMO Detection: Most of the MIMO detector 

implementations don’t deal with the issue of adaptive modulation schemes 

supported by numerous wireless applications and standards. The proposed 

detector architecture [11] uses a modified form of FSD algorithm which ensures 

constant throughput for a particular modulation scheme. Finite state machine 

(FSM) based control logic has been developed around the FSD implementation 

which uses modulation data to reconfigure the decoder to various modulation 

schemes like QPSK, 16-QAM and 64-QAM modulation schemes for 4x4 MIMO 

systems. The detector architecture can be further fine-grained pipelined to 

achieve higher throughput [12] without any scheduling complexity. The 

proposed architecture is highly suitable for the next generation wireless standards 

because of its flexibility, reduced computational complexity and higher 

throughput.  

2. Design Space Exploration of Runtime Reconfigurable MIMO Detector for 

IEEE 802.11n: The focus here is on wireless systems based on 802.11n 

standard. In particular; extensive architectural space exploration was done to 

address the issues of power consumption, area, and re-configurability between 

different modes of operation while meeting the standards throughput 

requirement. Ultimately, two optimized designs [13] that target low area and low 
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power respectively was proposed. This detector will also support on the fly re-

configurability for QPSK, 16-QAM and 64-QAM modulation schemes. This 

architecture delivers close to optimal Maximum Likelihood (ML) BER 

performance with no reconfiguration latency, leading to uninterrupted detection 

of MIMO symbols. This will clearly present an example of the tradeoff limits of 

the design and the extent of tune-ability of the architecture based on various 

target applications. 

3. Low Power Reconfigurable MIMO Detector for Real-Time Mobile 

Applications: In this design we target two major issues: lower energy 

consumption based on a DVFS to exploit the re-configurability of the 

architecture to different modulation schemes with lower complexity and fixed 

throughput of detector across different modulation schemes which is ideal for 

real-time multi-media applications. The decoder uses optimal voltage and 

frequency while processing buffered data frames resulting in significant energy 

gains suitable for portable devices. This technique of varying voltage and 

frequency is called dynamic voltage and frequency scaling (DVFS) [14]. The 

DVFS frequency controller calculates the number of bits and decoding iterations 

required to process frames, and based on this information sets the operating 

frequency of the detector. A voltage regulator [15] is used to generate the 

appropriate voltage for that particular frequency. The choice is made in such a 

way so as to decode each frame, within a fixed time period irrespective of 

modulation scheme. Thereby, making available the output of each frame 
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synchronized to the fixed rate at which the data is consumed in real-time 

application interface like 802.11n. This detector delivers quasi-optimal BER 

performance with no reconfiguration latency which guarantees the necessary 

Quality of Service (QoS) with uninterrupted processing of MIMO symbols. 

1.5 Thesis Outline  

In section 2 of this thesis, the MIMO system model is described. The section also 

lists the performance criteria which constitute the basis for the development and 

evaluation of algorithms and VLSI architectures. It also introduces the available 

algorithm choices for MIMO detection, together with their corresponding complexity 

scaling behavior. We also discuss the reasoning behind the choice of algorithm for our 

implementations. In section 3, the implementation of the reconfigurable sphere decoder 

is discussed. Details are presented as to how the COSIC algorithm is modified for re-

configurability to various modulation schemes. In section 4, we see an architectural 

exploration of the hard detector aimed at IEEE 802.11n. We explore aspects such as 

parallel processing and pipelining such that an optimal detector based on throughput, 

area and power can be designed. Here we also present two designs, one optimized for 

power and other optimized for area. Section 5 deals with a scheduling algorithm 

presented for the reconfigurable detector such that it can use voltage and frequency 

optimally such that the working power envelope can be further squeezed. Section 6 

wraps up the thesis with discussions on possible future work in MIMO, summary and 

conclusions. 
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2. BACKGROUND OF MIMO DETECTION 

This section will provide a detailed background of MIMO system model, 

processing stages, and the various algorithms used for MIMO detection. The choice of 

algorithm is very important for any VLSI implementation. This section will provide a 

brief summary of the advantages and disadvantages of each algorithm and its associated 

implementation.   

2.1 System Model and Processing Stages  

Wideband MIMO communication systems can be reduced to a set of narrowband 

MIMO systems with proper modulation techniques such as OFDM or with proper 

equalization. As narrowband system model are much simpler, therefore it is 

straightforward to derive corresponding receivers for wideband MIMO communication 

systems based on the narrowband model. Also, the results and analysis derived from 

narrowband system model can be easily extendible to a wide range of communication 

scenarios and to provide a common basis for the comparison of different algorithms. Let 

us say the number of transmit antennas is given by MT and the number of receive 

antennas is given by MR. The example MIMO system shown in Figure 2.1 has MT=2 and 

MR=2. This system model can be extended for higher number of antennas. As we are 

only concerned about spatial multiplexing to enhance channel efficiency, we also 

assume MR ≥ MT. Here binary source generates a sequence of information bits that is 

required to be transmitted over a wireless link. These bits are encoded by a FEC encoder 

(such as LDPC, Turbo codes, Convolution Codes). The encoded bit sequence (x) is then 

modulated onto symbols (s1, s2 etc.) and sent to the transmitter, symbols from each 
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transmitter undergoes independent gains (h11, h12 etc.) before reaching the receiver. 

Hence, Rx1 receives s1h11 + s2h21, and Rx2 receives s1h12 + s2h22. Signals at Rx1 and Rx2 

are further corrupted by noise (n1, n2). Obviously the big problem with this is that the 

receiver sees a combination of what was transmitted from both transmit antennas plus 

noise. The MIMO detector attempts to compute the estimate s� of the most likely 

transmitted symbol sequence [s1, s2], and de-modulates s� to give out the estimate of the 

encoded bit sequence (it is assumed that the gains h11; h12 etc are known at the receiver 

through the channel estimation stage which happens during preprocessing). These bits 

are then fed to the FEC decoder to get back the bits generated by the binary source. 

Transmitter: With spatial multiplexing, the modulation in the transmitter corresponds 

to choosing the entries of the transmitted signal vector s independently from a set of 

constellation points Ω as shown in Figure 2.2, according to the data to be transmitted, so 

that s ∈ Ω�� . The set Ω is defined by the modulation scheme for which a rectangular 

QAM modulation with Q = | Ω | bits per complex-valued scalar symbol and with Gray 

encoding is usually assumed. The rate of the corresponding MIMO system with MT 

transmit antennas in spatial multiplexing mode is then given by R = MT log2 Q bits per 

channel use (bpcu). In all the sections discussed in this thesis, the corresponding 

constellation points are defined on an odd integer grid according to Ω = {(1 + 2a) + j(1 + 

2b)} with a, b ∈ Z as shown in Figure 2.2. For a fair comparison which is independent of 

the number of transmit antennas and of the modulation scheme, the signal vector s is 

normalized before transmission in such a way that the average transmitted power is one 

(i.e., E {||s||
2
} = 1). 
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MIMO Channel: The equivalent baseband model of the MIMO wireless channel that 

yields the MR-dimensional received vector y is given by the following input-output 

relation  

     y = Hs + n.      (2.1) 

The MR-dimensional vector n models the thermal noise as independent identically 

distributed (i.i.d.) circular symmetric (proper) complex Gaussian with zero mean and 

variance σ
2
 per complex dimension (E{nn

H
} = σ

2
I). The MR × MT dimensional matrix H 

represents the complex-valued channel gains between each transmit and each receive 

antenna as discussed previously. For the simulations in the following sections, an i.i.d. 

Rayleigh fading channel model without correlation is assumed. Hence, the entries of H 

are chosen independently as zero mean proper complex Gaussian random variables with 

variance one per complex dimension. The SNR is defined in accordance with [3] as the 

ratio between the total transmitted power, which has been normalized to one, and the 

variance of the thermal noise according to  

     SNR = 1/σ
2
      (2.2) 

Receiver: The MR antennas at the receiver pick up the received signal vector y. Taking 

into account that the variance of the channel gains have unit variance, the average 

received signal-to-noise ratio (over channel realizations) per received antenna is 

immediately given by the SNR. The task of the MIMO detector at the receiver is to 

obtain the best possible estimate of the transmitted signal vector s based on the received 

vector y. Coherent modulation which is assumed in this thesis also requires that the 

receiver is provided with an estimate H�  of the channel H. Such an estimate is usually 
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obtained during a separate training phase during preprocessing. Hence, broadly speaking 

MIMO processing can be split into two stages channel-rate and symbol-rate processing 

as illustrated in Figure 2.3. Channel-rate processing is often also referred to as 

preprocessing. The term comprises all operations that need to be carried out only when 

the channel estimate changes which happens when the system changes from one 

environment to another. Symbol-rate processing comprises all those operations that need 

to be carried out for each received symbol in order to estimate the transmitted vector 

symbol. We shall refer to this part of the receiver as the detection unit. Under low 

mobility scenarios when the channel doesn’t change much, it is safe to assume that the 

channel remains same over a large number of symbols and hence, plays a less critical 

role in determining throughput of a general MIMO communication system. However, in 

high-mobility scenarios, under stringent latency constraints, or in wide-band MIMO 

 

 

 

 

Figure 2.1: Example of a 2x2 MIMO Communication System with Channel Matrix 
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Figure 2.2: Constellation Point for QPSK, 16-QAM, 64-QAM Modulation Schemes 

 

 

 

 

systems with frequency selective fading it is still justified, to consider the channel-rate 

processing complexity separate from the symbol-rate processing, as the frequency of the 

operation and the performance requirements are dictated by a completely different set of 

system parameters. 
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Figure 2.3: Processing Stages in General MIMO Detector 

 

 

 

 

 

Figure 2.4: BER Performance of MIMO Detection Algorithms [4] 
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2.2 Maximum-Likelihood Detection and Sphere Decoding 

As discussed earlier, there are many MIMO detection algorithms with different 

tradeoffs intrinsically embedded in each of them. A comparative study of the BER 

performance of  

 

 

 

 

 

 

 

Figure 2.5: Example of ML Solution for 2x2 BPSK Systems 

 

 

 

different algorithms is given in Figure 2.4. It shows a significantly higher BER 

performance of the Maximum-Likelihood (ML) detection algorithm than linear detection 

(ZF, MMSE) and Successive Interference Cancellation (SIC) algorithms. Along with its 

higher BER performance, ML detection algorithms as we will see in this section can be 

simplified for effective VLSI implementation.  

The baseband system model for a MIMO system with MT transmit and MR 

receive antennas can be expressed as in (2.1) where s is MT x 1 transmitted vector or 

vector symbol, n is MR x 1 zero mean complex Gaussian noise vector, and H is MT x MR 

dimensional complex matrix. The (i, j)
th

 element, hij , of the matrix H denotes the 
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complex channel gain from the j
th

 transmit antenna to the i
th

 receive antenna. In all our 

discussions, we assume MT = MR = 4 unless specified otherwise. The objective of ML 

detection is to search for a MIMO symbol over the entire set of possible MIMO symbols 

and find a set with minimum distance which in hard detection MIMO is taken as the 

most likely solution candidate. Therefore the objective of ML based MIMO detection to 

compute an estimate s� of s such that:                                  

   	 � = 
�� ���	 � ��� ||� − �	||�  

       =
�� ���	 � ��� ��	� with d(s) =|| y-Hs ||
2
          (2.3) 

where Ω is set of complex entries from the QAM constellation as shown in Figure 2.2 

and η is the cardinality of the set. As previously discussed straightforward approach to 

solving (2.3) is an exhaustive search over all possible candidate vector symbols as 

shown in Figure 2.5. However, since the number of possible solutions grows 

exponentially with MT, the implementation of an exhaustive search becomes impractical 

as MT increases. For example, in case of a 4x4 MIMO system with 16-QAM modulation 

an exhaustive search would require the evaluation of 65536 candidate vector symbols. 

As can be seen in [4], ML detection can be mapped to an Iterative Tree Search Problem 

which eases the search process. In each level of the tree, we compute a Partial Distance 

(PD) of each symbol from the set of QAM symbols in which we are searching. In this 

way, for 4x4 MIMO system we will have a tree of depth equal to four as we will have to 

detect four symbols at the receiver. The breadth of this tree depends on the value η for a 

η-ary modulation scheme. For modulation schemes which have more spectral efficiency 

like 16-QAM and 64-QAM we have to search for the ML solution in a tree of depth 4 
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and breadth 16, 64 respectively which is highly inefficient for hardware implementation. 

One way to circumvent the exhaustive search is to evaluate only a small subset of all the 

possible vectors. The objective of sphere decoding is to prune this tree with a radius 

update technique (as shown in Figure 2.6) such that the BER performance is not 

degraded but less number of nodes are processed. For effectively searching through this 

tree we need QR based preprocessing. This technique transforms the channel matrix (H) 

into a unitary matrix (Q) and upper triangular matrix (R): H = QR. Hence, the cost 

function given by (2.3) can be rewritten as,  

   d(s) = || y – Hs ||
2
 = || �� – Rs ||

2
, and ��  = Q

H 
y     (2.4) 

where, R is an upper triangular matrix, and Q
H
 is the Hermitian of a unitary matrix Q. 

Vector y�  as defined by (2.4) is the unconstrained zero forcing solution. The fact that R is 

upper-triangular ensures that each term in the summation depends only on the current 

level decision, as well as the history of the path to reach that level in the tree. Note that 

distance in (2.4) can now be rewritten to form summation across each transmit antenna.  

   di(s
(i)) = di+1(s

(i+1)) + | ei (s
(i)) |2                                      (2.5) 

   | ei (s
(i))|2 = | ci+1(s

(i+1)) – Rii . si |
2       (2.6) 

   ci+1(s
(i+1)) = ��i –  !�"

��
"#�$%  . sj       (2.7) 

The quantity di(s
(i)

) is called the cumulative metric. The quantity | ei(s
(i)

) |
2
 is called the 

incremental metric. The vector in (2.4)-(2.6) denotes a partial vector symbol candidate. 

This term di(s
(i)

) for i > 1 is called PD which was discussed earlier and Distance (D) for 

i=1. Because the PD’s depend only on s
(i+1)

, they can be associated with corresponding 
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each PD can be seen in Figure 2.7
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computation of its PD depends on its own level and with the previously detected levels 

only. Also, noticeable is the fact that total distance of each leaf node (candidate MIMO 

symbol) is an additive sum of PDs at each level of the tree. Hence, PDs can be 

considered as an incremental distance at each level of the tree. Alternatively, the 

computation of the terms di(s
(i)

) can be interpreted as a traversal of the tree from the root 

node to the leaf corresponding to s. Note that i = 1 correspond to leaf nodes. The 

estimate can now be obtained by searching the leaf with smallest D and returning the 

path from the top level (i = MT) to that leaf node which will give s�. The PD’s and D’s in 

(2.4) are equivalently referred to as the node’s metric in the sequel.  

2.3 Analysis Criteria for VLSI Implementations 

Once the system level aspects and requirements are understood, one can start 

with the development of low-complexity MIMO receivers. The available design space 

comprises of a variety of algorithms choices each of which provides opportunities for 

further optimizations on both algorithm and VLSI architecture level. At the same time, 

these choices and optimizations often entail tradeoffs between silicon area, throughput 

and BER performance which need to be balanced by the designer. Hence, joint 

consideration of both algorithm and implementation aspects are crucial for achieving 

efficient, low-complexity implementations.  

BER Performance: The quality of a MIMO detection algorithm and of its associated 

implementation can be assessed by its BER performance which is obtained from fixed-

point computer simulations as corresponding analytical expressions are often not 

available or do not include non-idealities caused by implementation tradeoffs.  
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Diversity Gain: Diversity gain describes the behavior of an algorithm in the limit of high 

SNR, and the diversity order corresponds directly to the slope of the BER curve.  

Error Floor: In practical systems, the additive thermal noise term n in the channel 

model in equation (2.1) does not accurately model the overall noise in an end-to-end 

system. Instead, other noise sources whose power does not degrade with increasing SNR 

also contribute to the effective overall noise power. At high SNR, these constant terms 

become the dominant factors and the BER curve shows an error floor. 

Complexity Order of Algorithm: The complexity order of the MIMO detection 

algorithm provides description of the scaling behavior of its complexity in one or more 

design parameters in the limit of infinity. A complexity order of O(n2) for example 

specifies that the fastest growing term in the expression for the corresponding 

complexity is quadratic in n.  

VLSI Implementation Complexity: The computational complexity describes the 

complexity of an algorithm in terms of number of costly operations. However, in 

practice, the notion of what kind of operation qualifies as costly differs widely 

depending on the underlying implementation technology. VLSI implementations allow 

for replacing sequences of basic operations by much more efficient single-cycle custom 

composite operations and additional hardware resources can be allocated for parallel 

execution of more frequent or more time consuming operations. Thus, it is important to 

identify the complexity defining operations with a basic VLSI architecture in mind and 

to count the associated efforts individually. Such careful counting of operations (with 

VLSI architecture and the associated memory requirement) provides reasonable means 



  

 

23

for the comparison of similar algorithms which call for similar underlying architectures 

and for assessing the impact of corresponding optimizations. 

Silicon Complexity: Unfortunately, even smart ways of counting the number of 

operations tend to fail, when comparing fundamentally different algorithms or when 

attempting to accurately predict the capabilities of a final VLSI implementation. 

Moreover, counting of operations does not immediately provide information about the 

design tradeoffs between throughput and silicon area, as data dependencies, memory 

access bottlenecks and other potential impairments are not captured. The true silicon (or 

implementation) complexity of an algorithm is given by the area and the throughput or 

delay that is achieved with a particular VLSI architecture. 

2.4 Discussion of Implementation/Simulation Methodology  

As mentioned previously, the BER results are obtained from computer 

simulations based on the MIMO channel shown in Figure 2.1. This model is valid in rich 

scattering environments with sufficient spacing between the antennas on the order of one 

wavelength. The simulation results presented in this thesis assume perfect channel 

knowledge at the receiver, effectively setting H�=H, so that channel estimation and 

detection can be separated. All the BER results in this thesis are generated for a 4×4 

MIMO system with the simulation setup and scaling values of noise for specific SNRs 

computed as described in [17]. Different architectures are explored with support for 

various modulation schemes and ideas presented can be easily extrapolated for different 

antenna configurations. The main motivation behind choosing MT = 4 is the fact that four 

antennas already provide a considerable capacity improvement that is likely to cover the 
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needs for next generation wireless systems. Moreover, from a practical perspective, 

mounting more than four antennas with an appropriate distance with approximately one 

wavelength apart on a portable device appears difficult. In terms of the modulation 

scheme, it is also important to note that practical systems will employ adaptive 

modulation, predominantly using QPSK to 16-QAM for outdoor scenarios and QPSK to 

64-QAM for indoor scenarios due to which algorithmic/architectural re-configurability 

to different modulation schemes are an important design criterion. Fixed point 

simulations were considered for finding design tradeoff with respect to BER and 

complexity. All the simulations for the algorithmic level exploration were done in bit 

accurate and cycle accurate code in MATLAB which is a good approximation of the 

implementation scenario. Once the fixed point accuracy and tolerance was verified, RTL 

was written in Verilog HDL to describe the functionality of the MIMO detector. RTL 

was verified using the same test points that were used for verification of the simulation 

model in MATLAB. RTL synthesis was done in Synopsys Design Compiler and post-

synthesis simulations using cell libraries from Nangate 45nm PDK was done in Verilog 

XL. Cadence Silicon Encounter was used for the automated Place and Route of the 

design. All the results presented in this thesis are based on back annotated delays from 

cell libraries and delays from wire models. For the FPGA implementation, Xilinx 

integrated development environment was used for synthesis, timing closure and place 

and route.  
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3. FPGA IMPLEMENTATION OF RECONFIGURABLE MIMO DETECTOR 

In this section, a reconfigurable architecture for MIMO detection and its FPGA 

implementation is presented based on a variant of the Sphere Decoding Algorithm 

discussed in Section 2.2. The design objective is to be able to reconfigure on the fly 

which is one of the prime requirements for future wireless standard. The previously 

discussed algorithms/architectures in Section 1.3 are relatively expensive from a re-

configurability viewpoint. From the few re-configurable MIMO detectors that have been 

reported till date, one implementation [18] uses VBLAST based detection scheme that 

incurs significant BER degradation and an expensive Processor based Control Unit. On 

the contrary, we use a variant of the Fixed-Throughput Sphere Decoding Algorithm 

(FSD) [19] with modifications which is provided in [20] for our implementation. Many 

of the challenges discussed in previous sections have been addressed. Also, it can be 

implemented in a highly parallel and pipelined manner, has fixed throughput for a given 

modulation scheme, delivers quasi-ML BER performance and achieves on the fly 

reconfiguration. This detector supports on the fly re-configurability for QPSK, 16-QAM 

and 64-QAM modulation schemes with quasi-ML performance. The control logic has 

minimal complexity and is highly integrated with the data flow. 

3.1 Fixed Sphere Decoding and COSIC 

From an implementation point of view, the sphere decoding has two main 

drawbacks. Firstly, the detector complexity depends on the noise level and the channel 

conditions and, secondly, the sequential nature of the search limits the performance and 

the level of parallelism of a hardware implementation of the algorithm. A new fixed-
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complexity sphere decoder (FSD) [19] is proposed to overcome those two problems by 

searching, independently of the noise level, over only a fixed number of lattice points 

H.s (2.1), generated by a subset of symbols around the received symbol. The FSD 

assigns a fixed number of candidates, ni, to be searched per level independent of the 

initial radius. This can be explained as follows: whereas in the first level, i = MT, more 

candidates need to be considered due to interference from the other levels, the decision-

feedback equalization (DFE) performed on yi and the increase in value of diagonal in 

later level reduces the number of candidates that need to be considered in the last levels. 

The total number of candidates whose Euclidean distance is calculated is, therefore, NS 

= n'
()
'#* , where simulations show that quasi-ML performance is achieved with NS <<  

η(). The ni candidates on each level i are selected according to increasing distance to yi, 

following the SE enumeration [21]. Figure 3.1 shows a hypothetical subset S in a 4x4 

system with 4-QAM modulation where the number of points per level ns = (n1; n2; n3; 

n4)
T 

= (1; 1; 2; 3)
T
. In each level i, the ni closest points to yi are considered as 

components of the subset S. A trade-off exists between the complexity and the 

performance of the FSD. If more candidates are searched, the performance will be closer 

to that of the original SD but the required computational power will increase. That 

makes the FSD suitable for reconfigurable architectures where the number of candidates 

can be made adaptive depending on the MIMO channel conditions. The main problem 

with FSD ordering is its iterative preprocessing stages to find out the number of 

branches that should be selected at each level which has large computational complexity.  
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Figure 3.1: Example of (3, 2, 1, 1) FSD Ordering in [19] 
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Figure 3.2: Tree Structure of COSIC Algorithm 
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This makes implementation of FSD tougher. In [20], a simple technique based on FSD is 

presented which performs near to Optimal in BER performance but has reduced 

complexity. Figure 3.2 shows the COSIC ordering technique in 4x4 system with QPSK 

modulation where the number of points per level ns = (n1; n2; n3; n4)
T 

= (1; 1; 1; 4)
T
.  In 

COSIC, at the first stage η candidate solutions of the tree are considered and then in 

successive levels one the best solution candidate is considered as shown in Figure 3.2. 

This algorithm degrades slightly in BER performance as compared to the FSD algorithm 

but compensates in terms of reduced complexity which helps in VLSI implementation. 
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Figure 3.3: Data Path Parallelism and Control Structures 
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Simplified Norm Computation: The Euclidean norm or l
2
 norm which needs to be 

computed at each level in (2.6) involves a squaring operation which requires multipliers. 

Multipliers are in general expensive in terms of hardware cost. In [9] it has been shown 

that the use of simplified norms leads to significant reduction in hardware cost with 

some BER degradation. In our design we have replaced the l
2
 norm in (2.6) by l

1
 norm. 

The l
1
 norm approximation for is given by: 

   di(s
(i)

) = di+1(s
(i+1)

)+| Re{ei(s
(i)

)} | + | Im{ei(s
(i)

)} |      (3.1) 

where Re{} and Im{} denote real and imaginary parts respectively. The use of l
1
 norm 

causes the BER to degrade only by about 0.4dB-0.5dB [9]. 

3.2 Reconfigurable Sphere Decoder Architecture 

Figure 3.3 shows the high level architecture of our decoder. The choice of 4-way 

parallelism was made because the smallest constellation supported on our decoder is 

QPSK (which has four symbols, η=4). If this architecture is pipelined with m stages then 

it has an initial latency of m+ η/4 clock cycles. Note that the FSD tree has η paths for a 

η-ary modulation scheme. Hence, the proposed architecture takes η/4 clock cycle to 

detect a η-ary modulated MIMO symbol. At each level of the FSD tree (Figure 3.2) we 

need to compute the di(s
(i)

) metrics using (2.5)-(2.7). Each of these equations are 

computed by a Metric Computation Unit (MCU). The best child node at each level is 

picked using a slicing operation shown in Figure 3.4. Figure 3.5 shows the structure of 

the MCU at level-1 which is the lowest level in the tree. The upper box in the Figure 3.5 

evaluates (2.7). Note that there is no need to implement the product terms in (2.7) using 

a multiplier. This product can be achieved by shift and add operation as shown in Figure 
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3.6, because the QAM constellation points only take on a finite number of integer values 

(e.g. in 16-QAM scheme the real and imaginary part of sj ε {-3, -1, 1, 3}). The block 

named slicer as shown in Figure 3.7 picks the nearest QAM symbol to ci+1 as shown in 

Figure 3.4. The slicing operation involves independently comparing real and imaginary 

parts of ci+1 with appropriate decision thresholds. The decision thresholds are given by (- 

(,- - 2) + 2j) Rii, where j is an integer such that 0≤ j≤ (,- - 2)). Our decoder configures 

the slicer based on Modulation Format bits (MF), which indicates the modulation 

scheme of the current MIMO symbol. The control unit of our design is a simple FSM 

which takes in MF [1:0] (00 => QPSK, 01 => 16-QAM, and 10 => 64-QAM) and 

generates a signal ’Endbit’ every (η/4) clock cycle. This signal indicates the completion 

of decoding one MIMO symbol. 

 

 

 

 

  

  

 

Figure 3.4: Example of Slicing Operation for 16-QAM 
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Figure 3.5: Metric Computation Unit of Level 1 

 

 

 

The waveforms in Figure 3.7 show the relation of the control signals with respect to the 

MIMO symbol. The design of the control unit is independent of number of parallel 

processing units m and pipelines k, this implies that very little redesign effort is required 
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in case one wants to achieve very high throughput by increasing m (subject to latency 

constraint) as we will see in the next section.  

 

 

 

 

Figure 3.6: Product Computer Unit Using Shift and Add 

 

 

 

 

Figure 3.7: Slicer Logic which Performs Slicing Operation 
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Figure 3.8: Output and Control Waveform 

 

 

 

 

Figure 3.9: Find-Minimum Unit to Pick Minimum PD 
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The parallelism factor can also be increased (with corresponding changes in the 

control logic) to further increase the throughput. Figure 3.6 and Figure 3.7 shows the 

product computer and slicing unit used in our MCU. Figure 3.8 shows the underlying 

control signals generated to configure between different modulation schemes. Endbit is 

generated based on MF which is the detector input. Endbit is used to the minimum 

metric computed by the detector. Figure 3.9 shows the Find-Min unit which is required 

for hard decision of the MIMO symbol based on the computed distances. 

 

 

 

TABLE 3.1 

Comparison of Reconfigurable Architectures 

Ref QPSK 16-QAM 64-QAM Dynamic 

ReconFigure 

BER 

[17] No Yes No No Quasi-ML 

[19] No Yes No No Quasi-ML 

[9] No Yes No No ML 

[16] No Yes No No Quasi-ML 

[22] Yes Yes Yes Yes Sub-Optimal 

[23] No Yes No No Quasi-ML 

[This] Yes Yes Yes Yes Quasi-ML 
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3.3 FPGA Implementation Results 

The known previous reconfigurable architectures are either non-dynamic [18] or 

uses on-chip processors [22] to achieve re-configurability which is unsuitable for ASIC  

 

 

 

TABLE 3.2 

FPGA Implementation Results 

Target FPGA Device xc4vfx60 (Xilinx Virtex-4) 

Number of 4 Input LUTs 10745 (Utilization: 21%) 

Number of Slice Flip flops 845 (Utilization: 1%) 

Multipliers None 

Maximum Frequency 35 MHz 

Max Decoding Rate: QPSK 280 Mbps 

Max Decoding Rate: 16-QAM 140 Mbps 

Max Decoding Rate: 64-QAM 52.5 Mbps 

Total equivalent gate count 107, 458 

Control Logic Overhead 0.3% 

 

 

 

 

implementation. Moreover, the algorithm used in aforementioned designs degrades BER 

performance. In contrast, our decoder as shown in Table 3.1 supports on the fly 

reconfiguration, has a very simple control unit, with the control signals tightly integrated 
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with the datapath. More importantly, the proposed decoder delivers close to ML BER 

performance as shown in Figure 3.10. The decoding data flow is uninterrupted 

throughout the operation resulting in continuous detection. MATLAB was used to 

simulate bit accurate model of the decoder. We chose eleven bit fixed point quantization 

while maintaining internal precision) for negligible BER degradation. Based on this bit 

accurate MATLAB model, detail hardware was developed. RTL coding and synthesis 

 

 

  

 

Figure 3.10: BER Performance Curve for SD (Floating Point/L2 Norm) vs. Implemented 

COSIC Algorithm with (Fixed-Point/L1 Norm) 
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was done using Verilog HDL and Xilinx ISE 8.1 Embedded Development Kit 

respectively. Xilinx Virtex-4 [xc4vfx60] device was used for mapping the synthesized 

netlist. Floor-planning, Place and Route (P&R) of the design was done using the 

integrated Xilinx Floor-planner and automatic P&R tool. The input test vectors were 

generated by the fixed-point MATLAB model. The hardware design was validated by 

carrying out simulations on these test vectors with the Post-P&R simulation model using 

ModelSim PE 6.3c. Table 3.2 shows the FPGA Implementation results for our 

architecture.  

3.4 Summary of Results and Conclusion 

The system architecture and FPGA implementation of a reconfigurable sphere 

decoder for MIMO detection is presented in this section. The detector is dynamically 

reconfigurable for QPSK, 16-QAM and 64-QAM modulation schemes for 4x4 MIMO 

systems. The decoder was implemented on a Xilinx [xc4vfx60] device. The decoder 

gives an un-coded throughput of 280 Mbps, 140 Mbps, and 52.5 Mbps for QPSK, 16- 

QAM, and 64-QAM respectively. The detector is further pipeline-able to achieve higher 

throughput. The proposed architecture is highly suitable for the next generation wireless 

standards because of its flexibility, reduced computational complexity and higher 

throughput.  
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4. ARCHITECTURAL SPACE EXPLORATION OF RECONFIGURABLE 

MIMO DETECTOR FOR IEEE 802.11n 

The main objective of this section is to present an architectural exploration study 

done on the MIMO detector architecture that was developed in Section 3. The 

architecture described in the previous section can be parallelized and pipelined owing to 

its systolic-like nature. This section shows the results of exploration of this design space 

by searching through the tradeoff of pipelines and parallelism with the throughput for 

IEEE 802.11n providing the bounds for the operating clock frequency. As we saw in 

previous sections, the choice of algorithm and architecture has a significant bearing on 

the final hardware complexity and re-configurability. Besides the BER performance of 

an algorithm, our architecture focuses on issues like pipelining, parallelism, and re-

configurability. The algorithm should be designed such that it lends to a highly pipelined 

and parallel architecture. Also, the algorithm/architecture should be amenable to 

dynamic reconfiguration with various modulation schemes which is a requirement of 

various wireless standards. Among the earliest algorithms used for signal detection for 

un-coded MIMO was VBLAST [24]. Although computationally efficient, VBLAST 

suffers from a substantial degradation of BER. Other approaches for MIMO detection as 

we discussed earlier are the Sphere Decoding (SD) algorithm [9], which is a Depth First 

Search (DFS) based algorithm, and the K-best algorithm which is a Breadth First Search 

(BFS) based algorithm [17]. SD algorithm provides optimal Maximum Likelihood (ML) 

BER performance, but it is unsuitable for parallel and pipelined implementation. Also 

SD algorithm converges to the optimal solution in random fashion [9] which makes it 
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unfit for practical systems. On the other hand, K-best algorithm provides constant 

throughput with quasi-optimal BER performance but involves sorting operation making 

it difficult to design a parallel and pipelined architecture. We use the Fixed-Throughput 

Sphere Decoding Algorithm (FSD) [19] with a modification called COSIC [20] 

algorithm for our implementation. It can be implemented in a highly parallel and 

pipelined manner, has fixed throughput (for a given modulation scheme) as seen in our 

implementation described in Section 3. FSD with COSIC achieves a quasi-optimal BER 

performance as can be seen from [20]. Here, it is also shown that the BER performance 

comparison for FSD and COSIC for 4x4 MIMO 64-QAM modulation scheme are quasi-

optimal and close to optimal respectively. In this section, we focus on wireless systems 

specifically based on 802.11n standard. In particular we carry out extensive architectural 

space exploration to address the issues of power consumption, area, and re-

configurability between different modes of operation while meeting the standards 

throughput requirement. Ultimately, we come up with two designs that target low area 

and low power respectively. Our detector supports on the fly re-configurability for 

QPSK, 16-QAM and 64-QAM modulation schemes. The control logic has low 

complexity and is highly integrated with the data flow. It delivers quasi-ML BER 

performance with no reconfiguration latency, leading to uninterrupted detection of 

MIMO symbols.  
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Figure 4.1: Tree Structure of FSD with COSIC Modification for 4x4 MIMO 

 

 

 

 

Figure 4.2: Packet Structure of IEEE 802.11n Systems 
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4.1 Architectural Flexibilities in FSD Implementation 

As we saw in Section 3, the FSD algorithm with COSIC ordering maps the 

sphere decoding algorithm to a tree structure given in Figure 4.1. In COSIC, we consider 

η nodes in the first level and the best node in the next three levels of the FSD tree. MCU 

architecture for node processing in the last level (Level 1) was shown in Figure 3.5. The 

COSIC ordering technique if directly implemented then each of the branches of tree can 

map to η parallel processing MCUs which is a full parallel implementation of the COSIC 

algorithm. On the other extreme, if we reuse the same computing logic for computing 

each node of the tree then it is a complete sequential implementation of the same. The 

COSIC implementation in Section 3 has MCU units for each level of the tree. The depth 

of this logic can be pipelined owing to its systolic-like structure. Each added pipelining 

stage increases latency but also enhances the throughput of the detector. Hence, we can 

compensate for the loss of throughput in a sequential implementation by increasing the 

number of pipeline in our COSIC based architecture. The other constraint which is of 

importance is forced by the high level application e.g. IEEE 802.11n. As we will see 

later, the application enforces a hard constraint on the throughput required in the MIMO 

system. Hence, this section of the thesis describes methods in which we can exploit our 

architecture developed in Section 3 in terms of the number of pipelines/parallel 

processing nodes needed to meet the throughput requirements while providing optimal 

performance in terms of power and area.  We show two optimized designs in this 

section. On design is optimized for low area and the other optimized for low power. 

Both our optimized designs meet applications throughput constraints. 
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4.2 High Level Architectural Space Exploration 

This section begins with a brief discussion about the throughput limitations 

imposed by the 802.11n standard. We then develop a strategy to evaluate various 

architectural parameters that meet the requirements of the standard.  

 

 

 

 

Figure 4.3: MIMO Detection Interface Timing as Required in IEEE 802.11n 

 

 

 

 

Figure 4.4: High Level Architecture of COSIC Based MIMO Detection 
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4.2.1 Requirements of the IEEE 802.11n standard 

Figure 2.1 depicts a simplified MIMO-OFDM system. An IEEE 802.11n system 

and its associated processing stages and requirements are shown in Figure 4.2. In 

MIMO-OFDM systems such as IEEE 802.11n, OFDM is used to mitigate the affect of 

multi-path fading. There are 52 data tones (or subcarriers) to be processed at the 

receiver. Each tone carries a MIMO symbol; hence the detector has to process all 52 

tones in stipulated time of 3.6µs (as imposed by the standard). This fact is shown 

pictorially in Figure 4.3. All 52 data tones are modulated using same modulation 

scheme, thus the decoder does not have to switch between modes within an OFDM 

symbol. The decoder is essentially an array of processors arranged as shown in Figure 

4.4. It can process m candidate vectors in parallel. Furthermore, each data path in the 

array can be pipelined into k parts. The problem is to find m and k such that power/area 

is minimized as much as possible subject to the throughput constraint. Since, the decoder 

is reconfigurable this optimization has to be over all the supported modes. 

4.2.2. Throughput Planning 

First we will establish the relationship between the time taken, Tp, to process 52 

MIMO symbols with m and k for η = 4, 16, and 64. Since the COSIC tree has η 

candidate vectors to be evaluated (for an η-ary modulation scheme), it takes η/m clock 

cycles to detect an η-ary modulated MIMO symbol in steady state. Hence, Tp is given by 

(4.1).  

     Tp = 52.  η/m . freq        (4.1) 
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Figure 4.5: Tp vs. (m, k) Constraint Due to 802.11n 

 

 

 

We assume that the critical delay of data-path after introducing k pipelines reduces to 

Cd/(k+1). This assumption has been validated empirically for k=0 to 10, using Synopsys 

Design Compiler re-timing utility. Eqn. 4.1 thus becomes:  

    Tp = Tp = 52.  η/m . Cd/(k+1)          (4.2)  

where the factor 52 corresponds to the number of tones, Cd is the combinational delay of 

the un-pipelined data-path. Since 802.11n requires that the processing on all 52 tones be 

over in 3600ns, Tp ≤ 3600ns. Using above discussed model in Figure 4.5, we show how 
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Figure 4.6: Area vs. Tp for 64-QAM 

 

 

 

Tp behaves in the architecture space (with m, k) for η =4, 16 and 64. Figure 4.5 also 

shows the constraint imposed by the 802.11n standard on the maximum time allotted to 

process all MIMO symbols. Clearly, all the points above the constraint plane are 

unacceptable as they don’t meet the throughput criteria. In practice we keep the 

constraint plane at 3000ns (rather than 3600ns), this is to accommodate 15-20% 

pessimism factor. 

4.2.3. Power, Delay and Area Estimation 

The power consumed comprises mainly of the core power (due to 

switching/leakage of logic gates), and due to clock network. The technology mapped  
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Figure 4.7: Aggregate Power vs. m, k 

 

 

 

verilog netlist is analyzed for core power using Synopsys Design/Power Compiler. The 

technology library used was a composite current source (typical) based 45nm library 

from Nangate. The power consumed due to clock depends on number of flops and the 

geometry of the clock network. The clock network was modeled as a symmetrical mesh; 

the global clock network power was estimated using HSPICE. The local power was 

estimated using capacitive load due to the number of flip-flops driven by the local clock 

buffer (buffers were sized appropriately). Synopsys Design Compiler was used to 

estimate the delay of the circuit (re-timed circuit depending on the number of pipeline 

stages). Area estimates were also provided by Design Compiler. 
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Figure 4.8: MCU Architecture of Level 1 in the MIMO Detector 

 

 

 

4.2.4 Architectural Exploration for Low Area 

In this subsection we describe our exploration procedure for low area, based on 

(m, k) constrained to throughput requirements of 802.11n. Figure 4.4 shows the 
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exploration space with respect to m and k. The points below the constraint plane are 

called admissible points. Since 64-QAM is computationally most expensive, the 

admissible points for 64-QAM must be admissible for 16-QAM and QPSK. Hence, to 

find (m, k) for area optimized decoder we only need to meet throughput requirements for 

64-QAM with minimum hardware. Figure 4.6 shows variation of area of the decoder 

with m and k. In particular m=3 and k=8 meets the throughput requirement with least 

area as shown in Figure 4.6. 

4.2.5 Architectural Exploration for Low Power 

Exploring the same space for power is more complicated, because different 

modulation schemes have different power consumption profiles while achieving the 

required throughput. Power consumption has to be optimized over all modes of 

operation. This means we have to pick (m, k) such that the ‘aggregate power” is 

minimized. We define aggregate power as Powagg= Prob(QPSK) * Pow(QPSK)+ 

Prob(16-QAM) * Pow(16-QAM)+ Prob(64-QAM) * Pow(64-QAM), where 

Prob(QPSK) is the probability of the decoder being reconfigured to process QPSK 

MIMO symbols, and Pow(QPSK) is the power consumed by it while processing a QPSK 

MIMO symbol etc. Since there is no apriori knowledge of the probabilities, we assume 

them to be equally likely i.e. Prob(QPSK)=Prob(16-QAM)=Prob(64-QAM)=1/3. Powagg 

is a function of (m, k) as shown in Figure 4.7. However the point corresponding to the 

least power, does not meet the throughput criteria. Figure 4.7 shows the points (using 

stems) that meet the throughput criteria. Hence, (m, k) needs to be searched among these 

points. Hence, in our power optimized design uses m=4 and k=5 as shown in Figure 4.7.  
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TABLE 4.1 

Comparison of Performance with Existing Architectures 

 

Reference 

Supported 

Modes 

BER Area 

(KGE) 

Power 

(mW) 

Technology 

(nm) 

Throughput 

(Mbps) 

[9] 16-QAM Q-Opt 50K 473 250 169 

[17] 16-QAM Q-Opt 91K 626 350 52 

[25] QPSK Opt 685K N/A 180 28.8 

[11] 16-QAM Q-Opt 175K 407 180 160 

 

4.3 Details of the MIMO Detection VLSI Architecture 

The Metric Computation Units (MCUs) computes di(s
(i)

) metrics using (2.5)-

(2.7). 

4.3.1 MCU Architecture 

The MCU computes equations (2.5)-(2.7) in that order. Figure 4.8 shows the 

detailed structure of a MCU with only combinational logic at level 1 (lowest level in 

tree, corresponding to i = 1). The upper dotted box in Figure 4.8 evaluates (2.7). There is 

no need to implement the product terms in (2.7) using a multiplier. This product can be 

implemented simply by shift and add operation, because the QAM constellation points 

only take on a finite number of integer values (e.g. in 16-QAM scheme the real and 

imaginary part of sj ε {-3, -1, 1, 3}). The middle dotted box implements (2.5); this box is 

primarily composed of two blocks: a Slicer, and a block for computing the norm. As 

discussed earlier the COSIC algorithm picks the all children of the root node, and the 
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TABLE 4.2 

ASIC Implementation Details 

Design Parameters Area 

Optimized 

Design 

Power 

Optimized 

Design 

Target Technology Library Nangate 45nm 

PDK 

Nangate 45nm 

PDK 

Pipeline Stages (k) 8 5 

Parallelism (m) 3 4 

Gate Equivalent 58.2K 67.7K 

Power Consumption 11.91mW 9.7mW 

Frequency: QPSK 38.8MHz 18MHz 

Frequency: 16-QAM 116.3MHz 71.8MHz 

Frequency: 64-QAM 426.6MHz 287.3MHz 

Throughput Requirement QPSK 115.6Mbps 115.6Mbps 

Throughput Achieved QPSK 155Mbps 144Mbps 

Throughput Requirement 16-QAM 231.1Mbps 231.1Mbps 

Throughput Achieved 16-QAM 310.13Mbps 287.2Mbps 

Throughput Requirement 64-QAM 346.7Mbps 346.7Mbps 

Throughput Achieved 64-QAM 465.38Mbps 430.95Mbps 
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‘best’ child (nodes with least |ei|
2
) of these nodes thereafter. From (2.5) it can be easily 

seen that, in order to minimize |ei|
2
, we need to compute si such that the distance between 

ci+1 and Rii.si is minimized. The slicer block picks the nearest scaled QAM symbol (Rii. si) 

to ci+1 as shown in Figure 4.8. This operation involves independently comparing real and 

imaginary parts of ci+1 with appropriate decision thresholds. For example, in Figure 4.8 

the nearest scaled QAM symbol to ci+1 is (1+j).Rii, since real and imaginary parts of ci+1 

are both less than 2Rii. In general, the decision thresholds are given by (- (,- - 2) + 2j) 

Rii, where j is an integer such that 0≤ j≤ (,- - 2)). The decoder configures the slicer 

based on the MF bits (MF bits are essentially representative of η). The block named 

’NORM’ computes (2.6), this involves squaring operations, however, we use suboptimal 

norm in order to avoid multipliers as will be described next.  Simplified l
1
 norm 

computation as shown earlier in Section 3 was also used instead of l
2
 norm to reduce the 

number of multipliers in the design. Each individual blocks in the design can be seen in 

Section 3. 

4.4 ASIC Implementation Results 

Table 4.1 shows the comparison between various existing designs (q-opt stands 

for quasi-optimal). In Table 4.2 we present implementation results of our two designs 

(area and power optimized) and where they stand with respect to the existing designs. 

MATLAB was used to simulate bit accurate model of the decoder. We chose eleven bit 

fixed point quantization (internal precision was maintained) for negligible BER 

degradation. Detailed hardware architecture was then developed. The RTL coding was 

done using Verilog HDL. Nangate 45nm CMOS predictive standard cell library was 
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used for the design flow. Synopsys Design Compiler was used to synthesize the gate 

level net-list and retime the circuit. MATLAB generated test vectors that were used to 

validate the design. 

4.5 Results, Summary and Conclusion 

Two designs for reconfigurable MIMO detector are presented in this section. 

First design pushes for least area, and the second one targets lower power consumption. 

The detector is dynamically reconfigurable for QPSK, 16-QAM and 64-QAM 

modulation schemes for 4x4 MIMO systems as was discussed in Section 3 as well. The 

proposed architecture is highly suitable for the IEEE 802.11n wireless standard because 

of its flexibility, and ability to meet the required throughput. 
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5. LOW POWER RECONFIGURABLE MIMO DETECTOR FOR REAL-TIME 

MOBILE APPLICATIONS 

This section presents a low power runtime reconfigurable architecture for MIMO 

detection and its ASIC implementation. The design is able to reconfigure on the fly to 

various modulation schemes as we have seen in earlier sections with fixed throughput 

for each modulation scheme and achieves quasi-optimal BER performance. The 

detectors discussed earlier have variable throughput for different modulation schemes 

which doesn’t work well with wireless systems which need adaptive modulation 

schemes along with fixed throughput decoding for all modulation schemes. In this 

section, a decoder architecture which shows significant savings in term of energy as 

compared to conventional decoder architectures is presented. The low power strategy is 

based on the optimal parallel processing/pipelining arrangement (as shown in Section 4) 

combined with a dynamic voltage and frequency scaling (DVFS) technique. Current 

demands for higher data rates has led to the use of MIMO wireless systems, which offers 

higher throughput without any overhead in terms of bandwidth as compared to single 

input single output wireless system due to its higher spectral efficiency. Nevertheless, 

the high complexity of the MIMO decoder hardware results in significant power 

consumption which is unacceptable for portable applications. These applications also 

require support for multiple modulation schemes, multiple antennas configuration, 

variable code rate and multiple space-time coding schemes [17]. The complicated nature 

of the MIMO detection algorithms combined with the need for re-configurability pose a 

major challenge to the implementation of MIMO detectors [26] as shown in Section 3. 
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Figure 5.1: Decoding Iterations Verses Modulation Scheme 

 

 

 

Architectures amenable to deep pipelines and high degree of parallelism are more 

desirable for practical implementation due to their superior throughput and lower energy 

consumption levels. Among the many algorithms considered for implementation, our 

implementation is based on the Fixed-Throughput Sphere Decoding Algorithm with 

COSIC arrangement as it can be implemented in a highly parallel and pipelined manner, 

and as the name suggests, has fixed throughput for a particular modulation scheme 

which was explored in Section 4. COSIC also achieves a quasi-optimal BER 

performance as can be seen from [19]. Earlier in the thesis in Section 3, we present a 

dynamically reconfigurable MIMO detector architecture. This architecture dynamically 

reconfigures based on the modulation scheme of the frame. Each frame takes variable 
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number of iterations through the detector to complete processing depending on the η of 

the modulation scheme as shown in Figure 5.1, resulting in unpredictable frame 

completion time which makes interfacing with the application modules rather difficult 

because high level applications pose restrictions on the duration of MIMO detection as 

can be seen in Figure 4.2. In addition, power consumption is also an important design 

constraint for the mobile applications which mostly run on battery powered devices. In 

this section, we propose a DVFS based reconfigurable MIMO detector and its ASIC 

implementation in TSMC 0.18µm technology which addresses three major issues: lower 

energy consumption and re-configurability to different modulation schemes with lower 

complexity and fixed throughput across modulation schemes. Our detector supports on 

the fly re-configurability for QPSK, 16-QAM and 64-QAM modulation schemes with 

constant throughput for all modulation schemes which are ideal for real-time multi-

media applications. The decoder uses optimal voltage and frequency combinations while 

processing data frames resulting in significant energy gains (nearly 24% per decoded bit) 

suitable for portable devices. This technique is called dynamic voltage and frequency 

scaling (DVFS) [14][15]. DVFS brings down the system power dissipation as it is 

proportional to occurrence of activity and quadratic voltage supply. The modulation 

format bit input determines the number of decoding iterations of the hardware, based on 

which the operating frequency and voltage is chosen. The choice is made in such a way 

so as to decode each frame, within a fixed time-period. Thereby, making available the 

output of each frame synchronized to the fixed rate at which the data is consumed in 

real-time application interface. The control logic has low complexity (8% overhead in 
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power and 5% overhead in area) and is highly integrated with the data flow. This 

detector delivers quasi-optimal BER performance with no reconfiguration latency which 

guarantees the necessary Quality of Service (QoS) with uninterrupted processing of 

MIMO symbols.  

5.1 Circuit Power Estimation and Reduction  

There are three major sources of power dissipation in CMOS circuit: 

    PTotal = PSwitching + PSC + PLeakage       (5.1) 

The individual power components are switching power, short circuit power and leakage 

power can be expressed using the following equation: 

   PTotal =  α.CL.∆V.Vdd.fclk + ISC.Vdd + IleakageVdd      (5.2) 

where Pswitching represents the switching power due to the charging and discharging 

parasitic capacitances in the circuit. CL is the loading capacitance, fclk is the clock 

frequency, and α is the node transition factor defined as the probability that a power 

consuming transition occurs. In most cases, the voltage swing ∆V is the same as the 

supply voltage Vdd. The short circuit power PSC is caused by direct-path short circuit 

current ISC which arises when both NMOS and PMOS are simultaneously turned on. 

This is caused by the finite rising and falling time of input signal. The short circuit 

power can be kept within 15% of the switching power if carefully designed [27]. Pleakage 

is the leakage component of power, where Ileakage is the total leakage current in CMOS 

circuit. Also for CMOS circuits, delay of the circuit increase with decreased voltage 

supply, as shown in (5.3):  

   ζ = 1/ fclk = [ CLVdd/ Idsat ] ∝∝∝∝ [Vdd/ (Vdd - Vth)
1.3

]      (5.3) 
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Figure 5.2: Frequency Controller Unit for DVFS 

 

 

 

Typically, switching power is the main source of power dissipation in the circuit 

especially in baseband processing circuits which continuously process data. It should be 

noted that while power consumption decreases linearly with the operation frequency, the 

time for finishing the certain workload increases. As a result, the total energy 

consumption remains constant for the same workload if the power supply is not changed. 

Dynamic voltage and frequency scaling is an effective method to address this energy 

consumption problem, especially under wide variations in workload.  
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5.2 DVFS Based Low Power Decoder Architecture 

5.2.1 Reconfigurable Sphere Decoder Architecture 

Figure 4.8 in the previous section shows the high level architecture of the 

decoder implementation which has been discussed in detail earlier. The choice of 4-way 

parallelism is ideal for power considerations because the smallest constellation 

supported on our decoder is QPSK (which has four symbols, η=4) as was seen in Section 

4. If this architecture is pipelined with m stages then it has an initial latency of m+η/4 

clock cycles. Note that the FSD tree has η paths for a η-ary modulation scheme. Hence, 

the proposed architecture takes η/4 clock cycle to detect a η-ary modulated MIMO 

symbol. At each level of the FSD tree (Figure 5.1) we need to compute the di(s
(i)

) metrics 

using (2.5)-(2.7) as was discussed earlier. Each of the equations is computed by MCUs. 

Figure 4.8 shows the structure of the MCU at level 1 (lowest level in tree). The detailed 

architecture of the detector is described in Section 3 and it high level exploration in 

terms of optimal parallelism and pipelining is presented in Section 4. 

 

 

 

 

Figure 5.3: Bit Computer Unit 
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Figure 5.4: Iteration Computer Unit 

 

 

 

5.2.2. Dynamic Voltage and Frequency Scaling Policy 

The key observation made for adaptive decoding is that for the reconfigurable 

decoder architecture described above, QPSK data frames are decoded at the rate of 1 

iterative cycle of hardware per symbol, 16-QAM data frames are decoded at 4 iterative 

cycles of the hardware per symbol and 64-QAM data frames are decoded at 16 iterative 

cycles of hardware per symbol because the decoding process in QPSK and 16-QAM is 

finished in lesser number of decoding iterations than 64-QAM data frames resulting in 

variable throughput of the decoder for different modulation schemes as shown in Figure 

5.1. Hence, significant energy saving can be achieved by lowering the decoder 

performance level especially while processing QPSK and 16-QAM data frames. In this 

way, the 64-QAM decoding process can borrow time from the other modulation 

schemes. The modulation format (MF) bit (which was discussed earlier in Section 3) of 

each symbol is used to pre-determine the total number of bits to be decoded as shown in 

Figure 5.3 and the total number of decoding iterations needed to process that particular 
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ALGORITHM I 

Dynamic Voltage and Frequency Scaling Policy 

i = 0 

while i < 3 do 

       if MF == 0 then 

          Tot_No_Bit = Tot_No_Bit + 2; 

          Num_Dec_Iteration = Num_Dec_Iteration + 1; 

      end if 

      if MF == 1 then 

          Tot_No_Bit = Tot_No_Bit + 4; 

          Num_Dec_Iteration = Num_Dec_Iteration + 4; 

      end if 

      if MF == 2 then 

          Tot_No_Bit = Tot_No_Bit + 6; 

          Num_Dec_Iteration = Num_Dec_Iteration + 16; 

      end if 

i = i + 1; 

end while 

Reqd_Dec_Time  = Tot_No_Bit * Throughput; 

Opr_Freq = Num_Dec_Iteration /Reqd_Dec_Time; 

 



  

 

61

 

Figure 5.5: Buck Converter Circuit for Voltage Regulation 

 

 

 

data frame is computed as shown in Figure 5.4. Based on the throughput requirement 

and total number of bits in a data frame, we determine the frequency-voltage 

combination to be used for decoding. The maximum number of decoding iteration is set 

to be close to optimum in terms of energy and detection performance, without violating 

the real-time constraints. The policy is described in the pseudo code given in Algorithm 

I.  It should be noted that Num_Dec_Iteration is the required number of decoding 

iterations for that particular data frame; Tot_No_Bit is the total number of bits embedded 

in the buffered data frame. Note that each symbol of QPSK has 2 bits, 16-QAM has 4 

bits and 64-QAM has 6 bits embedded in it. A data frame buffer is used to accumulate 3 

symbols. The data in the buffer is operated upon as given in Algorithm I and the 

operational frequency is picked by the frequency controller (setting the frequency 

selection registers) in such a way that it is just greater than the required computed 

frequency. 
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Figure 5.6: Voltage Output of the Voltage Controller 

 

 

 

5.2.3. DVFS Controller Design 

The above policy can be implemented with extremely low hardware complexity. 

Even though it has been reported [28] that for modern VLSI technology, the leakage 

power is becoming so significant that the best solution for managing power is 

maintaining the highest performance as long as possible and then turning the circuit into 

sleep mode. In the case of MIMO decoder, however, this is not feasible because of the 

real-time constraints, constantly incoming data, as well as power overhead associated 

with turning off and on the circuit. The clock frequency is determined by the constant 
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decoding time which is pre-determined for each successive frame. Figure 5.2 shows the 

diagram of the 

  

Figure 5.7: Voltage Supply Requirement with Different Frequency 

 

 

 

frequency controller in the design which generates the operating frequency of the 

successive frames. Operating at low clock frequency, the voltage supply can be lowered 

correspondingly to the frequency which is done by the voltage regulator shown in Figure 

5.5. The voltage output response of the regulator for different operating frequencies in 

shown in Figure 5.6 which responds fast enough to meet the timing margin shown in 

Figure 5.7. The different symbols in the data frame are stored in a data frame buffer. As 

previously discussed, the total number of bits in the frame can be calculated using the 
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Bit Computer Unit as shown in Figure 5.3. The frame end bit (FE) of the Bit Computer 

Unit resets the accumulator so that it starts counting when the next frame is buffered. 

The Bit Computer Unit uses an accumulator to keep track of the number of bits 

embedded in each symbol stored in the frame. Once the number of bits to be decoded in  

 

 

 

 

Figure 5.8: Number of Frame Buffer Verses Energy per Decoded Bit 

 

 

 

a frame and the required throughput for an application is known (which is a given in 

practical systems), the frame decoding time is computed by the frequency controller. 

The number of decoding iterations needed to decode a frame in calculated by the 

Iteration Computer Unit as shown in Figure 5.4. The frame decoding time combined 

with the total number of required iterations is used to compute the operational frequency.  
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Once a frame is decoded, the voltage & frequency level needs to be changed according 

to the needs of the next frame. Because level of the voltage supply cannot be changed 

instantly, inter-frame buffers are required for storing the incoming channel data and a 

frequency selection buffer is also required to store the decoding frequency information 

for corresponding data frames. The data frame size M is chosen based on the energy per 

decoded bit vs number of frame buffer curve shown in Figure 5.8. In our design, we 

have chosen data frame buffer size as three symbols (M=3) i.e. three symbols will be 

stored together in the data frame buffer to estimate the frequency of operation of the 

decoder while processing that frame. The inter frame buffer size K is determined by the 

time response of voltage supply Vddl as well as the overall throughput required in the 

application. As presented later in this section, buffer size of 1 frame is needed typically 

in the detector for synchronization purposes. The overhead is buffer of size 2 frame since 

a buffer size of 1 frame is intrinsic for the decoder. Clock divider is preferred over other 

designs such as phase-loop locked (PLL) in [14], because it provides reasonable 

frequency resolution for the decoding policy and capability to change immediately. Fdec 

clocks the decoder for current frame, and fctr is sent to the voltage scaling controller for 

adjusting the voltage for the next frame once the frame processing is over. Fctr is 

conservatively generated as the fastest clock such that the voltage supply will be within 

safe region of operation (Figure 5.6). A variety of VLSI implementations of the voltage-

scaling controller have been reported in the literatures. In our implementation, we use 

the design in [15] of the buck converter, because it is of reasonable complexity and suits 

the needs of this design. Other control schemes can also be used. Secondly, a 
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reconfigurable architecture based on the FSD algorithm [19] is used for the MIMO 

decoder. The critical path of the decoder is extracted and replicated for the voltage 

controller. Load capacitor of the voltage controller should be large enough to maintain a 

steady voltage level in presence of sudden change in the output current. The capacitor is 

chosen to be 0.65µC. The power transistor Mp2 is 400µm in width, which is driven by 

five stages of buffer, with a scaling up factor of 4 [15], considering the minimum power 

consumption. Figure 5.5 shows the diagram of the circuitry.  

 

 

 

 

Figure 5.9: Frame-Wise Dynamic Voltage/Power Profiles 
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5.3 Implementation Results 

 

The design of voltage-scaling controller has been simulated using TSMC 0.18µm 

technology. With 1.9V voltage supply, the decoder can be clocked as fast as 250MHz 

with a 21 stage pipeline. Extra 5% timing margin has been added to the critical path 

replica of the voltage controller to accommodate for variations as shown in Figure 5.6. 

Figure 5.9 demonstrates voltage response of the converter with respect to the change in 

load of the data frames. The buck converter can scale up the output voltage level to a 

maximum of 60mV/µs which was seen using SPICE simulation using Synopsys 

HSPICE. Hence, the result presented in [15] aligns with your simulation results. 

 

 

  

 

Figure 5.10: BER Response of the presented DVFS based MIMO Detector 
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Assuming a 450MHz system clock, it can be divided into 225MHz, 200MHz, 

175MHz and 150MHz for the decoder. The voltage supply varies from 1.9V to 1.0V 

within this frequency range. It takes about 15µs to scale the voltage up by 0.9V as shown 

in Figure 5.6. A inter frame-buffer size of 3 in our case suffices to meet the voltage 

transition requirements and also provides the right tradeoff between energy saving 

because of DVFS and number of frame buffers. Current through the PMOS power 

transistor constitutes the majority of power overhead of the controller. It is simulated to 

be in the order of 15mW as shown in Table 5.1, which is small compared to maximum 

 

 

TABLE 5.1 

ASIC Implementation Details and Comparison 

Comparison Criteria DVFS Arch Non-DVFS Arch 

Target Technology 0.18µm 0.18µm 

Throughput: QPSK 225 Mbps 225 Mbps 

Throughput: 16-QAM 225 Mbps 450 Mbps 

Throughput: 64-QAM 225 Mbps 675 Mbps 

Equivalent Gates 74 KGE 70 KGE 

Energy/Decoded Bit 130 pJ/bit 170 pJ/bit 

Energy Gain (%) 24 % N/A 

Control Area Overhead 5% N/A 

Control Power Overhead 8% N/A 
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power dissipation of the decoder which is around 340mW when operated at a voltage of 

1.9V and frequency of 225MHz for a continuous 64-QAM decoding sequence. If we 

assume the equal probability of occurrence of each modulation scheme in a data frame, 

then the average power dissipation of the detector is further lowered to around 262mW 

approximately. The numbers of decoding iterations for 64-QAM, 16-QAM and QPSK 

are 16, 4 and 1 respectively, based on the detector architecture used with a MCU 

parallelism of four. These numbers are chosen based on complexity of design and 

consideration of performance requirement. The frequency selections are such that the 

above numbers of decoding iterations with frequency and voltage scaling yield constant-

time detection which is useful for real-time applications. It is clearly seen in Table 5.1 

that up to 24% energy per decoded bit is saved without bit-error degradation as shown in 

Figure 5.9. In summary, the presented adaptively decoding scheme will achieve 

significant saving in decoding energy. Figure 5.8 also shows the timeline of the decoder 

operation with three sample frames having different combination of modulation 

schemes. The power profile is seen to vary with time because of reduced performance 

during duration of reduced load. It can also be observed that all the frames are decoded 

within the same time interval providing constant throughput which are a requirement of 

many wireless standards. 

5.4 Results, Summary and Conclusions 

A low power MIMO detector scheme suitable for portable battery powered 

device in real-time mobile communication is presented. Incoming data symbols are 

processed before decoding to determine the frequency of operation and voltage to be 
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used for the decoding process based on the throughput requirements. Power overhead of 

the adaptively decoding control unit mainly stems from the power transistor, and it is 

found to be small compared to the power saved because of the frequency & voltage 

scaling of the decoding process. Up to 24% energy saving per decoded bit in the 

decoding process is achieved without performance degradation. 
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6. SUMMARY, CONCLUSIONS AND FUTURE WORK 

MIMO enables spatial multiplexing to increase channel bandwidth which 

requires the use of multiple antennas in the receiver and transmitter side. The increase in 

bandwidth comes at the cost of high silicon complexity of MIMO detectors which is a 

result of the intricate algorithms required for the separation of these spatially 

multiplexed streams. Previous implementations of MIMO detector have mainly dealt 

with the issue of complexity reduction, latency minimization and throughput 

enhancement. Although, these detectors have successfully mapped algorithms to 

relatively simpler circuits but still, latency and throughput of these systems need further 

improvements to meet standard requirements. Additionally, most of these 

implementations don’t deal with the requirements of re-configurability of the detector to 

multiple modulation schemes. This necessary requirement provides another dimension to 

the implementation of MIMO detector and adds to the implementation complexity.  This 

thesis focuses on the efficient VLSI implementation of the MIMO detector with an 

emphasis on low power, performance and re-configurability to modulation schemes. 

MIMO decoding in our detector is based on the FSD decoding algorithm which has been 

simplified for an effective VLSI implementation without considerably degrading the 

near optimal bit error rate performance. The regularity of the architecture makes it 

suitable for a highly parallel and pipelined implementation. The decoder has intrinsic 

traits for dynamic re-configurability to different modulation and encoding schemes. This 

decoder architecture can be easily tuned for high/low performance requirements with 

slight degradation/improvement in Bit Error Rate (BER) depending on needs of the 
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overlying application. Additionally, various architectural optimizations like pipelining, 

parallel processing, hardware scheduling, dynamic voltage and frequency scaling have 

been explored to improve the performance, energy requirements and re-configurability 

of the design.  

Future work in this field can extend to the implementation a soft output MIMO 

detector [29] which can be fed to Forward Error Correction Schemes like Turbo Codes, 

LDPC etc. for better BER performance which may be required in many high integrity 

wireless applications. Iterative Soft MIMO detector with feedback from FEC decoding 

stage will be an interesting design challenge. Configurability of MIMO architectures for 

multiple antenna configurations which are required for future generation standards can 

be explored as well. 
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