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ABSTRACT 

 

 

Piezoelectric actuators have been developed in various forms ranging from discrete 

layered composites to functionally graded composites. These composite actuators are 

usually made up of differentially poled piezoelectric ceramics. This study presents 

analyses of thermo-electro-mechanical response of piezoelectric actuators having 

combinations of metal and ceramic constituents with through thickness gradual 

variations of the metal and ceramic compositions. This is done in order to achieve better 

performance. The piezoelectric ceramic constituent allows for electro-mechanical 

coupling response and higher resistance to elevated temperatures while the metal 

constituent provides more ductile composites. The gradual variation in the ceramic and 

metal composition helps to avoid high stress concentrations at the layer interfaces in 

composites.  

 

A functionally graded composite is analyzed with discrete layers of piezoelectric 

ceramic/metal composite. Each layer in the functionally graded composite has a fixed 

ceramic/metal composition. The governing equation for such a piezoelectric functionally 

composite beam is presented based on a multi-layer Euler-Bernoulli beam model and the 

overall displacement response of the beam under thermal, mechanical and electrical 

stimuli is predicted. The variation of this response is studied with respect to functional 

grading parameter, number of layers, thermal and electrical and mechanical stimuli 
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applied. It is found that the displacement due to thermal and mechanical effects can be 

mitigated to some extent by the application of an electric field. It is also observed that 

layers of varying thickness may be assumed to model the functional grading more 

accurately i.e. use thinner layers where the grading changes rapidly and thicker layers 

where the grading changes gradually. In addition to the above parametric studies, the 

change in the material properties with temperature is also studied. It is found that the 

temperature-dependent material parameters are important when the actuators are 

subjected to elevated temperatures.   
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NOMENCLATURE 

 

 

� = Width of beam 

� = Stiffness vector 

�	= Piezoelectric strain tensor 

�	= Piezoelectric stress tensor 

� = Permittivity Constant 

��� = �	 = Piezoelectric strain coefficient for 31-mode 

� = Electric field vector 

	� = Electric field in 
�-direction 

FGM = Functionally graded material 

� = Curvature of beam bending 

� = Length of beam 


� = External bending moment in y-plane 


�
� = Bending moment due to thermal stress 


�
�  = Bending moment due to piezoelectric effect 

�� = External axial load 

��
� = Axial load due to thermal stress 

��
�  = Axial load due to piezoelectric effect 

�� = Deformation along 
�-axis 

�� = 
�-component of total deformation 
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��	= 
�-component of total deformation 

��	= � = 	 
�-component of total deformation 

�� = 	� =	Young’s modulus in 
�	direction  

� = Distance of any point on the beam from the neutral axis in the 
�	direction  

� = Coefficient of thermal expansion 

� = Strain vector 

��	= Neutral axis strain 

��� = ��	= Normal strain in the 
�-direction  

���	= Transverse shear strain in the 
�
�	-plane 

���	= Longitudinal strain in 
�-direction 

� = Rotation of a transverse normal to the beam neutral axis 

� = Stress tensor 

��� = � = Axial stress in 
�	direction 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1 Introduction 

Piezoelectric actuators are widely used as positioning devices, motors and vibration 

suppressors. In case of small and lightweight devices, vibration suppression is one of the 

primary design concerns. In such applications, piezoelectric sensors and actuators are 

often integrated into structural components to actively reduce vibration of these 

structures. Another type of actuator/sensor is a piezoelectric bimorph which has been 

used for precision displacement and volume control and other applications such as 

positioning devices, motors, pressure sensors, semiconductor chips, optical instruments, 

bending actuators in textile machines and ink print heads. Piezoelectric actuators have 

low cost, light weight, high response times, and no electromagnetic noise. Compared to 

traditional electromagnetic motors, they can have a more compact design and better 

efficiency [1-3].  

 

A combination of a piezoelectric and an elastic layer, called a unimorph or monomorph 

was followed by a bimorph type actuator with two piezoelectric layers of opposite 

polarity. These early forms were developed into other specially designed structures like 

MOONIE and RAINBOW and further into polymorphs or multilayer bending actuators. 
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Smits et al. [4] offer a very detailed historical review of the applications and structures 

of piezoelectric structures.   

 

Smits et al. [4] and Smits and Choi [5] derived the constitutive equations for 

piezoelectric bimorph beams in case of two antiparallel piezoelectric layers and a 

combination of piezoelectric and elastic layer, respectively. The energy density function 

was expressed in terms of stress and electric field as the independent variables. Further, 

the total energy function was partially differentiated to obtain the intensive properties 

(displacement, rotation, electric charge) in terms of the extensive ones (applied moment, 

force and potential difference). Wang and Cross [6] derived similar constitutive 

equations for a triple layer beam having the central layer made up of an elastic material 

and the top and bottom being identical piezoelectric layers. The equations provided in 

these papers are a very useful and convenient way of solving problems related to discrete 

layered bimorphs. In the above bimorph and unimorph cases, Wang et al. [7] derived an 

expression for the mechanical energy, the piezoelectric coupling factor and the 

transmission coefficient as well as their maxima. They found that a stiffer elastic layer 

leads to better electromechanical coupling. Also, it was found that bending actuators 

have lower coupling than transverse or longitudinal actuators because internal stresses 

are built up in the flexural case.  

 

Steel et al. [8] fabricated a bimorph with PZT and Beryllium-Copper as the two 

components. The tip deflection was found to be proportional to applied voltage and the 
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square of the bimorph length. Kugel et al. [9] compared the tip deflection, blocked force 

admittance factor and resonant frequency for various actuator designs: RAINBOW, 

CERAMBOW, bimorphs and unimorphs and THUNDER. (The layout and origin of 

these actuators have been provided in the above reference). 

 

A composite material made up of elastic and piezoelectric material may be better 

tailored towards some specific applications by combining the advantages of both 

materials. Similarly, a plastic-piezoelectric composite was fabricated by Newnham et al. 

[10]. This paper also outlines the key concepts to be considered in designing composite 

piezoelectric structures. In an attempt to improve the behavior of bimorphs, multilayer 

beams were formed. Based on the work of Marcus [11], it was found that the tip 

deflection decreased with an increase in the number of layers in a multilayer actuator. 

This deflection, however, remained a finite value and did not diminish. The internal 

stress, however, decreased considerably as the number of layers increased. This finding 

was later supported through the works of [12-16] and many others.  

 

Kouvatov et al. and Hauke et al. [12, 13] conducted an experimental as well as finite 

element analysis comparing bending in bimorphs and polymorphs. An n-layered 

polymorph was found to agree with Marcus’ [11] prediction. The tip deflection reduced 

with an increase in the number of layers. However, after the number of layers was 

increased to 11, the deflection was somewhat steady at 70% of the maximum value. The 

stress however continues to decrease with increasing layers. This is true even with an 



  

4 

 

increase in the voltage applied. For these studies, a Barium Titanate ceramic was 

selected. Individual layers were poled separately and glued together. Top and bottom 

edges had maximum poling. The internal layers were de-poled by in steps order to grade 

the piezoelectric properties. Taya et al. [17] designed a piezo-composite laminar 

structure where mirror symmetry of a bimorph was maintained. As in the studies above, 

the piezoelectric constant was varied functionally. Two configurations were selected – 

one with the polarization maximum at the center and decreasing toward the outside (type 

A) while another with the maximum polarization layers toward the outside and 

decreasing toward the center (type B). The layered models were studied using the 

classical lamination theory (CLT) to optimize the microstructure to achieve maximum 

tip displacement and minimum stress field. It was found that the type A was the most 

optimum design. 

 

Bimorphs provide large displacements, however high stresses are induced at the metal-

PZT interface in such actuators possibly causing premature failure. There may also be 

debonding between the layers in a laminate made up of discrete layers. Therefore, it 

would be desirable to avoid this debonding while retaining the composite structure. To 

this end, Wu and Kahn [18] introduced a monomorph in which the piezoelectric property 

alone had been linearly graded through the thickness. Such graded structures do not 

cause stress concentration at layer boundaries as do the traditional bimorphs. The study 

by Taya et al. [17]  mentioned above involved functionally grading two piezoelectric 

materials having different piezoelectric and dielectric properties.  
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Shi et al. [14] studied piezoelectric and piezo-composite cantilever beams using 2D 

elasticity. Using a quadratic Airy stress function and a linear induction function, the 

exact solution was found for a moment couple type loading. This solution was derived 

for an n-layered piezoelectric beam and a 2n layered beam with alternating elastic and 

piezoelectric structure. The piezoelectric beam was assumed to have a linearly graded 

piezoelectric constant. This study is particularly useful because it suggests the behavior 

of a functionally graded material (FGM). Xiang, Shi [15] presented a similar study 

where the piezoelectric constants were graded non-linearly. The 2D elasticity solution 

provided was in agreement with the finite element results and the findings in the works 

of [12, 13]. Once again, the results were in accordance with [11]. Chen and Shi [19] also 

assumed linearly graded piezoelectric properties. In addition to that, a temperature field 

varying with thickness was applied giving rise to thermal loads. The cases considered 

were (1) thermal and electric load, (2) thermal and mechanical load and (3) purely 

thermal load, (4) purely electrical load. It was found that the combination in case (1) 

does not induce any stresses in a perfectly graded beam. Case (2) gives rise only to axial 

stress in the x-direction. The expressions for transverse displacement, longitudinal 

displacement and potential were derived for the latter two cases. One can also find a 

brief discussion on the effect of graded thermal and pyroelectric properties. It is 

predicted that these parameters would not influence the stress distribution. However, 

there would be a marked difference in the strain distribution, electric field strength and 

displacement fields.  
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Functionally graded beams have also been successfully studied in cases where the 

ceramic is a piezoelectric one (see [20-22]). Zhu and Meng predicted the relationship 

between the bending displacement and the FGM coefficient based on the principle of 

minimum potential energy. Huang et al. [20] found that fracture toughness of a 

PZT/Silver composite depended on the stress relaxation induced by the silver particles. 

Takagi et al.[21] fabricated a PZT/Pt graded composite and found that the addition of Pt 

improved the mechanical properties especially the fracture toughness.  

 

In addition to the above studies, there has been extensive research in the field of 

functionally graded metal-ceramic composites used as thermal barriers. Having lower 

thermal conductivity, the ceramic provides high temperature resistance while the metal 

helps provides better mechanical properties in the composite. FGM plates have been 

studied by Praveen and Reddy (1998), Reddy (2000) and Sankar and Tzeng (2002) [23-

25]. 

 

 

1.2 Motivation and Objective  

To summarize the past work, the use of piezoelectric materials in the field of actuation 

has evolved tremendously. In case of composite beams comprising of piezoelectric and 

composite materials, the electro-mechanical coupling has been extensively studied. 

Active composite structures with a gradual or discrete variation of the material 
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properties, termed as active functionally graded structures, promise to be a solution for 

mitigating stress concentration within layers and avoiding delamination within layers in 

the smart composite structures.  

 

Several studies involve the grading of solely the piezoelectric properties through the 

thickness of the actuator by differential poling. Considering the advantages of metal-

ceramic composites this study deals with piezoelectric functionally graded composites 

by combining the piezoelectric ceramic with a non-piezoelectric material (metal). 

Literature clearly indicates that this would help improve the brittle fracture of such an 

actuator over a purely piezoelectric ceramic. In addition, the ceramics have high 

resistance to high temperatures, which make them suitable for high temperature 

applications. Understanding the overall performance of piezoelectric functionally graded 

composites under combined thermo-electro-mechanical coupling effects is currently 

lacking which hinder further development of the piezoelectric functionally graded 

composites. 

 

This study aims at understanding the thermo-electro-mechanical coupling performance 

of ceramic-metallic functionally graded piezoelectric beams based on the Euler-

Bernoulli beam theory. The through-thickness gradual variation of the thermo-electro-

mechanical properties in the functionally graded beam is modeled as discrete layers of 

ceramic/metal composites with different compositions of the constituents. An analytical 

model is used to predict the lateral displacement of the piezoelectric functionally graded 
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beam, undergoing conduction of heat, electric field input, and mechanical loading. 

Parametric studies are also performed to examine the effect of beam’s slenderness ratio, 

through-thickness material variations, temperature-dependent material properties, and 

electric and temperature fields applied on the overall performance of the piezoelectric 

functionally graded beam. The temperature-dependence of material properties are also 

studied with a view to comment on its impact on the response of such a composite beam. 

 

 

1.3 Research Tasks  

1. Formulate governing equations for the thermo-electro-mechanical coupling in 

piezoelectric functionally graded cantilever composites based on multi-layered 

Euler-Bernoulli beam model. 

2. Carry out the heat-transfer analysis of the cantilever piezoelectric functionally 

graded beam for both temperature-dependent and temperature-independent 

material properties. 

3. Predict the overall response of piezoelectric functionally graded composites 

subject to coupled thermo-electro-mechanical stimuli. 

4. Conduct parametric studies to examine the effect of material gradation, 

temperature-dependent material properties and geometrical aspect ratio on the 

overall response of piezoelectric functionally graded composites. 
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CHAPTER II 

PIEZOELECTRIC MATERIALS AND ELECTROMECHANICAL COUPLING 

 

 

2.1 Piezoelectric Materials, Crystal Structure and Domain Switching 

Piezoelectricity was discovered in the late 1800s. Based on their studies, Jacques and 

Pierre Curie proposed that certain crystals generate electric charge when mechanically 

loaded (known as the piezoelectric effect). Later, this effect was also found to be 

reversible (inverse piezoelectric effect). As defined by Cady [26], Piezoelectricity is the 

“electric polarization produced by mechanical strains in crystals belonging to certain 

classes, the polarization being proportional to the strain and changing sign with it.” 

Further discussion on piezoelectric effect and the constitutive relations is included later 

in the chapter.  

 

Piezoelectricity occurs only in crystals which do not have a center of symmetry below 

Curie temperature. This study considers piezoelectric ceramics of Perovskite 

polycrystalline structures such as Barium Titanate, Lead Zirconate Titanate and other 

ceramics of the type 3ABO (oxygen octahedral type unit cell), as shown in Fig. 1. 
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Figure 1: Perovskite structure of ferroelectric crystals of the type 3ABO : (a) cube 
texture above Curie temperature; (b) tetragonal texture below Curie 
temperature[27] 
 

 
Consider a Barium Titanate crystal above Curie temperature. It attains a cubic structure 

(see Fig. 1a) with 2Ba + at the corners, the 2O − at the face centers and 4Ti + at the center of 

the cube. This structure shows no piezoelectric properties. Below the Curie temperature, 

however, the crystal exists in the tetrahedral form where the ions are displaced relative to 

the earlier position. This shift creates an electric dipole and this is called spontaneous 

polarization which can occur in any of the six directions [28, 29].  

 

We consider polycrystalline ceramics to be made up of grains and grain boundaries at a 

microstructural level. Based on the spontaneous polarization direction, the domains 

within a ferroelectric ceramic can be oriented differently in the different domains within 

the same grain. The net polarization for such a grain may be negligible at a global level 

and no notable piezoelectric effect (or inverse piezoelectric effect) can be seen under the 
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application of a mechanical or electrical stimulus. This ceramic can be poled in order to 

reorient the domains in a similar direction by the application of an electric field in the 

desired direction.  

 

 

 

Figure 2: Polycrystalline ferroelectric crystal structure [27] 
 

 

 

Figure 3: Domain orientation by poling (a) non polarized crystal; (b) polarized 
crystal [28] 

 

Two kinds of domains are found to exist in such a ceramic: a 180º domain where 

adjacent regions have opposite polarization and 90º domains where adjacent regions 
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have perpendicular polarization (see Fig. 2). On the application of an electric field, the 

domains reorient themselves in the direction of the applied field (see Fig. 3). Switching 

of 180 º domains down not cause any strain but the switching of 90 º domains causes 

deformation in the ceramic on a macroscopic scale [29]. 

 

2.2 Electromechanical Coupling and Constitutive Equations 

In a polarized ceramic, when the electric field E is applied parallel to the polarization 

direction, the remnant polarization is further aligned in the direction of the applied 

electric field. This causes elongation in the polarization direction (see Fig. 4). If the 

electric field were to be applied in the opposite direction to the poling direction, the 

domains would once again begin to switch to the new direction. In this case, the 

structure would contract along the polarization axis.  

 

 

 

Figure 4: Transverse strain in ferroelectric ceramics: (a) Polarized state; (b) 
Electric field � parallel to polarization direction; (c) Electric fi eld antiparallel to 

polarization direction [27] 
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As we know, if a stress is applied to an elastic material, there will be a corresponding 

strain in the material. At relatively low values of stresses, the corresponding strains are 

usually linearly proportional to the stresses. Now if a stress is applied to a poled 

piezoelectric material, the rotation of dipoles will cause collection of opposite charges on 

the electrodes. The electric displacement � (charge per unit area of electrode) is 

observed to be proportional to the applied stress at low values of stress. The constant of 

proportionality is called the piezoelectric strain coefficient.  

 

Conversely, when an electric field � is applied across a piezoelectric material, the dipole 

rotation once again leads to an electric displacement � which is linearly proportional to 

the electric field. As per the inverse piezoelectric effect, this electric field also causes 

straining of the material. The strain is proportional to the electric field and, once again, 

the slope is the piezoelectric strain coefficient [30].  

 

Considering the piezoelectric relations in all three directions, the constitutive relations 

foe linear electro-mechanical coupling response of polarized piezoelectric is written as:  

         where i,j,k = 1,2,3

E
ij ijkl kl nij n

m mkl kl mn n

s d E

D d Eσ

ε σ

σ

= +

= + ò  (2.1) 

where ε is the strain, σ is the stress, d is the piezoelectric strain coefficient, � is the 

mechanical compliance, � is the electric displacement, ϵ is the dielectric permittivity and 

� is the electric field. These equations consider the stress and electric field as 

independent variables. An alternative expression is:  
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e

e          where i,j,k = 1,2,3
ij ijkl kl nij n

m mkl kl mn n

C E

D E

σ ε
ε

= +

= + ò      (2.2) 

where e is the piezoelectric stress coefficient and � is the stiffness. This set of equations 

considers the strain and the electric field as independent variables.  

 

In Eq. 2.2, the stress and strain tensors have 9 elements each, the compliance and 

stiffness matrices have 81 constants each, the piezoelectric stress and strain coefficients 

have 27 constants and the permittivity matric is comprised of 9 values (see [31, 32]). 

Keeping in mind the symmetry conditions, the following engineering is quite common in 

literature and has been adopted here:  

1 11 1 11

2 22 2 22

3 33 1 33

4 23 32 4 23 32

5 31 13 5 31 13

6 12 21 6 12 21

                    
                   
                   

         
         
         

σ σ ε ε
σ σ ε ε
σ σ ε ε
σ σ σ ε ε ε
σ σ σ ε ε ε
σ σ σ ε ε ε

= =
= =
= =
= = = +
= = = +
= = = +

        (2.3) 

This condenses the equations to: 

       , 1,2,...6;  , 1,2,3
i ij j ni n

m mj j mn n

s d E

D d E where i j m n

ε σ
σ

= +

= + = =ò     (2.4)
 

e
e        , 1,2,...6;  , 1,2,3

i ij j ni n

m mj j mn n

C E

D E where i j m n

σ ε
ε

= +

= + = =ò
    (2.5) 

Most polarized piezoelectric ceramics of Perovskit structures are orthotropic in nature. 

By making this assumption, the material constants in the above equation are as follows:  
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1312

1 1 1

2321

2 2 2

31 32

3 3 3

23

23

23

1 0 0 0

1 0 0 0

1 0 0 0
s

10 0 0 0 0

10 0 0 0 0

10 0 0 0 0

Y Y Y

Y Y Y

Y Y Y

G

G

G

νν

νν

ν ν

 − − 
 
 − − 
 
 
− − 
 =
 
 
 
 
 
 
 
 
         (2.6)

 

where �� , i = 1,2,3 are the scalar components of the elastic Young’s moduli in the 3 

directions, ��		are the components of the Poisson’s ratios and ��	 are the components of 

the shear moduli. The permittivity and piezoelectric constants with the non-zero 

components are written as: 

11

22

33

0 0
0 0
0 0

 
 =  
  

ò
ò ò

ò
         (2.7) 

15

24

13 23 33

0 0 0 0 0
0 0 0 0 0

0 0 0

d

d

d d d

 
 =  
  

d         (2.8) 

 

2.3 Operating Modes 

There are two primary modes in which piezoelectric devices are commonly operated: the 

33 and the 31 operating modes. Usually, the polarization direction is considered in the 
� 

direction. The other two perpendicular directions are 
� and 
�. In case of the 33 mode, 
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the stress, strain, electric displacement and electric field in the 
�-direction are 

considered in the applications. Thus, the ���	component of piezoelectric coefficient is 

utilized. By varying the mechanical load or displacement in the 
�-direction the electric 

charge D3 can be collected and by prescribing an electric field E3, changes in the 

displacement or force in the 
�-direction can be measured. In the 31 mode the 

deformations or forces of the structure in the 
� and 
� directions are obtained by 

prescribing an electric field along the poling direction	
� and an electric charge D3 can 

be collected due to changes in the displacements or forces in the 
� and 
� directions. 

When multiple piezoelectric wafers are stacked, with a common voltage across each of 

them a larger displacement can be achieved than by using a single actuator. 

 

This study utilizes the 31 mode in order to induce bending on a piezoelectric 

functionally graded beam, in which the poling axis of the piezoelectric ceramics is in the 

through-thickness direction of the beam (x3-axis) and the electric field E3 is applied 

through the thickness of the beam. A non-uniform elongation or shortening in the axial 

(x1-) direction of the piezoelectric components induces bending of the beam. Also, the 

Euler-Bernoulli beam model is considered for the piezoelectric functionally graded 

cantilever beam and the x2-direction (y direction) is left out of the calculations. Thus, the 

constitutive equation for the piezoelectric beam reduces to: 

1 1 31 3
1

3 31 1 33 3

1

 

d E
Y

D d E

ε σ

σ

= +

= + ò   (2.9) 
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CHAPTER III  

ELECTRO-THERMO-MECHANICAL BEAM BENDING FORMULATION 

 

 

In this section the governing equations for beam bending in a piezoelectric functionally 

graded beam, which is approximated as layered piezoelectric composite beam, have been 

set up. All the symbols have been defined in the Nomenclature section at the beginning 

of this document. Here, we consider the problem of the beam bending in one plane only. 

The Euler-Bernoulli beam model is selected as a base thus the effects of transverse shear 

stresses on the lateral deflection have not been included in the study. The beam bending 

equations are set up for an n-layered beam. The approximation of a functionally graded 

beam to a multi-layer beam is discussed in Chapter IV. 

 

Consider the displacement of point P after the deformation of a cantilever beam as 

shown in Fig. 5. The deformations of the cantilever are:  

1 0

2

3

0
u u z

u

u w

θ= −
=
=

              (3.1) 

where �� is the axial deformation of the neutral axis, z (or x3) is the distance of any point 

in the beam from the neutral axis and � is the rotation of the neutral axis. The 

mechanical strain components are given as follows:  
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Figure 5: Elastic beam bending [27] 
 

0
11

1 1

22

3 1
13

1 3 1

0

2

u
z

x x

u u w

x x x

θε

ε

ε θ

∂ ∂= −
∂ ∂

=
∂ ∂ ∂= + = −
∂ ∂ ∂

           (3.2) 

As per the Euler-Bernoulli beam theory, there are no transverse strains i.e. ��� = 0 and 

the rotational angle θ  is defined as:  

1

w

x
θ ∂=

∂
             (3.3) 

and the axial strain in Eq. (3.2), in engineering notation, becomes 

2
0

1 2
1 1

u w
z

x x
ε ∂ ∂= −

∂ ∂
            (3.4) 

For convenience, the above equation is expressed in terms of the axial strain at the 

neutral axis ε0 and curvature K: 
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2
0

0 2
1 1

;             u w
K

x x
ε ∂ ∂= =

∂ ∂
           (3.5) 

Therefore,  

1 0 zKε ε= −              (3.6) 

Further, the axial stress for a linear elastic beam is given by:  

1 1 1 1 0( )Y Y zKσ ε ε= = −            (3.7) 

 

3.1 Thermo-elastic Strain  

If a temperature change ���� is applied, the strain can be expressed as follows: 

1 0 11zK Tε ε α= − −             (3.8) 

where ��� is the coefficient of thermal expansion and T is the temperature change 

applied at a given point.           

 

3.2 Piezo-thermo-elastic Strain  

Incorporating the strain due to the piezoelectric and temperature effects in the above 

equation as per the discussion and equation 2.5 we obtain the following equation for the 

axial strain:  

1 0 11 31 3zK T d Eε ε α= − − −            (3.9) 

Continuing with this expression for strain, the stress can be expressed as:  

( )1 1 0 11 31 3Y zK T d Eσ ε α= − − −         (3.10) 
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Here onward, the following symbols will be used for convenience:  

 

1

1

1

11

   for      for stress in  direction  
   for      for strain in  direction   
   for      for Young's Modulus in  direction   
   for    for coefficient of thermal expansion in  directi

x

x

Y Y x

x

σ σ
ε ε

α α

31

3

33

on 
   for      for piezoelectric strain constant  31 component
   for      for electric field in  direction   

   for      for dielectric constant 33 component   

d d

E E z

ò ò

  

 

3.3 Locating the Neutral Axis 

Let z  be the distance of the neutral axis from the bottom edge of the beam. In order to 

locate the neutral axis, we assume a case of pure bending i.e. ε� = 0  

 

 

 

Figure 6: n-layered beam [27] 
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In order to find the neutral axis, we sum forces in the x-direction i.e. ∑ F� = 0. 

Therefore, 

0
A

dAσ =∫            (3.11) 

Substituting the expression for stress from Eq. 3.7, 

( ) 0
A

Y zK dA− =∫           (3.12) 

For the multilayered beam considered in this problem (see Fig. 6), we assume the 

material properties to be constant over each layer. So the expression in Eq. 3.12 is 

applied to each layer and the results over all the layers are summed. This is the 

expression for stress over any layer	". 

( )0
i iY zKσ ε= −

  (3.13) 

1

( ) 0
i

n
i

i
i A

Y zK dA
=

=∑∫           (3.14)

1
1

0
i

i

zn
i i

i z

b Y zKdz
−

=

=∑ ∫           (3.15)

( )2 2
1

1

0
2

i in

i i
i

b Y K
z z −

=

− =∑          (3.16) 

where �� and ��
�are the upper and lower limits respectively of the "�� layer of the beam.  

1

1
1 1

    and     
i i

i j i j
j j

z z h z z h
−

−
= =

   
= − − = − −   

   
∑ ∑       (3.17) 

Substituting these values in Eq. 3.12, and solving for z : 
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2 2
1

1 1 1
0

2

i in i i

j j
i j j

b Y K
z h z h

−

= = =

    
 − − − =   
     

∑ ∑ ∑   

2 2

1 1 1
0

2

i in i i

j j i
i j j

b Y K
z h z h h

= = =

    
 − − − + =   
     

∑ ∑ ∑  

2 2

2

1 1 1 1
2 0

n i i i
i i

j j i i j
i j j j

b Y z h z h h h z h
= = = =

      
 − − − − − − =     
       

∑ ∑ ∑ ∑  

2

1 1
2 2 0

n i
i i

i j i i
i j

b Y h h h h z
= =

 
− − = 

 
∑ ∑

        (3.18)
 

2

1 1 1

1

2

2

n i n
i i i i

i j i
i j i

n
i i

i
i

b Y h h b Y h

z
b Y h

= = =

=

−
=
∑ ∑ ∑

∑

        (3.19) 

 

3.4 Setting-up the Equations 

Continuing from Equation 3.10, the piezo-thermo-elastic stress in the "�� layer is: 

 
( )0

i i i i iY zK T d Eσ ε α= − − −
 (3.20) 

If the external axial force and bending moment applied are � = N� and M = M� 

respectively, summing the forces and moments, we get: 
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From	∑#� = 0: 

( )
1

0
1

i

i

zn
i i i i i

i z

b Y zK T d E dz Nε α
−

=

− − − =∑ ∫        (3.21)

( ) ( )

( ) ( )

2 2
0 1 1

1 1

1 1
1 1

2

i in n
i i

i i i i
i i

n n
i i i i i i i

i i i i
i i

b Y K
b Y z z z z

b Y T z z b Y d E z z N

ε

α

− −
= =

− −
= =

− − −

− − − − =

∑ ∑

∑ ∑

      (3.22) 

Therefore, 

0
T EA BK N N Nε − = + +           (3.23) 

where 

( )

( )

( )

( )

1
1

2 2
1

1

1
1

1
1

2

n
i i

i i
i

i in

i i
i

n
T i i i i

i i
i

n
E i i i

i i
i

A b Y z z

b Y
B z z

N b Y T z z

N b Y d E z z

α

−
=

−
=

−
=

−
=

= −

= −

= −

= −

∑

∑

∑

∑

         (3.24)          

From	∑
 = 0: 

( )
1

0
1

i

i

zn
i i i i i

i z

b Y K zK T d E zdz Mε α
−

=

− − − =∑ ∫        (3.25) 

( ) ( )

( ) ( )

2 2 3 30
1 1

1 1

2 2 2 2
1 1

1 1

2 3

2 2

i i i in n

i i i i
i i

i i i i i i in n

i i i i
i i

b Y b Y K
z z z z

b Y T b Y d E
z z z z M

ε

α

− −
= =

− −
= =

− − −

− − − − =

∑ ∑

∑ ∑   (3.26) 

So,  
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0
T EB DK M M Mε − = + +           (3.27) 

where 

( )

( )

( )

( )

2 2
1

1

3 3
1

1

2 2
1

1

2 2
1

1

2

3

2

2

i in

i i
i

i in

i i
i

i i i in
T

i i
i

i i in
E

i i
i

b Y
B z z

b Y
D z z

b Y T
M z z

b Y d E
M z z

α

−
=

−
=

−
=

−
=

= −

= −

= −

= −

∑

∑

∑

∑

         (3.28) 

Knowing all the material constants, the Equations 3.20 and 3.24 can be solved to find the 

axial strain ε�and curvature	�: 

0
T T

T E

A B N N N

B D K M M M

ε  + +   =     − + +    
        (3.29) 

Note that N, the external axial force is assumed to have been applied at the neutral axis. 

However, if this force is applied eccentrically, a corresponding moment must be 

assumed to compensate for the eccentricity.  

 

Further, the 
�- and 
�- components of displacement i.e. �� and �� respectively can be 

calculated by knowing ��and curvature � and from on Equations 3.1 and 3.5.
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CHAPTER IV 

RESPONSES OF A PIEZOELECTRIC FUNCTIONALLY GRADED BEAM: 

PARAMETRIC STUDIES 

 

 

4.1 Problem Modeling 

4.1.1 Materials Used 

For this study, the metal selected is Titanium Alloy (Ti6AlV) and the piezoelectric 

ceramic is PZT 5A. The material data are provided below in Tables 1 and 2. The 

temperature dependent properties of PZT5A (piezoelectric strain constant d31, coefficient 

of relative permittivity and coefficient of thermal expansion) are obtained through the 

data provided in [33, 34]. The temperature-dependent properties are given in Figs. 7-9.  
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Table 1: Material properties for elastic material Ti6AlV [35] 

 
Elastic Material: Titanium alloy - Ti6AlV 

Property Symbol Units Constant Value Temperature-Dependent Value 

     
Density Ρ kg/m^3 4429 NA 

Conductivity K W/m.K 6.7 =1.20947+168.569E-4T 

Coefficient of Thermal Expansion Α /K 8.6 =7.57876E-6 + 4.926E-9T + 2.3848E-12 T2 

Poisson's Ratio Ν - 0.3 NA 

Specific Heat Capacity Cv J/kg.K 526.3 =625.29692 - 0.2641T + 4.4888E-4 T2 

Young's Modulus E N/m^2 1.13E+11 =122.55676E9 - 56.208E6 T2 - 45.12T3 

Relative Permittivity Εr - 1 NA 

Piezoelectric Strain Constants 

d31 C/N 0.00 NA 

d15 C/N 0.00 NA 

d33 C/N 0.00 NA 

 
Table 2: Material properties for PZT 5A  [34] 

 
Piezoelectric Material: PZT 5A 

Property Symbol Units Constant 
Value Temperature-Dependent Value 

     

Density Ρ kg/m^3 7750 NA 

Conductivity K W/mC 1.25 NA 
Coefficient of Thermal 

Expansion 
Α /K 3.00E-06 = 1.0014E-6 + 4.6429E-9T + 7.4286E-11 T2 – 2E-13 T3 

Poisson's Ratio Ν - 0.31 NA 

Specific Heat Capacity Cv J/kg.C 420 NA 

Young's Modulus E N/m^2 1.21E+11 NA 

Relative Permittivity Εr - -1700 = 1612.6 + 7.2619T -0.017405T2  + 7.6237E-5T3 

Piezoelectric Strain Constants 

d31 C/N -1.71E-10 = -1.464E-10 - 5.2506E-13 T + 2.5515E-15 T2 - 4.3906E-18T3 

d15 C/N 5.84E-10 NA 

d33 C/N 3.74E-10 NA 
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Figure 7: Coefficient of thermal expansion 

 
Figure 8: Relative permittivity 

 
Figure 9: Piezoelectric strain constant 
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4.1.2 Functional Grading 

The beam considered for this study is assumed to be a functionally graded composite 

beam in which the metal and ceramic constituents have been gradually varied from one 

end to another (see Fig. 10) through the thickness of the beam.  

 

 

Figure 10: Functionally graded beam 
 

The variation of the material through the thickness is assumed to follow a simple power 

law equation [23]:  

( , ) [ ( ) ( )] ( ) ( )c m mP z T P T P T f z P T= − +            (4.1) 

1( )
2

n
z

f z
h

 = + 
        (4.2) 

where n is the power law exponent, � is the perpendicular distance of any point in the 

beam from the center of the beam and � is the temperature of the material at that point.  

$(�) is the volume fraction and %��,�� is any property of the material (e.g. coefficient 

of thermal expansion, Poisson’s ratio etc.). %� and %�are the values of that property for 

the ceramic and metal respectively. In the case where the properties are independent of 

temperature, the above equation is dependent only on the through thickness location	�.  
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In this study, it is assumed that the functionally graded beam is made up of discrete 

layers and that the material properties do not vary through a single layer. Since the 

material properties are graded gradually, the value of a material property will not vary 

greatly from one layer to the next. Each layer will thus have different material properties 

and the formulation for such an n-layered beam has been developed in Chapter III.  

 

4.2 Results 

A cantilever beam of 120mm length and 6mm x 6mm cross section is assumed for this 

study, making the L/B ratio 20. The initial temperature ��	of the system is assumed to be 

25C (see Fig. 11). The metal surface is maintained at this temperature for all parametric 

studies. The electric field E is applied through the thickness of the beam. In order to do 

this, electrodes are applied at the metal and PZT layers. For solving this beam bending 

problem, the heat transfer analysis is carried out first. The electric field and concentrated 

moment (electric and mechanical load cases) are assumed to act after the steady state 

had been reached.  

 

 

Figure 11: Problem description 
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4.2.1 Applying Electric Field Only  

The coercive electric field magnitude for PZT 5A is 1200 V/mm. Therefore, the 

maximum field strength applied in this study has been restricted to 1000V/mm. The first 

case study is to examine the effect of gradual variation in the material properties, 

through varying the parameter n in Eq. (4.2), on the overall tip deflection at the free end 

of the cantilever beam. As the magnitude of the electric field applied increases, for any 

given value of n, the tip displacement monotonically increases (see Fig. 12). The 

through-thickness axial strain profiles at the maximum electric field (1000V/mm) are 

shown in Fig. 13. The application of the through-thickness electric field induces pure 

bending deformation in the functionally graded beam. It is evident that the strain is less 

than 2% and thus in keeping with the small strain assumption. The above study considers 

a functionally graded beam comprising of 6 layers. 

 

Next, the effect of number of discrete layers n on the overall response of the functionally 

graded beam is studied. The variation of the lateral displacement with the number of 

layers is shown in Fig. 14 and serves as a convergence study. For 10 layers or more, the 

difference in the response is less than 1% so 10 or more layers may be used for the 

computation. However, in the event of manufacturing a beam of similar dimensions, 6 

layers provide a fairly reasonable estimate of the response. The 6-layer response differs 

from the 10-layer response by about 2% for the n=1 case.   
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Figure 12: Variation of lateral deflection with electric field 

 

Figure 13: Strain profile for electric field of 1000V/mm 
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Figure 14: Variation of displacement response with the number of layers assumed 
for computation. 
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Consider the variation of the lateral deflection with respect to changing the gradation 

exponent	&. A temperature �� =200C was applied at the PZT surface. This temperature 

change causes deflection in the beam. In order to minimize the tip deflection due to the 

temperature changes, electric field was applied in the direction of the polarization. Three 

values of electric field were considered: 0, 500 and 1000 V/mm. The lateral deflection in 

each case has been shown in Fig. 15. The lateral deflection hits a minimum value 

between 0 and 1. The minimum value is 0.6mm for E = 0, 0.52mm at n = 0.35, 0.52mm 

for E = 500V/mm at n = 0.7 and 0.43mm for E = 1000V/mm and n = 0.85. Thus, the 

graph indicates that as the electric field increases, the deflection is minimized to a 

greater extent and the minimum shifts to the right and its magnitude decreases. This is 

obvious, since the electric field counters the deflection due to the thermal load. Hence, 

the total deflection in the beam is minimized as the electric field increases. The same 

trend is also observed in all load cases. If the external loads are known for a given 

application, it would be possible to select an optimal n-value to minimize the lateral 

deflection in the beam. 
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Figure 15: Lateral deflection with respect to coefficient n (E = 1E6V/m) 

 

 

 
Figure 16: Lateral displacement as a function of the temperature at PZT surface 
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A temperature field is created by applying a temperature �� at the piezoelectric surface 

and Fig 16 shows the variation of the lateral displacement with	��. For this, ��	was 

varied from 25C to 200C. The deflection due to the applied thermal field is downward 

and hence negative. The –U3 value has been plotted the graph shown. The maximum 

displacement (occurring for  �� = 200C) is ~0.6mm for both n=1 and n=0.1 and 1mm 

for n=5. The lateral displacement steadily increases with an increase in temperature 

since the material properties here are assumed to be independent of temperature.  

  

With an intention to minimize the deflection of the free end of the cantilever actuator, 

the next step is to find the electric field required in order to mitigate the bending due to 

the applied temperature field. Figure 17 shows the variation in electric field strength 

required for an increasing value of 	�� (i.e. the temperature applied at the piezoelectric 

surface). This value directly depends upon the deflection shown in Fig. 16 and hence, 

this too, varies linearly with the temperature applied. The electric field required for 

minimizing the displacement due to temperature is 14000V/mm for n=0.1, 8000V/mm 

for n=5 and 3000V/mm for n=1. Since the piezoelectric constituent is the least in case of 

n=0.1, even though it has lower displacement than n=5, the electric field required to 

negate that displacement is higher for n=0.1. Obviously, since the coercive field is 

1200V/mm, the demand of 14000V/mm cannot be met and is not a realistic value. 

However, a field of 1000V/mm was applied to note the reduction in displacement that 

can be achieved.  
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Fig. 18 shows the reduction in lateral displacement after the electric field has been 

applied to a thermal load case for linear material grading. While the deflection is reduced 

by almost 30% in this case (n=1), the magnitude of this difference is about 0.2mm. It is 

important to note that this mitigation in displacement depends solely upon the electric 

field applied and this is a reasonably large percentage of the initial displacement for n 

values close to 1. However, for larger displacements such as for a large n value, it may 

not be a significant percentage of the initial deflection.  

 

 

 

Figure 17: Electric field strength required to minimize the lateral displacement due 
to the thermal field applied 
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Figure 18: Change in lateral displacement on applying electric field 
 

 

Figure 19: Deflection after applying electric field 
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Figure 20: Strain profile for electrical + thermal load case 
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rapidly closer to the metal surface for n values less than 1. It will be more advantageous 

to assume layers of unequal thickness. For example, for n=5, it would be useful to 

assume thicker layers close to the metal surface and thinner layers close to the ceramic 

surface. This would predict a smoother strain response for the beam as would be 

expected in a functionally graded material.  

 

Now the same problem is solved for a case where certain material properties vary with 

the temperature. The thermal conductivity varies with temperature in case of the 

Titanium alloy while the conductivity is a constant value for the PZT. The electric field 

required is shown in Fig. 21.It is observed that the electric field required to minimize the 

deflection is 7200V/mm for n=5, 2700V/mm for n=1 and 8300 V/mm for n=0.1.  

 

Fig. 22 compares the deflection in both cases (temperature dependent and independent) 

after the electric field has been applied. The response predicted by the temperature-

dependent model is slightly lower than that predicted by the temperature independent 

model. Also, it is noticed that the difference is more pronounced towards the middle of 

the temperature change i.e. close to 100C.  
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Figure 21: Electric field required to minimize displacement by the temperature-
dependent model. 

 

Figure 22: Comparison of deflection predicted by temperature dependent and 
independent models 
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4.2.3 Applying Mechanical, Thermal and Electrical Load 

In addition to the above loads, a mechanical loading is considered here. T1 is taken as 

200C for all problems. A moment M is applied at the free end of the cantilever and its 

value ranges from -0.5Nm to 0.5Nm. The electric field required to minimize the 

deflection for both the temperature-dependent and independent cases have been shown 

in Fig. 23. As seen in the earlier case, the electric field strength required is much higher 

for n = 0.1 than for the other two cases due the lower piezoelectric effect. In case of 

n=0.1, the difference between the temperature dependent and independent models is also 

larger. On the other hand, this difference is quite small for n=1 and n=5. The maximum 

electric field is required for the +0.5Nm moment the maximum difference for the two 

models is 35% for n=0.1, 12% for n=1 and 14% for n=5.  

 

The corresponding displacement after applying the electric field of strength 1000V/mm 

can be seen in Fig 24. The dashed line signifies the temperature-dependent model and 

the dotted line signifies the temperature-independent model. The maximum difference 

between the two models is seen for n=1 followed by n=5 and the least is for n=0.1. The 

least displacement of all is seen in the n=1 case – only about 0.65mm. The strain profiles 

for the extreme moment cases have been shown in Fig. 25 (after the electric field has 

been applied for the n=1 case). It can be observed that the strain profiles show a slightly 

smaller value in case of the temperature-dependent model. As the n=1 case has the 

smallest displacement, it also shows very small values (less than 0.015%) of strain once 

the deflection has been minimized by applying an electric field. 
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Figure 23: Comparison of electric field strength required in order the minimize tip 
deflection 

 

 

Figure 24: Comparison of the lateral displacement as a function of the concentrated 
moment applied 
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Figure 25: Strain profile for temperature dependent case (solid, marked line) and 
temperature independent (dashed line) case. 
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CHAPTER IV 

CONCLUSIONS AND DISCUSSION 

 

 

5.1 Conclusions  

In this study, a functionally graded composite having discrete layers of piezoelectric 

ceramic/metal composite is analyzed based on a multi-layer Euler-Bernoulli beam 

model. The governing equation for such a piezoelectric functionally composite beam is 

developed and the overall displacement response of the beam under thermal, mechanical 

and electrical stimuli is predicted. The analysis is performed in two steps: (a) finding the 

temperature profile from the heat transfer analysis and (b) finding the displacement 

response from the beam bending analysis. Further, two models have been considered: 

one with temperature-independent material properties and another with temperature 

dependent material properties.  

 

In order to approximate the functionally graded beam to a multi-layered model, n equal 

layers are assumed. The functionally graded properties for the center of each layer are 

found based on rule of mixture and they are assumed to be constant for that layer. A 

temperature field is created by applying a fixed temperature at the extreme metal and 

ceramic surfaces. It is assumed the beam reaches a thermal steady state before the 

application of mechanical and electrical inputs. The mechanical load is in the form of a 

concentrated moment at the free end of the cantilever beam. Electric field was supplied 
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in order to minimize the deflection caused by thermal and mechanical load. Since the 

dimensions were reasonably small, it was assumed that the electrodes were placed along 

the top and bottom faces of the beam thus giving an even field strength throughout the 

beam. The limiting factor for minimizing deflection in this manner is the coercive field 

limit. In fact, in reality, as the electric field gets very close to the coercive field value, the 

material behaves non-linearly. This factor has not been discussed in this study. It would 

also be possible to provide multiple electrodes through the thickness. Doing so makes it 

possible to provide differential electric field through different layers of the beam. This 

behavior can be used to further control the deflection in the beam.  

 

The main purpose of incorporating a functionally graded type material in actuators is to 

reduce the stress concentration at the layer interfaces. It is observed that the strain and 

corresponding stress in the beam is fairly smooth due to the gradual variations on the 

properties of the beam. This can help avoiding debonding between layers that occurs in 

laminated composites.   

 

Obviously, incorporating a temperature-dependent model is a more realistic prediction of 

the beam bending response. Based on the material properties assumed, the deflection 

predicted by the temperature-dependent model is slightly lower than that predicted by 

the temperature-independent model. However, within the limitations of the coercive 

field and Curie temperature, the two values are not widely different. There has been 

some research in the past on high-temperature piezoelectric materials. Incorporating 
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such a ceramic would allow a wider range of applied temperatures and it is likely that 

the temperature effects would be more significant. Metal ceramic functionally graded 

composites are already being used as thermal barriers. Developing a similar metal-PZT 

composite would provide an ideal transducer in high temperature fields.  

 

5.2 Limitations 

The strain profiles presented signify that the small strain assumption is valid since the 

strains are less than 2%. The governing equation discussed here is only valid for small 

strains since it is based on the principle of superposition. The beam has been assumed to 

be slender and the transverse shear effects have been ignored. A solution based on 2D 

elasticity would be a more accurate way in predicting the deformation and stresses in the 

beam.  

 

It is seen that the number of layers assumed while approximating the response also 

affects the quality of the solution. In the n=0.1 case, the material composition changes 

rapidly from PZT to metal at the PZT end of the beam while in the n=5 case, the material 

composition changes more rapidly at the metal end of the beam from metal to PZT. The 

layer thickness is a constant in this study but this is not the best approximation as can be 

seen by the discontinuity in the strain profiles. It would be more useful to assume thinner 

layers at the end where the material changes more rapidly. I.e. for n=0.1, it would be 

better to assume thinner layers at the PZT end and for n=5, it would be better to assume 

thinner layers at the metal end of the beam.  
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5.3 Further Research 

The following topics are suggested for future research:  

1. Finite element solution as well as analytical solution based on 2D elasticity and 

minimum potential energy approach.  

2. Use of high temperature piezoelectric ceramics in such metal-ceramic functionally 

graded beams to better understand the temperature effects at higher temperatures. 

3. Developing and testing such a composite after careful selection of materials  
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