
MAGNETO-THERMO-MECHANICAL COUPLING, STABILITY ANALYSIS

AND PHENOMENOLOGICAL CONSTITUTIVE MODELING OF MAGNETIC

SHAPE MEMORY ALLOYS

A Dissertation

by

KRISHNENDU HALDAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Dimitris C. Lagoudas
Committee Members, Ibrahim Karaman

Christopher Pope
Jay R. Walton

Head of Department, Rodney Bowersox

December 2012

Major Subject: Aerospace Engineering

Copyright 2012 Krishnendu Haldar



ABSTRACT

Magnetic shape memory alloys (MSMAs) are a class of active materials that de-

form under magnetic and mechanical loading conditions. This work is concerned with

the modeling of MSMAs constitutive responses. The hysteretic magneto-mechanical

responses of such materials are governed by two major mechanisms which are variant

reorientation and field induced phase transformation (FIPT). The most widely used

material for variant reorientation is Ni2MnGa which can produce up to 6% magnetic

field induced strain (MFIS) under 5 MPa actuation stress. The major drawback of

this material is a low blocking stress, which is overcome in the NiMnCoIn material

system through FIPT. This magnetic alloy can exhibit 5% MFIS under 125 MPa actu-

ation stress. The focus of this work is to capture the key magneto-thermo-mechanical

responses of such mechanisms through phenomenological modeling. In this work a

detailed thermodynamic framework for the electromagnetic interaction within a con-

tinuum solid is presented. A Gibbs free energy function is postulated after identifying

the external and internal state variables. Material symmetry restrictions are imposed

on the Gibbs free energy and on the evolution equations of the internal state variables.

Discrete symmetry is considered for single crystals whereas continuous symmetry is

considered for polycrystalline materials. The constitutive equations are derived in a

thermodynamically consistent way. A specific form of Gibbs free energy for FIPT

is proposed and the explicit form of the constitutive equations is derived from the

generalized formulation. The model is calibrated from experimental data and differ-

ent predictions of magneto-thermo-mechanical loading conditions are presented. The

generalized constitutive equations are then reduced to capture variant reorientation.

A coupled magneto-mechanical boundary value problem (BVP) is solved that

accounts for variant reorientation to investigate the influence of the demagnetization
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effect on the magnetic field and the effect of Maxwell stress on the Cauchy stress.

The BVP, which mimics a real experiment, provides a methodology to correlate the

difference between the externally measured magnetic data and internal magnetic field

of the specimen due to the demagnetization effect. The numerical results show that

localization zones appear inside the material between a certain ranges of applied mag-

netic field. Stability analysis is performed for variant reorientation to analyze these

numerical observations. Detailed numerical and analytical analysis is presented to

investigate these localization zones. Magnetostatic stability analysis reveals that the

MSMA material system becomes unstable when localizations appear due to non-linear

magnetization response. Coupled magneto-mechanical stability analysis shows that

magnetically induced localization creates stress-localizations in the unstable zones.

A parametric study is performed to show the constraints on material parameters for

stable and unstable material responses.
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CHAPTER I

INTRODUCTION

A. General aspects of magnetic shape memory alloys

Shape memory alloys (SMAs) have been an important member of the class of active

materials for at least two decades now. They have successfully been used in actuator

and sensor design as well as biomedical and numerous other technological applica-

tions [4–6]. The large strains of 6–10% these materials exhibit when being subjected

to thermal or mechanical loads, are caused by the change in crystallography associ-

ated with a reversible austenite to martensite phase transformation. Magnetic shape

memory alloys (MSMAs), also referred to as ferromagnetic shape memory alloys (FS-

MAs) [7–9], have more recently emerged as an interesting extension of this class of

materials. In addition to the strains originating from temperature- or stress-activated

conventional shape memory behavior [10–13], large strains can be produced in these

alloys under the application of magnetic fields. The macroscopically observable field-

induced strains in MSMA are caused either by the microstructural reorientation of

martensitic variants or by phase transformation from austenitic phase to martensitic

phase.

Magnetic shape memory alloys exhibit one or even two orders of magnitude higher

recoverable magnetic field-induced strains (MFIS) [14] than ordinary magnetostrictive

materials, such as Terfenol-D [15] and Galfenol [16], and these strains are also much

larger than the electric field-induced strains in piezoelectrics [6]. At comparable

recoverable strains they also have an advantage over conventional shape memory

alloys due to the much higher, up to 1kHz, frequency range at which they can be

operated for some applications [17]. This is because their actuation is driven by
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Fig. 1. Comparison of actuation energy density of different classes of active materials

.

the magnetic-field and not limited by heat transfer [18]. The main limitation of

the variant reorientation is the relatively low blocking stress of typically 6-10 MPa,

above which magnetic field-induced strains are completely suppressed. This difficulty,

however, is overcome by field induced phase transformation or FIPT. A comparison

of actuation energy density is presented in Fig. 1. The field-induced strain response

of MSMAs is nonlinear, hysteretic, stress-dependent and intrinsically coupled to the

magnetization response of the material. The coupled macroscopic response is driven

by four mechanisms, the motion of magnetic domain walls, the local rotation of

magnetization vectors (both of which also occur in regular ferromagnetic materials

[19–21]), field induced variant reorientation and field induced phase transformation.

This unique coupling of mechanical and magnetic properties makes MSMAs in-

teresting materials for smart structures, actuator and sensor applications [17, 22]. A
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different class of applications aims to take advantage of the unique and adjustable

magnetic properties of MSMAs in solenoid transducers [8] or voltage generators [23].

The most widely investigated magnetic shape memory materials is Ni-Mn-X

(X=Sn, Ga, In) alloys [24]. Martensitic transformations in Ni2MnGa alloys were

first conclusively reported by Webster et al. [25]. Zasimchuk et al. [26] and Martynov

and Kokorin [12] performed detailed studies on the crystal structure of martensite

in the Ni2MnGa alloy. Ullakko et al. [15] are credited with first suggesting the pos-

sibility of a magnetic field-controlled shape memory effect in these materials. They

observed magnetic field-induced strains of nearly 0.2% in stress-free experiments on

martensitic Ni2MnGa single crystals. Further work on off-stoichiometric intermetallic

compounds near the composition Ni2MnGa, in combination with thermo-mechanical

treatments and the utilization of a better understanding of the crystallographic struc-

ture of theses alloys, have yielded larger field-induced strains of 6% [7] and up to 10%

[14, 27] in single crystals. Other magnetic shape memory alloys have been studied

including Fe-Pd [28–31], Fe-Ni-Co-Ti, Fe-Pt, Co-Ni-Ga, Ni-Mn-Al [27, 32–36] and

Co-Ni-Al [13, 37]. These alloys exhibit lower field-induced strains, but can have other

advantages. The largest field-induced strains that have been observed in Fe-Pd, for

example are 3.1% [31, 38], but this material is much more ductile than Ni-Mn-Ga

[28].

The magnetic field-induced strains that can be generated in polycrystalline mag-

netic shape memory alloys are smaller than those observed for single crystals [39–43].

One effort aimed towards increasing the strain output of polycrystals is based on

creating favorable texture in these materials. Marioni et al. [44] calculated the upper

bound for the achievable field-induced strain in untextured NiMnGa polycrystals to

be 21% of the single-crystal value and at most 50% for textured crystals.

The phenomenon of magnetic field-induced austenite-martensite phase transfor-
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mations has also been investigated. Such transformations have been observed in

Fe-Pt [45], Ni-Mn-Ga [46] and Ni-Mn-Fe-Ga [39] alloys. Magnetic fields have also

been shown to influence the temperature- or stress-induced austenite-martensite phase

transformation in MSMAs [39]. Furthermore, it has been observed that Ni-Mn-Ga al-

loys exhibit several different martensite morphologies and thus intermartensitic phase

transformations [11, 47, 48]. Ni-Mn-Ga system can exhibit FIPT under stress levels

on the order of 20 MPa with MFIS 0.5% [49]. In Ni-Mn-Co-In system, Kainuma

et al. [50] found that 4 Tesla magnetic field can recover 3% pre applied strain in

martensite at room temperature. Wang et al. [51] also reported reversible FIPT

under 50 MPa with the application of 5 Tesla magnetic field with unknown MFIS

values using in-situ high energy XRD measurement. In the present work the effect of

simultenious application of high magnetic field (16 Tesla) and high stress (110 MPa)

on the transformation is investigated.

B. Influence of the crystallographic and magnetic microstructure on the macroscopic

response of MSMAs

In this section a more detailed description of the connection between the evolving crys-

tallographic and magnetic microstructure of MSMAs and the observed macroscopic

response is provided. This knowledge will then be used to motivate the formulation

of the constitutive model.

Since the ternary intermetallic compound Ni-Mn-Ga is the most widely investi-

gated magnetic shape memory alloy, it shall be the focus of the following discussion,

which does not imply that the basic concepts or the modeling approach presented in

this work are restricted in any way to this particular alloy.

The high temperature austenite phase of Ni-Mn-Ga alloys near the composition
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Ni2MnGa exhibits a L21 Heusler type structure, in which all of the atoms are located

on the sites of a body centered cubic lattice [25]. The austenite phase is paramagnetic

above the Curie temperature, which for the stoichiometric composition of Ni2MnGa

is 376 K [52], and ferromagnetic below it. The Curie temperature only shows a slight

variation with changes in the composition [52, 53]. A strong compositional depen-

dence, however, is observed for the austenite-martensite phase transformation start

temperature [53–55], which is 202 K in stoichiometric Ni2MnGa [52]. The marten-

site in these alloys can be of five-layered tetragonal (5M), seven-layered orthorhombic

(7M), and non-modulated tetragonal martensite (NM) morphology [11, 47, 48]. Here

only the most commonly observed tetragonal martensite of Ni2MnGa is considered.

In 2006, Kainuma etal. [50] reported that the parent and martensite phases have

the L21 Heusler-type ordered structure where a = 0.5978 nm and the 14M modu-

lated structure where a = 0.4349 nm, b = 0.2811 nm, c = 2.9892 nm and β= 93.24,

respectively [56].

A simplified representation of the crystal structure, which is usually adopted for

convenience [57, 58], is shown in Fig. 2. The undeformed austenite has cube edges of

length a0, whereas the undeformed tetragonal martensite unit cell has short and long

edges of lengths a and c, respectively. Typical lattice parameters for Ni2MnGa have

been reported in the literature [25, 26, 59–61].

Since this transition temperature is well below Curie temperature the martensitic

phase is ferromagnetic such that, even in the absence of an external magnetic field, the

martensitic variants are spontaneously magnetized [19, 21]. The local magnetization

vector in each ferromagnetic variant is oriented along one preferred crystallographic

direction named the magnetic easy axis, which in this case is aligned with the short

edge c of the tetragonal unit cell. The magnetization vectors can be oriented in either

the positive or negative easy axis direction.
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Fig. 2. Crystal structure of the austenitic and the tetragonal martensite phases in

Ni2MnGa. Arrows indicate possible magnetization vector orientations along

the magnetic easy axis of each variant.

The austenitic phase is ferromagnetic and the spontaneous magnetization is ori-

ented along the magnetic easy axis in NiMnCoIn. Since, the austenitic phase is cubic,

all the three crystallographic directions are the direction of the easy axis. The marten-

sitic phase is paramagnetic and so the magnitude of the saturation magnetization is

very low compared to the ferromagnetic phase. The large difference of saturation

magnetization between the parent phase and the martensitic phase is the key source

of available magnetic energy for FIPT.

C. The magnetization response of MSMAs

If the reorientation of martensitic variants in a MSMA single crystal is completely

suppressed by the application of a stress above the blocking stress, then the mag-

netization of the crystal can only change by means of the domain wall motion or

magnetization rotation, or combinations thereof. The magnetization process of the
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MSMA in this case is the same as that of a regular ferromagnetic material.

macro-scale micro-scale

σxx σxx

a

c

crystallographic scale

y,[010]

x,[100]

Fig. 3. A schematic of the initial single variant 1 martensite state. The variant reori-

entation is suppressed by an axial compressive stress higher than the blocking

stress. Also shown, schematics of the corresponding microscopic scale and the

crystallographic scale.

Fig. 3 shows a sketch of the initial single variant 1 configuration, except here

a stress level above the blocking stress is considered to analyze the magnetization

process without variant reorientation. Next to the macroscopic view of the specimen,

Fig. 3 also depicts schematics of magnetic domains on the micro-scale. The crystal-

lographic scale is shown simply to indicate the fact that magnetic domains generally

span many unit cells. As discussed in the previous section, magnetic domains form to

reduce the macroscopic magnetization of the material and thereby the magnetostatic

energy [19–21, 62]. They are separated by magnetic domain walls. In these walls the

magnetization vectors (magnetic dipole moments) are rotated over short distances to

accommodate the magnetization directions of neighboring domains. The formation

of many small domains leads to an increase in the amount of domain walls, whose

formation also costs energy. This competition of energy terms determines the size of

the domains and also the thickness of the domain walls. Depending on the material

the domain wall thickness can range from 10 nm to 1µm [20].
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If the constrained single crystal of is magnetized along different crystallographic

directions, one observes an anisotropy of the magnetization response. The direction

along which the least amount of energy is required to magnetize the crystal is termed

the magnetic easy axis, and, correspondingly, the hard axis is the direction for which

the most energy needs to be expended. This anisotropic behavior can be explained

by the mechanism of magnetic domain wall motion and magnetization rotation as

shown in the following sections.

1. Magnetization by magnetic domain wall motion

Fig. 4 schematically shows the evolution of the magnetic domain distribution at dif-

ferent applied field levels for the magnetization of the MSMA specimen along the

[100]-direction. The starting configuration (left box) is the same microstructural

view of the compressed single variant specimen that was presented in Fig. 3 (middle

box).

Mx = 0 Mx = M sat

low Hx high Hx

Mx > 0

Hx = 0

x,[100]

y,[010]

Fig. 4. Magnetization of the single variant specimen along the easy axis.

The applied field promotes the growth of these domains with favorably oriented

magnetization vectors at the expense of the other domains. Since the external field
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is applied in the [100]-direction, which coincides with the magnetic easy axis of the

compressive stress-favored variant 1, the magnetization to saturation can completely

be achieved by 180◦ domain wall motion.

2. Magnetization by rotation of magnetization vectors

Fig. 5 schematically illustrates the magnetization of the same single variant 1 sample

perpendicular to the compression axis.

high
Hy

My = M satMy = 0

Hy = 0

y,[010]

x,[100]

Fig. 5. Magnetization of the single variant specimen along the hard axis.

Since the magnetization vectors in both domains are equally unfavorable with

respect to the applied field, no domain wall motion mechanism is available to ac-

commodate the magnetization along the [010]-direction. The magnetization in both

domains must be rotated away from the common easy axis. The rotation of the mag-

netization within a martensitic variant requires work against the magnetocrystalline

anisotropy energy. The amount of energy expended in activating this mechanism is

higher than that associated with domain wall motion. The [010]-direction is there-

fore the hard axis for this material. The magnetization of the MSMA specimen along

directions in between [100] and [010], requires an intermediate amount of energy

and involves the activation of both mechanisms. Unlike the motion of 180◦ domain
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walls, the rotation of the magnetization is associated with ordinary magnetostriction,

i. e. the crystal elongates in the direction of the rotating magnetization vector [19, 21].

Fig. 6 qualitatively shows the resulting magnetization curves for the easy [100]

and the hard [010]-directions. The coordinate axes are normalized by the saturation

magnetization M sat and an arbitrary maximum applied field value Hmax, respectively.

Data for the magnetization of constrained MSMA single crystals have been reported

by Tickle and James [63], Cui et al. [28], Shield [30], Lickhachev and Ullakko [64] and

Hezcko [65].

1

0

easy axis:
[100]

M/M sat

H/Hmax

hard axis:
[010]

10

Fig. 6. Qualitative magnetization curves of the single variant MSMA specimen mag-

netized along the compression and perpendicular axes. For quantitative exper-

imental results [63].

The magnetization curves in Fig. 6 are explained by the mechanisms discussed

in the context of Figs. 4 and 5. Recall that the mechanism for alignment with the

applied field is the domain wall motion, in the easy axis case, and rotation of the

10



magnetization vectors, in the hard axis case. According to O’Handley [20], the energy

per unit volume ua needed to saturate a material in a particular direction is given by

ua = µ0

∫ M
sat

0

H(M) dM . (1.1)

It is clearly seen that by this measure the energy required to magnetize the material

to saturation along the hard axis does in fact require much more energy.

Furthermore, it is observed that the hystereses for both magnetization curves are

almost negligible. This is expected for the hard axis magnetization curve, since the

magnetization rotation in is a reversible process. Magnetic domain wall motion on the

other hand can be associated with dissipation. Permanent magnets, for example, are

made from materials that exhibit a strong internal resistance to magnetic domain wall

motion, due to micro-scale pinning sites and other phenomena [8, 19, 20], which leads

to large hysteresis effects. In MSMAs, however, the magnetic domain wall motion

appears to be associated with only a very small amount of dissipation.

3. Magnetization by variant reorientation

In MSMAs the variant reorientation process provides an additional mechanism to

change the magnetization of the material. This is due to the fact that the magnetic

easy axes in the martensitic variants have different directions with respect to a global

coordinate system. In the presence of an external field the structural rearrangement

is therefore always coupled to a magnetization change. If the reorientation process is

initiated by mechanical loading instead of applying a magnetic field, and the applied

field is constant, the variant reorientation is in fact the only mechanism that changes

the magnetization.

In this mechanism, however, when the applied stress level is more than 6 MPa

[66], the MAE does not suffice to overcome the energy required for twin boundary
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motion (Fig. 7a). Magnetic field favored martensitic variant does not grow and field

induced macroscopic shape change is not observed. The limited availability of MAE

restricts the variant reorientation mechanism to work above certain stress level.

(a) (b)

Fig. 7. Schematic representation of available magnetic energy. (a) MAE for variant

reorientation and (b) ZE for phase transformation.

4. Magnetization by phase transformation

The second possible mechanism to change magnetization is the magnetic field induced

phase transformation. The main requirement for the field-induced phase transforma-

tion is that the magnetic driving energy must be sufficient to move the phase front.

The limitation of available magnetic energy and thus low blocking stress in field-

induced variant reorientation can be overcome by magnetic field induced marten-

sitic phase transformation. This mechanism is analogous to the temperature induced

martensitic transformation in conventional SMAs. The Zeeman energy (ZE), which

depends on the difference between the saturation magnetizations of the austenitic

and martensitic phases (Fig. 7b), is converted to mechanical energy in the magnetic
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field induced phase transformation. In NiMnCoIn material system, the Zeeman en-

ergy is large because the austenitic phase is ferromagnetic and martensitic phase is

antiferromagnetic. The available magnetic energy (ZE) involved in FIPT is much

higher than the magnetic energy (MAE) associated with the variant reorientation

mechanism. Karaca et al [2] showed that the ZE in Ni45Mn36.5Co5In13.4 is one order

of magnitude higher than the MAE of NiMnGa alloys. This unique characteristic of

high available magnetic energy in the FIPT can lead to large MFIS and high actu-

ation stresses. Moreover unlike MAE, ZE is independent on crystal orientation and

provides an opportunity to utilize polycrystals for actuator application [49]. Another

advantage of this material is that it may work at room temperature.

D. Literature review of MSMA models

Several models have been proposed in the literature to describe the constitutive re-

sponse related to the magnetic field-induced variant reorientation. The approach

most commonly taken is the minimization of a free energy function characterizing the

system to find equilibrium configurations for given temperature, stress and magnetic

field.

The model presented by James and Wuttig [29] is based on a constrained theory of

micromagnetics (see also [67–69]). The terms contributing to the free energy in their

model are the Zeeman energy, the magnetostatic energy and the elastic energy. The

magnetization is assumed to be fixed to the magnetic easy axis of each martensitic

variant because of high magnetic anisotropy. The microstructural deformations and

the resulting macroscopic strain and magnetization response are predicted by detect-

ing low-energy paths between initial and final configurations. They conclude that the

typical strains observed in martensite, together with the typical easy axes observed
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in ferromagnetic materials lead to layered domain structures that are simultaneously

mechanically and magnetically compatible.

O’Handley [70, 71] proposed a 2-D model in which two variants are separated by

a single twin boundary and each variant itself consists of a single magnetic domain.

The local magnetization is not necessarily constrained to the crystallographic easy

axis. Depending on the magnitude of the magnetic anisotropy, either the magnetic

anisotropy difference (low magnetic anisotropy case) or the Zeeman energy (high mag-

netic anisotropy case) are identified as the driving forces for twin boundary motion.

For the intermediate anisotropy case a parametric study is conducted showing the

influence of varying elastic and magnetic anisotropy energies. All cases assume an

initial variant distribution that implies a remnant magnetization.

Likhachev and Ullakko [64] presented a model which identifies the magnetic

anisotropy energy difference in the two variant twinned-martensite microstructure as

the main driving force for the reorientation process. The free energies associated with

magnetizing a single variant martensite along the magnetic easy and hard axes are

computed from integration over the experimental magnetization curves. The driv-

ing force for twin boundary motion is proposed to be the derivative of the difference

between the two free energy terms with respect to the martensitic variant volume

fraction. They argue that, regardless of the physical nature of the driving force,

twin boundary motion should be initiated at equivalent load levels. With this as-

sumption experimentally obtained detwinning-under-stress data in addition to the

magnetization data are used to predict the MSMA constitutive behavior associated

with field-induced variant reorientation.

Hirsinger and Lexcellent [72, 73] introduced the outline of a non-equilibrium ther-

modynamics based model. The free energy contains chemical, mechanical, magnetic

and thermal contributions. The magnetic term is given by the Zeeman energy. Two
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internal state variables, the martensitic variant volume fraction and the magnetic do-

main volume fraction, are introduced to represent the influence of the microstructure.

The rate independent dissipative nature of their approach motivates the definition of

driving forces for the twin boundary motion and the domain wall motion.

Kiefer and Lagoudas formulated a continuum thermodynamics-based phenomeno-

logical constitutive model for MSMAs with internal state variables describing the

evolution of the crystallographic and magnetic microstructures. Their approach is

aimed at capturing the hysteretic effects associated with the magnetic field-induced

reorientation of martensitic twins and the resulting loading history dependence of the

material response. Emphasis is also placed on modeling the nonlinear and stress-level-

dependent nature of the magnetic field-induced strain and magnetization response.

The Kiefer and Lagoudas model mainly distinguishes itself from the Hirsinger and

Lexcellent approach by allowing the magnetization vectors to rotate away from the

magnetic easy axes, which leads to much more accurate predictions of the magnetiza-

tion response. Details of the model development were reported in [3, 74–77]. Experi-

mental characterization of MSMA response and the model validation were presented

in [1]. The focus of this particular paper was placed on estimating the maximum

MSMA actuator work output, both theoretically and experimentally. Furthermore,

the numerical analysis of nonlinear magnetostatic boundary value problems for MS-

MAs was described in [78, 79]. More recently, stability analysis of magnetostatic

boundary value problems for MSMAs was presented in [80].

Faidley et al. [8] proposed an extension of an earlier version of the Kiefer and

Lagoudas model [74] to predict the reversible strain effect in Ni-Mn-Ga with collinear

field and stress. In their approach, internal restoring forces orthogonal to the applied

field are attributed to pinning sites which elastically deform twin boundaries. Tan and

Elahinia [81] utilized the Kiefer and Lagoudas model to study the dynamic response
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of MSMA actuators. Glavatska et al. [82] proposed a constitutive model for the

martensitic twin rearrangement based on a statistical approach. The rearrangement

of twins and resulting macroscopic strain is assumed to be triggered by magnetic field-

induced micro-stresses originating from magnetoelastic interactions. The probability

for the rearrangement of the twins in which the stresses are near the critical stress is

described through a statistical distribution. This model was utilized by Chernenko

et al.[83, 84], who also followed a microscopic approach to the magnetic field-induced

deformation of martensite in MSMAs.

Another model that uses the principles of statistical physics has been proposed

by Buchelnikov and Bosko [85] who extended a model derived by Govindjee and Hall

[86] for conventional shape memory alloys. Their model derivation follows what is

referred to as a multi-well approach. They identify four phases, the cubic austenite

and the three tetragonal variants. These phases can, in principle, transform into any

of the other phases under the influence of temperature, stress and magnetic field. The

rate of transformation between the different phases is assumed to be proportional to

the net probability that one phase will overcome the energetic barrier required to

transform to a second phase. The free energy expression that is utilized to compute

the energetic barrier consists of elastic, thermal and magnetic energy terms. The

magnetic energy consists of the magnetic anisotropy energy, the magnetostatic energy

of the demagnetization field and the Zeeman energy.

Smith et al. recently proposed a unified framework for modeling hysteresis in

ferroic materials [87], which briefly discusses the subject of magnetic shape memory

alloys. A detailed comparison of many of the described models can be also found in

the recent paper by Kiang and Tong [88].

A general approach to phenomenological modeling of the loading history depen-

dent constitutive response of materials undergoing phase transformation, detwinning,
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or variant reorientation has widely been utilized in the literature on conventional

shape memory alloys [86, 89–97]. A detailed review of the modeling of shape mem-

ory alloys has recently been published by Patoor et al. [98] and Lagoudas et al. [99].

Since the austenite to martensite phase transformation in SMAs is induced by cooling

or the application of mechanical forces, the independent state variables in this case

are usually chosen to be temperature and stress. In phenomenological constitutive

modeling the system can be characterized by a macroscopic free energy expression

which is a function of these independent state variables. A common approach of in-

corporating path dependence and dissipation is through the introduction of internal

state variables [100], whose evolution then accounts for the loading history depen-

dence of the material behavior. Motivated by the crystallographic microstructure of

martensite, a common choice for an internal state variable is the martensitic volume

fraction. Constitutive equations, which relate the dependent state variables to the

independent ones, follow directly from applying the well-known Coleman and Noll

procedure [101] commonly used in phenomenological modeling. The dependent state

variables, such as the strain or entropy, are themselves also functions of the internal

state variables through the constitutive relations and depend therefore on the load-

ing history. The lack of apparent intrinsic time scales (diffusionless, thermoelastic

phase transformation) makes the shape memory effect subject to rate independent

modeling. This approach lends itself to the introduction of transformation functions,

similar to yield functions of rate-independent plasticity models, which govern the

onset and termination of the phase transformation [102]. Transformation hardening

functions account for the interactions of different phases during the transformation

process, which influence the activation of the phase transformation. The evolution of

transformation strain is related to the evolution of the martensitic volume fraction

and its direction is given by a postulated transformation tensor [91].
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The variant reorientation process in magnetic shape memory alloys is, from a

modeling standpoint, also similar to the detwinning (i. e. self-accommodated to de-

twinned martensite) and reorientation (i. e. change in the selection of martensitic

variants under changes in the stress state) phenomena that are observed in conven-

tional shape memory alloys [95, 103–106].

Many works have been done so far on the interaction of electromagnetic field with

a mechanical medium. In the recent work of Drofman and Ogden [107, 108], they de-

veloped a theory of nonlinear magneto elasticity for magneto sensitive elastomers. A

parallel development of electro sensitive elastomers, based on the interaction between

electric fields and mechanical deformation can be obtained in [109]. A detail study of

electrostatic forces on large deformations of polarizable material is given in [110, 111].

A continuum theory for deformable ferromagnetic materials can be found in [112]. A

theory for the equilibrium response of magnetoelastic membranes under pressure and

applied magnetic field is formulated in [113, 114]. The variational formulations for

general magneto-mechanical materials have been proposed by many authors and can

be found in [115–119].

E. Outline of the present research

The research presented in this dissertation is focused on the following main objectives.

1. We develop a continuum mechanics based modeling framework (chapter II) to

describe a general coupled electromagnetic and mechanical responses for MS-

MAs through finite deformation analysis. The MSMA constitutive equations are

derived in a thermodynamic consistent way. Material symmetry is considered

for finite and continuous group of symmetry.

2. In chapter III, motivated by experiments, we develop a phenomenological model
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to capture the magneto-thermo-mechanical material responses for FIPT. A de-

tailed model calibration procedure is presented here.

3. A brief introduction of microstructure-based phenomenological model (Kiefer-

Lagoudas) for variant reorientation is introduced in chapter IV. We show that

the general model can also be able to predict variant reorientation MSMA re-

sponses as a special case.

4. We solve a coupled magneto-mechanical boundary value problem for MSMAs

in chapter V. We demonstrate how a numerical process can take into account

the demagnetization effect for a non ellipsoid specimen shape. Moreover, ef-

fect of magnetic body force and magnetic body couple on mechanical stress is

investigated.

5. Finally we present the stability analysis of the coupled magneto-mechanical

system in chapter VI.
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CHAPTER II

A CONTINUUM DESCRIPTION OF ELECTROMAGNETIC INTERACTION

WITH SOLIDS

The material responses of MSMAs can be considered as a consequence of coupling

between electromagnetic and mechanical field variables. When we consider electro-

magnetic interaction with a continuum, in addition to the short range forces which

are determined by the local state of the medium, the magnetization interacts with the

self field. We assume in the stress hypothesis that this electromagnetic interaction

together with the short range interaction will be described by a system of stress [120–

122]. Such a decomposition of the stress is not unique. Extensive work on different

electromagnetic formulations like two dipole models, Lorentz model, statistical model

etc. had been proposed in the literature [123–125] on different notion of breaking up

long range and short range forces. Depending on different formulations, expressions of

local stress and Maxwell stress differ, though the net effect always give the same total

stress. It is extremely important for a phenomenological approach to select a partic-

ular model which is close to the experiment. We consider that the total traction is

the sum of material and magnetic traction. We assume in the stress hypothesis that

the electromagnetic interaction together with the short range interaction describes

a system of stress. We will call it total stress [122, 126]. Since total stress obeys

Cauchy’s theorem, we will consider that the total stress is the Cauchy stress.

In this work, we propose a Gibbs free energy for a MSMA material system, where

the stress, electromagnetic field and temperature are the controllable dependent vari-

ables. We also consider tensor, vector and scalar valued internal variables to capture

the magneto-mechanical dissipative behaviors. The Gibbs free energy formulation

facilitates to calibrate the model from typical experiments, considered for the MS-
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MAs. Though MSMAs are magnetic material, it can interact with electric field when

operated under high frequency application. This motivates us to start formulation

in a generalized electromagnetic and mechanical framework, where we perform a sys-

tematic and rigorous nonlinear finite deformation analysis to combine the Maxwell

equations and the mechanical conservation laws.

We consider a finite deformation based analysis of electromagnetically active

dissipative material systems. Our major aim is to obtain the integrity basis1 for the

Gibbs free energy. We deduce the integrity basis for single crystal by considering finite

symmetry restrictions. The integrity basis differs in the parent phase and martensitic

phase due to different crystalline symmetry. The symmetry restrictions for the evo-

lution equations of the lower symmetric phases are investigated. Finally we consider

continuous symmetry for polycrystalline materials to take into account anisotropy in

the constitutive equations and evolution equations by introducing structural tensors.

An evolution of a structural tensor is proposed to capture the effect of the evolution

of texturing due to changes in the microstructure during phase transformation and

reorientation.

A. General balance equations

We express the volume balance and surface balance laws of mechanics for a part

Pt ⊂ Ωt in the following general form

d

dt

∫

Pt

ψdv =

∫

∂Pt

Φψnda +

∫

Pt

σψdv, (2.1)

1An integrity basis is a set of polynomials, each invariant under the group of trans-
formations, such that any polynomial function invariant under the group is expressible
as a polynomial in elements of the integrity basis [127].
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d

dt

∫

∂Pt

Ψ · nda =

∫

∂2Pt

ΞΨ · tds+
∫

∂Pt

ΣΨ · nda, (2.2)

We denote n, the outward unit normal to the boundary ∂Pt of the region Pt in the

current configuration and t is the unit tangent to a boundary curve on ∂Pt, oriented

in the direct sence about n. The quantity ψ and σψ are the tensor of order p, and

Φψ is a tensor field of order p+1 [124, 128, 129] and in the equation (2.2), Ψ,ΞΨ,ΣΨ

are the vectors. We consider up to p = 2.

The material time derivative is denoted by d
dt

or by a dot and the spatial time

derivative is denoted by ∂
∂t
. By using transport theorem, the first term of the equation

(2.1) can be written as [129, 130]

(a) (b)

Fig. 8. (a) Moving discontinuous surface S(t) and (b) moving discontinuous line γ(t).

d

dt

∫

Pt

ψdv =

∫

Pt

∂ψ

∂t
dv +

∫

∂Pt

ψẋ · nda−
∫

S

[[
ψ
]]
(v · n)da. (2.3)

Similarly the first term of equation (2.2) can be written as [124]

d

dt

∫

∂Pt

Ψ · nda =

∫

∂Pt

∗

Ψ · nda+
∫

γ

[[
Ψ× (ẋ− v)

]]
· tds. (2.4)
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Here, S is an oriented smooth surface in the material region Pt (Fig. 8a) and singular

surface relative to a field A, defined on Pt and smooth on Pt − S. A suffers a jump

discontinuity across S. The jump condition is defined as

[[
A
]]
= A+ −A− (2.5)

where A+ and A− are the one-side limits from the two regions P+
t and P−

t of Pt,

separated by S. The velocity of S is v. We call the point x is singular if it is a

point on the singular surface and regular if it lies on the region where all the tensor

functions are smooth. We denote the convective time derivative of the vector Ψ by

∗

Ψ = Ψ̇+Ψ∇ · ẋ− (∇⊗ ẋ)Ψ (2.6)

⇒
∗

Ψ = Ψ̇− LΨ +Ψ(tr(L)). (2.7)

Where, L = ∇⊗ ẋ is the velocity gradient.

Similar argument can be used to an material surface ∂Pt containing a discontin-

uous line γ(t), moving with an velocity v on ∂Pt (Fig. 8b) and the jump condition is

given by (2.5). Substituting (2.3) in (2.1), we get

∫

Pt

∂ψ

∂t
dv +

∫

∂Pt

ψẋ · nda−
∫

S

[[
ψ
]]
(v · n)da =

∫

∂Pt

Φψnda +

∫

Pt

σψdv (2.8)

Similarly, substituting (2.4) in (2.2), we get

∫

∂Pt

∗

Ψ · nda +
∫

γ

[[
Ψ× (ẋ− v)

]]
· tds =

∫

∂2Pt

ΞΨ · tds+
∫

∂Pt

ΣΨ · nda (2.9)

1. Field equations and jump conditions

We obtain the local balance at a regular point from (2.8) and (2.9) by considering

the regions where Pt ∩ S = 0 and ∂Pt ∩ γ = 0 respectively. The divergence theorem
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gives us

∫

Pt

{∂ψ
∂t

+∇ · (ψ ⊗ ẋ− Φψ)− σψ}dv = 0, (2.10)

and by using Stokes’ theorem we get

∫

∂Pt

{
∗

Ψ−∇×ΞΨ −ΣΨ} · nda = 0. (2.11)

We obtain the field equations at a regular point with the help of localization theorem

[130]

∂ψ

∂t
+∇ · (ψ ⊗ ẋ− Φψ)− σψ = 0, (2.12)

∗

Ψ−∇× ΞΨ −ΣΨ = 0. (2.13)

The notation ψ ⊗ ẋ should be understood as ψẋ when ψ is a scalar quantity.

The jump conditions are obtained in the following way. We consider a singular

point x ∈ S. We take the limit by shrinking ∂Pt+ and ∂Pt− down to S in such

a way that the volume of Pt tends to zero, while the area remains unchanged and

lim
v→0

∫

Pt

σψdv =

∫

S
χnda exists. Here χ is the surface density of a physical quantity

on the singular surface S. Under this condition, (2.8) reduces to
∫

S
{
[[
ψ(ẋ− v) · n

]]
−
[[
Φψ
]]
n}da =

∫

S
χnda

⇒
∫

S
{
[[
ψ(ẋ− v) · n

]]
−
[[
Φψ
]]
n− χn}da = 0. (2.14)

Since the integral is smooth on S, the integrand must vanish at x. We obtain,

[[
ψ ⊗ (ẋ− v)− Φψ

]]
n = χn. (2.15)

Similarly, by shrinking ∂2Pt+ and ∂2Pt− down to γ(t) in such a way that the area
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of ∂Pt tends to zero, while the length of the line segment remains unchanged and

lim
a→0

∫

∂Pt

ΣΨ · nda =

∫

γ

κ · inds exists, (2.9) becomes

∫

γ

{
[[
ΞΨ

]]
−
[[
Ψ× (ẋ− v)

]]
} · tds = −

∫

γ

κ · inds. (2.16)

Where κ is the current per unit length, in = t × n is the unit binormal vector and

t = n× in (Fig 8b). Continuing (2.16) we write

∫

γ

{
[[
ΞΨ

]]
−
[[
Ψ× (ẋ− v)

]]
} · (in × n)ds =

∫

γ

κ · inds
∫

γ

{n× (
[[
ΞΨ

]]
−
[[
Ψ× (ẋ− v)

]]
)} · inds =

∫

γ

κ · inds. (2.17)

2So the local form can be written as,

n× (
[[
ΞΨ

]]
−
[[
Ψ× (ẋ− v)

]]
) = κ. (2.18)

We are now ready to recover the electromagnetic and mechanical conservation laws

from the general form of the balance laws. In the next subsection, we will consider

the electromagnetic system, followed by the mechanical system.

2. Electromagnetic conservation laws

We denote the magnetic induction by b, the electric field e, the magnetic field h, the

electric displacement d, the magnetization vector m and the polarization vector p in

the deformed configuration and in the rest frame. We select deformed configuration

because Maxwell equations are convenient to express. The free charge (surface) and

the free current (conductive) density of the body are denoted by qf and jf .

The magnetization vector m and the polarization vector p are related through

2We use the following identity: A · (B×C) = B · (C×A) = C · (A×B).
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the following constitutive relations.

p = d− ǫ0e, m = b/µ0 − h. (2.19)

When the body deforms, let us consider a generic point P ∈ Ωt moves with a velocity

ẋ. At this moving point, we denote the electro magnetic variables {ẽ, h̃, b̃, m̃} with

respect to a rest frame. The rest frame variables, through the Galilean transformation,

can be written in the following forms

j̃f = jf − ẋqf , b̃ = b− c−2ẋ× e,

ẽ = e + ẋ× b, h̃ = h− ẋ× d,

m̃ = m+ ẋ× p. (2.20)

In general, {b̃, ẽ, h̃, m̃} obeys Lorentz transformation. The Maxwell equations are

invariant under Lorentz group of transformation in Minkowsky space. But the me-

chanical responses are not invariant under Lorentz transformation. They are invariant

under Euclidean transformation. This mismatching of the electromagnetic and me-

chanical invariance can be solved in non relativistic case. It can be shown that under

this approximation, o(|ẋ|2/c2), where c is the speed of light, the requirement of in-

variance of the material response under Euclidean transformation is equivalent to

the requirement of the Lorentz transformation [123]. So in the non-relativistic limit,

b̃ ≃ b. We model in this framework, which is also known as Maxwell Minkowski

formulation.

We follow the substitutions, as shown in the Table I, in the general balance

equations to obtain the Maxwell equations and jump conditions. In the table, σs is

the surface charge density, K is the surface current density, current per unit width

perpendicular to the flow and K̃ = K−σsv. The local form of the Maxwell equations
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Equations (2.12,2.15) ψ Φψ σψ χ

Gauss law (electric) 0 −d qf σs

Gauss law (magnetic) 0 b 0 0

Equations (2.13,2.18) Ψ ΞΨ ΣΨ κ

Ampere’s law d h̃ −j̃f K̃

Faraday’s law −b ẽ 0 0

Table I. Electromagnetic field variables

are given by

∇ · d = qf (2.21a)

∇ · b = 0 (2.21b)

∇× h̃−
∗

d = j̃f (2.21c)

∇× ẽ = −
∗

b. (2.21d)

Similarly, the jump conditions are given by (2.18)

n ·
[[
d
]]

= σs (2.22a)

n ·
[[
b
]]

= 0 (2.22b)

n×
[[
h̃− d× (ẋ− v)

]]
= K̃ (2.22c)

n×
[[
ẽ+ b× (ẋ− v)

]]
= 0. (2.22d)
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The third condition can be further simplified to

n×
[[
h̃− d× (ẋ− v)

]]
= K̃

⇒ n×
[[
h+ d× v

]]
= K̃

⇒ n×
[[
h
]]
+ n×

[[
d× v

]]
= K̃

⇒ n×
[[
h
]]
+ (n · v)

[[
d
]]
− v(

[[
d
]]
· n) = K̃

⇒ n×
[[
h
]]
+ (n · v)

[[
d
]]
− vσs = K̃ (By using (2.22a))

⇒ n×
[[
h
]]
+ (n · v)

[[
d
]]
= K̃+ vσs

Or3

n×
[[
h
]]
+ (v · n)

[[
d
]]
= K. (2.23)

Similarly, equation (2.22d) can be simplified as

n×
[[
e
]]
− (v · n)

[[
b
]]
= 0. (2.24)

3. Mechanical conservation laws

ψ Φψ σψ χ

Mass ρ 0 0 0

L momentum ρg σ ρf b 0

A momentum (x− x0) ∧ ρg (x− x0) ∧ σ (x− x0) ∧ ρf b 0

Energy ρu+ 1
2
ρẋ · ẋ −q + σT ẋ− (ẽ× h̃) ρrh + ρẋ · f b 0

+1
2
(ǫ0e · e+ 1

µ0
b · b) 0

Table II. Mechanical field variables

3At step three of the above procedure, we use the following identity: A×(B×C) =
B(A ·C)−C(A ·B).
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Mechanical conservation laws and boundary conditions are obtained from equa-

tions (2.12) and (2.15) with the substitutions, given in Table II. Here, ρ is the mass

density, σ is the total stress generated due to combined magneto-mechanical effect, f b

is the nonmagnetic body force density, g = ẋ+ ǫ0
ρ
e×b is the generalized momentum

density, x0 is the position vector of the point where the moment is considered, u is the

internal energy density, 1
2
ẋ · ẋ is the kinetic energy density and 1

2
(ǫ0e · e+ 1

µ0
b · b) is

the electromagnetic energy density of the free space. rh is the heat supply due to ex-

ternal source, q is the heat flux and (ẽ× h̃) is the electro-magnetic energy flux. Using

Poynting theorem in a moving frame and denoting the Poynting vector S̃ = (ẽ × h̃)

we can write

−∇ · S̃ = j̃f · ẽ+ h̃ ·
∗

b+ ẽ ·
∗

d. (2.25)

The conservation laws of mass, linear momentum and angular momentum become

ρ̇+ ρ∇ · ẋ = 0 (2.26a)

∇ · σ + ρfb = ρġ (2.26b)

skw(σ) = skw(ρg ⊗ ẋ) (2.26c)

and the jump conditions

[[
ρ(ẋ− v)

]]
n = 0

[[
ρg ⊗ (ẋ− v)− σ

]]
n = 0 (2.27a)

[[
(x− x0) ∧ ρg ⊗ (ẋ− v)− (x− x0) ∧ σ

]]
n = 0. (2.27b)

We will discus detail calculation of the reduction of the energy equation to a simplified

form. The calculations up to (2.37) are mostly followed by Kovetz formulation [131].

The derivation is straight forward but one needs a careful book keeping of different
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terms. The Conservation of energy can be obtained by substituting the last row of

Table.II in (2.12),

∂

∂t
(ρu+

1

2
ρẋ · ẋ+

ǫ0
2
e · e+ 1

2µ0
b · b) +∇ · [(ρu+ 1

2
ρẋ · ẋ+

ǫ0
2
e · e

+
1

2µ0
b · b)ẋ− (−q + σT ẋ− ẽ× h̃)]− (ρrh + ρẋ · f b) = 0 (2.28)

If we denote a scalar by φ, then with the help of mass conservation ( 2.26a) we can

write

∂ρφ

∂t
+∇ · (ρφẋ) = ρφ̇, (2.29)

If we denote φ = u+ 1
2
ρẋ · ẋ+ ǫ0

2ρ
e · e+ 1

2µ0ρ
b · b then (2.28), with the help of (2.29),

reduces to

ρ
d

dt
(u+

1

2
ẋ · ẋ+

ǫ0
2ρ

e · e+ 1

2µ0ρ
b · b) +∇ · [−(−q + σT ẋ− ẽ× h̃)]

− (ρrh + ρẋ · f b) = 0. (2.30)

Moreover, from the relation ∇ · (σT ẋ) = σ : L+ ẋ · (∇ · σ) we get,

ρu̇+ ρẋ · ẍ + ρ
d

dt
(
ǫ0
2ρ

e · e+ 1

2µ0ρ
b · b) +∇ · q− σ : L +∇ · (ẽ× h̃)

− ρrh − ẋ · (ρf b +∇ · σ) = 0. (2.31)

Using (2.26b) and collecting the coefficient of ẋ, we get

ρu̇+ ρ
d

dt
(
ǫ0
2ρ

e · e+ 1

2µ0ρ
b · b) +∇ · q− σ : L+∇ · (ẽ× h̃)

− ρr − ρẋ · (ġ − ẍ) = 0. (2.32)
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We now use the following identity for any scalar φ

ρ
d

dt
(
φ

ρ
) = ρ(

1

ρ
φ̇− ρ̇

ρ2
φ)

= φ̇+
ρ∇ · ẋ
ρ

φ

= φ̇+ (L : I)φ. (2.33)

and rewriting the term ρ d
dt
( ǫ0
2ρ
e · e+ 1

2µ0ρ
b · b) in the equation (2.32) with the help of

the identity (2.33) to obtain

ρu̇+ (ǫ0ė · e+
1

µ0

ḃ · b) + 1

2
(ǫ0e · e+

1

µ0

b · b)I : L

+∇ · q− σ : L +∇ · (ẽ× h̃)− ρrh − ρẋ · (ġ − ẍ) = 0. (2.34)

Our next task is to expand the Pointing vector by using equation (2.25). The detail

derivation is given in Appendix C. The expanded form is given by

∇ · (ẽ× h̃) = −j̃f · ẽ− (
b · ḃ
µ0

− m̃ · ḃ+ ǫ0e · ė + ẽ · ṗ) + ρ
d

dt
(
ǫ0
ρ
e× b) · ẋ

− [(
b · b
µ0

− m̃ · b+ ǫ0e · e + ẽ · p)I

− (
b⊗ b

µ0

− m̃⊗ b+ ǫ0e⊗ e+ ẽ⊗ p+ ǫ0e× b⊗ ẋ)] : L (2.35)

Substituting back (2.35) to (2.34) we get

ρu̇+∇ · q− σ : L− j̃f · ẽ+ m̃ · ḃ− ẽ · ṗ− [(
1

2

b · b
µ0

− m̃ · b+
1

2
ǫ0e · e

+ ẽ · p)I− (
b⊗ b

µ0
− m̃⊗ b+ ǫ0e⊗ e+ ẽ⊗ p+ ǫ0e× b⊗ ẋ)] : L

− ρrh − ρẋ · (ġ− ẍ− d

dt

ǫ0
ρ
e× b) = 0 (2.36)
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Since g = ẋ+ ǫ0
ρ
e× b, we rewrite the above equation

ρu̇+∇ · q− σ : L− j̃f · ẽ + m̃ · ḃ− ẽ · ṗ

− [(
1

2

b · b
µ0

− m̃ · b+
1

2
ǫ0e · e+ ẽ · p)I− (

b⊗ b

µ0
− m̃⊗ b+ ǫ0e⊗ e

+ ẽ⊗ p+ ǫ0e× b⊗ ẋ)] : L− ρrh = 0 (2.37)

We assume that u(F,p,b, s, {ζ}), where F is the deformation gradient, s is the en-

tropy. The set {ζ} represents the collection of tensor valued, vector valued and scalar

valued internal variables.

Since in the experiments, it is easier to control the stress, magnetic or electric

field and temperature, we will propose a Gibbs free energy with the above mentioned

controllable quantities as dependent variables. The Gibbs free energy formulation also

provides the constitutive responses in terms of controllable variables and facilitates

model calibrations. We perform step by step partial Legendre transformations to

change the variable space of u to Gibbs free energy G. First we change the variable

from p to ẽ. Next we consider quasistatic condition for MSMA by assuming that

no electric field is applied. We further change the variable b to h and pull back all

the controllable variables in the reference configuration. Finally we obtain the full

Legendre transformation to the Gibbs free energy. All the steps are shown below:

u(F,p,b, s, {ζ}) −→ ψ(F, ẽ,b, T, {ζ}) e=0, ẋ≈0−→ ψ(F,b, T, {ζ})

−→ ψ1(F,h, T, {ζ}) Ωt→Ω0−→ ψ̃1(E,H, T, {Z}) −→ G(SE ,H, T, {Z}).

Here SE is the work conjugate of the Green strain E. More detail will be discussed

shortly. We will now present more detail calculations for each step of the Legendre
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transformation. We first consider

ψ(F, ẽ,b, T, {ζ}) = u− sT − 1

ρ
ẽ · p. (2.38)

Now,

ψ̇ = u̇− ṡT − sṪ − 1

ρ

d

dt
(ẽ · p)− L : I

ρ
(ẽ · p). (2.39)

Substituting ρu̇ from (2.39) to (2.36) we get,

ρ(ψ̇ + ṡT − sṪ ) +∇ · q− σ : L− j̃f · ẽ+ m̃ · ḃ+ ˙̃e · p

− [(
1

2

b · b
µ0

− m̃ · b+
1

2
ǫ0e · e)I− (

b⊗ b

µ0

− m̃⊗ b+ ǫ0e⊗ e

+ ẽ⊗ p+ ǫ0e× b⊗ ẋ)] : L− ρrh = 0 (2.40)

We collect the coefficient of L and define local stress by

σL = σ − σM (2.41)

and the electro-magnetic stress by

σM = [m̃ · b− 1

2
(ǫ0e · e+

b · b
µ0

)]I

+
b⊗ b

µ0
− m̃⊗ b+ ǫ0e⊗ e + ẽ⊗ p+ ǫ0e× b⊗ ẋ (2.42)

The local form of the energy balance ( 2.40) reduces to the following form

ρ(ψ̇ + ṡT − sṪ ) +∇ · q− σL : L− j̃f · ẽ + m̃ · ḃ+ ˙̃e · p− ρrh = 0. (2.43)

The entropy inequality is given by

ρṡ > ρrh/T −∇ · (q/T ) ,

> ρrh/T −∇ · q/T + q · ∇T/T 2. (2.44)
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Combining (2.44) and (2.43) we get,

ρ(ψ̇ − sṪ )− σL : L+ m̃ · ḃ+ ˙̃e · p− j̃f · ẽ+ q · ∇T/T > 0 (2.45)

In a moving frame Ohms law is given by j̃f = Ω−1ẽ , were Ω is the resistivity

tensor and positive definite. Similarly from Fourier law of heat conduction we have

q = −K∇T whereK is the material thermal conductivity tensor and positive definite.

With the help of these two constitutive laws we can rewrite (2.45) as

ρ(ψ̇ − sṪ )− σL : L+ m̃ · ḃ+ ˙̃e · p > 0 (2.46)

It should be noted that local stress σL is mechanical work conjugate of the velocity

gradient L. We further rewrite (2.46) in the following form,

ρ(ψ,F : Ḟ+ ψ,b ·ḃ+ ψ,ẽ · ˙̃e+ ψ,T Ṫ + ψ,ẋ ·ẍ+ ψ,ζi ·ζ̇i − sṪ )

− σL : ḞF−1 + m̃ · ḃ+ p · ˙̃e > 0 (2.47)

or

(ρψ,F −σLF−T ) : Ḟ+ (ρψ,b +m̃) · ḃ+ (ρψ,ẽ +p) · ˙̃e+ (ρψ,T +ρs)Ṫ

+ ψ,ζi ·ζ̇i > 0. (2.48)

Here ζi represents an element of the set {ζ} and the associated ’·’ represents the

generalized tensor contraction. Using Colleman Noll maximum entropy principle we
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get the following constitutive equations.

σL = ρψ,F FT (2.49a)

m̃ = −ρψ,b (2.49b)

p = −ρψ,ẽ (2.49c)

s = −ψT (2.49d)

ψ,ζi ·ζ̇i > 0 (2.49e)

B. MSMA material system: Magnetized medium

In this section we consider MSMA for which polarization is zero (p = 0) and so

m̃ = m. This reduces the general expression of the magneto stress ( (2.42)) in the

following form

σM = [m · b− 1

2
(ǫ0e · e+

b · b
µ0

)]I

+
b⊗ b

µ0
−m⊗ b+ ǫ0e⊗ e+ ǫ0e× b⊗ ẋ (2.50)

It is important to note that though the material system does not have polarization,

the electric field ẽ can influence the magneto stress due to the coupling of e with b

and ẋ.

Since MSMA experiments are conducted under zero electric field, now and on-

wards we will consider e = 0. Under these conditions, the magneto stress tensor (

(2.42)) reduces to the Maxwell stress

σM = σMb(b,m) =
b⊗ b

µ0
−m⊗ b+ [m · b− 1

2

b · b
µ0

]I (2.51)

Now we will perform partial Legendre transformation from Ψ to Ψ1, as discussed in

the flow chart of the last section.

35



1. Magnetic field h as independent variable: ψ1 = ψ1(F,h, T, {ζ})

First we change the dependent variable b of ψ(F,b, T, {ζ}) to h. We are looking for

a transformation function Φ(b,h) such that

ψ1(F,h, T, {ζ}) = ψ(F,b, T, {ζ}) + Φ(b,h) (2.52)

For MSMAs (p = 0 and m̃ = m), (2.49b) becomes

ρψ1,b = −m = (− b

µ0

+ h) (2.53)

and with the transformed function Ψ1, we are looking for the following constitutive

equation

ρψ1,h = −µ0m = (−b+ µ0h) (2.54)

Taking the partial derivative of (2.52) and using (2.54) we get,

ρψ1,h = Φ,h = (−b+ µ0h)

⇒ Φ = −b · h+
µ0

2
h · h+ Φ1(b) (2.55)

where Φ1(b) is an arbitrary function. Similarly taking partial derivative of Ψ1 with

respect to b we get

ρψ1,b = 0 = ψ,b +Φ,b

⇒ 0 = (− b

µ0

+ h) + (−h+ Φ1,b )

= − b

µ0
+ Φ1,b

⇒ Φ1 =
b · b
2µ0

. (2.56)
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The integration constant is set to zero by assuming Φ1(0) = 0. Substituting back

(2.56) in (2.55) we get,

Φ = −b · h+
µ0

2
h · h+

b · b
2µ0

=
µ0

2
(h · h− 2

b

µ0
· h+

b · b
µ2
0

)

=
µ0

2
(h− b

µ0
) · (h− b

µ0
)

=
µ0

2
m ·m. (2.57)

We perform the following partial Legendre transformation,

ψ1(F,h, T, {ζ}) = ψ(F,b, T, {ζ}) + µ0

2ρ
m ·m. (2.58)

Therefore,

ψ̇1 = ψ̇ +
µ0

ρ
(ṁ ·m) +

µ0

2ρ
(m ·m)I : L by (2.33)

and we write

(ψ1,F : Ḟ+ ψ1,h · ḣ+ ψ1,T Ṫ + ψ1,ζi · ζ̇i)

= (ψ,F : Ḟ+ ψ,b · ḃ+ ψ,T Ṫ + ψ,ζi ·ζ̇i)

+
µ0

ρ
(ṁ ·m) +

µ0

2ρ
(m ·m)F−T : Ḟ. (2.59)

Moreover using the fact that

ρψ,b · ḃ+ µ0(ṁ ·m) = ρψ,b · µ0(ḣ+ ṁ) + µ0(ṁ ·m)

= (−m) · µ0(ḣ+ ṁ) + µ0(ṁ ·m)

= −µ0m · ḣ

(2.60)
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and comparing the coefficients of the like terms with the help of (2.49a), (2.49b),

(2.49d) and (2.49e) we write from (2.59)

σLh = σL +
µ0

2
(m ·m)I (2.61a)

ρψ1,h = −µ0m (2.61b)

ψ1,T = −s (2.61c)

ψ1,ζi = ψζi (2.61d)

where we define σLh = ρψ1,FF
T . Since σL = σ −σMb ( (2.41)) and using (2.61a) we

further write

σLh = σL +
µ0

2
(m ·m)I

= σ − (σMb − µ0

2
(m ·m)I) (2.62)

and denote

σMh = σMb − µ0

2
(m ·m)I (2.63)

such that

σLh = σ − σMh. (2.64)

We change the variable b to h of the Maxwell stress σMb(b,m) ( 2.51) by using the

relation b = µ0(m+ h) and obtain

σMb(h,m) = µ0(m+ h)⊗ (m+ h)−m⊗ µ0(m+ h)

+ [m · µ0(m+ h)− 1

2
µ0(m+ h) · (m+ h)]I

= µ0h⊗ h+ µ0h⊗m+
µ0

2
[m ·m− h · h]I. (2.65)
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ubstituting back σMb(h,m) in (2.63) we write the Maxwell stress

σMh = µ0h⊗ h+ µ0h⊗m− µ0

2
(h · h)I. (2.66)

The set of constitutive equations become

σLh = ρψ1,FF
T (2.67a)

µ0m = −ρψ1,h (2.67b)

s = −ψ1,T (2.67c)

ψ1,ζi · ζ̇i > 0 (2.67d)

It is worth to mention that, if we use the relation (2.64) in the conservation linear

momentum (2.26b) and conservation of angular momentum (2.26c), we get

∇ · σLh + µ0(∇h)m = 0 (2.68a)

skw(σLh) = µ0skw(m⊗ h) (2.68b)

The above relation is same as in two-dipole model [123] when the free current is

neglected.

2. Reference configuration: ψ1 = ψ̃1(E,H, T, {Z})

In this subsection, we will describe our formulation in the material configuration.

Such a formulation is advantageous to describe the deformation of solids. Moreover,

independent field variables become objective in the material configuration. Let H be

the magnetic field vector in Ω0 such that

H = FTh, (2.69)

M = (detF)F−1m. (2.70)
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In addition

E =
1

2
(C− I), C = FTF. (2.71)

{Z} represents the set of tensor, vector and scalar internal variables, defined in the

undeformed configuration. We write,

ψ̇1 = ψ̇1(F,h, T, ζi) = ψ1,F : Ḟ+ ψ1,h · ḣ+ ψ1,T Ṫ + ψ1,ζi : ζ̇i (2.72)

ψ̇1 =
˙̃
ψ1(E,H, T,Zi) = ψ̃1,E : Ė+ ψ̃1,H · Ḣ+ ψ̃1,T Ṫ + ψ̃1,Zi

: Żi (2.73)

and

Ė =
1

2
(ḞTF+ FT Ḟ), (2.74a)

Ḣ = ḞTh+ FT ḣ. (2.74b)

Since, by definition, E is symmetric,ψ̃1,E is also symmetric. Using this property we

can write,

ψ̃1,E : Ė = ψ̃1,E :
1

2
(ḞTF+ FT Ḟ)

= Fψ̃1,E : Ḟ. (2.75)

ψ̃1,H · Ḣ = (h⊗ ψ̃1,H) : Ḟ+ Fψ̃1,H · ḣ. (2.76)

Substituting equations (2.76) and (2.75) in (2.73) and comparing the coefficients of

Ḟ, ḣ, Ṫ we get,

ψ1,F = Fψ̃1,E + (h⊗ ψ̃1,H) (2.77a)

ψ1,h = Fψ̃1,H (2.77b)

ψ1,T = ψ̃1,T . (2.77c)
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From equation (2.61b) we know that ρψ1,h = −µ0m and so,

Fψ̃1,H = −µ0

ρ
m. (2.78)

Substituting back equation (2.78) in equation (2.77a) we get,

ψ1,F = Fψ̃1,E − µ0

ρ
(h⊗m)F−T . (2.79)

Next by using equation (2.67a), we write

1

ρ
σLhF−T = Fψ̃1,E − µ0

ρ
(h⊗m)F−T

⇒ Fψ̃1,E =
1

ρ
(σLh + µ0(h⊗m))F−T . (2.80)

We define material stress σE such that

σE = σLh + µ0h⊗m (2.81)

We further simplify the above expression with respect to the total stress in the fol-

lowing way,

σE = σLh + µ0h⊗m

= (σ − σMh) + µ0h⊗m

= σ − σh. (2.82)

The expression for σh is

σh = µ0h⊗ h− µ0

2
(h · h)I. (2.83)
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It should be noted that σE is symmetric because by definition total stress σ is sym-

metric and according to (2.83), σh is symmetric. Continuing (2.80) we write,

ψ̃1,E =
1

ρ
F−1(σLh + µ0(h⊗m))F−T

=
1

ρ0
(detF)F−1σEF−T . (2.84)

We define material stress in the undeformed configuration by

SE = (detF)F−1σEF−T . (2.85)

Moreover, it should be noted from (2.78) that

Fψ̃1,H = −µ0

ρ
m, (2.86)

⇒ ψ̃1,H = −µ0

ρ0
(detF)F−1m, (ρ0 = ρ(detF)) (2.87)

⇒ ψ̃1,H = −µ0

ρ0
M. (2.88)

We use (2.70) in the second step to obtain (2.88). The set of constitutive equations

and the dissipative inequality become,

SE = (detF)F−1σEF−T = ρ0ψ̃1,E (2.89a)

µ0M = −ρ0ψ̃1,H (2.89b)

s = −ψ̃1,T (2.89c)

ψ1,Zi
· Żi > 0. (2.89d)

3. The Gibbs free energy: G = G(SE ,H, T, {Z})

This is the final step to obtain the Gibbs free energy with the following Legendre

transformation

G(SE ,H, T, {Z}) = ψ̃1 −
1

ρ0
SE : E. (2.90)
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Now,

Ġ =
˙̃
ψ1 −

1

ρ0
ṠE : E− 1

ρ0
SE : Ė

⇒ G,SE : ṠE +G,H ·Ḣ+G,T Ṫ +G,Zi
·Żi = (ψ̃1,E : Ė+ ψ̃1,H · Ḣ+ ψ̃1,T Ṫ + ψ̃1,Zi

· Żi)

− 1

ρ0
ṠE : E− 1

ρ0
SE : Ė

(G,SE +
1

ρ0
E) : ṠE + (G,H−ψ̃1,H) · Ḣ + (G,T −ψ̃1,T )Ṫ +G,Zi

·Żi

= ψ̃1,E : Ė− 1

ρ0
SE : Ė+ ψ̃1,Zi

· Żi

= ψ̃1,Zi
· Żi

(2.91)

This implies

−(G,SE +
1

ρ0
E) : ṠE − (G,H−ψ̃1,H) · Ḣ− (G,T −ψ̃1,T )Ṫ −G,Zi

·Żi > 0 (2.92)

So, the constitutive equations are

E = −ρ0G,SE

G,H = ψ̃1,H

G,T = ψ̃1,T (2.93)

and from Eqs. (2.89b), (2.89c), (2.89d) we get,

E = −ρ0G,SE (2.94a)

µ0M = −ρ0G,H (2.94b)

s = −G,T (2.94c)

−ρG,Zi
·Żi > 0. (2.94d)

43



where

SE =
ρ0
ρ
F−1[σE ]F−T ,

=
ρ0
ρ
F−1[σ − σh]F

−T ,

=
ρ0
ρ
F−1[σ − [µ0h⊗ h− 1

2
µ0(h · h)I]]F−T ,

=
ρ0
ρ
F−1[σ − [µ0(F

−TH)⊗ (F−TH)− 1

2
µ0((F

−TH) · (F−TH))I]]F−T ,

= S− ρ0
ρ
[µ0C

−1H⊗C−1H− 1

2
µ0(H ·C−1H)C−1] , (2.95)

= S− ρ0
ρ
SH(C,H) .

In the next subsection, we will introduce the set of internal variables {Z}.

4. Internal state variables

Fig. 9. Schematic of inter-phase transitions

We denote stress favored martensitic variants by M1, field favored and twinned

martensitic variants by M2 and M3, respectively (Fig. 9). The austenitic phase is

denoted by A. The volume fractions of M1, M2 and M3, produced during phase
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transformation from A, are denoted by ξ1, ξ2 and ξ3. We denote the reorientation

volume fraction of M2 from M1 by ξ4, of M2 from M3 by ξ5, and of M1 from M3 by

ξ6. The productions of volume fractions ξi, from different phases are schematically

presented in Fig. 9. The three phase transformations A↔M1, A↔M2, A↔M3 and

the field induced variant reorientation M1 ↔ M2 can be generated both directions.

However, reorientation from stress favored variants M1 and field favored variants M2

to twinned martensitic variant M3 is not energetically favorable and ξ̇5, ξ̇6 may only

occur in one direction. We select the set of six scalar internal variables ξi (i = 1..6),

to describe the phase state of the material. The total volume fractions of M1, M2,

M3 are denoted by c1, c2, c3 and the volume fraction of the austenitic phase (A) is

denoted by c4. The rate ċi of each volume fraction is obtained by summing up the

reaction rates ξ̇j [91], i.e,

ċi = νij ξ̇j. (2.96)

where,

νij =




1 0 0 −1 0 1

0 1 0 1 1 0

0 0 1 0 −1 −1

−1 −1 −1 0 0 0



. (2.97)

The volume fractions are subjected to the following constraints,

4∑

i

ċi = 0,

4∑

i

ci = 1, and 0 ≤ ci ≤ 1.

If the initial volume fractions ofM1,M2,M3 andA are c01, c02, c03 and c04 respectively,

we can write

ci = c0i + νijξj, (2.98)
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We further assume the inelastic strain EI and internal magnetization MI , gen-

erated during structural transformation, are the tensor valued and vector valued

internal variables. We extend the idea of inelastic strain to the generation of internal

magnetization vector MI . This internal magnetization may take into account the

phenomenological effect of different micro-magnetic mechanism like rotation of mag-

netization vector and evolution of magnetic domain walls. Finally, we consider the

mixing energy g of the transformation and reorientation as an internal variable. This

yields the complete set of internal variables as {Z} = {EI ,MI , ξi, g}.

Rest of the subsection, we will discuss the evolution laws for the internal state

variables. Following additive decomposition [132, 133], the inelastic strain rate ĖI ,

produced during phase transformation and variant reorientation, can be written as

ĖI = Ėt + Ėr, (2.99)

where, Et is the transformation strain due to phase transformation and Er is the

reorientation strain produced during variant reorientation. We further assume that

the transformation and reorientation strain rates obey the following flow rules

Ė
t

=

3∑

i=1

Λt
iξ̇i, (2.100a)

Ė
r

=
6∑

i=4

Λr
i ξ̇i (2.100b)

The tensors Λt
i and Λr

i describe the direction and magnitude of the strain generated

during phase transformation and variant reorientation, respectively.

Similarly we consider that the rate of magnetization vector ṀI can be decom-

posed in the following way,

ṀI = Ṁt + Ṁr, (2.101)
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Here, Ṁt is generated during phase transformation and Ṁr is generated during re-

orientation. We assume the following flow rules

Ṁ
t

=

3∑

i=1

γtiξ̇i, (2.102a)

Ṁ
r

=

6∑

i=4

γri ξ̇i, (2.102b)

where the vectors γti and γri take into account the direction and magnitude of the

internal magnetization due to the microstructural changes.

The evolution of the interaction or mixing energy, ġ, between the parent phase

and martensitic phase during phase transformation (ġt) and among the martensitic

variants during variant reorientation (ġr) can be represented by

ġ = ġt + ġr, (2.103)

and we assume the following flow rules

ġt =

3∑

i=1

f ti ξ̇i, (2.104a)

ġr =
6∑

i=4

f ri ξ̇i, (2.104b)

where fi s are the hardening functions. Thus, the Gibbs free energy with the set of

external ({SE,H, T}) and internal ({Z} = {EI ,MI , ξi, g}) state variables is given by

G = G(SE ,H, T,EI,MI , ξi, g). (2.105)

C. Material symmetry

After defining the Gibbs free energy and the evolution equations one needs to consider

material symmetry. MSMAs are single crystals or polycrystals which may exhibit

47



finite or continuous symmetry, respectively. In this section we discuss a brief intro-

duction on finite and continuous symmetries for a scalar function with an arbitrary

number of tensor arguments. The arguments of the scalar function may be polar ten-

sors, axial tensors, i-tensors and c-tensors. Polar tensors do not change sign under

improper rotation while axial tensors do. Tensors of any order that are invariant

under time inversion are known as i-tensors and tensors whose components change

sign with time reversal are known as c-tensors. The methods will then be extended

for any tensor function.

1. Finite symmetry for magneto-crystalline material

The point groups for crystals are known as classical point groups4. We denote the

classical group by G . Since a reversal of time changes the sign of the current and

hence reverses the direction of the magnetic moment vector in magnetic materials, we

need an additional time-inversion operation τ . When this operator acts on a classical

point group, it is possible to find a new group, known as magnetic point groups [134].

In this group, half of the elements of the ordinary point group G are multiplied by the

time-inversion operator τ . The other half forms a subgroup, H , of G . The magnetic

point group, M , can be written as

M = H + τ(G − H ).

Ferromagnetic, antiferromagnetic, ferrimagnetic and weak ferromagnetic materials

belong to this group. For a general case, we denote the magnetic point group by

M = {M α}

4A brief introduction on finite symmetry and point groups is presented in Appendix
B.
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for α = 1, .., n where n is the order of the group. The representation of the group is

thus given by

T (M ) = {T (M α)}.

If we denote the fully reduced representation of T by Γ, then

Γ =

r⊕

i=1

niΓ
(i), (2.106)

where Γ(1), ...Γ(r) are the irreducible representation of M . We use the orthogonality

of characters (B.4) to obtain the coefficients ni of equation (2.106) [135].

a. Determination of polynomial integrity basis

After defining a magnetic point group M , we consider the problem of generating an

integrity basis for a scalar valued tensor function W (X, Y, ...) so that it is invari-

ant under M [135–137]. If A ∈ {X, Y, ...} and Q ∈ {T (M )} then the following

transformation holds true

A′
ijk...n = (−1)p(detQ)QipQjq...QnuApqr...u.

In the above transformation, p = 1 for c-tensors and p = 0 for i-tensors. detQ = 1

for polar tensors and detQ = −1 for axial tensors.

Given a magnetic point group, we now determine the basic quantities of X,Y, ...

Let

u = [u1, ...., um]
T = [X1, ....Xp, Y1, ...., Yq, ....]

T

denote the column vector whose entries are the independent components of X, Y, .....

For example, X1, ..., Xp are the p independent components of the tensor X. We set
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W (u) := W (X, Y, ...) and the restrictions imposed on the scalar function are

W (u) = W (Tku) (k = 1, ..., n)

where {Tk} arem-dimensional matrix representation of {T (M )}. The representation

{Tk} can be decomposed into irreducible representations associated with the group

{M }. We denote these representations by {Γ(1)
k , Γ

(2)
k ....}. Thus, we are looking for a

similarity transformation with a non-singular m×m matrix R such that

RTkR
−1 =

r⊕

i=1

niΓ
(i)
k (k = 1, ..., n),

where

Ru =




u(1)

u(2)

...

u(r)



, u(1) =




u
(1)
1

u
(1)
2

...

u
(1)
n1



, u(2) =




u
(2)
1

u
(2)
2

...

u
(2)
n2



, ....,u(r) =




u
(r)
1

u
(r)
2

...

u
(r)
nr




.

We can then express the scalar function as

W (u) = P (u(1), u(2), ...,u(r)) = P (Γ
(1)
k u(1), Γ

(2)
k u(2), ...,Γ

(r)
k u(r)).

The set {u(1),u(2), ...,u(r)}, associated with {Γ(1)
k ,Γ

(2)
k , ...,Γ

(r)
k }, forms the carrier

space for the irreducible representation and the elements of the set are known as

basic quantities.

Let I1, ..., Is be the polynomials in the basic quantities {u(1),u(2), ...,u(r)} such

that I1, ..., Is are each invariant under M and such that every function P (u(1), u(2), ...,u(r)),

which is invariant under M , can be expressed as a functions of I1, ..., Is. The I1, ..., Is

are said to form an integrity basis, invariant under M . The elements of integrity basis

of degree 1, 2, 3 are given by [136]
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Degree 1 :

J1(u
(1)), J2(u

(2)), ...., Jr(u
(r)).

Degree 2 :

J11(u
(1),u(1)), J12(u

(1),u(2)), .....

Degree 3 :

J111(u
(1),u(1),u(1)), J112(u

(1),u(1),u(2)), ......

2. Continuous symmetry for magneto-noncrystalline material

In the previous subsection, we presented the results of integrity basis with complete

generality for the crystallographic point groups. This was possible because a finite

group has a finite number of irreducible representation Γ(1), ...,Γ(r). A group con-

taining an infinite number of continuous elements is called a continuous group. The

number of irreducible representations associated with the continuous group is not

finite. There is no way to present a general result compared to those given for finite

group. This problem has been discussed by Rivlin and Spencer for the O(3) and

SO(3). Their procedure makes extensive use of Cayley-Hamilton identity to generate

integrity basis. Integrity basis for a scalar valued tensor functions W (X, Y, ...) can

be obtained by following Rivlin and Spensor [138, 139]. More results of invariants

and integrity basis can be found in [127, 140]. A comprehensive study is available in

the review paper by Zheng [141].

A non-crystal type material can be classified into four types: isotropic, trans-

versely isotropic, icosahedral and non-crystal dihedral [142] which belong to a con-

tinuous group. In this study we consider only transverse isotropy, whose symmetry
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groups can be classified into five groups: A ={C∞, C∞ v, C∞h, D∞, D∞ h}. The

transverse isotropy of a scalar function can be considered by introducing structural

tensors to its arguments and then considering the function as an isotropic one. The

structural tensors of the five different groups are presented in Table. III, where

Continuous groups Structural tensors

C∞ e3, P

C∞ v e3

C∞h e3 ⊗ e3, N3

D∞ e3 ⊗ e3, P

D∞h e3 ⊗ e3

Table III. Structural tensors for different groups of transverse isotropy

P = e1 ⊗ e2 ⊗ e3 − e2 ⊗ e1 ⊗ e3 + e2 ⊗ e3 ⊗ e1 − e3 ⊗ e2 ⊗ e1

+ e3 ⊗ e1 ⊗ e2 − e1 ⊗ e3 ⊗ e2,

N3 = e1 ⊗ e2 − e2 ⊗ e1.

The preferred unit direction of transverse isotropy is given by e3. We denote two unit

orthogonal directions with respect to e3 by e1 and e2.

3. Symmetry restrictions for general constitutive relations

So far, we have considered a tensor valued scalar function of the form W (X, Y, ...).

In this section we focus on the most general constitutive form

Ti1....in = Ti1....in(A, B, ...)

which is invariant under {M } or {A }. We convert the tensor valued function by

introducing an arbitrary tensor t, which has same order and symmetry properties as
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T. We define a scalar V such that

V = ti1....inTi1....in

and V = V (t,A, B, ...) is linear in t. Now one can find the integrity basis for V with

the arguments t,A, B, ... as described in the previous subsection. Let the set {I},

with elements I1, ..., Ir of the integrity basis, be independent of t and the set {L},

with elements L1, ..., Lm, be linear in t and the rest of the elements are of higher order

in t. Since V is linear in t it may be represented by

V =

m∑

p=1

cp(I1, ..., Ir)Lp,

where cp’s are scalar polynomials. Then the generalized form of the constitutive

relation, which is invariant under {M }, can be written as

Ti1....in =
∂V

∂ti1....in
=

m∑

p=1

cp(I1, ..., Ir)
∂Lp

∂ti1....in

=

m∑

p=1

cp(I1, ..., Ir)D
p
i1....in

, (2.107)

where

D
p
i1....in

=
∂Lp

∂ti1....in
.

We denote the set {D} by { ∂L1

∂ti1....in
, ∂L2

∂ti1....in
.... ∂Lm

∂ti1....in
}.

D. Constitutive equations for MSMAs

After describing a generalized method for obtaining integrity basis in the previous

section, we now apply it to the Gibbs free energy and evolution equations for MSMAs.

The finite symmetry group is considered for single crystal MSMA while continuous

symmetry is considered for polycrystals and multi-variant materials.
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The general form of the Gibbs free energy for an MSMA system can be written

as

G = G(SE ,H, T,EI,MI , ξi, g, {S}). (2.108)

where SE , EI are the polar, second order, symmetric, i-tensors and H, MI are the

axial c-vectors. The anisotropy for a continuous symmetry group is considered by

introducing structural tensors {S}. For the transverse isotropic case, the elements of

{S} can be obtained from Tab. III. It should be noted that for finite symmetry we

do not need to consider any structural tensor.

Let Υφ be the integrity basis of (2.108) which may be split such that

Υφ = ΥφI

⋃
ΥφP and ΥφI

⋂
ΥφP = ∅.

Here, ΥφI contains the elements of the integrity basis with at least one internal

variable and ΥφP is the set of the remaining elements. Based on the above arguments,

we propose

G(Υφ, T, ξi, g) =
4∑

j=1

cj(ξi)GPj
(ΥφP , T ) +GI(ΥφI , T ) +Gmix(g) (2.109)

We denote the sets obtained by taking partial derivative of the elements of Υφ with

respect to H, SE , EI and MI by ΥH, ΥSE , ΥEI and ΥMI , respectively. In addition,

for continuous symmetry we denote Υ{S} as the partial derivative of Υφ with respect

to {S}. The expression of the strain E, the magnetization vector M and the entropy
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s can be written in the following ways (equations (2.94a) to (2.94c))

E = −ρ0G,SE =
∑

Ta∈ΥSE

αa(Υφ)Ta, (2.110a)

M̄ = −ρ0
µ0
G,H=

∑

vb∈ΥH

βb(Υφ)vb, (2.110b)

s = −ρ0G,T (2.110c)

Moreover5, the entropy inequality becomes

πEI : ĖI + πMI : ṀI + πξi ξ̇i + πgġ + π{S} : ˙{S} ≥ 0, (2.111)

where we denote

πEI = −ρ0G,EI =
∑

Ra∈ΥEI

χa(Υφ)Ra

πMI = −ρ0G,MI =
∑

ub∈ΥMI

ϕb(Υφ)ub

πξi = −ρ0G,ξi

πg = −ρ0G,g

π{S} = −ρ0G,{S} =
∑

Uc∈Υ{S}

ωc(Υφ)Uc.

The rate ĖI , ṀI and ġ can be obtained from the evolution equations (2.99), (2.101)

and (2.103).

Considering the evolution equations for the inelastic strain (equations (2.100a)

and (2.100b)), we assume that transformation and reorientation occur due to the

deviatoric part (S′E) of the stress SE , field, temperature and structural tensor (for

5It should be noted that from equation (2.94b), the magnetization M =
(detF)FTM̄.
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continuous symmetry only). Then Λβ
v can be represented as

(Λβij)v = (Λβij)v(S
′E , H, T, {S}),

where as for the evolution of the magnetization and mixing energy equation we can

write

(γβi )v = (γβi )v(S
′E, H, T, {S}),

and

fβv = fβv (S
′E, H, T, {S}).

Here β = t for transformation, β = r for reorientation and v may vary from 1 to 6.

Following subsection 3, we further write

(Λβij)v =

m∑

p=1

cpv(I1, ..., Ir)(D
p
ij)v. (2.112)

Similarly, from the evolution equation for the internal magnetization (equations (2.102a)

and (2.102b)), we can write for any generic γβv ,

(γβi )v =

m∑

p=1

c′pv(I1, ..., Ir)(D
p
i )v, (2.113)

and for the hardening function

(fβ)v = c′′pv(I1, ..., Ir). (2.114)

We further focus on continuous symmetry for which one needs to know about the

evolution of structural tensors. Since the direction of texturing, which is denoted by

e3, may change due to the microstructural change during phase transformation and

variant reorientation, the structural tensors evolve with the change in the direction
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of e3. Let Σ ∈ {S} and

Σ = Σ(e1, e2, e3).

The rate of change of the structural tensor can then be represented by

Σ̇ = Ξ(e1, e2, e3, ė3). (2.115)

We can express e3 with respect to the directional cosines such that e3 = (cosα1,

cosα2, cosα3)
T and

ė3 = −(sinα1(α̇1), sinα2(α̇2), sinα3(α̇3))
T .

The evolution of the αj (j=1,3) may be related with the evolution of the volume

fractions such that

α̇j =

3∑

i=1

Θt
ij ξ̇i +

6∑

i=3

Θr
ij ξ̇i. (2.116)

Here Θβ
ij are scalars that take into account the change in αi due to changes in ξj.

E. Integrity basis of the Gibbs free energy for finite symmetry

Our next objective is to find out the elements of Υφ for MSMA material systems which

belong to a specific class of symmetry group. For finite symmetry, we consider field

induced phase transformation and variant reorientation in a single crystal specimen.

We demonstrate continuous symmetry for polycrystalline MSMAs.

1. Field Induced Phase Transformation (FIPT)

Austenitic phase: We consider FIPT in a NiMnCoIn single crystal which has a fer-

romagnetic austenitic phase. The austenitic phase is cubic and it is a well known fact
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that cubic symmetry does not support ferromagnetism [134, 143, 144]. For example,

the symmetry of bcc α-iron is often thought to be cubic, but is tetragonal due to the

axially symmetric magnetic moment [145]. Similarly, a reduction in the symmetry

of the Ni crystal structure occurs from fcc to trigonal (3m) due to the alignment of

the magnetic moment along the [111] direction. The Cu2MnAl Heusler alloy has the

L21 chemical structure and belongs to Fm3m space group even though the magnetic

point group of this compound, like Ni, is 3m [143].

In the present case, the NiMnCoIn crystal exhibits L21 type Heusler structure

with the Fm3m space group [146]. The magnetic point group has not been reported to

date. Since the crystal structure and space group of NiMnCoIn resembles Cu2MnAl

Heusler alloy, we consider that the ferromagnetic austenitic phase belongs to 3m

magnetic point group.

Fig. 10. Stereographic representation of the symmetry elements and reference axes for

3m point group.

Figure 10 represents the 3m point group in stereographic projections. The no-

tation of the diagram follows from [144]. The triangle at the center (N) represents
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3m E S1 S2 τ(R1) τ(R1S1) τ(R1S2)

Γ(1) 1 1 1 1 1 1

Γ(2) 1 1 1 −1 −1 −1

Γ(3) E A B −F −G −H

Table IV. The irreducible representation of 3m

the 3-fold rotations along the z axis which is perpendicular to the plane of the paper

and obey the right-hand rule. A solid ellipse denotes 2-fold rotations along the i′ − i′

axis (i = 1, 2, 3). The alpha-numeric labeling of the symmetry operations are placed

on the figure in the position to which the letter E is taken by that operation. C±
3z

represents 360o/3 anticlockwise/clockwise rotation along the z axis and C
′

2i is the

180o rotation along the i′ − i′ axis. It should be noted that x and y axes are not

orthogonal. The angle between them is 120o. All the components of the magneto-

mechanical variables for the austenitic phase will be presented with respect to the

above mentioned coordinate frame.

The irreducible representation for 3m is given in Table IV. The top row of Table

IV represents the matrix representation of the symmetry operations of this group.

They are E: identity, Ri: reflection on xi plane, S1: rotation through 2π/3 clockwise

about x3, S2: rotation through 2π/3 anticlockwise about x3 and τ is the time inver-

sion operator. We denote {x1 = x, x2 = y, x3 = z} and the form of the matrices can

be found in [135]. The irreducible representation (last row of Table IV) are defined

in terms of the matrices
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Type Decomposition

Axial c-vectors Γ(1) ⊕ Γ(3)

Polar i-tensors 2Γ(1) ⊕ 2Γ(3)

Table V. Decomposition of magneto-mechanical quantities of 3m magnetic point group

Γ(1) H3 SE11 + SE22, S
E
33

Γ(2)

Γ(3) (H1, H2) (SE13, S
E
23), (2S

E
12, S

E
11 − SE22)

Table VI. The basic quantities of 3m

E =



1 0

0 1


 , A =



−1

2

√
3
2

−
√
3
2

−1
2


 , B =



−1

2
−

√
3
2

√
3
2

−1
2


 , F =



1 0

0 −1




G =



−1

2

√
3
2

√
3
2

1
2


 , H =



−1

2
−

√
3
2

−
√
3
2

1
2


 .

The decompositions of axial c-vectors and polar i-tensors are given in the Table V.

We assume that the austenitic phase is magneto-elastic and the Gibbs free energy

for this phase depends on the stress, magnetic field and temperature. The Gibbs free

energy can then be represented by

G = GA(S
E , H, T ).

The basic quantities for the above arguments are given in Table VI. We write

Γ(1) :
{
u
(1)
1 , u

(1)
2 , u

(1)
3

}
=
{
H3, S

E
11 + SE22, S

E
33

}

Γ(3) :
{
u
(3)
1 , u

(3)
2 , u

(3)
3

}
=







H1

H2


 ,



SE13

SE23


 ,




2SE12

SE11 − SE22







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The multilinear elements of the integrity bases, in terms of the basic quantities, are

given by

Degree 1: u
(1)
i (i = 1, 3)

Degree 2: u
(3)
i · u(3)

j (i, j = 1, 3).

Martensitic phase: The single crystal antiferromagnetic martensitic phase of this

material is 14M monoclonic [50, 146]. The monoclinic martensitic phase belongs

to 2/m (C2h) classical point group. The three magnetic point groups of 2/m are

2/m, 2/m, 2/m. The magnetic group of NiMnCoIn martensitic phase has not been

reported in the literature so far.

The integrity basis for each magnetic point group is different. We need to identify

the group which is closest to the observed material response. For example, any mate-

rial belonging to group 2/m is a ferromagnetic material [134, 147]. Thus, we eliminate

this group for the antiferromagnetic martensitic phase. Now, both 2/m, 2/m are an-

tiferromagnetic and it can be shown that the integrity bases for magneto-mechanical

coupling up to second order are the same for 2/m and 2/m [135]. We select 2/m to

proceed.

The stereographic representation of 2/m is presented in Fig. 11. The notation

is the same as described for the austenitic phase. The irreducible representation for

2/m is given in Table VII. The matrices of the symmetric operations are E: identity,

C: inversion, Ri: reflection on xi plane, Di: rotation of π anticlockwise about xi. The

decompositions of axial c-vectors and polar i-tensors are presented in Table VIII. We

consider the martensitic phase to be magneto-elastic and the Gibbs free energy for
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Fig. 11. Stereographic representation of the symmetry elements and reference axes for

2/m point group.

this phase is assumed to be

G = GM(SE , H, T ).

The basic quantities for the above arguments are given in Table IX and we write

2/m E τ(D3) R3 τ(C)

Γ(1) 1 1 1 1

Γ(2) 1 1 −1 −1

Γ(3) 1 −1 1 −1

Γ(4) 1 −1 −1 1

Table VII. The irreducible representation of 2/m
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Type Decomposition

Axial c-vectors 2Γ(2) ⊕ Γ(3)

Polar i-tensors 4Γ(1) ⊕ 2Γ(4)

Table VIII. Decomposition of magneto-mechanical quantities of 2/m magnetic point

group

Γ(1) SE11, S
E
22, S

E
33, S

E
12

Γ(2) H1, H2

Γ(3) H3

Γ(4) SE32, S
E
31

Table IX. The basic quantities of (2/m)

Γ(1) :
{
u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4

}
=
{
SE11, S

E
22, S

E
33, S

E
12

}

Γ(2) :
{
u
(2)
1 , u

(2)
2

}
= {H1, H2}

Γ(3) :
{
u
(3)
1

}
= {H3}

Γ(4) :
{
u
(4)
1 , u

(4)
2

}
=
{
SE23, S

E
31

}

The multilinear elements of the integrity basis, in terms of the basic quantities, are

given by

Degree 1: u
(1)
i (i = 1, 4)

Degree 2: u
(2)
j u

(2)
k , u

(3)
l u(3)m , u(4)r u(4)s (j, k = 1, 2; l, m = 1, 1; r, s = 1, 2).

Transforming phase: The stress favored martensitic variant is nucleated from the

austenitic phase under high stress and low magnetic field, since austenitic field is
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Γ(1) SE11, S
E
22, S

E
33, S

E
12 EI

11, E
I
22, E

I
33, E

I
12

Γ(2) H1, H2 M I
1 ,M

I
2

Γ(3) H3 M I
3

Γ(4) SE32, S
E
31 EI

32, E
I
31

Table X. The basic quantities of (2/m) for transformation

only stable at high field. We consider that only the stress favored single crystal

martensitic variant exists. Nucleation of the new phase causes inelastic deformation

and the change in strain and magnetization are taken into account through the set

of internal variables. The internal variables for this case are inelastic strain EI ,

internal magnetization MI and volume fraction ξ1 of the martensitic phase. The

evolution of EI and MI are related to that of ξ1 through transformation tensor Λt
1

and transformation vector γt1, respectively. The Gibbs free energy for this phase is

given by

G = GI(S
E , H, T, EI , MI).

Since the nucleating phase is martensite, we impose symmetry restrictions of 2/m on

the Gibbs free energy function. The orientation of the martensitic variant is the same

as Fig. 11 and the basic quantities are given in Table X. We write

Γ(1) :
{
u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4

}
=
{
SE11, S

E
22, S

E
33, S

E
12

}

{
u
(1)
5 , u

(1)
6 , u

(1)
7 , u

(1)
8

}
=
{
EI

11, E
I
22, E

I
33, E

I
12

}

Γ(2) :
{
u
(2)
1 , u

(2)
2 , u

(2)
3 , u

(2)
4

}
=
{
H1, H2, M

I
1 ,M

I
2

}

Γ(3) :
{
u
(3)
1 , u

(3)
2

}
=
{
H3, M

I
3

}

Γ(4) :
{
u
(4)
1 , u

(4)
2 , u

(4)
3 , u

(4)
4

}
=
{
SE23, S

E
31, E

I
23, E

I
31

}
.
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Γ(1) S ′E
11 , S

′E
22 , S

′E
33 , S

′E
12 t11, t22, t33, t12

Γ(2)

Γ(3)

Γ(4) S ′E
32 , S

′E
31 t32, t31

Table XI. The basic quantities of (2/m) for strain evolution

The multilinear elements of the integrity bases, in terms of basic quantities, are given

by

Degree 1: u
(1)
i (i = 1, 8)

Degree 2: u
(2)
j u

(2)
k , u

(3)
l u(3)m , u(4)r u(4)s (j, k = 1, 4; l, m = 1, 2; r, s = 1, 4).

Since the phase transformation occurs due to deviatoric part (S′E) of the stress SE ,

we further consider the strain evolution equation in the following form

ĖI
ij = (Λtij)1(S

′E)ξ̇1.

As described in subsection 3, we construct V = V (t,S′E) and the basic quantities are

given in Table XI. We write

Γ(1) :
{
u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4

}
=
{
S ′E
11 , S

′E
22 , S

′E
33 , S

′E
12

}

{
u
(1)
5 , u

(1)
6 , u

(1)
7 , u

(1)
8

}
= {t11, t22, t33, t12}

Γ(4) :
{
u
(4)
1 , u

(4)
2 , u

(4)
3 , u

(4)
4

}
=
{
S ′E
23 , S

′E
31 , t23, t31

}
.

Elements of the integrity bases are

Degree 1: u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4 , u

(1)
5 , u

(1)
6 , u

(1)
7 , u

(1)
8

Degree 2: (u
(4)
1 )2, (u

(4)
2 )2, (u

(4)
3 )2, (u

(4)
4 )2, u

(4)
1 u

(4)
2 , u

(4)
1 u

(4)
3 , u

(4)
1 u

(4)
4 ,

u
(4)
2 u

(4)
3 , u

(4)
2 u

(4)
4 , u

(4)
3 u

(4)
4
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Following subsection 3, we find that {I} = {u(1)1 , u
(1)
2 , u

(1)
3 , u

(1)
4 , (u

(4)
1 )2, (u

(4)
2 )2,

u
(4)
1 u

(4)
2 } are independent of t and {L} = {u(1)5 , u

(1)
6 , u

(1)
7 , u

(1)
8 , u

(4)
1 u

(4)
3 , u

(4)
1 u

(4)
4 ,

u
(4)
2 u

(4)
3 , u

(4)
2 u

(4)
4 } are linear in t. Then the elements of the set {Dij} = ∂{L}

∂tij
are given

by

∂u
(1)
5

∂tij
=




1 0 0

0 0 0

0 0 0



,
∂u

(1)
6

∂tij
=




0 0 0

0 1 0

0 0 0



,
∂u

(1)
7

∂tij
=




0 0 0

0 0 0

0 0 1



,
∂u

(1)
8

∂tij
=




0 1 0

1 0 0

0 0 0



,

∂(u
(4)
1 u

(4)
3 )

∂tij
=




0 0 0

0 0 S ′E
23

0 S ′E
23 0



,
∂(u

(4)
1 u

(4)
4 )

∂tij
=




0 0 S ′E
23

0 0 0

S ′E
23 0 0



,

∂(u
(4)
2 u

(4)
3 )

∂tij
=




0 0 0

0 0 S ′E
31

0 S ′E
31 0



,
∂(u

(4)
2 u

(4)
4 )

∂tij
=




0 0 S ′E
31

0 0 0

S ′E
31 0 0




and we can write

(Λtij)1 =

8∑

p=1

cp1({I})(Dp
ij)1.

Similarly, for the internal magnetization, the evolution equation is

Ṁ I
i = (γti)1(S

′E)ξ̇1

and we construct V = V (r,S′E). The basic quantities are given in Table XII and so

Γ(1) :
{
u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4

}
=
{
S ′E
11 , S

′E
22 , S

′E
33 , S

′E
12

}

Γ(2) :
{
u
(2)
1 , u

(2)
2

}
= {r1, r2}

Γ(3) :
{
u
(3)
1

}
= {r3}

Γ(4) :
{
u
(4)
1 , u

(4)
2

}
=
{
S ′E
32 , S

′E
31

}
.
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Γ(1) S ′E
11 , S

′E
22 , S

′E
33 , S

′E
12

Γ(2) r1 r2

Γ(3) r3

Γ(4) S ′E
32 , S

′E
31

Table XII. The basic quantities of (2/m) for magnetization evolution

Among the elements of the integrity basis, only {L} = {u(2)1 , u
(2)
2 , u

(3)
1 } are linear in

r. So the elements of {Di} = ∂{L}
∂ri

are

∂u
(2)
1

∂ri
=




1

0

0



,

∂u
(2)
2

∂ri
=




0

1

0



,

∂u
(3)
1

∂ri
=




0

0

1



.

It should be noted that there is no stress dependence on the elements of {D}. Finally

we write

(γti)1 =

3∑

p=1

c′p1({I})(D
p
i )1.

Here {I} is the same as described for Λt
1.

2. Field induced variant reorientation

The most widely used material for this mechanism is Ni2MnGa. The martensitic phase

has 10M structure and belongs to I4/mmm space group. The classical point group is

4/mmm (D4h). The five magnetic point groups are 4/mmm, 4/mmm, 4/mmm, 4/mmm

and 4/mmm. Among them only 4/mmm is ferromagnetic and rest of the members

are antiferromagnetic [134]. So we consider 4/mmm to develop the integrity basis.

There are three possible variants for tetragonal martensite. We denote variant-3

to be that which has its shorter length (c) along the z direction. The x and y axes
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(a) (b)

Fig. 12. (a) Orientation of variant-3 with x, y, z comprising the body fixed (local)

coordinate system and X1, X2, X3 defining the global coordinate system (b)

Stereographic representation of the symmetry elements and local reference

axes for 4/mmm point group.

are along the longer side with length a (Fig. 12a). The stereographic representation

of the group elements of 4/mmm is presented in Fig. 12(b). The notation is the same

as described in the previous subsection. The filled square (�) at the center represents

the 4-fold rotations about the z axis. The irreducible representation is given in Tables

XIII and XIV, where the matrices

E =



1 0

0 1


 , F =



1 0

0 −1


 , K =



0 1

1 0


 , L =




0 1

−1 0


 .

The magneto-mechanical decompositions are presented in Table XV and the basic

quantities are given in Table XVI. The components of the basic quantities are pre-

sented with respect to the orientation of the crystal as given in Fig. 12(a). They
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4/mmm E τ(D1) τ(D2) D3 τ(CT3) R1T3 R2T3 τ(R3T3)

Γ(1) 1 1 1 1 1 1 1 1

Γ(2) 1 −1 −1 1 −1 1 1 −1

Γ(3) 1 −1 −1 1 1 −1 −1 1

Γ(4) 1 1 1 1 −1 −1 −1 −1

Γ(5) E F −F −E −K −L L K

Γ(1′) 1 1 1 1 1 1 1 1

Γ(2′) 1 −1 −1 1 −1 1 1 −1

Γ(3′) 1 −1 −1 1 1 −1 −1 1

Γ(4′) 1 1 1 1 −1 −1 −1 −1

Γ(5′) E F −F −E −K −L L K

Table XIII. The irreducible representation of 4/mmm: part-1

4/mmm C τ(R1) τ(R2) R3 τ(T3) D1T3 D2T3 τ(D3T3)

Γ(1) 1 1 1 1 1 1 1 1

Γ(2) 1 −1 −1 1 −1 1 1 −1

Γ(3) 1 −1 −1 1 1 −1 −1 1

Γ(4) 1 1 1 1 −1 −1 −1 −1

Γ(5) E F −F −E −K −L L K

Γ(1′) −1 −1 −1 −1 −1 −1 −1 −1

Γ(2′) −1 1 1 −1 1 −1 −1 1

Γ(3′) −1 1 1 −1 −1 1 1 −1

Γ(4′) −1 −1 −1 −1 1 1 1 1

Γ(5′) −E −F F E K L −L −K

Table XIV. The irreducible representation of 4/mmm: part-2
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Type Decomposition

Axial c-vectors Γ(1) ⊕ Γ(5)

Polar i-tensors 2Γ(1) ⊕ Γ(3) ⊕ Γ(4) ⊕ Γ(5)

Table XV. Decomposition of msgneto-mechanical quantities of 4/mmm magnetic

point group

Γ(1) H3 M I
3 SE11 + SE22, S

E
33 EI

11 + EI
22, E

I
33

Γ(2)

Γ(3) SE12 EI
12

Γ(4) SE11 − SE22 EI
11 −EI

22

Γ(5) (H2, −H1) (M2, −M1) (SE23, −SE31) (EI
23, −EI

31)

Γ(1′)

Γ(2′)

Γ(3′)

Γ(4′)

Γ(5′)

Table XVI. The basic quantities of 4/mmm
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are

Γ(1) :
{
u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4 , u

(1)
5 , u

(1)
6

}
= {H3, M

I
3 , S

E
11 + SE22, S

E
33,

EI
11 + EI

22, E
I
33}

Γ(3) :
{
u
(3)
1 , u

(3)
2

}
=
{
SE12, E

I
12

}

Γ(4) :
{
u
(4)
1 , u

(4)
2

}
=
{
SE11 − SE22, E

I
11 − EI

22

}

Γ(5) :
{
u
(5)
1 , u

(5)
2 , u

(5)
3 , u

(5)
4

}
=







H2

−H1


 ,



M I

2

−M I
1


 ,



SE23

−SE31


 ,



EI

23

−EI
31







.

The elements of the integrity basis are given by

Degree 1: u
(1)
i (i = 1, 6) (2.117)

Degree 2: u
(3)
l u(3)m , u(4)r u(4)s , u

(5)
i · u(5)

j

(l, m, r, s = 1, 2; i, j = 1, 4). (2.118)

Variant-1 and variant-2: Variant-1 (shorter axis is along the X1 direction) is

selected by applying traction on the single crystal along X1. The orientation of the

initial configuration of variant-1 is presented in Fig. 13. The variant-2 has its shorter

length along the X2 direction. When the magnetic field intensity is high enough

along the direction of spontaneous magnetization (X2), variant-2 becomes preferred.

We assume that these two structural phases are magneto-elastic and the Gibbs free

energy is assumed to have the following form

Gα = Gα(S
E ,H, T ), (2.119)

where α = M1 for variant-1 and α = M2 for variant-2. Since the orientations of

variant-1 and variant-2 are different than variant-3, the basic quantities are also dif-
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Fig. 13. Orientations of variant-1 and variant-2

ferent. Changes in the local coordinate systems for the variant-1 and variant-2 can

be taken into account by changing the indices such that




1 → 2

2 → 3

3 → 1




and




1 → 3

2 → 1

3 → 2




(2.120)

respectively. The left columns are for the local index and the right columns indicate

the global index. The integrity basis can then be directly derived from (2.117).

Nucleating phase of Variant 2 : The initial phase of the single crystal MSMA

is the stress favored variant-1 and with the application of magnetic field, the field

favored variant-2 nucleates. During the nucleation process, the two variants coexist

and form a twinned structure. The internal strain and magnetization thus generated

are taking into account by considering the internal variables EI and MI . We assume
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Γ(1) S ′E
33 + S ′E

11 , S
′E
22 t33 + t11, t22

Γ(2)

Γ(3) S ′E
31 t31

Γ(4) S ′E
33 − S ′E

11 t33 − t11

Γ(5) (S ′E
12 , −S ′E

23 ) (t12, −t23)

Table XVII. The basic quantities of 4/mmm for strain evolution

the Gibbs free energy of the mixing phase by

GI = GI(S
E,H,EI ,MI , T ). (2.121)

Since variant-2 is nucleating, symmetry restrictions associated with variant-2 are

considered. Integrity basis can be obtained from (2.117) with suitable coordinate

transformations.

We write the strain evolution equation for nucleation of variant-2 as

ĖI
ij = (Λrij)4(S

′E)ξ̇4.

As described in subsection 3, we construct V = V (t,S′E) and the basic quantities are

given by (Table. XVII)

Γ(1) :
{
u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4

}
=
{
S ′E
33 + S ′E

11 , S
′E
22 , t33 + t11, t22

}

Γ(3) :
{
u
(3)
1 , u

(3)
2

}
=
{
S ′E
31 , t31

}

Γ(4) :
{
u
(4)
1 , u

(4)
2

}
=
{
S ′E
33 − S ′E

11 , t33 − t11
}

Γ(5) :
{
u
(5)
1 , u

(5)
2

}
=







S ′E
12

−S ′E
23


 ,



t12

−t23







.
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Γ(1) r2 S ′E
33 + S ′E

11 , S
′E
22

Γ(2)

Γ(3) S ′E
31

Γ(4) S ′E
33 − S ′E

11

Γ(5) (r1, −r3) (S ′E
12 , −S ′E

23 )

Table XVIII. The basic quantities of 4/mmm for magnetization evolution

Here {I} = {u(1)1 , u
(1)
2 , u

(3)
1 , u

(4)
1 u

(5)
1 ·u(5)

1 } is independent of t and {L} = {u(1)3 , u
(1)
4 , u

(3)
1 u

(3)
2 ,

u
(4)
1 u

(4)
2 , u

(5)
1 · u(5)

2 } are linear in t. Then the elements of the set {Dij} are given by

∂u
(1)
3

∂tij
=




1 0 0

0 0 0

0 0 1



,

∂u
(1)
4

∂tij
=




0 0 0

0 1 0

0 0 0



,

∂(u
(3)
1 u

(3)
2 )

∂tij
=




0 0 S ′E
31

0 0 0

S ′E
31 0 0



,

∂(u
(4)
1 u

(4)
2 )

∂tij
=




−(S ′E
33 − S ′E

11 ) 0 0

0 0 0

0 0 (S ′E
33 − S ′E

11 )



,
∂(u

(5)
1 · u(5)

2 )

∂tij
=




0 S ′E
12 0

S ′E
12 0 S ′E

23

0 S ′E
23 0



.

We may write

(Λrij)4 =

5∑

p=1

cp4({I})(Dp
ij)4.

Similarly, the magnetization evolution equation for nucleation of variant-2 is given by

Ṁ I
i = (γri )4(S

′E)ξ̇4.

We construct V = V (r,S′E) and the basic quantities are given by (Table. XVIII)
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Γ(1) :
{
u
(1)
1 , u

(1)
2 , u

(1)
3

}
=
{
r2, S

′E
33 + S ′E

11 , S
′E
22

}

Γ(5) :
{
u
(5)
1 , u

(5)
2

}
=







r1

−r3


 ,



S ′E
12

−S ′E
23







.

For this case, {I} = {u(1)2 , u
(1)
3 ,u

(5)
2 · u(5)

2 } is independent of r and {L} = {u(1)1 ,u
(5)
1 ·

u
(5)
2 } is linear in r. So

∂u
(1)
1

∂ri
=




0

1

0



,

∂(u
(5)
1 · u(5)

2 )

∂ri
=




S ′E
12

0

S ′E
23




and we write

(γri )4 =

2∑

p=1

c′p4({I})(D
p
i )4.

where {Di} = ∂{L}
∂ri

.

F. Integrity basis of the Gibbs free energy for continuous symmetry

We have already discussed anisotropy for a single crystal, single variant MSMAs by

considering finite symmetry. However, anisotropy may exist in a specimen due to the

polycrystalline nature of the presence of multiple variants of the martensitic phase.

The variants may have some preferred directions of anisotropy.

We confine our analysis by considering transverse isotropy which belongs to D∞h

group for which the structural tensor has the form e3 ⊗ e3, where e3 is the preferred

unit direction of texturing (Subsection: 2). We consider Am = a⊗a as the mechanical

structural tensor and Af = f⊗f as the magnetic structural tensor. The unit vectors a

and f are the direction of mechanical and magnetic anisotropy, respectively. Moreover,

Am and Af may evolve during loading due to microstructural change.

75



We assume that the mechanical transverse anisotropy is predominant in the

directional tensor of the inelastic strain. Thus, Λβ
i = Λβ

i (S
′E, a ⊗ a,H). Similarly

the directional vector for magnetization evolution γ
β
i (S

′E , f ⊗ f ,H) is dominated by

the magnetic transverse anisotropy. We consider a = (cosαm1 ,

cosαm2 , cosα
m
3 )

T and f = (cosαf1 , cosα
f
2 , cosα

f
3)
T , where (α1, α2, α3) are the angles

made by the unit directional vector with the global axes. Denoting r as either a or

f , we can write

[r⊗ r]ij =




cos2 α1 cosα1 cosα2 cosα1 cosα3

cosα1 cosα2 cos2 α2 cosα2 cosα3

cosα1 cosα3 cosα2 cosα3 cos2 α3



. (2.122)

By taking the time derivative of (2.122), one can write

˙(a⊗ a) = Lm(αmi , α̇
m
i ),

˙(f ⊗ f) = Lf (αfi , α̇
f
i ),

and the evolution equations for α are defined through equation (2.116)

α̇mj =
3∑

i=1

Θtm
ij ξ̇i +

6∑

i=3

Θrm
ij ξ̇i, (2.123a)

α̇fj =

3∑

i=1

Θtf
ij ξ̇i +

6∑

i=3

Θrf
ij ξ̇i. (2.123b)

Here Θβm
ij (β = t for transformation, β = r for reorientation) are scalars that take into

account the change in αi due to change in ξj. Moreover, we assume Θβm
ij (S′E,H, a⊗

a, f ⊗ f), Θβf
ij (S

′E ,H, a ⊗ a, f ⊗ f) and hardening function fβi (S
′E ,H, a ⊗ a, f ⊗ f)

depend on both mechanical and magnetic anisotropy. The isotropic scalar invariants

are presented in Table. XIX. Thus, we consider
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Arguments Invariant/s (j )

H j1 = H ·H

S′E j2 = tr(S′E)2 j3 = tr(S′E)3

H,S′E j4 = H · S′EH j5 = H · S′E2

H

H, a⊗ a j6 = H · (a⊗ a)H

H, f ⊗ f j7 = H · (f ⊗ f)H

S′E, a⊗ a j8 = tr(S′E(a⊗ a)) j9 = tr(S′E2

(a⊗ a))

S′E, f ⊗ f j10 = tr(S′E(f ⊗ f)) j11 = tr(S′E2

(f ⊗ f))

H,S′E, a⊗ a j12 = H · S′E(a⊗ a)H

H,S′E, f ⊗ f j13 = H · S′E(f ⊗ f)H

Table XIX. Isotropic scalar invariants for S′E, a⊗ a, f ⊗ f ,H

Arguments Invariant/s

H H

H,S′E S′EH S′E2

H

H, f ⊗ f (f ⊗ f)H

H,S′E , f ⊗ f S′E(f ⊗ f)H (f ⊗ f)S′EH

Table XX. Isotropic vector invariants for S′E , f ⊗ f ,H
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Arguments Invariant/s

0 I

H H⊗H

S′E S′E S′E2

a⊗ a (a⊗ a)

H,S′E H⊗ S′EH+ S′EH⊗H S′EH⊗ S′EH

H, a⊗ a H⊗ (a⊗ a)H+ (a⊗ a)H⊗H (a⊗ a)H⊗ (a⊗ a)H

S′E, a⊗ a S′E(a⊗ a) + (a⊗ a)S′E (a⊗ a)S′E(a⊗ a)

S′E(a⊗ a)S′E

Table XXI. Isotropic tensor invariants for S′E, a⊗ a,H

fβi = fβi (j1, j2.., j13)

Θβm
ij = Θβm

i (j1, j2.., j13)

Θβf
ij = Θβf

i (j1, j2.., j13)

The integrity basis for a tensor function is presented in Table. XXI and Λβ
i can be

written as

Λβ
i = t1I+ t2H⊗H+ t3S

′E + t4S
′E2

+ t5(a⊗ a)

+ t6(H⊗ S′EH+ S′EH⊗H) + t7S
′EH⊗ S′EH

+ t8(H⊗ (a⊗ a)H + (a⊗ a)H⊗H) + t9(a⊗ a)H⊗ (a⊗ a)H

+ t10(S
′E(a⊗ a) + (a⊗ a)S′E) + t11(a⊗ a)S′E(a⊗ a)

+ t12S
′E(a⊗ a)S′E , (2.124)

where

ti = ti(j1, j2, j3, j4, j5, j6, j8, j9, j12).
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Similarly, the integrity basis for a vector function is given in Table. XX and the form

is given below

γ
β
i = s1H+ s2S

′EH+ s3S
′E2

H+ s4(f ⊗ f)H+ s5S
′E(f ⊗ f)H

+ s6(f ⊗ f)S′EH, (2.125)

where,

si = si(j1, j2, j3, j4, j5, j7, j10, j11, j13).

G. Applications of the theory

In this section, we propose a specific form of the Gibbs free energy and explicit ex-

pressions of the magneto-mechanical constitutive equations are derived. A specific

loading path is selected to further reduce the constitutive equations to a simpler form.

We will consider two examples to demonstrate the impact of considering symmetry re-

strictions in the modeling. Variant reorientation for a single crystal will be considered

followed by an example of phase transformation in a polycrystalline MSMA.

1. Field induced variant reorientation

We consider the stress favored martensitic variant reorients to the field favored variant,

for which ξ1 = ξ2 = ξ3 = ξ5 = ξ6 = 0 (Fig. 9) and c3 = c4 = 0. The reorientation

process begins with a stress favored variant (M1) ,i.e, c01 = 1 and c02 = c03 = c04 = 0.

The reduced form of the kinematic relation (2.98) becomes

c1 = 1− ξ4, (2.126)

c2 = ξ4. (2.127)
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We denote the Gibbs free energy of the variant-1 and the variant-2 by GP1 and GP2

respectively. The Gibbs free energy of the reorienting phase is denoted by GP1→P2.

We write

G(Υφ, T, ξ4, g) = GP1(ΥφP , T ) +GP1→P2(Υφ, T, ξ4, g),

where

GP1→P2(Υφ, T, ξ4, g) = ξ4[GP2(ΥφP , T )−GP1(ΥφP , T )]

+ GI(ΥφI) +Gmix(g).

G(Υφ, T, ξ4, g) = GM(ΥφP , T ) +GI(ΥφI , T ) +Gmix(g) (2.128)

a. Variant 1:

As described in the subsection 2, the arguments of the Gibbs free energy of the

variants are SE ,H and T (2.119). The invariant form of the Gibbs free energy for

variant-1 can be written as

GP1 = GP1(ΥφP , T ),

where the elements of the integrity basis ΥφP are

I1 = H1, I2 = H2
2 +H2

3 , I3 = SE22 + SE33, I4 = SE11

I5 = [SE31]
2 + [SE12]

2, I6 = [SE23]
2, I7 = SE22S

E
33, I8 = H2S

E
12 +H3S

E
31.

The elements of the integrity basis are obtained from (2.118) and using (2.120)(a).

We consider elastic and magnetic energies with quadratic dependence on stress and

field, respectively, while only terms of first degree in stress and field are considered
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for the magneto-mechanical coupling energy. Under these assumptions, GP1 can be

expanded as

GP1(I1, I2, I3, I4, I5, I6, I7, I8) = G1
0 −

1

ρ0
(a1I1 + a2I

2
1 + a3I2 + a4I

2
3 + a5I

2
4

+a6I5 + a7I6 + a8I7 + a9I8 + a10I1I3 + a11I1I4 + a12I3I4). (2.129)

With this definition, we return to (2.110a) and (2.110b) and write6

E1 = −ρ0GP1 ,SE

= 2a4I3I3, SE + 2a5I4I4, SE + a6I5, SE + a7I6, SE + a8I7, SE

+ a9I8, SE + a10I1I3, SE + a11I1I4, SE + a12(I3I4, SE + I4I3, SE)

= (2a5I4 + a12I3 + a11I1)i⊗ i+ 2(2a6S
E
12 + a9H2) Sym[i⊗ j]

+ (2a4I3 + a8S
E
33 + a12I4 + a10I1)j⊗ j + 4a7S

E
23 Sym[j⊗ k]

+ 2(2a6S
E
31 + a9H3) Sym[k⊗ i] + (a8S

E
22 + a12I4 + a10I1 + 2a4I3)k⊗ k

(2.130)

and

µ0M1 = −ρ0GP1 ,H

= a1I1, H + 2a2I1I1, H + a3I2, H + a9I8, H + (a10I3 + a11I4)I1, H

= (a1 + 2a2H1 + a10(S
E
22 + SE33) + a11S

E
11)i+ (2a3H2 + a9S

E
12)j

+ (2a3H3 + a9S
E
31)k. (2.131)

6The symmetric part of a second order tensor A is denoted by Sym[A] = 1
2
(A +

AT ).

81



The unit vectors along the global X1, X2, X3 axes are denoted by i, j,k, respectively.

b. Variant-2

Like variant-1, the Gibbs free energy of variant-2 may be taken as

GP2 = GP2(ΥφP , T ),

where ΥφP has the following elements:

J1 = H2, J2 = H2
3 +H2

1 , J3 = SE33 + SE11, J4 = SE22,

J5 = [SE12]
2 + [SE23]

2, J6 = [SE31]
2, J7 = SE33S

E
11, J8 = H3S

E
23 +H1S

E
12

The elements of the integrity basis are obtained from (2.118) and (2.120)(b). It

should be noted that the elements of the integrity basis of variant-2 are different than

variant-1 due to different orientation. Considering similar assumptions of magento-

mechanical energy for variant-1, GP2 can be expanded as

GP2(J1, J2, J3, J4, J5, J6, J7, J8) = G2
0 −

1

ρ0
(b1J1 + b2J

2
1 + b3J2 + b4J

2
3

+b5J
2
4 + b6J5 + b7J6 + b8J7 + b9J8 + b10J1J3 + b11J1J4 + b12J3J4). (2.132)
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Like variant-1, we can write

E2 = −ρ0GP2,SE

= 2b4J3J3, SE + 2b5J4J4, SE + b6J5, SE + b7J6, SE + b8J7, SE

+ b9J8, SE + b10J1J3, SE + b11J1J4, SE + b12(J3J4, SE + J4J3, SE)

= (2b4J3 + b8S
E
33 + b12J4 + b10J1)i⊗ i + 2(2b6S

E
12 + b9H1) Sym[i⊗ j]

+ (2b5J4 + b12J3 + b11J1)j⊗ j+ 2(2b6S
E
23 + b9H3) Sym[j⊗ k]

+ 4b7S
E
31 Sym[k⊗ i] + (2b4J3 + b8S

E
11 + b12J4 + b10J1)k⊗ k. (2.133)

and

µ0M2 = −ρ0GP2,H

= b1J1, H + 2b2J1J1, H + b3J2, H + b9J8, H + (b10J3 + b11J4)J1, H

= (2b3H1 + b9S
E
12)i+ (b1 + 2b2H2 + b10(S

E
33 + SE11) + b11S

E
22)j

+ (2b3H3 + b9S
E
23)k. (2.134)

c. Reorienting phase of Variant 2 :

The arguments of the Gibbs free energy of the reorienting phase are SE ,H,EI , MI ,

and T (2.121). The Gibbs free energy with respect to the invariants can be considered

as

GI = GI(ΥφI , T ).
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where the elements of the set ΥφI are (using (2.117), (2.118) and (2.120)b)

K1 = SE33 + SE11, K2 = SE22, K3 = Er
33 + Er

11, K4 = Er
22

K5 = H2, K6 =M r
2 , K7 = [SE12]

2 + [SE23]
2, K8 = [SE31]

2

K9 = SE33S
E
11, K10 = [Er

12]
2 + [Er

23]
2, K11 = [Er

31]
2

K12 = Er
33S

E
11, K13 = SE31E

r
31, K14 = [SE33 − SE11][E

r
33 − Er

11]

K15 = Er
12S

E
12 + Er

23S
E
23, K16 = H2

3 +H2
1 , K17 = [M r

3 ]
2 + [M r

1 ]
2,

K18 = H3M
r
3 +H1M

r
1 .

In the present context, where only variant reorientation takes place, EI = Er and

MI = Mr. Further considering first order coupling between stress and inelastic strain

and between field and internal magnetization, the expanded form of the Gibbs free

energy can be written as

GI(K1, K2, K3, K4, K5, K6, K12, K13, K14, K15, K18)

= GI
0 −

1

ρ0
(c1K1K3 + c2K1K4 + c3K2K3 + c4K2K4 + c5K5K6

+ c6K12 + c7K13 + c8K14 + c9K15 + c10K18). (2.135)
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The constitutive equations are written as

ĒI = −ρ0GI ,SE

= c1K3K1, SE + c2K4K1, SE + c3K3K2, SE + c4K4K2, SE

+ c6K12, SE + c7K13, SE + c8K14, SE + c9K15, SE

= [c1(E
r
33 + Er

11) + c2E
r
22 − c8(E

r
33 −Er

11) + c6E
r
33]i⊗ i+ 2c9E

r
12 Sym[i⊗ j]

+ [c3(E
r
33 + Er

11) + c4E
r
22]j⊗ j+ 2c9E

r
23 Sym[j⊗ k] + 2c7E

r
31 Sym[k⊗ i]

+ [c1(E
r
33 + Er

11) + c2E
r
22 + c8(E

r
33 − Er

11)]k⊗ k (2.136)

and

µ0M̄
I = −ρ0GI ,H

= c5K6K5, H + c10K18, H

= c5M
r
2 j + c10(M

r
1 i+M r

3k). (2.137)

We write the strain evolution equation as

Ėr = Λr
4(S

′E)ξ̇4.

For the present case we could write {I} = {S ′E
33+S

′E
11 , S

′E
22 , (S

′E
31 )

2, (S ′E
33−S ′E

11 )
2, (S ′E

12 )
2+

(S ′E
23 )

2}. The elements of the set {D} are given by

D
1 = i⊗ i + k⊗ k, D

2 = j⊗ j, D
3 = 2S ′E

31 Sym[i⊗ k],

D
4 = (S ′E

33 − S ′E
11 )(k⊗ k− i⊗ i), D

5 = 2S ′E
12 Sym[i⊗ j] + 2S ′E

23 Sym[j⊗ k].
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Spanning Λr
4 in terms of the elements of {D}, we write

Λr
4 = c14(i⊗ i+ k⊗ k) + c24j⊗ j + 2c34S

′E
31 Sym[i⊗ k]

+ c44(S
′E
33 − S ′E

11 )(k⊗ k− i⊗ i) + 2c54(S
′E
12 Sym[i⊗ j] + S ′E

23 Sym[j⊗ k])

Similarly, the magnetization evolution equation is given by

Ṁr = γr4(S
′E)ξ̇4.

for which {I} = {S ′E
33 + S ′E

11 , (S
′E
12 )

2 + (S ′E
23 )

2} and

D
1 = j, D

2 = S ′E
12 i+ S ′E

23k.

The expression for γ is then given by

γr4 = c′14j + c′24(S
′E
12 i+ S ′E

23k).

The final forms of the strain and magnetization constitutive equations are written as

E = −ρ0G,SE = E1 + ξ4(∆E) + ĒI (2.138)

µ0M = −ρ0G,H = M1 + ξ4(∆M) + M̄I , (2.139)

where ∆E = E2 − E1 and ∆M = M2 −M1.

d. A specific magneto-mechanical loading path

We consider a single variant (variant-1) is under axial traction along the X1 direction

and magnetic field is applied along theX2 direction. Under these magneto-mechanical

loading conditions, we assume SE = SE11i⊗ i and H = H2j and the strain constitutive
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equations may be reduced to

E1 = 2a5S
E
11i⊗ i + 2a9H2 Sym[i⊗ j] + a12S

E
11j⊗ j+ a12S

E
11k⊗ k,

E2 = (2b4S
E
11 + b10H2)i⊗ i+ (b12S

E
11 + b11H2)j⊗ j

+ ((2b4 + b8)S
E
11 + b10H2)k⊗ k,

Λr
4 = (d1 + d4S

′E
11 )i⊗ i+ d2j⊗ j + (d1 − d4S

′E
11 )k⊗ k.

We have the following remarks on the strain constitutive equations:

• Variant-1 has a shear component due to the presence of magnetic field.

• The remaining strain components for variant-1 are uncoupled from the field.

• Variant-2 does not have any shear component.

• All the diagonal terms of variant-2 are coupled with magnetic field.

• Λr
4 does not contain any off diagonal terms.

Next, considering the magnetization constitutive response, the reduced form can be

written as

M1 = (a1 + a11S
E
11)i+ 2a3H2j,

M2 = (b1 + 2b2H2 + b10S
E
11)j,

γr4 = p1j.

Further assuming p1 is constant, the internal magnetization can be written as

M̄I = p1ξ4j.

Thus being consistent with the symmetry restrictions, we have the following remarks

on the simplified magnetic constitutive equation:
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(a) (b)

Fig. 14. (a) Schematic representation of a stress-field-temperature phase diagram with

the projections of the martensitic start (Ms) and martensitic finish (Mf ) sur-

faces on the σ −H and H − T planes. (b) Magneto-thermal loading path on

the H − T plane.

• The X1 magnetization component of variant-1 is coupled with the stress but

the other component is not.

• X1 magnetization component is not present in variant-2.

• γr4 is restricted to have no X1 component.

2. Field induced phase transformation

We consider field induced phase transformation in a polycrystalline MSMA where

the austenitic phase is paramagnetic and martensitic phase is ferromagnetic [148].

Initially, the specimen is at a high temperature under compressive loading without

any magnetic field and completely austenitic. The initial state is denoted by point-

1 in Fig. 14(a), while Fig. 14(b) presents the phase lines on the H − T plane at a

stress level σ∗. A specific magneto-thermal loading path is also schematically shown

in Fig. 14(b). From point-1, the temperature decreases to point-2 still under zero
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magnetic field. A magnetic field H = f(T ) is then applied and the martensitic

transformation ends at point-3 where field induced martensitic variant (M2) is present

due to the high magnetic field. Between point-2 and point-3 both stress favored and

field favored variants nucleate while stress favored variants reorient to the field favored

ones. The direction of the texturing of the stress favored variant is denoted by ai and

the texturing direction at point-3 is denoted by af . As a result of the transformation

and reorientation of this process (point 2 to 3) the direction of texturing continuously

changes from ai to af . We introduce a structural tensor A = a⊗ a in the Gibbs free

energy to take into account the directionality of the magneto-mechanical responses

along a. The polycrystalline austenitic phase is assumed to be isotropic.

We simplify the analysis by considering no reorientation from M1 to M2, i.e,

ξ4 = 0. Moreover, ξ3 = ξ5 = ξ6 = 0. Under these conditions, the volume fractions of

the stress induced martensitic phase, field induced martensitic phase and austenitic

phase can be deduced from (2.98) as

c1 = ξ1,

c2 = ξ2,

c4 = 1− (ξ1 + ξ2).

We assume the initial phase is fully austenitic ,i.e, c04 = 1. Denoting ξ1 + ξ2 = ξ, the

volume fractions of the total martensitic and austenitic phases can be written as

c1 + c2 = ξ,

c4 = 1− ξ.

We denote the Gibbs free energy of the austenitic and the martensitic phases by GP4

and GP1 = GP2 = GPm, respectively. The Gibbs free energy of the transforming phase
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is denoted by GP4→Pm. Thus, from (2.109), we write

G(Υφ, T, ξ, g) = GP4(ΥφP , T ) +GP4→Pm(Υφ, T, ξ, g),

where

GP4→Pm(Υφ, T, ξ, g) = ξ[GPm(ΥφP , T )−GP4(ΥφP , T )]

+ GI(ΥφI) +Gmix(g).

We consider the following assumptions on the integrity basis for this study.

1. The martensitic and austenitic phases are linear thermoelastic. Therefore, G

has a second order dependence on SE . Moreover, G only depends on first order

coupling between SE and T .

2. G depends only on the first order coupling of Et and SE . We assume that the

inelastic deformation is an isochoric process and generation of transformation

strain Et is proportional to the deviatoric stress. This means tr (Et) = 0. We

also assume that G depends only on the first order coupling of Mt and H.

3. In general, magnetostriction in MSMAs is not observed. Quadratic coupling of

the magnetic field H with the SE and Et is therefore neglected.

Under these assumptions, we consider Υφ to be composed of the following set of nine

invariants

I1 = H ·H, I2 = tr(SE), I3 = tr(SE
2

),

I4 = (H · a)2, I5 = a · SEa, I6 = a · SE2
a,

I7 = tr(SEEt), I8 = tr(SE(a⊗ a)Et), I9 = Mt ·H. (2.140)

We assume GP4 = GP4(I1, I2, I3, T ) for the isotropic austenitic phase. The Gibbs
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free energy of the transversely isotropic martensitic phase is denoted by GPm =

GPm(I1, I2, I3, I4, I5, I6, T ). We assume that the energy associated with inelastic trans-

formation is given by GI = GI(ΥφI) = GI(I7, I8, I9). The Gibbs free energies for the

austenitic and martensitic phases can be expanded up to second degree of the elements

of the integrity basis. We consider a general expression

GPα(I1, I2, I3, I4, I5, I6, T ) = Gα
0 − 1

ρ
(aα1 I1 + aα2 I

2
1 )−

1

ρ
(aα3 I2 + aα4 I

2
2 )

−1

ρ
(aα5 I3 + aα6 I

2
3 )−

1

ρ
(aα7 I4 + aα8 I

2
4 )−

1

ρ
(aα9 I5 + aα10I

2
5 )

−1

ρ
(aα11I6 + aα12I

2
6 )−

1

ρ
(aα13(∆T ) + aα14(∆T )

2)− 1

ρ
(aα15I1I2 + aα16I1I3

+aα17I1I4 + aα18I1I5 + aα19I1I6 + aα20I1∆T )−
1

ρ
(aα21I2I3 + aα22I2I4

+aα23I2I5 + aα24I2I6 + aα25I2∆T )−
1

ρ
(aα26I3I4 + aα27I3I5 + aα28I3I6

+aα29I3∆T )−
1

ρ
(aα30I4I5 + aα31I4I6 + aα32I4∆T )

−1

ρ
(aα33I5I6 + aα34I5∆T )−

1

ρ
aα35I6∆T. (2.141)

where −1
ρ
is a normalizing factor, T0 is a reference temperature and ∆T = T − T0.

The austenitic phase and the martensitic phase are denoted by α = 4 and α = m

respectively.

The inelastic energy GI can be expanded up to second degree of the elements of

the integrity basis as

GI(I7, I8, I9) = GI
0 −

1

ρ
(b1I7 + b2I

2
7 )−

1

ρ
(b3I8 + b4I

2
8 )

−1

ρ
(b5I9 + b6I

2
9 )−

1

ρ
(b7I7I8 + b8I7I9 + b9I8I9). (2.142)

Finally we consider the mixing energy as

Gmix(g) = −1

ρ
g. (2.143)
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Since we assume that the elastic energy functions for the austenitic and martensitic

phases depend only on the quadratic power of the stress, we neglect I2, I
2
3 , I5, I

2
6 ,

I2I3, I2I6, I3I5, I3I6, I5I6. Moreover, we consider the magneto-mechanical coupling

energy where the order of the stress components is one and so I1I3, I1I6, I3I4, I4I6 are

neglected. Under these assumptions (2.141) reduces to

GPα(I1, I2, I3, I4, I5, I6, T ) = Gα
0 − 1

ρ
(aα1 I1 + aα2 I

2
1 )−

1

ρ
aα4 I

2
2 −

1

ρ
aα5 I3

−1

ρ
(aα7 I4 + aα8 I

2
4 )−

1

ρ
aα10I

2
5 −

1

ρ
aα11I6 −

1

ρ
(aα13(∆T ) + aα14(∆T )

2)

−1

ρ
(aα15I1I2 + aα17I1I4 + aα18I1I5)−

1

ρ
aα20I1∆T − 1

ρ
(aα22I2I4

+aα23I2I5 + aα25I2∆T )−
1

ρ
aα29I3∆T − 1

ρ
(aα30I4I5 + aα32I4∆T )

−1

ρ
aα34I5∆T − 1

ρ
aα35I6∆T, (2.144)

for which

Eα = −ρ0GPα,SE

= (2aα4 I2 + aα15I1 + aα22I4 + aα23I5 + aα25∆T )I+ 2(aα5 + aα29∆T )S
E

+ (2aα10I5 + aα23I2 + aα18I1 + aα30I4 + aα34∆T )(a⊗ a)

+ (aα11 + aα35∆T )[S
E(a⊗ a) + (a⊗ a)SE ], (2.145)

µ0M
α = −ρ0GPα,H

= 2(aA1 + 2aA2 I1 + aA15I2 + aA17I4 + aA18I5 + aA20∆T )H

+ 2(aα7 + 2aα8 I4 + aα17I1 + aα22I2 + aα30I5 + aα32∆T )(H · a)a. (2.146)

It should be noted that for the austenitic phase (α = 4), I4, I5, I6 and a are zero.

In the transforming state, we consider only first order coupling between stress

and transformation strain and between magnetic field and internal magnetization
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such that

GI(I7, I8, I9) = G0
I −

1

ρ
(b1I7 + b3I8 + b5I9). (2.147)

The strain response of the transforming phase is given by

Ē
I

= −ρ0GI ,SE = b1I7, SE + b3I8, SE

= b1E
t + b3Sym[(a⊗ a)Et]. (2.148)

We consider Λt
1 = Λt

2 = Λt such that Ėt = Λtξ̇. Assuming that Λt(SE , a⊗ a) has a

linear dependence in stress, equation (2.124) can be simplified to

Λt = t1I+ t3S
′E + t5(a⊗ a) + t10(S

′E(a⊗ a) + (a⊗ a)S′E)

+ t11(a⊗ a)S′E(a⊗ a). (2.149)

In a similar way, for magnetic response we can write

M̄
I

= −ρ0GI ,H= b5I9, H

= b5M
t.

We consider γt1 = γt1 = γt so that Ṁt = γtξ̇. Assuming γt1(S
E ,H, a⊗a) has a linear

dependence in stress, equation (2.125) can be simplified to

γt = s1H+ s2S
′EH+ s4(a⊗ a)H+ s5S

′E(a⊗ a)H+ s6(a⊗ a)S′EH. (2.150)

The final forms of the strain and magnetization constitutive equations are written

as

E = −ρ0G,SE = E4 + ξ1(∆E) + ĒI (2.151)

µ0M = −ρ0G,H= M4 + ξ1(∆M) + M̄I , , (2.152)
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where

M̄ = −ρ0G,H = M1 + ξ1(∆M) + M̄I ,

∆E = Em − E4 and ∆M = Mm −M4.

a. A specific magneto-mechanical loading path

We consider a specimen that is initially entirely in the austenitic phase and under

axial traction along the X1 direction with a magnetic field applied along the X2

direction. Under these loading conditions, SE = SE11i ⊗ i and H = H2j. At the

beginning when the field is low, only the stress favored variant is nucleated with the

decrease in temperature. The direction of the transverse anisotropy is then along

the unit direction ai = (1, 0, 0)T at the initial condition. At high field, the direction

changes to af = (0, 1, 0)T due to the presence of field favored variants.

Our main focus in this subsection is on the evolution of the structural tensor.

We assume that a = (cos β, sin β, 0), where β is the angle with the (1, 0, 0) direction.

The structural tensor may be then written as

[a⊗ a]ij =




cos2 β cos β sin β 0

cos β sin β sin2 β 0

0 0 0



.

and the time derivative as

˙[a⊗ a]ij =




− sin 2β cos 2β 0

cos 2β sin 2β 0

0 0 0



β̇.
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The evolution of the angle β can be written from (2.123) in a simple form

β̇ = Θξ̇.

If Θ is assumed to be constant, then β = Θξ + c. Moreover from the fact that β = 0

at ξ = 0 and β = π
2
at ξ = 1, one can find Θ = π

2
and c = 0.

Finally, we have the following remarks:

• The internal strain tensor ĒI is different than the transformation strain Et,

which is used as an internal variable (2.148).

• γt can not only be a function of SE . The stress is always coupled with the

magnetic field (2.150).

• The intensity of multi-field coupling may be high. The influence of magnetic

field on stress has been reported to be more than 15% compared to the stress

level under a no field condition by solving a simplified magneto-mechanical

boundary value problem for MSMA [149].
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CHAPTER III

FIELD INDUCED PHASE TRANSFORMATION (FIPT)

In this chapter, a continuum based model of the magnetic Field Induced Phase Trans-

formation (FIPT) for Magnetic Shape Memory Alloys (MSMA) is developed. Hys-

teretic material behaviors are considered through the introduction of internal state

variables. A Gibbs free energy is proposed using group invariant theory and the

coupled constitutive equations are derived in a thermodynamically consistent way.

We assume the material is isotropic in this formulation and this is a special case of

the generalized one which was discussed in the previous chapter. Moreover, small

strain approximation is assumed to avoid much complexities in the model calibra-

tion. An experimental procedure of FIPT in NiMnCoIn MSMA single crystals, which

can operate under high blocking stress, is described. The model is then reduced to a

1-D form and the material parameter identification from the experimental results is

discussed. Model predictions of magneto-thermo-mechanical loading conditions are

presented and compared to experiments.

A. Continuum description and thermodynamic framework

We aim to propose a phenomenological modeling for FIPT from the experimental ob-

servations. Magneto-mechanical experimental conditions are schematically presented

in Fig. 15(a). In the experiments, a magnetic field Ha is applied through a super-

conducting magnet while the specimen is held under compressive stress at a constant

temperature. The magnetic field is applied coaxially with the mechanical load. Ini-

tially, the specimen is in antiferromagnetic martensitic phase. After a critical applied

magnetic field is reached, ferromagnetic austenitic phase nucleates and phase trans-

formation completes with further increase in magnetic field. The specimen returns

96



to the martensitic phase again when the magnetic field decreases below a critical

value, characteristic of the material. Fig. 15(b) presents the corresponding average

magneto-mechanical material responses. Due to dissipative nature of the magneto-

mechanical phase transformation (FIPT), hysteretic loops are observed. The detailed

experimental procedure will be discussed in Section D, while Fig. 15 presented here

to motivate the proposed constitutive model.

(a) (b)

Fig. 15. (a) Applied boundary conditions. The traction tE is applied on the specimen

along the same direction of the applied magnetic field Ha. The tempera-

ture of the specimen and the ambient are maintained at T0. (b) Mechanical

and magnetization hysteretic responses of Ni45.7Mn16.5Co5In13.5 single crystal

specimen.

1. Constitutive equations

The constitutive response of MSMAs undergoing a FIPT will depend on state vari-

ables such as appropriate measures of stress and magnetic field and also internal

state variables to account for loading path dependence due to the hysteretic response

caused by dissipation. We assume that the internal energy u(ε,M, s, {ζ}), where ε is

the total strain, M is the magnetization, s is the entropy and {ζ} is the set of internal
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state variables.

We consider the following internal state variables {ζ} = {εt,Mt, ξ, g} to take

into account the dissipative behavior. εt is the transformation strain tensor, Mt is

the transformation magnetization vector, ξ is the martensitic volume fraction and g

is the mixing energy of the two phases during transformation. Mt takes into account

the phenomenological effect of different micro-magnetical mechanisms e.g. rotation

of magnetization vector and evolution of magnetic domain walls.

We write the rate form of the local energy balance ([123], based on two-dipole

model, equation 3.3.9) as

ρu̇ = σE : L︸ ︷︷ ︸
Mechanical

− ∇ · q︸ ︷︷ ︸
Thermal

+µ0H · Ṁ︸ ︷︷ ︸
Magnetic

+ ρrh︸︷︷︸
Heat source

(3.1)

where ρ is the mass density, σE = σ + µ0H ⊗ M [123, 124] is the mechanical part

of the Cauchy stress σ, L = ∇ ⊗ v is the velocity gradient, v is the velocity, q is

the heat flux, µ0 is the permeability of the free space, H is the magnetic field vector

and rh is the heat supply due to an external source. The magnetic field H represents

the total magnetic field at a material point. H may be different from Ha due to

demagnetization effect which will be discussed in Section C.

The free charge and the free current density of the body are neglected in this

study. The small strain approximation is assumed and the total strain is given by

ε = 1
2
(∇u + (∇u)T ), where u is the displacement vector. Thus the strain rate ε̇,

is equal to the symmetric part of the velocity gradient L, D (ε̇ = D). Due to the

presence of the body couple, skwσ = µ0skw(M⊗H) [123] so that σE is symmetric.

As a result, (3.1) can be written as

ρu̇ = σE : ε̇−∇ · q+ µ0H · Ṁ+ ρrh. (3.2)
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Since the experiments are field, temperature and stress controlled (Fig. 15(a)), we

wish to write the free energy in terms of these state variables. Thus, a Legendre

transformation is used to obtain the Gibbs free energy G from u. The Legendre

transformation is given by

G(σE ,H, T, {ζ}) = u− sT − 1

ρ
σE : ε− µ0

ρ
H ·M. (3.3)

All the experiments are performed in quasistatic conditions and the free energy func-

tion does not depend on the rate of magnetic field and temperature. Considering the

Clausius-Duhem entropy inequality

ρṡ >
ρrh

T
−∇ · (q

T
), (3.4)

and combining (3.4), (3.2), (3.3) we get,

ρ(Ġ+ sṪ ) + σ̇E : ε+ µ0M · Ḣ > 0. (3.5)

Using the Coleman and Noll procedure [101], the following constitutive equations are

obtained

ε = −ρG,σE (3.6a)

M = − ρ

µ0
G,H (3.6b)

s = −G, T (3.6c)

−ρG,ζi ·ζ̇i > 0, (3.6d)

where the subscript ‘comma’ denotes the partial derivative. Expanding the entropy

inequality (3.6d), we get

π
εt : ε̇

t + π
Mt · Ṁt + πξ ξ̇ + πgġ ≥ 0. (3.7)
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The thermodynamic driving forces are denoted by

π
εt = −ρG,εt

π
Mt = −ρG,Mt

πξ = −ρG, ξ = −ρ(GM −GA) = −ρ∆G

πg = −ρG, g.

The inelastic strain εt is related to the evolution of the martensitic volume fraction

through the following flow rule

ε̇t = Λtξ̇. (3.8)

The transformation tensor Λt takes into account the direction and magnitude of

the generated strain during phase transformation, the specific form of which will be

given in subsection 3. Similarly, we assume the following evolution equation for the

transformation magnetization

Ṁ
t
= γtξ̇ (3.9)

where γt takes into account the direction and magnitude of the internal magnetization

during the evolution of ξ. The evolution of g is related to the evolution of ξ by

ġ = f tξ̇, (3.10)

where f t is a hardening function. If (3.8), (3.9) and (3.10) are substituted in to (3.7),

we get

π
εt : Λ

tξ̇ + π
Mt · γtξ̇ + πξ ξ̇ + πgf

tξ̇ ≥ 0,
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or,

πtξ̇ ≥ 0,

where the total thermodynamic driving force πt due to phase transformation is given

by

πt = π
εt : Λ

t + π
Mt · γt + πξ + πgf

t. (3.11)

The following transformation function, Φt, is then introduced,

Φ
t
:=





πt − Y t , ξ̇ > 0

−πt − Y t , ξ̇ < 0

, Φ
t ≤ 0, (3.12)

where Y t is a positive scalar associated with the internal dissipation during phase

transformation and can be found from calibration. The proposed transformation

function is similar to the transformation function used with conventional shape mem-

ory behavior [92, 102]. It is assumed that the constraints of the transformation process

follows the principle of maximum dissipation and can be expressed in terms of the

Kuhn Tucker type conditions [150]

Φ
t ≤ 0, Φ

t
ξ̇ = 0 . (3.13)

2. Representation of the Gibbs free energy

We denote the Gibbs free energy of the austenitic phase and the martensitic phase by

GA and GM respectively. The Gibbs free energy of the transforming phase is denoted

by GA→M . We write

G(σE ,H, T, εt,Mt, ξ, g) = GA(σE ,H, T ) + GA→M(σE,H, T, εt,Mt, ξ, g),
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where

GA→M(σE ,H, T, εt,Mt, ξ, g) = ξ[GM(σE ,H, T )−GA(σE ,H, T )]

+ GI(σE,H, εt,Mt) +Gmix(g).

GI and Gmix are the Gibbs free energy due to the magneto-inelastic deformation and

the energy due to the mixing of the two phases during transformation. We determine

the integrity basis of the scalar function G for two tensor state variables {σE, εt}

and two vector state variables {Mt,H}. The list of the all elements of the integrity

basis can be found in [127, 140, 141]. The magneto-mechanical anisotropy due to

crystalline symmetry of the single crystal specimen is not considered at the present

moment. We consider following assumptions on the integrity basis for this study.

1. The martensitic and austenitic phases are linear thermoelastic and so G has

a second order dependence on σE. Moreover, G only depends on first order

coupling between σE and T .

2. G depends only on the first order coupling of εt and σE . We assume that the

inelastic deformation is an isochoric process and generation of transformation

strain εt is proportional to the deviatoric stress. This means tr (εt) = 0. We

also assume that G depends only on the first order coupling of Mt and H.

3. In general, magnetostriction in MSMAs is not observed. Thus quadratic cou-

pling of the magnetic field H with the σE and εt is neglected.

These assumptions result in the following set of five invariants:

I1 = H ·H, I2 = tr(σE), I3 = tr(σE2

),

I4 = tr(σEεt), I5 = Mt ·H. (3.14)
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Since the austenitic and martensitic phases are independent of internal variables,

we assume GA = GA(I1, I2, I3, T ) and GM = GM(I1, I2, I3, T ). We assume that the

energy associated with inelastic deformation is given by GI = GI(I4, I5). The Gibbs

free energies for the austenitic and martensitic phases can be expanded up to second

degree of the elements of the integrity basis in the following way

Gα(I1, I2, I3, T ) = Gα
0 − 1

ρ
(aα1 I1 + aα2 I

2
1 )−

1

ρ
(aα3 I2 + aα4 I

2
2 )−

1

ρ
(aα5 I3 + aα6 I

2
3 )

−1

ρ
(aα7 (∆T ) + aα8 (∆T )

2)− 1

ρ
(aα9 I1I2 + aα10I1I3 + aα11I1∆T )

−1

ρ
(aα12I2I3 + aα13I2∆T )−

1

ρ
aα14I3∆T. (3.15)

where −1
ρ
is a normalizing factor, ∆T = T − T0 and T0 is a reference temperature.

The austenitic phase and the martensitic phase are denoted by α = A and α = M

respectively. The inelastic energy GI can be expanded up to degree one (assumption

2) of the elements of the integrity basis as

GI(I4, I5) = GI
0 −

1

ρ
b1I4 −

1

ρ
b2I5. (3.16)

Finally we consider the mixing energy as

Gmix(g) = −1

ρ
g. (3.17)

After we write down (3.15) to (3.17), we need to produce equations (3.6a) to (3.6d).

Next section will provide the expressions of the constitutive equations.

B. Reduced form of magneto-thermo-mechanical constitutive response

In this section, magneto-mechanical coupling in the austenitic phase and martensitic

phase will be discussed first. Then, we will derive the material constitutive responses

for the transforming phase.
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1. Austenitic phase

(a) (b)

Fig. 16. Schematic representation of magnetization vs. field response of (a) an ideal

ferromagnetic response and (b) approximated ferromagnetic response. Mag-

netic field is applied along the direction of the easy axis.

As shown in Fig. 16a, the magnetization in the austenitic phase is zero at no

field condition. This is due to the fact that, at the mesoscale, spontaneous magneti-

zation vectors alter their direction in the successive magnetic domain and the average

macroscale magnetization becomes zero (label 1). When magnetic field is applied

along the direction of the easy axis 1, which is n̂ for the present case, the domain

walls disappear almost instantly and the austenitic phase saturates at MA (label 2)

[151]. We thus neglect the variation OP and model the saturation magnetization of

the austenitic phase by the horizontal line PA (Fig. 16b). It should be noted that,

when the direction of the applied field changes, the direction of the saturation magne-

tization vector also changes (Fig. 17a). The behavior is similar to a sgn function and

1The spontaneous magnetization of a ferromagnetic material prefers to align in
certain directions. These directions are known as easy axis.
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(a) (b)

Fig. 17. Schametic of the (a) magnetization response and (b) corresponding Gibbs free

energy of the austenitic phase.

odd in H. This magnetization behavior suggests that the Gibbs free energy should

be a linear even function of H (see Fig. 17b). But the invariant theory says that the

minimum degree of H in the Gibbs free energy function is two due to the presence

of the invariant element I1 = H ·H. To solve this issue, we propose to describe the

dependency of the Gibbs free energy with a new invariant Ĩ1 =
√
I1 =

√
H ·H. When

we differentiate Ĩ1 with respect to H for the expression of the magnetization response

we get

Ĩ1,H =
H√
H ·H

=
H

|H| = n̂

where, n̂ is the unit vector along the direction of magnetic field H. n̂ becomes a null

vector when H becomes zero. Thus, we replace I1 by Ĩ1.

Since experiments are performed at sufficiently low temperatures below Tc, we

assumed a linear relationship between saturation magnetization and temperature.
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Moreover, the experiments have shown almost a linear relationship between the sat-

uration magnetization of austenite and externally applied stress, the reason of which

is not fully known, therefore, in our analysis we have assumed a linear relationship

between saturation magnetization and applied stress. Experimental data for the uni-

axial loading condition will be presented in the subsection 1. The magnetization

constitutive response (3.6b) of the austenitic phase can be written as

µ0M
A = (âA1 + aA9 tr(σ

E) + aA11T )n̂, (3.18)

where âA1 = aA1 − aA11T0. We consider the mechanical response of the austenitic phase

as linear elastic. The energy function depends only on the quadratic power of stress

and the strain response (3.6a) can be written as

εA = 2aA4 tr(σ
E)I+ 2aA5 σ

E + aA13I∆T + aA9 (
√
H ·H)I. (3.19)

We can identify that aA4 , a
A
5 are the two elastic constants for isotropic material and

aA13, is the thermal expansion coefficients. Since the austenitic phase is thermoelastic,

we consider αA14 = 0.

Finally considering the fact that for isochoric and incompressible materials, en-

tropy change is given by

ρ(sA − sA0 ) = cA ln(
T

T0
)

where sA0 and T0 are the specific entropy and the reference temperature. cA (= cAv =

cAp ) is the specific heat of the austenitic phase. Expanding the logarithmic term and

considering the first degree we get

ln(
T

T0
) ≈ T − T0

T0
.
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So,

ρsA = ρsA0 +
cA

T0
(T − T0).

The entropy equation (3.6c) is then written as

ρsA = ρsA0 + aA11
√
H ·H+ aA13tr(σ

E) +
cA

T0
(∆T ), (3.20)

where aA7 = ρsA0 and aA8 = cA

2T0
.

2. Martensitic phase

Fig. 18. Schematic of Anti-ferromagnetic (AF) magnetization vs. field response of the

martensitic phase

The anti-ferromagnetic martensitic phase has lower saturation magnetization

than the austenitic phase. But the magnetization of an anti-ferromagnet can increase

beyond saturation under the influence of a strong magnetic field [152, 153]. This

phenomenon, also known as meta-magnetic transition, is generally observed in anti-

ferromagnetic materials. Figure 18 depicts this phenomena in detail. The martensitic
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phase reaches saturationMM at a very small magnetic field (label 1). The saturation

magnetization of the anti-ferromagnetic material is low due to the fact that elec-

tronic spin of the constituent atoms in a crystal structure opposes each other. We

consider the direction n̂ of applied field is along the direction of the spin axis. When

applied field intensity increases, the electron spin axis, which opposes the magnetic

field, changes direction and the overall magnetization [153] increases (label 2). This

mechanism is also known as spin flop mechanism. The increase may continue up to

a certain critical magnetic field, where nucleation of ferromagnetic austenitic phase

becomes energetically favorable. Point C denotes the beginning of the nucleation

of the austenitic phase at a critical field HC . We denote the increased saturation

magnetization by MC at HC . We also assume that the saturation magnetization of

the martensitic phase in the mixture of martensite and austenite remains at MC .

We neglect the implicit coupling of magnetization with stress and temperature in the

martensitic phase. Moreover we consider up to quadratic power of the magnetic field

(i.e. considering Ĩ1 and Ĩ1
2
) in the Gibbs free energy (3.15) to take account the spin

flop mechanism. The form of magnetization response (3.6b) is given by

µ0M
M = aM1 n̂+ 2aM2 H. (3.21)

Moreover, the martensitic phase has a similar mechanical response to the austenitic

phase and we can immediately write

εM = 2aM4 tr(σE)I+ 2aM5 σE + aM13I∆T. (3.22)

Similarly, the entropy equation is written as

ρsM = ρsM0 + aM13tr(σ
E) +

cM

T0
(∆T ). (3.23)
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3. Transforming phase

The strain response of the transforming phase is given by

εI = −ρGI
,σE = b1ε

t.

We assume that the evolution of transformation strain (3.8) generates only from the

evolution of total martensitic volume fraction. The directions of the evolution are

given as

Λt =





Ecur(σ̄E)(3
2
σ′E/σ̄E) , ξ̇ > 0

Et−r

ξr
, ξ̇ < 0

(3.24)

During forward reorientation (ξ̇ > 0), the transformation strain is generated in the

direction of deviatoric stress σ′E , which is normalized by the Mises equivalent stress

σ̄E =
√
(3/2σ′E : σ′E). Ecur is the magnitude of the maximum transformation strain.

During full reverse transformation (ξ̇ < 0), the transformation strain generated by

the previous forward transformation must be recovered. This motivates the form of

Λt during reverse transformation, where Et−r denotes the transformation strain at

transformation reversal i.e the state at which the most recent forward transformation

ended. The scalar ξr is the martensitic volume fraction at the transformation reversal

and is used for normalization.

The magnetization response is simply given by

µ0M
I = −ρGI

,H = b2M
t. (3.25)

The directions of the evolution of magnetization can be expressed as,

γt =





tΓf , ξ̇ > 0

tΓr , ξ̇ < 0

(3.26)
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Here, tΓf and tΓr are the directions of internal magnetization during forward and

reverse transformation. These two vectors are determined experimentally and proce-

dure of finding them is discussed in subsection E. We will determine the values in

the next section. The evolution of the mixing energy g is related with the hardening

function f t, which is proposed in the following form

f t =





−A(I2, I3)(π − cos−1(2ξ − 1)) +B(I2, I3), ξ̇ > 0

−C(I2, I3)(π − cos−1(2ξ − 1)) +D(I2, I3), ξ̇ < 0

. (3.27)

Here A,B,C,D are the hardening parameters to be determined experimentally. Since

all the experiments are performed with a uniaxial mechanical and magnetic loading,

we need to reduce the model in one dimension for model calibrations.

C. 1-D reduction of the constitutive model

We reduce the model to 1-D where the stress and magnetic field are applied in the

x-direction, (Fig. 15a) i.e. n̂ = (1, 0, 0)T . It is assumed that the uniaxial mechanical

stress σExx and magnetic field Hx are uniformly distributed inside the prismatic spec-

imen. However a uniaxial applied field can be affected by the demagnetization effect

due to the non-ellipsoid geometry of the specimen [19, 20]. The applied magnetic field

Ha is different than the field at a material point. So, we consider that the applied

magnetic field Ha is the total magnetic field Hx at a generic material point to derive

the constitutive equations. The experimental data correction due to demagnetization

effect is discussed in Appendix F1.
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1. Magnetization response

The magnetization constitutive equation (3.6b) reduces in the 1-D to

Mx =MA
x + ξ(MM

x −MA
x ) +M I

x , (3.28)

and therefore (3.18), (3.21) and (3.25) become

µ0M
A
x = âA1 + aA9 σ

E
xx + aA11T, (3.29a)

µ0M
M
x =





aM1 + 2aM2 Hx, for ξ = 1 and Hx ≤ HC ,

µ0M
C , for ξ ∈ (0, 1).

(3.29b)

µ0M
I
x = b2γ

t
xξ = γ̃txξ. (3.29c)

2. Mechanical response

The 1-D form of the mechanical response (3.6a) can be written as

εxx = εAxx + ξ(εMxx − εAxx) + εIxx. (3.30)

In view of (3.30), (3.19), (3.22) and (3.24) become

εAxx = 2(aA4 + aA5 )σ
E
xx + aA13∆T + aA9Hx, (3.31a)

εMxx = 2(aM4 + aM5 )σExx + aM13∆T, (3.31b)

εIxx = b1ε
t
xx, (3.31c)

where

εtxx =

∫ ξ

0

Λtxxdξ. (3.32)
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The expression of Λtxx can be obtained from (3.24) in the following way. We write

σE = σExxex⊗ex. So, σ
′E = σE− 1

3
tr(σE)I = 2

3
σExxex⊗ex− 1

3
σExxey⊗ey− 1

3
σExxez⊗ez.

This implies that ‖σ′E‖ = σ′E : σ′E = 2
3
(σExx)

2 and consequently σ̄E =
√

3
2
‖σ′E‖ =

|σExx|. Therefore, from (3.24) we obtain Λtxx = Ecur 3
2

2
3
σExx

|σExx|
= Ecursgn(σExx).

We assumed in subsection 3 that Ecur depends on the stress level only. This

means that Ecur is the same for the temperature-induced or field-induced phase trans-

formation. Motivated by experiments, we approximate Ecur(|σE|) using following

sigmoid function

Ecur(|σE|) = a

1 + e−(|σE |−m)/s
+ c. (3.33)

Here m is the point of inflection and 1/s is the growth rate of the curve. The two

parameters a and c are to be determined from the experiments.

3. Thermodynamic driving force

The thermodynamic driving force (3.11) for the field induced phase transformation

in 1-D loading condition is given by

πt = πεtΛ
t
xx + πξ + πgf

t, (3.34)

where

πεt = σExx, (3.35a)

πξ = −ρ(GM −GA) = −ρ∆G, (3.35b)

πg = 1. (3.35c)
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We rewrite the transformation function (3.12) and the Kuhn Tucker conditions (3.13)

as

Φt = sgn(ξ̇)πt − Y t, (3.35d)

Φt ≤ 0, Φtξ̇ = 0. (3.35e)

Moreover, equation (3.35b) can be expanded as

−ρ∆G =
1

2
∆[

1

2E
](σExx)

2 + µ0∆MHx +∆[a13]σ
E
xx(T − T0) + ρ∆s0T − ρ∆u0, (3.36)

where ∆[·] = [·]M − [·]A and ρuA0 = ρGA
0 + ρsA0 T0. We assume cM = cA and so

∆c = 0. It should be reminded that ∆M = (MC −MA
x ), since at the beginning and

after completion of phase transformation, the martensitic phase is at its saturation

magnetization value MC .

This is the end of modeling part and we have reached a point where we need

to determine the unknown material and model parameters. Next, we will discuss

experimental detail of FIPT with a specific loading path. The model will be then

calibrated from the experimental data.

D. Experimental procedure for FIPT

In this section, we first briefly describe the experimental setup and the preparation

of the specimen tested. A magneto-thermo-mechanical loading path is designed to

capture the FIPT responses. A selection of experimental responses are presented at

the end of this section.
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1. Experimental setup and specimen preparation

A micro-magneto-thermo-mechanical testing system (micro-MTM) was exclusively

designed and fabricated for direct measurements of MFIS during FIPT under different

constant stress levels and temperatures. The miniature stress stage is presented in

Fig. 19. The micro-MTM’s body and inner components are made of precipitation

hardened nonmagnetic Cu-Be and can apply compressive loads on specimens using

a specially designed screw-driven 316L stainless steel Belleville springs. The spring

design and stacking sequence allowed achieving near constant stress levels during

temperature changes due to the differences between the thermal expansion coefficient

(+/- 5 MPa variation in the temperature range of interest). The entire micro-MTM

device is 10 mm in diameter and 50 mm long. Displacements during magnetic FIPT

are measured using a miniature capacitive sensor with an accuracy of ±0.0001 mm

that is capable of measuring the displacements at temperatures as low as 4.2 K and

magnetic fields as high as 18 Tesla. The experimental setup is schematically shown in

Fig. 20. More detail on the set up are given in [154]. The micro-MTM was placed in

a custom designed extraction type superconducting magnet to obtain magnetization

and MFIS measurements of the NiMnCoIn specimens under magnetic fields from 0

to 18 Tesla and test temperatures ranging from 4.2 to 250 K under different stress

levels.

Ni45Mn36.5Co5In13.5 ingots were synthesized using vacuum induction melting and

single crystals were grown in a He atmosphere using the Bridgman technique. The

composition of the single crystals was determined to be Ni45.7Mn35.6Co4.8In13.8 us-

ing wavelength-dispersive spectroscopy (WDS). The difference between the nominal

and actual compositions is thought to be due to Mn evaporation during single crys-

tal growth. The single crystal samples were then cut into rectangular prisms with
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Fig. 19. Miniature stress stage with 10 mm in diameter and 50 mm long

dimensions of 2mm × 2mm × 4mm using electro-discharge machining to assure that

both magnetic field and stress can be applied along known crystallographic directions.

The [100] direction indicates the long axis of the rectangular prisms. The specimens

were homogenized at 9000C for 24 h under vacuum, water quenched and then heat

treated at 5000C for 1 h under vacuum to achieve ordering in the samples that re-

sulted in martensitic transformation temperatures below room temperature. The

thermo-magnetic response of the crystals was characterized using a superconducting

quantum interference device (SQUID) magnetometer that can apply magnetic fields

up to 18 Tesla.

2. Experimental loading path

We perform a specific experiment for a particular thermo-magneto- mechanical load-

ing condition. The loading paths are described in Fig. 21, where T is the temperature,
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Fig. 20. Schematic of the micro-MTM setup. ex, ey, ez are the unit vectors along the

x, y, z directions. The (•) and (×) in the superconducting magnet coil denote

current out of and current into the plane of the paper.

Ha is the applied magnetic field and σE is the mechanical stress. The four critical

magnetic fields for forward phase transformation start and finish and the reverse phase

transformation start and finish are denoted by HM
s , HM

f , HA
s and HA

f respectively.

Similarly, the four critical temperatures are denoted by TMs , TMf , TAs and TAf . Since

Cauchy stress for a magneto-mechanical system is magnetic field dependent [123, 124],

we denote σE as the Cauchy stress with no magnetic field or the mechanical part of

the Cauchy stress. We measure all tractions from the σE − T plane at Ha=0.

The specimen initially is in the austenitic phase at room temperature (300 K).

The initial traction σ̄A on the specimen at room temperature and zero magnetic field

is found to be -60 MPa. The initial state of the specimen is denoted by point 1 in Fig.

21. During the cooling process, the spring becomes stiffer and the traction increases up

to point 2. Forward transformation starts at point 2, and the length of the specimen

consequently shrinks during the path 2-3. The shortening of the length relaxes some

spring loads and the traction decreases. After point 3, the traction increases up to
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Fig. 21. Schematic of the experimental loading path. The experimentally controlled

parameters are temperature, applied magnetic field and mechanical stress.

The inclined parallel lines are the projections of the phase surfaces on the

stress-field and stress-temperature parametric planes.

point 4 due to the increase in spring stiffness. The specimen is cooled down to T=230

K at point 4. At this point, the specimen is fully transformed to the martensitic

phase. Next the temperature is held constant at 230 K and the magnetic field is

gradually applied. At point 5, transformation to the austenitic phase is initiated

due to magnetic field which completes at point 6. Through the transformation, the

traction increases up to point 6, where the specimen recovers its initial length. Upon

subsequently decreasing the magnetic field, the reverse phase transformation begins

at point 7. After that, by further decreasing of the magnetic field, the specimen starts

to shrink and the magnitude of the traction gradually drops. Phase transformation

completes at point 8 when further field is removed. The tractions at the beginning

and end of the reverse/forward field induced phase transformation are estimated to

be -57 MPa and -67 MPa, respectively. It is experimentally observed that the spring
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stiffness increases as the temperature decreases and so the traction at point 4 and

point 6 increases. Tractions in the martensitic and austenitic phases (point 4 and 6)

at 230 K, 200 K and 150 K are listed in Table. XXII.

Initial: point 1 Final: point 4 point 6

T [K] σ̄A [MPa] T [K] σM [MPa] σA [MPa]

300 -60 230 -57 -67

-100 -100 -110

300 -60 200 -60 -70

-100 -103 -113

300 -100 150 -112 -122

Table XXII. Variations of traction levels on the martensitic and austenitic phase at

different temperatures.

3. Experimental results

A typical experimental response of strain vs field as well as magnetization vs field are

presented in Fig. 22. We observe nearly 5% strain recovery during the field induced

reverse transformation (Fig. 22a). The magnetization saturates close to 120 emu/g

(Fig. 22b). It should be noted that from 0 to µ0H
A
s =7 T no MFIS is observed but

magnetization continuously increases. This increase in magnetization may be due to

meta-magnetic phenomenon (subsection 2). After 7 T, austenitic phase nucleates and

MFIS is observed. The magnetization at µ0H
C = µ0H

A
s = 7 T can be identified as

MC = 40 emu/g (Fig. 18). If we investigate the magnetization response at -100 MPa

(Fig. 23(b)), it is observed that the slope of the curve changes drastically around 10

T. This is probably due to the termination of spin-flop mechanism and nucleation of

the austenitic phase. The magnetization MC at this point is also 40 emu/g. Thus we
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(a) (b)

Fig. 22. Experimental responses of (a) strain vs field and (b) magnetization vs field at

200 K and at a stress level -60 MPa in the martensitic phase.

assume that MC=40 emu/g remains constant irrespective of stress and temperature

level.

In the Fig. 23(a) we observe that maximum strain increases with the increase

in applied stress level. This is due to the fact that low stress is not sufficient to

bias only single martensitic variant. At high stress level, the volume fraction of

the stress favored martensitic variant increases and so the maximum transformation

strain. Moreover from Fig. 23(b) we observe that saturation magnetization of the

austenitic phase decreases with the increase in magnitude of the stress. This may be

due to the fact that applied stress influences the ferromagnetic order. The saturation

magnetization of the martensitic phase, MM , remains constant at 15 emu/g.

Given the 1-D constitutive relations (Section C), the following model parameters

must be identified: (A) magnetic, (B) mechanical and (C) thermodynamic, listed
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(a) (b)

Fig. 23. Experimental responses of (a) strain vs field and (b) magnetization vs field at

200 K and at a stress level -57 MPa in the martensitic phase.

in Table. XXIII. The experiments required to identify the model parameters are

described in the next section.

E. Identification of material parameters

All the material properties that will be used to identify the model parameters are

determined from experiments. We follow the sequences I to V in Table. XXIII to

identify the model parameters. At the end of this section, results of all required

experimental parameters and their values are given in Table. XXIV and Table. XXV,

respectively.
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Model parameters

(A)-Magnetic

(I): âA1 , a
A
9 , a

A
11

(II): aM1 , aM2 , γ̃tx

(B)-Mechanical

(III): (aA4 + aA5 ), a
A
13, (a

M
4 + aM5 ), aM13

(IV): a, c, m, s

(C)-Thermodynamic

(V): ρ∆s0, ρ∆u0, A,B,C,D, Y
t

Table XXIII. Required model parameters.

1. Magnetic parameters

a. Group I

We are looking for calibrating the constants {âA1 , aA9 , aA11} of the austenitic phase from

the magneto-mechanical and magneto-thermal experimental responses as shown in

Fig. 24. Based on these experimental data, we consider the following linear system




1 σ1 T1

1 σ1 T2

1 σ2 T3







âA1

aA9

aA11




= µ0




M1

M2

M3



. (3.37)

We consider two temperatures T1=300 K and T2=340 K at σ1 = σA = 0 for which the

mass magnetizations areM1=102 emu/g andM2=90 emu/g respectively (Fig. 24(a)).

Here we denote the stress level in the austenitic phase by σA. We convert mass

121



(a) (b)

Fig. 24. Variation of saturation magnetization of the austenitic phase with (a) tem-

perature at zero stress and (b) compressive stress at T = 230K.

magnetization to volume magnetization and consider M1=102ρ A/m and M2=90ρ

A/m, where ρ (kg/m3) is the density of the material2. Using the first two equations

of (3.37), we obtain

âA1 = µ0
M1T2 −M2T1

T2 − T1
, aA11 = µ0

M1 −M2

T1 − T2
. (3.38)

In addition, we select the saturation magnetization M3 = MA
σ =115ρ A/m at σ2 =

σA=-67 MPa and T3 = 230 K (Fig. 24(b)) to calculate aA9 . We write from the last

2Units: The units of magnetization (magnetic field), stress and temperature in
SI system are [A/m], [Pa] and [K] respectively. However the experimental data
for this study are recorded in the unit of [emu/g](=10−3A.m2). If ρ [kg/m3] is the
density of the material then 1[emu/g]=1 A.m2/kg=[A/m]/[kg/m3]. This means that
multiplying ρ to the magnetization value in the [emu/g] unit, we get magnetization
in the [A/m] unit. Moreover µ0=4π×10−7 N/A2, 1[T]=[N/A2].[A/m]=[N/A.m] and
[T].[A/m]=[Pa].
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row of (3.37),

aA9 =
µ0M

A
σ − (âA1 + aA11T3)

σA
.

By denoting (âA1 + aA11T3) = µ0M
A
0 , the zero stress saturation magnetization at T =

230 K, we reduce the above expression as

aA9 = µ0
MA

σ −MA
0

σA
. (3.39)

b. Group II

Considering the martensitic phase, we obtain

aM1 = µ0M
M , (3.40)

at Hx = 0. Knowing the fact that due to spin flop phenomena (sec 2) the increased

saturation magnetization at Hx = HC is MM
x = MC (Fig. 18), we can write from

(3.29b)

µ0M
C = µ0M

M + 2aM2 H
C

and obtain

aM2 = µ0
MC −MM

2HC
. (3.41)

As per discussion in subsection 3, the values of the constant material properties MC

and MM are 40 emu/g and 15 emu/g, respectively. Finally, by evaluating (3.28) at

ξ = 1, we get

MC =MC + γ̃tx,⇒ γ̃tx = 0, (3.42)

123



which means the magnetization changes due to presence of ferromagnetic austenitic

phase in the phase mixture.

2. Mechanical parameters

a. Group III

We identify the elastic modulus of the austenitic and martensitic phase (3.31a, 3.31b)

by EA = 2(aA4 + aA5 ) and E
M = 2(aM4 + aM5 ), respectively. The values (EA=12 GPa,

EM=25 GPa) are obtained from a pseudoelastic test [2]. So,

aA4 + aA5 =
EA

2
, (3.43)

aM4 + aM5 =
EM

2
. (3.44)

The thermal expansion coefficients can be identified as αA = aA13 and αM = aM13 . The

thermal expansion of both phases are negligible i.e. αM = αA ≈ 0. The coefficient of

Hx (3.31a) has already been determined in the magnetization response and equals to

aA9 (3.39).

b. Group IV

The constants a and c of equation (3.33) are calculated by assuming that

lim
|σE |→∞

Ecur(|σE|) = Emax, lim
|σE |→0

Ecur(|σE |) = Emin.

With these two conditions, we determine

a = (1 + e−m/s)(Emax −Emin) (3.45)

c = (1 + e−m/s)Emin − e−m/sEmax. (3.46)

From Fig. 25, we consider Emin = 0, Emax=5.5% and the values of m and s are 50
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Fig. 25. Maximum strain versus stress response of the martensitic phase transforma-

tion. The dots are the experimental values [2] and the continuous line is the

fit.

and 20, respectively. Since, at the end of transformation we get maximum inelastic

deformation which is equal to the maximum transformation strain, then b1 = 1. In

this study we always consider complete phase transformation. Thus for the reverse

transformation, ξr = 1 (equation (3.24)).

3. Thermodynamic parameters

a. Group V

We calibrate ρ∆s0 by using Clausius-Clapeyron relation, which can be obtained by

applying the consistency condition to (3.35d). Taking the time derivative of (3.35d)

we get π̇t = 0 and at the critical values, when ξ̇ = 0, we can write

πt,σExx σ̇
E
xx + πt,Hx Ḣx + πt,T Ṫ = 0. (3.47)
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Since the stress is kept constant (σ̇Exx=0) at the start and end of forward and reverse

transformation,

dHx

dT
= − πt,T

πt,Hx

= −ρ∆s0 − aA11Hx

µ0∆M

The presence of the magnetic field variable Hx in the term aA11Hx adds additional

complexity to model calibration. We assume this value is small enough3 compared to

the ρ∆s0 such that

dHx

dT
≈ − ρ∆s0

µ0∆M
.

Moreover, we consider the average 〈µ0
dHx

dT
〉 slope (Fig. 26) and assume that it is

constant at all stress levels. Thus ρ∆s0 is found to be

ρ∆s0 = −〈µ0
dHx

dT
〉∆M. (3.48)

From the experiments (Fig. 26) conducted in H − T plane, we calculate the average

slope 〈µ0
dHx

dT
〉=-13.6 T/K. If we calculate the corresponding entropy change, we get

ρ∆s0=8.725 MPa/K, which is significantly higher than aA11Hx=0.04 MPa/K and thus

supports our assumption.

Finally, we need to know the remaining parameters A,B,C,D, Y t, which we

assume to be independent of stress, and ρ∆u0. From the Kuhn Tucker condition

(3.35e) we get two conditions at the beginning and end of forward transformation:

πt(σA, H
M
s , Tc)− Y t = 0, for ξ̇ > 0, at ξ = 0 (3.49a)

πt(σM , H
M
f , Tc)− Y t = 0, for ξ̇ > 0, at ξ = 1. (3.49b)

3We first calculate the value of this term at an arbitrary large magnetic field,
say µ0Hx=20 T. This value is more than the maximum magnetic field (µ0Hx=18 T)
that can be applied in the experimental test setup. At this condition, a value of
aA11Hx=0.04 MPa/K is obtained.
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Fig. 26. Experimental results of the temperature vs field dependence. We assume

equal slopes at all stress level. MHs is the locus of the martensitic start

temperature at a given magnetic field. Similarly, AHs and AHf are the locus

of the austenitic start and finish temperature, respectively.

Similarly, for reverse transformation we get two more equations,

πt(σM , H
A
s , Tc) + Y t = 0, for ξ̇ < 0, at ξ = 1 (3.50a)

πt(σA, H
A
f , Tc) + Y t = 0, for ξ̇ < 0, at ξ = 0. (3.50b)

The thermodynamic driving force πt (3.34) for the forward transformation becomes,

πt = |σExx|Ecur +
1

2
∆(

1

E
)(σExx)

2 + µ0∆MHx + ρ∆s0T − ρ∆u0 + f t, (3.51)

while for the reverse transformation

πt = σExxE
t−r
xx +

1

2
∆(

1

E
)(σExx)

2 + µ0∆MHx + ρ∆s0T − ρ∆u0 + f t. (3.52)

The four critical magnetic fields, HA
s , H

A
f , H

M
s and HM

f are obtained from Fig. 27
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in the following ways. According to the experimental observation (subsection 3),

Fig. 27. Experimental results of the magnetization-field response at constant stress

σM=-57 MPa and at constant temperature T = 230K.

the values of MM=15 emu/g and MC=40 emu/g are assumed to be constant at

any stress and temperature level. We identify HA
s and HM

f from the intersection of

the horizontal line MC=40 emu/g, whereas HA
f and HM

s are obtained by tangent

intersection method. Their values are given in Tab. XXV. Finally, the continuity of

the hardening function [92] gives us

∫ 1

0

f t
∣∣∣
ξ̇>0

dξ =

∫ 1

0

f t
∣∣∣
ξ̇<0

dξ. (3.53)

Solving the five equations (3.49a) to (3.50b) and (3.53), we obtain the five un-

knowns, A, B̃, C, D̃ and Y t. Detailed derivations are given in Appendix E1. It should

be noted that we introduce a new constant B̃ = B + ρ∆u0 and D̃ = D + ρ∆u0

such that B and D absorb the term ρ∆u0. All material properties are summarized

in Tab. XXV. Moreover, we consider a cubic dependence of stress on the hardening
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Experimental material parameters

(A)-Magnetic

(I): {σ1, M1, M2, T1, T2}, {σ2, M3, T3}

(II): MM , MC , HC

(B)-Mechanical

(III): EA, αA, EM , αM

(IV): Emax, Emin

(C)-Thermodynamic

(V): dH
dT

, HA
s , H

A
f , H

M
s , HM

f

Table XXIV. Required material parameters.

parameters A and B 4 i.e, A(σExx) = A1 + A2σ
E3

xx and B̃(σExx) = B̃1 + B2σ
E3

xx . We

consider the constant hardening parameters C and D for the reverse transformation.

The stress dependence assumption on A and B̃ are based on experimental obser-

vations. We calibrate the constants A1, A2, B̃1 and B2 in the following ways. We

already know the values of A(σExx = −57) and B̃(σExx = −57). Moreover, we select an

additional experiment, the magnetization response at 0 MPa and 230 K, to calibrate

the stress dependence components of A1, A2 and B̃1, B2. We consider µ0H
M
s =3 T

and µ0H
M
f =0.5 T from the experiment and use (E.1) and (E.2) to find the values of

B̃(σExx = 0) and A(σExx = 0). So we write A1 = A(σExx = 0), A2 =
A(σExx=−57)−A(σExx=0)

(σExx=−57)3

and B̃1 = B̃(σExx = 0), B2 =
B(σExx=−57)−B̃(σExx=0)

(σExx=−57)3
.

4Recall that in (3.27) we assumed A(I2, I3), B(I2, I3)...etc. Here we are considering
A(I2) = A1 + A2I

3
2 and B(I2) = B1 +B2I

3
2 .
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F. Model simulations and predictions

We first discuss model simulations and then model predictions are compared with ex-

periments in (a), (b) and (c) for magnetization-field, strain-field and magnetization-

temperature data, respectively. In subsection 3 we perform parametric studies with

different magneto-thermo-mechanical loading conditions. Finally the model predic-

tions of magneto-thermo-mechanical phase surfaces are presented.

1. Model simulations

The summary of the material constitutive equations are given in Tab. XXXIII. One

needs to know the evolution of ξ to generate analytic solutions of the constitutive

responses. The evolution of ξ is obtained from the Khun Tucker condition (3.35e)

and the detailed derivations are given in Appendix 4. The expressions of ξ for the

forward and reverse transformation are given as

Forward transformation (ξ̇ > 0):

ξ =
1

2
+

1

2
cos(f1|σExx|Ecur + f2(σ

E
xx)

2 + f3Hx + f4T + f5) (3.54)

Reverse transformation (ξ̇ < 0):

ξ =
1

2
+

1

2
cos(r1σ

E
xxE

t−r + r2(σ
E
xx)

2 + r3Hx + r4T + r5). (3.55)

Here fi and ri are constants and the values are given in the Appendix 4.

The reader should recall that the magnitude of the traction varies about 10

MPa during phase transformation due to the deflection of the springs. We discretize

this difference, denoted by δS, by the number of n incremental steps. We assume

that the stress remains constant at each increment. We write at increment (n + 1),
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σE
n+1

xx = σE
n

xx + δS
n
, Ecurn+1

= Ecur(σE
n+1

xx ) and ǫt
n+1

xx = Λtxx(σ
En+1

xx )ξn+1. The initial

condition of the problem is σE
0

xx = σA or σE
0

xx = σM , depending on the forward and

the reverse transformation.

Fig. 28. Model simulation of magnetization response at 230 K and σM=-57 MPa.

We simulate the magnetization response at the calibration stress σM=-57 MPa

and temperature 230 K. The result is shown in Fig. 28. The solid line is the modeled

result and the dotted line is the experimental data. Moreover, the difference between

the applied field and internal field is small due to demagnetization effect for this

particular magnetic loading direction. An estimation of this error is presented in

Appendix F1 by assuming uniformly distributed magnetic field inside the specimen.

So we present all the model predictions by considering internal magnetic field is nearly

equal to applied magnetic field.

A kink is observed at the end of forward transformation (around 2.5 T in the

figure). This appears due to the trigonometric hardening function. The transition can

be made smooth by improving the trigonometric hardening function or by introducing
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different hardening functions. Further details about the smooth transitioning in the

modeling of conventional shape memory alloys can be found in [155].

2. Model predictions

a. Magnetization-field prediction

(a) (b)

Fig. 29. Model predictions of magnetization responses (a) at 230 K and σM=-57 MPa

and (b) at 230K and σM=-100 MPa.

The model prediction of the magnetization response at 0 MPa and 230 K is

given in Fig. 29(a). The predicted saturation magnetization at 0 MPa is close to

the experiment. The prediction of magnetization at σM=-100 MPa is presented in

Fig. 29(b). In this prediction, the variation of magnetization (linear part) in the

martensitic phase are captured well, whereas the model over predicts the saturation

magnetization of the austenitic phase a small amount.
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b. Strain-field prediction

(a) (b)

Fig. 30. (a) Field induced strain prediction at (a) T=150 K at σM=-112 MPa and (b)

T=200 K at σM=-60 MPa.

We predict the strain responses at temperature T=150 K with σM=-112 MPa

and at T=200 K with σM=-60 MPa in Fig. 30. The maximum transformation strain

for FIPT at -112 MPa is about 6%, where under same mechanical traction the max-

imum strain is about 5% (Fig. 25), when the specimen is used as SMA (i.e. a

thermomechanical material). Similarly, for a stress level of -60 MPa, the maximum

transformation strain for FIPT is nearly 4.5% (Fig. 30b) while for conventional shape

memory effect it is around 3% (Fig. 25). It is observed experimentally that the strain

in the austenitic phase increases with the increase in magnetic field. The model pre-

diction is able to capture this linear trend. This is due the coupling of stress with

the saturation magnetization of the austenitic phase. The term aA9Hx in (3.31a) con-

tributes significantly to the overall strain response. For example, taking an arbitrary
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value of µ0Hx=10 T, we get aA9Hx=0.6%.

c. Magnetization-temperature prediction

Fig. 31. Predictions of magnetization responses at constant field (µ0H=1 T) and con-

stant stress (0 MPa).

We also predict the magneto-thermal response at 0 MPa and under a constant

magnetic field Hc=1 T (Fig. 31a). The four critical temperatures are calculated by

using the following equations.

πt(Hc, T
M
s )− Y t = 0, for ξ̇ > 0, at ξ = 0

πt(Hc, T
M
f )− Y t = 0, for ξ̇ > 0, at ξ = 1

and

πt(Hc, T
A
s ) + Y t = 0, for ξ̇ < 0, at ξ = 1

πt(Hc, T
A
f ) + Y t = 0, for ξ̇ < 0, at ξ = 0

The predicted temperatures are given in Table. XXVII. We assume that at a com-
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parative small field of 1 T, the magnetization of martensitic phase does not increase

beyond MM due to spin flop phenomena i.e we consider MC =MM .

3. Results for various magneto-thermo-mechanical loading paths

a. Magneto-mechanical model predictions

(a) (b)

Fig. 32. (a) Model predictions of strain-field responses and (b) magnetization-field

responses at different stress levels and at constant temperature T=200 K.

Finally we present a few model predictions of magneto-mechanical behaviors of

these material system. The strain-field responses at different stress levels at a constant

temperature are presented in Fig. 32a. We select a constant temperature T=200 K

and vary the stress level from -70 MPa to -100 MPa. In this demonstration, we con-

sider austenite as the reference state and the vertical axis represents the compressive

strain due to martensitic phase transformation. In the austenitic phase, the strain

linearly decreases with the magnetic field due to the magneto-mechanical coupling.
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The magnetization response is presented in Fig. 32(b). The saturation mag-

netization decreases with the increase in stress level due to the magneto-mechanical

coupling in the austenitic phase. The strain-field and magnetization-field responses

(a) (b)

Fig. 33. (a) Model predictions of strain-field responses and (b) magnetization-field

responses at different temperatures and at constant stress σ=-90 MPa.

at different temperature and constant stress are presented in Fig. 33. In this case, the

traction is kept constant at -90 MPa and the temperature is varied from 180 K to 240

K with a 20 K interval. The influence of temperature on saturation magnetization is

clearly observed in Fig. 33(b).

b. Magneto-thermo-mechanical model predictions

We demonstrate the model’s capability to capture magneto-thermo-mechanical cou-

pling by selecting a magneto-thermal loading path as shown in Fig. 34. In this

figure the low temperature, low field condition denotes the martenstic phase and the
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Fig. 34. Magneto-thermal loading path at constant stress σ=-80 MPa.

high temperature, high field denotes the austenitic phase. For forward transforma-

tion (M→A), we increase the temperature gradually from 180 K to 300 K and the

magnetic field changes as indicated on the path with the forward arrow. Similarly,

for reverse transformation (A→M), we follow the alternative path. We consider the

following equations for the magneto-thermal loading path

µ0H =





m1T
n1 + c1 , M → A

m2T
n2 + c2 , A→M

(3.56)

We considered n1=9 for the forward loading and n2=-7 for the reverse loading condi-

tion. The constants m1, c1 and m2, c2 are obtained from the two end point conditions

of the Fig. 34. We predict the strain-field-temperature response and magnetization-

field-temperature responses of this material in Fig. 35.

4. Magneto-thermo-mechanical transformation surfaces

The stress-field phase diagram at 230 K is presented in Fig. 36(a). The projections

of four transformation surfaces on the stress-field plane at 230 K are presented by

the four curves. These curves are plotted by using (3.35d). Similarly, the stress-
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(a) (b)

Fig. 35. (a) Model predictions of strain-field-temperature response and (b) magneti-

zation-field-temperature response at constant stress σ=-80 MPa.

temperature phase diagram at 0 T is given in Fig. 36(b). As we assume that the

forward transformation depends on the higher order stress, the locus of HM
f , H

M
s

and TMf , TMs behaves different than the locus of HA
f , H

A
s and TAf , T

A
s . Moreover, the

difference between HM
f , H

M
s (or TMf , TMs ) at a constant stress level increases rapidly

with the increase in stress. This kind of response is sometimes observed in thermo-

mechanical SMAs where increasing stress expands the temperature difference between

martensitic start and martensitic finish temperatures [156]. The model predictions of

3-D (magneto-thermo-mechanical) austenitic and the martensitic finish surfaces are

given in Fig. 37.
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(a) (b)

Fig. 36. (a) Model prediction of stress-field phase diagram at 230 K and (b) model

prediction of stress-temperature phase diagram at µ0H=0 T.

(a) (b)

Fig. 37. 3D phase diagram: (a) austenitic finish surface and (b) martensitic finish

surface.
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1. Saturation magnetization of the austenitic phase (Fig. 24)

M1=102ρ A/m, M2=90ρ A/m, T1=300 K, T2=340 K, at σ1 = σA=0 MPa

M3 =MA
σ =115ρ A/m at σ2 = σA=-67 MPa, T3=230 K and MA

0 =120ρ A/m

(ρ=8020 kg/m3)

2. Saturation magnetization of the martensitic phase (Fig. 27)

MM=15ρ A/m, MC= 40ρ A/m at

HC = HM
f for forward transformation

HC = HA
s for reverse transformation

and γ̃tx = 0

3. Pseudoelastic response and thermal expansion coefficients

EA = 12GPa, EM = 25GPa, αM = αA ≈ 0

4. Maximum transformation strain (Fig. 25)

Emin = 0, Emax = 5.5, m = 50, s = 20, b1=1, ξr=1

5. Magnetic field-temperature slope (Fig. 26)

µ0
dHx

dT
=-13.6 T/K

6. Critical magnetic fields (Fig. 27)

µ0H
M
s = 6.5 T, µ0H

M
f = 2.5 T, µ0H

A
s = 5.0 T, µ0H

A
f = 9.0 T

at T = 230K and σM = −57 MPa

Table XXV. Measured material properties from different magneto-thermo-mechanical

experiments.
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Magnetization response:

Mx =MA
x + ξ(MM

x −MA
x ).

µ0M
A
x = âA1 + aA9 σ

E
xx + aA11T

µ0M
M
x = aM1 + aM2 Hx, for ξ = 1 and Hx ≤ HC

= µ0M
C , for ξ ∈ (0, 1)

Strain response:

εxx = εAxx + ξ(εMxx − εAxx) + εIxx

εAxx =
1
EAσ

E
xx + aA9Hx, ε

M
xx =

1
EM σ

E
xx

εIxx = Λtxxξ = Ecur(|σE |)ξ

Ecur(|σE|) = a

1+e−(|σE |−m)/s
+ c

Model parameters:

âA1 = µ0
M1T2−M2T1

T2−T1 , aA9 = µ0
MA

σ −MA
0

σA
, aA11 = µ0

M1−M2

T1−T2 .

aM1 = µ0M
M , aM2 = µ0

MC−MM

Hc

a = (1 + em/s)(Emax − Emin), c = (1− em/s)Emin − em/sEmax

Table XXVI. Summary of the 1-D constitutive equations.

TAs TAf TMs TMf

Experimental data 250 280 260 220

Model predictions 246 284 259 225

Table XXVII. Critical temperatures [K] at 0 MPa and 1 T
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CHAPTER IV

FIELD INDUCED VARIANT REORIENTATION

If an external field is applied, it is energetically favorable for the magnetization vectors

to align with the applied field. In MSMAs three competing mechanisms are available

to achieve this alignment. The first two, the magnetic domain wall motion and the

magnetization vector rotation are common to all ferromagnetic materials and shall be

discussed shortly. The third mechanism, which is unique for magnetic shape memory

alloys, is the magnetic field-driven reorientation of martensitic variants. This is pos-

sible since the preferred axes of the tetragonal variants are mutually perpendicular,

such that an external magnetic field can be used to favor certain variants over oth-

ers. The induced redistribution of variants leads to the observed macroscopic shape

change.

A. Experiments on MSMAs for variant reorientation

An experimental setup designed to measure magnetic field-induced strains in MSMAs

following the basic principle qualitatively described in the preceding paragraphs is

shown in Fig. 38 [1, 66]. The setup consists of a 2T electromagnet, which is adjustably

mounted on a mechanical load frame such that the directions of applied force and

magnetic field are perpendicular. The specimen is held in place by non-magnetic

grips. A polymer chamber, which encloses the grips and specimen, is filled with

nitrogen gas for cooling. As depicted in Fig. 38(b), temperature, deformation, and

magnetic field measurements are taken by a thermocouple, a capacitive displacement

sensor and a Hall probe. Similar experiments have been reported by Tickle [63, 151],

Heczko [47], Shield [30] and others.
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(a) Detail of the test setup showing the elec-
tromagnets, the grips and the load cell on
the MTS frame, with the polymer chamber
removed.

Nonmagnetic
grips

Nitrogen gas

Electromagnet
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Transparent
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Applied
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Load
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Transverse
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Electromagnet
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Load

(b) Schematic showing the compo-
nents of test setup as well as the
applicable mechanical and magnetic
load directions.

Fig. 38. Magneto-thermo-mechanical setup used for MFIS measurements [1, 66]

Magnetic field-induced strain data obtained from measurements on this test

frame are plotted in Fig. 39 for second magnetic field cycles. The figure shows

the magnetic field-induced strain as a function of the magnetic field, not the total

strain, such that all curves start at the origin. The observed response is nonlinear

and hysteretic, which indicates that there is considerable dissipation associated with

the variant reorientation. The achievable field-induced reorientation strain and the

shape of the hysteresis loops show the strong stress level dependence.
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Fig. 39. Evolution of the MFIS in a Ni2MnGa single crystal at different stress levels

during the second magnetic cycle. Data taken from [1].

B. Microstructure based MSMA modeling

For a MSMA, the magnetization vector is identified through an appropriate phe-

nomenological model [1, 3]. The model is based on the Gibbs free energy function G,

in which the Cauchy stress tensor σ and the magnetic field strength H are the inde-

pendent state variables. The loading history dependence of the constitutive behavior,

caused by dissipation associated with variant rearrangement, is introduced through

the evolution of internal state variables. The chosen internal state variables are the

variant volume fraction ξ, the magnetic domain volume fraction α and the magnetiza-

tion rotation angles θi(i=1,4). Such configurations have been observed experimentally

in Ni-Mn-Ga [157–160]. Corresponding micrographs are shown in Fig. 40(b). An ide-
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(a) Magneto-optical images using the
magnetic garnet film technique as ob-
served by Likhachev et al. [157].

(b) Scanning electron microscopy (SEM)
images taken by Ge et al. [158].

alized microstructural representation of the twinned martensitic phase is given in

Figure 40. Two martensitic variants, variant-1 with volume fraction, ξ, and variant-2

with volume fraction, 1−ξ, form 90o magnetic domain walls and each variant contains

180o domain walls. The volume fractions of 180o magnetic domain wall in variant-1

and variant-2 are represented in Figure 40 by domain-1 and domain-2 and denoted

by α and 1− α respectively.

The specific form of the Gibbs free energy is given by [3]

G(σ,H , T, εr, ξ, α, θi) = − 1

2ρ
σ : Sσ − 1

ρ
σ : εr − µ0

ρ
M ·H +

1

ρ
f(ξ, α)

+{ξ(1− α)Gan
2 (θ2) + (1− ξ)(1− α)Gan

1 (θ1)

+ξαGan
4 (θ4) + (1− ξ)αGan

3 (θ3)}+G0(T ),

(4.1)

where ρ, S, εr, f , Gan
k and G0 are the density, the effective compliance tensor, the

reorientation strain tensor, a hardening function, the magnetocrystalline anisotropy

energy of the kth domain and a reference state energy respectively. The free energy
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Fig. 40. Schematic representation of the microstructure showing the coexistence of

martensitic variants and magnetic domains [3].

function (4.1) is comprised of the elastic strain energy, the Zeeman energy, a mixing

term, the magnetocrystalline anisotropy energy, and a reference state energy. The

Zeeman or external field energy aims to align the internal magnetization with the

externally applied magnetic field. The magnetocrystalline anisotropy energy can be

viewed as the energy stored in the material due to the work done by an applied field

in rotating the magnetization away from the magnetic easy axes.

The internal variables ξ, α and θi can in general be connected with energy dis-

sipation. Experimental results [63] show that the hysteresis for the single variant

MSMA crystal specimen with respect to the magnetic easy axis and hard axis are

almost negligible. This observation was expected for the case of the hard axis mag-

netization response, since the dominant mechanism, related with the magnetization

rotation θi, is a reversible process. With regard to the easy axis magnetization, mag-

netic domain wall motion is the most important mechanism that can be associated

with dissipation. Permanent magnets, for example, exhibit large hysteresis effects
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due to micro-scale pinning sites and other phenomena [19, 20]. In MSMA, however,

the magnetic domain wall motion appears to be associated with a very small amount

of dissipation.

The dissipation in MSMAs is mainly due to variant reorientation mechanism

which is caused due to the change in ξ, allowing to neglect the α dependency of the

hardening function f . From the free energy expression (4.1) the constitutive equations

are derived in a thermodynamically consistent manner, such that the magnetization

constitutive equation becomes

M = − ρ

µ0

∂G

∂H
. (4.2)

By using the Gibbs energy function (4.1) and the 1st law of thermodynamics,

Coleman-Noll entropy principle obeys the following inequality

πr : ε̇r + πξ ξ̇ + παα̇+
4∑

i

πθi θ̇i ≥ 0 (4.3)

where πr = −ρ ∂G
∂εr

, πξ = −ρ∂G
∂ξ
, πα = −ρ∂G

∂α
, πθi = −ρ ∂G

∂θi
are the thermodynamic

driving forces. As the rotation of magnetization vector and magnetic domain wall

motion do not have any dissipation effect [63], we have πθi = 0, πα = 0.

1. Explicit Form of Magnetization Constitutive Equations

In this section we present a special reduced form of magnetization constitutive equa-

tions in 2-D, consistent with the experiment, to capture some main features of the

MSMAs. In a typical experiment, a martensitic MSMA sample is subjected to a con-

stant mechanical load along the long axis, which is the x-axis, and subsequently to a

perpendicular magnetic field in the y-axis. The stress is assumed to be uniaxial and

uniform inside the specimen. The effects of magnetic body force and magnetic body
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couple are neglected in the present work and the fully-coupled magnetomechanical

problem, where stress is allowed to vary pointwise, will be studied in a subsequent

paper. The x-component of the applied magnetic field is zero. However, the mag-

netic field along the x direction due to the magnetization of the body is assumed to

be small and the dependence M(Hx) is neglected. So the magnetization components

are assumed to have the form of Mx = Mx(Hy) and My = My(Hy). Under these

conditions, the general 3-D magnetostatic problem can be reduced to a simpler 2-D

problem by considering the components of the field variables in the following form

H = {Hx, Hy, 0},M = {Mx,My, 0},B = {Bx, By, 0}. (4.4)

We also assume that the only non-zero stress component is σxx, which is uniform and

constant inside the specimen during the experiment.

In the martensitic phase (Figure 40), M 1,M 2, M 3,M 4 represent the magneti-

zation vectors of variant-2 in domain-2, variant-1 in domain-2, variant-2 in domain-1

and variant-1 in domain-1 respectively. θi represents the corresponding rotation of

the magnetization vector M i from the magnetic easy axis (dotted line). If M is the

total magnetization vector contributed from each variant and domain volume fraction,

then

M = (1− ξ){(1− α)M 1 + αM 3}+ ξ{(1− α)M2 + αM 4}, (4.5)

where

M 1 =Msat(− cos θ1ex + sin θ1ey),M2 =Msat(sin θ2ex − cos θ2ey), (4.6)

M 3 =Msat(cos θ3ex + sin θ3ey),M4 =Msat(sin θ4ex + cos θ4ey), (4.7)

andMsat represents the saturation magnetization. The rotation angles are directly re-

148



lated with the the anisotropy energy. An explicit form of magnetocrystalline anisotropy

energy for uniaxial symmetry is usually given by [161],

Gan
i = K1 sin

2 θi. (4.8)

where K1 is the coefficient to be determined from magnetization measurement and θ

is the rotation angle between the magnetization and the easy axis.

We will now present the expressions of magnetization vector before reorientation,

during reorientation and after reorientation.

1. Before Reorientation

Before reorientation starts we only have stress-favored variant in the initial

configuration. Since the MSMA specimen does not have any remnant magneti-

zation before applying the magnetic field, only 180o domain walls exist. When

the magnetic field is applied along the y-direction, the hard axis of the stress-

favored variant, the magnetization vectors start rotating in each domain. The

domain walls do not move since there is no magnetic field acting along the easy

axis of the stress-favored variant. The x component of the magnetization vector

in the adjacent domain alters the direction and cancels out when added and

gives zero resultant magnetization. On the other hand, the y components of

the magnetization vectors are added up and give a resultant magnetization.

In this region, we have ξ = 0 and α = 1
2
. Moreover, from πθ1 = πθ3 = 0 we get

sin θ1 = sin θ3 =
µ0Msat

2ρK1
Hy.

Equation (4.5) gives the magnetization vector,

M =
1

2
(M 1 +M 3) =Msat sin θ1ey or M =

µ0(M
sat)2

2ρK1
Hyey. (4.9)
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The above result shows that we only have y component of the magnetization

vector in the macroscopic scale.

2. During Reorientation

Once the critical field for the variant reorientation has been reached, the field-

favored variant nucleates and a sharp change in the slope of magnetization curve

occurs. In this configuration the magnetic domain wall motion is initiated due

to the formation of 900 domain and it is assumed that the unfavorable mag-

netic domains in the field-favored variant are eliminated simultaneously with

the activation of the reorientation process due to comparative high magnetic

field [14, 151].

Here, α = 1 and equations πθ3 = πθ4 = 0 lead to sin θ3 =
µ0Msat

2ρK1
Hy and θ4 = 0.

Considering the above results, the expression for the macroscopic magnetization

vector M (Equation (4.5)) is given below.

M = (1− ξ)M3 + ξM 4 =

Msat((1− ξ) cos θ3 + ξ sin θ4)ex +Msat((1− ξ) sin θ3 + ξ cos θ4)ey,
(4.10)

and by substituting the expression of θ3 and θ4, we get

M = (1− ξ)

√
1− (

µ0Msat

2ρK1

Hy)2ex + (1− ξ)
µ0M

sat

2ρK1

Hyey. (4.11)

The expression of ξ can be obtained from the equation πξ = 0 by using Kuhn-

Tucker loading conditions and a specific form of hardening function. More

detail derivation is given in [3]. Here we will present the evolution equation of

ξ for a constant applied traction during the forward reorientation process. The
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expression is given below,

ξ =
1

2
cos

[
F1

(
(µ0M

sat)2

2ρK1
H2
y − µ0M

satHy

)
+ F2 + π

]
+

1

2
. (4.12)

The model parameters F1 and F2 are functions of Msat, ρK1, H
s(1,2)
y , H

f(1,2)
y .

Here we introduce two more new material parameters H
s(1,2)
y and H

f(1,2)
y , which

denote the beginning and the end of the reorientation process. These parameters

can be found from experiments.

3. After Reorientation

After complete reorientation, only field induced martensitic variant is present

and the magnetization process becomes saturated. The magnetization vectors

are aligned along the applied magnetic field, which is the easy axis of the field-

favored variant.

In this situation we have ξ = 1 and α = 1. Equation πθ4 = 0 gives θ4 = 0 and

the magnetization vector is given by

M = M 4 =Msat sin θ4ex +Msat cos θ4ey =Msatex. (4.13)

In its present form, the proposed model could be extended to a 3-D formulation

for polycrystal MSMAs, assuming isotropic behavior. Currently, the model is imple-

mented in a 2-D form and calibrated from experiments on single crystal MSMAs [47].

A proper 3-D implementation for single crystal MSMAs requires additional constants

to account for the anisotropic behavior. Once a 3-D single crystal model is devel-

oped, we can use micromechanic techniques in order to produce a model suitable for

polycrystals.

Specific relations between the constants F1 and F2 and the model parameters
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Msat, ρK1, H
s(1,2)
y , H

f(1,2)
y , σ∗ and εr,max, namely the saturation magnetization, the

magnetocrystalline anisotropy constant, the critical field values for the start and

finish of the forward reorientation process, the blocking stress and the maximum

reorientation strain are given in [77]. The model parameters must be identified from

experiments. The specific calibration used in the following simulations is based on

experimental data reported in [1]. The resulting parameter values are listed in Table

XXVIII.

Table XXVIII. Material parameters calibrated for the Ni51.1Mn24.0Ga24.9 composition

tested at a compressive stress level of −2 MPa [1].

Material Parameters

Quantity Value Unit Quantity Value Unit

ρK1 700.0 kJm−3 µ0H
s(1,2)
y 0.9 T

Msat 742.4 kAm−1 µ0H
f(1,2)
y 1.85 T

εr,max 5.65 % µ0H
s(2,1)
y 0.75 T

σ∗ -2.0 MPa µ0H
f(2,1)
y -0.17 T

The predicted magnetization response curves are plotted in Fig. 41 and may be

explained in the following way. Initially, the sample consists of the stress-favored

variant and two oppositely magnetized domains of equal volume fraction separated

by 180◦ domain walls, such that it is macroscopically unmagnetized. When magnetic

field is applied along the y-direction, the hard axis of the stress-favored variant, the

magnetization vectors start to rotate in each domain. The x-components of the mag-

netization vectors in the adjacent domains cancel each other, while their y-components

add up. Once the critical field for the variant reorientation has been reached, the field-

favored variant nucleates and magnetization curve becomes nonlinear. As pointed out
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Fig. 41. The x and y-components of the predicted magnetization response.

above, it is assumed that unfavorable magnetic domains are eliminated simultaneously

with the activation of the reorientation process due to comparatively high magnetic

field (see also [14, 151]). This results in a sharp increase of the Mx-component of

the predicted magnetization curve. After the reorientation process is completed, only

the single-domain, field-favored variant remains and the magnetic saturation level is

reached with the magnetization vector fully-aligned along the applied field direction,

which coincides with the easy axis of the field-favored variant.

C. Variant reorientation model from the generalized framework

In this section we show that the generalized model (as discussed in chapter II) is

capable to capture the key features of variant reorientation. The major difference

in this approach from the Kiefer-Lagoudas model is that there are no micro scale
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variables θi or α, as discussed in the previous section. We consider the stress favored

martensitic variant reorients to the field favored variant, for which ξ1 = ξ2 = ξ3 = 0

and c3 = c4 = 0. The reorientation process begins with stress favored variant (M1)

Fig. 42. Schematic diagram of the reorientation process.

i.e c01 = 1 and c02 = c03 = 0. The kinematic diagram reduces to Fig. 42 and the

reduced form of Eq. (2.98) becomes

c1 = 1− ξ4, (4.14)

c2 = ξ4. (4.15)

We consider the martensitic phase is isotropic and from (2.109) we get

G(Υφ, T, ξ4, g) = GM(ΥφP , T ) +GI(ΥφI , T ) +Gmix(g). (4.16)

Here we also consider the material is isotropic with a small strain approximation.

The integrity basis

I1 = H ·H, I2 = tr(σE), I3 = tr(σE2

),

I4 = tr(σEεI), I5 = MI ·H. (4.17)
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is considered to study variant reorientation mechanism and we propose following form

of the Gibbs free energy.

GM =
νM

2ρ0EM
I22 −

1 + νM

2ρ0EM
I3 −

1

ρ0
aM2 I1 + uM0 (T0)

=
νM

2ρ0EM
tr(σE)2 − 1 + νM

2ρ0EM
tr(σE2

)− 1

ρ0
aM2 (H ·H) + uM0 (T0),

(4.18a)

GI = − 1

ρ0
b1I4 −

1

ρ0
I5,

= − 1

ρ0
b1H ·MI − 1

ρ0
tr(σEEI) (4.18b)

Gmix = − 1

ρ0
g. (4.18c)

We simplify the flow rules, given in (2.100a) by

Ė
I
= Ė

r
= Λrξ̇4. (4.19)

Similarly from (3.9) and (2.104a) we obtain

Ṁ
I
= Ṁ

r
= γrξ̇4, (4.20)

ġ = f rξ̇4. (4.21)

where

γr =





rΓf , ξ̇4 > 0

rΓr , ξ̇4 < 0

(4.22)

Here, rΓf and rΓr are the directions of internal magnetization during the forward and

reverse reorientation. Finally the hardening function is proposed by

f r :=





−A(π − cos−1(2ξ4 − 1)) +B, ξ̇4 > 0 ,

−C(π − cos−1(2ξ4 − 1)) +D, ξ̇4 < 0 ,

(4.23)
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1. Phenomenological description of magnetization response

Fig. 43. Schematic representation of micro scale mechanism

As explained in Fig. 43(A), we only have stress favored variant in the initial state.

Since the MSMA specimen does not have any remnant magnetization before applying

magnetic field, only 180o domain walls exist and resultant macroscopic magnetization

is zero. When magnetic field is applied along the y-direction, the magnetization

vectors start rotating in each domain. The x component of the magnetization vector

in the adjacent domain alters the direction and cancels out when added and gives zero

resultant magnetization. On the other hand, the y components of the magnetization

vectors are added up and give a resultant magnetization (Fig. 43(B)). The above

mentioned mechanism can be captured phenomenologically from the proposed Gibbs

free energy. The magnetization constitutive response, for ξ4 = 0, is given by

M = −ρ0
µ0

∂GM

∂H
=

2aM2
µ0

Hy ey. (4.24)
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Equation (4.24) shows thatMy component varies linearly with Hy. Here we consider

the magnetic field at a material point is same as the applied field. We find the

Fig. 44. Magnetization response of stress favored martensitic variant at -3 MPa.

constant
2aM2
µ0

from an experiment. Fig. 44 represents the magnetization response of

a stress favored martensitic variant, operated under the traction -3 MPa, which is

higher than the blocking stress. The single variant reaches saturation by the rotation

of magnetization vectors. The slope is represented by Ka such that Ka = My/Msat

µ0Hy

(Fig. 44) or My

Hy
= µ0KaM

sat =
2aM2
µ0

.

Next we consider the magnetization during reorientation. We consider (4.22)

where, rΓf and rΓr are the directions of internal magnetization during the forward

and reverse reorientation. We only focus on the forward reorientation in this study.

Moreover, rΓf is assumed to be constant and we write MI =r Γfξ + P, where P is

an arbitrary constant. The two dimensional form is given by

Mx = Γfxξ + Px. (4.25)

My = Γfyξ + Py. (4.26)
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Once the critical field for the variant reorientation is reached, the field favored variant

nucleates (Fig. 43(C)) and the formation of 900 domain wall takes place [14, 151].

When ξ → 0+, M = Px ex + Py ey and the magnetization has a vertical com-

ponent due to the formation of 90o domain wall. This means Py = MC , where

MC = KaH
M2
s is the magnetization at the critical field HM2

s . Since due to the forma-

tion of 90o domain wall, the magnetization of the stress favored variant (1 − ξ ≈ 1)

saturates with the magnitude Px =
√
Msat2 −MC2. At the end of variant reorienta-

tion (ξ = 1, Fig. 43(D)), we have (Γfx+Px) ex+(Γfy +Py) ey =Msat ey. This implies,

Γfx = −Px and Γfy = Msat − Py. We can summarize the solution of the unknown

parameters in the following way,

Py =MC , Px =
√
Msat2 −MC2 = α (say), (4.27)

Γfy =Msat − Py =Msat −MC = γ (say), Γfx = −Px = −α. (4.28)

Thus the components of the magnetization are given by

Mx = α− αξ, (4.29)

My = MC + γξ. (4.30)

2. Phenomenological description of strain response

The directions of the evolution are given as

Λr =





Ecur(σ̄E)(ex ⊗ ex − ey ⊗ ey) , ξ̇4 > 0

Et−r

ξr
, ξ̇4 < 0

(4.31)

Here σ′E is the deviatoric stress, which is normalized by the Mises equivalent stress

σ̄E =
√

(3/2σ′E : σ′E). During full reverse reorientation (ξ̇4), the transformation

strain generated by the previous forward transformation must be recovered. This
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motivates the form of Λr during reverse transformation, where Et−r denotes the re-

orientation strain at reorientation reversal i.e the state at which most recent forward

reorientation ended. The scalar ξr is the martensitic volume fraction at the transfor-

mation reversal, used for normalization.

3. Constitutive equations summary

the constitutive equations ((3.6a), (3.6b), and (3.6c)) can be written in the following

form,

E = − ν

E
tr(σE)I+

1 + ν

E
σE + EI (4.32)

M =





(µ0M
satKa)Hy ey for ξ4 = 0 ,

−
√
Msat2 −MC2(1− ξ4) ex

+((1− ξ4)M
C +Msatξ4) ey , for ξ4 ∈ (0, 1)

Msat ey for ξ4 = 1 .

(4.33)

ρ0s = 〈s0〉+ 〈α〉tr(σE) + sA0 ∆T − 〈c〉
T0

(∆T )2 (4.34)

πEI = σE (4.35)

πMI = H (4.36)

πξ = 0 (4.37)

πg = 1 (4.38)

πr = πEI : Λr + πMI : γr + f r (4.39)

(4.40)
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where,

Φ
r
:=





πr − Y r , ξ̇ > 0

−πr − Y r , ξ̇ < 0

, Φ
r ≤ 0 (4.41)

Φ
r ≤ 0, Φ

r
ξ̇ = 0 . (4.42)

4. Model calibration

(a) (b)

Fig. 45. (a) Experimental data of strain-field response at -1.4 MPa and (b) maximum

reorientation strain at different stress level.
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The x-component of the strain response is given by

Exx =
1

E
σExx + EI

xx, (4.43)

The four critical magnetic fields (Fig. 45a) are HM2
s , forward reorientation starts,

HM2

f , forward reorientation ends, HM1
s , reverse reorientation starts and HM1

f , reverse

reorientation ends. The experimental data for maximum strain are given in Fig. 45b.

We fit a quadratic curve, which is given by

Ecur(S̄E) = α1(S̄
E)2 + α2S̄

E + α3. (4.44)

µ0H
M2
s = 0.5 T, µ0H

M2
f = 0.58 T, µ0H

M1
s = 0.28 T, µ0H

M1
f = 0.1 T

Msat =742 kN/A, Ka = 1.25/T, SM = −1.4 MPa,

α1 = −0.9896, α2 = 1.2292, α3 = 5.2187.

Table XXIX. Material constants from magnetization response

a. Thermodynamic driving force

The reduced form of the thermodynamic force (4.39) is given by

πr = SExxE
cur + µ0γHy + f r. (4.45)

We need to know the parameters A,B,C,D, Y r and ρ∆u0. From the Kuhn Tucker

condition ((4.41)) we get two conditions at the beginning and two conditions at the
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finish of the forward reorientation. They are

πr(σ∗, HM2
s )− Y r = 0, for ξ̇4 > 0, at ξ4 = 0 (4.46a)

πr(σ∗, HM2

f )− Y r = 0, for ξ̇4 > 0, at ξ4 = 1 (4.46b)

Similarly, for reverse reorientation we get two more equations,

πr(σ∗, HM1
s ) + Y r = 0, for ξ̇4 < 0, at ξ4 = 1 (4.47a)

πr(σ∗, HM1

f ) + Y r = 0, for ξ̇4 < 0, at ξ4 = 0 (4.47b)

The constant stress level is denoted by σ∗. The continuity of the hardening function

[92] gives us

∫ 1

0

f r
∣∣∣
ξ̇4>0

dξ4 =

∫ 1

0

f r
∣∣∣
ξ̇4<0

dξ4. (4.48)

Solving the above five equations (from 4.46a to 4.48), we get the solution of five

unknowns, A, B̃, C, D̃, Y r. It should be noted that we introduce a new constant

B̃ = B + ρ∆u0 and D̃ = D + ρ∆u0 since B and D absorbs the term ρ∆u0.

5. Model simulation and predictions

The model simulation is presented in Fig. 46(a), followed by the magnetization

prediction in Fig. 46(b). The prediction shows good agreement with the experimental

results. Model predictions of field induced strain and magnetization are presented in

Fig. 47. The model also predicts the increase of critical magnetic fields due to the

increase of stress.

162



(a) (b)

Fig. 46. (a) Model simulation of strain-field response at -1.4 MPa and (b) model pre-

diction of magnetization response at -1.4 MPa.

(a) (b)

Fig. 47. (a) Model predictions of strain-field and (b) model predictions of magnetiza-

tion responses at different stress levels.
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CHAPTER V

MAGNETOMECHANICAL BOUNDARY VALUE PROBLEMS FOR MSMAS*

This chapter is concerned with the finite element analysis of boundary value prob-

lems involving nonlinear magnetic shape memory behavior, as might be encountered

in experimental testing or engineering applications of MSMAs. The presented in-

vestigations mainly focus on two aspects: First, nonlinear magnetostatic analysis,

in which the nonlinear magnetic properties of the MSMA are predicted by the phe-

nomenological internal variable model previously developed by Kiefer and Lagoudas

[3], is utilized to investigate the influence of the demagnetization effect on the interpre-

tation of experimental measurements. An iterative procedure is proposed to deduce

the true constitutive behavior of MSMAs from experimental data that typically re-

flect a sample shape-dependent system response. Secondly, the common assumption

of homogeneous Cauchy stress distribution in the MSMA sample is tested. This is

motivated by the expectation that the influence of magnetic body forces and body

couples caused by field matter interactions may not be negligible in MSMAs that

exhibit blocking stresses of well below 10MPa. To this end, inhomogeneous Maxwell

stress distributions are first computed in a post-processing step, based on the mag-

netic field and magnetization distributions obtained in the magnetostatic analysis.

Since the computed Maxwell stress fields, though allowing a first estimation of the

magnetic force and couple influence, do not satisfy equilibrium conditions, a finite ele-

ment analysis of the coupled field equations is performed in a second step to complete

*This chapter is reproduced with the permission from Taylor & Francis for the
published work ”Finite element analysis of the demagnetization effect and stress inho-
mogeneities in magnetic shape memory alloy samples” by Krishnendu Haldar, Björn
Kiefer and Dimitris C. Lagoudas, Philosophical Magazine Volume 91 Issue 32 (2011),
pp. 4126-4157.
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the study. It is found that highly non-uniform Cauchy stress distributions result un-

der the influence of magnetic body forces and couples, with magnitudes of the stress

components comparable to externally applied bias stress levels.

A. A Concise Review of the Magnetostatic Problem

In the following section basic concepts of magnetostatics in the presence of magnetized

matter are summarized to provide the foundation for the analysis of magnetostatic

boundary value problems (BVPs) for MSMA materials. For static conditions in sta-

tionary bodies and negligible current density, Maxwell’s equations in R3 are reduced

to [162, 163]

∇·B = 0 , and ∇×H = 0 , (5.1)

where B is the magnetic induction and H is the magnetic field strength. These two

quantities are related through the constitutive relation B = µ0(H+M), in which µ0

is the permeability of free space and M is the magnetization of a material point in a

magnetized body, in this case a magnetic shape memory alloy sample. Eqs. (5.1) are

subject to the jump conditions

[[B]]·n = 0 , [[H]]×n = 0 , (5.2)

on all interfaces, if surface currents are negligible. In Eqs. (5.2), n denotes the unit

normal to the surface of discontinuity.

Taking advantage of the specific form of Eqs. (5.1), the magnetostatic problem is

often reformulated, by deriving the magnetic field strength from a scalar potential Φm

or the magnetic induction from a vector potential Φm. In the latter case B = ∇×Φm

identically satisfies (5.1a). Using the identity ∇×(∇×Φm) = ∇(∇·Φm)−∆Φm, and
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the Coulomb gauge ∇·Φm = 0, (5.1b) takes the form

∇×(µ−1
0 ∇×Φm −M) = 0 , or ∆Φm = −µ0∇×M , (5.3)

which is the vector-valued Poisson equation for the magnetic potential Φm.

B. Finite Element Analysis of the Nonlinear Magnetostatic Problem

Based on the field equations and the MSMA constitutive relations derived in the pre-

vious section we can now proceed with the solution of specific nonlinear magnetostatic

boundary value problems using the finite element method. The numerical analysis

presented in this paper was performed using the COMSOL Multiphysics finite element

software package.

The geometry and boundary conditions of the considered model problem are

illustrated in Fig. 48. This particular arrangement is motivated by the experimental

set up reported in [1]. The computational domain may be regarded as the gap between

the pole pieces of an electromagnet of dimensions 26mm×26mm×26mm for which a

uniform magnetic field of up to 2 T can be applied. Typical specimen dimensions are

8mm×4mm×4mm, or aspect ratios of 2 :1 :1, where the long axis is the x-direction.

A spatially constant magnetic potential

Φmx = Φmy = 0 ; Φmz = −µ0H
a
yx , (5.4)

is applied on all sides of the boundary, such that with (5.3) it follows

µ0Hx = Bx =
∂Φmz
∂y

− ∂Φmy
∂z

= 0 , µ0Hy = By =
∂Φmx
∂z

− ∂Φmz
∂x

= µ0H
a
y ,

µ0Hz = Bz =
∂Φmy
∂x

− ∂Φmx
∂y

= 0 , (5.5)

i.e. the desired homogeneous magnetic field in the computational domain in the ab-
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sence of the specimen. The presence of the magnetizable sample, of course, perturbs

the homogeneity of the applied field.

Fig. 48. Domain geometry, mesh and boundary conditions for the magnetostatic prob-

lem.

The following comments must be made regarding the usage of the magnetization

data in the magnetostatic analysis:

1. The stress is assumed to be uniaxial, at a constant level and spatially homo-

geneous, since magnetic body forces and magnetic body couples are neglected.

The only coupling between the mechanical and the magnetostatic problem at

this point is given by the stress level dependence of the magnetic properties.

Thus for each stress level the magnetostatic analysis has to be performed in a

separate computation.
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2. The magnetic field, and thus the magnetization, on the other hand vary spatially

inside the rectangular specimen. The magnetic properties predicted by the

constitutive model are evaluated at every integration point in the finite element

mesh. Since the magnetization nonlinearly depends on the magnetic field, the

magnetostatic problem is highly nonlinear. COMSOL Multiphysics provides an

appropriate iterative nonlinear solver. The parametric version of this solver was

used such that the magnetic field distribution could be computed, while scaling

the applied magnetic field from 0 T to 2 T.

3. Although a magnetic potential difference was applied to represent a homoge-

neous external field whose x-component is zero, see (5.5), the magnetic field

in the MSMA specimen is non-uniform and exhibits a non-zero x-component,

particularly at the corners of the sample. The constitutive dependency M(Hx)

is assumed to be small and thus neglected.

4. The hysteretic nature of the constitutive response is not addressed in the mag-

netostatic analysis at this point. To be precise, the hysteresis is not neglected,

but the analysis is only carried out for monotonous loading from 0 T to 2 T,

not for the removal of the magnetic field.

Numerical results of the finite element analysis are plotted in Fig. 49 in terms of

the distribution of the y-component of the magnetic field for the exemplary applied

magnetic induction level of 2 T.

It is observed that indeed, due to the non-ellipsoidal shape of the specimen, the

magnetic field and thus the magnetization are non-uniform inside the specimen al-

though a constant magnetic induction is applied at the boundary of the computational

domain. The presence of the magnetized specimen clearly perturbs the magnetic field

in the free space surrounding the sample. From this distribution one can for exam-
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x

y

x

0 [T]yHµ

Fig. 49. Distribution of Hy in the computational domain at the applied magnetic field

of µ0H
a
y =2.0 T.

ple obtain information to which extent a Hall probe reading, used to measure the

applied field, can be expected to be influenced by the sample’s magnetic field. The

distribution at 2.0 T, at which essentially all of the material has been magnetized to

saturation along the y-axis, is symmetric with respect to both axes of the coordinate

system.

It again must be emphasized that in the magnetostatic problem the magneti-

zation is allowed to change locally and its value is determined by evaluating the

magnetization curve for the magnetic field acting at the particular point. The in-

ternal mechanism which leads to the macroscopic magnetization response, namely

the evolution of the martensitic variants, the magnetic domains and the magneti-

zation rotation angles as predicted by the constitutive model have been discussed

earlier. Such a modeling approach assumes that there exists a separation of scales

such that at each point in the continuum, the MSMA sample, there exist a smaller
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length scale at which a sufficient number of martensitic twins and magnetic domains

coexist such that average quantities like the magnetization can be defined for each

point. The contributions of the variant and magnetic domains are then taken into

account phenomenologically in a homogenized sense and are no longer ”visible” on

the continuum scale. It is still a matter of discussion whether this approach is fully

justified for MSMA single crystals.

y

x

y

x

0x =

1x =

2x =

3x =

0 [T]yHµ

(a)

y

x

y

x

y

x

0 [T]µ yM sat/ [ ]yM M

(b)

Fig. 50. (a) Distribution of the magnetic field and (b) magnetization within the spec-

imen at the applied magnetic field of µ0H
a
y =1.3 T.

To take a closer look at the local solution, the variation of the computed magnetic

field within the MSMA sample is plotted in Fig. 50 for a specific applied field level. In

Fig. 51 the variation of the magnetic field and the magnetization across the specimen

are plotted for different locations. Note that at the left (y = −2) and right (y =

2) sides of the specimen the jump in the magnetic field balances the jump of the

magnetization in the transition from free space into the magnetized material. The

magnetic induction component By = µ0(Hy +My), which is the normal component
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of the magnetic induction on these interfaces, thus stays constant, so that the jump

condition specified in (5.2a) is properly satisfied.
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Fig. 51. (a) Distribution of the y-components of the magnetic field and (b) the mag-

netization across the specimen and its immediate vicinity at different levels

of x, as indicated in Fig. 50, at the applied magnetic induction level of 1.3 T.

C. Influence of the Demagnetization Effect on the Interpretation of Experiments

From the theory of magnetostatics it is well-known, that the magnetic field caused

by the magnetization of the material opposes the direction of magnetization. It is

therefore called the demagnetizing or self field. This demagnetization effect can also

clearly be observed in the plots of Fig. 51. Furthermore, as a consequence of the

interface conditions of Eqs. (5.2), the demagnetization field in a uniformly magne-

tized ellipsoidal sample is always uniform, while it is non-uniform in a non-ellipsoidal

sample. Permanent magnets, by definition, exhibit substantial remnant macroscopic

magnetization at zero applied field and, within certain limits, the magnetization of

the magnetic sample does not depend on the applied magnetic field [19]. For mag-
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netostatic problems involving only permanent magnets the Poisson equation (5.3)

is linear and the principle of superposition holds. Thus, if additionally an external

magnetic field Ha is applied, the total magnetic field is then given by

H = Ha +Hd . (5.6)

General integral representations of the solution of the magnetostatic problem defined

by (5.3) exist, see e.g. [162, 164]. For uniformly magnetized bodies the magnetization

vector can be taken outside the integral expressions for the magnetic field strength

[164, 165], such that

Hd(r) = −


 1

4π

∫∫

∂Ωm

r− r′

|r− r′|3 ⊗ n′ dA′




︸ ︷︷ ︸
=:D

M = −DM . (5.7)

Therein r is the position at which H is evaluated in R3 and r′ the location of a

point on the surface ∂Ωm, with unit outward normal n′, of the region Ωm occupied

by the magnetized body. By applying the divergence theorem, an equivalent volume

integral representation of (F.2) can be obtained. D is the demagnetization tensor,

which only depends on the geometry of the body and can be computed by evaluating

the bracketed integral expression in (F.2). For a spatially uniformly magnetized

body the demagnetization field can thus be computed by simply multiplying the

magnetization with an appropriate demagnetization factor. Such factors have been

tabularized for ellipsoids of many different aspect ratios [19, 20, 166]. This procedure

is analogous to using Eshelby tensors in elasticity theory to determine the strain field

inside ellipsoidal inclusions [167, 168]. The demagnetization tensor has the following

properties: i) it is independent of position inside an ellipsoidal body; ii) it is diagonal

if its eigenvectors are aligned with the symmetry axes of the body; iii) its trace is 1,

if evaluated inside the body. The demagnetization factor for a sphere is therefore 1/3
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in any direction. For a prismatic cylinder with square or circular cross-section the

axial and transverse demagnetization factors are related by Dt = 1/2(1 − Da), see

[169].

The magnetic field inside a uniformly magnetized sample of non-ellipsoidal shape

is always non-uniform. The demagnetization tensor in this case depends on the posi-

tion inside the sample. It is customary to define average demagnetization tensors for

samples of arbitrary shape, sometimes referred to as magnetometric demagnetization

tensors [169, 170], in the following manner

〈D〉 := 1

Ωm

∫

Ωm

D(r) dV . (5.8)

The average demagnetization field can then be written, for uniform magnetization M

as

〈Hd〉 = −〈D〉M . (5.9)

Numerical solution schemes have been developed to determine the demagnetization

factors for uniformly magnetized bodies of arbitrary shape. They have been computed

and documented for many standard geometries, such as prismatic bars with different

cross-sectional shapes [165, 169, 170].

By definition the demagnetization factor loses its meaning for bodies with non-

uniform magnetization. Thus, the exact demagnetization field inside a non-ellipsoidal

body, whose magnetization is induced by an external magnetic field and therefore not

uniform unless complete saturation is reached at high fields, can not be computed

with the help of demagnetization factors. In this case, which is always encountered in

experiments unless ellipsoidal specimen are used, an explicit numerical solution of the

magnetostatic boundary value problem has to be obtained. For MSMAs the problem

is complicated by the fact that the magnetic properties are nonlinear, hysteretic and
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stress level dependent. Furthermore, the shape of the sample changes due to the

magnetic field-induced strain. This effect, however, is expected to be small and is

neglected within the small strain theory.

On the basis of the magnetostatic analysis presented above, it is now possible to

derive an iterative procedure in which the computed load-dependent relation between

the applied field and the internal field is utilized to reinterpret the experimental data

by accounting for the demagnetization effect. This must be understood as the inverse

problem of identifying the model parameters such that the simulation results in the

applied magnetic field vs. magnetization curve are measured in the experiment for a

specific sample geometry.

The first magnetostatic simulation is typically performed using the model pa-

rameters obtained from a parameter identification based on the uncorrected data. In

these magnetostatic simulations, which, except for the assumption of a given constant

stress level, are decoupled from the mechanical equations, the material properties are

taken into account in terms of a nonlinear magnetization curve. Thus the relation

between the internal and applied field computed in one run of the analysis can only

serve to find a first correction of the experimental data. Thus the nonlinear magne-

tization data, which was originally known in terms of the constant applied field, is

now known in terms of the average internal magnetic field with the accuracy of the

first iteration. Then the model parameters are re-identified based on the corrected

data and the analysis is repeated with the output of first iteration as next input.

The simulation result can once again be used to correct the magnetization curve. By

following this procedure, the relation between the applied field and the internal field

is computed more accurately in each iteration step. For our example, the original and

corrected magnetization curves resulting from this iterative procedure are depicted in
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Fig. 52 for the considered specimen with 2:1 length to width ratio. For conciseness,

only the correction of the average magnetization 〈My〉-component is presented here

(Fig. 52).
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Fig. 52. Magnetization data iteratively corrected for demagnetization. Specimen as-

pect ratio 2:1.

The corrected procedure may also be interpreted as keeping the same data for the

magnetization axes, while rescaling the magnetic field axis by means of the relation

between the average internal and applied field at each iteration. One observes the

relatively fast convergence of the solution. After six iterations the difference to the

solution of the previous iteration is small enough to conclude that the solution has

converged. The magnetization curve of iteration six can thus be considered the ”true”

magnetization response, which is independent of the specimen geometry. The original

data on the other hand is the magnetization behavior that would be measured in an

experiment using a prismatic sample of this aspect ratio. In an experiment that uses

a sample of the same material, but different aspect ratio a different curve would be
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measured.

A parametric study has been performed to investigate the sample shape depen-

dence of the demagnetization effect for the prismatic specimen with nonlinear mag-

netic properties. In Fig. 53 the corrected magnetization data has been plotted for

four different aspect ratios of the prismatic specimen. The corresponding corrections

of the magnetic field-induced strain data have been plotted in Fig. 54. It is clearly

observed that the influence of the specimen aspect ratio on the difference between the

apparent material behavior and the true constitutive response is very significant and

must therefore be addressed when using data for model calibration. Once the MFIS

data has been corrected for demagnetization, the model parameters can be calibrated

correctly.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 Original Data
 Aspect Ratio 1:1
 Aspect Ratio 2:1
 Aspect Ratio 4:1
 Aspect Ratio 10:1

〈M
y〉

 / 
M

sa
t

µ
0
〈H

y
〉  [T]

-2 MPa

µ0 yH

sat

yM

M

Fig. 53. Influence of specimen aspect ratios on the correction of the magnetization

data.

The specific results presented here are based on solutions of 2-D boundary value
problems and can thus only be used for a qualitative assessment. The procedure is
the same for 3-D problems, which, however, are computationally much more involved.
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duced strain data.

One of the stated goals of this analysis is to compare the differences in the de-

magnetization correction by the demagnetization factor method and the finite element

analysis. The first method is based on the relation

〈Hy〉 = Ha
y + 〈Hd

y 〉 = Ha
y − 〈Dyy〉My , (5.10)

which follows from Eqs. (5.8), (5.6) and (5.9). This procedure of course assumes

that the magnetization in the sample is uniform. Shield acknowledges in [30] that

the demagnetization factor method can therefore only lead to approximations of the

demagnetization effect in the prismatic samples typically used in MSMA testing.

Nonetheless, this method is often used due to its simplicity or lack of alternatives.

However, it is not clear beforehand what kind of error one might expect from making

this approximation. With the developed simulation capabilities this error can now be

quantified.
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Since a literature value was not available for this particular geometry, the factor

of 〈Dyy〉=0.65 was computed using a two-dimensional magnetostatic finite element

simulation for a permanent magnet sample, i.e. with spatially uniform and field-

independent magnetization My = 〈My〉, of rectangular geometry with a 2:1 aspect

ratio placed in a free space domain. This technique has proven to yield very accurate

demagnetization factors for other geometries for which literature data was available

[70, 169]. The different correction methods are compared in Fig. 55.
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Fig. 55. Comparison of the corrections using the demagnetization factor method and

nonlinear FE-analysis. Specimen aspect ratio 2:1.

These observations suggest that by using the demagnetization factor method,

which is based on the assumption of uniform magnetization in the specimen, one

obtains essentially the same result as performing the FE-analysis of the nonlinear

magnetostatic problem with non-uniform magnetization, if average field variables are

considered. This conclusion can be misleading, however, since it only holds for av-

erage quantities. But as evident from Fig. 50 and Fig. 51, there exists a significant
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variation in the local magnetization. To further quantify this variation, Fig. 56 dis-

plays local values of the magnetic field at several points in the specimen as a function

of the applied field. For problems in which the knowledge of the local magnetic field

and magnetization is important, one can not avoid solving the magnetostatic problem

explicitly. This is certainly the case for magneto-mechanical boundary value problems

involving more complicated, technologically-relevant geometries, e.g. MSMA compo-

nents in actuators applications.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 x = 2.0, y = 1.5
 x = 3.5, y = 0.0
 x = 3.5, y = 1.5
 Average M

y

M
y /

 M
sa

t

µ
0
Ha

y
 [T]

-2 MPa

y

x

y

x

y

x

y

x

sat

yM

M

a
0 y
Hµ

Fig. 56. Position dependence of the magnetization response within the rectangular

specimen.

D. Post-Processing Computation of Maxwell Stress Distributions

The second major focus of this paper is to employ the FE-analysis in the investigation

of possible stress inhomogeneities in the MSMA sample due to magnetic body forces

and body couples. A first estimate of the influence of this effect can be obtained

by computing the Maxwell stress distribution in a post-processing manner using the
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relation [123]

σM = µ0H⊗H+ µ0H⊗M− 1

2
µ0(H·H)I , (5.11)

The Maxwell stress tensor, by definition, accounts for the magnetic body forces and

couples in the following manner

∇ · σM = ρfm = µ0(∇H)M , (5.12)

skw(σM) = −ρLm = −skw(µ0M⊗H) . (5.13)

The body couple vector ρlm is the dual vector of ρLm such that Lma = lm×a for any

Fig. 57. The x and y-components of the corrected magnetization curves used in the

Fe-analysis.

vector a. We investigate the distributions of the magnetic body force, body couple

and Maxwell stress based on the numerical solution of the magnetostatic problem at

the exemplary applied magnetic induction value of µ0〈Hy〉 = 1T. We chose this load
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level because, as evident from Fig. 57, it is close to the end of the reorientation region,

where the intensity of the magnetic field is high.

(a) (b)

Fig. 58. (a) Field-induced martensitic volume fraction and (b) normalized magnetiza-

tion vector distribution at µ0〈Hy〉 = 1 T.

A contour plot of the field-favored variant volume fraction ξ is depicted in

Fig. 58(a). The legend shows that ξ ranges from 0.93 to 1.0, such that at this load

level the reorientation process is either finished or near completion at every point in

the sample. Correspondingly, the normalized magnetization vectors of Fig. 58(b) are

aligned with the applied field direction.

The four planar components of the non-symmetric Maxwell stress at the consid-

ered load level are shown in Figs. 59 and 61. Highly non-uniform distributions of the

Maxwell stress components are observed, which through 5.11 are directly correlated

with the spatially inhomogeneous magnetic field and magnetization field. Specific val-

ues of the Maxwell stress components are listed in Table XXX for the representative

locations P0 to P8 indicated in Fig.60.

Note that the σMxx component is purely compressive in nature. Furthermore,
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(a) (b)

Fig. 59. (a) σMxx and (b) σMyy -component distribution of the Maxwell stress (MPa) at

µ0〈Hy〉 = 1 T.

magnitudes of nearly 21% of the applied traction of −2 MPa are observed. This

implies that this component could potentially influence the formation of the stress-

favored variant significantly. The σMyy -component on the other hand is tensile, which,

however, would enhance the tendency to hinder the forward reorientation process.

According to (5.13b), the σMxy and σMyx components displayed in Fig. 61 are di-

rectly correlated with the magnetic body couple. The computed body couple com-

ponent values are given in Table XXXI for the selected points. If we consider point

P2, for example, the value of the magnetic moment is 0.039 Nmm/mm3 and it acts

clockwise. The shear stress components at this point are σMxy = −0.163 MPa and

σMyx = −0.085 MPa, see Table XXX, and they contribute to balance the magnetic

body couple.

Fig. 62(a) shows the non-uniform variation of the magnetic body couple at

µ0〈Hy〉 = 1 T. The magnitude of the body couple is observed to have higher val-

ues near the corners of the sample as compared to its center. This may be explained
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P0 P1 P2 P3 P4 P5 P6 P7 P8

σMxx -0.336 -0.444 -0.416 -0.329 -0.416 -0.444 -0.416 -0.329 -0.416

σMyy 1.011 1.227 1.178 0.996 1.178 1.227 1.178 0.996 1.178

σMxy -0.036 0.004 -0.163 -0.032 0.173 0.005 -0.163 -0.032 0.173

σMyx 0.000 0.003 -0.085 0.001 0.090 0.002 -0.085 0.001 0.090

Table XXX. Maxwell stresses (MPa) at µ0〈Hy〉 = 1 T.

Fig. 60. Location of nine representative points at which the numerical solution is ex-

plored in detail. Here Ω represents material domain

by the fact that the body couple vector is computed from the cross product between

the magnetic field and magnetization vectors, such that high values result close to

the corners, where the magnetic field intensifies and larger relative angles between

these vectors occur. This is also illustrated in Fig. 62(b). Here, the two sets of ar-

rows at each point represent magnetization vectors (light arrows) and magnetic field

vectors (dark arrows), respectively. It should be noted, that the magnetic field vector

changes orientation from the corner region C1 to C2, see Fig. 62(a). Due to the point-
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(a) (b)

Fig. 61. (a) σMxy and (b) σMyx-component distribution of Maxwell stress (MPa) at

µ0〈Hy〉 = 1 T.

P0 P1 P2 P3 P4 P5 P6 P7 P8

ρLm 0.018 -0.001 0.039 0.021 -0.041 -0.001 0.039 0.02 0.041

Table XXXI. Out of plane body couple vector (Nmm/mm3) at µ0〈Hy〉 = 1 T. The

positive sign means anti-clockwise and the negative negative sign means

clockwise direction.

symmetric nature of the numerical solution, an opposite trend of the sign change is

observed between regions C3 to C4. The shear stress components show a similar trend

in their spatial distributions.

The intensity of the body force on the other hand depends on the gradient of

the magnetic field. Spatial distributions of the body force components are plotted

in Fig. 63 and corresponding numerical values for points P0 to P8 are given in Ta-

ble XXXII. Since the gradient of magnetic field is high near the sample corners, the

body force are large in these regions. Their magnitude decreases near the center of
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(a)

C1

C3

C2

C4

(b)

Fig. 62. (a) Magnetic body couple at µ0〈Hy〉 = 1 T and (b) orientation of magnetiza-

tion and magnetic field vectors.

the specimen, where the magnetic field distribution is relatively uniform.

P0 P1 P2 P3 P4 P5 P6 P7 P8

ρfmx -0.001 -0.080 -0.077 0.005 0.078 0.080 0.077 -0.005 -0.080

ρfmy 0.000 0.000 -0.046 -0.012 -0.045 0.000 0.046 0.012 0.045

Table XXXII. Body force values (N/mm3) at µ0〈Hy〉 = 1 T.

E. Finite Element Analysis of the Magneto-Mechanically-Coupled Field Equations

for MSMA

The results in the previous section show that the intensity of the Maxwell stress

components is significant compared to the applied tractions. This observation moti-

vates us to solve a coupled magneto-mechanical problem to investigate the influence

of the magnetic body forces and body couples on the Cauchy stress in an equilibrium
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(a) (b)

Fig. 63. (a) ρfmx and (b) ρfmx component distributions (N/mm3) at µ0〈Hy〉 = 1 T.

configuration. The magnetic boundary conditions are the same as described for the

magnetostatic problem. The mechanical boundary conditions of the problem are il-

lustrated in Fig. 64, where tx and ty denote the mechanical traction on the boundaries

along the x- and the y-directions, respectively. The compressive traction along the

x-direction is imposed by constraining the vertical displacement U of the ∂Ω3 surface

and by applying a mechanical load P = 2 MPa on the ∂Ω1 surface. We fixed the

point R to eliminate rigid body motion in the finite element analysis.

In addition to the field equations of the magnetostatic problem described in

Section A, the magneto-mechanical problem is described by the conservation of linear

momentum and the conservation of angular momentum for the magnetic continuum

[123, 124]

∇·σ + ρf + ρfm = 0 in Ω , (5.14a)

skwσ = ρLm in Ω . (5.14b)
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Fig. 64. Imposed mechanical boundary conditions. Ω is the material domain and ∂Ω

its boundary.

The expressions for the Maxwell stress tensor, the magnetic body force and the mag-

netic body couple were given in Eqs. (5.11), (5.12) and (5.13). By defining the total

stress tensor as σt := σ + σM , the mechanical equilibrium equations may also be

re-written in the more convenient form

∇ · σt + ρf = 0 , and skwσt = 0 , in Ω . (5.15)

A detailed derivation of the magneto-mechanical boundary conditions is given in the

appendix.

The presence of the magnetic body couple causes the Cauchy stress tensor to be

non-symmetric. The Cauchy stress may be decomposed in the following manner, see

e.g. [123, 124],

σ = σMT − µ0(H⊗M) , (5.16)

where σMT is a symmetric tensor that can be interpreted as the mechanical part of

the Cauchy stress tensor. We then modify the proposed Gibbs free energy function
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(4.1) by assuming a dependence on σMT , rather then the non-symmetric Cauchy

stress σ. The modified expression is given by

G(σMT ,H , ξ, α, θi, ε
r) =− 1

2ρ
σMT : SσMT − 1

ρ
σMT : εr − µ0

ρ
M ·H

+
1

ρ
f(ξ, α) +Gan(ξ, α, θ) +G0(T0) .

(5.17)

The constitutive equation for the total infinitesimal strain tensor then follows as

ε = −ρ ∂G

∂σMT
= SσMT + εr , (5.18)

or the inverse relation

σMT = C : εe = C : (ε− εr) . (5.19)

The newly introduced variables are the elasticity tensorC and the reorientation tensor

Λ. The latter determines the direction in which the reorientation strain develops

according to εr = Λξ and its specific form for the considered two-dimensional problem

is given in Table XXXIII. It should be noted that the constitutive relation for the

magnetization remains unchanged.

Using the decomposition of the Cauchy stress (5.16) in (5.14a), the conservation

of linear momentum for the magnetic continuum under static conditions and negligible

non-magnetic body forces may be written as

∇·(σMT − µ0H⊗M) + ρfm = 0 . (5.20)

This expression can be simplified as follows

∇·σMT + [ρfm −∇·(µ0H⊗M)] = 0 ,

∇·σMT + [µ0(∇H)M− (µ0H(∇·M) + µ0(∇H)M)] = 0 ,

∇·σMT + [−µ0H(∇·M)] = 0 . (5.21)
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Table XXXIII summarizes the coupled problem consisting of the magneto-mechanical

field equations, the constitutive relations and boundary conditions. In addition to the

material parameters used in the nonlinear magnetostatic analysis, isotropic mechan-

ical properties of the martensitic phase are assumed for simplicity, with a Young’s

modulus of 2.0 GPa and a Poisson’s ratio of 0.3 (cf. [7], [66]).

It should be emphasized that the problem solved in the finite element analysis as

defined in Table XXXIII is only partially coupled, since the stress dependence of the

magnetic response, although captured in the general formulation of the constitutive

model, has been neglected. This is usually valid since all tests are preformed at a

constant stress level. In the considered case the coupling thus only exists through the

presence of magnetic body forces and couples in the mechanical equilibrium equations.

Numerical solutions of the coupled problem in terms of the distributions of the mag-

netic field variables are therefore identical to those of the uncoupled magnetostatic

problem presented in the previous section. Nonetheless, this approach is expected to

yield much more realistic solutions for the Maxwell stress distributions, because they

now satisfy mechanical equilibrium. Furthermore, the spatial variation of the Cauchy

stress field under the influence of magnetic body forces and body couples can now be

computed, which was the main objective of the numerical analysis.

The computed Cauchy stress field components are shown in the iso-line plots

of Fig. 65 for the applied magnetic induction level of µ0〈Hy〉 = 1 T. It is observed

that the Cauchy stress distribution is, as expected, also strongly non-uniform in the

specimen. Detailed numerical data of these components at the nine representative

points P0 to P8 are given in the Table XXXV.

Note that the deviation of the axial Cauchy stress σxx from the typically assumed

homogeneous stress of −2.0 MPa is substantial. The local relative difference of these

values is listed in Table XXXIV. The results show that the change in magnitude can
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(a) (b)

A

B

Fig. 65. (a) σxx and (b) σyy-component distribution of the Cauchy stress tensor (MPa)

at an applied magnetic induction level of µ0〈Hy〉 = 1 T.

be up to 80%. The maximum compressive stress value of −3.58 MPa occurs at the

center of the specimen. The value of the stress gradually increases from the center

towards the left and right edges, where the sign changes from negative to positive.

Note also that the horizontal component σyy is non-zero and attains values of almost

−0.53MPa as observed in Fig. 65(b). It is compressive in most of the sample, except

regions A and B indicated in Fig. 65(b), where it exhibits positive values. Except

for the concentrations near the corners, the magnitude of the σyy component is high

around the center, where it reaches the compressive stress of largest magnitude with

−0.39 MPa, and then decreases towards the edges.

It is interesting to realize that if magnetic body forces and couples are taken into

account, the traction boundary conditions are also influenced by the magnetic field

variables. The traction ta is related to the Cauchy’s formula by σn = ta. When

Maxwell stress is considered along with the Cauchy stress, an additional magneto-

traction is generated. The combined traction can be calculated [113] from the jump
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condition
[[
σ + σM

]]
n = 0. Since the mechanical part σMT of the Cauchy stress

is linked with the total strain through the constitutive equation (5.19), we switched

our reference stress σ to the symmetric mechanical stress σMT to solve the coupled

problem. Due to this switching, the traction boundary condition modified by t̃ =

σMTn, which is related to ta through the expression (G.13). We can write

t̃∂Ω1 = (−2 + µ0MxHx +
µ0

2
M2

x)ex + µ0MxHyey , (5.22a)

t̃∂Ω2 = µ0MyHxex + (µ0MyHy +
µ0

2
M2

y )ey , (5.22b)

t̃∂Ω3 = −µ0MxHyey , (5.22c)

t̃∂Ω4 = −µ0MyHxex + (−MyHy −
µ0

2
M2

y )ey . (5.22d)

It should be noted that the x-component of the traction in (5.22c) on ∂Ω3 is not

imposed since the displacement boundary condition is given. At µ0〈Hy〉 = 1 T the

variant reorientation process is almost complete and theMx component is almost zero,

as we explained in the previous section. So, the traction on the boundary segments

∂Ω1 and ∂Ω3 are t̃x,∂Ω1 ≈ −2 MPa and t̃y,∂Ω3 ≈ 0 MPa, respectively. The variation

of the x-component of t̃ on ∂Ω2 and ∂Ω4 is plotted in Fig. 66(a). It ranges from

−0.6 MPa to 0.6 MPa and the two curves coincide at each end point due to point-

symmetric behavior of Hx. The variation of the y-component t̃ on the segments ∂Ω2

and ∂Ω4 is displayed in Fig. 66(b). In this case its magnitude exceeds 1.0 MPa.

191



Maxwell Equations:

∆Φm = −µ0∇×M .

Conservation of Linear and Angular Momentum:

∇·σMT − µ0H(∇·M) = 0 , skw(σMT ) = 0 .

Constitutive Equations:

My =My(Hy), Mx =Mx(Hy) (Response of Fig. (57))

σMT = C : (ε− εr) ∈ Sym

with ε = 1
2
(∇u+∇uT ) , εr = Λξ and

Λ = εr,max




1 0 0

0 −1 0

0 0 0



.

Boundary Conditions:

[[B]] · n = 0, [[H ]]× n = 0 ,

[[
σ + σM

]]
·n = 0 or

=⇒ σMTn = ta + µ0
2
(M·n)2n+ µ0(H⊗M)n .

Table XXXIII. Summary of the field equations, constitutive equations and boundary

conditions.

P0 P1 P2 P3 P4 P5 P6 P7 P8

σxx 79.0 15.5 12.5 15.0 7.5 16.0 12.5 16.0 8.5

Table XXXIV. Percentage difference in the computed local Cauchy stresses and a ho-

mogeneous stress level of −2.0 MPa at an applied induction of 1 T.

192



P0 P1 P2 P3 P4 P5 P6 P7 P8

σxx -3.58 -2.31 -2.25 -2.30 -2.15 -2.32 -2.25 -2.32 -2.17

σyy -0.39 -0.08 -0.10 -0.22 -0.11 -0.07 -0.11 -0.22 -0.11

Table XXXV. Cauchy stress values (MPa) at an applied induction level of 1 T.

(a)

(b)

Fig. 66. Variation of the mechanical traction components on ∂Ω2 and ∂Ω4 at

µ0〈Hy〉 = 1 T (a) x-components and (b) y-components.
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CHAPTER VI

STABILITY ANALYSIS OF MSMA*

One of the major challenges for understanding the magnetostatic response of the MS-

MAs is the experimental measurement of the magnetic field inside the material. The

measurements of the magnetic field are strongly influenced by the shape and size of

the specimens [30]. During the reorientation process, the nonuniformity caused by

the shape effect combined with the strong nonlinear constitutive response in mag-

netization leads to localization of the numerical solution. The magnetic field during

reorientation changes drastically from the center of the specimen to the boundaries

where the mechanical load is applied [171] and band like zones appear. The band

zones gradually disappear at the end of the reorientation process at high levels of

applied magnetic field. Motivated by the above observations, in the present work

we study theoretically the character of the magnetostatic system of equations. The

equations of the magnetostatic problem are derived in a non-dimensional form. The

obtained results from the boundary value problem are analyzed in the third section

by performing stability analysis and a parametric study. In the final two sections we

discuss the obtained results and we present the major conclusions of this work

A. Non-Dimensional Magnetostatic Equations

Based on the previous discussion, four material parameters, Msat, ρK1, H
s(1,2)
y and

H
f(1,2)
y , are required to calibrate the constitutive equations. These are the saturation

magnetization, the magnetic anisotropy constant, and the critical material parameters

*Portions of this chapter were reproduced with permission from SAGE publica-
tion for the published work by K. Haldar, G. Chatzigeorgiou, D.C Lagoudas. ”Stabil-
ity Analysis of Magnetostatic Boundary Value Problems for Magnetic SMAs”, Journal
of Intelligent Material Systems and Structures, Vol. 21, 2010, pp.1103-1116.
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which denote forward reorientation start and forward reorientation finish respectively.

Non-dimensionalization of the equations reduces the number of necessary parameters

to 3, and allows an easier parametric study of the problem. For the non-dimensional

representation of the magnetostatic problem in the 2-D special case, we introduce

the non-dimensional spatial coordinates x̂ = x/L and ŷ = y/W where L and W are

the characteristic lengths along the x and y axis respectively. The aspect ratio of the

geometry is defined by

ℓ = L/W. (6.1)

The non-dimensional form of the 2-D Maxwell equations, using (5.1), are given by

∂B̂x

∂x̂
+ ℓ

∂B̂y

∂ŷ
= 0, (6.2)

ℓ
∂Ĥx

∂ŷ
− ∂Ĥy

∂x̂
= 0, (6.3)

while the constitutive relation B = µ0(H+M) becomes

B̂x =
1

k̂
Ĥx + M̂x, B̂y =

1

k̂
Ĥy + M̂y, (6.4)

where

B̂x =
Bx

µ0Msat
, B̂y =

By

µ0Msat
, Ĥx =

k̂Hx

Msat
, Ĥy =

k̂Hy

Msat
,

M̂x =
Mx

Msat
, M̂y =

My

Msat
, k̂ =

µ0(M
sat)2

2ρK1
.

(6.5)

Taking advantage of the specific form of (5.1), the magnetostatic problem is often

reformulated by deriving the magnetic field strength from a scalar potential or the

flux density from a vector potential A. In the latter case B = ∇ × A identically

satisfies the first of (5.1). In non-dimensional form, we are defining ∇̂ = L∇ = ∂
∂x̂
+ℓ ∂

∂ŷ

and Â = A/Lµ0M
sat such that B̂ = ∇̂ × Â. The vector potential Â = Â(x̂, ŷ), in

the component form can be written as Â = {Âx(x̂, ŷ), Ây(x̂, ŷ), Âz(x̂, ŷ)}. Using the
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identity ∇̂× (∇̂× Â) = ∇̂(∇̂ · Â)− ∆̂Â, the Coulomb gauge ∇̂ · Â = 0 and equation

(5.1b), we get

∇̂ × (∇̂ × Â− M̂) = 0 or ∆̂Â = −∇̂ × M̂ , (6.6)

which is the vector-valued Poisson equation for the magnetic potential Â. Here we

also used the non-dimensional constitutive equation (6.4). Under the condition (4.4),

the vector valued potential equation (6.6) reduces to

△̂Âx = 0, (6.7)

△̂Ây = 0, (6.8)

△̂Âz = −(
∂M̂y

∂x̂
− ℓ

∂M̂y

∂ŷ
). (6.9)

Using φ̂ = Âz, the spatial derivatives of M̂x and M̂y with respect to ŷ and x̂ respec-

tively can be written in the following form.

∂M̂x

∂ŷ
=
dM̂x

dĤy

∂Ĥy

∂ŷ
=
dM̂x

dĤy

(
∂B̂y

∂ŷ
/
dB̂y

dĤy

) = −dM̂x

dĤy

(
∂2φ̂

∂x̂∂ŷ
/
dB̂y

dĤy

),

∂M̂y

∂x̂
=
dM̂y

dĤy

∂Ĥy

∂x̂
=
dM̂y

dĤy

(
∂B̂y

∂x̂
/
dB̂y

dĤy

) = −dM̂y

dĤy

(
∂2φ̂

∂x̂2
/
dB̂y

dĤy

).

(6.10)

In the constitutive relation (6.4), M̂y is a function only of Ĥy. Differentiating

(6.4b) with respect to Ĥy we get

dB̂y

dĤy

=
1

k̂
+
dM̂y

dĤy

. (6.11)

Substituting equation (6.10) in (6.9) and using (6.11), we get

∂2φ̂

∂x̂2
+ ℓk̂

dM̂x

dĤy

∂2φ̂

∂x̂∂ŷ
+ ℓ2

(
1 + k̂

dM̂y

dĤy

)
∂2φ̂

∂ŷ2
= 0. (6.12)
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For the expressions dM̂x

dĤy
and dM̂y

dĤy
one needs to use the constitutive relations of

the previous section. In non-dimensional form we have

1. before reorientation

M̂x = 0, M̂y = Ĥy, (Ĥy ≤ Ĥs(1,2)
y ), (6.13)

2. during reorientation

M̂x = (1− ξ)
√

1− Ĥ2
y , M̂y = ξ+(1− ξ)Ĥy, (Ĥs(1,2)

y ≤ Ĥy ≤ Ĥf(1,2)
y ), (6.14)

respectively with the condition |Ĥy| ≤ 1 and

3. after reorientation

M̂x = 1, M̂y = 0, (Ĥy ≥ Ĥf(1,2)
y ). (6.15)

Here, ξ is continuous and differentiable with respect to Ĥy. The expression of ξ

with the non-dimensional variables is derived from (4.12) and one can rewrite ξ by,

ξ =
1

2
cos

[
F̂1

(
1

2
Ĥ2
y − Ĥy

)
+ F̂2 + π

]
+

1

2
, Ĥs(1,2)

y ≤ Ĥy ≤ Ĥf(1,2)
y . (6.16)

The non-dimensional magnetic field values Ĥ
s(1,2)
y and Ĥ

f(1,2)
y are the critical non-

dimensional material parameters which denote forward reorientation start and for-

ward reorientation finish respectively. The terms F̂1 and F̂2 are given by

F̂1 =
2π

(Ĥ
s(1,2)
y − Ĥ

f(1,2)
y )(Ĥ

s(1,2)
y + Ĥ

f(1,2)
y − 2)

, (6.17)
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F̂2 =
πĤ

s(1,2)
y (2− Ĥ

s(1,2)
y )

(Ĥ
s(1,2)
y − Ĥ

f(1,2)
y )(Ĥ

s(1,2)
y + Ĥ

f(1,2)
y − 2)

. (6.18)

Fig. 67. Non-dimensional magnetic constitutive response of M̂x and M̂y (Equations

(6.13), (6.14) and (6.15)) with respect to non-dimensional magnetic field Ĥy.

S and F represent the starting and the finishing points of the reorientation

process.

A typical magnetization response, after calibration is presented in Figure 67.

In this study, motivated by Ni2MnGa material data, we choose Ĥ
s(1,2)
y = 0.480 and

Ĥ
f(1,2)
y = 0.768. The non-dimensional form of the magnetostatic problem requires

three material parameters, k̂, Ĥ
s(1,2)
y and Ĥ

f(1,2)
y .

B. Finite element results of the magnetostatic problem

As demonstrated in the Figure 48, we have two regions. We denote the MSMA sample

by domain Ωm and the surrounding free space by Ωfs. In the whole domain, (6.9) is
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defined in the following way

△̂φ̂ = 0, φ̂ ∈ Ωfs, (6.19)

∂2φ̂

∂x̂2
+ ℓk̂

dM̂x

dĤy

∂2φ̂

∂x̂∂ŷ
+ ℓ2

(
1 + k̂

dM̂y

dĤy

)
∂2φ̂

∂ŷ2
= 0, φ̂ ∈ Ωm. (6.20)

For the boundary conditions, spatially constant magnetic flux is applied on all

sides of the boundary ∂Ωfs, or, more precisely, the potential

Âx = Ây = 0; Âz = −1

k̂
Ĥa
y x̂, (6.21)

is applied. The Laplace equations △̂Âx = 0 and △̂Ây = 0 with the above boundary

conditions give Âx(x̂, ŷ) = Ây(x̂, ŷ) = 0.

Here we solve a specific example with a MSMA specimen with 2:1 (ℓ=2) length

to width ratio, k̂ = 0.745, Ĥ
s(1,2)
y = 0.480 and Ĥ

f(1,2)
y = 0.768. The magnetization

constitutive response for this specific geometry is considered to be the relation between

material domain average of the magnetic field and magnetization vector. We will use

the symbol ’<>’ to denote the material domain average. In the following figures the

length and width of the specimens are presented with their actual dimensions.

First we select a point P1 in the average < M̂ > − < Ĥy > response at <

Ĥy >= 0.248 (Figure 68(a)), which lies in the linearly varying region 0-S. This

point is well below the critical magnetic field to start the reorientation process and

no reorientation occurs. The distribution of Ĥy for this boundary value problem at

the particular point P1 is presented in (Figure 68(b)). The contour plot of magnetic

field Ĥy shows nonuniform distribution inside the specimen. It should be noted that

the maximum value of Ĥy is 0.288 (Figure 68(b)) where the critical value to onset

the variant reorientation mechanism is 0.480. This means that new variant does

not nucleate. Figure 69(a) shows the fact that the volume fraction of field induced
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martensitic variant, variant-2, is zero through out the specimen.

(a) (b)

Fig. 68. (a) A point P1 which lies in the region before reorientation and (b) non-di-

mensional magnetic field Ĥy at < Ĥy >= 0.248.

In Figure 69(b) we present the normalized vector plot of the magnetization vector

inside the specimen and we try to track the orientation of the magnetization. In

the region of no reorientation, the macroscopic magnetization vectors have non-zero

component only in the y-direction as indicated in Figure 69(b).

Next, we consider a point P2 of the average constitutive response at < Ĥy >=

0.506 (Figure 70(a)), in which reorientation occurs almost everywhere inside the spec-

imen. The contour plot of the magnetic field Ĥy (Figure 70(b)) demonstrates the

strong nonuniform distribution of Ĥy inside the specimen. In this case the new

martensitic variant, which has a nonlinear relation with the magnetic field Ĥy (6.16),

starts to appear (Figure 71(a)). The range of magnitude of Ĥy varies from 0.301 to

0.687 (Figure 70(b)) which indicates that inside the specimen we have three cases.

In the first case we have very small regions where Ĥy is below the starting critical

value (0.480) and no reorientation occurs. In the second case we have some regions
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(a) (b)

Fig. 69. Distribution of (a) volume fraction of variant-2 and (b) orientation of magne-

tization vector at < Ĥy >= 0.248.

where the new variant-2 is present, but with small value of ξ, and in the the third

case we observe regions where the magnetic field value is so high that it is close to

the reorientation finish critical value (0.768). This observation is more clear in Figure

71(a) which represents the distribution of variant-2 volume fraction. We observe that

at the regions of the top-left and bottom-right corners, the volume fraction almost

reaches 1 while in the intermediate region, the volume fraction varies from 0-0.3.

In Figure 70(b) and Figure 71(a) an interesting observation is that two band like

zones appear, which separate the specimen in three regions A, B, C (Figure 70(b)).

The value of magnetic field or martensitic volume fraction changes abruptly across

those narrow zones. For example, if we consider the region B between this narrow

zones, the value of ξ is roughly 0.3. This value suddenly jumps to roughly 0.9 in

regions A and C. The magnetization vector exhibits similar behavior. The direction

of magnetization vectors (Figure 71(b)) also changes very sharply in the regions FG
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(a) (b)

A

B

C

Fig. 70. A point P2 which lies in the region of reorientation and (b) non-dimensional

magnetic field Ĥy at < Ĥy >= 0.506.

and GJ. The change in direction of magnetization vectors is almost uniform in the

rest of the specimen.

The point P3 in Figure 72(a) in the average magnetization-magnetic field response

also lies in the reorientation region S−F but with a higher magnetic field at < Ĥy >=

0.551. We still observe the band like zones in the Ĥy distribution (Figure 73(a)) and

a sharp change in direction (Figure 71(b)) of the magnetization vectors in the regions

FG and GJ. In this case, the banded zones have moved closer to each other.

Finally, we consider the point P4 at < Ĥy >= 0.795 (Figure 74(a)), in which

reorientation process finishes. Figure 74(b) shows that the minimum and maximum

value of the nonuniformly distributed magnetic field Ĥy are 0.730 and 0.964 respec-

tively. The minimum value is very close to the critical value to finish the reorientation

process (0.768). Due to this reason, we observe that the specimen is almost fully re-

oriented and the value of martensitic volume fraction is close to 1 everywhere inside

the specimen (Figure 75(a)). Moreover, the magnetization vectors (Figure 75(b))
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(a) (b)

Fig. 71. Distribution of (a) volume fraction of variant-2 and (b) orientation of magne-

tization vector at < Ĥy >= 0.506.

F

FG

G

GJ
J

are aligned in the y axis, the direction of the easy axis of the variant-2, due to high

applied magnetic field. In this case, the band like zones disappear in the distribution

of Ĥy, martensitic volume fraction and magnetization vector.

C. Stability analysis and parametric study of forward reorientation

The numerical analysis reveals that a peculiar phenomenon occurs during the re-

orientation process. Two band like zones FG and GJ appear (Figure 71(b)). The

appearance of band like zones can be explained by the loss of stability that occurs

during reorientation. In this section we proceed to a stability analysis by investigating

the magnetostatic system that we are solving. Combining equations (6.2) and (6.4),

we can write,

∂Ĥx

∂x̂
+ k̂

dM̂x

dĤy

∂Ĥy

∂x̂
+ ℓ

(
1 + k̂

dM̂y

dĤy

)
∂Ĥy

∂ŷ
= 0. (6.22)
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(a) (b)

Fig. 72. A point P3 which lies in the region of reorientation and (b) non-dimensional

magnetic field Ĥy at < Ĥy >= 0.551.

Equations (6.3) and (6.22) form a system of quasi-linear partial differential equations

of first order with respect to Ĥx and Ĥy. The slopes dM̂x

dĤy
and dM̂y

dĤy
are obtained

from the constitutive response. The compact form of this system, after some simple

computations, is written

∂Ĥ

∂x̂
+ Ĉ

∂Ĥ

∂ŷ
= 0, (6.23)

with

Ĥ =



Ĥx

Ĥy


 , Ĉ = ℓ



k̂
dM̂x

dĤy

1 + k̂
dM̂y

dĤy

−1 0


 . (6.24)

Equation (6.23) is a system of two 1st order PDEs. It should be noted that for

the stability analysis, we are focusing on the 1st order system, though we solved one

second order PDE for the numerical analysis. The result of the stability analysis

is the same for both cases. The second order PDE equation involves the magnetic
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(a)

F

FG

G

GJ

J

(b)

Fig. 73. Distribution of (a) volume fraction of variant-2 and (b) orientation of magne-

tization vector at < Ĥy >= 0.551.

potential φ, which does not have a direct interpretation of the physical quantities

like magnetic field, magnetic induction etc. But, when we reduce the system in the

system of 1st order PDEs, the variables become magnetic field components which are

physical quantities.

The system can be elliptic, parabolic or hyperbolic (unstable) if Ĉ has two com-

plex eigenvalues, one real eigenvalue, or two real and distinct eigenvalues respectively.

If I is the identity matrix, then the equation

det
(
Ĉ − λI

)
= 0, (6.25)

leads to

λ2 − ℓk̂
dM̂x

dĤy

λ+ ℓ2

(
1 + k̂

dM̂y

dĤy

)
= 0. (6.26)

The roots λ1, λ2 of (6.26) are real, only if
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(a) (b)

Fig. 74. A point P4 which lies in the region after reorientation and (b) non-dimensional

magnetic field Ĥy at < Ĥy >= 0.795.

D(k̂, Ĥy) = k̂2

(
dM̂x

dĤy

)2

− 4

(
1 + k̂

dM̂y

dĤy

)
≥ 0, (6.27)

From the previous equation it is evident that the type of the system (elliptic,

parabolic or hyperbolic) depends exclusively on the value of the magnetic field com-

ponent Ĥy. It should be noted that the value of D does not depend on the aspect

ratio.

Normal ferromagnetic material like α-Fe with BCC crystalline structure, if we

consider idealized single crystal structure with 1800 domain wall, does not exhibit

instability under the same magnetic loading condition as described for the MSMA

sample. In this case, the mechanism of magnetization is mainly based on the rotation

of the magnetization vectors when magnetic field is applied along the hard axis. It

should be recalled that we fixed the direction of the hard axis along the y-axis. In

general, the magnetization response becomes an increasing function of the applied
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(a) (b)

Fig. 75. Distribution of (a) volume fraction of variant-2 and (b) orientation of magne-

tization vector at < Ĥy >= 0.795.

magnetic field and we will always get a non-negative slope i.e. dM̂y

dĤy
≥ 0. At the same

time, since there is no driving force to move the domain walls, the magnetization

response along the x direction is always zero. This means dM̂x

dĤy
= 0 and the ferro-

magnetic system remains always elliptic (6.27). For a ferromagnetic MSMA material,

however, the case is different. The magnetic field is applied along the hard axis of

the initial stress-favored variant of the MSMA specimen. Beyond a certain critical

value of the applied field, a new variant nucleates due to the variant reorientation

mechanism. The coexistence of two variants generates 900 domain walls. The new

field-favored variant has its easy axis along the direction of the applied field. The

critical magnetic field is high enough to eliminate the presence of 1800 domain wall

in each variant. Moreover, due to the 900 domain wall, stress-favored variant con-

tributes a net magnetization along the direction perpendicular to the applied field i.e.

in the x-direction. Under this condition loss of ellipticity can occur. According to the
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(a)

D

k̂ Ĥy

(b)

D

k̂ Ĥy

Fig. 76. Discriminant D(k̂, Ĥy) at (a)Ĥ
f(1,2)
y = 0.960 and (b) Ĥ

f(1,2)
y = 0.864.
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(a)

D

k̂ Ĥy

(b)

D

k̂
Ĥy

Fig. 77. Discriminant D(k̂, Ĥy) at (a)Ĥ
f(1,2)
y = 0.768 and (b) Ĥ

f(1,2)
y = 0.624.
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best of the authors’ knowledge, no experimental results have been reported on the

appearance of localization zones in any MSMA for magnetostatic loading conditions.

The stability analysis performed in this paper is based on the previously developed

model which has the capability to predict the nonlinear magnetization response of a

MSMA. The predicted magnetization response is in good agreement with experimen-

tal results, reported in [47]. Based on this experimentally validated model, loss of

stability can occur in the MSMA response under magnetostatic loading.

When the system becomes hyperbolic, there exist two families of characteris-

tics. The differential equations which describe them are given by the solution of the

quadratic equation (6.26),

λ =
dŷ

dx̂
=
ℓ

2


k̂

dM̂x

dĤy

±

√√√√k̂2

(
dM̂x

dĤy

)2

− 4

(
1 + k̂

dM̂y

dĤy

)
 , (6.28)

where,

dM̂x

dĤy

= −Ĥy(1− ξ)√
1− Ĥ2

y

− dξ

dĤy

√
1− Ĥ2

y ,
dM̂y

dĤy

= (1− ξ) +
dξ

dĤy

(1− Ĥy). (6.29)

The above analysis is illustrated clearly with the help of a parametric study. The

four parameters H
s(1,2)
y , H

f(1,2)
y , Msat, ρK1 that describe the constitutive material re-

sponse, are reduced in the non-dimensional model to three, Ĥ
s(1,2)
y , Ĥ

f(1,2)
y and k̂.

We will vary Ĥy from reorientation start Ĥ
s(1,2)
y to reorientation finish Ĥ

f(1,2)
y and k̂

from 0 to 1 to examine the sign of D(k̂, Ĥy). We fix Ĥ
s(1,2)
y at 0.480 and consider

the value of Ĥ
f(1,2)
y at 0.960, 0.864, 0.768 and 0.480. The fixed value Ĥ

s(1,2)
y =0.480

and Ĥ
f(1,2)
y =0.768 correspond to the real material values as described in the earlier

section. Figure 76(a) represents the distribution of D where we have reorientation

finish magnetic field (Ĥ
f(1,2)
y =0.960) higher than the real experimental value (0.768).

For a fixed value of k̂, the value of D gradually increases with the increasing magnetic
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field to a maximum value and then gradually decreases towards the end of reorienta-

tion process. This is due to the fact that the M̂x-Ĥy constitutive response decreases

monotonically due to formation of new field-favored variant and the slope dM̂x

dĤy
tends

to zero. Similar trend is observed in Figure 76(b), where Ĥ
f(1,2)
y =0.864. The key

observation is the maximum value of D increases and D ≥ 0 for larger range of k̂

and for magnetic field values that are closer to the reorientation start and finish. The

next case with Ĥ
f(1,2)
y =0.768 is presented in Figure 77(a), where higher value of D

is observed and D ≥ 0 expands in higher values of k̂ and in larger range between

the magnetic field reorientation bounds. Finally, by decreasing the value of Ĥ
f(1,2)
y

to 0.624, we observe a very high value of D nearly 70 and D becomes non-negative

in most of the reorientation region (Figure 77(b)). This study shows that by keeping

Ĥ
s(1,2)
y fixed, the instability (D(k̂, Ĥy) ≥ 0) during reorientation becomes easier with

the decrease of Ĥ
f(1,2)
y /Ĥ

s(1,2)
y ratio. We can interpret the decreasing of the ratio as

the faster energy release and steeper slopes of the nonlinear magnetization responses

during the reorientation process. Faster dissipation means that the microstructure is

changing rapidly and becomes unstable to accommodate the twin martensitic vari-

ants. The steeper nonlinear magnetization response also indicates that with a small

change in magnetic field, the magnetization changes significantly and the twin struc-

tures need to be change quickly for the rapid change of the magnetization, causing

unstable behavior to the material.

It is worth mentioning that the presented stability analysis results are valid

for the 2-D model discussed previously. For a 3-D single crystal MSMA model the

stability analysis needs to account for the anisotropic material behavior.

The appearance of the band like zones (Figure 71(a)) in the FEM analysis during

reorientation is due to loss of ellipticity. The discriminant D that dictates the loss of

ellipticity is given by (6.27). The plot of D at < Ĥy >= 0.506 is presented in Figure
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(b)

Fig. 78. (a) Discriminant D at < Ĥy >= 0.506 and (b) jump in the magnetic field

across characteristics.

78(a). The Figure shows that for < Ĥy >= 0.506 there are two distinct regions H

where D ≥ 0 and loss of ellipticity occurs. The stable elliptic regions (E in Figure

78(a)) with D < 0, which are separated by the unstable hyperbolic regions, have a

completely different behavior in terms of the field variables, like the magnetic field Ĥy

(Figure 78(b)), the magnetization vector (Figure 71(b)) and the martensitic variant

volume fraction (Figure 71(a)). This shows the drastic effect of the unstable zones

appearance in the specimen response. In the absence of these hyperbolic regions,

for instance before or after the reorientation process, the field variables have gradual

transition in the specimen (Figures 68(b) or 74(b) respectively). In the hyperbolic

zones the magnetization vector has a sudden change in direction (Figure 71(b)),

especially at the areas closer to the corners.

The values of the characteristic angles in the unstable regions in the non-dimensional

spatial description are given by the equation (6.28) and they vary spatially. In the

present study the two characteristic angles of all the critical points are almost the
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same (−600 and −640 in the actual specimen dimensions). The magnetic field shows

a drastic change across characteristics that start from the top right and bottom left

corners (Figure 78(b)). We need to mention that these angles refer to the actual

dimensions, since in the non-dimensional spatial description, the angles that occur

do not represent the real state of the specimen. It is also important to note that the

characteristic angles that are computed are based on the microstructural description

given in Figure 40. If the microstructural description changes, then the orientation

of the characteristics will also change.

In the present study we assume that, at each material point, the magnetization

vector varies only with respect to the magnetic field and does not depend on the stress

level. Under this assumption, same localization zone patterns could be observed even

in a fully coupled magnetomechanical BVP, where the stress varies pointwise. If the

magnetization vector is a function of both the magnetic field and the stress, equation

(6.22) changes and different localization patterns are expected to occur in the fully

coupled case.

To understand the stability behavior more clearly, we consider some thought

experiments which are demonstrated in the following examples. We consider an el-

liptic specimen since the interior magnetic field is always uniform. This result at

< Ĥy >= 0.348 is demonstrated in Fig.79(a). At this field the system is hyper-

bolic and the whole specimen is assigned a single value of D. We do not observe

any band like regions because the specimen is defect free and no disturbances are

created anywhere. Next we introduce a small elliptic hole at the center of the ge-

ometry (Fig.79(b)). The hole creates singularity in the magnetic field and the dis-

turbance is observed to propagate along the characteristic. When the magnetic field

is < Ĥy >= 0.51, the magnetostatic system becomes elliptic. The magnetic field

remains uniform when no defect is introduced (Fig.80(a)). After introducing the el-
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(a) (b)

Fig. 79. Distribution of magnetic field Hy at < Ĥy >= 0.348(hyperbolic) (a) without

any defect and (b) with an elliptic hole.

liptic hole, we observe field concentration inside around the hole. But the disturbances

thus created do not propagate. Since the system becomes elliptic, the concentrations

remain localized around the hole (Fig.80(b)).

In the next example, we provide disturbance from the outside without introducing

any defect in the body. In the thought experiment (Fig.81) we place three circular

iron bars around the elliptic specimen. These bars induce concentrated magnetic field

on the elliptic surface. So, in the hyperbolic condition (Fig.81(a)) the propagation of

the disturbances, created by the iron rods, is observed, while the disturbances remain

localized when the system is elliptic (Fig.81(b)).

D. Coupled magneto-mechanical system

The coupled system of equations are given below
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(a) (b)

Fig. 80. Distribution of magnetic field Hy at < Ĥy >= 0.51(elliptic) (a) without any

defect and (b) with an elliptic hole.

∇ ·B = 0 (6.30a)

B = µ0(M+H) (6.30b)

∇×H = 0 (6.30c)

∇ · σE − µ0(∇ ·M)H = 0 (6.30d)

skw(σE) = 0 (6.30e)

σE = C(ε− εr) (6.30f)

ε̇r = Λξ̇ (6.30g)

Φ(σE ,H, ξ) = 0 (6.30h)

ε =
1

2
(∇u+ (∇u)T ) (6.30i)

We denote a tensor potential Ψ = ∇u for which ε = 1
2
(Ψ + ΨT ) and we get an
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(a) (b)

Fig. 81. Ellipse with circular iron bars near the surface. Distribution of magnetic field

Hy at (a) < Ĥy >= 0.348(hyperbolic) and at (b) < Ĥy >= 0.51(elliptic).

additional condition

∇×Ψ = 0. (6.31)

The tensor potential with the identity (6.31) reduces the mechanical system of equa-

tions into a first order system of equations. Now, from the consistency condition

(Eq. (6.30h)) we can write

Φ̇(σE ,H, ξ) = 0

⇒ Φ,σE : σ̇E + Φ,H ·Ḣ+ Φ,ξ ξ̇ = 0 (6.32)

Eq. (6.30f) can be written in the rate form as

σ̇E = C(ε̇− ε̇r) = C(ε̇−Λξ̇) (6.33)
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and with the help of this relation we replace σ̇E in Eq. (6.32)

Φ,σE : C(ε̇−Λξ̇) + Φ,H ·Ḣ+ Φ,ξ ξ̇ = 0

⇒ ξ̇ =
Φ,σE : Cε̇+ Φ,H ·Ḣ
Φ,σE : CΛ− Φ,ξ

(6.34)

Now substituting back (6.34) in (6.33) we get

σ̇E = C

[
ε̇−Λ

Φ,σE : Cε̇+ Φ,H ·Ḣ
Φ,σE : CΛ− Φ,ξ

]

=

[
C− CΛ⊗ CΦ,σE

Φ,σE : CΛ− Φ,ξ

]
: ε̇−

[
CΛ⊗ Φ,H

Φ,σE : CΛ− Φ,ξ

]
· Ḣ

= L : ε̇−K · Ḣ (6.35)

Here L is the forth order tangent stiffness tensor and K is the third order magnetic

stiffness tensor. We can further write (6.35)

∇σEẋ = L : ∇εẋ−K · ∇Hẋ

⇒ ∇σE = L : ∇ε−K · ∇H (6.36)

In indicial notation we can write,

σEij ,p= Lijklεkl,p−KijlHl,p . (6.37)

E. Stability analysis of the coupled 2D system

We will perform the stability analysis of the 2D coupled system. The detail deduction

of the 2D system of equations is given below. We first calculate the tangent stiffness
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tensors L and K in 2-D. We use Voigt notation and write

C =




λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 2µ




(6.38)

The transformation tensor Λ = Ecur(ex ⊗ ex − ey ⊗ ey) can be written as

Λ = Ecur




1

−1

0




So,

CΛ =




λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 2µ



Ecur




1

−1

0



= 2µEcur




1

−1

0




Since we considered that Φ only depends on σExx, we can write

Φ,σE = Φ,σExx




1

0

0




and

CΦ,σE =




λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 2µ



Φ,σExx




1

0

0



= Φ,σExx




λ+ 2µ

λ

0




Therefore,

CΛ⊗ CΦ,σE = 2µEcurΦ,σExx




λ+ 2µ λ 0

−(λ+ 2µ) −λ 0

0 0 0



.
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We denote a = Φ,σE : CΛ−Φ,ξ, where Φ,σE ·CΛ = 2µEcurΦ,σExx and β1 =
2µEcurΦ,

σE
xx

a
.

So

L = C− CΛ⊗ CΦ,σE

a
=




λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 2µ



− β1




λ+ 2µ λ 0

−(λ+ 2µ) −λ 0

0 0 0




or

L =




(1− β1)(λ+ 2µ) (1− β1)λ 0

λ+ β1(λ+ 2µ) λ+ 2µ+ β1λ 0

0 0 2µ




(6.39)

We considered that Φ only depends on Hy and we write

Φ,H = Φ,Hy



0

1


 .

So,

CΛ⊗ Φ,H= 2µEcurΦ,Hy




0 1

0 −1

0 0




and

K = β2




0 1

0 −1

0 0




where β2 =
2µEcurΦ,Hy

a
. We write,




σ̇Exx

σ̇Eyy

σ̇Exy



=




(1− β1)(λ+ 2µ) (1− β1)λ 0

λ+ β1(λ+ 2µ) λ+ 2µ+ β1λ 0

0 0 2µ







ε̇xx

ε̇yy

ε̇xy



+ β2




0 1

0 −1

0 0






Ḣx

Ḣy


 .(6.40)
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The rate form of the constitutive equations in 2-D can be written in the following

form

σExx,p= (1− β1)(λ+ 2µ)εxx,p+(1− β1)λεyy,p+β2Hy,p (6.41a)

σEyy,p= (λ+ β1(λ+ 2µ))εxx,p+(λ+ 2µ+ β1λ)εyy,p−β2Hy,p (6.41b)

σExy,p= 2µεxy,p (6.41c)

where p is x or y. In 2-D we have Ψxx = ux,x ,Ψxy = ux,y ,Ψyx = uy,x ,Ψyy = uy,y.

Moreover for small strain

εxx = ux,x , εxy =
1

2
(ux,y +uy,x ), εyy = uy,y . (6.42)

Then we write εxx = Ψxx, εyy = Ψyy, εxy =
1
2
(Ψxy +Ψyx). From conservation of linear

momentum we get

σExx,x+σ
E
xy,y +µ0(Hx,x+Hy,y )Hx = 0 (6.43)

σExy,x+σ
E
yy,y +µ0(Hx,x+Hy,y )Hy = 0 (6.44)

We calculate σExx,x , σ
E
xy,y , σ

E
xy,x and σEyy ,y from (6.41a) with p = x, from (6.41c)

with p = y and p = x and from (6.41b) with p = y respectively. We also write

εxx,x= Ψxx,x , εyy,y = Ψyy,y , εxy,x=
1
2
(Ψxy,x+Ψyx,x ) and εxy,y =

1
2
(Ψxy,y +Ψyx,y ).

From (6.41a), (6.41b) and (6.41c) we get

σExx,x= (1− β1)(λ+ 2µ)Ψxx,x+(1− β1)λΨyy,x+β2Hy,x (6.45a)

σEyy,y = (λ+ β1(λ+ 2µ))Ψxx,y +(λ+ 2µ+ β1λ)Ψyy,y−β2Hy,y (6.45b)

σExy,x= µ(Ψxy,x+Ψyx,x ) (6.45c)

σExy,y = µ(Ψxy,y +Ψyx,y ) (6.45d)
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Substituting back above equations in the conservation of linear momentum (6.43) and

(6.44), we get

(1− β1)(λ+ 2µ)Ψxx,x+(1− β1)λΨyy,x+µ(Ψxy,y +Ψyx,y )

+µ0HxHx,x+µ0HxHy,y +β2Hy,x= 0 (6.46)

µ(Ψxy,x+Ψyx,x ) + (λ+ β1(λ+ 2µ))Ψxx,y +(λ+ 2µ+ β1λ)Ψyy,y

+µ0HyHx,x+(µ0Hy − β2)Hy,y = 0 (6.47)

Finally, equation (6.31), ∇×Ψ = ǫijkΨmj ,i ek⊗em = 0, gives two additional equations

Ψxx,y−Ψxy,x= 0 (6.48)

Ψyx,y−Ψyy,x= 0 (6.49)

The detail derivation is given in the appendix. We now consider magnetostatic system

of equations. First we consider

∇ ·H = −∇ ·M

⇒ Hx,x +Hy,y = −(Mx,x +My,y) (6.50)

We assume that each of Mx and My only σExx and we write

Mx,x=
∂Mx

∂Hx

Hx,x+
∂Mx

∂Hy

Hy,x+
∂Mx

∂σExx
σExx,x

My,y =
∂My

∂Hx

Hx,y +
∂My

∂Hy

Hy,y +
∂My

∂σExx
σExx,y (6.51)
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or

Mx,x =
∂Mx

∂Hx
Hx,x+

∂Mx

∂Hy
Hy,x+

∂Mx

∂σExx
(1− β1)(λ+ 2µ)Ψxx,x

+
∂Mx

∂σExx
(1− β1)λΨyy,x+

∂Mx

∂σExx
β2Hy,x

My,y =
∂My

∂Hx
Hx,y +

∂My

∂Hy
Hy,y +

∂My

∂σExx
(1− β1)(λ+ 2µ)Ψxx,y

+
∂My

∂σExx
(1− β1)λΨyy,y−

∂My

∂σExx
β2Hy,y (6.52)

Substituting equations (6.52) in (6.50) we get,

(1 +
∂Mx

∂Hx

)Hx,x+(
∂Mx

∂Hy

+
∂Mx

∂σExx
β2)Hy,x+

∂Mx

∂σExx
(1− β1)(λ+ 2µ)Ψxx,x

+
∂Mx

∂σExx
(1− β1)λΨyy,x+

∂My

∂Hx
Hx,y +(1 +

∂My

∂Hy
− ∂My

∂σExx
β2)Hy,y

+
∂My

∂σExx
(1− β1)(λ+ 2µ)Ψxx,y +

∂My

∂σExx
(1− β1)λΨyy,y = 0 (6.53)

and from (6.30c) we get,

Hx,y −Hy,x = 0 (6.54)

So, we have 6 coupled first order PDEs (6.53, 6.54, 6.46, 6.47, 6.48, 6.49) with 6

variables. We can present in the following matrix form,




(1 + ∂Mx

∂Hx
) (∂Mx

∂Hy
+ ∂Mx

∂σExx
β2)

∂Mx

∂σExx
(1− β1)(λ+ 2µ) 0 0 ∂Mx

∂σExx
(1− β1)λ

0 −1 0 0 0 0

µ0Hx β2 (1− β1)(λ+ 2µ) 0 0 (1− β1)λ

µ0Hy 0 0 µ µ 0

0 0 0 −1 0 0

0 0 0 0 0 −1







Hx

Hy

Ψxx

Ψxy

Ψyx

Ψyy



, x
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+



∂My

∂Hx
(1 + ∂My

∂Hy
− ∂My

∂σExx
β2)

∂My

∂σExx
(1− β1)(λ+ 2µ) 0 0 ∂My

∂σExx
(1− β1)λ

1 0 0 0 0 0

0 µ0Hx 0 µ µ 0

0 (µ0Hy − β2) (λ+ β1(λ+ 2µ)) 0 0 (λ+ 2µ+ β1λ)

0 0 1 0 0 0

0 0 0 0 1 0







Hx

Hy

Ψxx

Ψxy

Ψyx

Ψyy



, y

(6.55)

We denote the above system of equations in the following compact form,

AΘx +BΘy = 0 (6.56)

We denote the list of variables by the set Θ = {Hx, Hy,Ψxx,Ψxy,Ψyx,Ψyy}. Now we

will study few cases from which we will find out the conditions for stability.

1. Case-I: Magnetostatic stability condition



(1 + ∂Mx

∂Hx
) ∂Mx

∂Hy

0 −1






Hx

Hy



, x

+



∂My

∂Hx
(1 + ∂My

∂Hy
)

1 0






Hx

Hy



, y

(6.57)

The system becomes elliptic, parabolic and hyperbolic when the eigenvalues are com-

plex, equal and real of the following characteristic equation

det(B− αA) = 0, (6.58)

where α = dy
dx
. The characteristic polynomial of α of the above equation is

(1 +
∂Mx

∂Hx

)α2 − (
∂Mx

∂Hy

+
∂My

∂Hx

)α+ (1 +
∂My

∂Hy

)) = 0 (6.59)
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The roots are real only when the discriminent D of the above equation is greater than

or equal to zero i.e

D =

(
∂Mx

∂Hy
+
∂My

∂Hx

)2

− 4

(
1 +

∂My

∂Hy

)(
1 +

∂Mx

∂Hx

)
≥ 0 (6.60)

If we further consider that the magnetization constitutive responses only depends on

Hy, then
∂My

∂Hx
= ∂Mx

∂Hx
= 0 and above condition reduces to

D =

(
∂Mx

∂Hy

)2

− 4

(
1 +

∂My

∂Hy

)
≥ 0 (6.61)

2. Case-II: Magneto-mechanical stability condition where magnetization if not

coupled with stress




(1 + ∂Mx

∂Hx
) ∂Mx

∂Hy
0 0 0 0

0 −1 0 0 0 0

µ0Hx β2 (1− β1)(λ+ 2µ) 0 0 (1− β1)λ

µ0Hy 0 0 µ µ 0

0 0 0 −1 0 0

0 0 0 0 0 −1







Hx

Hy

Ψxx

Ψxy

Ψyx

Ψyy



, x

+



∂My

∂Hx
(1 + ∂My

∂Hy
) 0 0 0 0

1 0 0 0 0 0

0 µ0Hx 0 µ µ 0

0 (µ0Hy − β2) (λ+ β1(λ+ 2µ)) 0 0 (λ+ 2µ+ β1λ)

0 0 1 0 0 0

0 0 0 0 1 0







Hx

Hy

Ψxx

Ψxy

Ψyx

Ψyy



, y

(6.62)
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The characteristic equation of det(B − αA) = 0 can be expressed in the following

form

(A1α
2 + A2α + A3)(C1α

4 + C2α
2 + C3) = 0 (6.63)

where,

A1 = (1 +
∂Mx

∂Hx
)

A2 = −(
∂Mx

∂Hy
+
∂My

∂Hx
)

A3 = (1 +
∂My

∂Hy
)

C1 = −µ(1− β1)(λ+ 2µ)

C2 = µ(2β1(2λ+ 3µ)− 2(λ+ 2µ))

C3 = −µ(β1λ+ λ+ 2µ)

The discriminant of the quadratic polynomial of (6.63) is identical with (6.60). This

result suggests that the stability conditions for the magnetostatic system influences

the stability of the mechanical system. But also we have to investigate the nature of

the roots of the bi-quadratic polynomial

C1α
4 + C2α

2 + C3 = 0

The roots are

α = ±

√
−C2 ±

√
C2

2 − 4C1C3

2C1
(6.64)

The first necessary condition for the real roots is L =
−C2±

√
C2

2−4C1C3

2C1
≥ 0. Let us

consider C1 > 0 which means β1 > 1 and to be L > 0, we need −C2+
√
C2

2 − 4C1C3 ≥

0 or C1C3 ≤ 0 or C3 ≤ 0. This means β1λ + λ + 2µ ≥ 0 or β1 ≥ −1 − 2µ
λ
. So the
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condition is β1 > 1. Similarly, if C1 < 0 i.e β1 < 1, then proceeding in a same

way we can write C3 ≥ 0, which gives β1 ≤ −1 − 2µ
λ
. So the required condition is

β1 ≤ −1 − 2µ
λ
. Next necessary condition for real roots is

D1 = C2
2 − 4C1C3 ≥ 0

= β1(µ+ λ)(−8µ+ 9β1µ− 4λ+ 5β1λ) ≥ 0

= β1(−8µ+ 9β1µ− 4λ+ 5β1λ) ≥ 0

= β1(β1(9µ+ 5λ)− 4(λ+ 2µ)) ≥ 0

= β1(β1 − r) ≥ 0

where r = 4λ+8µ
9µ+5λ

> 0. This implies β1 ∈ (−∞, 0] ∪ [r,+∞). When C1 > 0, β1 > 1

and we need to check if r > 1. This condition implies that 4λ + 8µ > 9µ + 5λ or

λ+ µ < 0, which is not true. So for the real roots i.e. for the unstable condition

β1 ∈





(1,+∞), C1 > 0 .

(−∞,−1− 2µ
λ
), C1 < 0 .

(6.65)

At the end of this analysis we consider that the transformation surface Φ depends

only on the applied stress level i.e we consider Φ,σExx = 0, which implies β1 = 0. For

this condition the characteristic polynomial (6.63) reduces

[
(1 +

∂Mx

∂Hx

)α2 − (
∂Mx

∂Hy

+
∂My

∂Hx

)α + (1 +
∂My

∂Hy

)

] [
µ(1 + α2)2(λ+ 2µ)

]
= 0 (6.66)

Since µ(1+α2)2(λ+2µ) = 0 means α = ±
√
±i where i =

√
−1, the stability condition

is same as (6.59).

Finally, when we consider the stress dependence of the magnetization vector,

we get an sextic characteristic polynomial. The factorization of such a polynomial

becomes extremely complex and we will not consider the stability conditions for the
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(a) (b)

Fig. 82. Distribution of (a) exx and (b) σxx at < Ĥy >= 0.348(hyperbolic).

present study.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

A generalized modeling approach for magnetic shape memory alloys is introduced in

this work. A finite deformation based nonlinear analysis is performed and magneto-

mechanical constitutive equations are derived from a proposed Gibbs energy function

in a thermodynamically consistent way. The integrity basis for the Gibbs free energy

is derived by considering material symmetry. The evolution equations of the internal

variables are restricted by group symmetry operations. Finite symmetry is consid-

ered for single crystal MSMA. For polycrystalline MSMAs, continuous symmetry is

considered and anisotropy is taken into account by introducing structural tensors in

the Gibbs free energy and evolution equations. Selected results are presented for field

induced variant reorientation and phase transformation as special cases of the general

theory. Considering symmetry restrictions in the modeling not only provides insight

to construct an energy potential and evolution equations of the internal variables but

also systematically captures cross-coupling between multiple fields.

In this work, a thermodynamic based phenomenological model of field induced

phase transformation for a single crystal NiMnCoIn material system is presented.

A Gibbs free energy is proposed and the integrity basis is determined based on the

external-internal state variables. The magneto-thermo-mechanical constitutive equa-

tions are derived in a thermodynamically consistent way. Hysteretic behaviors of

such dissipative material is taking into account through the evolution equations of

the internal variables. A unique experimental approach for a single crystal specimen

is described. The model is then reduced to 1-D and calibrated from experiments. Dif-

ferent thermodynamic planes are used to calibrate different material parameters. The

model predictions of magnetization-field, magneto-mechanical and magneto-thermal
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responses are validated with the experiments. Different material responses are then

presented by using the model and a 3-D (magneto-thermo-mechanical) transformation

surface is predicted. Finally, thermo-magneto-mechanical responses are demonstrated

by simultaneously varying temperature and magnetic field.

A magnetostatic and magneto-mechanically-coupled finite element analysis in-

volving nonlinear magnetic shape memory behavior is presented. Based on this anal-

ysis two important effects that substantially influence the constitutive modeling of

MSMAs have been addressed. First, it is shown that magnetostatic computations

could be used to properly account for the shape-dependent demagnetization effect

which complicates the model parameter identification from experimental data. It is

pointed out that this must be understood as the inverse problem of finding the model

parameters such that the simulation results in the applied magnetic field vs. magneti-

zation curve measured in the experiment for a specific sample geometry. An iterative

procedure is established for which in each iteration step the magnetostatic bound-

ary value problem is solved to obtain the relation between the applied and internal

magnetic fields needed to correct the data.

The second main effort was concerned with the investigation of the significance

of magnetic body forces and body couples and whether or not these can be neglected

in the modeling of MSMAs. In a first estimate of this influence, highly non-uniform

distributions of the magnetic body force and couple and consequently the Maxwell

stress field were computed from the nonlinear magnetostatic finite element analysis

in a post-processing manner. In a second step, an extended analysis based on the

numerical solution of the magneto-mechanically-coupled problem then revealed that

the magnetic body force and body couple cause an inhomogeneous Cauchy stress field,

whose components are comparable to the typically applied stresses. This suggests

that, considering current blocking stress levels, the influence of body forces should
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not be neglected.

An interesting feature of the studied magnetostatic boundary value problem is

the appearance of banded zones in the spacial distribution of the magnetic field vari-

ables when the magnetization constitutive response becomes highly nonlinear. In

the performed finite element analysis, the appearance of band like regions are ob-

served and are explained by the loss of ellipticity of the magnetostatic system of

equations. The analytic approach of stability analysis shows that the magnetostatic

problem becomes unstable during the martensitic variant reorientation mechanism.

A parametric stability analysis reveals the conditions under which loss of ellipticity

occurs and quantifies the influence of the non-dimensional material parameters in the

stability of the material.
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[158] Y. Ge, O. Heczko, O. Söderberg, and V. K. Lindroos, “Various magnetic domain

structures in Ni-Mn-Ga martensite exhibiting magnetic shape memory effect,”

Journal of Applied Physics, vol. 96, no. 4, pp. 2159–2163, 2004.

[159] M. R. Sullivan and H. D. Chopra, “Temperature- and field-dependent evolution

of micromagnetic structure in ferromagnetic shape-memory-alloys,” Physical

Review B, vol. 70, pp. 094427–(1–8), 2004.

[160] M. R. Sullivan, A. A. Shah, and H. D. Chopra, “Pathways of structural and

251



magnetic transition in ferromagnetic shape-memory alloys,” Physical Review

B, vol. 70, pp. 094428–(1–8), 2004.

[161] R. C. O’Handley, S. J. Murray, M. Marioni, H. Nembach, and S. M. Allen,

“Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-

memory materials (invited),” Journal of Applied Physics, vol. 87, no. 9, pp.

4712–4717, 2000.

[162] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 2nd

edition, 1975.

[163] H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part I: Discrete

Systems, Krieger Publishing Company, Malabar, FL, Reprint of 1968 edition,

1990.

[164] H. N. Bertram, Theory of Magnetic Recording, Cambridge University Press,

Cambridge, UK, 1994.
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APPENDIX A

BRIEF DESCRIPTIONS OF DIFFERENT TRANSFORMATIONS

A1. Euclidean transformation

The Euclidian transformation between two inertial coordinate systems (x, t) and

(x∗, t∗) are related by,

x∗ = Q(t)x+ c(t), t∗ = t+ a, (A.1)

where, Q is the rotation matrix between the two frames.

A2. Galilean transformation

The Galilean transformation is used to transform between the coordinates of two

reference frames which differ only by constant relative motion within the constructs

of Newtonian physics. The transformation also states that the fundamental laws of

physics are the same in all inertial frames. Any two inertial coordinate systems (x, t)

and (x̄, t̄) are related by Galilean transformation,

x̄ = Qx+ c1t+ c2, t̄ = t+ a, (A.2)

where, a, c1, c2 andQ are constants. Q is the rotation matrix between the two frames.

A3. Lorentz transformation

The Lorentz transformation describes how, according to the theory of special rela-

tivity, two observers’ varying measurements of space and time can be converted into

255



each other’s frames of reference. It reflects the surprising fact that observers mov-

ing at different velocities may measure different distances, elapsed times, and even

different orderings of events. The Lorentz transformation supersedes the Galilean

transformation of Newtonian physics, which assumes an absolute space and time.

Since relativity postulates that the speed of light is the same for all observers, it must

preserve the spacetime interval between any two events in Minkowski space. The

Lorentz transformation describes only the transformations in which the spacetime

event at the origin is left fixed, so they can be considered as a rotation of Minkowski

space.

A4. Minkowsky space

Minkowski space or Minkowski spacetime is the mathematical setting in which Ein-

stein’s theory of special relativity is most conveniently formulated. In this setting the

three ordinary dimensions of space are combined with a single dimension of time to

form a four-dimensional manifold for representing a spacetime [172]. In theoretical

physics, Minkowski space is often contrasted with Euclidean space. While a Euclidean

space has only spacelike dimensions, a Minkowski space also has one timelike dimen-

sion. Formally, Minkowski space is a four-dimensional real vector space equipped

with a nondegenerate, symmetric bilinear form. The symmetry group of a Euclidean

space is the Euclidean group and for a Minkowski space it is the Poincar group.
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APPENDIX B

SYMMETRY AND GROUP THEORY

B1. Point group: basic concepts

Fig. 83. Symmetry of H2O molecule, which belongs to a point group.

An object displays symmetry if under specific transformation operation the object

does not change its appearance. A symmetry operation S is a coordinate transfor-

mation that takes a point (x, y, z) to another point (x′, y′, z′), without changing the

shape and size of an object. This may be denoted by

S : (x, y, z) → (x′, y′, z′)

For example, a mirror operation mα is a symmetry operation that takes a point

(x, y, z) to its image (x′, y′, z′) through the reflection with the mirror plane, which
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has its normal along the α direction. When α is along the x axis, we can denote

mx : (x, y, z) → (−x, y, z)

Another example is identity operation E that takes a point (x, y, z) to itself i.e.

E : (x, y, z) → (x, y, z)

A point group is a group of such symmetry operations that keep at least one point

invariant(in the same place). As a result, point groups can only consist of rotations,

mirror reflections and inversions or certain combinations of those. For example, water

molecule has one axis of symmetry and two mirror planes of symmetry (Fig. 83). Each

symmetry operation has a corresponding symmetry element, which is the axis, plane,

line or point with respect to the symmetry operation.

1. Point group symmetry in a plane

We first consider objects confined in two dimensions and the points of the object are

described by (x, y). There are two operations that leave at least one point invariant.

1. Mirror operations mx and my.

2. Rotation operation

Cn : (x, y) → (cos
2π

n
)x− (sin

2π

n
)y, (sin

2π

n
)x+ (cos

2π

n
)y, n ∈ Int.

By rotating multiple times, we end up with the cyclic group (also called) Cn.

Cn = {E,Cn, (Cn)2, (Cn)3..(Cn)n−1}.

This is just a group of discrete rotations by 2π
n
. This notation has the unfortu-

nate fact of using Cn for both the name of the group and the element of order
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n. For a crystal, the allowed rotational groups are

C1, C2, C3, C4, C6.

There are ten crystallographic plane points group. They are

Nomenclature Symmetry operations Group order

1 E 1

2 E,C2 2

m E,mθ 2

(θ=angle with x axis) 2

2mm E,C2, mx, my 4

3 E,C3, (C3)
2 3

3m E,C3, (C3)
2, m 2π

3
, m 4π

3
, my 6

4 E,C4, (C4)
2, (C4)

3 4

4mm E,C4, (C4)
2, (C4)

3, m 3π
4
, mπ

4
, mx, my 8

6 E,C6, (C6)
2, (C6)

3, (C6)
4, (C6)

5 6

Note: (C6)
2 = C3, (C6)

4 = (C3)
2, (C6)

3 = C2

6mm E,C6, (C6)
2, (C6)

3, (C6)
4, (C6)

5, mπ
6
, m 2π

6
, m 4π

6
, mx, my 12

Table XXXVI. Ten crystallographic plane points group

2. Point group symmetry in three dimensions

There are many standard ways to represent the crystallographic groups. We will

follow Schoenflies notation and Hermann-Mauguin notation, which are described in

the following subsection.
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a. Points group with pure rotational axis

These point groups each consist of only a single family of symmetry operations-those

generated by a single rotation axis. If the rotation axis is of order n, the Schoenflies

notation is

Cn.

The alternative Hermann-Mauguin notation is simply

n.

There are only five possible n s for the crystallographic point groups.

Symmetry Order Description

C1 (1) Triclinic 1 Rotation by 2π about an arbitrary axis (identity).

C2 (2) Monoclinic 2 Rotation around 2-fold axis (out of plane axis).

C3 (3) Trigonal 3 Rotation around 3-fold axis (out of plane axis).

Rotation by 2π
3
, 4π

3
and 6π

3
(identity) .

C4 (4) Tetragonal 4 Rotation around 4-fold axis (out of plane axis).

C6 (6) Hexagonal 6 Rotation around 6-fold axis (out of plane axis).

Table XXXVII. Points group with pure rotational axis

b. Points group with a single rotational axis that lies in a mirror plane: Cnv (nm)

In these point groups, a mirror plane is parallel to-and includes-the principal symme-

try axis. Since the principal symmetry axis is usually considered to be in a vertical

direction, the mirror plane is called a vertical mirror plane and is denoted by subscript

v. The point group symbol for odd n is

nm
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and for even n is

nmm.

The second m denotes the set of mirror planes that bisect the principle set.

Symmetry Order Description

C2v (2mm) Orthorhombic 4 Two mirror planes perpendicular to

each other. The line of intersection

generates the 2-fold axis.

C3v (3m) Trigonal 6 Combination of Three mirror planes

and 3-fold axis

C4v (4mm) Tetragonal 8 Four vertical mirror planes and C4

C6v (6mm) Hexagonal 12 Six mirror planes (at interval of π
6
) and C6

Table XXXVIII. Points group with a single rotational axis that lies in a mirror plane

c. Points group with only rotation-reflection axes: Sn (n̄)

In these point groups, the basis symmetry operation is the rotation-reflection axis Sn

defined by a rotation of 2π
n

followed by a reflection in a plane perpendicular to the

principal symmetric axis. The Schoenflies notation is

Sn.

Instead of choosing the rotation-reflection, it is also possible to choose the rotation-

inversion axis, which is defined as a rotation by 2π
n

followed by inversion throgh the

origin, by which a point (x, y, z) is transformed to the point (−x,−y,−z). The

Hermann-Mauguin notation is

n̄.
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Symmetry Order Description

S2, Ci (1̄) Triclinic 2 Inversion through center

S4 (4̄) Tetragonal 4 4-fold rotation-reflection axis

S6, C3i (3̄) Trigonal 2 6-fold rotation-reflection axis

Table XXXIX. Points group with only rotation-reflection axes

d. Points group with a single rotational axis and a mirror plane perpendicular to

the axis: Cnh (n/m)

These point groups contain a rotation symmetry axis with a mirror plane perpen-

dicular to the axis. Since the rotation axis is usually consider to be vertical, the

mirror plane is horizontal and, in the Schoenflies notation, is denoted by h. Thus the

symbols of these groups are

Cnh.

The alternative Hermann-Mauguin notation is

n/m

which indicates a mirror plane perpendicular to the n-fold axis.

e. Simple dihedral point groups: Dn (n2−)

In these groups, the principal rotation axis of order n has perpendicular to its n 2-fold

axes. These groups are called dihedral and have the Schoenflies notation

Dn.
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Symmetry Order Description

C1h (m) Monoclinic 2 Identity element and a mirror plane

C2h (2/m) Monoclinic 4 2-fold axis and a horizontal mirror plane

C3h, S3 (2/m, 6̄) Hexagonal 6 3-fold axis and horizontal a mirror plane

C4h (4/m) Tetragonal 8 4-fold axis and a mirror plane

perpendicular to the 4-fold axis

C6h (6/m) Hexagonal 12 6-fold axis and a horizontal mirror plane

Table XL. Points group with a single rotational axis and a mirror plane perpendicular

to the axis

The alternative Hermann-Mauguin notation has as its principal symbol the integer

representing the order of the axis. This is followed by 2 to denote the 2-fold axes. If

n is even, a third digit 2 is added to indicate that a second set of 2-fold axes midway

between the first is generated by the basic symmetry operation.

Symmetry Order Description

D3 (222) Orthorhombic 4 Identity operation and three

perpendicular 2-fold axes

D3 (32) Trigonal 6 Perpendicular to the 3-fold

rotation axes and three 2-fold axes

D4 (422) Tetragonal 8 Perpendicular to the 4-fold

rotation axes and four 2-fold axes

D6 (622) Hexagonal 12 Perpendicular to the 6-fold

rotation axes and six 2-fold axes

Table XLI. Simple dihedral point groups

263



f. Dihedral groups with vertical diagonal mirror planes: Dnd (n̄m)

These groups are derived from the groups Dn by adding vertical mirror planes that

bisect the angles between the 2-fold axes. The subscript d is derived from the fact

that such mirror planes are called diagonal mirror planes. The Hermann-Mauguin

notation for odd n is

n̄m

and for even n is

2nm.

Symmetry Order Description

D2d (4̄2m) Tetragonal 8 Adding two 2-fold axes

perpendicular to 4-fold axis of S4

D3d (3̄m) Trigonal 12 Adding inversion to D3

Table XLII. Dihedral groups with vertical diagonal mirror planes

g. Dihedral groups with horizontal mirror planes: Dnh (n/mm−)

These groups are obtained from the simple dihedral group Dn by adding mirror

planes perpendicular to the principal axis. In an alternate notation, an axis with

perpendicular mirror plane is denoted by n/m. The Hermann-Mauguin notation for

odd n is

n/mm

and for even n is

n/mmm.
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Symmetry Order Description

D2h (mmm, 2/mmm) Orthorhombic 8 Adding horizontal mirror on D2

D3h (3/mm, 6̄m2) Hexagonal 12 Adding 2 mirror plane perpendicular

to the 3-fold axis of D3

D4h (4/mmm) Tetragonal 16 Adding a horizontal mirror plane

perpendicular to the 4-fold axis of D4

D6h (6/mmm) Hexagonal 24 Adding a mirror plane perpendicular

to the 6-fold axis of D6

Table XLIII. Dihedral groups with horizontal mirror planes

h. Cubic point groups: T,O (23−)

The cubic point groups have the characteristic feature of having three perpendicular

2-fold axes with a 3-fold axis equidistant from the three 2-fold axes, that is, along

the diagonal of a cube formed by the three 2-fold axes. One of the cubic groups

has the symmetry of the regular tetrahedron (denoted by T ) and one that of the

regular octahedral (denoted by O). The subscripts h and d have the same meaning

as described earlier.
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Symmetry Order Description

T (23) Cubic 12 Adding a 3-fold axes that are equidistant

from the three 2-fold axes of 222

Td (4̄3m) Cubic 24 Adding mirror planes that contain the

3-fold and 2-fold axes of T

O (432) Cubic 24

Oh (m3m) Cubic 48

Th (m3̄) Cubic 24

Table XLIV. Cubic point groups

3. The summary of the crystallographic point groups

For crystals, it is more useful to classify the point groups in terms of the seven crystal

systems. They are given in the table below

Crystal Group

Triclinic C1, Ci

Monoclinic C1h, C2, C2h

Orthorhombic C2v, D2, D2h

Tetragonal C4, S4, C4h, D2d, C4v, D4, D4h

Trigonal C3, S6, C3v, D3, C3d

Hexagonal C3h, C6, D3h, C6h, C6v, D6, D6h

Cubic T, Th, Td, O,Oh

Table XLV. 32 crystallographic point groups
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B2. Group theory

Definition of group: A collection of elements, G, will be called a group if its

elements A,B,C, ... can be combined together (multiplied) in such a way that the

rule of combination satisfies the following four axioms:

1. Closer: If A,B ∈ G then AB ∈ G and is unique

2. Associative: A(BC) = (AB)C

3. Identity: AE = EA = A

4. Inverse: AA−1 = A−1A = E

The number of elements in a group is the order of the group. This section is closely

followed by [173].

1. Multiplication table

Suppose we have a square cut out in a piece of cardboard as shown in Fig.84 This

structure can be represented by the group C4v with the following elements (Fig.85)

{E,C4, (C4)
2, (C4)

3, mx, my, mπ
4
, m−π

4
}.

The order of the group is 8. Let us consider the following operations

C4mx = mπ
4
, mπ

4
(C4)

3 = my, mπ
4
m−π

4
= (C4)

2, .......

All such products of the group elements can be represented by a table, known as

the group multiplicative table. In a successive operation such as ABC... the order of

operation is from right to left. The ordering of the rows and the columns in writing

down the multiplication table is immaterial. We have chosen a different ordering
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Fig. 84. The axes and planes of symmetry of a square

for the rows and columns such that the principal diagonal contains only the identity

element E. This type of arrangement has some advantages in the representation of a

group.

2. Conjugate elements and classes

If A,B,C ∈ G such that A−1BA = C then B and C are knowns as conjugate elements

and the process is known as similarity transformation of B by A. Now it is possible

to split the group into sets such that all the elements of a set are conjugate to each

other but no two elements belonging to different sets are conjugate to each other.

Such sets of elements are called conjugate classes or simply classes.
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Fig. 85. Symmetry transformation of a square

Example: The classes of the group C4v are

(E), (C4, (C4)
3), ((C4)

2), (mx, my), (mπ
4
, m−π

4
)

3. Multiplication of classes

Let us consider two classes

Ci = (A1, A2, ..., Am)

Cj = (B1, B2, ..., Bn).

We denote

CiCj = (A1B1, A1B2, ...., AlBk, ...., AmBn)

= (Aα ⊗Bβ) α = 1, ..., m β = 1, ..., n.

We can express the product of two classes of a group as a sum of complete classes of

the group. i.e

CiCj =
∑

k

aij,kCk aij,k ∈ Int+ or 0.
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1st(→) E C4 (C4)
2 (C4)

3 mx my mπ
4

m−π
4

2nd(↓) E E C4 (C4)
2 (C4)

3 mx my mπ
4

m−π
4

(C4)
3 (C4)

3 E C4 (C4)
2 m−π

4
mπ

4
mx my

(C4)
2 (C4)

2 (C4)
3 E C4 mx my m−π

4
mπ

4

C4 C4 (C4)
2 (C4)

3 E mπ
4

m−π
4

my mx

mx mx m−π
4

my mπ
4

E (C4)
2 (C4)

3 C4

my my mπ
4

mx m−π
4

(C4)
2 E C4 (C4)

3

mπ
4

mπ
4

mx m−π
4

my C4 (C4)
3 E (C4)

2

m−π
4

m−π
4

my mπ
4

mx (C4)
3 C4 (C4)

2 E

Table XLVI. The multiplication table for the group C4v

Example: Let us consider

C1 ⇒ (E), C2 ⇒ (C4, (C4)
3), C3 ⇒ ((C4)

2), C4 ⇒ (mx, my), C5 ⇒ (mπ
4
, m−π

4
)

So,

C2C4 = 2C5

C5C5 = 2(C1 + C4)

..etc..

This theorem will be used to construct character table.

Let A,B ∈ {G1} and φ : G1 → G2 such that φ(AB) = φ(A)φ(B).
Homomorphism: If φ is a many-to-one mapping.

Isomorphism: If φ is one-to-one mapping.

Automorphism: When {G1} = {G2}.
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4. Representation of finite group

Let us consider a group with

{G1} = {E,C4, (C4)
2, (C4)

3}.

The multiplication table is given in Table XLVII. Let us consider another group

E C4 (C4)
2 (C4)

3

E E C4 (C4)
2 (C4)

3

(C4)
3 (C4)

3 E C4 (C4)
2

(C4)
2 (C4)

2 (C4)
3 E C4

C4 C4 (C4)
2 (C4)

3 E

Table XLVII. The multiplication table for G1

{G2} = {1,−1, i,−i}, (i =
√
−1)

and the multiplication table of this group is given in XLVIII. It is possible that {G1}

Subgroup (H of G): H ⊂ G and also a group under some binary composition
as in G.

Abelian group: If A,B ∈ G and AB = BA i.e they commute.

Invariant subgroup: If H is a subgroup of G such that ∀G ∈ {G} and ∀H ∈ {H},
GHG−1 ∈ {H}, then {H} is said to be an invariant subgroup.

Direct sum of matrices : Let [A]m×m, [B]n×n and [C]k×k. Then the direct sum
is given by

[D]m+n+k,m+n+k = [A]m×m ⊕ [B]n×n ⊕ [C]k×k

Or

D = A⊕ B ⊕ C =

[
A

B
C

]
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1 −1 i −i

1 −1 i −i

−1 −1 1 i −i

i i −i 1 −1

−i −i i −1 1

Table XLVIII. The multiplication table for G2

and {G2} be isomorphic if we make the following correspondence

E ↔ 1, C4 ↔ i, (C4)
2 ↔ −1, (C4)

3 ↔ −i

Then they have same multiplication table i.e having same rearrangement. Very often

several groups, which arise in different contexts in everyday life and consequently with

different physical meanings attached to the elements, are isomorphic to one obstruct

group, whose properties can then be analyzed once for all.

Definition Let G = {E,A,B, C, ..} be a finite group of order n with E as the

identity element. Let T = {T (E), T (A), T (B)...} be a collection of nonsingular square

matrices, all of the same order, having the property

T (A)T (B) = T (AB)

that is if AB = C ∈ G, then

T (A)T (B) = T (C).

The collection T of matrices is said to be a representation of group G. The order of

the matrices of T is called dimension of the representation.
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General linear group of degree n, denoted by GL(n), is the set of n × n invertible

matrices, together with the operation of ordinary matrix multiplication. This forms a

group. The group is so named because the columns of an invertible matrix are linearly

independent. Let GL(n) be an n-dimensional vector space on which the operators of

a group G acts. If {e1, ..., en} be an orthonormal basis in GL(n), then the operation

of an element A ∈ G on a basis vector is given by

Aei =

n∑

j=1

Tji(A)ej (B.1)

where T (A) is the matrix representing A with the basis {ei}. GL(n) is called the

carrier space of T.

If all the matrices of T are distinct, there is clearly a one-to-one correspondence

between the elements of G and the matrices of T . In this case, the groups G and T

are isomorphic to each other and called faithful representation of G. On the other

hand, if the matrices of T are not all distinct, there exists only a homomorphism from

G to T and such representation is called unfaithful representation of G.

Example: Consider the following group,

{G} = {E,C4, (C4)
2, (C4)

3}.

Then the following representation

Special linear group, written as SL(n), is the subgroup of GL(n) consisting of
matrices with a determinant of 1. The set of unitary transformations U(n) and
orthogonal transformations O(n) is a subgroup of GL(n) and are called unitary group
and orthogonal group respectively.

273



{T} = {T (E) =



1 0

0 1


 , T (C4) =




0 1

−1 0


 , T (C4)

2 =



−1 0

0 −1




T (C4)
3 =



0 −1

0 1


}

is a faithful representation. Similarly

{T} = {T (E) = 1, T (C4) = 1, T (C4)
2 = 1, T (C4)

3 = 1}.

is an unfaithful representation.

5. Reducibility of a representation

Let T = {T (E), T (A), T (B)...} be a representation of G in the vector space GL(n).

We now state that if GL(n) has an invariant subspace GL(m) (m < n) under G, then

in a suitable basis the matrices of the representation have the form

T (A) =



D(1)(A) 0

X(A) D(2)(A)


 ,

where D(1)(A) and D(2)(A) are square matrices of order m and n − m respectively,

X(A) is of order (n − m) × m and 0 is a null matrix of order m × (n − m). It

can be shown that any representation T of a finite group, whose matrices may be

non-unitary, is equivalent (through similarity transformation) to a representation by

unitary matrices. It is always possible to convert T (A) into unitary matrices Γ(A)

An invariant subspace of a linear mapping T : V → V from some vector space
V to itself is a subspace W of V such that T (W ) is contained in W .

A unitary matrix is a square complex matrix U , which satisfies U †U = UU † = I,
where U † is complex conjugate (also called Hermitian adjoint) of U . For real matrix
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through similarity transformation.

a. Irreducible representation

If the representation T considered above is reducible, the representation Γ = {Γ(E),Γ(A),Γ(B)...}

is also reducible. Moreover, since the matrices of Γ are unitary, they must have the

form

Γ(A) =



S(1)(A) 0

0 S(2)(A)


 ,

It may be possible that the representations S(1) and S(2) are further reducible. This

process can be carried out until we can find no unitary transformation which reduces

all the matrices of a representation further. Thus the final form of the matrices of

the representation Γ may look like

Γ(A) =




Γ(1)(A) 0

Γ(2)(A)

. . .

0 Γ(s)(A)



,

or with all the matrices of Γ having the same reduced structure. When such a

complete reduction of a representation is achieved, the component representations

Γ(1)(A),Γ(2)(A), ...,Γ(s)(A) are called the irreducible representations of the group G

and the representation Γ is said to be fully reduced, i.e.

Γ = a1Γ
(1)(A)⊕ a2Γ

(2)(A)⊕ ...⊕ acΓ
(c)(A) (c ≤ s). (B.2)

• Number of irreducible representation of a group = number of classes

it is simply orthogonal matrix.
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• ∑c
i=1 l

2
i = n(order of the group) and li = dimΓ(i)

b. Characters of a representation

The matrices of a representation of a group in a given vector space are not unique,

for they depend on the choice of the basis vectors. However, all such representations

must be related to each other by some similarity transformation and must therefore

be equivalent to each other. Since the trace of a matrix is invariant under similarity

transformation, the traces of all the matrices of a representation would uniquely

characterize a representation.

Let Γ be a representation of a group G. We define the characters of the rep-

resentation Γ as the set of the traces of all the matrices of the representation Γ,

i.e,

χ(A) = tr Γ(A)

All the elements in a class have the same character in a representation. The character

is therefore a function of the classes just as a representations is a function of the group

elements.

c. Orthogonality of characters

It can be shown that

∑

A∈G
χ(i)(A)χ(j)∗(A) = nδij .

Here χ(i)(A) is the character of the element A in the representation Γ(i), n is the order

of the group. If nk is the number of elements in the class Ck of the group, then one
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can write

c∑

i=1

χ
(i)∗
k χ

(i)
l =

n

nk
δkl

where χ
(i)
k is the character of an element A in the class Ck in the representation Γ(i)

etc.

d. Reduction of a reducible representation

It very often happens that we have a representation of a group which is a reducible

one. Such a representation, say Γ, may be written as a linear combination of the

irreducible representation as (B.2). We can find the number of times an irreducible

representation Γ(i) occurs in the reduction Γ. For this we take the trace of both sides

of (B.2). If χ(A), etc., denote the characters of the elements in the representation Γ,

then we have

χ(A) =
c∑

i

aiχ
(i)(A), (B.3)

for all A ∈ G. Now using the orthogonality property i.e, multiplying both sides

χ(j)∗(A) and summing over all the elements of G, we get

ai =
1

n

∑

A∈G
χ(i)∗(A)χ(A).

This gives a method for obtaining the coefficients in (B.2). The character of the irre-

ducible representations are called primitive or simple characters, while the characters

of the reducible representations are called compound characters. The compound char-

acter can be expressed as a linear combination of the simple characters of a group as

(B.3).
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6. The example of C4v

We will illustrate now how to find the irreducible representations and the correspond-

ing characters for the group C4v.

a. Character table of C4v

• Find the number of classes for C4v. For this group we have

C1, C2, C3, C4, C5.

• Number of irreducible representation of a group = number of classes. This

means it must have five irreducible representation

Γ(1), Γ(2), Γ(3), Γ(4), Γ(5), .

• Since
∑c

i=1 l
2
i = n(order of the group) and li = dimΓ(i), then

l21 + l22 + l23 + l24 + l25 = 8

The only possible solution (with integral li) is when four of li’s equal to 1 and

the remaining one equals to 2. The order of the li’s are immaterial. One can

choose l1 = l2 = l3 = l4 = 1 and l5 = 2.

• Using the orthogonal relation
∑c

i=1 χ
(i)∗
k χ

(i)
l = n

nk
δkl one can construct the char-

acter table for C4v

b. Irreducible representation of C4v

After having found the character table, it is easy to find the full irreducible represen-

tation. The first four irreducible representations are identical to the corresponding

characters. For Γ(5) we must choose a suitable set of basis functions. Choosing, for
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C1 C2 C3 C4 C5

χ(1) 1 1 1 1 1

χ(2) 1 −1 1 −1 1

χ(3) 1 −1 1 1 −1

χ(4) 1 1 1 −1 −1

χ(5) 2 0 −2 0 0

Table XLIX. The character table for C4v

convenience, the two orthonormal basis vectors (̂i, ĵ) we can obtain the matrices of

Γ(5). For example consider the operation of C4 on the basis vector (̂i, ĵ) i.e,

C4(̂i, ĵ) = (̂i′, ĵ′) = (−ĵ, î) = (̂i, ĵ)




0 1

−1 0




Then by definition of representation (Eq.(B.1)), we have

Γ(5)C4 = T (C4) =




0 1

−1 0




We can similarly obtain the other matrices of Γ(5). The complete table is given below

where

E C4 (C4)
2 (C4)

3 mx my mπ
4

m−π
4

Γ(1) 1 1 1 1 1 1 1 1

Γ(2) 1 −1 1 −1 −1 −1 1 1

Γ(3) 1 −1 1 −1 1 1 −1 −1

Γ(4) 1 1 1 1 −1 −1 −1 −1

Γ(5) T (E) T (C4) T (C4)
2 T (C4)

3 T (mx) T (my) T (mπ
4
) T (m−π

4
)

Table L. The irreducible representation of C4v
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T (E) =



1 0

0 1


 , T (C4) =




0 1

−1 0


 ......etc.

7. The regular representation

We will now consider an example of a reducible representation of C4v. The most

natural way of obtaining a representation of a finite group is by inspecting the mul-

tiplicative table (Tab. XLVI). Let us now construct square matrices of order 8 for all

the elements of C4v in the following ways. The matrix of an element is obtained by

replacing the element wherever it occurs in the multiplication table by unity and plac-

ing zeros elsewhere. For example, T (E) would be a unit matrix of order 8. Another

matrix, say T (C4), would take the form

T (C4) =




0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0




. (B.4)

The representation generated by such matrices is called regular representation of the

group. In many problems in physics, we have a set of basis functions generating

some representation of a group. However, such a representation may in general be a

reducible representation. It can be reduced by a suitable choice of the subsets of basis

functions. Suppose that the n basis functions {φ1, φ2, ..., φn} generate a representation
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T of the group. The matrix representation is given by

Aφi = Tij(A)φj.

Thus, for example, it can be seen that the eight functions φ1, φ2,...,φ8 of the eight

positions 1, 2,...,8 shown in Fig. 86 form a convenient set of basis functions for the

regular representation of C4v. The operation of, say C4, on the basis functions can

Fig. 86. The eight functions φi of the positions shown generate the regular represen-

tation of C4v

be written in the form

{φ′} = T (C4){φ},

where T (C4) is given in (B.4).

In order to reduce the representation T , we wish to find a suitable unitary trans-
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formation matrix U such that

U−1T (A)U = Γ(A),

for all A in G and Γ(A) has the reduced or block-diagonalized form. This suggest

that if we choose the new basis function

{ψ} = U{φ},

instead of the basis function {φ}, the matrices of the representation would be in the

block-diagonalized form. The new basis is invariant under the operation of the group

elements. This is also known as the basic quantities and form a carrier space of the

irreducible representation. In the expanded form we can write

ψi = Uijφj. (B.5)

For the purpose of finding the coefficients Uij , we write the above equation in a

different form as

ψαpm =

n∑

i=1

U i
αpmφi, (B.6)

where ψαpm is the m-th basis function for the irreducible representation Γα occurring

for the p-th time in the reduction of the representation T . If

Γ =

c⊕

α=1

aαΓ
(α)

then 1 ≤ α ≤ c, 1 ≤ p ≤ aα, 1 ≤ m ≤ lα (the dimension of Γ(α)). Equations (B.5)

and (B.6) are same. The matrix [U i
αpm] is just another label of Uij ; a set of values

(α, p,m) denotes a column of U and a value of i denotes a row of U . Similarly, ψαpm

is just another name for ψi. So, for C4 we would be looking for U such that

U−1T (A)U = Γ(1) ⊕ Γ(2) ⊕ Γ(3) ⊕ Γ(4) ⊕ 2Γ(5).
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∑

α, p,m

U i∗
αpmU

j
αpm = δij

lα∑

k=1

UE
αpmΓ

(α)
km = UA

αpm

B3. Crystallographic magnetic point group

The classical theory of symmetry was essentially a three dimensional study i.e. a

point P can be specified by a vector r = (x, y, z). We now give each point a fourth

coordinate [134] s, which can take only one value between two possible values. The

s can be the spin of a particle and the two allowed values correspond to spin-up and

spin down. In abstract terms the two allowed values of s can be represented by two

colors, such as black and white. If we include the coordinate s and if the values of

s for the various atoms in a lattice are randomly distributed, the symmetry of the

lattice will be completely destroyed. But if the values of s are distributed in a regular

fashion, it is possible for part of the symmetry to survive. For this purpose, we intro-

duce a new operation, which we may call operation of antisymmetry R. When this

operator acts on classical point group, it is possible to find out a collection of new

point groups, which are called black and white groups or magnetic groups or Heesch-

Shubnikov groups. If we think of s as being the two allowed values of a magnetic

direction, parallel and antiparallel to a particular direction, then R is the operation

which reverses a magnetic moment. Since a reversal of time changes the sign of the

current and hence reverses the direction of the magnetic moment vector, the opera-

tor R often known as time-inversion operator. We will denote the operation of R

by τ . There are three types of Heesch-Shubnikov point groups which are commonly

described as follows
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Type I the classical point group (32)

Type II the grey point group (32)

Type III the black and white or magnetic point group (58)

The numbers in brackets give the number of point groups of each type. The to-

tal number of Heesch-Shubnikov point groups is therefore 122. In type I groups the

operation of antisymmetry τ is not present. These are ordinary or classical point

groups G .

The extra coordinate s which we have introduced and which is allowed to take

one of two values, is assumed to take both values simultaneously in type II. Any

operation of G leaves s unchanged and τ times any operation of G changes black

into white and white into black, thereby also leaving s unchanged. Therefore, if

a spontaneous magnetic moment is developed at any point within the crystal, the

presence of τ will develop an equal and opposite moment at the same point. Therefore

a grey group cannot describe the symmetry of any crystal in which magnetic ordering

exists. Paramagnetic and diamagnetic materials belong to the grey group. Thus the

product of τ with any operation of G is also an element of the type II point group

M , which can be written as

M = G + τG .

In type III, the black and white point groups, the half of the elements of the ordinary

point group G are multiplied by the antisymmetry operator τ . The other half forms

a subgroup H of G . Type III point group M can be written as

M = H + τ(G − H )
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Ferromagnetic, antiferromagnetic, ferrimagnetic, weak ferromagnetic materials be-

long to this group.

Example: Consider the ordinary point group 4mm. As described earlier, the sym-

metry operations of a square are denoted by

{E,C4, (C4)
2, (C4)

3, mx, my, mπ
4
, m−π

4
}.

One way of coloring the square is shown in Fig.87a where four operators {E, (C4)
2, mx, my}

(a) (b)

Fig. 87. Symmetry of (a) 4mm (b) 4mm .

are still symmetry operations and belongs to H . However, the four operations

τC4, τ(C4)
3, τmπ

4
and τm−π

4
are the symmetry operators of the black and white

square. For example, τC4 means rotate the square +90o and turn black into white

and white into black., which reproduce the starting position of the square again. Thus

from the ordinary point group 4mm we have derived a black and white point group

4mm : E, (C4)
2, mx, my, τC4, τ(C4)

3, τmπ
4
, τm−π

4
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Another way of coloring the square is shown in Fig. 87b. For this pattern, corre-

sponding black and white group is

4mm : E,C4, (C4)
2, (C4)

3, τmx, τmy, τmπ
4
, τm−π

4

1. Polar and axial tensors

A tensor T obeys the following transformation rule

T ′
ijk...n = QipQjq...QnuTpqr...u

Quantities which are transformed according to this transformation rule are known as

polar tensors [145]. Such transformation does not change the hand of the axes i.e

their reflected images do not change any orientation.

On the other hand, there are numerous physical quantities which obey the trans-

formation law

T ′
ijk...n = −QipQjq...QnuTpqr...u,

where the negative sign is taken for transformations which change right-handed coor-

dinate axis into left-handed and vice-versa. Quantities which transform according to

the above rule are known as axial tensors [145]. A transformation which does change

the hand of the axes can always be considered to be a combination of a rotation of

the axes and a reversal of their sense (i.e. the inversion x′ = −x).

The most familiar examples of polar and axial tensors are polar vectors and

axial vectors. We know from basic physics that moving electrical charges generate a

magnetic field. In particular, electrons moving around the nucleus of an atom generate

tiny electrical currents which give rise to a vector quantity known as the magnetic

moment. The direction of the moment vector is determined by the direction of the

current; for a counter-clockwise current, the moment vector points up, whereas for a
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clockwise current the moment points down. If we consider the electrostatic equivalent,

the polarization vector, then the situation is different, since the electrostatic dipole

moment is defined as the charge multiplied by the separation between the negative

and positive charges. The image of a polar vector parallel to a mirror plane is a

new vector with the same direction as the original one. For an axial vector, on the

other hand, a counter-clockwise current becomes a clockwise current when viewed in

a mirror, so that the mirror image of a magnetic moment vector parallel to a mirror

plane is a moment vector parallel to the original one, but pointing in the opposite

direction.

2. i and c − tensors

Tensor of any order that are symmetry invariant of time are known as i-tensors and

tensors whose components change sign with time reversal are known as c-tensors. We

can thus generalized the transformation rule as follows

T ′
ijk...n = (−1)p(detQ)QipQjq...QnuTpqr...u,

where p = 1 for c-tensors and p = 0 for i-tensors. detQ = 1 for polar tensors and

detQ = −1 for axial tensors

3. Identification of type of magnetic ordering for a given magnetic group

In order to identify the type of magnetic ordering of a given magnetic group one needs

to examine the transformation properties of am atomic magnetic moment µ, which is

an axial-c tensor. We will illustrate this through some examples. Let us first consider

4mm. From Table LI, we can see that the unit cell does not exhibit any magnetism

where 4mm shows a net magnetization along the z axis, which is also known as the

easy axis
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Net

4mm E C4 (C4)
2 (C4)

3 mx my mπ
4

m−π
4

Moment

µx µx −µx µy −µy µx −µx µy −µy 0 (AF)

µy µy −µy −µx µx −µy µy µx −µx 0 (AF)

µz µz µz µz µz −µz −µz −µz −µz 0 (P)

4mm E C4 (C4)
2 (C4)

3 τmx τmy τmπ
4

τm−π
4

µx µx −µx µy −µy −µx µx −µy µy 0 (AF)

µy µy −µy −µx µx µy −µy −µx µx 0 (AF)

µz µz µz µz µz µz µz µz µz µz (F)

Table LI. Transformation properties of magnetic moment under application of sym-

metry operations. We denote antiferromagnetic by AF, ferromagnetic F and

paramagnetic by P.

B4. Decomposition of tensors

The whole linear space of rth order tensor Ti1i2..ir is reducible into subspaces consisting

of tensors of different symmetry types since symmetry is an invariant property. The

reduction can be obtained by applying Young symmetry operator to the indices of a

tensor [137, 174]. A brief outline of the procedure to symmetrize a tensor is given

below. More detailed analysis can be found in [175, 176]. A partition λ1λ2..λr of

Fig. 88. A frame with n boxes
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the positive integer λ is a set of positive integers λ1 ≥ λ2 ≥ ... ≥ λr such that

λ1 + λ2 + .. + λr = n. The frame [λ] = [λ1λ2..λr] associated with the partition

λ1λ2..λr consists of a row of λ1 boxes, a row of λ2 boxes,... arranged so that their left

hand ends are directly beneath one another (Fig. 88). A tableau is obtained from a

frame [λ] by inserting the numbers 1, 2, ...λ in any manner in to the n square boxes.

A standard tableau is one in which the integers increases from left to right and from

top to bottom. The Young symmetry operators Y[λ] associated with the standard

tableaux obtained from the frame [λ] = [λ1λ2..λr] are given by

Y[λ] = PQ

where

P = P1...Pr, Q = Q1...Qc.

In the above expression r and c denote the number of rows and columns of the tableau,

respectively. The quantities Pm and Qn are defined by

Pm =
∑

pi, Qn =
∑

δ(qj)qj

where pi and qj are the permutation of the numbers located in the m th row and n

th column of the tableau. δ(qj) is +1 and −1 for an even and odd permutation of qj ,

respectively, and the summation is over all possible permutations in a given row and

column.

Thus for λ = 4 we have five possible frames with [λ1 = 4], [λ1 = 3, λ2 = 1],

[λ1 = 2, λ2 = 2], [λ1 = 2, λ2 = 1, λ3 = 1] and [λ1 = 1, λ2 = 1, λ3 = 1, λ4 = 1].
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Pictorially, we can present them as

.

The notation to represents these tables are [4], [3, 1], [22], [2, 12] and [14] respectively.

The standard tableau for [3, 1] are given by

1 2 3

4

1 3 4

2

1 2 4

3
.

Each frame of the standard tableau has an unique Young operator. Different Young

operators can be obtained from the remaining standard tableau [175, 176].

The r th order tensors of basic symmetry type [λ] are obtained by applying

the Young operators Y[λ] to the indices of a general tensor Ti1i2..ir . To each standard

tableau belongs to a frame [λ], there corresponds a particular tensor of basic symmetry

type [λ] which we denote by T[λ]. The tensors T[λ] form the carrier space for an

irreducible representation of GL(n). These irreducible representations of GL(n) are

named by the same symbol [λ].

1. Decomposition of electromechanical quantities

Following the notation of Kiral-Eringen [135], we consider following categories of

tensors (TableLII). The representation of M,J,P,E in the Table LII are reducible.

We denote the magnetic point group by {M }. For a general case, we say that

{M } = {M 1, M
2, ....,M n}
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Type Properties Representation Examples

M Axial, c-vector [1] a,c Magnetization, magnetic field

and magnetic flux

J Polar, c-vector [1] p,c Electric current

P Polar, i-vectors [1] p,i Polarization, electric field

and electric displacement

E Polar, i-tensor, [2] p,i Stress and strain tensors

second-order,

symmetric

Table LII. Properties of electromechanical quantities

If we denote Γ by any one representation of M,J,P,E then

Γ =
r⊕

i=1

niΓi

where Γ1, ...Γr are the irreducible representation of {M }. To find the coefficients ni,

we will use Eq. (B.4), which is

ni =
1

n

n∑

i=1

χ∗
i (M

i)χ(M i).

The characters for polar tensors, which are not influenced by time symmetry, are

readily obtained in the following ways

χ[1]p, i(M
i) = tr(M i)

χ[2]p, i(M
i) =

1

2

(
[tr (M i)]2 + tr(M i2)

)

χ[12]p, i(M
i) =

1

2

(
[tr (M i)]2 − tr(M i2)

)
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As described in the Appendix, dim [2]p, i = 6 and dim [12]p, i = 3. The antisymmetric

representation thus can be presented by an axial vector i.e,

A := [1]a, i ⇔ [12]p, i

and we can write

χ[1]a, i(M
i) =

1

2

(
[tr (M i)]2 − tr(M i2)

)

For the remaining time-asymmetric representation the characters are given by

χ[1]p, c(M
i) = (−1)pχ[1]p, i(M

i)

χ[1]a, c(M
i) = (−1)pχ[1]a, i(M

i)

Type Representation Decomposition

M [1]a, c Γ(3) ⊕ Γ(5)

J [1]p, c Γ(4) ⊕ Γ(5)

P [1]p, i Γ(1) ⊕ Γ(5)

E [2]p,i 2Γ(1) ⊕ Γ(3) ⊕ Γ(4) ⊕ Γ(5)

Table LIII. Decomposition of electromechanical quantities of 4mm magnetic point

group

Example: Let us consider W =W (M,P,J,E), where the arguments M,P,J,E are

as described before. The irreducible representations of M = 4mm is given in Table

LIV and the explicit form of the basic quantities are given in Table LV. Typical
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Basic

E R2 R1 D3 T3 R2T3 R1T3 D3T3 Quantities

Γ(1) 1 1 1 1 1 1 1 1 φ1, φ2....

Γ(2) 1 −1 −1 1 −1 1 1 −1 ψ1, ψ2....

Γ(3) 1 −1 −1 1 1 −1 −1 1 ν1, ν2....

Γ(4) 1 1 1 1 −1 −1 −1 −1 τ1, τ2....

Γ(5) E F −F −E K L −L −K a1, a2....

Table LIV. Irreducible representation of C4v (4mm)

multilinear elements of the integrity bases for 4mm are

Degree 1:
∑

φi

Degree 2:
∑

ψiψj ,
∑

νiνj ,
∑

τiτj ,
∑

ai · aj

Γ(1) P3 E11 + E22, E33

Γ(2)

Γ(3) M3 E12

Γ(4) J3 E11 − E22

Γ(5) (M2, M1) (J1, −J2) (P1, P2) (E31, E32)

Table LV. The basic quantities of C4v (4mm)
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We write

Γ(1) : φ1, φ2, φ3 ≡ u
(1)
1 , u

(1)
2 , u

(1)
3 = E11 + E22, E33, P3

Γ(3) : ν1, ν2 ≡ u
(3)
1 , u

(3)
2 =M3, E12

Γ(4) : τ1 ≡ u
(4)
1 = E11 − E22

Γ(5) : a1, a2, a3 ≡



u
(6)
11

u
(6)
12


 ,



u
(6)
21

u
(6)
22


 ,



u
(6)
31

u
(6)
32




=



M2

M1


 ,



E31

E32


 ,



P1

P2




We list the element of integrity bases as:

Degree 1: φ1, φ2, φ3

Degree 2: ν21 , ν1ν2, ν
2
2 , τ

2
1 ,

a1 · a1, a2 · a2, a3 · a3, a1 · a2, a1 · a3, a2 · a3.

If we further neglect polarization for a magnetic material, the elements of the integrity

basis are given by

I1 = E11 + E22, I2 = E33, I3 = (E12)
2, I4 = (E11 − E22)

2

I5 = E2
31 + E2

32, I6 =M2
3 , I7 =M2

2 +M2
1 , I8 =M3E12

I9 =M2E31 +M1E32
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APPENDIX C

EXPANSION OF POINTING VECTOR

The following expansion is followed from the text of Kovetz [131]. We will start

with the following identity for any two vectors u,v,

u · ∗
v = u · [v̇ + v∇ · ẋ− (∇⊗ ẋ)v]

= u · [v̇ + vI : L− Lv]

= u · v̇ + [(u · v)I− u⊗ v] : L (C.1)

So,

∇ · (ẽ× h̃) = −j̃f · ẽ− h̃ ·
∗

b− ẽ ·
∗

d

= −j̃f · ẽ− h̃ · ḃ− ẽ · ḋ

− [(h̃ · b+ ẽ · d)I− h̃⊗ b− ẽ⊗ d] : L (C.2)

Now we will compute each term of (C.2) where

h̃ · ḃ = (h− ẋ× d) · ḃ

= [(
b

µ0

−m)− ẋ× (p+ ǫ0e)] · ḃ

= [
b

µ0
− ẋ× ǫ0e− (m+ ẋ× p)] · ḃ

=
b · ḃ
µ0

− m̃ · ḃ− ǫ0e× ḃ · ẋ (C.3)

ẽ · ḋ = (e+ ẋ× b) · (ǫ0ė+ ṗ)

= (e+ ẋ× b) · ǫ0ė+ ẽ · ṗ

= ǫ0e · ė+ ẽ · ṗ− ǫ0ė× b · ẋ (C.4)
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Similarly,

h̃ · b =
b · b
µ0

− m̃ · b− ǫ0e× b · ẋ (C.5)

ẽ · d = ǫ0e · e+ ẽ · p− ǫ0e× b · ẋ (C.6)

h̃⊗ b =
b⊗ b

µ0
− m̃⊗ b− ẋ× ǫ0e⊗ b (C.7)

ẽ⊗ d = ǫ0e⊗ e+ ẽ⊗ p− b× ẋ⊗ ǫ0e (C.8)

Substituting equations (C.3-C.8) in equation (C.2) we get,

∇ · (ẽ× h̃) = −j̃f · ẽ− (
b · ḃ
µ0

− m̃ · ḃ− ǫ0e× ḃ · ẋ)− (ǫ0e · ė+ ẽ · ṗ− ǫ0ė× b · ẋ)

− [((
b · b
µ0

− m̃ · b− ǫ0e× b · ẋ) + (ǫ0e · e+ ẽ · p− ǫ0e× b · ẋ))I

− (
b⊗ b

µ0
− m̃⊗ b− ẋ× ǫ0e⊗ b)− (ǫ0e⊗ e+ ẽ⊗ p− b× ẋ⊗ ǫ0e)] : L (C.9)

After rearranging few terms we get,

∇ · (ẽ× h̃) = −j̃f · ẽ− (
b · ḃ
µ0

− m̃ · ḃ+ ǫ0e · ė+ ẽ · ṗ) + (ǫ0e× ḃ · ẋ+ ǫ0ė× b · ẋ)

− [((
b · b
µ0

− m̃ · b+ ǫ0e · e + ẽ · p)− 2ǫ0e× b · ẋ))I

− ((
b⊗ b

µ0
− m̃⊗ b+ ǫ0e⊗ e+ ẽ⊗ p)− (ẋ× ǫ0e⊗ b+ b× ẋ⊗ ǫ0e))] : L (C.10)

We can further simplify the above expression by using the identity,

e× b⊗ ẋ+ ẋ× e⊗ b+ b× ẋ⊗ e = (e× b · ẋ)I (C.11)

This implies

∇ · (ẽ× h̃) = −j̃f · ẽ− (
b · ḃ
µ0

− m̃ · ḃ+ ǫ0e · ė + ẽ · ṗ) + d

dt
(ǫ0e× b) · ẋ

− [((
b · b
µ0

− m̃ · b+ ǫ0e · e + ẽ · p)− ǫ0e× b · ẋ))I

− ((
b⊗ b

µ0

− m̃⊗ b+ ǫ0e⊗ e+ ẽ⊗ p+ ǫ0e× b⊗ ẋ)] : L (C.12)
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and by using the identity (2.33), the above equation simplifies to

∇ · (ẽ× h̃) = −j̃f · ẽ− (
b · ḃ
µ0

− m̃ · ḃ+ ǫ0e · ė + ẽ · ṗ) + ρ
d

dt
(
ǫ0
ρ
e× b) · ẋ

− [(
b · b
µ0

− m̃ · b+ ǫ0e · e + ẽ · p)I

− (
b⊗ b

µ0
− m̃⊗ b+ ǫ0e⊗ e+ ẽ⊗ p+ ǫ0e× b⊗ ẋ)] : L (C.13)
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APPENDIX D

TENSOR DIFFERENTIATION

We will consider a scalar valued tensor function f(A) : D → R, differentiable in

a neighborhood of A, if there exist a tensor f(A),A ∈ D such that

d

dα
f(A+ αX)

∣∣∣
α=0

= f(A),A ·X. (D.1)

The ’·’ refers to a generalized contraction operation. When, A is a symmetric second

order tensor, the derivative also becomes symmetric and this requrement implies

f(A),A = Sym[f(A),A]. (D.2)

D1. Vector valued function

Let us consider the form of f(A) = A ·PA for a given symmetric second order tensor

P and a vector A. The by defination of D.1

d

dα
f(A+ αX)

∣∣∣
α=0

=
d

dα
(A+ αX) ·P(A+ αX)

∣∣∣
α=0

=
d

dα
(A ·A+ αA ·PX+ αX ·PA+ α2..)

∣∣∣
α=0

= (PTA+PA) ·X. (D.3)

So, f(A),A = 2PA, since P is symmetric. Similarly, if g(A) = A · Pv for a given

symmetric second order tensor P and a given vector v, then g(A),A = Pv.

D2. Tensor valued function

We will consider the derivative of a tensor valued scalar function of the form f(A) =

tr(AkL) (k = 1, 2..) with respect to A. Here A and L are second order tensors
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Following the definition D.1 we get,

d

dα
f(A+ αX)

∣∣∣
α=0

=
d

dα
(A+ αX)k : LT

∣∣∣
α=0

=
d

dα
(A+ αX)k

∣∣∣
α=0

: LT

=
d

dα
[(A+ αX)(A+ αX)..(A+ αX)︸ ︷︷ ︸

ktimes

]
∣∣∣
α=0

: LT

=
d

dα
[Ak + α

k−1∑

i=0

AiXAk−1−i + α2....]
∣∣∣
α=0

: LT

=

k−1∑

i=0

AiXAk−1−i : LT

=

k−1∑

i=0

(AT )iLT (AT )k−1−i : X. (D.4)

Hence,

tr(AkL),A =

k−1∑

i=0

(AiLAk−1−i)T . (D.5)

When A is symmetric, the according to D.2,

tr(AkL),A = Sym
k−1∑

i=0

(AiLAk−1−i)T =
k−1∑

i=0

Ai(SymL)Ak−1−i (D.6)

We will now consider some special cases,

Case-1: When the form of f(A) = u ·AkPv and A is symmetric

Here, P and u,v are arbitrary tensor and vectors respectively. We can write

f(A) = u ·AkPv = AkP : (u⊗ v)

= Ak : (u⊗ v)PT = Ak : (u⊗Pv)

= tr(AkL). (D.7)

where we denote L = u ⊗ Pv. So, the scalar function f follows the differentiation

rule as given in D.6
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Case-2: When k=2,1 and A is symmetric

tr(A2L),A = A(SymL) + (SymL)A, (D.8)

tr(AL),A = SymL. (D.9)

Case-3: When L = I and A is symmetric

tr(Ak),A =
k−1∑

i=0

AiAk−1−i = kAk−1. (D.10)
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APPENDIX E

CALCULATIONS OF HARDENING PARAMETERS

E1. Field Induced Phase Transformation

Combining the transformation function (3.12) with the driving force (3.51) and en-

forcing the Kuhn Tucker conditions (3.13), we can write the following conditions.

1. Forward transformation (ξ̇ > 0):

πt(σA, H
M
s , Tc)− Y t = 0 and at ξ = 0

|σA|Ecur(σA) + ∆(
1

2E
)σ2

A + µ0∆MHM
s + ρ∆s0Tc − ρ∆u0

− B − Y t = 0, (E.1)

πt(σM , H
M
f , Tc)− Y t = 0 and at ξ = 1

|σM |Ecur(σM ) + ∆(
1

2E
)σ2

M + µ0∆MHM
f + ρ∆s0Tc − ρ∆u0

+ πA− B − Y t = 0. (E.2)

2. Reverse transformation (ξ̇ < 0):

πt(σM , H
A
s , Tc) + Y t = 0 and at ξ = 1

|σM |Ecur(σM ) + ∆(
1

2E
)σ2

M + µ0∆MHA
s + ρ∆s0Tc − ρ∆u0

+ πC −D + Y t = 0, (E.3)
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πt(σA, H
A
f , Tc) + Y t = 0 and at ξ = 0

|σA|Ecur(σA) + ∆(
1

2E
)σ2

A + µ0∆MHA
f + ρ∆s0Tc − ρ∆u0

− D + Y t = 0, (E.4)

3. Continuity of hardening function at ξ = 1

∫ 1

0

f t
∣∣∣
ξ̇>0

dξ =

∫ 1

0

f t
∣∣∣
ξ̇<0

dξ

⇒ −A[π − π

2
] +B = −C[π − π

2
] +D

(using (3.27) since

∫ 1

0

cos−1(2ξ − 1)dξ =
π

2
)

⇒ B −D =
π

2
(A− C) (E.5)

So, from the five equations (E.1) to (E.5) we can now solve for five material parame-

ters A,B,C,D and Y t. (E.1)-(E.2) gives

A =
1

π
[(|σA|Ecur(σA)− |σM |Ecur(σM )) + ∆(

1

2E
)(σ2

A − σ2
M)

+ µ0∆M(HM
s −HM

f )] , (E.6)

(E.4)-(E.3) gives

C =
1

π
[(|σA|Ecur(σA)− |σM |Ecur(σM)) + ∆(

1

2E
)(σ2

A − σ2
M)

+ µ0∆M(HA
f −HA

s )] , (E.7)
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(E.1)+(E.4)

B +D = 2(|σA|Ecur(σA) + ∆(
1

2E
)σ2

A +
µ0

2
∆M(HM

s +HA
f )

+ ρ∆s0Tc)− 2ρ0∆u0

= 2(Θ)− 2ρ0∆u0 (E.8)

where, Θ denotes the expression under the braces. Solving (E.8) and (E.5) we get,

B = Θ+
π

4
(A− C)− ρ∆u0

D = Θ− π

4
(A− C)− ρ∆u0

and we denote

B̃ = B + ρ∆u0 = Θ+
π

4
(A− C) (E.9)

D̃ = D + ρ∆u0 = Θ− π

4
(A− C) (E.10)

Finally by (E.1) we get,

Y t = |σA|Ecur(σA) + ∆(
1

2E
)σ2

A + µ0∆MHM
s + ρ∆s0Tc

− B̃. (E.11)

With the help of transformation function ((3.12)), driving force ((3.51)) and

Kuhn Tucker conditions ((3.13)), the evolution of the volume fraction can be calcu-

lated in the following way

4. Evolution of ξ, forward transformation (ξ̇ > 0):

Φtξ̇ = 0 ⇒ Φt = 0 ⇒ πt − Y t = 0
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|σE|Ecur +∆(
1

2E
)σE

2

+ µ0∆MHx + ρ∆s0T − ρ∆u0 + A[π − cos−1(2ξ − 1)]− B − Y t = 0

which gives

ξ =
1

2
+

1

2
cos[π +

1

A
[|σExx|Ecur +∆(

1

2E
)(σExx)

2 + µ0∆MHx + ρ∆s0T − Y t − B̃]] .

⇒ ξ =
1

2
+

1

2
cos[f1|σExx|Ecur + f2(σ

E
xx)

2 + f3Hx + f4T + f5] . (E.12)

where

f1 =
1
A
, f2 = ∆ 1

2EA
f3 =

µ0∆M
A

, f5 =
ρ∆s0
A
, f5 = π + −Y t−B̃

A

5. Evolution of ξ, reverse transformation (ξ̇ < 0):

Φtξ̇ = 0 ⇒ Φt = 0 ⇒ πt + Y t = 0

|σE|Ecur +∆(
1

2E
)σE

2

+ µ0∆MHx + ρ∆s0T − ρ∆u0 + C[π − cos−1(2ξ − 1)]−D + Y t = 0

which gives

ξ =
1

2
+

1

2
cos[π +

1

C
[|σExx|Ecur +∆(

1

2E
)(σExx)

2 + µ0∆MHx + ρ∆s0Tc + Y t − D̃]] .

⇒ ξ =
1

2
+

1

2
cos[r1|sigExx|Ecur + r2(σ

E
xx)

2 + r3Hx + r4T + r5] . (E.13)

where
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r1 =
1
C
, r2 = ∆ 1

2EC
r3 =

µ0∆M
C

, r4 =
ρ∆s0
C
, r5 = π + Y t−D̃

C

E2. Variant Reorientation

1. Forward transformation (ξ̇4 > 0):

πr(σ∗, HM2
s )− Y r = 0 and at ξ4 = 0

σ∗Emax + µ0γH
M2
s − ρ0u

M
0 − B − Y r = 0, (E.14)

πr(σ∗, HM2
f )− Y r = 0 and at ξ4 = 1

σ∗Emax + γHM2
f − ρ0u

M
0 + πA− B − Y r = 0. (E.15)

2. Reverse transformation (ξ̇4 < 0):

πr(σ∗, HM1
s ) + Y r = 0 and at ξ4 = 1

σ∗Emax + µ0γH
M1
s − ρ0u

M
0 + πC −D + Y r = 0, (E.16)

πr(σ∗, HM1
f ) + Y r = 0 and at ξ4 = 0

σ∗Emax + µ0γH
M1
f − ρ0u

M
0 −D + Y r = 0, (E.17)

3. Continuity of Gibbs free energy potential

The cyclic integral of the Gibbs free energy is zero. This implies

B −D =
π

2
(A− C) (E.18)
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So, from the five equations (E.14) to (E.18) we can now solve for five material pa-

rameters A,B,C,D and Y r. (E.14)-(E.15) gives

A = µ0γ(H
M2
s −HM2

f ) , (E.19)

(E.17)-(E.16) gives

C = µ0γ(H
M1

f −HM1
s ) , (E.20)

(E.14)+(E.17)

B +D = 2(σ∗Emax +
µ0

2
γ(HM2

s +HM1

f ))− 2ρ0u0

= 2(Θ)− 2ρ0∆u0 (E.21)

where, Θ denotes the expression under the braces. Solving (E.21) and (E.18) we get,

B = Θ+
π

4
(A− C)− ρ0u0

D = Θ− π

4
(A− C)− ρ0u0

and we denote

B̃ = B + ρ0∆u0 = Θ+
π

4
(A− C) (E.22)

D̃ = D + ρ0∆u0 = Θ− π

4
(A− C) (E.23)

Finally by (E.14) we get,

Y r = σ∗Emax + µ0γH
M2
s − B̃. (E.24)

The evolution of the volume fraction for the forward reorientation is given below

306



4. Forward reorientation (ξ̇4 > 0):

Φr ξ̇4 = 0 ⇒ Φr = 0 ⇒ πr − Y r = 0

σExxE
max + µ0γHy − ρ∆u0 + A[π − cos−1(2ξ4 − 1)]−B − Y r = 0

which gives

ξ4 =
1

2
+

1

2
cos[π +

1

A
(σExxE

max + µ0γHy − Y r − B̃)] (E.25)

5. Reverse reorientation (ξ̇4 < 0):

Φrξ̇4 = 0 ⇒ Φr = 0 ⇒ πr + Y r = 0

σExxE
max + µ0γHy − ρ∆u0 + C[π − cos−1(2ξ4 − 1)]−D + Y r = 0

which gives

ξ4 =
1

2
+

1

2
cos[π +

1

C
(σExxE

max + µ0γHy + Y r − D̃)] (E.26)
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APPENDIX F

THE DEMAGNETIZATION EFFECT AND CORRECTION OF

EXPERIMENTAL DATA

The magnetostatic field caused by the body’s own magnetization is called the

demagnetizing field Hd [19]. The demagnetization field in a uniformly magnetized

ellipsoidal sample is always uniform, while it is nonuniform in a rectangular body. If

an external magnetic field Ha is applied, the total magnetic field is then given by

H = Ha +Hd . (F.1)

For uniformly magnetized bodies the magnetization vector can be taken outside the

integral expressions for the magnetic field strength [164, 165], such that

Hd(r) = −


 1

4π

∫∫

∂Ωm

r− r′

|r− r′|3 ⊗ n′ dA′




︸ ︷︷ ︸
=:D

M = −DM . (F.2)

Therein r is the position at which H is evaluated and r′ the location of a point on the

surface, with unit outward normal n′, of the region occupied by the magnetized body.

D is the demagnetization tensor, which only depends on the geometry of the body

and can be computed by evaluating the bracketed integral expression in (F.2). For a

spatially uniform magnetized body the demagnetization field can thus be computed

by simply multiplying the magnetization with an appropriate demagnetization factor.

Such factors for a rectangular prism have been tabulated for many different aspect

ratios [177, 178].
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Fig. 89. Shift of magnetization response (dotted line) due to demagnetization effect

during reverse transformation at 230 K and σM=-57 MPa.

F1. Experimental Data Correction for FIPT

One way to take into account the demagnetization effect is to solve a boundary value

problem [149]. However, we can estimate the demagnetization effect at constitutive

level by considering the magnetization is uniform. The demagnetization factor for

the longitudinal loading condition is given by Dx=0.19832 [178]. We rescale the four

critical magnetic values by Hcrt′ = Hcrt − DxMx |Hcrt and the magnetic field by

Hx = Ha −DxMx. The corrected response is shown in Fig.89. It should be observed

that, due to low aspect ratio (length of short axis/length of long axis) and high

magnitude of the field, the effect of demagnetization is not very strong. Finally, we

calculate that the percent change in magnetic field due to demagnetization effect is

less than 5%.
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F2. Experimental Data Correction for variant reorientation

In the analytical method, the demagnetization factor of the rectangular specimen

is approximated by the demagnetization factor of an ellipsoid with the same aspect

ratio. The explicit expression of demagnetization factor of a prolate ellipsoid with

the semi-major axis(a) and semi-minor axes(c) is given by,

Dx = Da =
α2

1− α2

[
1√

1− α2
sinh−1(

√
1− α2

α
)− 1

]
, (F.3)

Dy = Dc =
1

2
(1−Da) , (F.4)

where α = c/a. The above relation is used as the demagnetization factor of the

rectangular specimen of dimension 8× 4× 4mm3 with a=8 and c=4.

The magnetic properties, which are initially only known in terms of the applied

field, were used as if they were the true constitutive response of the material. The

magnetization response is obtained by

My = ξMsat + (1− ξ)
µ0(M

sat)2

2ρK1
Hy (F.5)

The demagnetization field is computed from the relation Hd
y = −DyMy. Accord-

ing to the equation (F.1), total magnetic field is then calculated by Ha
y −DyMy. This

is the first step to relate the applied and internal magnetic field. Similarly, replacing

the four critical magnetic properties by Ha
y crt −DyMy|Ha

y crt
, we get the correct set of

critical values.

This process is iterated unless the final solution converges to the true response.

A few iteration steps are required due to nonlinear behavior of the magnetization

response. The convergence condition of the global response is obtained by ensuring
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the convergence of all four critical magnetic values within a tolerance limit. The

algorithm is given in TableLVI. So, starting with the scale of applied magnetic field,

the process ends up with the scale of internal magnetic field and true constitutive

equation is obtained.

In the following analysis, the system takes four iterations to converge within the

tolerance 1E − 3. Following plots give the mode of convergence of the four critical

values.

(a) (b)

Fig. 90. Convergence of the critical parameters for the forward reorientation
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1st iteration

Hy ≃ Ha
y

My = ξMsat + (1− ξ)Msat µ0(M
sat)2

2ρK1
Hy

Hy = Ha
y −DyMy

Correction of critical values:

H
s(1,2)(1)
y = H

s(1,2),Experiment
y −DyMy(H

s(1,2)
y )

H
f(1,2)(1)
y = H

f(1,2),Experiment
y −DyMy(H

f(1,2)
y )

H
s(2,1)(1)
y = H

s(2,1),Experiment
y −DyMy(H

s(2,1)
y )

H
f(2,1)(1)
y = H

f(2,1),Experiment
y −DyMy(H

f(2,1)
y )

ith iteration:

H
(i)
y = H

a(i)
y −DyM

(i−1)
y

H
s(1,2)(i)
y = H

s(1,2),Experiment
y −DyM

(i−1)
y (H

s(1,2)(i−1)
y )

H
f(1,2)(i)
y = H

f(1,2),Experiment
y −DyM

(i−1)
y (H

f(1,2)(i−1)
y )

H
s(2,1)(i)
y = H

s(2,1),Experiment
y −DyM

(i−1)
y (H

s(2,1)(i−1)
y )

H
f(2,1)(i)
y = H

f(2,1),Experiment
y −DyM

(i−1)
y (H

f(2,1)(i−1)
y )

Convergence Criteria:

‖HCrit(i)
y −H

Crit(i−1)
y ‖ ≤ TOL

Table LVI. Iterative algorithm scheme for data correction
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(a) (b)

Fig. 91. Convergence of the critical parameters for the reverse reorientation

The convergence of magnetization and strain response is presented the following

plots.

It should be noted that, comparing with the Fig 52, the analytic solution is very

close to the numerical one and it converges much faster. Same trend is also observed

in the strain response. This approach is thus very effective as well as accurate to

obtain the proper constitutive responses, suitable for engineering analysis.
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(a) (b)

Fig. 92. Convergence of the magnetization and strain response curve towards the ac-

tual response.
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APPENDIX G

MAGNETO MECHANICAL BOUNDARY CONDITIONS

We seek to prove that if
[[
σ + σM

]]
n = 0 , (G.1)

then

σMTn = ta + µ0(H⊗M)n+
µ0

2
(M · n)2n , (G.2)

where σn = ta. Therein, n is the outward unit normal to the boundary ∂Ω and
[[
A
]]
:= A+ − A− is the jump operator, where A+ and A− represent the values of A

on either side of the discontinuity surface. From Ampère’s law, we can conclude that

[[Ht]] = 0, i.e.(5.2)(b), where the superscript t represents the tangential direction. It

then follows H = Hn +Ht = (H · n)n+Ht and

[[
H
]]
=
[[
Hn
]]
+
[[
Ht
]]
=
[[
Hn
]]
= (
[[
H
]]
· n)n . (G.3)

Using the constitutive relation H = 1
µ0
B−M in (G.3) and (5.2a) we find

[[
H
]]

= (
1

µ0

[[
B
]]
· n−

[[
M
]]
· n)n

= −(
[[
M
]]
· n)n

= −[(M+ −M−) · n]n

= (M · n)n . (G.4)

Here we have used the fact that M+ = 0 and M− = M. Note that (5.11) can be
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rewritten as σM = H⊗B− µ0
2
(H ·H)I. It follows that

[[
σM
]]
n =

[[
H⊗B

]]
n− µ0

2

[[
(H ·H)I

]]
n (G.5)

= (H+ ⊗B+ −H− ⊗B−)n− µ0

2
(H+ ·H+ −H− ·H−)n.

The first term in (G.5), using
[[
B
]]
· n = (B+ · n)− (B− · n) = 0, may be written as

(H+ ⊗B+ −H− ⊗B−)n = (B+ · n)H+ − (B− · n)H−

= (B+ · n)(H+ −H−)

= (B+ · n)
[[
H
]]

(G.6)

From (5.2b) it is clear that
[[
Ht
]]
=
[[
n ×H

]]
= 0 and consequently

[[
Ht ·Ht

]]
= 0

implies (cf. [113]),

|n×H+|2 = |n×H−|2 (G.7)

Using the identity (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c), we can write

(n×H+) · (n×H+) = (n · n)(H+ ·H+)− (H+ · n)2 . (G.8)

Similarly,

(n×H−) · (n×H−) = (n · n)(H− ·H−)− (H− · n)2 . (G.9)

From Eqs. (G.7), (G.8) and (G.9), we conclude

|H+|2 − (H+ · n)2 = |H−|2 − (H− · n)2 . (G.10)

which means
[[
H ·H

]]
=
[[
(H · n)2

]]
. Now with (G.10) we can write the second term

on the right hand side of (G.5) in the following form

µ0

2
[H+ ·H+ −H− ·H−]n =

µ0

2
[(H+ · n)2 − (H− · n)2]n

=
µ0

2
[(H+ −H−) · n][(H+ +H−) · n]n .
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Considering that (H+ −H−) · n =
[[
H
]]
· n and (H+ +H−) · n = [( 1

µ0
B+ −M+) +

( 1
µ0
B−−M−)] ·n = [ 1

µ0
B+ + 1

µ0
B− −M−] ·n, with B+ ·n = B− ·n due to (5.2a) and

(G.4), it follows

µ0

2
[H+ ·H+ −H− ·H−]n =

µ0

2

[[
H
]]
· n[ 2

µ0

(B+ −M) · n]n

= (B+ · n)(
[[
H
]]
· n)n− µ0

2
(M · n)(

[[
H
]]
· n)n

= (B+ · n)
[[
H
]]
− µ0

2
(M · n)

[[
H
]]

= (B+ · n)
[[
H
]]
− µ0

2
(M · n)2n . (G.11)

Substitution of Eqs. (G.6) and (G.11) into (G.5) yields

[[
σM
]]
n =

µ0

2
(M · n)2n . (G.12)

In consequence, with (5.16), we obtain

[[
σ + σM

]]
n =

[[
σ
]]
n+

[[
σm
]]
n

= (σ+ − σ−)n+
[[
σm
]]
n

= ta − σn+
µ0

2
(M · n)2n

= ta − σMTn+ µ0(H⊗M)n+
µ0

2
(M · n)2n .

Finally, (G.1) yields the boundary condition in the following form

σMTn = ta + µ0(H⊗M)n+ µ0
2
(M · n)2n (G.13)
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APPENDIX H

EXPANDED INVARIANT TABLE

The Gibbs free energy contains the set of external variables (experimentally con-

trolled) {SE ,H, T}, the set of internal variables {Z} = {EI ,MI , ξi, g}, the mechanical

structural tensor Am = a ⊗ a and the magnetic structural tensor Af = f ⊗ f . We

denote two anti-symmetric tensors W1 and W2 such that H and MI are the respec-

tive axial vectors i.e W1z = H× z and W2z = MI × z for an arbitrary vector z. We

are looking for invariants for a scalar valued isotropic functions with four symmetric

tensors {SE,EI ,Am,Af} and two anti-symmetric tensors {W1,W2}. They are given

in tables below.
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Argument/s Tensors whose traces are

irreducible invariants (i)

W1 W2
1

W2 W2
2

SE SE SE
2

SE
3

EI EI EI2 EI3

Am Am Am
2 Am

3

Af Af Af
2 Af

3

W1,W2 W1W2

W1,S
E W2

1S
E W2

1S
E2

W2
1S

EW1S
E2

W1,E
I W2

1E
I W2

1E
I2 W2

1E
IW1E

I2

W1,Am W2
1Am W2

1Am
2 W2

1AmW1Am
2

W1,Af W2
1Af W2

1Af
2 W2

1AfW1Af
2

W2,S
E W2

2S
E W2

2S
E2

W2
2S

EW1S
E2

W2,E
I W2

2E
I W2

2E
I2 W2

2E
IW1E

I2

W2,Am W2
2Am W2

2Am
2 W2

2AmW2Am
2

W2,Af W2
2Af W2

2Af
2 W2

2AfW2Af
2

SE ,EI SEEI SE
2
EI∗ SE

2
EI2

SE ,Am SEAm SE
2
Am

∗ SE
2
Am

2

SE ,Af SEAf SE
2
Af

∗ SE
2
Af

2

EI ,Am EIAm EI2Am
∗ EI2Am

2

EI ,Af EIAf EI2Af
∗ EI2Af

2

Am,Af AmAf Am
2Af

∗ Am
2Af

2

Table LVII. Isotropic scalar invariants
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Argument/s Tensors whose traces are

irreducible invariants (i)

W1,W2,S
E W1W2S

E W1W2S
E2

W2
1W2S

E†

W2
1W2S

E2†
W2

1S
EW2S

E2†

W1,W2,E
I W1W2E

I W1W2E
I2 W2

1W2E
I †

W2
1W2E

I2† W2
1E

IW2E
I2†

W1,W2,Am W1W2Am W1W2Am
2 W2

1W2Am
†

W2
1W2Am

2† W2
1AmW2Am

2†

W1,W2,Af W1W2Af W1W2Af
2 W2

1W2Af
†

W2
1W2Af

2† W2
1AfW2Af

2†

W1,S
E,EI W1S

EEI W1S
E2
EI∗ W1S

E2
EI2

W1S
E2
EISE

∗
W1S

E2
EI2SE

∗
W2

1S
EEI

W2
1S

E2
EI∗ W2

1S
EW1E

I W2
1E

IW1S
E2∗

W1,S
E ,Am W1S

EAm W1S
E2
Am

∗ W1S
E2
Am

2

W1S
E2
AmS

E∗
W1S

E2
Am

2SE
∗

W2
1S

EAm

W2
1S

E2
Am

∗ W2
1S

EW1Am W2
1AmW1S

E2∗

W1,S
E,Af W1S

EAf W1S
E2
Af

∗ W1S
E2
Af

2

W1S
E2
AfS

E∗
W1S

E2
Af

2SE
∗

W2
1S

EAf

W2
1S

E2
Af

∗ W2
1S

EW1Af W2
1AfW1S

E2∗

W1,E
I ,Am W1E

IAm W1E
I2Am

∗ W1E
I2Am

2

W1E
I2AmE

I∗ W1E
I2Am

2EI∗ W2
1E

IAm

W2
1E

I2Am
∗ W2

1E
IW1Am W2

1AmW1E
I2∗

Table LVIII. Isotropic scalar invariants (continued-1)
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Argument/s Tensors whose traces are

irreducible invariants (i)

W1,E
I ,Af W1E

IAf W1E
I2Af

∗ W1E
I2Af

2

W1E
I2AfE

I∗ W1E
I2Af

2EI∗ W2
1E

IAf

W2
1E

I2Af
∗ W2

1E
IW1Af W2

1AfW1E
I2∗

W1,Am,Af W1AmAf W1Am
2Af

∗ W1Am
2Af

2

W1Am
2AfAm

∗ W1Am
2Af

2Am
∗ W2

1AmAf

W2
1Am

2Af
∗ W2

1AmW1Af W2
1AfW1Am

2∗

W2,S
E ,EI W2S

EEI W2S
E2
EI∗ W2S

E2
EI2

W2S
E2
EISE

∗
W2S

E2
EI2SE

∗
W2

2S
EEI

W2
2S

E2
EI∗ W2

2S
EW2E

I W2
2E

IW2S
E2∗

W2,S
E,Am W2S

EAm W2S
E2
Am

∗ W2S
E2
Am

2

W2S
E2
AmS

E∗
W2S

E2
Am

2SE
∗

W2
2S

EAm

W2
2S

E2
Am

∗ W2S
EW2

2Am W2
2AmW2S

E2∗

W2,S
E ,Af W2S

EAf W2S
E2
Af

∗ W2S
E2
Af

2

W2S
E2
AfS

E∗
W2S

E2
Af

2SE
∗

W2
2S

EAf

W2
2S

E2
Af

∗ W2
2S

EW2Af W2
2AfW1S

E2∗

W2,E
I ,Am W2E

IAm W2E
I2Am

∗ W2E
I2Am

2

W2E
I2AmE

I∗ W2E
I2Am

2EI∗ W2
2E

IAm

W2
2E

I2Am
∗ W2

2E
IW2Am W2

2AmW2E
I2∗

W2,E
I ,Af W2E

IAf W2E
I2Af

∗ W2E
I2Af

2

W2E
I2AfE

I∗ W2E
I2Af

2EI∗ W2
2E

IAf

W2
2E

I2Af
∗ W2

2E
IW2Af W2

2AfW2E
I2∗

W2,Am,Af W2AmAf W2Am
2Af

∗ W2
2Am

2Af
2

W2Am
2AfAm

∗ W2Am
2Af

2Am
∗

W2
2AmAf W2

2Am
2Af

∗

W2AmW2Af W2
2AfW2Am

2∗

Table LIX. Isotropic scalar invariants (continued-2)
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Argument/s Tensors whose traces are

irreducible invariants (i)

SE,EI ,Am SEEIAm SE
2
EIAm

∗ SEEI2Am
2∗

SE ,EI ,Af SEEIAf SE
2
EIAf

∗ SEEI2Af
2∗

SE ,Am,Af SEAfAm SE
2
AfAm

∗ SEAf
2Am

2∗

EI ,Am,Af EIAfAm EI2AfAm
∗ EIAf

2Am
2∗

SE ,EI ,W1,W2 W1W2S
EEI∗ W1W2S

E2
EI∗† W1W2S

E2
EI2

W1W2S
E2
EISE

∗
W2

1W2S
EEI † W2

1S
EW2E

I†

W2
1E

IW2S
E2∗†

SE ,Am,W1,W2 W1W2S
EAm

∗ W1W2S
E2
Am

∗† W1W2S
E2
Am

2

W1W2S
E2
AmS

E∗
W2

1W2S
EAm

† W2
1S

EW2Am
†

W2
1AmW2S

E2∗†

SE ,Af ,W1,W2 W1W2S
EAf

∗ W1W2S
E2
Af

∗† W1W2S
E2
Af

2

W1W2S
E2
AfS

E∗
W2

1W2S
EAf

† W2
1S

EW2Af
†

W2
1AfW2S

E2∗†

EI ,Am,W1,W2 W1W2E
IAm

∗ W1W2E
I2Am

∗† W1W2E
I2Am

2

W1W2E
I2AmE

I∗ W2
1W2E

IAm
† W2

1E
IW2Am

†

W2
1AmW2E

I2∗†

EI ,Af ,W1,W2 W1W2E
IAf

∗ W1W2E
I2Af

∗† W1W2E
I2Af

2

W1W2E
I2AfE

I∗ W2
1W2E

IAf
† W2

1E
IW2Af

†

W2
1AfW2E

I2∗†

Af ,Am,W1,W2 W1W2AfAm
∗ W1W2Af

2Am
∗† W1W2Af

2Am
2

W1W2Af
2AmAf

∗ W2
1W2AfAm

† W2
1AfW2Am

†

W2
1AmW2Af

2∗†

Table LX. Isotropic scalar invariants (continued-3)
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Argument/s Tensors whose traces are

irreducible invariants (i)

SE ,EI ,Am,W1 W1S
EEIAm W1E

IAmS
E W1AmS

EEI

W1S
E2
EIAm

∗ W1S
E2
AmE

I∗ W1E
ISE

2
Am

∗

W1S
E2
EIAmS

E∗
W1E

I2SE
2
Am

∗ W1S
E2
EI2Am

∗

W2
1S

EEIAm W2
1S

EAmE
I W2

1S
E2
W1E

IAm
∗

W2
1S

EW1E
IAm

SE ,EI ,Af ,W1, W1S
EEIAf W1E

IAfS
E W1AfS

EEI

W1S
E2
EIAf

∗ W1S
E2
AfE

I∗ W1E
ISE

2
Af

∗

W1S
E2
EIAfS

E∗
W1E

I2SE
2
Af

∗ W1S
E2
EI2Af

∗

W2
1S

EEIAf W2
1S

EAfE
I W2

1S
E2
W1E

IAf
∗

W2
1S

EW1E
IAf

SE ,EI ,Am,W2 W2S
EEIAm W2E

IAmS
E W2AmS

EEI

W2S
E2
EIAm

∗ W2S
E2
AmE

I∗ W2E
ISE

2
Am

∗

W2S
E2
EIAmS

E∗
W2E

I2SE
2
Am

∗ W2S
E2
EI2Am

∗

W2
2S

EEIAm W2
2S

EAmE
I W2

2S
E2
W2E

IAm
∗

W2
2S

EW2E
IAm

SE ,EI ,Af ,W2 W2S
EEIAf W2E

IAfS
E W2AfS

EEI

W2S
E2
EIAf

∗ W2S
E2
AfE

I∗ W2E
ISE

2
Af

∗

W2S
E2
EIAfS

E∗
W2E

I2SE
2
Af

∗ W2S
E2
EI2Af

∗

W2
2S

EEIAf W2
2S

EAfE
I W2

2S
E2
W2E

IAf
∗

W2
2S

EW2E
IAf

Table LXI. Isotropic scalar invariants (continued-4)
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Argument/s Tensors whose traces are

irreducible invariants (i)

SE ,EI ,Am,Af SEEIAmAf SEEIAfAm SE
2
EIAmAf

∗

SE
2
EIAfAm

∗ SE
2
EI2AmAf SE

2
Af

2EIAm

SE
2
Am

2EIAf EI2Am
2SEAf EI2Af

2SEAm

Am
2Af

2SEEI SE
2
EISEAmAf

∗

SE ,EI ,Am, W1W2S
EEIAm W1W2S

EAmE
I W1W2E

ISEAm

W1,W2 W1W2E
IAmS

E W1W2AmS
EEI W1W2S

E2
EIAm

∗

W1W2S
E2
AmE

I∗ W1W2S
E2
EIAm

∗ W2
1S

EW2E
IAm

†

SE ,EI ,Af , W1W2S
EEIAf W1W2S

EAfE
I W1W2E

ISEAf

W1,W2 W1W2E
IAfS

E W1W2AfS
EEI W1W2S

E2
EIAf

∗

W1W2S
E2
AfE

I∗ W1W2S
E2
EIAf

∗ W2
1S

EW2E
IAf

†

SE ,EI ,Am, W1S
EEIAmAf W1S

EEIAfAm W1S
EAmAfE

I

Af ,W1 W1E
ISEAmAf W1E

ISEAfAm W1AmS
EEIAf

W1E
ISE

2
AmAf

∗ W1AmS
E2
AmE

I∗ W1AfS
E2
EIAm

∗

W2
1S

EAmAfE
I W2

1S
EEIAmAf W2

1S
EEIAfAm

SE ,EI ,Am, W2S
EEIAmAf W2S

EEIAfAm W2S
EAmAfE

I

Af ,W2 W2E
ISEAmAf W2E

ISEAfAm W2AmS
EEIAf

W2E
ISE

2
AmAf

∗ W2AmS
E2
AnE

I∗ W2AfS
E2
EIAm

∗

W2
2S

EAmAfE
I W2

2S
EEIAmAf W2

2S
EEIAfAm

SE ,EI ,Am, W1W2S
EAmAfE

I W1W2S
EEIAfAm

Af ,W1,W2 W1W2S
EEIAmAf W1W2E

IAmAfS
E

W1W2E
ISEAfAm W1W2AmE

IAfS
E

Table LXII. Isotropic scalar invariants (continued-5)
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