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ABSTRACT 

 

For effective reservoir management and production optimization, it is important to 

understand drained volumes, pressure depletion and reservoir well rates at all flow times. 

For conventional reservoirs, this behavior is based on the concepts of reservoir pressure 

and energy and convective flow. But, with the development of unconventional 

reservoirs, there is increased focus on the unsteady state transient flow behavior. For 

analyzing such flow behaviors, well test analysis concepts are commonly applied, based 

on the analytical solutions of the diffusivity equation. In this thesis, we have proposed a 

novel methodology for estimating the drainage volumes and utilizing it to obtain the 

pressure and flux at any location in the reservoir.  

 

The result is a semi-analytic calculation only, with close to the simplicity of an analytic 

approach, but with significantly more generality. The approach is significantly faster 

than a conventional finite difference solution, although with some simplifying 

assumptions. The proposed solution is generalized to handle heterogeneous reservoirs, 

complex well geometries and bounded and semi-bounded reservoirs. Therefore, this 

approach is particularly beneficial for unconventional reservoir development with 

multiple transverse fractured horizontal wells, where limited analytical solutions are 

available. 
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To estimate the drainage volume, we have applied an asymptotic solution to the 

diffusivity equation and determined the diffusive time of flight distribution. For the 

pressure solution, a geometric approximation has been applied within the drainage 

volume to reduce the full solution of the diffusivity equation to a system of decoupled 

ordinary differential equations. Besides, this asymptotic expression can also be extended 

to obtain the well rates, producing under constant bottomhole pressure constraint. 

 

In this thesis, we have described the detailed methodology and its validation through 

various case studies. We have also studied the limits of validity of the approximation to 

better understand the general applicability. We expect that this approach will enable the 

inversion of field performance data for improved well and/or fracture characterization, 

and similarly, the optimization of well trajectories and fracture design, in an analogous 

manner to how rapid but approximate streamline techniques have been used for 

improved conventional reservoir management. 
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NOMENCLATURE 

 

An Flow surface area for n
th

 dimension 

Bo Formation volume factor of oil 

bpd Barrels per day 

ct   Total compressibility 

cr   Conversion coefficient 

Dij   Gradient for diffusive time of flight 

k Permeability 

n Dimension 

P Pressure 

Pi Initial reservoir pressure 

Pwf Well bottomhole pressure 

ΔP’ Pressure derivative 

Qw   Production rate for well 

rinv   Radius of investigation  

rw   Wellbore radius  

t   Production time  

T   Dimensionless time  

Vp   Reservoir drainage volume  

xf   Fracture half length 
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Greek variables 

α   Diffusivity 

τ   Diffusive time of flight 

µ   Viscosity of fluid 

ϕ   Porosity 

ξ   Dimensionless radius 

ω   Frequency of wave 

θi   Incident angle 

θr   Reflected angle 

θt   Transmitted angle 

 

Abbreviations 

CMG Computer Modeling Group 

FMM Fast Marching Method 

MTFW Multiple Transverse Fractured Well 

SRV Stimulated Reservoir Volume 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Chapter I provides a preface to the research work done for this thesis. It explains the 

necessity of the conducted research, the previous work done in this area and the main 

objectives of our research. 

 

1.1 Research background 

With increasing scarcity of conventional oil & gas resources, unconventional reservoirs 

have become the best prospective energy resource, especially in the United States. For 

the economic development of such reservoirs, improved exploitation techniques like 

horizontal drilling and hydraulic fracturing have played a key role, by creating a 

stimulated reservoir volume (SRV). The SRV represents the maximum reservoir volume 

contributing to production in such reservoirs typically developed with Multiple 

Transverse Fractured Wells (MTFW) as shown in Fig. 1. In order to maximize economic 

benefit, it is critical to optimize the SRV and the produced volume by improving fracture 

design and well placement in the reservoir. 

 

To achieve this goal, it is necessary to understand the impact of varying fracture designs 

and well placement. Also, it is important to predict the production rates obtained and the 

pressure depletion behavior in the reservoir to optimize the production. This provides us 

the basis of our research, which was to devise a rapid and efficient approach for the 
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prediction of drainage volume, pressure and rate in a heterogeneous reservoir system, 

useful for sensitivity analysis and production optimization. 

 

 
Fig. 1—Stimulated reservoir volume of a multiple transverse fractured well 

 

 

The currently available techniques for estimating drainage volumes and pressure and rate 

behavior are either analytical solutions or numerical simulation. The analytical solutions 

include pressure transient analysis and production rate analysis, but these are generally 

restricted to homogeneous reservoirs, simple well geometries and specific well locations. 

For unconventional reservoirs, which are generally heterogeneous in nature and have 

complex well geometries, the typical analytical solutions for transient and boundary 

dominated flow cannot be directly applied. To handle such reservoirs, one approach is to 
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conduct numerical simulations but these can be cumbersome and time consuming, 

especially within optimization studies and sensitivity analysis of large reservoir models. 

 

Therefore, in our research work, we have developed a novel semi-analytical approach. It 

requires the reservoir property model as input, and provides a rapid estimation of the 

reservoir drainage volume and the pressure and rate response, without a conventional 

numerical simulation. In order to deal with a generalized reservoir system, this solution 

has the capability of handling heterogeneity, bounded or semi-bounded reservoir systems 

and complex well geometries with arbitrary locations in the reservoir. 

 

We expect that such an approach will also be beneficial in reserves estimation, infill 

targeting in multi-well reservoirs and inversion of field performance data for improved 

well or fracture characterization. It should enable the optimization of well trajectories 

and fracture design, in an analogous manner to how rapid but approximate streamline 

techniques have been used for improved conventional reservoir management. 

 

1.2 Literature review 

In this section, we would review the existing analytical solutions for pressure transient 

analysis, drainage volume estimation and production data analysis, which have mostly 

been developed for homogeneous reservoirs. We will also discuss their applications as 

well as limitations to emphasize the need of the current research work. 
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Pressure Transient Analysis (PTA) is fundamental for understanding conventional as 

well as unconventional reservoir behavior. These analytical solutions have been well 

developed and widely applied in the industry for conventional reservoirs, but they are 

gaining special significance for unconventional reservoirs. For conventional reservoirs, 

the transient and steady state well test solutions are usually developed for radial well, 

homogeneous reservoir properties and simple boundary locations and conditions (Lee 

1982). Their most common application is to estimate the reservoir properties and detect 

the presence or location of boundaries from a given well test response. For drainage 

volume estimation in such cases, the general approach is to use the concept of ‘radius of 

investigation’.  

 

The radius of investigation is defined as the maximum radius in a homogeneous 

formation in which the pressure has been affected due to the impulse created at the well 

when opened or shut-in. Several authors have estimated the value for the radius of 

investigation and Kuchuk (2009) has summarized these definitions. However, the most 

widely used definition in the industry is the one given by Dr. Lee, which denotes the 

radius at which the pressure derivative is maximum in the reservoir. The basic relation 

derived by dimensional analysis shows that it is dependent on the diffusivity of the 

formation and the time from the start of impulse (Section 2.1). 

 

Recently, Kuchuk (2009) provided a detailed analysis of the radius of investigation for 

radial cylindrical wells in homogeneous reservoirs. In this work, he made an important 
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observation that the coefficient value also varies with different boundary conditions like 

presence of faults or other boundary shapes. Based on the pressure responses of some 

simple cases, he analytically calculated the boundary distances and time of deviation 

from the infinite reservoir behavior and then compared with the actual data. No one 

particular coefficient was found to obtain the correct results for all cases. Besides this 

observation, he introduced some new equations to show the dependency of the radius of 

investigation on production rate, formation thickness and the gauge resolution in radial 

cylindrical systems. But they were meant only for early flow times and for specific well 

and reservoir boundary locations. Additionally, he also investigated the impact of 

variable rate, wellbore storage and skin on the radius of investigation. He recognized that 

the wellbore storage only affected the early flow time calculations and the skin did not 

have any significant impact on the estimation of radius of investigation. 

 

Besides the works summarized by Kuchuk, another interesting approach was introduced 

by Nordbotten et al. (2004) for determining the outer boundary of the propagating 

pressure wave in a radial cylindrical system. This solution was developed for estimating 

the leakage volume in water reservoirs. The derivation is based on the infinite series 

approximation of the well function used in the transient pressure solution. Based on the 

number of terms used in the expansion, a cut-off value for the radial distance can be used 

as a definition of the outer boundary, beyond which the pressure drop is considered 

negligible. For all cases, the outer boundary was determined to be a function of the 

square root of time, similar to our definition of the radius of investigation. 
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Apart from the radius of investigation concept, an alternative method for estimating the 

drainage volume variation in a finite reservoir was recently suggested by Agarwal 

(2010). This approach can determine the reservoir drainage volume as well as the 

average reservoir pressure at all flow times, based on the reservoir material balance 

concepts. The main limitation of this approach is that it is only suitable for a radial well 

in a homogeneous reservoir and it requires the well test pressure response as an input to 

predict the drainage volume variation. 

 

As stated, all of the above-explained approaches have a major limitation that they are 

only suitable for radial cylindrical wells. But it is well known that unconventional 

reservoirs are generally developed with vertical or horizontal wells with hydraulic 

fractures. So it becomes important to understand the transient behavior of hydraulically 

fractured wells. Since hydraulic fracturing has been a major stimulation method in the 

industry since 1949, there is a lot of literature work available for related studies (Cinco-

Ley and Samaniego-V 1981; Raghavan et al. 1972; Riley et al. 1991). 

  

Initially, hydraulic fracturing was introduced to enhance the oil & gas production from 

vertical wells in conventional reservoirs but it had significant impact on the development 

of unconventional reservoirs. Combined with horizontal well drilling, multi-staged 

transverse hydraulic fractures have proven to be the best technology so far, for 

maximizing the reservoir drainage volumes and the ultimate recovery in low 

permeability reservoirs. Meyer et al. (2010) has recently summarized the major 



 

7 

 

contributions in the study of multi fractured horizontal wells in shale gas reservoirs. 

These comprise of the analytical solutions and numerical models developed so far, to 

improve the understanding of the flow regimes and for optimization and production 

forecast purposes. Song et al. (2011) has also explained the major flow regimes for such 

wells and has presented a well design approach including adsorption effects for 

maximizing economic benefit. From these works (Al-Kobaisi et al. 2006; Bello and A 

2010; Meyer et al. 2010; Song et al. 2011), some commonly identified flow regimes for 

such wells are fracture storage dominated flow, pseudo-linear flow normal to transverse 

fractures, pseudo-radial flow in the case of large spacing between fractures and pseudo 

pseudo-steady state flow which indicates that the SRV has been reached. 

 

The pressure transient solutions are generally based on the assumption that the well is 

producing at constant production rates. So these solutions are only applicable in the 

initial stages of production, when the well is producing at its peak with constant 

production rates. After this, the production rate starts declining and the operational 

constraint is shifted to a constant minimum well bottomhole pressure (BHP). For 

analyzing the well in the declining phase with constant BHP, production data analysis 

(PA) concepts have been applied for understanding well behavior. Similar to PTA, PA is 

also commonly used for estimating reservoir properties from a given well production 

rate and BHP response and for reserves estimation. 
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For any well, be it radial-cylindrical or fractured, all the existing analytical approaches 

for pressure and rate analysis have a major drawback of being limited to homogeneous 

reservoirs, constant reservoir and fluid properties, single phase flow, idealized well and 

reservoir geometries, specific well locations in the reservoir or fixed boundary 

conditions. There are different solutions available for specific cases with certain flow 

period restrictions but there seems to be a lack of a common solution that can provide 

results at all flow times for any reservoir system. 

 

The only available option to handle other complications like reservoir heterogeneity, 

complex bounded reservoirs, different well geometries and arbitrary well locations is to 

use numerical simulation. But simulation can be cumbersome and time-consuming to 

predict the drainage volumes, flow regimes and pressure & rate variations at all times. 

Therefore, a simpler approach with a hybrid modeling technique has been developed in 

this work to enable faster and efficient problem solving. 

 

1.3 Introduction to the thesis work 

As explained in the previous sections, the main objective of this project was to develop a 

novel approach to predict the drainage volume, pressure and rates at all times. In order to 

develop a general solution, this method was designed to remove the limitations in 

previous approaches like heterogeneity, bounded or semi-bounded reservoir systems, 

complex well geometries and arbitrary well locations in the reservoir. A brief summary 

of the work done for this thesis has been provided in this section. This includes the 
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theory and methodology of the proposed solution (Chapter II & III), case studies for 

illustration purposes, their results, and discussion section for validation of the method 

(Chapter IV). The results are summarized in the conclusions (Chapter V). 

 

In chapter II, we will discuss the analytical solutions for the diffusivity equation in 

homogeneous reservoirs (Section 2.1) and then explain the methodology of extending 

the solution to heterogeneous reservoirs. This method can be applied to estimate the 

‘depth of investigation’ and the drainage volume at all flow times in homogeneous and 

heterogeneous reservoirs with different well geometries (Section 2.3). 

 

Then in the next chapter (III), we will describe the generalized pressure transient and 

rate transient solutions by using a geometric approximation. For accurate calculations 

using the geometric approximation, the asymptotic pressure and flux boundary solutions 

have also been explained. Another crucial thing to generalize the solution to 

heterogeneous reservoirs is to consider the validity and limitations of the assumptions 

used for pressure front propagation across media boundary, as explained in Section 

3.1.2. 

 

To illustrate the proposed methodology, several examples of homogenous and 

heterogeneous cases have been studied in Chapter IV. The results for drainage volume, 

pressure and rate variations have also been shown. These results have been validated by 

comparisons with available analytical solutions and simulation results. Finally, the 
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conclusions from the above work and the recommendations for further studies have been 

summarized in Chapter VI. 

 

As shown in the coming sections, this novel semi analytical approach is rapid and 

provides good approximate solutions, improving our ability to evaluate multiple 

scenarios and for improved reservoir management. The ultimate purpose of this 

approach is to facilitate Stimulated Reservoir Volume (SRV) estimation, well and 

fracture placement optimization, reserves evaluation, infill targeting and inversion of 

real field performance data for well/fracture characterization in unconventional 

reservoirs. Some works have already been published based on the application of this 

methodology (Datta-Gupta et al. 2011; Kang et al. 2011; Xie et al. 2012) 
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CHAPTER II  

METHODOLOGY OF ESTIMATING DRAINAGE VOLUME 

 

This chapter first describes the basic concept of radius of investigation in homogeneous 

reservoirs, used to estimate the investigated reservoir volume during a well test or the 

reservoir drainage volume during production. Assuming radially symmetric flow in 

homogeneous reservoirs, the diffusivity equation has also been solved analytically to 

provide the radius of investigation as well as the general pressure and flux solutions for 

any dimension.  

 

In order to solve the diffusivity equation for heterogeneous reservoirs, an asymptotic 

solution has been derived (Vasco et al. 2000), analogous to some other wave theories. 

When only the high frequency term in this solution is considered, an Eikonal equation is 

obtained which governs the pressure front propagation from a source point to any 

location in a general reservoir system. This equation can be solved very efficiently by 

using an algorithm known as the ‘Fast Marching Method’, hence expediting the 

calculations tremendously (Datta-Gupta et al. 2011; Xie et al. 2012).  

 

The solution from this algorithm provides a ‘diffusive time of flight’ distribution, which 

can then be converted to actual time distribution for pressure front propagation away 

from the source well. This time distribution can be used as time contours indicating the 

location of the pressure wave at that particular time and thus provides a quick 
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visualization of the ‘Depth of Investigation’ in the reservoir. Once the location of the 

pressure wave front is known at all times, the cumulative pore volume of the cells 

encompassed by it can be used to calculate the Drainage Volume. 

 

2.1 Radius of investigation in homogeneous reservoirs 

When a well starts producing from a reservoir at initial conditions or when a well is shut 

in for a well test, there is an impulse created at the well which generates pressure waves 

which propagate into the reservoir. For a radial well with infinitesimal wellbore in an 

infinite and isotropic reservoir, producing at constant production rates, the radius up to 

which the pressure wave has propagated at any time is given by the term ‘radius of 

investigation’. This concept has been used in the industry for decades and several 

definitions have been associated to this, well summarized by Kuchuk (2009). However, 

the most common definition used in the industry was given by Lee (1982) which denotes 

the radius at which the pressure derivative is maximum. It is defined by the following 

Eq. (1): 

 t

r

inv
c

ktc
r




 (1) 

where, 

rinv, radius of investigation (ft); 

k, permeability (md); 

t, time (hours); 

ϕ, porosity (fraction); 
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µ, viscosity (cp); 

ct, total compressibility (fluid plus rock) and  

cr, the conversion coefficient depending on the flow geometry, eg., linear (cr=2), radial 

(cr=4) or spherical (cr=6).   

 

As seen in Eq. (1), this investigation radius depends on the time of production and on 

the fluid and rock properties; but is independent of the production rate. This concept is 

generally used for a constant producing rate well and the coefficient value used for radial 

flow is 4, as derived by Dr. Lee. For a well with variable production rates, the coefficient 

changes as shown by Kuchuk (2009) and Hsieh et al. (2007). 

 

2.1.1 Analytical solution of the diffusivity equation 

For a homogeneous reservoir with constant rock properties (porosity, permeability, 

reservoir thickness and rock compressibility) and single phase fluid with constant 

properties (viscosity and compressibility), the diffusivity equation in terms of pressure 

(P) and Darcy flux (Q) can be written as Eq. (2):  

 
r

Q

t

P
cA t











 (2) 

The flux term, Q is defined by Darcy’s law as Eq. (3): 

 
r

PkA
Q







 (3) 

where, 

A, cross sectional area for flow (radially symmetrical); 
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P, pressure at any location ‘r’ and time t, and 

Q, Darcy flux. 

The flow cross sectional area for a radially symmetric flow can be simplified as written 

in the form of A = Ao r
n
, where n= 0, 1, 2 for linear, cylindrical and spherical flow 

respectively. The value of Ao is a constant for linear flow, 2πh for radial cylindrical flow 

and 4π for spherical flow. 

 

Combining the above two equations 2 and 3, the diffusivity equation can be written in 

terms of pressure as Eq. (4):  

 

0)(
1















r

P
A

rAt

P

k

ct

 (4) 

Or alternatively, in terms of the flux as Eq. (5): 

 

0)
1

( 













r

Q

Ar
A

t

Q

k

ct

 (5) 

These equations have to be solved with the following initial and boundary conditions, 

which assume a line (or point) source approximation for the well, when the well is 

producing at constant rates from an infinite acting reservoir. 

Initial Conditions (t=0): 

P=Pi, Q=0, ΔP=Pi-P=0. 

Boundary Conditions (t>0): 

Well ( 0 wrr ): wfiwfwwf PPPQQPP  ;;  
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Far Field ( r ): 0;0;  PQPP i  

Eq. (5) can be solved for the flux by applying these initial and boundary conditions. It 

can then be integrated to obtain the pressure from Eq. (3). For the solution, three new 

variables, T, ξ and m have been introduced for simplification as explained in Eq. (7) to 

(9). Eq. (5) can be transformed to obtain the flux equation as Eq. (6): 
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where, 

 
2
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

n
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 (7) 

 tc
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T

r

4
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 (9) 

 

Eq. (6) can be integrated to obtain the flux solution. The radius of investigation can be 

obtained directly from Eq. (6) without an explicit solution, solving for the maximum 

pressure derivative, i.e., where the second derivative is zero. In terms of the new 

variables we get Eq. (10): 

 

  01
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





m

d

dQ

kAT

r

T

P

 (10) 

Therefore by equating (1 + m – ξ = 0), the solutions for the radius of investigation can be 

obtained for different flow dimensions, as shown in Table 1. From these results, we 
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conclude that the coefficient value is 2 for linear flow, 4 for radial (cylindrical) flow and 

6 for spherical flow. 

 
Table 1. Summary of radius of investigation for different flow types 

Flow Type n m rinv
2 

T 

Linear Flow 0 -1/2 2T 1/2 rinv
2
 

Radial Cylindrical Flow 1 0 4T 1/4 rinv
2
 

Spherical Flow 2 ½ 6T 1/6 rinv
2
 

  

 

 

By using the same equations, the expression for the well test derivative can also be 

derived as Eq. (11): 
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dQ
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kAdt

dP
tP m

n

n2
'

 (11) 

This equation shows that the log-log plot of pressure drop with time will have the slope 

of -m (Table 1). The slope value is 0.5 for linear flow, 0 for radial flow and -0.5 for 

spherical flow, which has been well used in the industry for analyzing pressure transient 

data to determine flow type. Thus, these results substantiate the accuracy of the 

derivation too. 

 

Coming back to the solution of Eq. (6), it can provide the flux solution for a radially 

symmetric flow in any dimension n, by using the incomplete gamma function as Eq. 

(12): 
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Once the general flux solution is obtained, it can be integrated to obtain the general 

pressure solution as Eq. (13): 
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Although the flux is always a self-similar solution, the same is only true for the pressure 

solution for cylindrical flow. The specific pressure and flux solutions for linear, 

cylindrical and spherical flow can be obtained by using the corresponding values of m 

and n, as shown in Table 2. The flux solution for linear, radial and spherical flow as a 

function of dimensionless variable ξ has been shown in Fig. 2. The pressure drop was 

also calculated as a function of dimensionless time for these flow types as shown in Fig. 

3. The pressure profile for radial flow as a function of actual time has been shown in Fig. 

4, which shows the expanding radius of investigation. 

 

Table 2. Specific pressure and flux solutions for linear, radial and spherical flow 

Flow Type n m Q/Qw ΔP(r,T)
 

Linear  0 -1/2  erfc  


















T

r
erfcre

T

kA

Q Trw

2

2 42



  

Radial  1 0  exp  








T

r
Ei
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Qw
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


 

Spherical  2 +1/2  


  erfce 2  







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r
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2
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
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Fig. 2—Variation of flux as a function of dimensionless radius for linear, radial and 

spherical flow 

 

 

 
Fig. 3—Pressure drop at the wellbore as a function of dimensionless time for linear, radial 

and spherical flow 
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Fig. 4—Pressure profile for radial flow 

 

 

 

2.2 Asymptotic solution of the diffusivity equation 

Since the radius of investigation is only applicable for homogenous reservoirs, a 

generalized solution needs to be derived for heterogeneous reservoirs. In heterogeneous 

reservoirs, since the pressure front is not expected to be uniform in all directions, we will 

use the term “depth of investigation”, instead of “radius of investigation”, as more 

representative for such systems. To obtain the depth of investigation, an asymptotic 

solution for the diffusivity equation has been obtained (Datta-Gupta and King 2007; 

Vasco et al. 2000). This approach has been applied earlier in optical, medical and 

geophysical imaging (Virieux et al. 1994).  
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The derivation begins with the three dimensional diffusivity equation for a 

heterogeneous system, with variable porosity (ϕ(x)) and permeability (k(x)) but constant 

fluid properties, viscosity (µ) and compressibility (ct). It can be written as Eq. (14): 

 

    txPxk
t

txP
cx t ,.

),(
)( 






 (14) 

Now, by applying a Fourier transform to this equation, it becomes the following in the 

frequency domain as Eq. (15): 
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 (15) 

The asymptotic solution to this equation can be obtained by considering the following 

pressure solution in terms of inverse powers of i as Eq. (16). 
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 (16) 

where, τ(x) is the propagation time of the pressure ‘front’ (also called ‘Diffusive Time of 

Flight’) and Aj(x) is the pressure amplitude at the j-th order. 

 

The leading order high frequency term in the asymptotic expansion determines the 

pressure front propagation, as seen in the asymptotic solutions for electromagnetic and 

other wave equations. The solution is written as Eq. (17). 

 

     xi

o exAxP  ,
~

 (17) 

By substituting this solution in Eq. (15) and collecting the terms with the highest order  

(-iω), Eq. (18) can be obtained for the pressure front propagation. 
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    1 xx 

 (18) 

Here α(x) stands for diffusivity and can be defined by Eq. (19) 
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 

 (19) 

The above equation is in the form of an Eikonal equation and indicates that the pressure 

front propagates in the reservoir with a velocity of  x , i.e. the square root of 

diffusivity.  

 

The diffusive time of flight term τ(x), is indicative of the distance travelled by the 

pressure front in the reservoir, away from the source. It is proportional to the square root 

of actual time as tcr , also consistent with the scaling behavior of the pressure 

equation. The coefficient term is dependent on the dimension of the system as explained 

in Table 1. For any given reservoir and well system, the flow regime may vary with time 

and so may the conversion coefficient. To capture this variation, an approach has been 

developed in Section 2.3.1, to determine the conversion coefficients. The methodology 

for solving Eq. (18) for heterogeneous reservoirs and then applying it to estimate the 

drainage volume is explained in the next section. 

 

2.3 Estimation of the drainage volume by using the diffusive time of flight 

To estimate drainage volume at any given time, we calculate the reservoir volume which 

has experienced a pressure variation caused by the impulse at the source, or in other 
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words, the reservoir volume encompassed by the pressure front at that time. The Eikonal 

equation (Eq. 18) governing the pressure front propagation for a general reservoir 

system can be solved by a very efficient front tracking method called the Fast Marching 

Method (Sethian 1999). This approach considers the pressure wave as a monotonically 

advancing front and uses a minimization algorithm to estimate the arrival time for the 

pressure front at any location in a reservoir. 

 

This method has been explained in this section by using a rectangular orthogonal mesh 

grid, where finite difference scheme can be applied to calculate the gradient. By 

discretizing the above Eikonal equation on rectangular grids, we obtain the following 

form as in Eq. (20),  
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 (20) 

The term D represents the gradient approximated with 1st order upwind finite difference 

scheme, calculated in the positive and negative x & y directions as in Eq. (21a) to (21d): 
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This discretization results in a quadratic function for the arrival time τ(x), which can be 

solved very efficiently.  

 

The key to the Fast Marching Methods lies in the observation that the upwind 

approximation possesses a specific causality relationship. By ‘causality’, we mean that 

the solution of Eq. (20) at each node depends only on the smaller adjacent values. Thus, 

we need to solve it concurrently in the order of increasing values of T (Sethian and 

Vladimirsky 2000). 

 

Fig. 5 (Xie et al. 2012) is a schematic to illustrate the FMM, where the well location is 

first labeled as ‘accepted’ points (τ=0). Their adjacent nodes are labeled as ‘neighbor’ 

points and the rest nodes are called ‘far-away’ points. Now to calculate the arrival time 

at each point, the following procedure is applied: 

1. Start from the ‘accepted’ points, 

2. Calculate the arrival time of their ‘neighbor’ points (A, B, C, D, etc.) using the finite 

difference approximation 

3. Pick the minimum arrival time in the current ‘neighbor’ points, 

o Label it as ‘accepted’ (e.g., Point A in Fig. 5b) 

o Add its neighbors that are in ‘far-away’ as ‘neighbors’, (e.g., Points E, F 

& G in Fig. 5d) 

4. Repeat steps 2 and 3 until all the points in the domain are labeled as ‘accepted’. 
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Fig. 5—Schematic description of the fast marching method showing the propagation of 

pressure waves in an orthogonal mesh grid 

 

By applying the FMM approach, once the arrival time for each node has been estimated 

in terms of diffusive time of flight, these times can be used as contours representing the 

corresponding pressure front location. The study of this approximation is the 

fundamental purpose of this dissertation. Therefore, the drainage volume at any time can 

easily be calculated by summing up the pore volumes of the mesh grids inside that time 

contour. For these calculations of drainage volumes, we can either use the diffusive time 

of flight contour or the actual time contours. If the flow type in the reservoir is 

symmetrical and known, the diffusive time of flight can be converted to actual time by 

using the corresponding conversion coefficient. If not, we provide an approach for 

estimating the conversion coefficient in a general reservoir system in Section 2.3.1. But 
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overall, the drainage volume calculation can be expressed in simple mathematical terms 

as Eq. (22), 

 

) (whereor  t) t(where Volumes Pore Cell)( i

Cells Ni

i

i   


tVp

 (22) 

Where ti or τi denotes the arrival time for a particular cell and t or τ denotes the time at 

which the drainage volume is being calculated.  

 

For illustrative purposes, the drainage volume for a heterogeneous reservoir 

(permeability variation shown in Fig. 6(a)) has been calculated by using the FMM(Xie 

et al. 2012). Assuming the reservoir and fluid properties and the well configuration 

shown, the FMM solution gave the areal arrival time map shown in Fig. 6(b). The 

drainage volume at different times has been shown in Fig. 6(c) and the calculations were 

completed in a matter of seconds. 
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Fig. 6—Example to illustrate the drainage volume calculation. (a) permeability distribution 

(log scale), (b) time of flight (log scale), and (c) drainage volume variation with time 

 

As explained above, the current FMM algorithm is based on a five point scheme, a very 

simple implementation (seven points in 3D) and with fixed cell dimensions Δx, Δy, Δz 

on all cells. The drainage volume can be efficiently estimated for any general reservoir 

system, with additional complexities like heterogeneity, single/multiple hydraulically 

fractured well geometry and also bounded or semi-bounded reservoir geometry (Datta-

Gupta et al. 2011). This semi-analytical methodology can prove especially beneficial for 

unconventional reservoirs, such as tight gas and shale gas reservoirs, for predicting the 
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pressure front propagation and drainage volume variation during long transient times. 

Once the drainage volumes have been calculated, a geometric approximation as 

explained in Chapter III can be applied to estimate the pressure depletion behavior. 

 

2.3.1 Calculation of actual time from the diffusive time of flight 

For simplified cases, where the flow is linear, radial or spherical, the coefficient value 

for converting the diffusive time of flight to actual time, can be directly used from Table 

1. But for a general reservoir system, the flow regime might vary with time. As an 

example, for a vertically fractured well in a homogeneous reservoir, the flow would 

initially be linear, followed by a transition phase and then pseudo-radial. In order to 

capture this flow regime variation and the change in corresponding coefficients, the 

relation between drainage volume (Vp) and diffusive time of flight (τ) can be used. These 

relations have first been explained for linear (Fig. 7(a)), radial (Fig. 7(b)) and spherical 

(Fig. 7(c)) flow and then its application for two general cases has been shown. 
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(a) 

                                                              

(b) 

 
(c) 

Fig. 7—Representation of the general flow types and the dimensions involved to estimate 

the drainage volume for (a) linear (b) radial and (c) spherical flow geometry 
 

In a homogeneous reservoir with constant diffusivity (α) and linear, radial or spherical 

flow, the common relation between radial distance and diffusive time of flight is given 

by Eq. (23): 

 

r

 (23) 

By the use of this relation, the pore volume (Vp), usually expressed in terms of radius, 

can now be expressed in terms of the diffusive time of flight (Table 3). It was observed 

that when these two parameters, Vp and τ are plotted on a log log scale, a distinct slope 

dy

r

h

r

r
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can be obtained for linear, radial and spherical flows as shown in Fig. 8 – 10. This is the 

standard method for calculating a fractal dimension (Mandelbrot 1982). In our case, we 

obtain integer dimension. The coefficient for tau to time conversion is then simply 

expressed as twice the value of observed slope (Table 3). Thus, for a general reservoir 

system, the conversion coefficient can be obtained as a function of τ and then the actual 

time calculation can be generalized as Eq. (24): 
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Table 3. Drainage volume for flow types and the corresponding log-log plot slope between 

pore volume and diffusive time of flight and the conversion coefficient 

Flow Type Vp Vp = fn (τ) Log Log Plot Slope Cr 

Linear  2 r dy dz dzdy   τα2  1 2 

Radial Cylindrical  π r
2
 h π α τ

2
 h 2 4 

Spherical  4/3 π r
3
 4/3 π α

1.5
 τ

3
 3 6 

 

 

 
Fig. 8—Log log plot between drainage volume and diffusive time of flight for linear flow 
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Fig. 9—Log log plot between drainage volume and diffusive time of flight for radial flow 

 

 
Fig. 10—Log log plot between drainage volume and diffusive time of flight for spherical 

flow 
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Applications 

Well in a channel 

For this case, the well is placed in a channel connected to another larger channel as 

shown in Fig. 11. The flow should initially be radial, transitioning to linear and then 

semi-radial flow. So according to the above derived relations, the slope observed in the 

Vp v/s τ log log plot should be 2, 1 and 2 respectively. And as we can see in Fig. 12, 

showing the log lop plot, these slopes can be distinctly observed. Thus this shows that 

this relation is well expressed for a general homogeneous case.  

 

The duration of the flow regimes depends on the length and width of the channel. If the 

first channel is of comparable length to the connected channel, the results for time by 

using variable coefficients would be between the results obtained by using a single 

coefficient of 2 or 4, as shown in Fig. 13. But as the length of the channel increases, let’s 

say about four times than the connected channel, the duration of linear flow increases 

(Fig. 14) and the results for time by using variable coefficients moves closer to that 

obtained by using a single coefficient of 2 (Fig. 15).  
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Fig. 11—Example for flow regimes of a well located in a channel 

 

 

 

 

 
Fig. 12—Log log plot between drainage volume and diffusive time of flight for a well in a 

channel 
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Fig. 13—Actual time v/s diffusive time of flight for a smaller channel to show the deviation 

by using a single coefficient of 2 or 4 

 

 

 

 
Fig. 14—The variation in the duration of the flow regimes if the channel length increases 
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Fig. 15—Actual time v/s diffusive time of flight for a longer channel to show the deviation 

by using a constant coefficient of 4 

 

 

Well in the center of a thick layer 

For this case of a well placed in the center of a thick layer (as in Fig. 16), the flow 

should initially be spherical, until it reaches the top or bottom of the reservoir and then 

pseudo-radial assuming that the other boundaries of the layer are far away. So 

accordingly the slope observed in the Vp v/s τ log log plot should be 3 and then 2, which 

can also be clearly seen in the Fig. 17. Thus this again shows that this relation is well 

expressed for any general homogeneous case. The diffusive time of flight can be 

converted into actual time by using variable coefficients, which is different from using a 

single coefficient, as shown in Fig. 18. 
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Fig. 16—Example for flow regimes of a well located in the center of a layer 
 

 

 
Fig. 17—Log log plot between drainage volume and diffusive time of flight for a well 

located in the center of a layer 
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Fig. 18—Actual time v/s diffusive time of flight for a well in a layer 

 

 

 

Based on these applications to homogeneous reservoirs, we have established a distinct 

relation between drained volume and the diffusive time of flight to obtain the conversion 

coefficient and hence the actual time. The same methodology can be extended to 

heterogeneous reservoirs. Depending upon the connectivity of the pressure propagation, 

the slope values need not be integer, e.g., unconventional reservoirs. 
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CHAPTER III  

GEOMETRIC APPROXIMATION FOR PRESSURE AND RATE SOLUTION 

 

Chapter III discusses the prediction of pressure and production behavior of a generalized 

reservoir system by application of a geometric approximation (Xie et al. 2012). This 

approximation utilizes the drainage volumes estimated by the Fast Marching Method 

approach as explained in the previous Section 2.3.3. For a well producing at constant 

rates, this solution determines the pressure depletion at any location in the reservoir and 

at any given time. Also, this approximation can be extended to a well producing with 

constant bottomhole pressure, for obtaining the production rate solution. 

 

3.1 Geometric pressure solution  

This geometric approximation utilizes the estimated drainage volume for any transient 

time and applies the pseudo steady state material balance concepts for predicting the 

reservoir pressure depletion. This approach can be explained by going back to Eq. (2) & 

(3), written specifically for radially symmetric flow as Eq. (25) & (26): 
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where, 

 rhA 2 , 22 yxr  for cylindrical radial flow, 
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24 rA  , 222 zyxr   for spherical radial flow, and 

A is a constant, xr   for linear flow.  

 

The sign convention we are using has Qw for a producer, and Q is the inwardly directed 

flux. The pore volume for such cases can be expressed as Eq. (27):  
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When Eq. (25) is expressed in terms of the pore volume, it becomes the material balance 

equation as Eq. (28): 
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 (28)       

 

Now, this equation can be utilized to obtain a geometric pressure solution by making the 

following assumptions: 

(a) The drainage volume acts as a moving no flow boundary and the Darcy flux is 

negligible outside the pressure front 

(b) Within the drainage volume, the pressure is well approximated by a steady state 

solution. 

(c) The well is producing at a constant rate, Qw. 

When these conditions are applied to the material balance Eq. (28), it simplifies to the 

following Eq. (29), which can be used to estimate the pressure drop at any point 

anytime.  
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This equation is well known in the industry for the pseudo steady state average pressure 

drop calculations but our approach has generalized it for transient flow, by applying this 

concept to the moving drainage boundary, Vp(r(t)). This equation can also be used to 

calculate the pressure derivative (Eq. (30)) which can be used in the interpretation of 

drainage volume, as a function of time. As can be seen in the equation, once the drainage 

volume becomes constant, a typical unit slope would be observed in the log log plot. 

Other flow regimes arise during transient flow. 
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Once the derivative is known, it can be integrated to obtain the actual pressure drop at 

any location, starting from the time at which the approximate zero pressure contour 

passes over a location up to the time of interest. The approximate zero pressure contour 

is not necessarily at the depth of investigation and can be determined by using an 

approach developed by Nordbotten et al. (2004) as further illustrated in Section 3.1.1. 

Agarwal (2010) recently introduced a similar approach to determine the variable 

drainage volume but it requires a known pressure response and can be applied only for 

radial cylindrical systems. Therefore, our work is the first where this concept has been 
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generalized for heterogeneous reservoirs and both the drainage volumes and pressure 

response can be estimated. 

To illustrate the pressure derivative and pressure calculation, let us consider an example 

of infinite acting cylindrical radial flow where the depth of investigation is given by, 

tcktr /4 . By using this relation to calculate drainage volume and then 

substituting it to obtain the well test derivative, we get 
kh

Q
P w





4
' which is the well-

known result. The approximation of the pressure drop as a natural logarithm is obtained 

by integrating Equation 30. It is not necessary to develop the full Ei solution as an 

intermediate step to obtain these results, as is usually done. In addition, there is no 

requirement for a radially symmetric solution, once we apply the drainage volume 

concept to heterogeneous systems, as is shown in Fig. 19 & 20 for the same permeability 

distribution in Fig. 6. 

 

While applying the asymptotic limit of the pressure equation to heterogeneous reservoir, 

we have made an underlying assumption that the heterogeneity contrast between 

adjacent reservoir cells is not very high. This assumption is required so that the pressure 

drop at any point is primarily due to the first arrival pressure waves (direct or 

transmitted) and the pressure drop due to pressure waves reflected from media 

boundaries is minimal. In order to study this limitation and to make sure that the 

approximation is reasonable, the magnitudes for transmitted and reflected waves were 

calculated as explained in detail in Section 3.1.2. 
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Fig. 19—Pressure distribution obtained by applying the geometric approximation, at the 

end of 5 days, 50 days, 150 days and 350 days 

 

 

 

 
Fig. 20—Pressure derivative obtained for the example by applying the geometric 

approximation 
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3.1.1 Asymptotic limits for the pressure and rate solution 

As mentioned in the previous Section 2.1, we are using the definition of the depth of 

investigation as the depth where the pressure derivative is a maximum. This depth can 

give us a good estimate of the drainage volume but it does not imply that the pressure 

drop and flux at this depth exactly vanish. Therefore, it is important to determine the 

asymptotic solution for the zero pressure contour for accurate integration of the pressure 

derivative (as obtained by the geometric approximation) to determine the pressure drop 

in the drained volume. 

 

To obtain these solutions, we have utilized a similar approach as Nordbotten et al. 

(2004) where they expanded the well function in a radial system (exponential integral) 

by using an infinite series approximation. They developed this solution to determine the 

leakage volume in a water reservoir but these concepts can easily be extended to our 

reservoir system. The well function for a producer in a radial system is given by Eq. (31) 

(Lee 1982): 
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The Ei function is the well-known exponential integral function and it can be 

approximated by the infinite series approximation in Eq. (32): 
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Substituting this equation back in Eq. 31, the pressure drop solution can now be 

expressed as a series of terms. In order to obtain the asymptotic pressure solution, the 

term ΔP(r,t) should be equated to zero and different solutions for this can be obtained 

depending on the numbers of terms used from the infinite series expansion. 

 

This asymptotic solution provides the location of the expanding outer boundary which 

would act as a cut-off, beyond which the pressure response can be considered negligible. 

Fig. 21 shows various solutions for the pressure drop value by using different terms in 

the expansion and the corresponding location of the outer boundary. 

 

 
Fig. 21—Asymptotic pressure solution for radial flow by using different terms in the 

infinite series expansion 
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However, only even terms give solutions for outer boundary for a radial system. As seen 

in Fig. 21, the radius is always a function of the square root of time. The two term 

logarithmic solution corresponds to the steady state solution of the partial differential 

equation defined on a finite domain. While for higher number of terms, the solution 

represents a truncated transient solution. For linear and spherical flow, the zero pressure 

boundaries by using a two-term expansion have been shown in Table 4. From the 

results, it was observed that for all these cases, the zero pressure drop boundary lies 

within the radius of investigation. Therefore, the pressure drop calculations should use 

this reduced boundary for more accurate results when integrating the pressure 

derivatives. 

 

Analogous to the asymptotic pressure solutions, we can also obtain the asymptotic flux 

solutions using the same approach. These asymptotic flux solutions can be used for 

accurate integration over boundaries in the transient rate solutions, as explained in the 

coming Section 3.2. Let us illustrate the solution for a radial system first, where the flux 

function at any distance in the reservoir can be given by Eq. (33): 
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‘Exp’ is the exponential function which can be expanded with an infinite series 

approximation as Eq. (34): 
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Again by using different number of terms in the expression and equating Q(r,T)=0, the 

asymptotic flux solutions can be obtained. Fig. 22 shows the flux values by using 

different terms in the expansion and also, the location of the corresponding outer 

boundary. 

 

 

 
Fig. 22—Asymptotic flux solution for radial case by using different terms in the 

exponential function expansion 
 

The solutions for linear, radial and spherical flow by using a two-term expansion have 

been shown in Table 4. It can be seen that for a radial case, the zero flux boundary is 

identical to the radius of investigation. For linear, it lies outside the radius of 

investigation while for spherical, it lies inside the radius of investigation. 
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Table 4. Location of the zero isobar radius, zero flux radius and the radius of investigation 

for different flow types 

Flow Type Zero Isobar Radius Zero Flux Radius Radius of Investigation 

Linear Tr


2
  Tr   Tr 2  

Radial 
Ter 42




  Tr 4  Tr 4  

Spherical Tr     Tr
3/1

16  Tr 6  

 

 

 

3.1.2 First pressure wave arrival approximation 

To understand this concept, we need to understand that similar to optic rays and electro-

magnetic waves, the pressure waves also is reflected and transmitted on interaction with 

a media boundary (Oliver 1994) . This has been explained in the schematic diagram 

(Fig. 23) where two media are considered with properties (k,ϕ) and (k’, ϕ’) and the 

source well producing at rate Qw is located in the first medium. Once the pressure waves 

start propagating from the source (point A) in medium 1, it reaches the media boundary 

at different points and angles at different times. As an example, let us consider the wave 

incident at point C on the boundary, at an angle θi with the normal and at distance τ from 

point A. Now, the pressure drop at any point (B) in the first medium located at an equal 

distance τ from point A, can be calculated by adding up the pressure drop due to the 

direct wave from the source at A and the pressure drop due to the reflected wave from 

the media boundary (point C) at an angle (θr) arriving at a later time. Similarly, for any 

point in medium 2 (point D) also located at distance τ from point C, the pressure drop 
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would be due to the transmitted wave across the boundary, at an angle θt from the 

normal. 

 

 
Fig. 23—Schematic to explain the pressure wave interaction at the media boundary 

 

 

Keeping in mind this wave behavior, we are considering the following underlying 

assumptions while applying the geometric approximation in case of heterogeneous 

reservoirs and reservoirs with boundaries: 

 The pressure drop at any point is only due to the first direct pressure wave arrival at 

that point and the pressure drop caused by the reflected wave is negligible 

 The magnitude of the transmitted wave across the media boundary is close to the 

direct source wave 

Direct 

Reflected Transmitted 
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Therefore, in order to apply the first arrival approximation correctly, it is important to 

understand the magnitude of the direct, reflected and the transmitted waves coming from 

a source Qw. Let us assume that the magnitude of the reflected wave is Qw’’ and that of 

the transmitted wave is Qw’. Now, for estimating these magnitudes, we have considered 

the following concepts: 

1. The normal component of flux at the boundary is equal, which gives Eq. (35) 

 

  twiww Q
k

QQ
k







cos'
'

'
cos" 

 (35) 

2. Pressure drop at the incident point should be same in both the media, which gives 

Eq. (36) 
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3. The pressure wave would follow the shortest path to reach to any point across the 

boundary, which gives Eq. (37) 

 
ti

kk






sin

'

'
sin 

 (37) 

 

By using Eq. (35)-(37) and substituting the variables, the transmitted wave and the 

reflected wave magnitudes were determined as Eq. (38) and Eq. (39) respectively: 
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The other observation was that the angle at which the pressure waves get reflected is 

same as the incident angle. While, the magnitude of the angle at which the waves get 

transmitted in the other medium follows the relation in Eq. (40): 
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Based on these derivations, a sensitivity analysis was done for the parameters like 

permeability contrast, porosity contrast and incident angle. The following conclusions 

were drawn from the results: 

 The higher the permeability and porosity contrast, the larger is the error in 

considering the transmitted wave magnitude to be the same as the direct wave. Also 

the angle at which the waves get transmitted becomes lower with an increase in 

permeability contrast. The impact of varying permeability contrast on the transmitted 

wave ratio and the reflected wave ratio has been shown in Fig. 24. The assumed 

incident angle is 30 degrees. As seen in the figure, the response of transmitted wave 

ratio is quite close to the reciprocal of the perm contrast ratio. In Fig. 25, the 

variation of the transmitted angle has been shown for different permeability contrast 

ratios. 
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Fig. 24—Impact of varying permeability contrasts on the transmitted and the reflected 

wave magnitudes 

 

 

 

 
Fig. 25—Impact of permeability contrast on the transmitted angle 
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 If the permeability contrast is same as the porosity contrast, the transmitted angle is 

always same as the incident angle. But the transmitted wave and the reflected wave 

magnitude vary based on the contrast ratio as shown in Fig. 26. 

 

 
Fig. 26—Impact of porosity and permeability impact on transmitted and reflected wave 

magnitudes 

 

 

 For a given permeability contrast, assuming same porosities, there is a critical 

incident angle above which the transmitted angle becomes 90 degrees, similar to the 

total internal reflection obtained in ray optic theory. This happens when the pressure 

wave is moving from lower to higher permeability media, as shown in Fig. 27, for a 

permeability ratio of 0.5. If the permeability contrast becomes very high, the path of 

shortest time would require minimum distance to be covered in the slow medium and 

the maximum distance in the fast one, as seen by the red line in Fig. 28. As an 



 

52 

 

example, the critical incident angle for a contrast ratio of 0.001 is 1.8 degrees, as 

seen in Fig. 29. In contrast, when the pressure wave is travelling from higher to 

lower permeability media, the reflected amplitude becomes zero beyond a critical 

angle and only transmitted amplitude can be obtained, as shown in Fig. 30. When 

this contrast becomes high, the path of shortest time would require maximum 

distance in the fast medium and minimum in the slow one, as shown by the green 

line in Fig. 28. As an example, the transmitted angle for the opposite contrast ratio of 

1000 has been shown in Fig. 31, which shows the exact opposite path of the ratio of 

0.001. 

 

 
Fig. 27—Impact of incident angle on the transmitted angle for permeability ratio of 0.5 and 

zero porosity contrast  
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Fig. 28—Critical angles dependent on the extreme permeability contrasts 

 

 

 

 

 
Fig. 29—Critical angle for a permeability contrast of 0.001 
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Fig. 30—Impact of incident angle on the amplitudes for permeability ratio of 2 and zero 

porosity contrast 

 

 

 

 
Fig. 31—Magnitude of the transmitted angles for a high permeability contrast ratio of 1000 
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Thus our geometric pressure approximation for heterogeneous reservoirs should be 

carefully used. The intent is not to compensate for these errors, but we should be aware 

of the limitations during specific applications. 

 

3.2 Rate solution using geometric approximation 

In the previous sections, all the derived solutions have been based on the assumption that 

the production rate of the well is constant. But the most common observation in fields is 

that the well produces with variable production rates. For production data analysis, most 

of the analytical solutions have been based on the pseudo steady state concepts and thus 

are not applicable for transient phases, predominant in unconventional reservoirs.  

 

A transient rate solution for a radial well in an infinite acting reservoir has been provided 

by Fetkovich (1980). Based on this, the well-known Fetkovich type curves were 

generated for different reservoir properties, also combining the empirical Arp’s solution 

for the pseudo steady state. Their biggest application is to estimate the basic reservoir 

properties by taking both the production data and bottomhole pressure data as input. 

Another commonly used plot for production data analysis introduces the term ‘material 

balance time’ but this also requires the cumulative production and rate data to back 

calculate the reservoir properties. 

 

To obtain the transient rate solution for homogeneous cases, Laplace transforms have 

generally been applied (Lee 1982) but they cannot be extended to heterogeneous 
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reservoirs. Therefore, an attempt to generalize the transient analytical solution has been 

made in this work. To explain this concept, we will require the Darcy’s Law (Eq. (3)) 

and Eq. (27) to estimate the drainage volume up to a zero flux radius. To obtain the 

solution, we also need to make the following assumptions: 

 The well is producing with constant bottomhole pressure, Pwf and a slowly varying 

rate, Qw at any time t. 

 The reservoir outside the zero flux radius (rout) is at initial conditions, with initial 

pressure Pi. 

 The pseudo steady state solution is applicable within the drainage volume at any time 

(Vp(r(t)) such that the rate at any given radius with drainage volume, Vp(r) can be 

calculated as in Eq. (41). 

 

 
 

  














trV

rV
QrQ

p

p

w 1

 (41) 

 

Now, if we substitute Eq. (41) in the Darcy’s law we obtain Eq. (42): 
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This equation can be converted to use Vp(r) as the independent spatial variable. The term 

∂r can be expressed in terms of  rV p  as Eq. (43): 
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By using this equation and applying the pressure limits at the well and the zero flux 

boundary to utilize the known pressure difference, the flux solution can be derived as in 

Eq. (44): 
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To establish its validity, we will now reproduce the transient rate solution for a radial 

system (Fetkovich 1980). For a homogeneous radial case, the porosity and permeability 

would be constant and the relation between flow cross-sectional area and drainage 

volume can be given as Eq. (45): 
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This equation when substituted in Eq. (44), it becomes Eq. (46). 
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On solving this equation, it takes the form in Eq. (47). 
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For large values of outer radius (rout>>rw), obtained at larger times, the above solution 

can be approximated as Eq. (48). 
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This equation is the flux solution for a radial well with a skin of zero, thus demonstrating 

the consistency of our generalized flux solution, with known homogeneous solutions. 

 

Similarly, the general expression for the flux in a single vertically fractured well can also 

be obtained. The cross-sectional area for flow and the pore volume in a fractured well 

case (Fig. 32), assuming a super-position of radius of investigation around each point on 

the fracture, can be specified by using Eq. (49) & Eq. (50). 
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Now by substituting these equations in our generalized flux solution (Eq. (44)), we 

obtain the following solution for a single vertical fracture flow as in Eq. (51). 
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This solution can also reproduce the solution for transient rate solution given by Song et 

al. (2011), thus demonstrating the consistency. 



 

59 

 

 
Fig. 32—Dimensions involved in a single vertically fractured well flow 

 

The results obtained by this solution for a radial well and a single vertically fractured 

well have been shown in Section 4.1.1 & 4.1.2. They show very good agreement with 

the analytical and numerical solutions. We have not presented the results from this 

approximation for heterogeneous reservoirs, as that is still a work in progress. To utilize 

this solution, the FMM code would require additional calculations for estimating the 

flow cross-sectional area at all times, similar to the drainage volume calculations. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

 

This chapter shows the application of our proposed methodology to several cases with 

homogeneous and heterogeneous property distributions (Xie et al. 2012). First we will 

describe several homogeneous cases with radial and single/multiple hydraulically 

fractured well geometries. With these cases, we will demonstrate the accuracy of our 

geometric pressure approximation and rate solution by replicating the results from 

analytical solutions in Sapphire (for pressure solution), Topaz (for rate solution) and 

numerical simulations conducted in CMG. In the results, we will show the drainage 

volume estimation, flow regime interpretation and the well bore pressure or rate 

variation by using our approach. 

 

After this validation, we will discuss the application of this approach to unconventional 

reservoirs with heterogeneous property distributions, developed with multiple 

hydraulically fractured wells. We will provide flow visualization for the drainage 

volume variation and the flow regime interpretation for such cases. 

 

4.1 Homogeneous cases 

To study homogeneous cases, we have considered the following models most commonly 

used for studies: 

1. Vertical radial well in an infinite acting reservoir 
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2. Single vertically fractured well in a rectangular reservoir  

3. Horizontal well with multiple hydraulic fractures in a rectangular reservoir  

Now we will give a description of the properties assumed for each of these case studies 

and the results obtained. 

 

4.1.1 Vertical radial well in an infinite acting reservoir 

This is a commonly used model for conventional reservoir studies. The analytical 

solution for transient radial flow in an infinite acting reservoir is well established. For 

comparison purpose, we have also obtained the results from numerical simulation using 

CMG. Table 5 shows the reservoir and fluid properties assumed for this case. 

 

Table 5. Properties for vertical radial well in an infinite acting reservoir 

 
 

 

Value Unit

Porosity 0.25 fraction

Permeability 1 md

Thickness 10 ft

Initial Pressure 4500 psi

Viscosity 0.4 cp

Oil FVF 1

Total compressibility 6.00E-06 1/psi

Well radius 0.25 ft

Well constant rate for 

pressure solution
10 bbl/day

Well constant BHP 

for rate solution
1000 psi

Property

Reservoir

Fluid

Well



 

62 

 

For the case of an infinite acting radial reservoir, the drainage volume would vary with 

time with a straight line slope as shown in Fig. 33. This is because the drainage volume 

in radial reservoirs is proportional to the square of the radius which is proportional to 

actual time according to our definition of the radius of investigation. After the drainage 

volume calculation, the pressure drop and the pressure derivative were calculated for the 

well producing at a constant rate of 10 bopd, as shown in Fig. 34. This clearly shows the 

radial flow regime with a slope of zero in the pressure derivative plot.  

 

The calculated well bottomhole pressure based on our approach was then compared with 

the results obtained from analytical solution in Sapphire and numerical simulation in 

CMG as shown in Fig. 35. A good coherence between the estimated values can be 

observed. We believe that the discrepancy in the match is due to a lack of locally refined 

cells around the well to better model the pressure drop at the wellbore. Our current 

algorithm can only handle uniform grid sizes, but this limitation is being taken care of in 

future work, and this discrepancy will be re-examined. 

 

After comparing the pressure results for constant well rate, the results for our proposed 

rate solution based on geometric approximation were calculated for a constant 

bottomhole pressure of 1000 psi. The comparison of these results from analytical 

solution and numerical solution done in Topaz has been shown in Fig. 36, which shows 

excellent results.  
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Fig. 33—Drainage volume variation for a vertical radial well in an infinite acting reservoir 

 

 

 

 
Fig. 34—Pressure drop and pressure derivative for a vertical radial well in an infinite 

acting reservoir 
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Fig. 35—Comparison of well bottomhole pressure estimated by different approaches for a 

vertical radial well in an infinite acting reservoir 

 

 

 
Fig. 36—Comparison of well production rates calculated by different approaches for a 

vertical radial well in an infinite acting reservoir 
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4.1.2 Single vertically fractured well in a rectangular reservoir 

This is also a commonly used model for conventional reservoir study, developed with 

single vertical fracture to enhance the production rates. For this case, we have assumed a 

square shaped reservoir boundary to show the results for transient as well as boundary 

dominated flow. The analytical solutions for transient and boundary dominated flow in 

such cases have been used in the industry for a long time. For comparison purpose, we 

have also obtained the results from numerical simulation using CMG. Table 6 shows the 

reservoir and fluid properties assumed for this case. 

  

Table 6. Properties for a single vertically fractured well in rectangular reservoir 

 

 

Value Unit

Porosity 0.076 fraction

Permeability 1 md

Thickness 10 ft

Area 2000 X 2000 ft^2

Initial Pressure 4100 psi

Viscosity 0.4 cp

Oil FVF 1

Total compressibility 6.00E-06 1/psi

Well radius 0.1 ft

Fracture half-length 200 ft

Well constant rate for 

pressure solution
10 bbl/day

Well constant pressure 

for rate solution
1000 psi

Property

Reservoir

Fluid

Well / 

Fracture
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For the case of a finite reservoir and a fractured well, the diffusive time of flight map has 

been shown in Fig. 37 to show that it would follow “pill box” geometry. The drainage 

volume variation for this case has been shown in Fig. 38, where it becomes constant 

once all the reservoir boundaries have been reached. Then, the pressure drop and the 

pressure derivative were calculated for the well producing at a constant rate of 10 

bbl/day, as shown in Fig. 39. The derivative plot clearly shows the linear flow regime at 

early times with a slope of half, transitioning to pseudo-radial flow regime with a slope 

of zero and then ultimately boundary dominated flow with a unit slope. 

 

The calculated well bottomhole pressure based on our approach was then compared with 

the results obtained from analytical solution in Sapphire and numerical simulation in 

CMG as shown in Fig. 40. Similar results were obtained through the different 

approaches. 

 

After comparing the pressure results for constant well rate, the results for our proposed 

rate solution based on the geometric approximation were calculated for a constant 

bottomhole pressure of 1000 psi. The comparison of these results from analytical 

solution and numerical solution done in Topaz has been shown in Fig. 41, which again 

shows excellent results. 
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Fig. 37—Log 10 diffusive time of flight distribution for a single vertically fractured well in 

a rectangular reservoir 

 

 

 

 
Fig. 38—Drainage volume variation for a single vertically fractured well in rectangular 

reservoir 
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Fig. 39—Pressure drop and pressure derivative for a single vertically fractured well in a 

rectangular reservoir 

 

 

 
Fig. 40—Well bottomhole pressure estimated by different approaches for a single vertically 

fractured well in a rectangular reservoir 
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Fig. 41—Comparison of well production rates estimated by different approaches for a 

single vertically fractured well in a rectangular reservoir 

  

 

4.1.3 Horizontal well with multiple hydraulic fractures 

This is the most common model used for study of unconventional reservoirs, where the 

low permeability reservoir is developed with a long horizontal well, having multiple 

hydraulic fractures to obtain higher SRV.  In such wells, the fractures can be either 

modeled with high (almost infinite) fracture conductivity or a finite fracture 

conductivity. We are including the infinite conductivity case in the homogeneous case 

and the finite fracture conductivity case in the heterogeneous section.  

 

High or infinite fracture conductivity 

For this case, we have assumed a constant matrix permeability of 7.5*10^-4 md, 

constant matrix porosity of 0.076 and very high fracture conductivity of 4000 md-ft. A 
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rectangular grid boundary has been assumed to show the results for transient as well as 

boundary dominated flow. There are no analytical solutions for transient and boundary 

dominated flow in such cases, so we have compared the results with numerical 

simulation using CMG. Table 7 shows the reservoir and fluid properties assumed for 

this case. 

 
Table 7. Properties of a horizontal well with multiple hydraulic fractures (high fracture 

conductivity) in a rectangular reservoir with homogeneous matrix properties 

 
 

For this case of almost infinite fracture conductivity and finite reservoir size, the 

drainage volume variation with time has been shown in Fig. 42. For visualization 

purpose, the depth of investigation at the end of 3 months, 5 years and 10 years has also 

been shown in Fig. 43. As observed in the figure, the flow is initially separate around 

each fracture, then interference starts between flows to different fractures and finally the 

whole of the SRV is depleted. These flow regimes can also be observed by plotting the 

Value Unit

Porosity 0.076 fraction

Permeability 7.5*10^-4 md

Number of grids 440 X 1320 X 10

Grid size 4 X 4 X 4 ft^3

Initial Pressure 4500 psi

Viscosity 0.2 cp

Oil FVF 1

Total compressibility 3.30E-05 1/psi

Well radius 0.25 ft

Fracture half-length 480 ft

Fracture conductivity 4*10^3 md-ft

Well constant rate for 

pressure solution
12 bbl/day

Property

Reservoir

Fluid

Well / 

Fracture
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pressure derivative and pressure drop obtained from our geometric pressure solution, as 

shown in Fig. 44. This plot clearly shows the following flow regimes: 

 Fracture bounded flow regime, with unit slope indicating initial flow only within the 

fracture; 

 Linear flow regime, with a slope of half indicating flow from matrix to fractures; 

 Transition flow regime after linear flow ends and where there is interference between 

flow to individual fractures, and then finally 

 Pseudo steady flow regime indicated by unit slope when the whole SRV is being 

drained. 

 

The calculated well bottomhole pressure based on our approach was then compared with 

the results obtained from numerical simulation in CMG as shown in Fig. 45. Similar 

results were obtained through both methods which illustrates the power of our 

methodology. However, in the case of multiple fractures, the limitations of a first arrival 

pressure approximation could be improved through the use of superposition of simpler 

solutions for each fracture. 
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Fig. 42—Drainage volume variation for a multiple hydraulically fractured well with 

homogeneous matrix properties and high fracture conductivity 

 

 

 

 
Fig. 43—Drainage volume visualizations at the end of 3 months, 5 years and 10 years for a 

multiple hydraulically fractured well with high fracture conductivity 
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Fig. 44—Pressure drop and pressure derivative for a multiple hydraulically fractured well 

with high fracture conductivity 

 

 

 

 
Fig. 45—Well bottomhole pressure estimated by different approaches for a single vertically 

fractured well in a rectangular reservoir 
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4.2 Heterogeneous cases 

To study the application of our methodology to heterogeneous reservoirs, we have 

already presented a 2D example with radial well in Chapters II & III (Fig. 19 & 20). In 

this section, we have illustrated an example of a multiple transverse fractured well with 

finite fracture conductivity in a homogeneous reservoir and then a multiple transverse 

fractured well in a heterogeneous reservoir. 

 

4.2.1 Multiple hydraulically fractured well with finite fracture conductivity 

For this case, we have assumed the same properties as specified in Table 7 except the 

fracture conductivity, which has been taken as 4 md-ft. Again, a rectangular grid 

boundary has been assumed and the results have been compared with the numerical 

simulation in CMG. 

 

In such case of finite fracture conductivity, the drainage volume variation with time has 

been shown in Fig. 46. For visualization purpose, the depth of investigation at the end of 

0.25 hours, 2.5 days, 5 months and 30 years has also been shown in Fig. 47. The 

pressure derivative and pressure drop response was also generated as shown in Fig. 48, 

and the following flow regimes can be interpreted from the pressure derivative plot: 

 Early linear flow within the fracture, with a slope of half, 

 Pseudo radial flow regime around the well, with a slope trending towards zero, 

 Transition flow regime where the flow becomes almost elliptical and then finally, 
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 Pseudo steady flow regime indicated by unit slope when the whole SRV is being 

drained. 

 

The calculated well bottomhole pressure based on our approach was then compared with 

the results obtained from numerical simulation in CMG as shown in Fig. 49. Similar 

results were obtained through both methods. Interestingly, Fig. 49 shows better 

correspondence with numerical simulation than does Fig. 48, which warrants additional 

investigation. 

 

 
Fig. 46—Drainage volume variation for a multiple hydraulically fractured well with finite 

fracture conductivity 
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Fig. 47—Visualizations for the depth of investigation at the end of 0.25 hours, 2.5 days, 5 

months and 30 years 

 

 

 
Fig. 48—Pressure drop and derivative for a multiple hydraulically fractured well with 

finite fracture conductivity and homogeneous reservoir properties 
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Fig. 49—Comparison of well bottomhole pressure by different approaches for a multiple 

hydraulically fractured well with finite conductivity 

 

 

4.2.2 Multiple hydraulically fractured well in a heterogeneous reservoir 

In this section, we will study a multiple hydraulically fractured well producing from a 

heterogeneous reservoir (Xie et al. 2012). The matrix permeability lies in the range of 

10^-5 md to 10^-2 md. A distribution map with the log of permeability has been shown 

in Fig. 50. A fracture permeability of 1 md has been assumed. 

 

The drainage volume variation estimated by the FMM approach for this case has been 

shown in Fig. 51. The visualization for the depth of investigation at the end of 1 day, 10 

days, 5 months and 30 years is depicted in Fig. 52, which shows more scatter than 

observed for the homogeneous case. Fig. 53 presents the estimated pressure drop and 
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pressure derivative for a constant production rate of 13.2 bopd. The pressure derivative 

roughly indicates the following flow regimes: 

 Linear flow within the fracture, with a slope of half, 

 Pseudo-radial flow, for a very small period though, 

 Transition flow, when the flow gets distorted due to heterogeneity, giving no distinct 

slope, and then finally, 

 Pseudo steady flow, with a unit slope, where the whole reservoir is being drained. 

 

 
Fig. 50—Distribution of log permeability for the heterogeneous reservoir system 
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Fig. 51—Drainage volume variation for a heterogeneous matrix with multiple 

hydraulically fractured well 

 

 

 

 
Fig. 52—Visualizations for the depth of investigation at the end of 1 day, 10 days, 5 months 

and 30 years. 
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Fig. 53—Pressure drop and pressure derivative for a heterogeneous reservoir with multiple 

hydraulically fractured well 

 

 

4.3 Discussion of results 

As observed in the results above for homogeneous and heterogeneous cases, the 

geometric solution is suitable for all the general cases and provides similar results to 

those obtained from analytical and numerical solutions. The flow regimes obtained from 

the pressure response are the same observed by other authors (Al-Kobaisi et al. 2006; 

Song et al. 2011). Thus, the current approach provides a general methodology for 

studying a wide variety of reservoir and well types, including complex fracture 

geometries, presence of natural fractures, variable fracture conductivities. In summary, 

this solution can handle any reservoir heterogeneity which can be defined for a gridded 

system. 
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CHAPTER V 

CONCLUSIONS 

 

5.1 Summary and conclusions 

This thesis demonstrates a novel technique developed for estimating drainage volumes 

and predicting pressure depletion and production rate behavior at all flow times for a 

general reservoir system. This methodology is unique and the first semi-analytical 

approach with wide applicability including heterogeneous property distribution, complex 

well geometry and bounded/semi-bounded reservoir geometry. The main concepts and 

learnings from the proposed methodology can be summarized as below:  

 The radius of investigation for a radial well in a homogeneous reservoir is 

dependent on the flow type, and can be generalized for any radially symmetric 

flow. The well bottomhole pressure and flux solutions can also be generalized for 

such flow types by using an incomplete gamma function.  

 The pressure front propagation in any reservoir follows an Eikonal equation 

obtained from an asymptotic solution of the diffusivity equation. This equation 

can be solved for heterogeneous reservoirs, by using a very efficient ‘Fast 

Marching Method’ algorithm. This algorithm provides a diffusive time of flight 

distribution away from the source, providing the ‘depth of investigation’ of the 

pressure front at all flow times. 
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 The diffusive time of flight calculation provides the pressure front location at any 

time and the encompassed reservoir volume can be estimated as the drainage 

volume. 

 For a well producing at constant production rates, the pressure depletion at any 

location in the reservoir can be estimated by applying a geometric approximation 

based on the estimated drainage volumes. This approximation can also be 

extended to wells producing at constant bottomhole pressure, for obtaining the 

flux solution at any location in the reservoir. 

 While applying the geometric pressure and flux solutions, the integration should 

be done over the boundaries related to the asymptotic pressure and flux solutions, 

which are not necessarily the same as the depth of investigation. 

 The geometric pressure solution is based on the first wave arrival concept and the 

contrast in the reservoir properties in heterogeneous reservoirs should be taken 

into consideration when applying this approximation. 

 

By applying this methodology to various cases, we have demonstrated that the results 

are consistent with previous analytical solutions and numerical simulation, and require 

much less computation time. It can also provide a quick visualization for the depth of 

investigation and can help identify the different flow regimes. In the thesis, we have 

shown that this approach can be especially useful for unconventional reservoir studies, 

where no analytical solutions are available for multiple transverse hydraulically 

fractured wells. The rapid but approximate results from this solution can be extremely 
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helpful for well or fracture design, history matching calibration, reservoir management 

and optimization studies.  

 

5.2 Future work 

The results obtained from the suggested methodology are very encouraging. However, 

the solution is still early in its development and has scope for improvements. Some of 

the identified areas requiring further work are: 

 Modification of the algorithm to handle variable grid sizing in the reservoir, like 

local grid refinements or corner point cell geometries to widen the applicability of 

the approach and to provide better approximation results. 

 Additional studies at early time to better understand some of the near well 

discrepancies seen compared to simulation. 

 Adjusting the solution to handle variable compressibility, especially for studying gas 

reservoirs. This might include addition of correlations for calculating gas 

compressibility and viscosity with changes in pressure to estimate pseudo-pressures 

and material balance times. 

 Extending the algorithm to include the calculation of flow cross sectional area at all 

times, similar to drainage volume calculations, to apply the proposed flux solution 

for heterogeneous reservoirs. 

 Studies of the long time transients and the relationship with the steady state 

solutions. 

 Development of a sensitivity based approach to pressure history matching. 



 

84 

 

These areas are currently being worked on by other graduate students in the MCERI 

research group and would hopefully extend the current solution for other utilities and 

applications. 
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