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ABSTRACT 

 

Thiamin transport in Escherichia coli is a model system to establish the tolerance 

of derivatives for transport into the cell. Since little is known about what types of 

thiamin derivatives may be successfully taken into the cell through the transport system, 

a series of thiamin derivatives are synthesized. A thiamin amino analog is synthesized 

and tested to determine the use of the analog as an alternate source of thiamin for growth 

of an E. coli thiamin mutant. Formate, acetate, and benzoate thiamin esters are 

synthesized and tested as alternate sources for growth of an E. coli thiamin mutant.  

Thiamin esters or amides may provide a scaffold for attaching other small 

molecules of interest to be imported into the cell by thiamin transport system. Thiamin 

containing formate, acetate, and benzoate esters were synthesized and tested as 

alternative growth source for thiamin using an E. coli mutant strain incapable of 

synthesizing thiamin. All three synthesized ester thiamin forms gave a zone of growth 

determined by disk-assay study. Also, an amino thiamin is synthesized to determine 

uptake through thiamin transport system by growth study using an E. coli mutant 

incapable of synthesizing thiamin. The growth curves resulting show concentration-

dependent growth in the absence of natural thiamin, indicating amino thiamin is taken up 

by thiamin transport system as an alternate source of thiamin for growth. More 

characterization of the thiamin transport system is desired in order to develop thiamin 

conjugates of interest such as a photoaffinity probe for isolating thiamin-utilizing 

enzymes.  
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NOMENCLATURE 

 

ABC ATP-binding cassette 

AcOH Acetic acid 

ATP Adenosine triphosphate 

Calcd Calculated 

BtuCD Transport proteins of vitamin B12 

ESI-MS Electrospray ionization mass spectrometry 

HBr Hydrobromic acid 

HMP Hydroxymethyl pyrimidine 

HPLC High pressure liquid chromatography 

kDa Kilodalton 

MHz Megahertz 

NBD Nucleotide binding domain 

NMR Nuclear magnetic resonance 

TbpA Thiamin binding protein 

TDP Thiamin diphosphate 

ThiB Periplasmic binding protein of S. typhiurium 

ThiE Thiamin phosphate synthase 

TMD Transmembrane domain 

TMP Thiamin monophosphate 
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INTRODUCTION AND LITERATURE OVERVIEW 

 

ABC Transporters and Relevant Systems 

 

ABC transport in gram-negative bacteria consists of a periplasmic binding 

protein that binds the substrate, a transmembrane protein that receives the substrate from 

the binding protein, and a cytosolic ATPase (ABC) that supplies the energy for 

movement of the substrate into the cell by catalyzing hydrolysis of two ATP molecules.1 

ABC transporters represent the largest class of transporters.2a,2b The primary sequence of 

the nucleotide binding domain have a highly conserved set of motifs in archaea, 

eubacteria, and eukarya; the transmembrane domains, however, have a varied sequence 

and architecture, which allows for different substrates to be translocated by specific 

transmembrane domains.2a  The ABC transport system architecture consists of two 

transmembrane domains (TMDs) that are embedded in the membrane and two 

nucleotide binding domains (NBDs, or ABCs) that are located in the cytoplasm.2a The 

periplasmic binding protein (for gram negative bacteria) serves as a high-affinity binding 

protein for particular substrates and delivers the substrate from the periplasm to the 

specific TMD for translocation in to the cell. 

The first crystal structure of a whole ABC transporter was reported for E. coli 

Vitamin B12 BtuCD.3 This crystal structure initially provided insight on proposed 

mechanisms of transport as well as determining architecture for ABC transporters. Since 

then, crystal structures of many ABC transporters have been solved, and at least 65 
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transporters have been identified in E. coli K-12.1, 2b, 4, 5, 6 Nutrients that are transported 

through ABC transport are amino acids, phosphate, metals such as iron, carbohydrates, 

vitamins, and other essential nutrients.  

 

Thiamin Transport in E. coli and Relevant Studies 

 

Thiamin transport in E. coli has been studied using mutants that require thiamin 

monophosphate or diphosphate for growth.7 Transport through a specific protein was 

identified through measurement of exit of radiolabeled [35S]-thiamin after addition of 

thiamin to the medium.7 The periplasmic thiamin binding protein was overexpressed, 

purified, and characterized in 2002, and an assay has been used to determine the 

dissociation constant of thiamine, thiamin monophosphate, and thiamin diphosphate.8 

All three substrates bind the periplasmic protein with high affinity (between 2.3 and 7.4 

nM).1,8 Structurally similar periplasmic binding proteins include thiamin binding protein 

ThiB from S. typhimuirum and also the Fe3+- binding protein from H. influenzae.4,9 

Moreover, thiamin binding protein of E. coli (TbpA) is found to be structurally similar to 

thiaminase-I, a thiamin degrading enzyme, based on modeling studies that suggests the 

two proteins developed from a common ancestor.1  

Thiamin transport system in E. coli has also been studied through inactivation of 

transport using chemical inhibitors. Pyrithiamine and oxythiamine are found to inhibit 

the rate of thiamin uptake through measurement of uptake of [35S]-thiamin, and 

chloroethylthiamine is also found to inhibit thiamin uptake in E. coli through 
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measurement of 14C thiamin uptake in the presence of the analog.7,10 ABC transport is 

also inhibited by N-ethylmaleimide in E coli, although not directly inhibiting the 

thiamin-binding protein (TbpA) of the transport system.7,11 Finally, inactivation of 

thiamin transport system has been studied more extensively with thiamin analogs in 

Saccharomyces cerevisiae, a eukaryotic system.12,13 

 

Transport Systems for “Smuggling” Small Molecules 

 

Transport systems have been exploited to import vitamin conjugates of interest 

into the cell. Folate transport has been studied extensively for uptake of folate conjugates 

such as chemotherapeutic agents, liposomes, imaging agents, immune stimulants, 

dendrimers, and nanoparticles.14,15,16 A Vitamin B12-insulin conjugate has been 

developed for uptake of insulin at clinical doses through vitamin B12 transporters.17 

Furthermore, peptides larger than six amino acids cannot cross the membrane of gram 

negative bacteria; biotinylated peptides up to 31 amino acids in length have been taken 

up by E. coli and other gram negative bacteria through the biotin transporter.18  

Ligand attachments occur at parts of both the molecule and vitamin/cofactor of 

interest where there is no substantial recognition for binding. Also, linker chains have 

been used to attach a molecule of interest at a distance from the vitamin to cause 

minimal effects on binding of the natural substrate.17 Finally, some insight on the 

mechanism of translocation of substrates has been gained through study of maltose 

transport system. A mutant of maltose binding protein has been developed that has 
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preferable binding to sucrose.19 The mutant is used to determine whether sucrose, an 

unnatural substrate for the maltose binding protein, will still be translocated into the cell. 

Sucrose is indeed imported through the maltose transport system. The transport of the 

unnatural substrate is due to change in conformation of the maltose binding protein upon 

binding the substrate followed by protein-protein interaction with the maltose-ATPase, 

which triggers ATP hydrolysis and allows translocation of sucrose. The results relay that 

the translocation event is dependent on protein interaction between the substrate binding 

protein conformation and the ATPase, not substrate recognition.19  

 

Utilizing Thiamin Transport for Uptake of Analogs 

 

Thiamin transport in Escherichia coli actively occurs through ATP-binding 

cassette (ABC) transporters.8 The periplasmic protein, thiamin binding protein (TbpA), 

has been identified in E. coli and Samonella typhiurium, and TbpA in E. coli has been 

co-crystallized with one of the forms of thiamin.1 As previously mentioned, the protein 

has the ability to bind all three forms of thiamin (thiamin-OH, thiamin monophosphate, 

and thiamin diphosphate) with similar dissociation constants on the nanomolar scale.2 

Because the side chain of thiamin has no evidence for significance in binding, thiamin 

analogues with conjugate attachment at the hydroxyl side chain may also bind to the 

protein and be successfully transported into the cell. The hypothesis that TbpA can bind 

other thiamin analogues with functionalized side chains has been proposed.  
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Synthesis of Thiamin Analogs for Biological Studies 

 

Many studies on thiamin-dependent enzymes have been performed to trap a 

reaction intermediate through the use of synthesized thiamin analogs.20,21 A ring opened 

form of thiamin, benfotiamin, is used as a more easily absorbed compound for treatment 

of thiamin deficiency.22 Other ring-opened forms have been synthesized as possible 

inhibitors for treatment of cancer.22 Finally, phosphate analogs have been synthesized as 

a probe for new phosphorylation pathways.23 Development of new thiamin analogs with 

ligands attached at the hydroxyl side chain may be useful for delivering reagents of 

interest into the cell. By employing a ligand attachment that allows for hydrolysis of 

reagents upon entering the cell, thiamin transport may provide a useful function for 

“smuggling” small molecules into biological systems such as antibiotics or fluorescent 

reagents. Furthermore, exploration of the tolerance of thiamin transport to conjugates 

may lead to development of a photoaffinity probe for isolation of thiamin-utilizing 

enzymes in a new biological system. 

 

Purpose of Study 

 

The ability for thiamin analogs to go through the transport system may provide 

access for delivering reagents to the cell. A synthetic scheme for thiamin analogs and 

preliminary studies of analog uptake are outlined. Characterizing tolerance of the 

thiamin transport system in E. coli may lead to investigation of new thiamin chemistry.  
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SYNTHESIS OF AMINO THIAMIN 6 AND UPTAKE OF AMINO THIAMIN 6 IN E. 

COLI BW25113 MUTANT 

 

Introduction 

 

 A synthetic scheme for thiamin amine has been revised and results in an 

improved 62% yield of final product (Figure 1).24 The amino analog may provide a 

scaffold for attaching small molecules of interest to thiamin via amide bond formation 

with the free amine. Growth and toxicity studies are performed on an E. coli mutant 

strain that contains no thiamin pyrophosphate synthase (ThiE), an enzyme which 

assembles thiamin monophosphate from the thiazole and pyrimidine components that are 

synthesized separately along the pathway (Figure 2).25  

A single-gene knockout mutant has been developed for a ThiE- E. coli strain.26 

Through recombination, a kanamycin cassette has replaced the reading frame coding for 

thiamin phosphate synthase (ThiE), giving the ThiE- mutant kanamycin resistance in the 

absence of ThiE gene. Thiamin must be provided for growth of the mutant cells because 

the mutant strain no longer has the ability to synthesize thiamin. The amino analog is an 

alternative to thiamin and therefore results in growth as well as a level of toxicity at 

higher millimolar concentrations. 
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Figure 1. Synthesis of Amino Thiamin 6 
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Figure 2. Catalytic Reaction of Thiamin Synthase to Form Thiamin 
Monophosphate 
 

 

 

 

Figure 3. Synthesis of Pyrimidine Reagent 12 
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Materials and Methods 

 

Grewediamine is supplied as a gift from Hoffman LaRoche. All reagent grade 

solvents and starting materials are supplied from Sigma Aldrich, unless otherwise noted. 

NMR is taken with a Mercury instrument (300 mHz). Mass spectrometry analysis is 

performed on (TOF+) ESI-MS. 

 

Synthesis of Bromo Thiazole 2 

 

Thiazole 1 (7 mmol, 1.0 g) is added to a (#15 Ace glass) pressure tube. Ten 

milliliters of 40% (w/v) solution of HBr and Acetic acid mixture is added to the tube, 

followed by tight closure of pressure screw cap. The mixture is stirred vigorously at 

reflux conditions (90°C) overnight. The remaining acetic acid is then distilled off, 

leaving an oily residue. The residue is precipitated with ether, followed by several 

washings with ether for purification. 1.1 g solid is recovered (76% yield). Spectroscopic 

Data: 1H NMR (300 MHz, Methanol-d4)– δ 2.56 (s, 3H, CH3), 3.54 (t, 2H,  

-CH2CH2OH), 3.75 (t, 2H, -CH2CH2OH), 9.96 (s, 1H, H- thiazolium). ESI-MS (m/z): 

[M+H]+ calcd for C6H8BrNS 205.9561; found 205.9639 
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Synthesis of Azido Thiazole3 

 

Bromo thiazole 2 (4.85 mmol, 1.0g) is dissolved into 50 mL of 1:4 water: 

acetone mixture in a 250 mL round bottom flask. Sodium azide (4 eq., 19.4 mmol, 

1.26g) is added to the round bottom flask. The reaction is stirred vigorously for 48 hours. 

A rotary evaporator is used to remove acetone from the solvent mixture. The oil droplet 

suspension is diluted with water and extracted into dichloromethane. The 

dichloromethane is subsequently washed with water, 5% sodium bicarbonate, brine, and 

water respectively. 0.8 g material is recovered (98% yield). Spectroscopic Data: 1H 

NMR (300 MHz, methanol-d4) - δ 2.40 (s, 3H, CH3), 3.30 (t, 2H, -CH2CH2N3), 3.54 (t, 

2H, -CH2CH2N3), 8.80 (s, 1H, H-thiazolium). ESI-MS (m/z): [M+H]+ calcd for 

C6H8N4S 169.0545; found 164.0548  

 

Synthesis of Amino Thiazole 4 

 

The synthesis is as previously reported in literature.27 A tan oil results (0.18g, 

93% yield). Spectroscopic data: 1H NMR (300 MHz, chloroform-d) - δ 1.43 (br s, 2H, 

NH2), 2.40 (s, 3H, CH3), 2.92 (m, 4H, -CH2CH2NH2), 8.57 (s, 1H, H-thiazolium). ESI-

MS (m/z): [M+H] + calcd for C6H10N2S 142.0643; found 143.0647. 
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Synthesis of Protected Amino Thiazole 5 

 

Amino thiazole 7 (1.3 mmoles, 0.18g) is dissolved in dichloromethane followed 

by addition of triethylamine (1.5 equivalents). 1 equivalent of tert-butyl isopropyl 

dicarbonate is added to the vessel under argon, and the reaction is stirred overnight.  The 

solution is diluted with dichloromethane and is washed with water, sodium bicarbonate, 

brine, and water respectively. No further purification is performed as determined by 

NMR analysis (0.22 g, 70% yield). Spectroscopic Data: 1H NMR (300 MHz, 

chloroform-d) - δ 1.40 (s, 9H, -C(CH3)3), 2.36 (s, 3H, -CH3), 2.94 (t, 2H, -CH2CH2NH), 

2.96 (q, 2H, -CH2CH2NH-), 4.79 (br s, 1H, -NH-), 8.54 (s, 1H, H-thiazolium).  ESI-MS 

(m/z): [M+H] + calcd for C11H18N2O2S 243.1167; found 243.1167. 

 

Synthesis of HMP Alcohol 11 

 

 Synthesis is performed as previously reported, and 0.4g is recovered resulting in 

50% yield).28 Spectroscopic Data: 1H NMR (300 MHz, methanol-d4) - δ 2.40 (s, 3H, 

CH3-), 4.83 (s, 2H, -CH2OH), 7.95 (s, 1H, aromatic H-C). ESI-MS (m/z): [M+H] + 

calcd for C6H9N3O 140.0824; found 140.0828. 
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Synthesis of Pyrimidine Reagent 12 

 

The procedure is updated according to a previous method (Figure 3).29 To a 

pressure tube containing HMP Alcohol 11 (2.3 mmol, 0.4 g) is added ten milliliters of 

HBr: Acetic acid mixture (40% w/v). A screw cap is secured to the pressure tube and the 

reaction mixture is refluxed at 90°C overnight. Excess acetic acid is removed by 

distillation, leaving an oily product residue. Product is precipitated with anhydrous ethyl 

ether and is washed several times with ether. No further purification is need as 

determined by NMR (0.44 g, 68% yield). Spectroscopic Data: 1H NMR (300 MHz, 

methanol-d4)- δ 2.56 (s, 3H, -CH3), 4.55 (s, 2H, -CH2Br), 8.29 (s, 1H, aromatic H-C). 

ESI-MS (m/z): [M+H] + calcd for C6H8N3Br 201.9980; found 201.9985. 

 

Synthesis of Amino Thiamin 6  

 

Amino thiazole 5 (1.6 mmol, 0.380g) and 1 equivalent of pyrimidine reagent 12 

(1.6 mmol, 0.44g) are weighed into a 50 mL round bottom flask. Two milliliters of p-

xylenes is added to suspend the mixture. The reaction mixture is refluxed with a 

condenser at 130°C for three hours. Rotary evaporator removes the solvent. The residue 

is washed with absolute ethanol, suspended in ether, and vacuum filtered. No further 

purification is needed as confirmed by NMR shown (Figure 4, 0.35G, 62% yield). 

Spectroscopic Data: 1H NMR (300 mHz, D2O)- δ 2.59 (s, 3H, CH3-pyrimidine), 2.63 

(s, 3H, CH3-thiazolium), 3.38 (m, 4H, -CH2CH2NH2), 5.58 (s, 2H, Bridging –CH2-), 
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8.10 (s, 1H, H- pyrimidine), 9.67 (s, 1H, H-thiazolium). ESI-MS (m/z): [M+] calcd for 

C12H18N5S+ 264.1283; found 264.1281 (Figure 5). 

 

 

Figure 4. Proton NMR Spectrum of Amino Thiamin 6 
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Figure 5. Mass Spectrum of Amino Thiamin 6 
 

 

 

Growth Culture of Thiamin Depleted BW25113 Mutant  

 

 BW25113 ThiE- E. coli is streaked onto an LB plate and incubated at 37°C for 

16 hours. A colony is selected and inoculated into a 5 mL LB starter culture containing 

40 ug/mL of kanamycin. The culture is incubated in a shaker at 37°C and 200 rpm 

overnight.  Since a kanamycin cassette replaces the reading frame coding for ThiE gene, 

the mutant strain exhibits kanamycin resistance. As a result, a final concentration of 40 

ug/ml is used for all subsequent cultures to select for the ThiE- mutant strain.26 The 
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starter LB culture is centrifuged at 5000 RPM for 8 minutes, and the supernatant is 

removed. The cells are washed with minimal M9 media. Centrifugation and washing is 

repeated four times to remove most excess thiamin from the media. The washed starter 

culture is used to inoculate 20 mL of M9 media to a 1% final concentration. Cell density 

is measured (OD600) several times over 27 hours to monitor growth plateau, indicating 

the cells are depleted from a thiamin source. Amino thiamin 6 is added in increasing 

concentrations of 1 uM, 10 uM, 1 mM, 50 mM, 75 mM, and 100 mM to separate media 

samples containing the thiamin depleted E. coli mutant (at a 0.05% concentration of 

cells). M9 media containing only 0.05% of E. coli mutant is used as a control for no 

growth and comparison with toxic levels of analog. As another control, the same 

increasing concentrations of thiamin hydrochloride is added to separate samples of 

culture to compare with growth due to uptake of amino thiamin 6. Growth is monitored 

over a time of 45 hours (OD600) using a UV-Vis spectrometer.  

 

Results 

 

The slowest growth of the ThiE- mutant is observed at 1 uM of amino thiamin 6, 

and most rapid growth is observed between 1 and 50 mM amino thiamin 6 (Figure 6).  

Concentration-dependent growth is observed. 
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Figure 6. Growth Curve for Uptake of Amino Thiamin 6 by ThiE- E. coli Mutant 
Strain 
 
 

 

Thiamin not synthesized by the prokaryote may enter the biosynthetic pathway 

followed by pyro phosphorylation by thiamin phosphate kinase and thiamin phosphate 

kinase. As a hypothesis, enzymes which remove amino groups in the cell may catalyze 

imine formation, and further hydrolysis forms thiamin, which may then be utilized as a 

metabolite (Figure 7). No further studies have been performed to confirm this 

hypothesis. 
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Figure 7. Imine Formation and Hydrolysis of Amino Thiamin 6 to Form Thiamin 
15 
 

 

Amino thiamin 6 provides an alternative source of thiamin for growth and has 

therefore successfully been imported into the cell. Thiamin amino analog may provide a 

scaffold for ligand attachment through amide bond formation.  
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SYNTHESIS OF THIAMIN ESTER ANALOGS AND INITIAL UPTAKE STUDY OF 

ESTERS USING A THIAMIN DEFICIENT E. COLI MUTANT 

 

Introduction 

 

 After establishing a scaffold for thiamin conjugates, ester analogs containing a 

formyl, acetyl, and benzoyl group are synthesized to study uptake and tolerance of the 

thiamin transport system. Thiamin esters are easily afforded through refluxing thiamin 

hydrochloride in acid, which produces a pure product and gives decent yield. As an 

alternative method, thiazole ester is first formed followed by condensation with the 

pyrimidine component. Both methods rely on precipitation of final product for 

purification, given that thiamin contains a positive charge and acts as a salt. The latter 

method results in very low yield. Finally, thiamin esters are more readily synthesized 

initially to determine tolerance of the uptake system. Thiamin amide conjugates requires 

several more steps to yield a final product.  

 

Materials and Methods 

  

Chloromethyl pyrimidine is provided as a gift from Hoffeman-LaRoche. All 

reagents are from Sigma-Aldrich, unless otherwise noted.  
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Synthesis of Thiamin Formate 16 

 

 

Figure 8. Synthetic Scheme for Thiamin Formate 16 
 

 

To a pressure tube containing thiamin hydrochloride 15 (0.16 mmol, 0.055 g) is 

added 2 milliliters of 99% formic acid (Figure 8). A screw cap is secured to the tube, and 

the reaction mixture is refluxed at 100°C overnight. The excess formic acid is removed 

by distillation, leaving a solid residue. The residue is washed several times with 

anhydrous diethyl ether and is dried on house vacuum for two hours. No further 

purification is needed as determined by NMR analysis (Figure 9). 0.023g is recovered, 

leaving a 43% yield. Spectroscopic Data: 1H NMR (300 MHz, methanol-d4)- δ 2.59 (s, 

3H, CH3-pyrimidine), 2.65 (s, 3H, CH3-thiazolium), 3.41 (t, 2H, -CH2CH2CHO), 4.44 (t, 

2H, -CH2CHO), 5.51 (s, 2H, Bridging –CH2), 8.08 (s, 1H, H-formate), 8.13 (s, 1H, H-

pyrimidine), 8.23 (s, 1H, H-thiazolium). ESI-MS (m/z): [M+] calcd for C12H17N4O2S+ 

293.1072, found 293.1084 (Figure 10). 
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Figure 9. Proton NMR Spectrum of Thiamin Formate 16 
 



 

21 

 

 

Figure 10. Mass Spectrum of Thiamin Formate 16 
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Synthesis of Thiamin Acetate 17 

 

 

Figure 11. Synthetic Scheme for Thiamin Acetate 17 
 

 

To a pressure tube containing thiamin hydrochloride (0.16 mmol, 0.055g) is 

added 2 milliliters of glacial acetic acid (Figure 11). A screw cap is secured to the tube, 

and the reaction mixture is refluxed at 100°C overnight. The excess acetic acid is 

removed by distillation, leaving a solid residue. The residue is washed several times with 

anhydrous diethyl ether and is dried on house vacuum for two hours. No further 

purification is needed as determined by NMR analysis (Figure 12). 0.037g is recovered, 

leaving a 67% yield. Spectral Data: 1H NMR (300 MHz, methanol-d4)- δ 2.08 (s, 3H, 

CH3-acetyl), 2.64 (s, 3H, CH3-pyrimidine), 2.64 (s, 3H, CH3-thiazolium), 3.38 (t, 2H, -

CH2CH2COCH3), 4.34 (t, 2H, -CH2CH2COCH3), 5.55 (s, 2H, Bridging –CH2), 8.27 (s, 

1H, H-pyrimidine), 9.84 (s, 1H, H-thiazolium). ESI-MS (m/z): [M+] calcd for 

C14H19N4O2S+ 307.1229; found 307.1214 (Figure 13). 
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Figure 12 . Proton NMR Spectrum of Thiamin Acetate 17 
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Figure 13. Mass Spectrum of Thiamin Acetate 17 
 

 

 

Synthesis of Thiamin Benzoate 18 

 

 

Figure 14. Synthetic Scheme for Thiamin Benzoate 18 
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The thiazole ester is synthesized first (Figure 14). The procedure is adapted from 

a similar synthesis of thiamin ester.12 To a round bottom flask containing 0.65 G thiazole 

2 dissolved in 2 milliliters of benzene and 0.5 milliliters of pyridine is added 1 eq. 

benzoyl chloride 13 dropwise. The reaction is stirred for one hour. Rotary evaporator 

removes the solvent, which leaves a crystalline product (0.9G, 99% yield). The crude 

product is used for the subsequent step without purification. Thiamin is then formed 

through reflux of thiazole ester 16 with chloromethyl pyrimidine 17 in n-butanol. After 

75 minutes, the resulting precipitant is immediately filtered, followed by several 

washings with ethanol and acetone. No further purification is required as determined by 

NMR (figure 15, 0.037 G, 2.5% yield). Spectral Data: 1H NMR (300 MHz, Methanol-

d4): δ 2.63 (1, 3H, CH3-pyrimidine), 2.68 (1, 3H, CH3-thiazolium), 3.54 (t, 2H, -

CH2CH2-benzoate), 4.62 (t, 2H, -CH2CH2-benzoate), 5.55 (s, 1H, Bridging –CH2), 7.51 

(m, 2H, H-meta), 7.65 (m, 1H, H-para), 8.07 (dd, 2H, H-ortho), 8.27 (s, 1H, H-

pyrimidine), 9.84 (s, 1H, H-thiazolium). ESI-MS (m/z): calcd for C18H21N4O2S+ 

369.1385; found 369.1402 (Figure 16). 
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Figure 15. Proton NMR Spectrum of Thiamin Benzoate 18 
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Figure 16. Mass Spectrum of Thiamin Benzoate 18 
 

 

Testing Uptake of Thiamin Esters by E. coli Mutant Using A Disk-Assay Growth Method 

 

To determine whether the thiamin esters are taken up and metabolized by the 

cell, a disk assay method is employed. The E. coli mutant is depleted of all exogenous 

forms of thiamin in minimal growth media in the same method as previously stated. The 

resulting culture is added to fresh liquid M9 minimal media and agarose to a final 

concentration of 0.05%. The liquid media is immediately poured onto plates containing 

four separated wells. After the seeded media has solidified, sterilized filter paper disks 

are placed on each separated agarose well using a sterilized toothpick. As a control, 3µl 

of sterile filtered water, (40 mg/ml) ampicillin, and 1mM thiamin hydrochloride is 
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pipetted onto separate disks in separate wells. 3 µl of 1 mM each analog is also placed 

onto a separate disk in separate wells. The plates are then incubated at 30°C.  

 

Table 1. Positive or Negative Growth of E. coli Mutant on Thiamin Esters 
 

Name Growth (+/-) 

Water (vehicle) - 

Ampicillin (negative control) - 

Thiamin hydrochloride (positive control) ++ 

Thiamin formate ++ 

Thiamin acetate + 

Thiamin benzoate + 

 

 

Results 

 

As expected, there is no growth on sterile filtered water (Table 1). Since the 

mutant is not resistant to ampicillin, there is also no growth. Growth is observed on 

thiamin hydrochloride as another control. Finally, growth is observed for the formate, 

acetate, and benzoate analogs of thiamin. As a hypothesis, analogs are taken up by 

thiamin transport system, and esterases present inside the cell hydrolyze the small 

molecule component. Thiamin may then be used as a metabolite, allowing for growth. 
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An alternate hypothesis is that the amino thiamin may become phosphorylated by the 

kinase. The molecule may then be incorporated into the last step of the biosynthetic 

pathway and then be used as a cofactor.  
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CONCLUSION: PROSPECT FOR USE OF THIAMIN TRANSPORT SYSTEM AS 

SOURCE OF UPTAKE OF THIAMIN CONJUGATES 

 

To further exploit the uptake properties of thiamin transport system in E. coli, 

effect of esterase activity outside the cell on thiamin esters must be explored. An 

experimental procedure is proposed as well as prospect for future studies.  

 

Effect of Secreted Esterase on Thiamin Esters  

 

 Esterases may be secreted from the cell and cause hydrolysis of thiamin esters 

before entering the cell. Media from cell culture may be used as a source of secreted 

esterase to test hydrolysis of esters over time. A one-liter culture may be grown into log 

phase, and the cells may then be spun down by centrifuge. The separated supernatant 

will be collected and concentrated with a speed vacuum down to the smallest volume 

possible without causing precipitation. Any precipitant is filtered, and as an experimental 

proposal, 10 µM of thiamin ester may be added to the concentrated supernatant. After 

about one hour, an aliquot of supernatant may be filtered through a ten kDa cutoff 

membrane to separate small molecules from proteins secreted in the supernatant. The 

small molecule pool may be concentrated, and an aliquot may be injected on the HPLC 

to determine the amount of hydrolyzed ester. A standard of each ester and thiamin 

hydrochloride may be used to identify the presence of each compound in the media.  
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Synthesis of Thiamin Amide Analogs for Future Studies 

 

 Upon determining whether esterases secreted from the cell are causing hydrolysis 

of thiamin conjugates, thiamin amides may be synthesized and tested as a more stable 

form for thiamin conjugate studies. As an additional study, a fluorescent thiamin analog 

may be synthesized to observe uptake of the analog through the thiamin transport 

system. Fluorescence confocal microscopy may be used to observe uptake of a 

fluorescent molecule. If the analog has gone inside the cell, the cytoplasm will show 

fluorescence due to the analog itself.  

 

Future Scope of Study 

 

 After uptake has been confirmed via disk assay method, growth studies, and 

visual determination using microscopy, the use of thiamin analogs to exploit thiamin 

transport becomes a more accessible tool to explore the cell biology of E. coli and other 

microorganisms. Reagents of interest that are not currently compatible for uptake may 

become of use upon forming a thiamin analog. Reagents of interest may include a 

thiamin analog containing an antibiotic that may be smuggled inside the cell as well as a 

thiamin derivative photo affinity label or activity-based probe for isolating and 

characterizing thiamin-utilizing enzymes from a proteome.  
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APPENDIX 

Figures 

 

Bromo Thiazole 5. Spectroscopic Data 

 

 

Proton NMR Spectrum of Bromo Thiazole 5 
 
 
 
Assignment of Protons: 1H NMR: (300 MHz, Methanol-d4)– δ 2.56 (s, 3H, CH3), 3.54 

(t, 2H, -CH2CH2OH), 3.75 (t, 2H, -CH2CH2OH), 9.96 (s, 1H, H- thiazolium) 
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Mass Spectrum of Bromo Thiazole 5: ESI-MS (m/z): [M+H]+ calcd for C6H8BrNS 
205.9561; found 205.9639 
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Azido Thiazole 6 Spectroscopic Data 

 

 

Proton NMR Spectrum of Azido Thiazole 6 
 

Assignment of Protons: 1H NMR (300 MHz, methanol-d4)- δ 2.40 (s, 3H, CH3), 3.30 (t, 

2H, -CH2CH2N3), 3.54 (t, 2H, -CH2CH2N3), 8.80 (s, 1H, H-thiazolium) 
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Mass Spectrum of Azido Thiazole 6: ESI-MS (m/z): [M+H]+ calcd for C6H8N4S 
169.0545; found 164.0548 
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Amino Thiazole 7 Spectroscopic Data 

 

 

Proton NMR Spectrum of Amino Thiazole 7 
 

Assignment of Protons: 1H NMR (300 MHz, chloroform-d)- δ 1.43 (br s, 2H, NH2), 

2.40 (s, 3H, CH3), 2.92 (m, 4H, -CH2CH2NH2), 8.57 (s, 1H, H-thiazolium). 
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Mass Spectrum of Amino Thiazole 7: ESI-MS (m/z): [M+H]+ calcd for C6H10N2S 
142.0643; found 143.0647 
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Protected Amino Thiazole 8 Spectroscopic Data 

 

 

Proton NMR Spectrum of Protected Amino Thiazole 8 
 

Assignment of Protons: 1H NMR (300 MHz, chloroform-d) - δ 1.40 (s, 9H, -C (CH3)3), 

2.36 (s, 3H, -CH3), 2.94 (t, 2H, -CH2CH2NH-), 2.96 (q, 2H, -CH2CH2NH-), 4.79 (br s, 

1H, -NH-), 8.54 (s, 1H, H-thiazolium) 
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Mass Spectrum of Protected Amino Thiazole 8: ESI-MS (m/z): [M+H]+ calcd for 
C11H18N2O2S 243.1167; found 243.1167 
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HMP Alcohol 11 Spectroscopic Data 

 

 

Proton NMR Spectrum for HMP Alcohol 11 
 

Assignment of Protons: 1H NMR (300 MHz, methanol-d4)- δ 2.56 (s, 3H, -CH3), 4.55 

(s, 2H, -CH2Br), 8.29 (s, 1H, aromatic H-C). 
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Mass Spectrum of HMP Alcohol 11: ESI-MS (m/z): [M+H]+ calcd for C6H9N3O 
140.0824; found 140.0828 
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Pyrimidine Reagent 12 Spectroscopic Data 

 

  

Proton NMR Spectrum of Pyrimidine Reagent 12 
 

Assignment of Protons: 1H NMR (300 MHz, methanol-d4) - δ 2.56 (s, 3H, -CH3), 4.55 

(s, 2H, -CH2Br), 8.29 (s, 1H, aromatic H-C). 
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Mass Spectrum of Pyrimidine Reagent 12: ESI-MS (m/z): [M+H] + calcd for 
C6H8N3Br 201.9980; found 201.9985. 
 

 

 

 


