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ABSTRACT 

 

This dissertation examines three important issues in energy markets: price 

dynamics, information flow, and structural change.  We discuss each issue in detail, 

building empirical time series models, analyzing the results, and interpreting the 

findings.  First, we examine the contemporaneous interdependencies and information 

flows among crude oil, natural gas, and electricity prices in the United States (US) 

through the multivariate generalized autoregressive conditional heteroscedasticity 

(MGARCH) model, Directed Acyclic Graph (DAG) for contemporaneous causal 

structures and Bernanke factorization for price dynamic processes.  Test results show 

that the DAG from residuals of out-of-sample-forecast is consistent with the DAG from 

residuals of within-sample-fit.  The result supports innovation accounting analysis based 

on DAGs using residuals of out-of-sample-forecast.  Second, we look at the effects of 

the federal fund rate and/or WTI crude oil price shock on US macroeconomic and 

financial indicators by using a Factor Augmented Vector Autoregression (FAVAR) 

model and a graphical model without any deductive assumption.  The results show that, 

in contemporaneous time, the federal fund rate shock is exogenous as the identifying 

assumption in the Vector Autoregression (VAR) framework of the monetary shock 

transmission mechanism, whereas the WTI crude oil price return is not exogenous.  

Third, we examine price dynamics and contemporaneous causality among the price 

returns of WTI crude oil, gasoline, corn, and the S&P 500.  We look for structural break 

points and then build an econometric model to find the consistent sub-periods having 
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stable parameters in a given VAR framework and to explain recent movements and 

interdependency among returns.  We found strong evidence of two structural breaks and 

contemporaneous causal relationships among the residuals, but also significant 

differences between contemporaneous causal structures for each sub-period.   
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NOMENCLATURE 

 

AHE Average hourly earnings 

COB  California-Oregon 

EMP Employment and hours 

EXR Exchange rates 

FFR US federal fund rate 

HSS Housing starts and sales 

INT Interest rates 

MON Money and credit quantity aggregates 

OIV Orders and real inventories 

OUT Real output and income 

PJM  Pennsylvania-New Jersey-Maryland  

PRI Price indexes 

RCOB  Price returns of COB Electricity firm on peak 

RCORN  Price returns of corn 

RGAS  Price returns of Henry Hub natural gas 

RGASOLINE  Price returns of gasoline 

ROIL  Price returns of Dated Brent crude oil 

RPJM  Price returns of PJM Electricity firm on peak 

RS&P500  Price returns of S&P 500 

RWTI  Price returns of WTI crude oil 
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RVAR_RCOB  Residuals in VAR model for the price returns of COB Electricity 

firm on peak 

RVAR_RGAS  Residuals in VAR model for the price returns of Henry Hub 

natural gas 

RVAR_ROIL  Residuals in VAR model for the price returns of Dated Brent 

crude oil 

RVAR_RPJM  Residuals in VAR model for the price returns of PJM Electricity 

firm on peak 

RVDG_RCOB  Standardized residuals in VAR-DCC-GARCH model for the price 

returns of COB Electricity firm on peak 

RVDG_RGAS  Standardized residuals in VAR-DCC-GARCH model for the price 

returns of Henry Hub natural gas 

RVDG_ROIL  Standardized residuals in VAR-DCC-GARCH model for the price 

returns of Dated Brent crude oil 

RVDG_RPJM  Standardized residuals in VAR-DCC-GARCH model for the price 

returns of PJM Electricity firm on peak 

SPR Spreads 

STO Stock prices 

UEMP Unemployment rate 

WTI West Texas Intermediate crude oil 
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CHAPTER I 

INTRODUCTION 

 

The dynamic relations and causality among energy markets and macroeconomic 

information are one of the most interesting topics in empirical economic studies.  Recent 

advances in econometric techniques have stimulated many researchers to investigate the 

effects of changes in energy prices (e.g., crude oil, gasoline, natural gas and electricity) 

on macroeconomic and financial indicators.   

However, few have studied the specific impacts on energy markets resulting 

from dynamic information flows among various sectors of the US economy and 

structural breaks. Some research has found strong evidence of contemporaneous 

correlations, dynamic relations and information flows among energy prices, 

macroeconomic and financial indicators (Barsky and Kilian 2002; Barsky et al. 2004; 

Bernanke et al. 1997; Hamilton 1983, 1996, 2003; Hoover and Perez 1994).  

Therefore, this dissertation provides information on establishing dynamic market 

processes based on an econometric framework that address price dynamics and causal 

relationships among US energy markets and macroeconomic information.  The 

dissertation is presented as three essays in Chapters II, III and IV.  Each self-contained 

essay includes an introduction, methodology and conclusion. Chapter V summarizes the 

results and gives concluding comments.  

 Chapter II investigates the interdependencies and information flows among 

crude oil, natural gas, and electricity prices in the US by using the multivariate 
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generalized autoregressive conditional heteroscedasticity (MGARCH) model which we 

consider superior to using separate univariate models.  We perform forecasting exercises 

considering 200 one-step-ahead forecasts, reclusively and evaluate forecasting 

performance.  Studying stability in the modeling structure by comparing the variance-

covariance structures in residuals from within-sample-fit and out-of-sample-forecast 

allows us to investigate the appropriateness of a standard Directed Acyclic Graphs 

(DAG) application in time series analysis with respect to modeling new information.  

Subsequently, we assess whether the DAG structures from residuals of within-sample-fit 

show the same patterns as the DAG structures from residuals of out-of-sample-forecast. 

Chapter III inductively infers the contemporaneous information flows without 

any deductive information and investigates the structural economic shocks transmission 

mechanism under the FAVAR framework.  We use a two-step procedure to show that 

the co-movement of these time series over time is adequately described in terms of a 

number of unobserved latent factors and the US federal fund rate or WTI crude oil price 

return.  First, we extract common factors from a large macroeconomic dataset of the US 

economy using the method suggested by Stock and Watson (2002a, 2002b) and 

Bernanke et al. (2005).  Second, we estimate the parameters governing their joint 

dynamics with the US federal fund rate and WTI crude oil price return series in two 

FAVAR models.  Third, we identify the contemporaneous causal structures among 

innovations based on the residuals of the estimated FAVAR models using the Directed 

Acyclic Graph (DAG) model.  Fourth, we derive and interpret the impulse response 

functions for each augmented factor and two considered variables and decompose the 
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forecast error variance for each factor into the parts attributable to each of a set of 

innovations processes in the FAVAR models.  Finally, we perform forecasting exercises 

considering 35 one-step-ahead forecasts, reclusively.  This exertion is accompanied by 

comparing the forecasting performances between the estimated FAVAR and univariate 

Autoregression (AR) models to check for analytical robustness. 

Chapter IV investigates the variations of contemporaneous causal structures 

among energy, agricultural, and financial markets by identifying structural changes in 

their dynamic relationships.  The finding of structural change allows us to produce one 

sample before and one sample after the identified change point.  However, it is widely 

known that the accurate directions and magnitude of the linkages are difficult to capture 

since their dynamic relationships are varied by time and they strengthen/weaken during 

crisis periods.  Thus, careful estimation of the price dynamics is paramount in order to 

identify structural changes contemporaneous linkages.  Bearing this in mind, we build an 

econometric model to examine whether crude oil, gasoline, corn and the US stock 

market index are linked contemporaneously and how their relationships change through 

time and across markets.  

Chapter V summarizes the results of the three chapters and lists the key findings.  

Also, we discuss the shortcomings of this dissertation and suggestions for further 

research. 
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CHAPTER II 

IDENTIFICATION OF CONTEMPORANEOUS CAUSAL STRUCTURE ON 

ENERGY MARKETS: WITHIN-SAMPLE-FIT VS. OUT-OF-SAMPLE-

FORECAST  

 

2.1.    Introduction 

  Multivariate time series models that include causal relationships among variables 

and information about random shocks can significantly improve forecasting ability.  The 

common approach for identifying causal structure derives either from economic theory, 

or the researcher’s knowledge of the data (Stock and Watson 2001).  The widely 

accepted concept proposed by Granger (1969), “𝑋  is cause of 𝑌  with respect to other 

series 𝑍 ”, known as Granger causality, describes the relationships between time series 

in the forecasting framework.  However, this concept neglects mention of possible 

contemporaneous causality/correlation between 𝑋  and 𝑌  (Granger 1988; Lütkepohl and 

Reimers 1992).  Thus, Swanson and Granger (1997) suggested using the residuals from a 

Vector Autoregression (VAR) model to test for vanishing difference of product of 

correlation or partial correlation among variables.  The Directed Acyclic Graph (DAG) 

approach, which is based on the graph theory developed by Spirtes et al. (2000) and 

Pearl (2000)  identifies the contemporaneous causal inferences among the variables with 

relative ease by testing the conditional independence on the residuals (Bessler and Lee 

2002; Bessler and Yang 2003; Demiralp and Hoover 2003; Moneta 2004, 2008; 

Swanson and Granger 1997).   
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  However, evidence of within-sample predictability does not hold in out-of-

sample predictability (Granger 1980).  Thus, the evaluating predictability and 

forecasting performance of time series models has remained a crucial issue particularly 

for economics and econometrics.  In general, the predictability tests and methods for 

evaluating forecasting performance are based on the within-sample-fit of a model and/or 

the out-of-sample-forecast obtained from a sequence of recursive regression.  For 

within-sample-fit, the entire sample is used in fitting the model, whereas an out-of-

sample-forecast attempts to mimic the data constraints (Chatfield 2001).  Numerous 

studies examine the test of predictability and power of forecasting performance (Clemen 

1989; Clements and Hendry 1993; Diebold and Lopez 1996; Diebold and Mariano 1995; 

Granger 1989; Harvey et al. 1997). 

  As an extension of these stylized facts, our interest lies in assessing whether the 

causal structure based on residuals from within-sample-fit is the same as the causal 

structure based on residuals from out-of-sample-forecast.  Typically, residuals from 

within-sample-fit represent the difference between actual value and expected value 

based on past information, and residuals from out-of-sample-forecast represent the 

difference between actual value and predicted value based on present and past 

information (Engle 2001).  The usual way to infer contemporaneous causality is to use 

residuals from within-sample-fit because they are easier to identify and there is less 

computational burden.   If the proposition holds that causal flows based on both residuals 

from within-sample-fit and out-of-sample-forecast exhibit consistency, we can be 

confident in the out-of-sample-forecast and its causal results.  For example, Kim and 
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Bessler (2007), who assessed causal relationship on the US equity market by using the 

Vector Error Correction (VEC) model, claimed that the DAG constructed based on 

residuals from within-sample-fit is consistent with the DAG based on residuals from out-

of-sample-forecast. 

 In this chapter, we investigate and address the interdependencies and information 

flows among crude oil, natural gas, and electricity prices in the US.  Since the energy 

crises in the 1970s, a number of studies have looked at the economic impacts of the high 

volatility of crude oil prices and oil price shocks (Hamilton 1983; Hickman et al. 1987; 

Jones et al. 2004; Kilian 2008; Mork and Hall 1980; Rasche and Tatom 1977).  In recent 

years, including 2012, dramatic increases in price volatility have even prompted some 

legislators to call for investigations into the possibility of oil and gas price speculation 

and market manipulation (Cantwell 2012).    

 In general, energy prices, such as crude oil, natural gas, and electricity, are often 

characterized by high volatility, strong mean-reversion, and abrupt and unanticipated 

upward price jumps or spikes which quickly decay (Blanco and Soronow 2001).  

However, price volatility is still insufficiently defined and there is no widely accepted 

definition of adequate volatility modeling and measurement.  Thus, whether conditional 

volatility (expected volatility) and volatility shocks (unexpected volatility) in a specific 

energy commodity market influence volatility in other commodity markets is a crucial 

question for diversification of economic issues on market integration.  

 From this perspective, we investigate the relationships among these series by 

using the multivariate generalized autoregressive conditional heteroscedasticity 
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(MGARCH) model, which we consider superior to working with separate univariate 

models.  We perform forecasting exercises considering 200 one-step-ahead forecasts, 

reclusively.  This exertion is accompanied by the evaluation of forecasting performance.  

Subsequently, we assess whether the DAG structures from standardized residuals of 

within-sample-fit show the same patterns from standardized residuals of out-of-sample-

forecast.  

 The contributions of this study to the literature on causal modeling and energy 

markets is two-fold: (1) determining the direction of causalities among the prices in US 

oil, natural gas, and electricity markets; and (2) whether the information flows between 

residuals from within-sample and out-of-sample forecast reveal consistency  

 The remainder of Chapter II is organized as follows. Section 2 discusses VAR, 

Dynamic Conditional Correlation (DCC) GARCH models and DAG specifications.  

Section 3 describes the data used in the analysis and presents summary statistics and 

basic non-stationary test results.  Section 4 discusses the empirical analysis of daily price 

returns of Dated Brent crude oil, Henry Hub natural gas, PJM electricity firm on peak 

and COB electricity firm on peak. Section 5 concludes. 
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2.2.    Methodology 

 This section introduces the basic concept of volatility modeling, i.e., 

decomposing a given time series into predictable and unpredictable parts.  Although 

volatility modeling methods are available in the literature, our focus is on the VAR and 

MGARCH models. We describe DAG, the basic framework and causal searching 

algorithm of graphical modeling. 

 

2.2.1.   Vector Autoregressive (VAR) Model 

  Following Sims (1980), a basic VAR model consists of a set of N endogenous 

variables 𝑌 = (𝑦 , 𝑦 , ⋯ , 𝑦 )  for 𝑛 = 1, 2, ⋯ , 𝑁 and 𝑡 = 1, 2, ⋯ , 𝑇 .  Therefore, we 

define a VAR (p) process as:  𝑌 = c + ∑ Γ 𝑌 + 𝜂                                                                                               (2.1) 

where Γ  are (𝑁 × 𝑁) coefficient matrices for 𝑖 = 1,2, ⋯ , 𝑝 and 𝜂  is a N-dimensional 

process with 𝐸(𝜂 ) = 0  and time invariant positive definite covariance matrix 𝐸(𝜂 𝜂 ) = Σ .  For any given variable, we estimate the coefficients of a VAR (p) 

process using by Ordinary Least Squares (OLS) separately for each time series. 

  A VAR approach consists of generating stationary time series with time invariant 

means, variances and covariance structure, given sufficient starting values.  However, 

the reduced form VAR above (equation (2.1)) does not allow for contemporaneous 

dependent relationships.  One way of allowing contemporaneous dependency is to 

multiply a matrix Γ  on both sides of equation (2.1):  Γ 𝑌 = 𝑑 + ∑ Γ∗𝑌 + 𝜀                                                                                           (2.2) 
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where a matrix Γ  represents the causal dependency of each variable on its 

contemporaneous counterparts, which is upper triangular with a unit diagonal;  𝜀  can be 

expressed as Γ 𝜂  , which is the diagonal matrix. 

  Fitting a VAR approach for modeling the conditional mean equation of the price 

returns in energy markets is a natural extension of this methodology in line with our 

research question.  We now describe the relevant specifications of a multivariate 

GARCH model. 

 

2.2.2.   Multivariate GARCH Model 

 Consider a stochastic vector process {𝑌 } with dimension 𝑁 × 1.  We denote that 𝜁  is  the information set generated by the observed series {𝑌 } up to and including 

time 𝑡 − 1.  Formally, we assume that {𝑌 } is conditionally heteroscedasticity.  

 We express the standard multivariate GARCH framework with no linear 

dependence structure in {𝑌 } as: 𝑌 |𝜁 ~𝑈(𝜇 , 𝐻 )                                                                                                          (2.3) 

where 𝑈(𝜇 , 𝐻 ) is an un-specified multivariate distribution with time dependent mean 𝜇  and time dependent variance-covariance matrix 𝐻 . 

 More specifically, we define the standard multivariate GARCH framework as:  𝑌 = 𝜇 + 𝜀                                                                                                                     (2.4) 
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where 𝜇 1 is the predictable conditional mean vector with respect to the information set 𝜁 , and 𝜀  is the unpredictable error term, given the information set 𝜁 , which we 

write as: 𝜀 = 𝐻 / 𝜂                                                                                                                     (2.5) 

where 𝐻  is the conditional variance-covariance matrix of 𝑌  which we write as:  𝐻 = ℎ                                                                                                                       (2.6) 

where 𝐻  is the 𝑁 × 𝑁 positive definite and symmetric matrix.  

 Also, we assume that 𝜂  is an identically independent distributed (i.i.d.) random 𝑁 × 1 vector such that:  𝐸(𝜂 ) = 0  and  𝐸(𝜂 𝜂 ) = 𝐼                                                                                        (2.7) 

where 𝐼  is an identity matrix of order N. 

 Now, we need to specify the conditional covariance matrix 𝐻 , while noting that 

how we parameterize it will produce rather different results. Numerous attempts 

described in the literature have given rise to two general classes of models, namely, 

modeling conditional covariance matrix 𝐻  directly (VEC2 model and BEKK3 model), 

and modeling conditional correlation matrix indirectly (constant conditional correlation 

(CCC4) model and dynamic conditional correlation (DCC) model).  We also focus on the 

DCC MGARCH model because there are fewer parameters to be estimated and it is 

easier to use the numerical optimization for obtaining the convergence.  

                                                 
1 In this dissertation, 𝜇  in equation (2.3) is the equivalent of term (𝑑 + ∑ Γ∗𝑌 ) in equation (2.2). 
2 VEC-GARCH model is a generalization of the univariate GARCH model by Bollerslev et al. (1988).  
3 BEKK-GARCH model can be viewed as a restricted version of VEC-GARCH model which is the Baba-
Engle-Kraft-Kroner (BEKK) defined in Engle and Kroner (1995). 
4 CCC-GARCH model is the simplest multivariate correlation model by Bollerslev (1990). 
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2.2.2.1.    DCC-GARCH Model 

 Bollerslev (1990) developed the CCC model which we use to estimate the 

correlation of MGARCH models indirectly.  However, the assumption that conditional 

correlations are constant over time is not realistic in practice.  Subsequently, numerous 

econometricians and researchers have tried to generalize Bollerslev’s CCC model.  

Engle (2002) proposed the DCC GARCH model and  Engle and Sheppard (2001) 

extended it to accommodate large time varying covariance matrices.  Our challenge is to 

transform the constant correlation matrix 𝑅  to its time-varying counterpart 𝑅 .  We 

define Engle’s dynamic correlation structure as:  𝐻 = 𝐷 𝑅 𝐷                                                                                                                    (2.8) 

where 𝐷  is the conditional standard deviation matrix that can be expressed as 𝐷 =𝑑𝑖𝑎𝑔(𝜎 , , 𝜎 , , ⋯ , 𝜎 , ) and 𝑅  is the time-varying correlation matrix.  We estimate 𝜎 ,  

as: 𝜎 = 𝑤 + ∑ 𝛼 , 𝜀 , + ∑ 𝛽 , 𝜎 ,                                                                   (2.9) 

where 𝑖, 𝑗 = 1, 2, ⋯ , 𝑁, and  𝜎 , = 𝜌 𝜎 𝜎  for 𝑖 ≠ 𝑗. 

  We express the time-varying correlation matrix 𝑅  as:  𝑅 = 𝑄∗ 𝑄 𝑄∗                                                                                                          (2.10) 𝑄 = (1 − ∑ 𝜆 − ∑ 𝜆 )𝑄 + ∑ 𝜆 (𝜂 𝜂 ) + ∑ 𝜆 𝑄      (2.11) 

where 𝑄 = 𝐸[𝜂 𝜂 ] , 𝛼  and 𝛽  are scalars such that ∑ 𝛼 + ∑ 𝛽 < 1 . Also, 𝜂 ~𝑈(0, 𝑅 ) is a 𝑁 × 1 vector of residuals standardized by their conditional standard 
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deviation with typical element 𝜂 = ,  which we obtain when estimating the 

univariate GARCH volatility models.  We express 𝑄∗ as:  

𝑄∗ =
⎣⎢⎢
⎢⎢⎡ 𝑞 , 0 0 … 00 𝑞 , 0 … 00 0 𝑞 , … 0⋮ ⋮ ⋮ ⋱ ⋮0 0 0 … 𝑞 , ⎦⎥⎥

⎥⎥⎤                                                            (2.12) 

Thus, 𝑄∗ = 𝑞 ,∗ = 𝑞 ,  is a diagonal matrix with the square root of the ith diagonal 

element of 𝑄  on its ith diagonal position.   

  The typical element of 𝑅  will be in a form such as 𝜌 = ,, ,  .  Engle and 

Sheppard (2001) established that the positive definiteness of 𝑄  will necessarily and 

sufficiently ensure the positive definiteness of 𝑅 , which is validity condition of 𝑅  as a 

correlation matrix.  They used the unconditional variance-covariance matrix of the 

standardized residuals to replace the matrix 𝑄 when estimating the parameters, which is 

in line with standard univariate GARCH results.  That is, simple variance-covariance 

matrix of 𝑄 = ∑
 serves as the estimator of 𝑄.  This simplification invokes the 

concept of variance targeting introduced by Engle and Mezrich (1996), which  assumes 

that in the long run the process of 𝑄  will approach the sample variance-covariance 

matrix 𝑄 .  Even though variance targeting is achieved in this context, we cannot 

guarantee the positive definiteness of the variance-covariance matrix 𝐻 .  Hafner and 

Franses (2003) proposed a generalized DCC model to ensure the positive definiteness of 

the 𝐻  matrix while sacrificing the variance targeting.  Whether to choose variance 
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targeting depends on the complexity of the model estimation.  However, we do not 

expect major differences in these two categories.  Similarly, we impose correlation 

targeting when necessary.   

 

2.2.2.2.    The Estimation Procedure of DCC-GARCH Model 

  Engle and Sheppard (2001) proved that the two-step estimator is consistent, and 

thus we apply it. We estimate the univariate GARCH model, and use the results as input 

to estimate the correlation parameters.  One considerable assumption for this estimation 

method is the distribution of the standardized residuals.  Assuming the unknown residual 

series 𝜂  is the multivariate normal distribution, we apply the Maximum Likelihood 

Estimator (MLE) properties, and when the multivariate normality assumption does not 

hold, we apply the Quasi-Maximum Likelihood Estimator (QMLE) properties. 

  Let the standardized residual, 𝜂 , assume multivariate Gaussian distributed.  Then 

detail the joint distribution of 𝜂 , 𝜂 , ⋯ , 𝜂  as: 𝑓(𝜂 ) = ∏ 𝑒𝑥𝑝 − 𝜂 𝜂                                                                                 (2.13) 

where 𝐸(𝜂 ) = 0, 𝐸(𝜂 𝜂 ) = 𝐼, and 𝑡 = 1, 2, ⋯ , 𝑇.  Estimate the Maximum Likelihood 

function for 𝜀 = 𝐻 / 𝜂  by: 𝐿(𝜃) = ∏ | | 𝑒𝑥𝑝 − 𝜀 𝐻 𝜀                                                                      (2.14) 

where 𝜃 is the model’s parameters.  Next, divide parameter 𝜃 into two groups: (𝜙, 𝜓) = (𝜙 , 𝜙 , ⋯ , 𝜙 , 𝜓)                                                                                        (2.15) 
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where 𝜙 = 𝛼 , 𝛼 , ⋯ , 𝛼 , 𝛽 , ⋯ , 𝛽  are the parameters of the univariate GARCH 

model for the ith price returns5, and 𝜓 = (𝜆 , 𝜆 ) are the parameters of the correlation 

structure in equation (2.10). 

  Transforming the logarithm of equation (2.13) and substituting 𝐻 = 𝐷 𝑅 𝐷  

gives the log-likelihood function: 

 𝑙𝑛 𝐿(𝜃) = − ∑ (𝑛𝑙𝑛(2𝜋) + 𝑙𝑛(|𝐻 |) + 𝜀 𝐻 𝜀 ) 

                = − ∑ (𝑛𝑙𝑛(2𝜋) + 𝑙𝑛(|𝐷 𝑅 𝐷 |) + 𝜀 𝐷 𝑅 𝐷 𝜀 )                        (2.16) 

                = − ∑ (𝑛𝑙𝑛(2𝜋) + 2𝑙𝑛(|𝐷 |) + 𝑙𝑛(|𝑅 |) + 𝜀 𝐷 𝑅 𝐷 𝜀 ) 

  The estimation of the correctly specified log-likelihood is difficult, but recall that 

the DCC-GARCH model is designed to allow for two-stage estimation.  In the first stage, 

we estimate parameter 𝜙 of the univariate GARCH models for each price return.  The 

likelihood used in the first step results in replacing 𝑅  with the identity matrix 𝐼 , which 

results in the quasi-likelihood function. Thus, we rewrite equation (2.15) as:   

 𝑙𝑛 𝐿 (𝜙) = − ∑ (𝑛𝑙𝑛(2𝜋) + 2𝑙𝑛(|𝐷 |) + 𝑙𝑛(|𝑅 |) + 𝜀 𝐷 𝑅 𝐷 𝜀 ) 

                   = − ∑ (𝑛𝑙𝑛(2𝜋) + 2𝑙𝑛(|𝐷 |) + 𝑙𝑛(|𝐼 |) + 𝜀 𝐷 𝐼 𝐷 𝜀 ) 

                   = − ∑ (𝑛𝑙𝑛(2𝜋) + 2𝑙𝑛(|𝐷 |) + 𝜀 𝐷 𝐼 𝐷 𝜀 )                              (2.17) 

                   = − ∑ 𝑛𝑙𝑛(2𝜋) + ∑ 𝑙𝑛(ℎ ) +                

                   = − ∑ 𝑛𝑙𝑛(2𝜋) + ∑ 𝑙𝑛(ℎ ) +  

                                                 
5 In this study, 𝑖 is equal to four (i.e., crude oil, natural gas, and two electricity) market price returns. 
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  Having estimated the parameter set 𝜙 = (𝜙 , 𝜙 , ⋯ , 𝜙 ), we can estimate the 

conditional variance ℎ  for each price return and also estimate  𝑢 = 𝐷 𝜀  and 𝑄 = 𝐸[𝑢 , 𝑢 ]. 
  After the first step, we cannot reveal the parameters 𝜆  and 𝜆 .  Thus, in the 

second step, we estimate parameter 𝜓  using the correctly specified log-likelihood in 

equation (2.15), given parameter 𝜙 .  Since 𝐷  is constant when conditioning on the 

parameters from the first step, we exclude the constant terms and maximize equation 

(2.15) as:  

 𝑙𝑛 𝐿 (𝜓) = − ∑ (𝑛𝑙𝑛(2𝜋) + 2𝑙𝑛(|𝐷 |) + 𝑙𝑛(|𝑅 |) + 𝜀 𝐷 𝑅 𝐷 𝜀 ) 

                    = − ∑ (𝑛𝑙𝑛(2𝜋) + 2𝑙𝑛(|𝐷 |) + 𝑙𝑛(|𝑅 |) + 𝜀 𝑅 𝜀 )                      (2.18) 

                    = − ∑ (𝑙𝑛(|𝑅 |) + 𝜀 𝑅 𝜀 ) 

 

2.2.3.    Directed Acyclic Graphs (DAG) 

  This graphical approach is based on the graph theory that statistically inferred 

information about the probability distribution of the estimated residuals can be helpful in 

identifying the causal relationships among variables.  Identification occurs by testing the 

conditional independence on the residuals (Bessler and Lee 2002; Bessler and Yang 

2003; Demiralp and Hoover 2003; Moneta 2004, 2008; Swanson and Granger 1997).   

  The common approach is the directed acyclic graph (DAG) developed by Pearl 

(2000) and Spirtes et al. (2000), which shows the direction of information flows using 

directed edges among a set of variables.  According to Pearl (1995), a DAG of causality 
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has two parts: a certain number of nodes (𝑋 , 𝑋 , 𝑋 , ⋯ , 𝑋 ), and directed/undirected 

edges among nodes.  Generally, a DAG exhibits acyclic patterns in a graph-like format.  

Each node 𝑋  on the graph is expressed as a non-parametric structural equation 𝑋 =𝑓 (𝑝𝑎 , 𝜀 ) , where 𝑝𝑎  are the parents of 𝑋  on the graph and the 𝜀  are mutually 

independent.  The non-parametric structural equations with 𝑋 = 𝑓 (𝑝𝑎 , 𝜀 ), where 𝑋  

can be replaced by 𝑥 , gives the distribution of the variables. 

  Mathematically, we write:   𝑃𝑟(𝑥 , 𝑥 , 𝑥 , ⋯ , 𝑥 ) = 𝑃𝑟 ∏ (𝑥 |𝑝𝑎 )                                                                    (2.19) 

where 𝑃𝑟(∙) is the joint probability of variables 𝑥 , 𝑥 , 𝑥 , ⋯ , 𝑥  , and 𝑝𝑎  are parent 

nodes (variables) of 𝑥  meaning that 𝑝𝑎  links with 𝑥  as a direct causal relation.   

  For example, consider the four variables 𝑥 , 𝑥 , 𝑥 , and 𝑥  in figure 2.1, which 

“graphs” their causal relationships, i.e.,  𝑥  causes 𝑥  and so on. 

 

 

Figure 2.1.  Example of a DAG and contemporaneous causal structures 
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  We express the relationships as a functional form of the probability distribution 

product by: 𝑃𝑟(𝑥 , 𝑥 , 𝑥 , 𝑥 ) = 𝑃𝑟(𝑥 )𝑃𝑟(𝑥 )𝑃𝑟(𝑥 |𝑥 , 𝑥 )𝑃𝑟(𝑥 |𝑥 )                                       (2.20) 

  The rule for interpretation tells us that variable 𝑥  and 𝑥  are independent if 

conditioning on some subset of {𝑥 , 𝑥 }, since they are not connected, whereas variables 𝑥  and 𝑥  are dependent even if conditioning on any subset of {𝑥 , 𝑥 }, since they are 

connected.  Specifically, Pearl (1985) proposed the concept of d-separation as a 

graphical pattern of the conditional independence relations determined by a DAG.  

Under this simple concept, we say that two variables are d-separated when a third 

variable blocks the information flow between them.  We can easily conceptualize d-

separation by the three basic patterns of causal relationships: causal chains, causal forks 

and causal inverted forks.  The pattern of causal chains represents the “𝑥 →𝑥 →𝑥 ” of 

causal relationships among three variables, i.e., 𝑥  and 𝑥  are each dependent, but both 

are independent conditional on 𝑥 .  The pattern of causal forks represents the 

“𝑥 ←𝑥 →𝑥 ” of information flows among the three variables, i.e., 𝑥  and 𝑥  are each 

dependent, but both are independent conditional on 𝑥 .  The pattern of causal inverted 

forks represents the “𝑥 →𝑥 ←𝑥 ” relationship, i.e., 𝑥  and 𝑥  are each independent, but 

both are dependent conditional on 𝑥 .   

  In practice, the goal of most graphical modes is to locate the most appropriate 

undirected/directed edges that represent the dependence structure from a given dataset.  

An edge between two nodes (variables) occurs if and only if the two corresponding 

nodes (variables) are dependent, even if conditioning on every subset of the remaining 
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nodes (variables).  A statistical test (Spirtes et al. 2000) analyzes dependency of two 

nodes (variables), given a set of other nodes (variables).  Causal search algorithms find 

the direction of information flows by using a statistical measure of independence, 

conditional correlation, checking the systematical patterns of conditional independence 

and dependence, and then working backward to the allowed causal relationships (Hoover 

2005).   

  The PC algorithm6, the most widely used in the literature (Hoover 2005; Kim and 

Bessler 2007), is the greedy or structurally restricted approach introduced by Bernanke 

et al. (2005), who incorporated d-separation into the algorithm. The PC algorithm starts 

from connecting complete undirected edges for all variables in the graph and then it 

recursively deletes edges between variables based on conditional independence (zero 

correlation or partial correlation) decisions using Fisher’s Z7 statistics.  The output of the 

PC algorithm is the pattern of causal flows containing both undirected and directed 

edges.  The undirected edge indicates the ambiguous direction of arrow.  However, in 

discovering  that the PC algorithm frequently omits edges when sample size are small 

(less than 200 observations), Spirtes et al. (2000) suggested that the significance level 

used for Fisher’s Z test should increase as the sample size decreases.  They 

recommended 20% significance level for less than 100 observations and a 10% 

                                                 
6 “PC” stands for Peter Spirtes and Clark Glymour who invented the algorithm in 1991. 
7  The Fisher’s Z statistic is Z[𝜌(𝑖, 𝑗|𝑘), 𝑛] = 𝑛 − |𝑘| − 3 × 𝑙𝑛 | ( , | )|| ( , | )| , where 𝜌(𝑖, 𝑗|𝑘)  is the 

sample correlation between i and j conditional on k, |𝑘| is the number of conditional variables in k, and n 
is the number of observations used to estimate the correlation.  The null hypothesis is that conditional 
correlation is equal to zero. 
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significance level for sample sizes between 100 and 300.  Therefore, we use a 10% 

significance level for the PC algorithm.   

  We begin by generating the DAGs of within-sample-fit and out-of-sample-

forecast using the PC algorithm in the software project TETRAD IV, which represent 

the direction of the contemporaneous causal structure among the price returns of US 

energy markets. The next section describes our dataset. 

 

2.3.    Data Description 

  Our dataset consists of the daily spot prices from the Bloomberg database from 

May 3, 2004 to December 30, 2011, excluding all public holidays for all markets 

simultaneously.  We select this time period because it represents a continuous series of 

data from the newest observation up to 2000th observation in total for each price series.  

The crude oil and natural gas prices are the daily spot prices of Dated Brent crude oil and 

Henry Hub, respectively, and the electricity prices are the firm peak daily spot prices of 

the PJM (Pennsylvania-New Jersey-Maryland) and COB (California-Oregon) electricity 

markets.  Table 2.1 gives the summary statistics and figure 2.2 gives the plots of the 

price series.  As shown in figure 2.2, each price series exhibits high volatility and 

potential heteroscedasticity.  To account for these two issues, we use log-transformed 

data for all estimations by using a robust estimator.  The robust estimator computes a 

heteroscedasticity consistent estimate of the asymptotic covariance matrix of the 

estimated parameters (Greene 2007).   
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  We denote the first difference of log transformed price series as a measure of the 

price returns of Dated Brent crude oil, Henry Hub natural gas, PJM Electricity firm on 

peak and COB Electricity firm on peak as ROIL, RGAS, RPJM, and RCOB.  Table 2.2 gives 

the summary statistics and figure 2.3 gives the time series plots of the daily returns. We 

observe that it is easy to find volatility clustering in energy price return series. 

  We start by analyzing the dynamic behavior of each univariate series, which 

serves to facilitate the multivariate modeling and the understanding of multivariate 

dynamics.  In table 2.2, we note that the Dated Brent crude oil market experiences 

positive mean returns unlike the other energy markets.  Based on the magnitude of the 

unconditional standard deviations, the PJM market is more volatile.  Both Henry Hub 

and COB generate positive skewness and very high kurtosis, whereas both Dated Brent 

and PJM exhibit negative skewness and relatively small kurtosis. 

  We test for the presence of a unit root for the log transformed prices and price 

returns of each market.  Since a series with a unit root is non-stationary with an infinite 

unconditional variance, it is not possible to generalize it to other time periods.  Table 2.3 

shows the Dickey-Fuller test and augmented Dickey-Fuller test statistics; the log level 

prices of both Dated Brent and Henry Hub fail to reject the null hypothesis of a unit root 

at the 10% significant level, whereas PJM and COB suggest that both series are 

stationary in log levels.  However, all price returns, i.e., first differencing of the 

logarithm of the price series, result in rejecting the null hypothesis at the 1% significance 

level, indicating stationary. 
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Table 2.1  
Summary statistics on the logarithms of daily energy prices  

Energy price series 
Dated Brent 
Crude Oil 
($/BBL) 

Henry Hub 
Natural Gas 
($/MMBTU) 

PJM Electricity 
Firm on Peak 

($/MWh) 

COB Electricity 
Firm on Peak 

($/MWh) 

Mean 1.85 0.77 1.76 1.70 

Standard Deviation 0.143 0.159 0.160 0.160 

Variance 0.021 0.025 0.026 0.026 

Minimum 1.51 0.26 1.36 0.98 

Maximum 2.16 1.19 2.48 2.45 

Skewness -0.028 0.182 0.519 -0.123 

Kurtosis 2.303 2.685 3.160 3.525 

 

Table 2.2  
Summary statistics on the daily returns of energy prices  

Returns of energy 
prices 

Dated Brent 
Crude Oil 
($/BBL) 

Henry Hub 
Natural Gas 
($/MMBTU) 

PJM Electricity 
Firm on Peak  

($/MWh) 

COB Electricity 
Firm on Peak  

($/MWh) 

Mean 0.00024 -0.00014 -0.00005 -0.00008 

Standard Deviation 0.00980 0.01853 0.11302 0.04663 

Variance 0.00010 0.00034 0.01277 0.00217 

Minimum -0.05345 -0.11087 -0.47807 -0.55027 

Maximum 0.05944 0.13011 0.44771 0.52189 

Skewness -0.00619 0.51102 -0.04639 0.36034 

Kurtosis 6.07486 10.34786 4.45832 30.86017 
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Figure 2.2.  Plots of the price series  

 
Figure 2.3.  Plots of the daily price returns  
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Table 2.3  
Tests for non-stationary of energy price series 

Energy price series 

DF Test ADF Test (k)a 

Log Level First 
Difference Log Level First 

Difference 

Dated Brent Crude Oil -1.96 -44.36* -1.89 -25.68* 

Henry Hub Natural Gas -2.29 -43.06* -2.10 -28.91* 

PJM Firm on Peak Electricity -16.86* -59.91* -10.93* -37.31* 

COB Firm on Peak Electricity -6.58* -45.76* -5.71* -31.79* 

Note: * indicates 1% significance level; the critical value is -3.51 at the 1% significance level;  
a indicates the number of lag determined by optimal lag order selection criteria.   
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2.4.    Empirical Results 

  Here, we present the empirical results from our DCC-GARCH model fitted to the 

data.  We assume that our GARCH (1, 1) model is parsimonious, i.e., we use a DCC 

specification of MGARCH (1, 1) which allows for dynamic conditional correlations 

among the price returns.  Then we implement standardized innovation analysis.  

 

2.4.1.   Vector Autoregression Results 

  We conduct a preliminary data analysis by using the maximum likelihood 

estimation procedure of Johansen (1991) to construct a VAR (p) process. We determine 

the optimal lag-length based on loss information criteria, i.e., Akaike, Schwarz, and 

Hannan and Quinn losses.  Table 2.4 shows the somewhat ambiguous results: SIC 

suggests 𝑝 = 2, HQIC suggests 𝑝 = 4, and AIC suggests 𝑝 = 6 as an optimal lag order.  

For specification of the VAR process, AIC is appropriate information criterion for 

monthly data, HQIC is appropriate criterion for quarterly data and SIC is universally 

applicable (Haan and Levin 2000).  Following SIC, we select 𝑝 = 2 as an optimal lag 

order since we have daily data with 2000 observations.   

  Having chosen the most parsimonious specification, we proceed to fit the VAR 

(2) model to the four-variate log price returns of the time series.  Table 2.5 gives the 

estimated parameters and robust standard errors.   
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Table 2.4  
VAR optimal lag-length determination 

Lag Order 
Akaike Information 

Criterion  
(AIC) 

Schwarz Information 
Criterion  

(SIC) 

Hannan and Quinn 
Information Criterion 

(HQIC) 

0 -10.5720 -10.5606 -10.5678 

1 -10.5971 -10.5399 -10.5761 

2 -10.7084 -10.6055* -10.6706 

3 -10.7539 -10.6053 -10.6993 

4 -10.7714 -10.5770 -10.6999* 

5 -10.7786 -10.5386 -10.6904 

6 -10.8042* -10.5184 -10.6991 

Note: * indicates the most appropriate lag order for the model;  information criteria used to 

identify the optimal lag-length (p) of a VAR process are 𝐴𝐼𝐶 = ln 𝑑𝑒𝑡Ω + 𝑝 , 𝑆𝐼𝐶 =ln 𝑑𝑒𝑡Ω + 𝑝 , and 𝐻𝑄𝐼𝐶 = ln 𝑑𝑒𝑡Ω + 𝑝 ( )
, where Ω  is the maximum 

likelihood estimate of variance-covariance matrix of Ω, p is the proposed lag-length, n is the 
number of variables and T is the sample size. 
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Table 2.5   
VAR (2) model estimation results for energy price returns  

Parameters 
ROIL, (𝑖 = 1) RGAS, (𝑖 = 2) RPJM, (𝑖 = 3) RCOB, (𝑖 = 4) 

Coefficient Std. Err Coefficient Std. Err Coefficient Std. Err Coefficient Std. Err 𝑑  0.00079 0.00055 -0.00012 0.00107 0.00042 0.00338 -0.00052 0.00255 𝛾 ,  -0.03738* 0.02369 0.19209*** 0.04382 0.12342 0.14418 0.16236 0.10906 𝛾 ,  0.02836** 0.0123 -0.05627** 0.02467 0.21873*** 0.07743 -0.11481** 0.05857 𝛾 ,  -0.00241 0.00384 0.02220*** 0.00744 0.00090 0.02335 -0.01352 0.01766 𝛾 ,  -0.00958* 0.00517 0.03374*** 0.01002 -0.06775** 0.03145 -0.03006 0.02379 𝛾 ,  0.01626 0.02375 -0.01648 0.04394 0.19740 0.1446 0.27237** 0.10934 𝛾 ,  -0.00317 0.01263 -0.10234*** 0.0245 0.03110 0.07688 0.02403 0.05815 𝛾 ,  -0.00760** 0.00384 -0.0003 0.00744 -0.24883*** 0.02335 0.01007 0.01766 𝛾 ,  -0.00239 0.00519 -0.00902 0.01006 -0.06703** 0.03158 -0.18049*** 0.02390 

Diagnostics tests ROIL RGAS RPJM RCOB 𝑅  0.007 0.034 0.068 0.041 

RMSE 0.024 0.046 0.143 0.109 𝜒  13.364* 63.509*** 133.165*** 76.864*** 
Log-likelihood 9774.98    

# of observations 1800    
Note: *, **, and ***, indicate 10%, 5%, and 1% significance levels, respectively. 
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  The VAR (2) model has 36 parameters, of which 17 are significant. Note that 

both Henry Hub and COB price returns are negatively impacted by their own lags, 

whereas both Dated Brent and PJM price returns are positively impacted by their own 

lags at the 5% significance level.   

  In the next step we use the Ljung-Box Q to determine whether the residuals of 

the VAR (2) model are white noise by investigating the autocorrelation and the square of 

each residual for the 8, 16, and 24 lags, respectively.  Table 2.6 reveals that all residuals 

and squared residuals8 are highly significant (all have p-values of less than .01) with the 

exception of the residuals in Dated Brent at lags 8 and 12.  The Ljung-Box Q statistics 

suggest a strong conditional heteroscedasticity in all residuals in energy price returns, i.e., 

once volatility increases it tends to persist for a certain period of time.  Also, we use the 

Breusch-Pagan and White test statistics for detecting heteroscedasticity.  Test results 

indicate the residuals of each series from the VAR (2) model has heteroscedasticity 

problems.  Therefore, the GARCH process is a plausible candidate for modeling their 

time series behaviors. 

  Next, we fit a suitable MGARCH model to the residuals (𝜀 , 𝜀 , 𝜀 , 𝜀 ) of the 

VAR (2) model for the price returns of Dated Brent crude oil, Henry Hub natural gas, 

PJM Electricity firm on peak and COB Electricity firm on peak. 

                                                 
8 The squared price returns can be viewed as a proxy for the variance of the series. 
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Table 2.6  
Ljung-Box Q and Heteroscedasticity test statistics for residuals in VAR (2) model for the 

price returns  

Residuals of energy 
price returns in VAR 

(2) model 

VAR 

RVAR_ROIL RVAR_RGAS RVAR_RPJM RVAR_RCOB 

JB 1.638 
(0.441) 

64.805 
(0.000) 

7.405 
(0.025) 

961.119 
(0.000) 

Q(8) 8.718 
(0.367) 

81.45 
(0.000) 

195.7 
(0.000) 

88.07 
(0.000) 

Q(12) 13.02 
(0.368) 

119.7 
(0.000) 

203.5 
(0.000) 

106.1 
(0.000) 

Q(24) 38.55 
(0.030) 

186.2 
(0.000) 

237.3 
(0.000) 

145.6 
(0.000) 

Q2(8) 404 
(0.000) 

343.7 
(0.000) 

65.05 
(0.000) 

193.8 
(0.000) 

Q2(12) 986.6 
(0.000) 

463.8 
(0.000) 

71.14 
(0.000) 

194.1 
(0.000) 

Q2(24) 1461.3 
(0.000) 

637.2 
(0.000) 

111.4 
(0.000) 

219.1 
(0.000) 

Heteroscedasticity Test  

Breusch-Pagan 0.0224 0.1514 0.0089 0.0202 

White 0.0003 0.1604 0.0152 0.0664 

Note: 𝑄(𝑘) and 𝑄 (𝑘) are the Ljung-Box Q test statistics for serial correlation of k lags of the 
original and squared price returns, respectively; under the null hypothesis of no serial 
correlation, the Q-statistics follow the chi-squared distribution with k degrees of freedom; p-
values are in parentheses. 
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2.4.2.    DCC-GARCH Results 

For the DCC-GARCH model, we fit equations (2.9) ~ (2.11) to the residuals of 

the VAR (2) model. Recall that we have chosen to adopt the most parsimonious 

specification with 𝑚 = 1  and 𝑛 = 1 .  Table 2.7 reports the DCC-GARCH (1, 1) 

estimates.  Fourteen parameters are significant at the 1% significance level.  We can 

clearly interpret the model’s correlation structure, i.e., there is a non-constant interaction 

of the four time series with respect to conditional correlation, and this correlation 

impacts the current correlation with a lag of one.  We note that this interaction effect 

would be neglected if the four time series of VAR residuals were each modeled with a 

univariate GARCH model in isolation. 

In table 2.8, which shows the diagnostic test statistics of the fitted model, we 

note that the range of residuals is now closer to what we expect from a standard normal 

distribution; the standardized residuals of each series from the DCC-GARCH (1, 1) 

model do not exhibit autocorrelation, since the squared residuals remain in the range of 

the critical values.  The Breusch-Pagan and White test statistics also indicate that the 

standardized residuals of each series from the DCC-GARCH (1, 1) model do not show a 

heteroscedasticity problem.  Therefore, we conclude that the residuals of the DCC-

GARCH (1, 1) model satisfy the necessary white noise properties. 
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Table 2.7  
DCC-GARCH (1, 1) model estimation results for energy price returns 

Parameters 
Estimated Coefficients 

Coefficient Std. Err 

ROIL 𝑤  0.00001*** 0.00000 

 𝛼  0.05723*** 0.00013 

 𝛽  0.91920*** 0.00028 

RGAS 𝑤  0.00003*** 0.00000 

 𝛼  0.11349*** 0.00027 

 𝛽  0.87647*** 0.00025 

RPJM 𝑤  0.00087*** 0.00000 

 𝛼  0.15652*** 0.00088 

 𝛽  0.81457*** 0.00088 

RCOB 𝑤  0.00071*** 0.00000 

 𝛼  0.34329*** 0.00517 

 𝛽  0.65671*** 0.00869 

Correlation 
parameters 𝜆  0.01334*** 0.00001 

 𝜆  0.95989*** 0.00017 

# of observations 2000   

Note: *, **, and *** indicate 10%, 5%, and 1% significance levels, respectively. 
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Table 2.8  
Diagnostic test statistics for the standardized residuals in DCC-GARCH (1, 1) model 

Residuals of    
energy price returns  

DCC-GARCH 

RVDG_ROIL RVDG_RGAS RVDG_RPJM RVDG_RCOB 

JB 24.79917 
(0.000) 

0.516821 
(0.772) 

5.97415 
(0.050) 

75.76827 
(0.000) 

Q12 
11.41920 
(0.493) 

5.02030 
(0.957) 

74.97320 
(0.000) 

36.22970 
(0.000) 

Q2
12 

4.67810 
(0.968) 

11.4388 
(0.492) 

10.5938 
(0.056) 

6.3199 
(0.891) 

Heteroscedasticity Test  

Breusch-Pagan 0.8248 0.2602 0.1788 0.4135 

White 0.9756 0.3441 0.3744 0.6904 

Note: Residuals from the DCC-GARCH model are the standardized residuals, 𝑅 _𝑅 = 𝜀/ℎ . ; 
p-values are in parentheses; the lags of Ljung-Box Q statistics over standardized residuals and 
squared residuals are in subscript. 
 

  Figure 2.4 graphs the time-varying variance-covariance matrix between the 

energy price returns of the four commodities estimated from the DCC-GARCH (1, 1) 

model.   
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𝐻 = 

 

Figure 2.4.  Time-varying variance-covariance matrix from DCC-GARCH (1, 1) model 
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2.4.3.    Forecast and Forecasting Performance Evaluation 

  Based on the estimated VAR-DCC-GARCH model, we adopt two types of 

forecasting procedures.  The first type is within-sample-fit.  To perform this procedure, 

we use the entire dataset of 2000 trading days.  The second type is out-of-sample-

forecast.  To perform this procedure, we use the last 200 observations (March 1, 2011 to 

December 31, 2011).  The out-of-sample forecasting procedure is as follows.  We 

estimate the models 200 times based on last 200 samples of 2000 observations.  We use 

November 10, 2003 to February 28, 2011 to forecast the covariance matrix of March 1, 

2011 based on the estimated model for the first sample.  We use November 10, 2003 to 

March 1, 2011 to forecast the covariance matrix for March 2, 2011 based on the 

estimated model for the second sample.  These estimation and forecasting steps can be 

repeated 200 times for the available sample and we produce the 200 one-step-ahead 

covariance matrix forecasts and residuals.  To compare results, we only use 200 

residuals from March 1, 2011 to December 31, 2011 as residuals of within-sample-fit. 

  We calculate the out-of-sample-forecast residuals as the difference between the 

forecasted and the actual price returns of the four commodities.  Based upon these 

exercise results, we have two forecast performance measure statistics, Mean Squared 

Error (MSE) and Mean Absolute Percentage Error (MAPE), as summarized in table 2.9.  
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Table 2.9 
Summary of forecast performance of within-sample-fit and out-of-sample-forecast 

 MSE MAPE 

 Within-sample Out-of-sample Within-sample Out-of-sample 

ROIL 0.959987 0.960569 72.36324 72.03272 

RGAS 0.788752 0.79122 68.55013 66.9236 

RPJM 0.974272 1.038579 75.66105 74.30997 

RCOB 1.244264 1.253367 80.05075 80.87663 

Note: MSE = ∑ 𝑌 − 𝑌 ; MAPE = ∑ 𝑌 − 𝑌 ; a lower loss measure indicates a 

higher forecasting power. 
 

  The MSEs of the within-sample-fit are 0.960, 0.789, 0.974 and 1.244, 

respectively for each variable.  We observe that they are all less than the MSEs of the 

out-of-sample-forecast.  The MAPEs of the within-sample-fit are 72.36, 68.55, 75.66 

and 80.05, respectively for each variable.  We observe that they are greater than the 

MAPEs of the out-of-sample-forecast with the exception of the price return for COB.  

We conclude that the forecast performance measure statistics are poorer than we had 

expected.  In other words, the MSEs of within-sample-fit for all variables generally 

exhibit smaller values compared to the out-of-sample-forecast, yet fail to show 

superiority in MAPE cases.  This is plausible since our model is essentially based on 

generalized least squares estimators that minimize the sum of squared residuals.  

Therefore, the MSEs of within-sample-fit have to be smaller.  However, this stylized fact 
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does not necessarily hold for MAPE, unless we use minimum absolute deviation 

estimations.  

  We also note that the two performance measures do not provide a statistical 

significance of the similarity/difference between the within-sample and out-of-sample-

forecast.  Therefore, we use the DM test (Diebold and Mariano 1995) and the forecast 

encompassing test (Harvey et al. 1997) to further examine the out-of-sample 

predictability.  Table 2.10 summarizes the test statistics. 

  From the DM test statistics, we cannot reject the hypothesis of equality of 

forecast errors between within-sample-fit and out-of-sample-forecast for the price 

returns of Dated Brent, Henry Hub, and COB at any significance level, whereas the price 

returns of PJM can reject the null hypothesis at the 5% significance level.  Therefore, we 

say that the within-sample-fit and out-of-sample-forecast for the price returns of Dated 

Brent, Henry Hub, and COB statistically perform similarly.  However, the p-value for 

PJM indicating that the hypothesis of equality of forecast errors between within-sample-

fit and out-of-sample-forecast cannot be rejected at the 10% significance level implies 

that the within-sample-fit and out-of-sample-forecast statistically perform similarly. 
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Table 2.10 
Summary of test statistics of DM and forecast encompassing tests for within-sample-fit 

and out-of-sample-forecast 

 DM 

Forecast Encompassing 

Dependent variable 𝑒 ,  𝑒 ,  

 test statistics p-value 𝜆 p-value 𝜆 p-value 

ROIL 0.0386 0.9692 0.523 0.383 0.477 0.426 

RGAS 0.0526 0.9581 0.511 0.011 0.490 0.015 

RPJM 1.7332 0.0831 0.913 0.000 0.087 0.719 

RCOB 0.3560 0.7218 0.641 0.106 0.359 0.364 

Note:  Both tests are based on the null hypothesis of no difference in the accuracy (equal predictive ability) 
between within-sample-fit and out-of-sample-forecast.   
  In the DM test, the null hypothesis of equal forecast accuracy is tested based on 𝐸(𝑑 ) = 0, 
where 𝐸 is expectation operator and 𝑑 = 𝑒 , − 𝑒 , ;  variables  𝑒 ,  and 𝑒 ,  are forecast 
errors generated by within-sample-fit and out-of-sample-forecast, respectively.  The DM test statistic is 𝐷𝑀 = [𝑉(�̅�)] / �̅�, where �̅� is the sample mean of 𝑑 , 𝑉(�̅�) is the sample variance of �̅� asymptotically 
estimated by 𝑇 𝛾 + 2 ∑ 𝛾 , and 𝛾 is the kth autocovariance of 𝑑  estimated from 𝑇 ∑ 𝑑 −�̅�) 𝑑 − �̅� .  Under the null hypothesis, these statistics follow an asymptotic standard normal 
distribution. 
  In the forecast encompassing test, the test determines weights based on the covariance between 
the errors from out-of-sample-forecast, 𝑒 , , and the difference between the errors of the out-of-
sample-forecast and within-sample-fit, 𝑒 , − 𝑒 , .  If the covariance is not equal to zero, then 
information can be gained and a composite forecast can be built.  This is tested based on 𝑒 , =𝜆 𝑒 , − 𝑒 , + 𝜀 , where 𝜀  is a composite forecast error.  The null hypothesis is 𝜆 = 0.  If the 
null is true, then the out-of-sample-forecast encompasses the within-sample-fit. The actual test involves an 
OLS regression of  𝑒 ,  on 𝑒 , − 𝑒 , , but we use t-test of  𝜆 for forecast encompassing. 
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  For the forecast encompassing test, the hypothesis is that if 𝜆 is significantly 

different from zero when the dependent variable is the residuals of the out-of-sample-

forecast/within-sample-fit, then the within-sample-fit/out-of-sample-forecast 

encompasses the out-of-sample-forecast/within-sample-fit.  From the results, the within-

sample-fit/out-of-sample-forecast does not encompass the out-of-sample-forecast/within-

sample-fit at the 10% significance level in the price returns of Dated Brent (p-values are 

0.383 and 0.426) and COB (p-values are 0.106 and 0.364) cases, nor does the within-

sample-fit/out-of-sample-forecast encompass the out-of-sample-forecast/within-sample-

fit at the 1% significance level in the price returns of Henry Hub (p-values are 0.011 and 

0.015, respectively).  However, the within-sample-fit encompasses the out-of-sample-

forecast (p-value is 0.000), whereas the out-of-sample-forecast does not encompass the 

within-sample-fit (p-value is 0.719) for PJM.  We conclude that the within-sample-fit is 

superior in forecasting ability.  In general, these forecast encompassing test results are 

consistent with the findings of the equality tests. 

 

2.4.4.   Variance-covariance matrices of residuals from within-sample-fit and out-of-

sample- forecast 

  It is well known that unconditional covariance and correlation coefficients vary 

significantly over time and that MGARCH can capture the dynamic conditional (time-

varying) variance-covariance matrices (Engle and Sheppard 2001; Tse and Tsui 2002).   

We can also capture and explore the dynamic interactions among the four price returns 

with the DCC-GARCH framework.  However, this means that the DAG patterns 
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between variables will be sensitive to the time and sign of the change in the price returns 

resulting from information flows.  Moreover, we can identify the contemporaneous 

causal structures from the variance-covariance matrices of innovations which are 

generated from the estimated time series model.  These structures are based on the 

results of the DAGs (Bessler and Lee 2002; Bessler and Yang 2003; Pearl 2000; Spirtes 

et al. 2000; Swanson and Granger 1997).  Following them, we generate two constant 

variance-covariance matrices from the standardized residuals of within-sample-fit and 

out-of-sample-forecast for March 1, 2011 to December 31, 2011 to obtain the robust 

DAG patterns for the four price returns.  Doing so allows us to fulfill our objective of 

comparing the DAG patterns between within-sample-fit and out-of-sample-forecast.  In 

addition, we can test the equality of the variance-covariance matrices between the 

standardized residuals from within-sample-fit and out-of-sample-forecast from the 

obtained variance-covariance matrices.  Figure 2.5 details the generated variance-

covariance matrices. 

  From the above two variance-covariance matrices, we observe that all elements 

of variance-covariance matrix (Σ ) for the standardized residuals from 

within-sample-fit are less than the elements of the variance-covariance matrix 

(Σ ) for the standardized residuals from the out-of-sample-forecast.  
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𝜮within-sample-fit =

   

𝜮out-of-sample-forecast =

  

Figure 2.5.  The variance-covariance matrices of the standardized residuals from the 

within-sample-fit and out-of-sample-forecast 

   

  We use the Box M statistic derived by Box (1949) to test for homogeneity based 

on the likelihood ratio test.  The null hypothesis is given by: 𝐻 : Σ =  Σ                                                     (2.22) 

  Table 2.11 summarizes the test statistics for the within-sample-fit and out-of-

sample-forecast.  From the results, we find that the test statistic value is 0.2370.  This 

suggests that we fail to reject the null hypothesis at the 1% significance level (p-value is 

1.000), since the critical value is 23.21.  We conclude that the two covariance matrices 

from the within-sample-fit and out-of-sample-forecast are the same. 
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Table 2.11 
Summary of test statistics of the Box M test for within-sample-fit and out-of-sample-

forecast 

 Box M test statistics 
Critical Value 

at 1% significance level 
p-value 

Box M test 0.2370 23.21 1.000 

Note: We adopt the Box M test when the sample size is small following Mardia and Kent (1979).  The 
Box M test statistic is generated by 𝑀 = 𝛾 ∑ (𝑛 − 1)𝑙𝑜𝑔 𝑆 𝑆 , where 𝛾 = 1 − ( )( ) ∑ − , 𝑆 = 𝑆 , 𝑆 = 𝑆 , 𝑆 = ∑  is the pooled covariance 

matrix, 𝑔 is the number of groups with non-singular covariance matrices, 𝑛 = 𝑛 + 𝑛 + ⋯ + 𝑛  is the 
number of the total sample size, 𝑛  is number of the sample size for deriving sample covariance matrix 𝑆 , 𝑘 is the dimension of the covariance matrix, and 𝑖 = 1, 2, ⋯ , 𝑔.  The Box-M test statistic is asymptotically 
distributed as a chi-square distribution with the degree of freedom, 𝑘(𝑘 + 1)/2.   
  

2.4.5.   Comparing DAGs between residuals from within-sample-fit and out-of-

sample- forecast 

  From the standardized residuals of the within-sample-fit and out-of-sample-

forecast, we obtain two identical DAGs from TETRAD IV’s PC algorithms at the 10% 

significance level.  Figure 2.6 shows the DAG patterns.  

  Figure 2.6 (a) and (b) indicate no strong contemporaneous causal relationships 

among the four price returns.  However, we find one (undirected) edge between the price 

returns of PJM and COB in the DAGS, whereas the price returns of Dated Brent and 

Henry Hub are revealed as independent.9   

                                                 
9 These contemporaneous causal structures are significantly different from the results of Mjelde and 
Bessler (2009).  Possible reasons are that 1) these graphs are generated by using only recent short time 
periods (March 1, 2011 to  December 31, 2011, 200 observations); and 2) Mjelde and Bessler (2009) 
considered weather effects by using weekly price data, whereas we do not include weather effects by using 
daily data.  We also find strong information flows between electricity prices and gas as well as between 
gas and oil by using long historical data (November 2003 to December 2011).  However, the difference 
between causal structures of U.S energy market is not a controversial issue for this dissertation, since this 
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Figure 2.6.  DAG patterns from the standardized residuals in the within-sample-fit and 

out-of-sample-forecast 

 

  The undirected edge implies that the algorithm cannot completely determine the 

direction of information flows from the 200 standardized residuals from the within-

sample-fit and out-of-sample-forecast. 

  Comparing the DAG patterns shows that both contemporaneous causal structures 

have the same pattern.  From this salient finding, we can emphasize forecasting 

performances as well as having confidence in the within-sample-fit and 

contemporaneous causal flow results. 

  

                                                                                                                                                
dissertation focuses on the consistency of contemporaneous causal relationships between within-sample-fit 
and out-of-sample-forecast. 

RGAS

RCOB RPJM

ROIL
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RCOB RPJM

ROIL

(a) DAG using standardized residuals 
from  within-sample-fit

(b) DAG using standardized residuals 
from out-of-sample-forecast
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2.5.    Conclusion 

  Using the residuals from time series models for identifying contemporaneous 

causal structures, Chapter II examined how dynamic price information flows among US 

energy market spot prices.  We estimated a causal model for the price dynamics for 

contemporaneous relationships by using the daily price returns of Dated Brent crude oil, 

Henry Hub natural gas, PJM Electricity firm on peak and COB Electricity firm on peak.  

We found that the Dated Brent crude oil and Henry Hub natural gas price are non-

stationary, whereas PJM and COB Electricity firm on peak prices are stationary.  We 

also found high volatility characteristics and obvious heteroscedastic problems.  Hence, 

we concluded that the VAR-DCC-GRACH model was appropriate for this study.   

  Using the VAR-DCC-GARCH models, we assessed the standardized residuals 

from within-sample-fit and out-of-sample-forecast for modeling information flows in 

contemporaneous time.  These processes and comparisons of forecast performance and 

variance-covariance matrices implied that the within-sample-fit and out-of-sample-

forecast statistically performed similarly, whereas the within-sample-fit model generally 

outperformed the out-of-sample-forecast and contained small elements in variance-

covariance matrix.  We used the PC algorithm in TETRAD IV to demonstrate that the 

contemporaneous causal structures on standardized residuals from the two methods for 

calculating standardized residuals (within-sample-fit versus out-of-sample-forecast) 

showed the same patterns in both DAGS.  Further, we found that the price returns of 

PJM and COB revealed an ambiguous direction of information flows from the given 

information. 
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 We conclude that our hypothesis is correct: there is no difference in causal flows 

based on the standardized residuals from within-sample-fit and out-of-sample-

forecast.  Moreover, the test results for homogeneity of variance-covariance matrices and 

forecast performance (accuracy) support this conclusion.  Therefore, we have confidence 

in the results of out-of-sample-forecast and its contemporaneous causal structure 
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CHAPTER III    

INFERRING CONTEMPORANEOUS CAUSALITY USING A FACTOR 

AUGMENTED VECTOR AUTOREGRESSION (FAVAR) MODEL  

 

3.1.    Introduction 

 This chapter looks at US federal monetary policy and oil price shocks from the 

perspective of their causal relationships to overall economic activity.  We discuss how to 

test for inferring the contemporaneous causal structures between the federal fund rate 

and a large information set, and between West Texas Intermediate (WTI) crude oil price 

returns and a wide range of macroeconomic and financial datasets based on a graphical 

causal model.   

Specifically, we examine the well-known identifying assumption in the Vector 

Autoregression (VAR) framework of the monetary shock transmission mechanism, 

particularly, the unobserved latent factors that do not respond to monetary policy 

innovations.  Bernanke et al. (2005) used this setup for the identification of the Factor 

Augmented Vector Autoregression (FAVAR) model.  This assumption says that a 

monetary policy shock is orthogonal in contemporaneous time to other economic 

variables.  In other words, the US macroeconomic and financial indicators do not 

respond contemporaneously to realization of the monetary policy shock.   

Further, we focus on a second well-known identifying assumption, which is that 

an oil price shock is exogenous in contemporaneous time.  In other words, the oil price 

shock is not caused by the systematic responses to variations in the state of the economy.  
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Many studies have employed VAR approaches to identify the exogenous effects of oil 

shocks and to estimate their effects (Barsky and Kilian 2002; Barsky et al. 2004; 

Bernanke et al. 1997; Hamilton 1983, 1996, 2003; Hoover and Perez 1994).  This 

literature, however, has not reached a consensus on how these shocks affect the economy.   

Inferring the contemporaneous causal structure from innovations of reduced form 

FAVAR models by using the graphical causal model can help us to validate the typical 

views regarding oil and monetary shock transmission mechanisms.  Furthermore, in 

order to identify transmission mechanism of those structural shocks, this chapter 

discusses two common approaches to innovation accounting: the generating impulse 

response functions (IRFs) and the forecast error variance decompositions under the 

correlation structure of innovations in the FAVAR model.  From this innovation 

accounting analysis, we can learn whether or not the price puzzle10 (Sims 1992) appears 

in our FAVAR model. 

 A number of studies explain how to infer the underlying causal structure and 

measure the structural economic shocks’ transmission mechanism using the structural 

equation model (SEM) and VAR frameworks.  The VAR framework proposed by Sims 

(1980) is widely used because it provides the possibility of inferring causal flow 

(structures) from data using statistical properties without too much a priori theory and/or 

                                                 
10 The price puzzle says that the response of prices to a monetary policy shock is sometimes contrary to 
economic theory.  When monetary policy shocks are identified with innovation in the federal fund rate, the 
responses of output and money supply are correct, as a monetary tightening (an increase in federal fund 
rate) is associated with a fall in the money supply and output.  However, the response of the price level is 
incorrect, as monetary tightening is associated with an increase in the price level rather than decrease 
(Sims 1992). 
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information from the data.  The VAR framework also allows easy identification of the 

IRFs and forecast error variance decompositions of considered variables.  

 The standard VAR approach which typically contains only six to eight variables 

(Bernanke et al. 2005), does not allow coverage of whole datasets.  Subsequently, this 

small scale leads to the problem of omitting variables that contain information about the 

structural economic shocks in the VAR analysis.  Leeper et al. (1996) attempted a larger 

VAR framework using Bayesian priors.  They tried to contain thirteen and eighteen 

variables in their analysis, but found that increasing the number of variables induced low 

efficiency of estimation.  Moreover, using less than twenty variables is still insufficient 

than the hundreds of time series actually used as macroeconomic and financial 

indicators.  Thus, we say that the VAR framework suffers from the curse of 

dimensionality.    

Latent factor models provide a possible solution by summarizing the information 

embedded in a large dataset into a small number of factors and applying them to 

conventional econometric models.  Stock and Watson (2002a, 2002b) developed a 

dynamic factor model which uses principal component analysis (PCA) to extract 

information from a large dataset.  They applied the model in forecasting, and claimed 

that forecasts based on dynamic factor models show better performance compared to 

Autoregressive (AR) models, VAR models, and leading indicator models.  Bernanke and 

Boivin (2003), who estimated the policy reaction function for the US Federal Reserve, 

concluded that using large datasets improves forecasting accuracy.    
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Recently, Bernanke et al. (2005) suggested a FAVAR model to incorporate a 

large amount of information in the VAR framework without including too many 

variables.  Basically, they combined the FAVAR approach with the standard VAR 

framework and latent factor analysis.  To estimate the FAVAR model, they suggested a 

two-step approach and the Bayesian method based on Gibbs sampling.  These two 

approaches produced similar qualitative results; however, the two-step approach tended 

to produce more reasonable IRFs.  This two-step approach summarizes large amounts of 

information about the macroeconomic and financial indicators by a small number of 

estimated factors using the Stock and Watson (2002a) method and then incorporates 

them into the FAVAR framework.   

Due to these merits, the FAVAR model has become popular.  It outperforms 

other time series models in forecasting and analyzing the structural economic shocks’ 

transmission mechanisms (Bianchi et al. 2009; Boivin et al. 2009; Eickmeier et al. 2011; 

Forni and Gambetti 2010; Forni et al. 2000, 2003, 2004; Forni and Lippi 2001; Forni and 

Reichlin 1998; Gilchrist et al. 2009; Helbling et al. 2010; Kwon 2007; Lagana and 

Mountford 2005; Lagana and Sgro 2011; Moench and Ng 2011; Ng and Moench 2009; 

Stock and Watson 2002a, 2002b, 2005). 

For these reasons, we inductively infer the contemporaneous information flows 

without any deductive information and investigate the structural economic shocks 

transmission mechanism under the FAVAR framework.  We use a large dimension 

dataset of the US economy which is confined to 126 macroeconomic and financial time 

series.  We show how the co-movement of these time series over time is adequately 



 

48 

described in terms of a number of unobserved latent factors and the US federal fund rate 

or WTI crude oil price returns.  Our two-step procedure first extracts the common factors 

from our large dataset following Stock and Watson (2002a, 2002b) and Bernanke et al. 

(2005).  Second, we estimate the parameters governing their joint dynamics with the US 

federal fund rate and WTI crude oil price return series in each FAVAR model.  Then, we 

identify the contemporaneous causal structures among innovations based on the 

residuals of our two estimated FAVAR models by using the Directed Acyclic Graph 

(DAG) model.  We also derive and interpret the IRFs with respect to each of the 

augmented factors and two considered variables, and decompose the forecast error 

variance for each factor into the parts attributable to each of a set of innovations 

processes in the FAVAR model.  Finally, we perform forecasting exercises considering 

35 one-step-ahead forecasts, reclusively.  Comparing forecasting performances between 

the estimated FAVAR and univariate AR models for the US federal fund rate and WTI 

crude oil price returns allows us to check analytical robustness.  

The remainder of this chapter is structured as follows. Section 2 presents the 

FAVAR model, estimation, determination of number of factors, parameterization, and 

DAG method.  Section 3 describes the dataset.  Section 4 provides the two estimated 

models for the US federal fund rate and WTI crude oil price returns and their empirical 

implementations. Section 5 discusses the results of the contemporaneous causal 

structures, IRFs, forecast error variance decompositions, and forecast accuracies for both 

models.  Section 6 concludes.  
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3.2.    Methodology 

 This section explains how we use the FAVAR model proposed by Bernanke et al. 

(2005).  We describe the model and provide some discussion of the adopted estimation 

methodology. in We also present the estimation, determination of number of factors, 

parameterization, and the DAG.  

 

3.2.1.     Factor Augmented Vector Autoregression (FAVAR) Model 

Let 𝐹  be a 𝐾 × 1 vector of unobservable factors which can summarize most of 

the information contained in 𝑋  which is an 𝑁 × 1  stationary time series variable 

observed for 𝑡 = 1, 2, ⋯ , 𝑇. 𝑌  is an 𝑀 × 1 observable variable and is a subset of 𝑋 . 

We interpret 𝐹  as the unobserved latent variables that affect many 

macroeconomic and financial indicators.  We extract them from observations on the 

large information set in 𝑋 .  The number of informational time series, N, is large and 

may be larger than T, the number of time periods; we assume it to be much larger than 

K+M.  We also assume that the information set is related to the unobservable factors, 𝐹 , 

and the observable variables, 𝑌 .  The FAVAR model is given by: 𝑋 = Λ 𝐹 + Λ 𝑌 + 𝜀                                                                                                   (3.1) 

where Λ  is 𝑁 × 𝐾 matrix of factor loadings of the factors, and Λ  is 𝑁 × 𝑀 matrix of 

factor loadings of the observable variables. The error term 𝜀  has mean zero and a 

variance covariance matrix Σ, which is assumed to be diagonal.   

  Equation (3.1) is the dynamic factor model proposed by Stock and Watson 

(2002a).  It implies that 𝑋  is estimated by both unobservable factors and observable 
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variables. Thus, variables (𝐹  and 𝑌 ) can be correlated, and 𝑋  is governed by a dynamic 

process including lagged values.  Consequently, the FAVAR state equation represents 

the joint dynamics of 𝐹  and 𝑌 ; therefore, we rewrite equation (3.1) as:  𝐹𝑌 = 𝛷(𝐿) 𝐹𝑌 + 𝑒                                                                                                  (3.2) 

where 𝛷(𝐿) is a conformable polynomial in the lag operator 𝐿 of finite order p.  The 

error term 𝑒  is expressed as 𝑒 = 𝛢𝑢 . Specifically, the time t reduced form shock 𝑒   

consists of the time t structural shock 𝑢  with contemporaneous relations represented 

through matrix 𝛢.   

  Next, we consider the following finite order VAR (p) approximation of the 

unobserved state dynamics: 𝐹𝑌 = ∑ 𝜙 𝐹𝑌 + 𝛢𝑢                                                                                           (3.3) 

 

3.2.2.    Estimation of the FAVAR Model 

In the latent factor model, we describe the variability among observed variables 

(large dimension macroeconomic and financial indicators) by a small number of 

unobservable factors 𝐹 , and model the variables as linear combinations of latent factors 

and innovation terms.  We extract the unobservable factors 𝐹  from the large dimension 

observed variables to measure joint variations in a data set, while the innovation term is 

covered by the part of variability which cannot be explained by latent factors.   

Generally, we use PCA to extract the latent factors from the large dimension 

macroeconomic and financial indicators.  PCA performs an orthogonal transformation 
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onto the original dataset, which takes into account all variability of the variables.  We 

then order this new set by variance, or consider a variance‐maximizing rotation of 

variable space.  We compute the principal components by seeking a matrix V consisting 

of the set of all eigenvectors of covariance matrix C such that 𝑉 𝐶𝑉 = 𝐷, where D is 

the diagonal matrix of the eigenvalues of C.   

To estimate the FAVAR model equation (3.3), we use a two-step PCA approach.  

In the first step, we estimate the common components 𝐶 = (𝐹 , 𝑌 ) using the first K+M 

principal components of 𝑋 .  The first step of the estimation does not exploit the fact that 𝑌  is observed.  However, it allows us to obtain 𝐹  as the part of the space covered by 𝐶  

which is not covered by 𝑌 .  In the second step, we estimate FAVAR equation (3.3) by 

using 𝐹  replacing 𝐹 .  It imposes few distributional assumptions and allows for some 

degree of cross correlation in the idiosyncratic error term 𝑒  (Stock and Watson 2002a).   

For analytical purposes, we interpret the innovation of WTI crude oil price 

returns as oil shocks.  Thus, the WTI crude oil price return is an observed variable 𝑌 , 

and the other variables are a subset of the large information set 𝑋 .   

However, for our federal fund rate model, any of the linear combinations 

underlying 𝐶  could involve the monetary policy instrument, i.e., federal fund rate, 

which is observed variable 𝑌 .  Under this condition, it would be invalid to estimate 𝐶  

and 𝑌  within the VAR framework.  Therefore, we remove the dependence of 𝐶  on the 

monetary policy instrument.  Hence, we apply the two-step procedure proposed by 

Bernanke et al. (2005) for the model of federal fund rate distinct from the model of WTI 
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crude oil price returns.  This procedure starts from identifying variables in 𝑋  that are not 

related to the monetary policy shock, and is described in detail as follows.  

Bernanke et al. (2005) classified all variables in the large information set 𝑋  as 

fast-moving or slow-moving variables.  They claimed that there is high collinearity 

between the fast-moving variables and any policy shock, arguing that the fast-moving 

variables in 𝑋  are highly sensitive to policy shocks, fast structural shocks, and 

contemporaneous information, such as financial news and economic data release.   By 

their logic, monetary policy shock should account for the information contained in the 

fast-moving variables, and the slow-moving variables, e.g., unemployment rates and 

price indexes, are assumed to be unaffected in the month after the shock.  See Appendix 

A for a classification of the variables.  

Since the slow-moving variables are not related to the monetary policy shock 

contemporaneously, neither are the common components we extract from them. Thus, 

we express 𝐶  as: 𝐶 = 𝛽 𝐹 + 𝛽 𝑌 + 𝑣                                                                                         (3.4) 

We remove the dependence of 𝐶  on the monetary policy instrument to get the 

factors 𝐹  for the FAVAR equation (3.3) as: 𝐹 = 𝐶 − 𝛽 𝑌                                                                                                                (3.5) 

where 𝐶  are the extracted principal components from 𝑋 , and 𝛽  is the coefficient 

estimated from equation (3.4).   

Next, we estimate FAVAR equation (3.3) which consists of 𝐹  and 𝑌  in the same 

manner as our model of the WTI crude oil price returns.  We use the federal fund rate 
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and WTI crude oil price return as the only observed variable 𝑌  for each model, which is 

ordered last in the FAVAR model.  

 

3.2.3.    Determination of the Number of Factors 

Bai and Ng (2002), who provided the econometric theory of the determination of 

number of factors, demonstrated that the dynamic factor in equation (3.1) always has the 

static factor representation in equation (3.2), where the VAR framework characterizes 

the dynamics of 𝐹 .  In the same paper, they stated that including more factors in the 

latent factor model leads to an increase in the statistical fit of the dataset, but may give 

rise to the dimensionality problem, whereas too few latent factors cause insufficient 

problems of incorporated information.  Thus, they proposed various information criteria 

for selecting the number of factors.  We follow the Bai and Ng procedure as described 

below. 

First, we use PCA to estimate the static factors, noting that r is consistently 

selected using one of the six variants of information criteria developed in Bai and Ng 

(2002).  All the criteria are asymptotically equivalent, but their small sample properties 

vary due to different specifications of the penalty term. The most widely used criterion 

and one of the best in terms of performance in simulations is:  𝐼𝐶 (𝑟) = 𝑙𝑛 𝑉(𝑟, 𝐹) + 𝑟𝑔 (𝑁, 𝑇)                                                                                 (3.6)  𝑃𝐶𝑃 (𝑟) = 𝑉(𝑟, 𝐹) + 𝑟𝜎 𝑔 (𝑁, 𝑇)                                                                                (3.7) 
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where 𝑉(𝑟, 𝐹)  can be detailed as 𝑉(𝑟, 𝐹) = ∑ ∑ (𝑦 − Λ 𝐹 ) , 𝑔 (𝑁, 𝑇)  is a 

penalty function which can be detailed as 𝑔 (𝑁, 𝑇) = 𝑙𝑛(𝑚𝑖𝑛{𝑁, 𝑇}), and 𝜎  is 

equal to 𝑉(𝑟 , 𝐹) for pre-specified value 𝑟 .  We allow a maximum of number of 20 

factors, i.e., 𝑟 = 20, and apply the four penalty functions 𝑔 (𝑁, 𝑇), where 𝑖 = 1, ⋯ , 3 

proposed by Bai and Ng (2002).  Note that we choose this number to minimize the value 

of information criteria. 

The penalty imposed by the second term i.e., 𝑔 (𝑁, 𝑇), in equations (3.6) and 

(3.7), which is an increasing function of N and T as well as the number of factors, serves 

to counter-balance the minimized residual sum of squares by effecting an optimal trade-

off between goodness of fit and over-fitting.  Evidently, the criterion can be viewed as an 

extension of the Akaike information criterion (AIC) with consideration for the additional 

cross-sectional dimension to the time series. 

 

3.2.4.    Directed Acyclic Graphs (DAG) 

 The identification of underlying innovations has become a crucial issue in the 

analysis of the VAR framework (Lütkepohl 1999; Sims 1980).  One concern is that if the 

innovations are not orthogonal, contemporaneous relationships exist among them.  In 

general, the procedure used to identify 𝑢  in equation (3.3) assumes that matrix 𝛢 in 

equation (3.3) is a lower triangular matrix, i.e., using a Choleski decomposition of  ∑ = 𝛢𝐴 .  In this procedure, the elements of 𝑢 = 𝐴 𝑒  depend recursively on the 

elements of the observation vector 𝑒  in equation (3.2).  With this type of 

orthogonalization, 𝑢  will depend on the ordering of variables in 𝑒 .  However, choosing 
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appropriate orthogonal transformations of underlying innovations is often difficult to 

justify economically, since we assume a priori economic theory what the 

contemporaneous causal order should do.  Unfortunately, formal economic theory is 

rarely decisive about causal order.  Moreover, this contemporaneous causal structure is 

important to perform the innovation accounting analysis in the VAR framework and 

should be embedded for orthogonal innovations prior to analysis.   

  Therefore, we first apply the DAG approach (Swanson and Granger 1997) for 

identifying underlying innovations.  Using this approach, we can inductively infer the 

contemporaneous causal information (in the form of restriction on matrix 𝛢 in equation 

(3.3)) from the data.  Then, we use the Sims-Bernanke decomposition11 (Bernanke 1986; 

Sims 1986) to embed our inferred contemporaneous causal restrictions.   

We can inductively infer the contemporaneous causal information (in the form of 

restriction on matrix 𝛢  in equation (3.3)) required for identification in the FAVAR 

framework from data based on the graphical causal model or the DAG approach.  The 

graphical causal model approach using the graph theory identifies the contemporaneous 

causal relationships among a set of observational or non-experimental data.  The basic 

idea is that statistically inferred information about the probability distribution of the 

estimated residuals can be helpful in identifying the causal relationships among variables.  

In the graphical model approach, we can identify the contemporaneous causal inferences 

among the variables with relative ease, by testing the conditional independence on the 

                                                 
11  The procedure of Sims-Bernanke decomposition suggested by Bernanke (1986) and Sims (1986) 
provide over-identified restrictions based on the theoretical background among the variables and relax the 
Cholesky ordering which imposes just-identified restrictions. 
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residuals (Bessler and Lee 2002; Bessler and Yang 2003; Demiralp and Hoover 2003; 

Moneta 2004, 2008; Swanson and Granger 1997).  The directed acyclic graph (DAG) 

that is the graphical method using the graph theory has been developed by Pearl (2000) 

and Spirtes et al. (2000).   

  Contemporaneous causal relationship can be defined by causal search algorithms, 

which are based on statistical measures of independence and conditional correlation, and 

checking the patterns of conditional independence and dependence between variables.  

In general, the PC algorithm suggested by (Spirtes et al. 2000) is widely used (Hoover 

2005; Kim and Bessler 2007).  This algorithm assesses particular independence and 

conditional independence using the null hypothesis test.  Another popular algorithm is 

the Greedy Equivalence Search (GES) algorithm provided by Meek (1997), then 

discussed and well established by (Chickering 2002, 2003). It does not require causal 

sufficiency, Markov condition and faithfulness, or an appropriate significance level.  

Therefore, we use it to generate our DAG patterns.   

  Starting from the premise that all variables are independent, this algorithm 

searches the contemporaneous causal relationships using the Bayesian scoring criterion 

of Schwarz loss in sequence expressed as:   𝑆(𝐺, 𝐷) = 𝑙𝑛𝑃𝑟 𝐷 𝜃, 𝐺 − 𝑙𝑛𝑇                                                                                (3.8) 

where 𝑃𝑟 is the probability distribution, 𝜃 is the maximum-likelihood estimate of the 

unknown parameters, 𝐷 is the data available to researchers, 𝐺 is DAGs, ℎ is the number 

of free parameters (not equal to zero) of 𝐺, and 𝑇 is the number of observations.  The 
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scoring criterion considers the trade-off between fit represented by 𝑙𝑛𝑃𝑟 𝐷 𝜃, 𝐺  and 

parsimony modeled by the term  𝑙𝑛𝑇. 

  By comparing the Bayesian scoring among all possible equivalence classes, the 

GES algorithm selects an equivalence class with the maximum score, meaning that it 

selects the best fit model among the structural equation models using the innovations 

from the FAVAR model.  Once a local maximum is attained in the first step, the second 

step proceeds by single-edge deletions and compares the DAG scores in equivalence 

classes repeatedly. When the algorithm again reaches a local maximum, it obtains the 

optimal solution and DAG patterns (Chickering 2003). The results of the GES algorithm 

provide the Chi-square statistics and graphical patterns calculated by TETRAD IV. 

 

3.2.5.    Impulse Response Function 

 Since both VAR and FAVAR models have a large number of parameters, it is 

difficult to identify the dynamic interactions between the variables. Thus, we estimate 

the impulse response function (IRF), which graphically illustrates the dynamic effects of 

a structural shock on macroeconomic variables.  

All stationary VAR (p) models can be illustrated as Moving Average (MA) 

process of infinite order (MA (∞)), where the current values of the variables are the 

weighted averages of all historical innovations.  Thus, we compute the IRFs of the 

estimated factors and of the variables observed included in 𝑌  from equation (3.3) as: 

𝛷∗(𝐿) 𝐹𝑌 = 𝑒                                                                                                               (3.9) 
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where 𝛷∗(𝐿) = 1 − 𝛷(𝐿), a matrix of conformable lag polynomial of finite order p in 

the lag operator L, in which  𝛷(𝐿) = 𝛷 𝐿 + ⋯ + 𝛷 𝐿  and 𝛷  is a (𝐾 + 𝑀) × (𝐾 + 𝑀) 

coefficient matrix.  𝑒  is a (𝐾 + 𝑀) × 1  vector of structural innovations within the 

diagonal covariance matrix. 

The MA (∞) representation to estimate the dynamic effects is:  𝐹𝑌 = [𝛷∗(𝐿)] 𝑒                                                                                                       (3.10) 

We rewrite equation (3.10) as:  𝐹𝑌 = ∑ 𝜙 𝐿 𝑒 = ∑ 𝜙 𝑒                                                                                (3.11) 

where ∑ 𝜙 𝐿 = [𝛷∗(𝐿)] . 

We can also express the estimator of 𝑋  in equation (3.1) as: 

𝑋 = Λ 𝐹 + Λ 𝑌 = [Λ Λ ] 𝐹𝑌                                                                             (3.12) 

Using equations (3.11) and (3.12), we compute the IRF of each variable in 𝑋  as:  𝑋 = [Λ Λ ] ∑ 𝜙 𝑒                                                                                      (3.13) 

   

3.2.6.    Forecast Error Variance Decomposition 

  Forecast error variance decomposition is often used as a complement to IRF 

when assessing the innovations of a VAR model.  It determines the portion of the 

forecasting error of a variable, at any t, that is attributable to a given shock and it follows 

immediately from the coefficients in the moving average representation of the VAR 

framework and the variance of the structural shocks (Bernanke et al. 2005).  This 
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decomposition enables us to examine dynamically the relative influence of innovations 

in each endogenous variable out of the total variation of a variable.  

  We explain the proportion of the forecast error variance at horizon h of variable 𝑋  due to the innovation 𝑒 by denoting that 𝑋 |  is the optimal h-steps ahead 

forecast of 𝑋  on time t information, and 𝑋 − 𝑋 |  is the forecast error.  The 

fraction of the variance of the forecast error is due to the shocks, 𝑒 .  The equation 

form of variance of the forecast error is: 

| |                                                                                               (3.14) 

 

3.3.    Data Description 

Our 127 monthly series comprises WTI crude oil price series traded on the New 

York Mercantile Exchange (NYMEX) and 126 macroeconomic indicator series included 

in the US federal fund rate.  The data for WTI crude oil spot prices, federal fund rates 

and other macroeconomic and financial indicators derive from the DRI/McGraw Hill 

Basic Economics Database provided by IHS Global Insight12.  We use observations of 

the data series between January 1982 and December 2008 for the in-sample estimation, 

and the observations of data series between January 2009 and November 2011 for the 

out-of-sample forecast for both models, i.e., the federal fund rate and WTI crude oil spot 

price, to check the robustness of estimation.  

                                                 
12 We updated the Stock and Watson data from the IHS Global Insight Basic Economics Database by free 
trial access at Texas A&M University. 
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We select the 126 macroeconomic indicators based on the dataset used by Stock 

and Watson (2005).  We choose November 2011, the most recent data available, as the 

endpoint of our sample.  To provide different perspectives on the economy, we 

categorize our dataset by: real output and income; unemployment rate; employment and 

hours; housing starts and sales; orders and real inventories; money and credit quantity 

aggregates; stock prices; interest rates; spreads; exchange rates; price indexes; average 

hourly earnings; and miscellaneous. 

The data is transformed in four ways (see Appendix A for details).  First, many 

of the series are seasonally adjusted by the reporting agency.  Second, the series are 

transformed by taking logarithms and/or differencing so that the transformed series are 

approximately stationary.  In general, the first difference of logarithms (growth rates) is 

used for real variables, the second difference of logarithms (changes in growth rates) is 

used for price series, and the first differences are used for nominal interest rates.  Third, 

outliers contained in some of the transformed series are identified as absolute median 

deviations larger than 6 times the inter quartile range and adjusted by replacing those 

observations with the one-sided median value of the preceding 5 observations.  Fourth, 

the series are demeaned and standardized (Stock and Watson 2005).  We use the DFGLS 

test Elliott et al. (1996) to assess the degree of integration of all series, and the Schwarz 

information criterion to select the optimal lag-length so that no serial correlation is left in 

the stochastic error term.  

As mentioned, since some of the data is monthly, we use the monthly federal 

fund rate and WTI crude oil price and compute their price return as the first differences 
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and first difference of logarithm, respectively.  Figure 3.1 shows the federal fund rates 

and the first differences.  Note the 1982 peak and gradually decreasing pattern.  Figure 

3.2 shows the WTI crude oil price and return.  Note that the WTI crude oil price moved 

moderately until 2000, increased sharply until very recently, and fluctuated substantially 

in 2008~2009. 

 

 
 

 

Figure 3.1.  The US federal fund rates (upper graph) and first differences (lower graph) 

January 1982 through November 2011  
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Figure 3.2.  WTI crude oil monthly prices (upper graph) and returns (lower graph) 

January 1982 through November 2011 
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Table 3.1 reports the standard descriptive statistics for the first differences of the 

US federal fund rate and WTI crude oil price return. Both show evidence of excess 

kurtosis and negative skewness.  Not surprisingly, the Jarque-Bera test cannot reject the 

hypothesis of a Gaussian distribution for WTI crude oil price return, whereas the 

hypothesis is rejected for the US federal fund rate.  Some heteroscedasticity in the data 

may explain this non-normality as well as the presence of extremes (outliers).  We do 

not explore the issue of heteroscedasticity because it is not our primary interest. 

Table 3.1  
Summary statistics for the monthly US federal fund rate and WTI crude oil price returns 

 US Federal Fund Rate WTI monthly Crude Oil Price 
Return 

Mean -0.0342 0.0028 

Standard Deviation 0.3004 0.0843 

Variance 0.0902 0.0071 

Kurtosis 16.5184 3.2033 

Skewness -1.8225 -0.4026 

Minimum -2.4700 -0.3959 

Maximum 1.5600 0.3768 

JB (p-value) 816.81 (0.000) 2.8733 (0.238) 

Number of 
Observation 

359 359 
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3.4.    Empirical Results 

  This section presents the empirical results from a FAVAR model fit to the data 

described earlier.  Recall that we extracted the factors from 126 US macroeconomic and 

financial variables, i.e., the data set of Stock and Watson (2005).  Technically, we 

construct two FAVAR models.  The federal fund rate model is that the federal fund rate 

data series is only part of the observed variable, i.e., the federal fund rate (𝐹𝐹𝑅 ), so that 𝑌 = 𝐹𝐹𝑅  and 𝑋  is the 125 macroeconomic and financial time series.  The WTI crude 

oil price return model uses only the state variables which include the dynamic latent 

factors, i.e., the WTI crude oil price return (𝑊𝑇𝐼 ), so that 𝑌 = 𝑊𝑇𝐼  and 𝑋  is the 126 

macroeconomic and financial time series included in the federal fund rate. 

  We divide the analysis of the results into three stages. First, we infer the 

contemporaneous causal structure with innovations of the FAVARs by using DAG with 

the GES algorithm.  Second, we describe the IRFs of each augmented factor and the two 

considered variables.  Third, we look at the variance decomposition of the prediction 

errors and check our results for robustness by comparing the forecasting performance to 

the univariate AR model. 

 

3.4.1.    Determination of Estimating the Number of Factors  

  Table 3.2 shows the estimated numbers of factors for the two models.  Clearly, 

there is no agreement on the optimal number of factors in both cases.  We note that this 

result aligns with previous empirical studies which also find instability in determining 

the correct number of factors.  According to Bai and Ng (2002)’s information criteria, 
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the optimal number of factors is 10 to 18 for the federal fund rate model and 10 to 17 for 

the WTI crude oil price return model.  Table 3.3 reports information on the 

autocorrelation and the explanatory power of estimated factors 𝐹  for both models.  We 

note that the first 3 factors for both models only explain 31.0% of the joint-variance of 

the 125 and 126 data in both cases, whereas 10 factors reach 55.9% and 55.8%, 

respectively.  Therefore, we consider the set of the first 10 factors for both models as the 

potential set of regressors based on the information criteria 𝐼𝐶  proposed in Bai and Ng 

(2002).  The factors’ autocorrelations up to 3 lags (table 3.3) show that most factors 

appear to be persistent. 

Table 3.2  
Static factors selection results 

Method 

Number of Factors 

Model for the federal fund rate Model for the WTI crude oil price 
return 𝐼𝐶  13 13 𝐼𝐶  10 10 𝐼𝐶  20 20 𝑃𝐶𝑃  18 17 𝑃𝐶𝑃  16 16 𝑃𝐶𝑃  20 20 

Note: 𝐼𝐶  and  𝑃𝐶𝑃  respectively denote the number of factors given by the information criteria IC and 
PCP estimated with penalty function 𝑔 (𝑁, 𝑇). 
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Table 3.3  
Summary statistics of 𝑓 ,  for 𝑖 = 1, ⋯ , 10 

Factor i 

Model for the federal fund rate Model for the WTI crude oil price return 

AR (1) AR (2) AR (3) 𝑅  AR (1) AR (2) AR (3) 𝑅  

1 0.8341 0.8344 0.7802 0.1627 0.8356 0.8355 0.7803 0.1626 

2 0.1746 0.0248 0.1988 0.2392 0.1579 0.0362 0.2078 0.2384 

3 0.5277 0.4562 0.4520 0.3104 0.5201 0.4363 0.4344 0.3096 

4 0.2668 0.2121 0.2407 0.3622 0.2705 0.2135 0.2410 0.3617 

5 0.3035 0.3010 0.2850 0.4052 0.2976 0.3091 0.2903 0.4044 

6 0.3807 0.2322 0.2900 0.4445 0.3454 0.1884 0.2521 0.4434 

7 0.4356 0.3933 0.3628 0.4794 0.5255 0.4565 0.4182 0.4789 

8 -0.1399 0.0678 0.1749 0.5098 -0.1799 0.0582 0.1739 0.5092 

9 -0.0539 -0.0444 0.0645 0.5352 -0.0528 -0.0461 0.0675 0.5344 

10 -0.1782 -0.0441 0.0686 0.5592 -0.1802 -0.0381 0.0662 0.5583 

Note: For 𝑖 = 1, ⋯ , 10, 𝑓 ,  for the federal fund rate and WTI crude oil price return models are estimated 
by PCA using a panel of data with 125 and 126 indicators of macroeconomic activity from January 1982 
to December 2008 (324 time-series observations), respectively.  The data is transformed (taking logs and 
differenced where appropriate) and standardized prior to estimation. AR (p) denotes the p-th 
autocorrelation.  The relative importance of the common component, 𝑅 , is calculated as the fraction of 
total variance in the data explained by factors 1 to i. 
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3.4.2.    Interpreting the Estimated Factors 

In attempting to assign interpretations to the factors, we are aware of the pitfalls. 

Since the factors are identified only up to an orthogonal transformation, a detailed 

interpretation of the individual factors is unwarranted.  However, looking at the fit of the 

regression of the individual series in our dataset against each of the factors still gives us 

an idea of the underlying economic concepts. 

Following Stock and Watson (2002b), we use simple linear regressions to 

estimate the relationship between every variable against each factor to determine if a 

particular factor strongly relates to a specific group of macroeconomic variables.  We 

graph R2, or explanatory powers, of the first 10 factors for individual series as bar charts 

in figures 3.3 through 3.12 for the federal fund rate model, and figures 3.13 through 3.22 

for the WTI crude oil price return model. The numbers on the horizontal axis refer to 

variables (see Appendix A for details). 

 

 

Figure 3.3.  R2 values for factor 1 of the federal fund rate model 
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Figure 3.4.  R2 values for factor 2 of the federal fund rate model 

 

Figure 3.5.  R2 values for factor 3 of the federal fund rate model 

 

Figure 3.6.  R2 values for factor 4 of the federal fund rate model 
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Figure 3.7.  R2 values for factor 5 of the federal fund rate model 

 

Figure 3.8.  R2 values for the factor 6 of the federal fund rate model 

 

Figure 3.9.  R2 values for factor 7 of the federal fund rate model 
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Figure 3.10.  R2 values for factor 8 of the federal fund rate model 

 

Figure 3.11.  R2 values for factor 9 of the federal fund rate model 

 

Figure 3.12.  R2 values for factor 10 of the federal fund rate model 
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Figure 3.13.  R2 values for factor 1 of the WTI crude oil price return model 

 

Figure 3.14.  R2 values for factor 2 of the WTI crude oil price return model 

 

Figure 3.15.  R2 values for factor 3 of the WTI crude oil price return model 
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Figure 3.16.  R2 values for factor 4 of the WTI crude oil price return model 

 

Figure 3.17.  R2 values for factor 5 of the WTI crude oil price return model 

 

Figure 3.18.  R2 values for factor 6 of the WTI crude oil price return model 
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Figure 3.19.  R2 values for factor 7 of the WTI crude oil price return model 

 

Figure 3.20.  R2 values for factor 8 of the WTI crude oil price return model 

 

Figure 3.21.  R2 values for factor 9 of the WTI crude oil price return model 
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Figure 3.22.  R2 values for factor 10 of the WTI crude oil price return model 
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3.4.3.    Determinations of the Lag Order 

We use the conventional information criteria for standard VAR in the FAVAR. 

Table 3.4 reports the AIC, SIC and HQIC.  For the FFR rate model, AIC and HQIC 

indicate two as the optimal number of lag (𝑝 = 2) and SIC indicates one lag (𝑝 = 1).  

For the WTI model, SIC indicates 𝑝 = 1 , HQIC indicates 𝑝 = 2  and AIC indicates 𝑝 = 3.  One reason for the differences is that the magnitude of penalties to determine the 

optimal number of lag in the FAVAR model in equation (3.3) varies substantially for the 

optimal lag selection criteria.  Thus, we apply the modeling philosophy of parsimony 

(Box et al. 1976), and follow the suggestion of SIC (p=1) for both models. 

 

Table 3.4  
Determination result of optimal lag length for the model of the federal fund rate (FFR) 

and the WTI crude oil price return (WTI) 

Lag Order 

Akaike Information 
Criterion  

(AIC) 

Schwarz Information 
Criterion  

(SIC) 

Hannan and Quinn 
Information Criterion 

(HQIC) 

FFR WTI FFR WTI FFR WTI 

0 -1.1361 -0.6351 -1.0060 -0.5136 -1.0841 -0.5868 

1 -13.362 -8.5008 -11.801* -7.0427* -12.739 -7.9204 

2 -14.282* -9.3566 -11.289 -6.5620 -13.087* -8.2441* 

3 -14.199 -9.4043* -9.7747 -5.2731 -12.432 -7.7598 

4 -14.012 -9.3541 -8.1563 -3.8863 -11.673 -7.1775 

Note: * indicates the most appropriate lag order for the considered model; the information 
criteria used to identify the optimal lag-length (p) of a VAR process are 𝐴𝐼𝐶 = ln 𝑑𝑒𝑡Ω +𝑝 , 𝑆𝐼𝐶 = ln 𝑑𝑒𝑡Ω + 𝑝 , and 𝐻𝑄𝐼𝐶 = ln 𝑑𝑒𝑡Ω + 𝑝 ( )

, where Ω  is the 

maximum likelihood estimate of variance-covariance matrix of Ω, p is the proposed lag-length, n 
is the number of variables, and T is the sample size. 
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3.4.4.    Contemporaneous Causal Structure 

Figures 3.23 and 3.24 show the inferred contemporaneous information flows, and 

tables 3.5 and 3.6 show the correlation-covariance matrices among innovations for both 

models.  For ease of explanation, we split the entire contemporaneous causal structure 

into three sectors.   The first part is the real economy sector, which consists of 

employment and housing starts (factor 1), output (factor 4), average hourly earnings 

(factor 8), and real income and unemployment (factor 9).  The second part is the money 

and interest sector, which consists of the federal fund rate (recall that we include it in the 

FFR model only), interest rate (factor 3), spread (factor 5), and interest rate and money 

aggregate (factor 6).  The third part consists of the WTI crude oil price return (recall that 

we include it in the WTI model only), price (factor 2), stock (factor 7), and exchange 

rate (factor 10).   
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Figure 3.23.   The contemporaneous causal patterns inferred by the GES algorithm for 

the federal fund rate model 
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Figure 3.24.   The contemporaneous causal patterns inferred by the GES algorithm for 

the WTI crude oil price return model 
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Table 3.5.   
Correlation-covariance matrix among innovations of FAVAR model for the federal fund rate 

 
Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 Factor9 Factor10 FFR 

Factor1 0.032 -0.002 0.005 0.022 -0.001 -0.001 0.002 0.006 -0.002 0.005 -0.003 

Factor2 -0.034 0.060 -0.008 0.004 -0.002 -0.005 -0.001 -0.003 0.004 0.003 0.001 

Factor3 0.143 -0.161 0.038 0.004 -0.011 -0.003 -0.005 -0.001 0.002 0.002 0.007 

Factor4 0.692 0.089 0.114 0.032 -0.001 0.000 0.005 0.006 0.003 0.000 0.001 

Factor5 -0.052 -0.090 -0.543 -0.041 0.010 -0.006 0.006 -0.001 -0.001 -0.003 0.001 

Factor6 -0.050 -0.129 -0.101 -0.018 -0.420 0.022 -0.007 -0.005 0.002 0.000 0.001 

Factor7 0.075 -0.027 -0.181 0.182 0.392 -0.356 0.020 -0.003 -0.001 0.002 0.002 

Factor8 0.235 -0.099 -0.028 0.251 -0.072 -0.249 -0.154 0.019 0.001 -0.001 0.001 

Factor9 -0.091 0.121 0.061 0.134 -0.046 0.091 -0.070 0.028 0.020 -0.002 0.000 

Factor10 0.193 0.080 0.060 0.009 -0.181 -0.024 0.081 -0.062 -0.098 0.019 0.000 

FFR -0.057 0.015 0.153 0.033 0.041 0.026 0.048 0.026 0.012 -0.013 0.061 

Note:  The lower triangular is for correlation values and the upper triangular is for covariance values.  See Appendix A for a description of the factors, 
where variables are in the same order. 
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Table 3.6.   
Correlation-covariance matrix among innovations of FAVAR model for the WTI crude oil price return 

 
Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 Factor9 Factor10 WTI 

Factor1 0.033 -0.002 0.005 0.022 0.000 0.001 0.001 0.007 -0.002 0.005 0.022 

Factor2 -0.038 0.058 -0.006 0.003 -0.003 -0.004 -0.002 -0.003 0.004 0.003 0.093 

Factor3 0.143 -0.135 0.038 0.004 -0.010 -0.002 -0.006 -0.001 0.002 0.002 -0.050 

Factor4 0.690 0.078 0.125 0.032 0.000 -0.001 0.004 0.007 0.003 0.000 0.021 

Factor5 0.026 -0.124 -0.522 -0.027 0.010 -0.002 0.003 0.000 -0.001 -0.002 0.010 

Factor6 0.018 -0.102 -0.057 -0.022 -0.134 0.030 -0.008 -0.003 0.002 0.000 0.002 

Factor7 0.030 -0.053 -0.215 0.171 0.192 -0.351 0.018 -0.004 -0.001 0.001 0.005 

Factor8 0.272 -0.094 -0.044 0.262 0.015 -0.136 -0.227 0.020 0.000 -0.001 0.004 

Factor9 -0.096 0.109 0.065 0.128 -0.067 0.067 -0.061 0.013 0.020 -0.002 0.010 

Factor10 0.194 0.078 0.068 0.010 -0.175 -0.010 0.068 -0.047 -0.101 0.019 -0.004 

WTI 0.135 0.423 -0.281 0.126 0.109 0.014 0.037 0.029 0.075 -0.031 0.834 

Note:  The lower triangular is for correlation values and the upper triangular is for covariance values.  See Appendix A for a description of factors, 
where variables are in the same order. 
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For the FFR model, we interpret the results as follows:  (a) there is observational 

equivalence between stock market (factor 7) innovations and average hourly earnings 

(factor 8) innovations, i.e., the causal direction cannot be decided based on statistical 

observations only, or either direction between them is statistically equivalent; (b) there 

are several first causes (causal roots) and last effects (causal sinks), i.e., the federal fund 

rate variable, price (factor 2), real income and unemployment (factor 9), and exchange 

rate (factor 10) are indicated to be causal root, whereas the spread (factor 5) is a causal 

sink in terms of innovations discovery.  

In the real economy sector case, we note that average hourly earnings (factor 8) 

affect output (factor 4) either directly or through employment and housing starts (factor 

1). Factor 4 also causes the real income and unemployment (factor 9) in 

contemporaneous time.  Stock (factor 7) and exchange rate (factor 10) affect factor 4 at 

the same time.  In the money and interest sector case, the federal fund rate directly 

affects interest rate (factor 3) and spread (factor 5).  Interest rate (factor 3) affects spread 

(factor 5) either directly or through interest rate and money aggregates (factor 6).  Price 

(factor 2), output (factor 4), average hourly earnings (factor 8), and exchange rate (factor 

10) affect spread (factor 5) in contemporaneous time.  In the third sector case, there is no 

direct causal link among price (factor 2), stock (factor 7), and exchange rate (factor 10).  

However, figure 3.23 and table 3.5 show that the fulfillments of those factors are a 

causal root of the entire contemporaneous causal structure.  

Interestingly, the effects of the monetary policy integrate into spread (factor 5), 

but do not transmit to other sectors of the overall economy in contemporaneous time.  
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Moreover, we note that the federal fund rate shock is exogenous in contemporaneous 

time.  Explicitly, our results show that the US macroeconomic and financial indicators 

do not respond contemporaneously to realization of the monetary policy shock.  In this 

respect, the monetary transmission mechanism identified in this inferred causal structure 

is consistent with the identifying assumption of the FAVAR model in Bernanke et al. 

(2005).  

Similarly, we interpret the results for the WTI model as follows:  (a) there is 

observational equivalence between interest rate and money aggregate (factor 6) 

innovations and average hourly earnings (factor 8) innovations; and (b) there are several 

first causes (causal roots) and last effects (causal sinks).  Price (factor 2), average hourly 

earnings (factor 8), real income and unemployment (factor 9), and exchange rate (factor 

10) are indicated as causal root innovations.  Spread (factor 5) and stock (factor 7) are 

indicated as causal sink in terms of innovations discovery. 

In the real economy sector case, we find that the contemporaneous causal order is 

average hourly earnings (factor 8), employment and housing starts (factor 1), and output 

(factor 4).  Real income and unemployment (factor 9) directly affects output (factor 4).  

Moreover, the effect of output (factor 4) influences the real economy sector as well as 

the immediate cause of price and exchange rate transfer to stock market (factor 7) in 

contemporaneous time.  For the money and interest sector case, spread (factor 5) directly 

causes interest rate (factor 3) as well as interest rate and money aggregates (factor 6).  

Spread (factor 5) is also directly affected by employment and housing starts (factor 1), 

price (factor 2), and exchange rate (factor 10).  In the third sector case, price (factor 2) is 
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an immediate cause of WTI crude oil price return and stock (factor 7), whereas exchange 

rate (factor 10) shows no direct causal link with other factors of the intra-sector. 

However, exchange rate (factor 10) affects employment and housing starts (factor 1) and 

output (factor 4) in the real economy sector as well as spread (factor 5) in the money and 

interest sector.  Surprisingly, WTI crude oil price return is influenced by real economy 

(factor 1) and price (factor 2), whereas it has an effect on interest rate (factor 3) in the 

money and interest sector in contemporaneous time.  In general the typical view of the 

oil price shocks transmission mechanism is that the oil price shocks are not affected by 

the systematic response to variation in the overall economy since the shocks are 

exogenous in contemporaneous time.  However, figure 3.24 and table 3.6 show that the 

WTI crude oil price return is clearly not exogenous in contemporaneous time. In this 

respect, we argue that the oil price shocks transmission mechanisms identified in this 

causal information is inferred from the data.  Moreover, WTI crude oil price returns are a 

bridge to transmit the causal influences from the overall economy into the money and 

interest sector in contemporaneous time.   

 

3.4.5.    Impulse Response Function 

Based on the identified contemporaneous causal relationships in figures 3.23 and 

3.24, we compute the IRFs of both FAVAR models.  This section presents the results of 

each of the augmented 10 factors and 1 variable, i.e., the federal fund rate or WTI crude 

oil price return.  From this, we verify information on the direction and significance of 

dynamic responses for a 24 month-horizon following an initial shock of each augmented 
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factor and variable.  The solid line indicates the estimated response, and the upper and 

lower dashed lines plotted in each graph represent 90% bootstrap confidence intervals 

based on 1500 bootstrap samples. Figures 3.25 through 3.35 and figures 3.36 through 

3.46 show the IRFs of both FAVAR models.    

In the FFR model, for the real economy sector, employment and housing starts 

(factor 1) and real income and unemployment (factor 8) move opposite to output (factor 

4) and average hourly earnings (factor 8).  For the money and interest sector, the federal 

fund rate moves opposite to interest rate (factor 3), factor 5 (spread), and interest rate 

and money aggregate (factor 6).  For the third sector, stock (factor 7) moves opposite to 

price (factor 2) and exchange rate (factor 10).  
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Figure 3.25.   Impulse responses to Factor 1 (Employment and 

Housing starts) shocks 

Figure 3.26.   Impulse responses to Factor 2 (Price) shocks 
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Figure 3.27.   Impulse responses to Factor 3 (Interest rate) 

shocks 

Figure 3.28.   Impulse responses to Factor 4 (Output) shocks 

FACTOR1

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

FACTOR2

0 5 10 15 20
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

FACTOR3

0 5 10 15 20
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

FACTOR4

0 5 10 15 20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

-0.00

0.05

FACTOR5

0 5 10 15 20
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

FACTOR6

0 5 10 15 20
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

-0.00

0.05

FACTOR7

0 5 10 15 20
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

FACTOR8

0 5 10 15 20
-0.20

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

0.20

0.25

FACTOR9

0 5 10 15 20
-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

FACTOR10

0 5 10 15 20
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

-0.00

0.05

FFR

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

FACTOR1

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FACTOR2

0 5 10 15 20
-0.2

-0.1

0.0

0.1

0.2

0.3

FACTOR3

0 5 10 15 20
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

FACTOR4

0 5 10 15 20
-0.25

-0.20

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

0.20

FACTOR5

0 5 10 15 20
-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

FACTOR6

0 5 10 15 20
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

-0.00

0.05

FACTOR7

0 5 10 15 20
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

FACTOR8

0 5 10 15 20
-0.20

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

FACTOR9

0 5 10 15 20
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

-0.00

0.05

0.10

FACTOR10

0 5 10 15 20
-0.20

-0.15

-0.10

-0.05

-0.00

0.05

FFR

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5



 

87 

Figure 3.29.   Impulse responses to Factor 5 (Spread) shocks Figure 3.30.   Impulse responses to Factor 6 (Interest rate and 

Money aggregate) shocks 
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Figure 3.31.   Impulse responses to Factor 7 (Stocks) shocks Figure 3.32.   Impulse responses to Factor 8 (Average hourly 

earnings) shocks 
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Figure 3.33.   Impulse responses to Factor 9 (Real income and 

Unemployment) shocks 

Figure 3.34.   Impulse responses to Factor 10 (Exchange rate) 

shocks 
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 Figure 3.35.   Impulse responses to FFR (Federal fund rate) 

shocks 
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Figure 3.36.   Impulse responses to Factor 1 (Employment and 

Housing starts) shocks 

Figure 3.37.   Impulse responses to Factor 2 (Price) shocks 
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Figure 3.38.   Impulse responses to Factor 3 (Interest rate) 

shocks 

Figure 3.39.   Impulse responses to Factor 4 (Output) shocks 
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Figure 3.40.   Impulse responses to Factor 5 (Spread) shocks Figure 3.41.   Impulse responses to Factor 6 (Interest rate and 

Money aggregate) shocks 

FACTOR1

0 5 10 15 20
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

FACTOR2

0 5 10 15 20
-0.0100

-0.0075

-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

FACTOR3

0 5 10 15 20
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

FACTOR4

0 5 10 15 20
-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

FACTOR5

0 5 10 15 20
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

FACTOR6

0 5 10 15 20
-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

FACTOR7

0 5 10 15 20
-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

FACTOR8

0 5 10 15 20
-0.0075

-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

FACTOR9

0 5 10 15 20
-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

FACTOR10

0 5 10 15 20
-0.002

0.000

0.002

0.004

0.006

0.008

0.010

WTI

0 5 10 15 20
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

FACTOR1

0 5 10 15 20
0.00

0.01

0.02

0.03

0.04

0.05

FACTOR2

0 5 10 15 20
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

FACTOR3

0 5 10 15 20
-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

FACTOR4

0 5 10 15 20
-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

FACTOR5

0 5 10 15 20
-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

FACTOR6

0 5 10 15 20
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

FACTOR7

0 5 10 15 20
-0.06

-0.04

-0.02

0.00

0.02

0.04

FACTOR8

0 5 10 15 20
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

FACTOR9

0 5 10 15 20
-0.04

-0.03

-0.02

-0.01

0.00

0.01

FACTOR10

0 5 10 15 20
-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

WTI

0 5 10 15 20
-0.02

0.00

0.02

0.04

0.06

0.08

0.10



 

94 

 

Figure 3.42.   Impulse responses to Factor 7 (Stocks) shocks Figure 3.43.   Impulse responses to Factor 8 (Average hourly 

earnings) shocks 
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Figure 3.44.   Impulse responses to Factor 9 (Real income and 

Unemployment) shocks 

Figure 3.45.   Impulse responses to Factor 10 (Exchange rate) 

shocks 
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 Figure 3.46.   Impulse responses to WTI (WTI crude oil 

price return) shocks 
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The specific descriptions for the IRFs are: (a) a shock to employment and 

housing starts (factor 1) (figure 3.25) does not contemporaneously affect the augmented 

factors and the federal fund rate with the exception of output (factor 4), but it positively 

affects stock (factor 7), real income and unemployment (factor 9), and the federal fund 

rate dynamically; (b) a shock to price (factor 2) (figure 3.26) positively affects 

employment and housing starts (factor 1), stock (factor 7), real income and 

unemployment (factor 9), and the federal fund rate dynamically, whereas output (factor 

4) increases initially but drops after two months, and real income and unemployment 

(factor 9), which is negatively influenced in the short-run then increases; (c) shocks to 

interest rate (factor 3) (figure 3.27) and output (factor 4) (figure 3.28) positively affect 

employment and housing starts (factor 1), stock (factor 7), real income and 

unemployment (factor 9), and the federal fund rate dynamically, whereas price (factor 2) 

and average hourly earnings (factor 8) slightly decrease after a big jump in the short-run, 

and real income and unemployment (factor 9) gradually increases after a drop;  (d) a 

shock to spread (factor 5) (figure 3.29) positively affects price (factor 2), interest rate 

(factor 3), (output) factor 4, interest rate and money aggregate (factor 6), average hourly 

earnings (factor 8), and exchange rate (factor 10) dynamically, whereas price (factor 2) 

and average hourly earnings (factor 8) drop initially, but increase in the long-run;  (e) a 

shock to interest rate and money aggregate (factor 6) (figure 3.30) positively affects 

spread (factor 5) contemporaneously, whereas employment and housing starts (factor 1), 

stock (factor 7), real income and unemployment (factor 9), and the federal fund rate 

decrease dynamically, and the other factors increase; (f) for a shock to stock (factor 7) 
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(figure 3.31), employment and housing starts (factor 1), real income and unemployment 

(factor 9), and the federal fund rate decrease dynamically, while the other factors 

increase, whereas price (factor 2) and output (factor 4) have negatively strong influences 

on stock (factor 7) in the short-run, but then increase;  (g) a shock to average hourly 

earnings (factor 8) (figure 3.32) positively or negatively affects employment and housing 

starts (factor 1), interest rate (factor 3), output (factor 4), spread (factor 5), interest rate 

and money aggregate (factor 6), and stock (factor 7) in contemporaneous time.  Similar 

to (e) and (f) cases, for a shock to average hourly earnings (factor 8), employment and 

housing starts (factor 1), stock (factor 7), real income and unemployment (factor 9), and 

the federal fund rate decrease dynamically, whereas the other factors increase; (h) for a 

shock to real income and unemployment (factor 9) (figure 3.33), employment and 

housing starts (factor 1), stock (factor 7), and the federal fund rate are positively 

influenced dynamically, whereas these factors are not influenced in contemporaneous 

time, and the other factors decrease dynamically;  (i) a shock to exchange rate (factor 10) 

(figure 3.34) positively affects employment and housing starts (factor 1) and spread 

(factor 5) in contemporaneous time, whereas it negatively affects output (factor 4), 

whereas price (factor 2), interest rate (factor 3), output (factor 4), interest rate and money 

aggregate (factor 6), and average hourly earnings (factor 8) decrease dynamically;  (j) a 

shock to the federal fund rate (figure 3.35) negatively affects interest rate (factor 3) and 

spread (factor 5) in contemporaneous time, and employment and housing starts (factor 1), 

stock (factor 7), and real income and unemployment (factor 9) increase dynamically, 

whereas the other factors decrease.  In particular, price (factor 2) eventually decreases 
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dynamically after a slight jump.  From this last result, we cannot observe a strong 

example of the so-called price puzzle.   

For the WTI model, general interpretations of results are that the movements of 

all augmented factors and the WTI crude oil price return show high volatilities in the 

short-run but then stabilize.  However, we cannot provide conclusive interpretations of 

the movements of all augmented factors and WTI crude oil price return except the 

opposite movements of employment and housing starts (factor 1) and output (factor 4) in 

the real economy sector.  The specific descriptions for the IRFs are: (a) a shock to 

employment and housing starts (factor 1) (figure 3.36) affects interest rate (factor 3), 

output (factor 4), and spread (factor 5) in contemporaneous time, whereas a shock to 

employment and housing starts (factor 1) positively affects price (factor 2), interest rate 

(factor 3), spread (factor 5), real income and unemployment (factor 9), and the WTI 

crude oil price return dynamically.  And, output (factor 4), interest rate and money 

aggregate (factor 6), stock (factor 7), average hourly earnings (factor 8), and exchange 

rate (factor 10) reveal higher volatilities in the short-run, but shortly converge to zero; (b) 

a shock to price (factor 2) (figure 3.37) strongly influences all augmented factors in the 

short-run and then converges to zero, whereas employment and housing starts (factor 1) 

slightly increase after a big jump, and spread (factor 5) slightly increases after an initial 

drop; (c) a shock to interest rate (factor 3) (figure 3.38) negatively affects spread (factor 

5) and stock (factor 7) in contemporaneous time, whereas it strongly influences all 

augmented factors in the short-run, but stabilizes in the long-run;  (d) a shock to output 

(factor 4) (figure 3.39) only positively influences stock (factor 7) in contemporaneous 
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time, and all augmented factors decrease dynamically with the exception of exchange 

rate (factor 10); (e) a shock to spread (factor 5) (figure 3.40) does not 

contemporaneously affect the augmented factors, whereas it negatively affects average 

hourly earnings (factor 9) and the WTI crude oil price return dynamically;  (f) a shock to 

interest rate and money aggregate (factor 6) (figure 3.41) positively affects employment 

and housing starts (factor 1), spread (factor 5), and WTI crude oil price return 

dynamically, negatively affects output (factor 4), and slightly influences the other factors 

which then stabilize; (g) a shock to stock (factor 7) (figure 3.42) strongly affects the 

augmented factors in the short-run except the WTI crude oil price return, whereas 

interest rate (factor 3), interest rate and money aggregate (factor 6), average hourly 

earnings (factor 8), and the WTI crude oil price return increase, but employment and 

housing starts (factor 1), output (factor 4), spread (factor 5), and exchange rate (factor 10) 

slightly decrease; (h) a shock to average hourly earnings (factor 8) (figure 3.43) strongly 

influences the augmented factors in the short-run, but they shortly stabilize, whereas it 

positively affects employment and housing starts (factor 1) and spread (factor 5) 

dynamically; (i) a shock to real income and unemployment (factor 9) (figure 3.44) and a 

shock to exchange rate (factor 10) (figure 3.45) strongly influence the augmented factors 

in the short-run, but they shortly stabilize; (j) a shock to the WTI crude oil price return 

(figure 3.46) negatively affects employment and housing starts (factor 1), interest rate 

(factor 3), interest rate and money aggregate (factor 6), and average hourly earnings 

(factor 8) dynamically, whereas the other augmented factors reveal higher volatilities in 

the short-run, but shortly stabilize.  These results demonstrate that oil price shock for 
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fluctuations in the WTI crude oil price return are an important source for fluctuations in 

US macroeconomic and financial indicators in the short-run.  

Overall, we consider our results to be satisfactory.  However, we note that the 

above descriptions only provide one possible interpretation to check the models’ 

empirical plausibility, since we lack sufficient information on the complete causal 

structures among variables of the overall economy over the full dynamic interactions 

beyond contemporaneous time.  Despite this drawback, the IRFs obtained from our 

FAVAR models generally align with the literature and make economic sense.  First, 

spread (factor 5) shock has a positive effect on output (factor 4).  Cuaresma et al. (2004) 

and Estrella (2005) explain that since spread accounts for future output growth, 

theoretically, the relationship can be positively or negatively correlated.  Second, price 

(factor 2) shock has a negative effect on output (factor 4) which is supported by 

Christiano et al. (1999).  Third, the positive relationship between interest rate (factor 3) 

and stock (factor 7) has been advocated by Tufte and Wohar (1999).  Fourth, our finding 

that the federal fund rate shock has a negative effect on interest rate (factor 3), spread 

(factor 5), interest rate and money aggregate (factor 6), and exchange rate (factor 10) is 

supported by the FAVAR models in Bernanke et al. (2005)13  and Kwon (2007)14 .  

Although we find that the federal fund rate shock has a positive effect on stock (factor 7), 

Lagana and Mountford (2005) provided the same results in their FAVAR model applied 

to a UK dataset.  Fifth, the price puzzle is considerably reduced and prices (factor 2) 
                                                 
13 The FAVAR model in Bernanke et al. (2005) represents the method based on the estimated factors from 
the entire dataset and the assumed full recursive restrictions.  This study is generally accepted as the 
benchmark of the monetary policy effect (Stock and Watson, 2005). 
14 The FAVAR model in Kwon (2007) represents the method based on the estimated factors from the 
inductively classified groups of variables and inferred causal structures. 
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eventually decrease.  From the results of our FAVAR model, Bernanke et al. (2005), and 

Kwon (2007), we conclude that the inclusion of the information captured by the factors 

into the VAR framework succeeds in mitigating the price puzzle.   

 

3.4.6.    Forecast Error Variance Decompositions 

  Tables 3.7 and 3.8 report the forecast error variance decompositions based on a 

structural factorization using the contemporaneous information flows from figures 3.23 

and 3.24.  The table entries show the variation of the 11 selected variables, i.e., the 10 

unobserved factors and the federal fund rate/WTI crude oil price return, due to 

innovations from those variables at the time horizons of contemporaneous time, short-

horizon (1 and 2 months) and long-horizon (12 months). 

From the results, we note that the percentage of the forecast error variance 

explained by each innovation does not differ much in both models.  Thus, we conclude 

that there is no dominant innovation for explaining each of the forecast error variances 

of all of the factors and observed variables.  Although the relative importance of each 

innovation is not interpreted easily in this condition, we offer the following 

interpretations.  

For the FFR model, interest rate (factor 3), output (factor 4), and spread (factor 5) 

explain the variations of each augmented factor and federal fund rate except in 

contemporaneous time, thus factor 3, factor 4, and factor 5 innovations appear to be 

important at long-horizon.  The specific descriptions for the forecast error variance 

decompositions are: (a) innovations of own contribution (federal fund rate), which 



 

103 

account for 100%, explain the uncertainty associated with the federal fund rate in 

contemporaneous time, but own contributions (46.3% and 25.1% at short-horizon, and 

6.7% at long-horizon) appear to be less important over time; (b) the innovation of 

average hourly earnings (factor 8, 6.1%), exchange rate (factor 10, 4.3%), and own 

contribution (89.6%) in contemporaneous time explain the variation in employment and 

housing starts (factor 1), but interest rate (factor 3, 20.0%), output (factor 4, 11.4%), and 

spread (factor 5, 52.5%) innovations appear to be important at long-horizon; (c) for 

variations in price (factor 2), innovations of own contribution (100% in 

contemporaneous time, 25.2 and 24.3% at short-horizon and 10.6% at long-horizon), and 

interest rate (factor 3, 26.6% and 24.4% at short-horizon and 17.5% at long-horizon), 

output (factor 4, 9.5% and 10.0% at short-horizon and 13.2% at long-horizon) and 

spread (factor 5, 30.0% and 31.1% at short-horizon and 43.1% at long-horizon) appear to 

be important in the whole time horizon; (d) innovations of price (factor 2, 24.9%) and 

own contribution (67.8%) explain the variance of interest rate (factor 3) in 

contemporaneous time, whereas output (factor 4, 14.3%), spread (factor 5, 50.9%), and 

own contribution (16.3%) explain it at long-horizon; thus, own contribution (interest 

rate), factor 4 (output), and factor 5 (spread) innovations appear to be important for 

explaining the interest rate at long-horizon, with the exception of factor 2 (1.8%); (e) 

innovations of real income and unemployment (factor 9, 7.1%), exchange rate (factor 10, 

5.1%), and own contribution (86.2%) show high explanatory power for the variance of 

output (factor 4) in contemporaneous time, whereas own contribution (11.8%) still 

remains dominant, although interest rate (factor 3, 22.7%) and spread (factor 5, 51.2%) 
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appear to be important factors at long-horizon; (f) innovations of interest rate (factor 3), 

output (factor 4), and own contribution explain the variation in spread (factor 5) at any 

time-horizon; (g) for the variation in interest rate and money aggregate (factor 6), price 

(factor 2, 46.0%) and own contribution (52.0%) appear to be important in 

contemporaneous time, whereas interest rate (factor 3), output (factor 4), and spread 

(factor 5) innovations show high ranked explanatory power as time passes, and price 

(factor 2) innovation and own contribution show diminished explanatory power as time 

passes; (h) for the variation in stock (factor 7), innovations of average hourly earnings 

(factor 8, 2.4%) and own contribution (97.6%) appear to be important in 

contemporaneous time, whereas interest rate (factor 3, 23.2%), output (factor 4, 11.5%), 

and spread (factor 5, 51.1%) innovations are important at long-horizon; (i) own 

contribution only explains the variance of average hourly earnings (factor 8) in 

contemporaneous time, whereas interest rate (factor 3, 13.3%), output (factor 4, 13.0%), 

and spread (factor 5, 44.9%) innovations as well as own contribution (10.1%) appear to 

be important at long-horizon; (j) innovations of own contribution (100%) explain the 

uncertainty associated with real income and unemployment (factor 9) in 

contemporaneous time, whereas interest rate (factor 3, 20.7%), output (factor 4, 13.7%), 

and spread (factor 5, 46.7%) innovations as well as own contribution (6.0%) show strong 

explanatory power at long-horizon; (k) innovations of own contribution (100%) explain 

the variance of exchange rate (factor 10) in contemporaneous time, whereas interest rate 

(factor 3, 19.5%), output (factor 4, 11.0%), and spread (factor 5, 49.7%) innovations 

appear to be more important at long-horizon.   
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For the WTI model, innovations of own contribution appear to be important at 

any time-horizon for explaining the uncertainties of the augmented factors and the WTI 

crude oil price return.  The specific descriptions are: (a) innovations of price (factor 2, 

18.3%) and own contribution (79.4%) in contemporaneous time, and 15.7% and 73.1%, 

respectively, at long-horizon explain the uncertainty associated with the WTI crude oil 

price return for whole time-horizon; (b) average hourly earnings (factor 8, 7.9%), 

exchange rate (factor 10, 4.3%), and own contribution (87.8%) innovations explain the 

variance of employment and housing starts (factor 1) in contemporaneous time, whereas 

innovations of output (factor 4, 15.1%), spread (factor 5, 11.8%), interest rate and money 

aggregate (factor 6, 7.8%), and own contribution (48.2%) appear to be important at long-

horizon; (c) own contribution (100%) explains the variance of price (factor 2) in 

contemporaneous time, whereas own contribution (82.1% and 80.9% at short-horizon 

and 78.7% at long-horizon) and interest rate (factor 3, 10.3% and 10.8% at short-horizon 

and 11.1% at long-horizon) innovations appear to be important; (d) for the variation in 

interest rate (factor 3), own contribution (88.8% in contemporaneous time, 82.2% and 

80.4% at short-horizon and 72.7% at long-horizon) and WTI crude oil price return (7.5% 

in contemporaneous time, 10.4% at short-horizon and 9.3% at long-horizon) innovations 

show high explanatory power for whole time-horizon; (e) for the variation in output 

(factor 4), innovations of employment and housing starts (factor 1, 46.4% in 

contemporaneous time, 41.8% and 40.3% at short-horizon and 36.1% at long-horizon) 

and own contribution (45.4% in contemporaneous time, 37.3% and 37.5% at short-

horizon and 34.1% at long-horizon) appear to be important for whole time-horizon;  (f) 
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innovations of interest rate (factor 3, 28.4% in contemporaneous time, 19.3% and 15.6% 

at short-horizon and 11.9% at long-horizon) and own contribution (61.7% in 

contemporaneous time, 69.2% and 71.3% at short-horizon and 63.5% at long-horizon) 

explain the variance of spread (factor 5); (g) for the variation of interest rate and money 

aggregate (factor 6), innovations of average hourly earnings (factor 8, 1.9% in 

contemporaneous time, 8.3% and 8.0% at short-horizon and 7.7% at long-horizon) and 

own contribution (98.1% in contemporaneous time, 88.3% and 86.2% at short-horizon 

and 80.0% at long-horizon) show high ranked explanatory power; (h) for the variation of 

stock (factor 7), interest rate (factor 3, 8.6% in contemporaneous time, 8.3% and 8.8% at 

short-horizon and 10.7% at long-horizon), interest rate and money aggregate (factor 6, 

17.2% in contemporaneous time, 13.7% and 14.7% at short-horizon and 13.8% at long-

horizon), average hourly earnings (factor 8, 7.7% in contemporaneous time, 6.6% and 

6.3% at short-horizon, and 5.5% at long-horizon), and own contribution (56.4% in 

contemporaneous time, 53.8% and 52.6% at short-horizon and 51.6% at long-horizon) 

innovations show high ranked explanatory power; (i) innovations of own contribution 

(100%) explains variance of average hourly earnings (factor 8) in contemporaneous time, 

whereas interest rate and money aggregate (factor 6, 9.4% and 9.0% at short-horizon and 

9.3% at long-horizon), stock (factor 7, 2.3% and 3.6% at short-horizon and 7.8% at long-

horizon), and own contribution (83.9% and 81.3% at short-horizon and 72.9% at long-

horizon) innovations appear to be important; (j) own contribution (100% at 

contemporaneous time, 85.2% and 84.3% at short-horizon and 83.0% at long-horizon) 

explain the variations in real income and unemployment (factor 9) for whole time-
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horizon; (k) innovations of own contribution (100% in contemporaneous time, 90.3% 

and 88.5% at short-horizon  and 87.6% at long-horizon) explain uncertainty associated 

with exchange rate (factor 10).  

We interpret the overall results as follows: (a) for the FFR model, interest rate 

(factor 3), output (factor 4), and spread (factor 5) innovations appear to be dominant for 

explaining each of the forecast error variances, and the federal fund rate innovation is  

important for explaining each of the forecast error variances of almost all augmented 

factors except in contemporaneous time; (b) for the WTI model, no dominant innovation 

explains each of the forecast error variances, yet the innovations of own contribution 

appear to be important for the variations in each augmented factor and the WTI crude oil 

price return at any time-horizon; (c) innovations of own contribution only explain the 

variances of federal fund rate and WTI crude oil price return in contemporaneous time.  

These results suggest that the federal fund rate and the WTI crude oil price return appear 

to be exogenous in contemporaneous time.  We note that they are consistent with our 

previous DAG patterns which inductively inferred the contemporaneous causal structure 

by the GES algorithm without any deductive information in figures 3.23 and 3.24. 
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Table 3.7  
Forecast error variance decomposition for the FFR model 

Period FFR Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 

Forecast error variance decomposition for the federal fund rate shock 

0 month 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 month 46.271 1.264 0.417 7.295 5.249 34.186 1.178 1.739 1.256 0.847 0.299 

2 month 25.092 1.612 0.753 11.433 8.484 45.159 1.793 1.415 3.296 0.832 0.13 

12 month 6.706 0.492 1.104 18.046 12.086 51.94 2.627 0.505 5.382 1.002 0.11 

Forecast error variance decomposition for Factor 1 

0 month 0.000 89.575 0.000 0.000 0.000 0.000 0.000 0.000 6.105 0.000 4.320 

1 month 7.235 13.934 1.988 16.185 5.156 48.413 1.56 1.655 2.648 0.293 0.932 

2 month 6.382 5.47 0.986 19.492 8.583 51.45 1.721 1.088 3.807 0.76 0.261 

12 month 5.715 0.845 0.758 20.045 11.417 52.502 2.066 0.418 5.172 0.949 0.114 

Forecast error variance decomposition for Factor 2 

0 month 0.000 0.000 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 month 2.585 0.014 25.157 26.555 9.524 29.998 0.925 1.133 1.424 1.545 1.141 

2 month 3.094 0.014 24.272 24.366 10.001 31.103 2.022 1.084 1.498 1.475 1.070 

12 month 4.437 0.016 10.599 17.521 13.152 43.138 3.826 0.795 4.706 1.316 0.494 
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Table 3.7  
 (Continued) 

Period FFR Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 

Forecast error variance decomposition for Factor 3 

0 month 2.042 0.003 24.884 67.835 1.278 0.000 0.000 3.217 0.559 0.105 0.076 

1 month 6.054 0.028 2.727 17.075 13.664 50.196 2.801 0.503 5.823 0.871 0.258 

2 month 5.763 0.025 2.056 16.456 13.945 51.044 3.045 0.431 6.026 0.995 0.214 

12 month 5.335 0.014 1.756 16.288 14.277 50.941 3.436 0.359 6.278 1.083 0.232 

Forecast error variance decomposition for Factor 4 

0 month 0.000 0.223 0.000 0.000 86.162 0.000 0.000 1.160 0.251 7.059 5.145 

1 month 0.104 2.770 4.973 11.750 52.156 9.321 0.613 2.586 4.110 5.860 5.757 

2 month 2.626 3.347 4.031 14.840 40.334 19.654 0.477 2.162 3.400 4.526 4.602 

12 month 5.625 0.717 0.387 22.686 11.826 51.175 1.11 0.269 4.869 1.012 0.324 

Forecast error variance decomposition for Factor 5 

0 month 5.386 0.035 0.876 19.423 13.596 50.289 2.684 0.363 6.031 1.114 0.204 

1 month 5.331 0.036 0.955 19.056 13.585 50.601 2.768 0.335 6.016 1.103 0.214 

2 month 5.304 0.036 0.985 18.851 13.590 50.767 2.787 0.320 6.044 1.098 0.218 

12 month 5.257 0.027 1.065 18.381 13.694 50.989 2.86 0.289 6.114 1.090 0.234 
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Table 3.7   
(Continued) 

Period FFR Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 

Forecast error variance decomposition for Factor 6 

0 month 0.016 0.000 46.027 0.523 0.035 0.000 51.997 0.022 1.375 0.003 0.002 

1 month 3.240 0.205 17.188 8.668 9.120 29.869 22.057 0.685 7.279 1.634 0.056 

2 month 3.710 0.276 17.068 7.685 9.319 31.815 21.014 0.769 6.806 1.477 0.060 

12 month 5.149 0.178 4.551 13.553 13.23 48.192 6.939 0.659 6.244 1.201 0.103 

Forecast error variance decomposition for Factor 7 

0 month 0.000 0.000 0.000 0.000 0.000 0.000 0.000 97.617 2.383 0.000 0.000 

1 month 7.906 0.000 0.761 18.843 8.539 49.311 0.560 8.934 4.669 0.209 0.269 

2 month 6.494 0.019 0.247 21.874 11.082 50.635 0.720 2.637 5.152 0.764 0.376 

12 month 5.731 0.031 0.129 23.163 11.528 51.145 0.799 0.935 5.338 0.832 0.368 

Forecast error variance decomposition for Factor 8 

0 month 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000 0.000 

1 month 0.529 0.012 13.025 21.253 6.118 22.443 5.687 0.000 30.193 0.120 0.620 

2 month 1.301 0.171 11.610 18.676 7.554 24.744 6.424 0.660 27.865 0.458 0.539 

12 month 4.552 0.194 5.479 13.272 12.987 44.916 6.320 0.922 10.119 1.060 0.179 
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Table 3.7   
(Continued) 

Period FFR Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 

Forecast error variance decomposition for Factor 9 

0 month 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100 0.000 

1 month 4.367 0.001 0.551 20.915 14.476 44.819 1.663 0.887 4.381 7.887 0.052 

2 month 4.299 0.017 0.545 21.008 14.551 44.720 1.681 0.876 4.437 7.752 0.113 

12 month 4.692 0.248 0.613 20.682 13.728 46.748 1.798 0.769 4.616 6.000 0.107 

Forecast error variance decomposition for Factor 10 

0 month 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100 

1 month 5.475 0.010 0.039 19.049 8.881 45.911 1.011 0.632 5.107 2.273 11.612 

2 month 5.438 0.037 0.068 18.877 8.893 46.072 1.024 0.692 5.266 2.225 11.408 

12 month 5.518 0.089 0.443 19.525 11.047 49.706 1.629 0.396 5.481 1.492 4.672 
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Table 3.8  
Forecast error variance decomposition for the WTI model 

Period WTI Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 

Forecast error variance decomposition for WTI crude oil price shock 

0 month 79.429 2.023 18.267 0.000 0.000 0.000 0.000 0.000 0.182 0.000 0.099 

1 month 77.441 3.032 16.241 1.103 0.015 0.007 0.127 0.001 1.289 0.547 0.197 

2 month 76.135 3.325 16.157 1.554 0.106 0.020 0.476 0.017 1.427 0.546 0.236 

12 month 73.132 3.993 15.681 2.091 0.803 0.165 1.120 0.442 1.774 0.572 0.228 

Forecast error variance decomposition for Factor 1 

0 month 0.000 87.820 0.000 0.000 0.000 0.000 0.000 0.000 7.894 0.000 4.286 

1 month 0.002 66.732 2.470 0.000 7.800 0.295 2.850 1.681 9.062 0.701 8.408 

2 month 0.072 63.588 2.122 0.631 9.682 0.976 4.456 1.767 8.759 0.562 7.384 

12 month 0.715 48.173 1.871 0.696 15.144 11.765 7.790 1.235 6.820 0.577 5.215 

Forecast error variance decomposition for Factor 2 

0 month 0.000 0.000 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 month 0.994 0.181 82.056 10.337 0.068 0.013 1.235 0.257 3.610 0.175 1.074 

2 month 1.128 0.187 80.912 10.758 0.076 0.044 1.280 0.616 3.768 0.173 1.059 

12 month 1.177 0.248 78.690 11.149 0.244 0.493 1.446 1.309 3.916 0.175 1.153 
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Table 3.8   
(Continued) 

Period WTI Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 

Forecast error variance decomposition for Factor 3 

0 month 7.508 1.695 1.727 88.835 0.000 0.000 0.000 0.000 0.152 0.000 0.083 

1 month 10.403 1.478 2.442 82.227 0.001 0.890 0.986 0.922 0.197 0.363 0.091 

2 month 10.407 1.422 2.343 80.365 0.019 2.088 1.027 1.342 0.230 0.388 0.369 

12 month 9.315 1.676 2.179 72.720 0.374 8.658 1.101 2.185 0.903 0.353 0.535 

Forecast error variance decomposition for Factor 4 

0 month 0.000 46.429 0.912 0.000 45.398 0.000 0.000 0.000 4.173 2.999 0.089 

1 month 0.777 41.825 1.882 0.394 37.321 0.001 0.125 4.582 5.052 4.108 3.933 

2 month 0.836 40.268 2.153 0.470 37.535 0.002 0.134 5.422 5.176 4.143 3.861 

12 month 1.164 36.091 2.297 2.091 34.124 0.879 3.581 7.319 5.675 3.546 3.233 

Forecast error variance decomposition for Factor 5 

0 month 2.404 0.246 1.655 28.444 0.000 61.701 3.535 0.000 0.166 0.000 1.849 

1 month 2.531 1.051 1.145 19.299 0.213 69.237 2.415 1.161 1.122 0.080 1.744 

2 month 2.13 2.667 0.926 15.645 0.277 71.309 1.904 1.673 1.836 0.094 1.538 

12 month 1.14 10.903 0.785 11.916 2.580 63.488 1.249 1.844 4.410 0.191 1.493 
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Table 3.8   
(Continued) 

Period WTI Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 

Forecast error variance decomposition for Factor 6 

0 month 0.000 0.000 0.000 0.000 0.000 0.000 98.146 0.000 1.854 0.000 0.000 

1 month 0.012 0.493 1.203 0.011 0.242 0.022 88.333 0.196 8.342 1.144 0.001 

2 month 0.070 0.470 1.168 1.522 0.232 0.022 86.155 0.954 7.962 1.090 0.355 

12 month 0.285 0.598 1.302 3.047 0.376 0.600 80.033 3.996 7.711 1.066 0.987 

Forecast error variance decomposition for Factor 7 

0 month 0.729 2.990 1.568 8.630 4.456 0.000 17.227 56.377 7.729 0.294 0.000 

1 month 1.238 3.979 4.404 8.279 3.983 0.010 13.680 53.811 6.568 3.199 0.849 

2 month 1.149 3.705 4.016 8.824 3.668 0.099 14.655 52.587 6.258 2.907 2.134 

12 month 1.343 3.326 3.588 10.672 3.344 0.335 13.843 51.561 5.496 2.495 3.997 

Forecast error variance decomposition for Factor 8 

0 month 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100 0.000 0.000 

1 month 0.603 0.000 0.774 2.239 0.000 0.077 9.387 2.337 83.851 0.215 0.516 

2 month 0.792 0.415 1.637 2.220 0.126 0.074 9.025 3.561 81.286 0.318 0.544 

12 month 0.973 0.593 1.635 4.137 0.276 0.359 9.271 7.809 72.897 0.342 1.709 
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Table 3.8   
(Continued) 

Period WTI Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 

Forecast error variance decomposition for Factor 9 

0 month 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100 0.000 

1 month 0.651 0.000 2.013 2.875 0.104 0.268 3.769 1.054 2.306 85.190 1.770 

2 month 0.668 0.024 2.161 3.224 0.184 0.284 3.726 1.040 2.295 84.340 2.054 

12 month 0.707 0.707 2.165 3.203 0.495 0.371 3.821 1.034 2.375 83.021 2.099 

Forecast error variance decomposition for Factor 10 

0 month 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100 

1 month 0.071 1.540 2.055 0.218 1.204 0.130 2.107 0.022 0.011 2.311 90.331 

2 month 0.142 1.550 2.010 0.551 1.185 0.137 2.362 0.684 0.385 2.531 88.465 

12 month 0.155 1.562 2.028 0.581 1.278 0.375 2.497 0.954 0.442 2.531 87.597 
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3.4.7.    Robustness Check 

We employ a common framework for generating pseudo out-of-sample-forecasts 

from the FAVAR and benchmark models.  Initially, we use observations from January 

1982 to December 2008 and calculate the one-step-ahead predictions to estimate each 

forecasting model described below.  Thereafter, we augment the sample by one month, 

re-compute the unobserved factors, re-specify the models, and re-estimate their 

parameters and the corresponding one-step-ahead predictions generated by moving the 

forecast window forward.  We repeat this procedure until we reach the November 2011 

end-date, at which point we make our final set of forecasts. The result is a combined 

total of 35 out-of-sample predictions for the WTI oil price return.   

 

3.4.7.1.    Specifications of Forecasting Models 

  To ensure the robustness of our analysis, first we estimate FAVAR models for 

both the federal fund rate and the WTI crude oil price return by extracting the factors 

from a large set of predictors (see Section 3.2).  Second, we use simple univariate AR 

models for each observed variable.  Third, we compare the forecasting accuracies of 

both FAVAR models to the benchmark AR models.   

Following Stock and Watson (2002a), the forecasting equation to predict 𝑦  is: 𝑦 = 𝛼 + ∑ 𝛽 𝐹 + ∑ 𝛾 𝑦                                                           (3.15) 

where 𝑦  denotes the h-steps ahead forecasts of 𝑦 , 𝐹  is the h-steps ahead 

prediction for the r factors, 𝛽  is 1 × 𝑟 vector of coefficients, and the m, p, and r are 

either fixed or selected with information criteria.  
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  Next, we construct our benchmark model. For variable 𝑦 (WTI crude oil price 

return), we estimate the following AR (p) model: 𝑦 = 𝛼 + ∑ 𝛽 𝑦 + 𝑣                                                                                  (3.16) 

where 𝛼  and 𝛽  are the coefficients to be estimated, and 𝑣  is the residual. 

For the h-steps ahead horizon, we determine the forecasts as: 

𝑦 = 𝛼 + 𝛽 𝑦  

where 𝑦  denotes the forecast value of 𝑦 for horizon 𝑡 + ℎ, and equation (3.16) 

estimates the coefficients 𝛼 and 𝛽 .  
 

3.4.7.2.    Forecasting Performances 

  To compare the models’ forecast performances, we calculate the out-of-sample-

forecast residuals which are generated from the difference between the forecasted and 

the actual returns prices of each observed variable.  Based upon these exercise results, 

we use two forecast performance measure statistics: Mean Squared Error (MSE) and 

Mean Absolute Percentage Error (MAPE).  Table 3.9 summarizes the forecast 

performances. 

  For the two FAVAR models, we note that the MSEs (0.00 and 0.93) and the 

MAPEs (2.33% and 73.23% for each observed variable) are less than the AR benchmark 

models.  These results confirm our expectation that the MSEs of the FAVAR models are 

superior.   
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Table 3.9 
Summary of out-of-sample forecast performance of FAVAR and AR models 

 MSE MAPE 

 FAVAR AR FAVAR AR 

RFFR 0.000983 0.002859 2.33097 3.090269 

RWTI 0.927359 1.073899 73.23035 79.93896 

Note: MSE = ∑ 𝑌 − 𝑌 and MAPE = ∑ 𝑌 − 𝑌 ; a lower loss measure indicates a higher 

forecasting power. 
 

  However, these two performance measures do not provide a statistical 

significance of the similarities/differences between the models’ forecasts.  Therefore, we 

apply the DM test (Diebold and Mariano 1995) and the forecast encompassing test 

(Harvey et al. 1997) to examine the out-of-sample predictability.  Table 3.10 summarizes 

the test statistics.  

  From the DM test statistics, the hypothesis of equality of forecast errors between 

the models cannot be rejected in all variables at the 5% significance level. We conclude 

that the forecasting errors of the FAVAR and AR models statistically perform similarly. 
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Table 3.10 
Summary of test statistics of DM and out-of-sample forecast encompassing test for 

FAVAR and AR models 

 DM 

Forecast Encompassing 

Dependent variable 𝑒  𝑒  

 test statistics p-value 𝜆 p-value 𝜆 p-value 

RFFR -1.4038 0.1604 -0.3225 0.038 1.3225 0.000 

RWTI -1.2963 0.1949 -0.0613 0.894 1.0613 0.026 

Note:  The DM test and forecast encompassing test are based on the null hypothesis of no difference in the 
accuracy (equal predictive ability) between the forecasting errors of the FAVAR and AR models.   
  In the DM test, the null hypothesis of equal forecast accuracy is tested based on 𝐸(𝑑 ) = 0, 
where 𝐸  is expectation operator and 𝑑 = 𝑒 , − 𝑒 , .  The variables  𝑒 ,  and 𝑒 ,  are the 
forecast errors generated by the FAVAR and AR model,s respectively.  The DM test statistic is 𝐷𝑀 =[𝑉(�̅�)] / �̅�, where �̅� is sample mean of 𝑑 , and 𝑉(�̅�) is sample variance of �̅� which is asymptotically 
estimated by 𝑇 𝛾 + 2 ∑ 𝛾 , where 𝛾 is kth autocovariance of 𝑑  which can be estimated from 𝑇 ∑ 𝑑 − �̅� 𝑑 − �̅� .  Under the null hypothesis, this statistic follows an asymptotic standard 
normal distribution. 
  In the forecast encompassing test, the test determines weights based on the covariance between 
the errors from FAVAR 𝑒 , , and the difference between the errors of the FAVAR and AR models, 𝑒 , − 𝑒 , .  If the covariance is not equal to zero, then information can be gained and a composite 
forecast can be built.  This is tested based on 𝑒 , = 𝜆 𝑒 , − 𝑒 , + 𝜀 , where 𝜀  is a composite 
forecast error.  The null hypothesis is 𝜆 = 0.  If the null is true, then the FAVAR model encompasses the 
AR model.  The actual test involves an OLS regression of  𝑒 ,  on 𝑒 , − 𝑒 , .  In this study, 
we use t-test of  𝜆 for forecast encompassing. 
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  For the forecast encompassing test, the hypothesis is that if 𝜆 is significantly 

different from zero when the dependent variable is the residuals of the FAVAR/AR 

models, then the AR/FAVAR models encompass the FAVAR/AR models.  For the FFR 

model, the results show that the forecasting residuals of the FAVAR model encompass 

the AR model (p-value is 0.000), whereas the residuals of the AR model do not 

encompass the FAVAR model (p-value is 0.038) at the 1% significance level.  For the 

WTI model, the forecasting residuals of the FAVAR model encompass the AR model 

(p-value is 0.026), whereas the residuals of the AR model do not encompass the FAVAR 

model (p-value is 0.894) at the 5% significance level.  Thus, we conclude that both 

FAVAR models are superior in forecasting ability to the benchmark univariate AR 

models.  Moreover, these forecast encompassing test results are consistent with the 

findings of the equality tests.  

 

3.5.   Conclusion 

In Chapter III, we constructed econometric models for the federal fund rate and 

the WTI crude oil price return using a large panel of macroeconomic time series. We 

summarized the information with a few estimated factors by using PCA, which allowed 

us to interpret and identify the underlying factors.  We augmented these factors as 

regressors in a VAR framework to assess the effects of the federal fund rate and WTI 

crude oil price shocks upon the US economy.  In sequence, the contemporaneous causal 

relationships among innovations of both FAVAR models were inductively inferred by 

using the GES algorithm.  Based on the casual structures identified by the graphical 
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model, we estimated the impulse response functions and forecast error variance 

decompositions with respect to a shock in each of the augmented factors and two 

considered variables.   

Based on DAG analysis, we found that the federal fund rate shock is exogenous 

in contemporaneous time as the identifying assumption in the VAR framework of the 

monetary shock transmission mechanism.  This result is consistent with the 

identification assumption of Bernanke et al. (2005) and the stylized fact of Kwon (2007).  

However, we found that the WTI crude oil price return is not exogenous in 

contemporaneous time.  Thus, we argue that the oil price shocks transmission 

mechanism identified from information flows is inferred from the data.   

From the innovation accounting analysis based on our FAVAR models, we found 

that our results generally align with previous literature (Bernanke et al. 2005; Christiano 

et al. 1999; Cuaresma et al. 2004; Estrella 2005; Fair 2002; Kwon 2007; Tufte and 

Wohar 1999) and appear to make economic sense.  In particular, we find that the price 

puzzle (Sims 1992) is considerably reduced and the price responses on shocks to the 

federal fund rate eventually decrease as noted by Bernanke et al. (2005) and Kwon 

(2007).  Therefore, we conclude that inclusion of the information captured by the factors 

into the VAR framework succeeds in mitigating the price puzzle. 

We conclude that using the larger macroeconomic information set for analyzing 

monetary policy and oil price shock transfer mechanisms is advantageous.  Moreover, 

the results from out-of-sample-forecasts of the federal fund rate and the WTI crude oil 

price return reinforce this conclusion.  The forecasting performance of the FAVAR 
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models based on common factors clearly outperforms the model based on individual 

variables.  More importantly, the FAVAR model is superior with respect to univariate 

AR models in out-of-sample-forecasts.   
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CHAPTER IV 

PRICE DYNAMIC CAUSATIONS AMONG ENERGY, AGRICULTURAL, 

AND FINANCIAL MARKETS UNDER STRUCTURAL BREAKS  

 

4.1.    Introduction 

  The findings of earlier studies generally agree that energy commodity markets 

play an important role in macroeconomic and financial activities.  Numerous works have 

discussed the interrelationships of the prices and volatilities among energy, 

macroeconomic, and financial markets.  In fact, studying the dynamics and statistical 

properties of energy commodities has become an important part of price dynamics and 

commodity market analysis as well as macroeconomic and financial analysis.   

  In addition to this stylized fact, the potential impact of energy markets on 

agricultural market and their co-movements have recently attracted a lot of attention 

since rapidly increasing the usage of biofuels (i.e., corn-based ethanol) in 2005.  

Historically, US energy markets have always linked to agricultural markets.  For 

instance, gasoline and electricity are directly used as input sources for producing and 

transporting agricultural products.  According to the US Department of Agriculture 

(USDA), total energy costs were approximately 15% of annual agricultural production 

expenses in 2011.  The potential impacts – and relationship – of energy markets on US 

agricultural markets gained more attention after Congress passed the Energy Policy Act 

of 2005, which promotes adding corn-based ethanol to gasoline, and the Chicago Board 

of Trade (CBOT) launched an ethanol futures contract.  US corn-based ethanol 
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production rose from 3.9 billion gallons in 2005 to 13.2 billion gallons in 2011 (RFA 

2011), while wholesale corn prices rose from 1.96 $/bushel to 6.01 $/bushel in the same 

timeframe (NASS 2011).   

Economic theory based on market fundamentals and arbitrage activities suggests 

that energy, agricultural, and financial markets are plausibly interrelated.  Although there 

are many separate studies of integration between energy and agricultural markets, energy 

and stock markets, and/or agricultural and stock markets (Brown and Yücel 2002; 

Hamilton 2003; Hanson et al. 1993; Harri et al. 2009; Jiménez-Rodríguez and Sánchez 

2005; Kaltalioglu and Soytas 2009; Mutuc et al. 2010; Sadorsky 1999; Soytas et al. 2009; 

Yu et al. 2006; Zhang et al. 2010), to our knowledge no study has yet empirically 

examined the dynamic causations of  the prices among the energy, agricultural, and 

financial markets simultaneously.  Therefore, Chapter IV focuses on the dynamics of 

contemporaneous causations among the crude oil, gasoline, corn and stock markets, 

allowing for structural changes or regime shifts.   

We note, too, that previous studies assume that the relationship between two 

considered markets is unchanging or remains stable over time.  However, the failure to 

account for structural changes or regime shifts may incur biased and unreliable results. 

In other words, when we employ only partial time series before or after a structural 

change, we provide incomplete or misleading information on potential market linkages.  

In this respect, finding structural changes allows us to produce one sample before 

and one sample after the identified change point, and to carefully investigate the 

dynamics of contemporaneous causations among the three markets.  However, it is 
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widely known that the accurate directions and magnitude of these linkages are difficult 

to capture because their dynamic relationships vary by time, strengthening and 

weakening during periods of crisis.  Therefore, we build an econometric model to 

quantify the dynamic relationships among the prices of crude oil, gasoline, corn, and the 

S&P 500 by using a VAR framework.  Simultaneously, we apply the Bai-Perron test 

(Bai and Perron 2003) to investigate the possible existence of multiple structural breaks 

with unknown points.   Based on the results of the structural break test, we divide the 

entire sample period into sub-periods, and impose the dynamic relationships among four 

prices in econometric models.  In addition, we investigate the empirical 

contemporaneous causal relationships using the DAG approach following Bessler and 

Lee (2002), Bessler and Yang (2003), Demiralp and Hoover (2003), Moneta (2004), 

Moneta (2008), Swanson and Granger (1997), and Kim and Bessler (2007).  Finally, we 

apply forecast error variance decomposition and an impulse response function (IRF), to 

analyze the information transmission among the prices of crude oil, gasoline, corn, and 

the S&P 500.   

 The reminder of this chapter is organized as follows.  Section 2 describes the 

structural break test.  Section 3 presents the data, summary statistics, and basic non-

stationary test results.  Section 4 discusses the analytical results of the daily price returns 

of crude oil, gasoline, corn, and the S&P 500.  Section 5 concludes.  
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4.2.    Empirical Methodology 

 This section focuses on assessing price level dynamic causations based on the 

VAR modelSims (1980) widely used for empirical analysis of time series.  The VAR 

model allows us to infer the contemporaneous causal structures by using statistical 

properties without too much a priori theory and/or information from the data and to 

easily perform innovation accounting analysis.  After estimating the dynamic 

relationships among the prices of crude oil, gasoline, corn, and the S&P 500, we infer 

the contemporaneous causal structures from innovations by using DAG.  However, since 

the contemporaneous causal structures may change if there are structural changes or 

regime shifts, we first need to test for structural breaks.   

Economic time series most likely contain structural breaks due to shifts in market 

fundamentals, such as depressions, financial crises, oil shocks, production technology, 

government policies, etc.  The earliest tests for structural breaks were developed by 

Chow (1960), who proposed an analysis of variance test and a predictive test.  Since the 

1970s, the Chow tests have been used extensively in empirical studies.  However, they 

have several limitations, one of which is that the tests are generally valid only under the 

strong assumptions that the regression error term does not suffer from autocorrelation or 

heteroscedasticity, and the break point is known a priori.   

To overcome the limitations, the Chow tests were extended by the alternative 

CUSUM and CUSUMSQ tests of Brown et al. (1975), which depend on the basis of 

inference in Quandt (1960), i.e., we must infer the break point because we do not know 

the actual break point with certainty.  Later, Krämer et al. (1988), Ploberger et al. (1989), 
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and Ploberger and Kramer (1992) extended Brown et al. to show how the CUSUM test 

can be accomplished using OLS residuals.  One noticeable drawback of the CUSUM test 

is its asymptotically low power against instability in the intercept but not in the entire 

coefficient vector.  Therefore, Ploberger et al. (1989) proposed a fluctuation test based 

on comparisons between parameter estimates from the partial samples and the complete 

sample, assuming stationary regressors of the model.  Andrews (1993) derived the 

asymptotic null distribution of the sequential likelihood ratio test (Quandt 1960) of 

parameter constancy.  He also showed that this test has nontrivial local asymptotic 

power against all alternatives of non-constant parameters.  Andrews and Ploberger (1994) 

developed tests with stronger optimality properties than Andrews (1993) in the context 

of Maximum Likelihood Estimators (MLEs).   

Another effort to overcome the limitations of Chow tests were against the 

alternative to constancy, i.e., parameters are stochastic and fluctuate according to some 

time series model.  By using the assumption that if the null is not true, the parameters 

follow a random walk, LaMotte and McWhorter Jr (1978) provided an exact F test for 

testing against the alternative to constancy.  Extensions have since been made by 

Nyblom and Makelainen (1983) and Nyblom (1989).  They developed the locally most 

powerful test against a parameter variation in the form of a martingale.  Recently, Bai 

and Perron (1998) and Bai and Perron (2003) considered issues related to multiple 

structural changes occurring at unknown dates in their linear regression model estimated 

by OLS.  In particular, they examined several aspects of the structural break models 

including the consistency of the break fraction estimators, the rate of convergence, and 
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the construction of tests that allow inferences for deciding the presence of structural 

change and the number of breaks.  They considered a simulation study and empirical 

application, and presented an efficient algorithm to obtain global minimizing of the sum 

of squared residuals (Bai and Perron 2003; Bai and Perron 1998).   

Since one of our objectives is to identify possible multiple structural breaks 

absent prior information of break dates, we select the method suggested by Bai and 

Perron (1998) and Bai and Perron (2003) to determine whether the considered series 

contain unknown structural breaks.  The remainder of this section provides the details.  

 

4.2.1.    Test for Structural Changes 

The multiple break testing and estimation methodology of Bai and Perron (1998) 

and Bai and Perron (2003) requires no a priori information regarding the number and 

timing of potential breaks, and allows for serial correlation and heteroscedasticity in the 

errors across structural regimes. 

First, we consider a multiple linear regression model with m breaks: 𝑦 = 𝛽 𝑧 + 𝑢                                                                                                                 (4.1) 

where 𝑦  is the observed dependent variable, 𝑧  is (𝑞 × 1) vector of covariates, 𝛽  is the 

mean of volatility in (𝑗 + 1)  regime, and 𝑢  is the error term at time t.  Also, 𝑡 =𝑇 + 1, ⋯ , 𝑇 , 𝑗 = 1, ⋯ , 𝑚 + 1, 𝑇 = 0 and 𝑇 = 𝑇.   

We treat the break points (𝑇 , ⋯ , 𝑇 )  as unknown. Note that this is a pure 

structural change model and that all coefficients are subject to change. In addition, the 

model permits correlation and heterogeneity in the residuals (Bai and Perron 1998). 
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  We express equation (4.1) as the matrix form of the multi-variables linear model:  𝑌 = 𝛣𝑍 + 𝑈                                                                                                                    (4.2) 

where 𝑌 = (𝑦 , ⋯ , 𝑦 )′, 𝛣 = (𝛽 , 𝛽 , ⋯ , 𝛽 )′, 𝑈 = (𝑢 , ⋯ , 𝑢 )′, and 𝑍 is the diagonal 

matrix with 𝑍 = 𝑑𝑖𝑎𝑔(𝑧 , ⋯ , 𝑧 ). 

 We estimate the unknown regression coefficients and the break points (𝛽 , 𝛽 , ⋯ , 𝛽 ,  𝑇 , ⋯ , 𝑇 ) when 𝑇 observations on (𝑦 , 𝑧 ) are available based on the 

least-squares principle proposed by Bai and Perron (1998). For each m-partitions (𝑇 , ⋯ , 𝑇 ) , denoted 𝑇 , we obtain the associated least-squares estimates of  𝛽 (𝑇 , ⋯ , 𝑇 ) by minimizing the sum of squared residuals which we express as: 𝑆𝑆𝑅 ( 𝑇 , ⋯ , 𝑇 ) = ∑ ∑ 𝑦 − 𝛽 𝑧                                                         (4.3) 

The estimated parameters are the mean estimates of regimes based on the 

partitions; we put them back into the objective function and denote the sum of squared 

residuals as 𝑆𝑆𝑅 ( 𝑇 , ⋯ , 𝑇 ).  By considering all the possible m-partitions (𝑇 , ⋯ , 𝑇 ), 

we can obtain the estimated break points from:   𝑇 , ⋯ , 𝑇 = argmin ,⋯, 𝑆𝑆𝑅 ( 𝑇 , ⋯ , 𝑇 )                                                          (4.4) 

where the minimization is taken over all possible partitions ( 𝑇 , ⋯ , 𝑇 ) such that  𝑇 −  𝑇 > 𝑞.  Thus the break point estimators are global minimizers of the objective 

function. Finally, we can identify that the regression parameter estimates are the 

associated least-squares estimates at the estimated m-partition (𝑇 ) , i.e., 𝛽 =𝛽  𝑇 . 
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 The Bai and Perron test uses an efficient dynamic programming algorithm (Bai 

and Perron 2003) to determine the number of breaks and their break dates, which  begins 

by testing for a single break, proceeds to two breaks, etc.  The optimal number of breaks 

(m-1) is evaluated based on the optimal break that gives the lowest sum of squared 

residuals.  To check for structural breaks in the series, we implement the procedure to 

determine the existence of structural change and to select the number of breaks 

suggested by Bai and Perron (1998) and Bai and Perron (2003).  Our procedure consists 

of three tests.  

Test 1: We find the F-statistics for testing null of no structural breaks against 

alternative 𝑚 breaks where the breaks are selected according to equation (4.4).  We call 

this the 𝑆𝑢𝑝𝐹 (𝑚) test.  To test the null hypothesis of no structural breaks in beta 

against the alternative of m breaks, let (𝑇 , ⋯ , 𝑇 ) be a partition such that  𝑇 = [𝑇𝜆 ], 
where 𝑖 = 1, ⋯ , 𝑚 .  Also define 𝑅  such that (𝑅𝛽) = (𝛽 − 𝛽 , ⋯ , 𝛽 − 𝛽 ) .  

Calculate the statistic as:  𝐹 (𝜆 , ⋯ , 𝜆 ) = 𝛽 𝑅 𝑅𝑉 𝛽 𝑅 𝑅𝛽                                                      (4.5) 

where 𝑉 𝛽  is an estimate of the variance-covariance matrix for 𝛽  that is robust to 

heteroscedasticity and serial correlation.   

 Next, consider the maximum F statistics corresponding to the following 

equations: 𝑆𝑢𝑝𝐹 (𝑚) = 𝐹 𝜆 , ⋯ , 𝜆                                                                                           (4.6) 
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where 𝜆 , ⋯ , 𝜆  minimize the global sum of squared residuals, 𝑆 𝑇𝜆 , ⋯ , 𝑇𝜆 , 

under the restriction that 𝜆 , ⋯ , 𝜆 ∈  Θ , where Θ = {(𝜆 , ⋯ , 𝜆 ); |𝜆 − 𝜆 | ≥𝜋, 𝜆 ≥ 𝜋, 𝜆 ≤ 1 − 𝜋}  for some arbitrary small positive number 𝜋  (the trimming 

parameter). 

Test 2: We examine the test for null of no structural breaks against 1 ≤ 𝑚 ≤ 𝑀 

breaks where 𝑀 is an upper bound on the number of possible breaks.  Given no 

specification of the number of breaks, Bai and Perron (1998) introduce a new class of 

tests of no structural break against an unknown number of breaks, given some upper 

bound M.  We call these the double maximum tests which define for some fixed weight (𝑎 , ⋯ 𝑎 ): 𝐷𝑚𝑎𝑥𝐹 (𝑀, 𝑞, 𝑎 , ⋯ 𝑎 ) = max 𝑎 𝑠𝑢𝑝𝐹 𝜆 , ⋯ , 𝜆 ; 𝑞                                (4.7) 

where 𝑞 is degrees of freedom. 

The first version of the double maximum tests suggested by Bai and Perron 

(1998) sets all weights equal to unity, employing the statistic 𝑈𝐷𝑚𝑎𝑥𝐹 (𝑀, 𝑞) = max 𝑠𝑢𝑝𝐹 𝜆 , ⋯ , 𝜆 ; 𝑞                                                   (4.8) 

where 𝜆 = , 𝑗 = 1, ⋯ , 𝑚  are the estimates of the break points obtained using the 

global minimization of the sum of squared residuals.  However, a problem associated 

with the 𝑈𝐷𝑚𝑎𝑥𝐹 (𝑀, 𝑞) test concerns a fixed 𝑚.  Since 𝐹 𝜆 , ⋯ , 𝜆 ; 𝑞  is the sum of 𝑚  dependent Chi-square random variables with 𝑞  degrees of freedom and each is 

divided by 𝑚, the critical values of the individual tests decrease as 𝑚 increases.  Thus, 

the marginal p-values decrease with m, which may lead to a test with low power if there 
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is a large number of breaks (Bai and Perron 1998).  As an alternative, Bai and Perron 

(1998) suggested the 𝑊𝐷𝑚𝑎𝑥𝐹 (𝑀, 𝑞) test:  𝑊𝐷𝑚𝑎𝑥𝐹 (𝑀, 𝑞) = max ( , , )( , , )× 𝑠𝑢𝑝𝐹 𝜆 , ⋯ , 𝜆 ; 𝑞                                   (4.9) 

where 
( , , )( , , ) is the weight for 𝑚 = 1 𝑎𝑠 ( , , )( , , ) = 1 = 𝑎  and for 𝑚 > 1 𝑎𝑠 ( , , )( , , ) =𝑎 .  This test assumes weights such that the marginal p-values are equal across values of 

m15. 

Test 3: Bai and Perron (1998) proposed a sequential test of 𝑚  versus 𝑚 + 1 

breaks, which we call the 𝑆𝑢𝑝 𝐹 (𝑚 + 1|𝑚) test.  This test is based on the difference 

between the sums of squared residuals obtained with 𝑚 breaks and with 𝑚 + 1 breaks.  

For each segment containing the observations  𝑇 + 1 to  𝑇 , where 𝑖 = 1, ⋯ , 𝑚 + 1, 

we test the null hypothesis of no structural break versus the alternative of a single 

change.  If the overall minimal value of the sum of squared residuals (over all segments 

where an additional break is included) is sufficiently smaller than the sum of squared 

residuals obtained from the 𝑚 break model, we reject the model with 𝑚 breaks.  The 

break date selection is the one with the overall minimum. 

 

  

                                                 
15 The asymptotic distributions of these statistics are derived by Bai and Perron (1998); the critical values 
appear in Bai and Perron (2003). 
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4.3.    Data Description 

We use daily prices series for US crude oil, gasoline, corn, and the S&P 500 

from January 2, 2001 through December 30, 2011 for a total of 2870 observations, 

excluding all public holidays for all markets.  The data series derive from Thomson 

DataStream.  The crude oil price is West Texas Intermediate (WTI) crude oil FOB spot 

prices, gasoline price is New York Harbor conventional gasoline regular FOB spot 

prices, corn price is No.2 yellow corn FOB Gulf prices, and the S&P 500 index price is 

based upon the daily closing prices of the S&P 500.  We use the first difference of log 

transformed price series as a measure of returns and denote the price returns as RWTI, 

RGASOLINE, RCORN, and RS&P500.  Table 4.1 and figure 4.1 report the summary statistics 

and time series plots of the daily returns. 

  We start by analyzing the dynamic behavior of each univariate series, which 

serves to facilitate the multivariate modeling and the understanding of multivariate 

dynamics.  Table 4.1 reports the summary statistics. We note that the S&P 500 return 

only shows negative mean returns, whereas the other market price returns show positive 

mean returns.  Based on the magnitude of the unconditional standard deviations, the 

gasoline market is slightly volatile and shows positive skewness and moderate kurtosis, 

whereas the other markets are not volatile and show negative skewness.  The S&P 500 

return shows the highest magnitude in kurtosis, whereas the corn market shows the 

smallest.  

 



 

134 

Table 4.1  
Summary statistics for each series of price returns 

 WTI Crude Oil Gasoline Corn S&P 500 

Mean 0.00020 0.00020 0.00017 -0.00001 

Standard 
Deviation 

0.01096 0.01248 0.00884 0.00591 

Variance 0.00012 0.00016 0.00008 0.00003 

Kurtosis 4.56852 4.52089 2.71403 7.97309 

Skewness -0.18764 0.07839 -0.10490 -0.16864 

Minimum -0.07423 -0.07769 -0.05260 -0.04113 

Maximum 0.07128 0.10219 0.04729 0.04759 

JB (p-value) 
10.8378 
(0.004) 

9.74038 
(0.008) 

0.52416 
(0.769) 

103.523 
(0.000) 

Number of 
Observation 

2870 2870 2870 2870 
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Figure 4.1.   Plots of the daily return for each series 
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  We test for the presence of a unit root for the log transformed prices and price 

returns of each market.  A series with a unit root is non-stationary with an infinite 

unconditional variance, making it impossible to generalize it to other time periods. Table 

4.2, which reports the Dickey-Fuller test and augmented Dickey-Fuller test statistics, 

shows that the log level prices of all variables fail to reject the null hypothesis of a unit 

root at the 10% significance level.  However, all price returns, i.e., first differencing of 

the logarithm of the price series, result in rejecting the null hypothesis at the 1% 

significance level, indicating stationary. 

Table 4.2  
Tests for non-stationary of energy price returns 

Price return Series 

DF Test ADF Test (k)a 

Log Level First Difference Log Level First Difference

WTI Crude Oil -1.43 -55.04* -1.38 -38.90*

Gasoline -1.63 -52.46* -1.66 -38.05*

Corn -0.76 -53.63* -0.77 -37.63*

S&P 500 -2.38 -59.12* -2.13 -41.83* 
Note: * indicates 1% significance level; the critical value is -3.51 at the 1% significance level;  
a indicates the number of lag determined by the optimal lag order selection criteria.  
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4.4.    Empirical Results 

  This section reports the empirical results of the tests for multiple structural 

breaks and VAR models fitted to the data.  Based on the results of the break test, we 

divide the entire sample period into several sub-periods, and impose the dynamic 

relationships among four prices in econometric models.  We also report the estimated 

results of the contemporaneous causal relationships for each sub-period using the PC 

algorithm.  Finally, we implement innovation accounting analysis based on structural 

innovations. 

 

4.4.1.    Test Results for Structural Breaks 

Table 4.3 summarizes the Bai and Perron test results for the four price returns.  

For the WTI crude oil and gasoline cases, the 𝑆𝑢𝑝 𝐹 (1)  test results indicate 

insignificant at all three levels of significance.  However, when we test the 𝑆𝑢𝑝 𝐹 (𝑚) 

up to 5 breaks, the test rejects the null hypothesis of no structural breaks and accepts the 

existence of 2, 3, and 4 potential structural breaks in the WTI crude oil mean price 

returns at the 1%, 5%, and 10% significance levels, respectively.  For the gasoline case, 

all test results show the existence of 2, 3, 4, and 5 breaks at the 5% significance level.  

However, the validation of only two breaks from the 𝑆𝑢𝑝 𝐹 (𝑚 + 1|𝑚) test, sequential 

procedure, and BIC results indicates that the 𝑆𝑢𝑝 𝐹 (2|1) test statistics are significant at 

1%; similarly, the sequential procedure and BIC suggest the existence of two breaks in 

both cases.  In contrast, when referring to the LWZ16, this test unfailingly selects no 

                                                 
16 LWZ is a modified criterion of Schwarz which is proposed by Lui, Wu and Zidek (1997). 
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structural break for both cases.  In a sense, this is inevitable since the 𝑆𝑢𝑝 𝐹 (1) tests are 

statistically insignificant.  Thus, the LWZ shows results similar to the 𝑆𝑢𝑝 𝐹 (1) test.  In 

short, the existence of two breaks are strongly supported by the significant results of the 𝑆𝑢𝑝 𝐹 (2), 𝑆𝑢𝑝 𝐹 (2|1), 𝑈𝐷𝑚𝑎𝑥 and 𝑊𝐷𝑚𝑎𝑥 tests as well as the sequential procedure 

and BIC.  Thus, we find two significant structural breaks in the WTI crude oil and 

gasoline mean between January 1, 2001 and December 30, 2011, i.e., August 25, 2008 

and December 15, 2008 for WTI crude oil, and September 5, 2005 and November 12, 

2008 for gasoline.  

In the corn and S&P 500 cases, all results of the 𝑆𝑢𝑝 𝐹 (𝑚) , 𝑈𝐷𝑚𝑎𝑥  and 𝑊𝐷𝑚𝑎𝑥  tests indicate insignificance at all significance levels.  However, the 𝑆𝑢𝑝 𝐹 (2|1) test only rejects the null hypothesis of no structural breaks at the 10% 

significance level for both cases.  The sequential procedure, LWZ, and BIC reach a 

similar conclusion.  The LWZ and BIC report no breaks, whereas the sequential 

procedures suggest two structural breaks for both cases.  Similar to the WTI and gasoline 

cases, the non-existence of structural breaks is due to the results of the 𝑆𝑢𝑝 𝐹 (1) tests.  

Thus, we find two significant structural break points in the corn and S&P 500 mean 

returns between January 1, 2001 and December 30, 2011, i.e., October 20, 2005 and 

September 18, 2008 for corn, and September 23, 2008 and December 16, 2008 for the 

S&P 500.  
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Table 4.3   
Test results for structural breaks 

 WTI Gasoline Corn S&P 500 𝑆𝑢𝑝 𝐹 (1) 2.92 3.35 3.01 3.35 𝑆𝑢𝑝 𝐹 (2) 11.11*** 10.09** 5.77 6.08 𝑆𝑢𝑝 𝐹 (3) 8.48** 8.21** 5.36 5.89 𝑆𝑢𝑝 𝐹 (4) 6.98* 8.29** 4.91 5.34 𝑆𝑢𝑝 𝐹 (5) 6.04 7.47** 4.56 5.16 𝑆𝑢𝑝 𝐹 (2|1) 19.21*** 16.73*** 8.49* 8.77* 𝑆𝑢𝑝 𝐹 (3|2) 3.13 4.35 4.47 5.43 𝑆𝑢𝑝 𝐹 (4|3) 2.41 8.21 3.50 3.58 𝑆𝑢𝑝 𝐹 (5|4) 2.24 4.01 3.05 4.32 𝑈𝐷𝑚𝑎𝑥 11.11** 10.09* 5.77 5.52 𝑊𝐷𝑚𝑎𝑥 11.32** 10.28* 5.88 5.63 

Number of Breaks Selected 

Sequential 2 2 2 2 

LWZ 0 0 0 0 

BIC 2 2 0 0 

Break Points  𝑇  08/25/2008 09/05/2005 10/20/2005 09/23/2008  𝑇  12/15/2008 11/12/2008 09/18/2008 12/16/2008 

Note: *, **, and *** indicate 10%, 5%, and 1% significance levels, respectively. 

 

 



 

140 

We note that the majority of the break points occur between September and 

October 2005, and between September and November 2008.  The first break point 

coincides with Hurricane Katrina and the ethanol boom.  Since Katrina caused heavy 

damage to US refinery and domestic oil production capacity in the Gulf of Mexico, the 

effect on gasoline prices was significant, whereas the effect on crude oil prices was 

moderate.  The ethanol boom was caused by oil price increases, passage of the US 

energy legislation, and CBOT’s introduction of an ethanol futures market.  The effect 

mainly influenced the US corn market.  The second break point (between September and 

November 2008) coincides with the collapse of Lehman Brothers, i.e., the S&P 500 

index fell 4.71%, the Dow Jones industrial average fell 4.42%, and the NASDAQ index 

fell 3.60%.  After this, hedge funds gradually withdrew positions from the oil futures 

markets and the price of oil price sharply decreased.  Based on this analysis, we divide 

the full sample period into 01/01/2001 ~ 09/05/2005 for sub-period 1, 09/06/2005 ~ 

12/16/2008 for sub-period 2, and 12/17/2008 ~ 12/30/2011 for sub-period 3.       

 

4.4.2.    Vector Autoregression Results 

  This section describes our preliminary data analysis conducted by applying a 

VAR (p) process to the daily price returns of each series split over the three sub-periods.  

We apply the MLE procedure of Johansen (1991) to construct a VAR (p) process and 

determine the optimal lag length based on loss information criteria, i.e., Akaike, Schwarz, 

and Hannan and Quinn losses.  Table 4.4 reports the results.  The criteria show 

somewhat ambiguous results: AIC, HQIC and SIC indicate 𝑝 = 1 as an optimal lag 



 

141 

Table 4.4  
VAR optimal lag-length determination 

Period Lag Order 
Akaike Information 

Criterion  
(AIC) 

Hannan and Quinn 
Information 

Criterion (HQIC) 

Schwarz Information 
Criterion  

(SIC) 

Entire 
period 

0 -26.8039 -26.8009 -26.7836 

1 -26.8252* -26.8102* -26.7956* 

2 -26.8219 -26.7949 -26.7470 

Sub-
period 1 

0 -27.4609 -27.4294 -27. 3771 

1 -27.4691* -27.4628* -27.4524* 

2 -27.4474 -27.3906 -27.2964 

Sub-
period 2 

0 -26.4530 -26.4444 -26.4307 

1 -26.5663 -26.5235* -26.4546* 

2 -26.5813* -26.5043 -26.3803 

Sub-
period 3 

0 -27.2344 -27.2038 -27.1382 

1 -27.2443 -27.2263* -27. 2132* 

2 -27.2492* -27.1763 -27.0582 

Note: * indicates the most appropriate lag order for the considered model; the information 
criteria used to identify the optimal lag length (p) of a VAR process are 𝐴𝐼𝐶 = ln 𝑑𝑒𝑡Ω +𝑝 , 𝑆𝐼𝐶 = ln 𝑑𝑒𝑡Ω + 𝑝 , and 𝐻𝑄𝐼𝐶 = ln 𝑑𝑒𝑡Ω + 𝑝 ( )

, where Ω  is the 

maximum likelihood estimate of variance-covariance matrix of Ω, p is the proposed lag length, n 
is the number of variables, and T is the sample size. 
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order for the entire period and sub-period 1, HQIC and SIC indicate 𝑝 = 1, and AIC 

indicates 𝑝 = 2 for sub-periods 2 and 3.  Following SIC, we select 𝑝 = 1 as an optimal 

lag order for the sub-periods. 

  Thus, we choose the most parsimonious specification of a VAR (1) model and 

proceed to fit the three VAR models to the four-variate daily price returns of the time 

series.  Tables 4.5 through 4.7 report the estimated parameters and robust standard errors 

for each sub-period.  We note some dramatic changes.  For example, in sub-period 1, 

two coefficients in the gasoline equation are only statistically significant, whereas the 

others in the remaining equations are not statistically significant like the random walk 

model.  However, in sub-period 2, six parameters of the WTI crude oil, corn, and S&P 

500 equations are statistically significant, whereas the gasoline equation is similar to the 

random walk model.  Again, only two parameters in the S&P 500 equation are 

statistically significant in sub-period 3. 
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Table 4.5   
VAR (1) model estimation results for sub-period 1 

Parameters 

RWTI, (𝑖 = 1) RGASOLINE, (𝑖 = 2) RCORN, (𝑖 = 3) RS&P500, (𝑖 = 4) 

Coefficient Std. Err Coefficient Std. Err Coefficient Std. Err Coefficient Std. Err 

𝑑  0.00034 0.00030 0.00042 0.00038 -0.00003 0.00020 -0.00003 0.00014 𝛾 ,  -0.07264* 0.03753 -0.08958* 0.04686 -0.00206 0.02455 0.00151 0.01768 𝛾 ,  0.02964 0.02999 0.11265*** 0.03744 -0.01676 0.01962 0.00573 0.01413 𝛾 ,  -0.03568 0.04409 0.01652 0.05506 -0.01573 0.02884 -0.00200 0.02077 𝛾 ,  0.05538 0.06093 0.05561 0.07608 -0.01514 0.03986 -0.03864 0.02871 

Diagnostics tests RWTI RGASOLINE RCORN RS&P500 

𝑅  0.0046 0.0079 0.0016 0.0018 

RMSE 0.01062 0.01326 0.00694 0.00501 𝜒  5.6968 9.6655** 1.8988 2.2322 

Log-likelihood 16762.99    

# of observations 1220    

Note: *, **, and *** indicate 10%, 5%, and 1% significance levels, respectively. 



 

144 

Table 4.6   
VAR (1) model estimation results for sub-period 2 

Parameters 
RWTI, (𝑖 = 1) RGASOLINE, (𝑖 = 2) RCORN, (𝑖 = 3) RS&P500, (𝑖 = 4) 

Coefficient Std. Err Coefficient Std. Err Coefficient Std. Err Coefficient Std. Err 𝑑  -0.00015 0.00036 -0.00042 0.00043 0.00034 0.00034 -0.00020 0.00023 𝛾 ,  -0.15414*** 0.04695 -0.07547 0.05667 -0.12110*** 0.04521 -0.08053*** 0.02966 𝛾 ,  0.00686 0.03708 -0.03161 0.04476 0.02628 0.03571 0.00651 0.02342 𝛾 ,  0.01919 0.03813 0.09158* 0.04602 0.03270 0.03671 -0.02048 0.02408 𝛾 ,  0.32907*** 0.05510 0.02076 0.06650 0.27410*** 0.05306 -0.11266*** 0.03481 

Diagnostics tests RWTI RGASOLINE RCORN RS&P500 

𝑅  0.051 0.0083 0.0361 0.0380 

RMSE 0.01441 0.012602 0.010054 0.006595 𝜒  55.0236*** 7.17085 31.9727*** 33.6652*** 

Log-likelihood 11349.71    

# of observations 854    

Note: *, **, and *** indicate 10%, 5%, and 1% significance levels, respectively. 
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Table 4.7   
VAR (1) model estimation results for sub-period 3 

Parameters 
RWTI, (𝑖 = 1) RGASOLINE, (𝑖 = 2) RCORN, (𝑖 = 3) RS&P500, (𝑖 = 4) 

Coefficient Std. Err Coefficient Std. Err Coefficient Std. Err Coefficient Std. Err 𝑑  0.00042 0.00042 0.00054 0.00038 0.00037 0.00035 0.00021 0.00022 𝛾 ,  0.07240 0.04723 -0.03042 0.04259 -0.01942 0.03962 0.01466 0.02513 𝛾 ,  -0.03692 0.05178 0.07491 0.04669 -0.02858 0.04344 -0.01597 0.02755 𝛾 ,  0.01204 0.04461 -0.06464 0.04022 -0.00362 0.03742 0.05199** 0.02374 𝛾 ,  0.01862 0.07609 -0.05386 0.06861 0.02724 0.06383 -0.12244*** 0.04049 

Diagnostics tests RWTI RGASOLINE RCORN RS&P500 

𝑅  0.0039 0.0065 0.0020 0.0159 

RMSE 0.01114 0.01010 0.00963 0.00594 𝜒  3.5551 5.9471 1.8055 14.7075*** 

Log-likelihood 12396.26    

# of observations 911    

Note: *, **, and *** indicate 10%, 5%, and 1% significance levels, respectively. 
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4.4.3.    Directed Acyclic Graphs 

  The VAR approach does not explicitly provide the information on the causal 

structures of the four price return series in contemporaneous time.  Thus, we present 

results from the DAGs which provide causal information about the contemporaneous 

interrelationships among the four markets.  From the residuals of the VAR models for 

each sub-period, we obtain the three identical causal relationship graphs from TETRAD 

IV’s PC algorithms at the 10% significance level17 (figure 4.2). 

 

 

Figure 4.2.  Contemporaneous causal relationships among four daily price returns for 

each sub-period. 

 

  Figure 4.2 panel (a) shows the causal linkages among the daily price returns of 

WTI crude oil, gasoline, and corn.  More specifically, gasoline and corn price returns 

                                                 
17 Contemporaneous casual patterns are the same at the 5% significance level from TETRAD IV’s PC 
algorithm. 
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directly affect the WTI crude oil price return in contemporaneous time, i.e., the WTI 

crude oil price returns do not lead any other market, but respond to information signals 

from gasoline and corn in contemporaneous time.  Meanwhile, the S&P 500 return is 

independent of the other price returns.   

  Figure 4.2 panel (b) shows that the contemporaneous causal structures for sub-

period 2 have patterns similar to the information flow for sub-period 1, i.e., there is 

significant information flow among the price returns of WTI crude oil, gasoline, and 

corn in contemporaneous time, whereas the causal link to the S&P 500 return is 

insignificant.  However, the PC algorithm fails to validate the directions of two edges, 

WTI-gasoline and WTI-corn.   

  Figure 4.2 panel (c) shows the results of the DAG patterns for sub-period 3.  WTI 

crude oil, gasoline, and corn price returns directly affect the S&P return, whereas the two 

undirected edges (WTI-gasoline and WTI-corn) still remain.  The remarkable finding 

that more contemporaneous causal relationships appear to be present in sub-periods 1 

and 2 implies that information flow is quicker or more efficient within the four price 

returns in recent times than in the past.  Further, before the structural break, the S&P 500 

return is causally isolated from information which comes from the price returns of WTI 

crude oil, gasoline, and corn.  Thus, those three price returns have no influence on the 

S&P 500 return in contemporaneous time.  After the structural break, it appears that the 

revolution of causal relationships occurred in the S&P 500 return where information 

from WTI crude oil, gasoline, and corn comes together to determine the S&P 500 return, 

the most endogenous variable.    
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  We note that the PC algorithm does not explain how to assign directed edges in 

the two undetermined relationships, WTI-gasoline and WTI-corn for sub-periods 2 and 3.  

In general, the correlation and conditional correlation patterns associated with these 

three price returns are not enough to assign causal structures for the undetermined edges.  

We need additional information from existing economic theory, and/or include other 

markets in the modeling which may give the possibility of more correlation and 

conditional correlations patterns; without it, we must carefully look at any movements 

towards a DAG (Bessler et al. 2003).  Thus, we consider three possible cases of directed 

causal relationships for the two undirected edges.  Figures 4.3 and 4.4 provide the three 

equivalent DAGs for sub-periods 2 and 3, respectively.  Using the six possible 

equivalent DAG patterns, we present the results of the innovation accounting analysis in 

the next sections. 
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Figure 4.3.  The possible equivalent DAGs for sub-period 2 

 

 

 

Figure 4.4.  The possible equivalent DAGs for sub-period 3 

 

WTI

Gasoline Corn

S&P 500

WTI

Gasoline Corn

S&P 500

WTI

Gasoline Corn

S&P 500

(a) (b) (c)

WTI

Gasoline Corn

S&P 500

WTI

Gasoline Corn

S&P 500

WTI

Gasoline Corn

S&P 500

(d) (e) (f)



 

150 

  In addition, we compare and proceed to test the equality of variance-covariance 

matrices between the residuals from the VAR models for each sub-period.  Figure 4.5 

gives the details.  

 

𝛴  =
𝑅 𝑅 𝑅 𝑅 &

⎣⎢⎢
⎢⎡ 1.12𝐸 − 049.04𝐸 − 05 1.75𝐸 − 045.81𝐸 − 06 2.18𝐸 − 06 4.81𝐸 − 05−9.69𝐸 − 07 −4.61𝐸 − 07 1.71𝐸 − 06 2.50𝐸 − 05⎦⎥⎥

⎥⎤𝑅𝑅𝑅𝑅 &
 

 

𝛴  =
𝑅 𝑅 𝑅 𝑅 &

⎣⎢⎢
⎢⎡1.08𝐸 − 048.88𝐸 − 05 1.58𝐸 − 043.65𝐸 − 05 3.13𝐸 − 05 1.00𝐸 − 041.71𝐸 − 05 1.93𝐸 − 05 1.01𝐸 − 05 4.32𝐸 − 05⎦⎥⎥

⎥⎤𝑅𝑅𝑅𝑅 &
 

 

𝛴  =
𝑅 𝑅 𝑅 𝑅 &

⎣⎢⎢
⎢⎡1.36𝐸 − 047.75𝐸 − 05 1.11𝐸 − 043.22𝐸 − 05 2.41𝐸 − 05 9.59𝐸 − 053.17𝐸 − 05 2.88𝐸 − 05 1.42𝐸 − 05 3.86𝐸 − 05⎦⎥⎥

⎥⎤𝑅𝑅𝑅𝑅 &
 

Figure 4.5.  The variance-covariance matrices of the residuals from the VAR models for 

each sub-period 
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  Next, we test the equality of the three variance-covariance matrices by using the 

multivariate Box M statistics (Box 1949).  The two null hypotheses are: 𝐻 : Σ  =  Σ      and 𝐻 : Σ  =  Σ                                                                                (4.10) 

  Table 4.8 summarizes the statistics of the Box M tests for sub-periods 1 and 2 

and sub-periods 2 and 3, respectively. 

Table 4.8 
Summary of test statistics of the Box M tests  

 Box M test statistics 
Critical Value 

at 1% significance level 
p-value 

Between sub-
periods 1 and 2 

276.0661 23.21 0.000 

Between sub-
periods 2 and 3 

122.6791 23.21 0.000 

Note: We adopt the Box M test when the sample size is small, following Mardia and Kent (1979).  The 
Box M test statistic is generated by 𝑀 = 𝛾 ∑ (𝑛 − 1)𝑙𝑜𝑔 𝑆 𝑆 , where 𝛾 = 1 − ( )( ) ∑ − , 𝑆 = 𝑆 , 𝑆 = 𝑆 , 𝑆 = ∑  is the pooled covariance 

matrix, 𝑔 is the number of groups with non-singular covariance matrices, 𝑛 = 𝑛 + 𝑛 + ⋯ + 𝑛  is the 
number of the total sample size, 𝑛  is number of the sample size for deriving sample covariance matrix 𝑆 , 𝑘 is the dimension of the covariance matrix, and 𝑖 = 1, 2, ⋯ , 𝑔.  The Box M test statistic is asymptotically 
distributed as a Chi-square distribution with the degree of freedom, 𝑘(𝑘 + 1)/2.   
 

 The results indicate that the test statistic values are 276.0661 and 122.6791 for sub-

periods 1 and 2 and sub-periods 2 and 3, respectively.  These results suggest that we can 

reject the null hypothesis at the 1% significance level (p-values are 0.000 for both cases), 

since the critical value is 23.21.  Thus, we say that the two covariance matrices from 

sub-periods 1 and 2 and sub-periods 2 and 3 significantly differ, i.e., the covariance 
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matrices of the residuals between sub-periods 1 and 2 and between sub-periods 2 and 3 

are not homogeneous. 

 

4.4.4.    Impulse Response Functions 

  From the analysis of the impulse responses, we can evaluate the dynamic 

mechanism by which innovations in one market are transmitted to the other markets over 

time.  Here, we verify information on the direction and significance of dynamic 

responses for 6 days ahead-horizon following an initial shock of each price return. 

Figures 4.6 through 4.8 show the impulse responses (the effect of a shock in one price 

return transfer to other price returns) based on the DAGs. 18   The black solid line 

indicates the estimated response in sub-period 1, equivalent DAG type (a) in sub-period 

2, and equivalent DAG type (d) in sub-period 3.  The red dashed line represents the 

estimated response in equivalent DAG types (b) and (e) in sub-periods 2 and 3, 

respectively.  The blue dotted line plotted in graphs for sub-periods 2 and 3 represents 

the estimated response in equivalent DAG types (c) and (f), respectively. 

 

 

                                                 
18 The contemporaneous causal structures for each sub-period described in Figures 4.2 through 4.4 are 
used in a Bernanke factorization for orthogonalization to generate impulse responses and forecast error 
variance decompositions to describe the dynamic structures. 
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Figure 4.6.    Impulse responses for sub-period 1 (2001/01/01 ~ 2005/09/05) 
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Figure 4.7.    Impulse responses for sub-period 2 (2005/09/06 ~ 2008/12/16) 
Note: Black solid line, red dashed line, and blue dotted line represent equivalent DAGs (a), (b), and (c), respectively. 
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Figure 4.8.    Impulse responses for sub-period 3 (2008/12/17 ~ 2011/12/30) 
Note: Black solid line, red dashed line, and blue dotted line represented equivalent DAGs (d), (e), and (f), respectively. 
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  As stated, we consider three equivalent DAG types for sub-periods 2 and 3.  

Thus, it matters how we model difference the contemporaneous causal structures among 

the price returns of WTI crude oil, gasoline, and corn.  The results show that the 

contemporaneous and dynamic responses in all returns from one shock differ 

significantly between the sub-periods; hence, there are different responses in all returns 

from one shock in contemporaneous time among the three equivalent DAG types.  

However, dynamic responses in the returns of the three equivalent DAG types from one 

shock are mostly consistent for each sub-period.  The specific descriptions for the IRFs 

are as follows. 

  A shock to the WTI crude oil price return does not affect the other price returns 

in sub-period 1 in contemporaneous time, whereas it positively affects the gasoline price 

returns in equivalent DAG type (b) and (c) in sub-period 2 and (e) and (f) in sub-period 3 

in contemporaneous time.   Similarly,  a shock to the WTI crude oil price return 

positively affects the corn price returns in equivalent DAG type (a), (c), (d), and (f) and 

the S&P 500 returns in equivalent DAG type (d), (e), and (f) in contemporaneous time.  

Dynamically, a WTI crude oil price return shock moves the gasoline, corn, and S&P 500 

returns in sub-period 1 up and down for several days before returning to normal; 

however this shock has no statistically significant effect.  In contrast, dynamic responses 

in returns on gasoline, corn, and the S&P 500 from the WTI crude oil shock are 

consistent in sub-periods 2 and 3, i.e., they show negative instantaneous responses and 

recovery dynamics. 
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  A shock to the gasoline price return positively affects the WTI crude oil price 

returns in sub-period 1 in contemporaneous time, whereas it positively affects the WTI 

crude oil price returns in equivalent DAG type (a) in sub-period 2 and (d) in sub-period 

3.  Similarly, a shock to the gasoline price return positively affects the corn price returns 

in equivalent DAG type (a) and (d), and the S&P 500 returns in equivalent DAG type (d), 

(e), and (f) in contemporaneous time.  Dynamically, a gasoline price return shock moves 

the WTI crude oil and corn price returns in sub-period 1 down for several days before 

returning to normal, whereas it move the S&P 500 returns up.  In contrast, dynamic 

responses in returns on WTI crude oil, corn, and the S&P 500 from the gasoline shock 

for equivalent DAG type (a) in sub-period 2 show negative instantaneous responses and 

recovery dynamics, whereas their dynamic responses from the gasoline shock for 

equivalent DAG type (b) and (c) in sub-period 2 show positive instantaneous responses 

and recovery dynamics.  Similarly, dynamic responses in returns on WTI crude oil, corn, 

and the S&P 500 from the gasoline shock for all equivalent DAG types of sub-period 3, 

with the exception of the WTI crude oil in equivalent DAG type (d), drop initially and 

then return to normal. 

  A shock to the corn price return only affects the WTI crude oil price return in 

contemporaneous time for sub-period 1; however, it positively affects the WTI crude oil 

and gasoline price returns in equivalent DAG type (b) and (e) in sub-periods 2 and 3 and 

the S&P 500 returns in (d), (e), and (f) in sub-period 3 in contemporaneous time.   On 

the other hand, the dynamic responses in return on the WTI crude oil, gasoline, corn, and 

the S&P 500 from the corn price return shock for each sub-period show dramatic 
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variations.  The WTI crude oil returns in sub-period 1 drop initially, then return to 

normal, whereas the WTI crude oil returns in all equivalent DAG types of sub-periods 2 

and 3, with the exception of the equivalent DAG type (c) of sub-period 2, slightly 

increase.  Gasoline price returns in sub-periods 1 and 2 are influenced positively for 

several days before returning to normal, whereas a corn price return shock negatively 

impacts gasoline price returns in all equivalent DAG types of sub-period 3.  In contrast, 

the S&P 500 return in sub-periods 1 and 2 drops initially, whereas the dynamic 

responses in return on the S&P 500 for all equivalent DAG types in sub-period 3 are 

influenced positively. 

  As our previous DAG patterns in figures 4.2 through 4.4 show, a shock to the 

S&P 500 return does not affect the other price returns in contemporaneous time.  

Dynamically, there are no significant differences among the equivalent DAG types in 

sub-periods 2 and 3.  Specifically, a shock to the S&P 500 return positively affects the 

WTI crude oil price return in sub-periods 1, 2, and 3.  However, this shock positively 

influences gasoline price returns in sub-periods 1 and 2, but negatively impacts the 

prices in sub-period 3.  The shock also negatively affects corn price returns in sub-period 

1, but positively impacts the prices in sub-periods 2 and 3. 

 

4.4.5.    Forecast Error Variance Decompositions 

  Tables 4.9 through 4.11 contain the forecast error variance decompositions at 

horizons 0, 1, 2, and 12 days ahead under the contemporaneous causal ordering of the 

residuals of the VAR models for each sub-period as inferred by the DAG in figures 4.2 
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through 4.4.  As before, (a), (b), (c), (d), (e), and (f) represent the equivalent DAGs types 

for sub-periods 2 and 3.   

Table 4.9.   
Forecast error variance decomposition for sub-period 1  

Variance Decomposition of WTI 

Period Std. Errors WTI Gasoline Corn S&P 500 

0 0.01838 37.122 62.752 0.126 0.000 

1 0.01842 37.178 62.648 0.151 0.023 

2 0.01842 37.178 62.648 0.151 0.023 

12 0.01842 37.178 62.648 0.151 0.023 

Variance Decomposition of Gasoline 

Period Std. Errors WTI Gasoline Corn S&P 500 

0 0.01324 0.000 100.000 0.000 0.000 

1 0.01328 0.571 99.384 0.002 0.044 

2 0.01328 0.572 99.382 0.002 0.044 

12 0.01328 0.572 99.382 0.002 0.044 

Variance Decomposition of Corn 

Period Std. Errors WTI Gasoline Corn S&P 500 

0 0.00694 0.000 0.000 100.000 0.000 

1 0.00694 0.001 0.132 99.855 0.012 

2 0.00694 0.002 0.132 99.855 0.012 

12 0.00694 0.002 0.132 99.855 0.012 

Variance Decomposition of S&P 500 

Period Std. Errors WTI Gasoline Corn S&P 500 

0 0.00500 0.000 0.000 0.000 100.000 

1 0.00500 0.001 0.038 0.001 99.960 

2 0.00500 0.001 0.038 0.001 99.960 

12 0.00500 0.001 0.038 0.001 99.960 
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Table 4.10.   
Forecast error variance decomposition for sub-period 2  

Variance Decomposition of WTI 

Equivalent 
DAGs type 

Period Std. Errors WTI Gasoline Corn S&P 500 

(a) 

0 0.01718 35.285 64.715 0.000 0.000 

1 0.01749 34.781 63.678 0.011 1.530 

2 0.01750 34.748 63.615 0.013 1.624 

12 0.01750 34.748 63.614 0.013 1.625 

(b) 

0 0.01041 87.742 0.000 12.258 0.000 

1 0.01074 84.305 0.003 11.629 4.062 

2 0.01075 84.084 0.004 11.607 4.305 

12 0.01075 84.082 0.004 11.608 4.306 

(c) 

0 0.01041 100.000 0.000 0.000 0.000 

1 0.01074 95.907 0.003 0.028 4.062 

2 0.01075 95.658 0.004 0.034 4.305 

12 0.01075 95.657 0.004 0.034 4.306 

Variance Decomposition of Gasoline 

Equivalent 
DAGs type 

Period Std. Errors WTI Gasoline Corn S&P 500 

(a) 

0 0.01257 0.000 100.000 0.000 0.000 

1 0.01264 0.130 99.396 0.463 0.012 

2 0.01264 0.130 99.396 0.463 0.012 

12 0.01264 0.130 99.396 0.463 0.012 

(b) 

0 0.01257 40.391 53.966 5.643 0.000 

1 0.01262 40.654 53.552 5.783 0.012 

2 0.01262 40.654 53.551 5.783 0.012 

12 0.01262 40.654 53.551 5.783 0.012 

(c) 

0 0.01257 46.034 53.966 0.000 0.000 

1 0.01262 45.972 53.552 0.464 0.012 

2 0.01262 45.972 53.551 0.464 0.012 

12 0.01262 45.972 53.551 0.464 0.012 
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Table 4.10.   
Continued 

Variance Decomposition of Corn 

Equivalent 
DAGs type 

Period Std. Errors WTI Gasoline Corn S&P 500 

(a) 

0 0.01103 9.726 17.838 72.436 0.000 

1 0.01130 10.255 18.108 69.094 2.543 

2 0.01131 10.249 18.095 68.982 2.666 

12 0.01132 10.253 18.099 68.982 2.666 

(b) 

0 0.01000 0.000 0.000 100.000 0.000 

1 0.01023 0.900 0.056 95.942 3.102 

2 0.01024 0.905 0.056 95.787 3.251 

12 0.01024 0.909 0.056 95.783 3.251 

(c) 

0 0.01000 12.258 0.000 87.742 0.000 

1 0.01023 12.572 0.056 84.270 3.102 

2 0.01024 12.561 0.056 84.131 3.251 

12 0.01024 12.565 0.056 84.127 3.251 

Variance Decomposition of S&P 500 

Equivalent 
DAGs type 

Period Std. Errors WTI Gasoline Corn S&P 500 

(a) 

0 0.00658 0.000 0.000 0.000 100.000 

1 0.00677 1.735 2.766 0.081 95.418 

2 0.00679 1.856 2.954 0.080 95.109 

12 0.00679 1.857 2.955 0.080 95.108 

(b) 

0 0.00658 0.000 0.000 0.000 100.000 

1 0.00668 1.207 0.008 0.516 98.269 

2 0.00668 1.306 0.009 0.532 98.153 

12 0.00668 1.307 0.009 0.532 98.153 

(c) 

0 0.00658 0.000 0.000 0.000 100.000 

1 0.00668 1.639 0.008 0.083 98.269 

2 0.00668 1.755 0.009 0.083 98.153 

12 0.00668 1.755 0.009 0.083 98.153 
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Table 4.11.   
Forecast error variance decomposition for sub-period 3  

Variance Decomposition of WTI 

Equivalent 
DAGs type 

Period Std. Errors WTI Gasoline Corn S&P 500 

(d) 

0 0.01167 60.252 39.748 0.000 0.000 

1 0.01170 60.365 39.616 0.011 0.007 

2 0.01170 60.365 39.615 0.013 0.007 

12 0.01170 60.365 39.615 0.013 0.007 

(e) 

0 0.01167 92.083 0.000 7.917 0.000 

1 0.01169 92.961 0.089 7.942 0.007 

2 0.01169 92.958 0.092 7.943 0.007 

12 0.01169 92.958 0.092 7.943 0.007 

(f) 

0 0.01167 100.000 0.000 0.000 0.000 

1 0.01169 99.892 0.089 0.011 0.007 

2 0.01169 99.888 0.092 0.013 0.007 

12 0.01169 99.888 0.092 0.013 0.007 

Variance Decomposition of Gasoline 

Equivalent 
DAGs type 

Period Std. Errors WTI Gasoline Corn S&P 500 

(d) 

0 0.01052 0.000 100.000 0.000 0.000 

1 0.01056 0.210 99.347 0.368 0.076 

2 0.01056 0.212 99.339 0.373 0.076 

12 0.01056 0.213 99.339 0.373 0.076 

(e) 

0 0.01643 56.208 38.959 4.833 0.000 

1 0.01646 56.058 38.985 4.926 0.031 

2 0.01646 56.056 38.986 4.927 0.031 

12 0.01646 56.056 38.986 4.927 0.031 

(f) 

0 0.01643 61.041 38.959 0.000 0.000 

1 0.01646 60.883 38.985 0.151 0.031 

2 0.01646 60.830 38.986 0.153 0.031 

12 0.01646 60.830 38.986 0.153 0.031 
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Table 4.11.   
Continued 

Variance Decomposition of Corn 

Equivalent 
DAGs type 

Period Std. Errors WTI Gasoline Corn S&P 500 

(d) 

0 0.00979 4.770 3.147 92.084 0.000 

1 0.00980 4.783 3.288 91.906 0.022 

2 0.00980 4.783 3.288 91.906 0.023 

12 0.00980 4.783 3.288 91.906 0.023 

(e) 

0 0.00979 0.000 0.000 100.000 0.000 

1 0.00981 0.237 0.065 99.675 0.022 

2 0.00981 0.238 0.065 99.674 0.023 

12 0.00981 0.238 0.065 99.674 0.023 

(f) 

0 0.00979 7.917 0.000 92.083 0.000 

1 0.00981 8.152 0.065 91.760 0.022 

2 0.00981 8.153 0.065 91.759 0.023 

12 0.00981 8.153 0.065 91.759 0.023 

Variance Decomposition of S&P 500 

Equivalent 
DAGs type 

Period Std. Errors WTI Gasoline Corn S&P 500 

(d) 

0 0.00620 4.419 19.017 0.988 75.576 

1 0.00626 4.358 18.907 1.406 75.330 

2 0.00626 4.357 18.902 1.409 75.332 

12 0.00626 4.357 18.902 1.409 75.332 

(e) 

0 0.00675 24.821 5.639 5.817 63.723 

1 0.00682 24.791 5.815 5.904 63.490 

2 0.00682 24.787 5.814 5.905 63.494 

12 0.00682 24.787 5.814 5.905 63.494 

(f) 

0 0.00675 29.805 5.639 0.833 63.723 

1 0.00682 29.510 5.815 1.185 63.490 

2 0.00682 29.504 5.814 1.188 63.494 

12 0.00682 29.504 5.814 1.188 63.494 
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  For sub-period 1, the variances of WTI crude oil are mainly explained by the 

residuals of gasoline (62.65 to 62.75%) and own contribution (37.12 to 37.18%).  By 

contrast, own contribution (99.38 to 100% for gasoline, 99.85 to 100% for corn, and 

99.96 to 100% for the S&P 500) appear to be important for explaining the variations of 

gasoline, corn, and the S&P 500.  

  We consider three equivalent DAG types in sub-period 2.  Thus, it matters how 

we model the causal structures among the price returns of WTI crude oil, gasoline, and 

corn in contemporaneous time.  However, the influence of the S&P 500 return on the 

other three price returns is usually less than 5% under all three equivalent DAG types.  

For the variation in WTI crude oil price returns, the residual of gasoline (63.61% to 

64.72%) and own contribution (34.75% to 35.29%) appear to be important for equivalent 

DAG type (a).  The variation in WTI crude oil price returns is primarily explained by the 

residuals of corn (11.61% to 12.26%) and own contribution (84.08% to 87.74%) for 

equivalent DAG type (b).  On the other hand, the variation in WTI crude oil price returns 

is explained by own contribution (95.66% to 100%) in equivalent DAG type (c).  For the 

variation in gasoline, own contribution (99.40% to 100% for equivalent DAG type (a) 

and 53.55% to 54.0% for equivalent DAG type (b) and (c)) appear to be important in all 

three equivalent DAG types, whereas the residuals of WTI crude oil (40.39% to 46.03%) 

and corn (0.46% to 5.78%) are accounted for by the variation in gasoline price returns in 

equivalent DAG type (b) and (c).  The variation in corn price returns is mostly explained 

by its own residuals (68.98% to 72.44% for equivalent DAG type (a), 95.78% to 54.0% 

for equivalent DAG type (b), and 84.13% to 87.74% for equivalent DAG type (c)).  Also, 
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the residuals of WTI crude oil (9.73% to 10.26% for equivalent DAG type (a), 12.26% 

to 12.57% for equivalent DAG type (c)) and gasoline (17.84% to 18.11% for equivalent 

DAG type (a)) appear to be important for explaining the variation in corn price returns.  

For the uncertainty associated with the S&P 500 return, the variation is mainly explained 

by the residual of own contribution (95.11% to 100%) for the three equivalent DAG 

types.   

  Similarly, in sub-period 3, the variation in WTI crude oil price returns is 

explained by the residual of gasoline (39.62% to 39.75%) and own contribution (60.25% 

to 60.37%) for equivalent DAG type (d).  The variation in WTI crude oil price return is 

primarily explained by the residuals of corn (7.92% to 7.94%) and own contribution 

(92.08% to 92.96%) for equivalent DAG type (e), whereas its own residuals (99.89 to 

100%) appear to be important for equivalent DAG type (f).  For the variation in gasoline 

price returns, own contribution (99.34% to 100% for equivalent DAG type (d) and 38.96% 

to 38.99% for equivalent DAG type (e) and (f)) appears to be important for the three 

equivalent DAG types.  Moreover, the residuals of WTI crude oil (56.06% to 56.21%) 

and corn (0% to 4.93%) account for the variation in gasoline for DAG type (e) and (f).  

The variation in corn price returns is mostly explained by own residuals (91.91% to 

92.08% for equivalent DAG type (d), 99.67% to 100% for equivalent DAG type (e) and 

91.76% to 92.08% for equivalent DAG type (f)).  Additionally, the residuals of WTI 

crude oil (4.77% to 4.78% for equivalent DAG type (d), 7.92% to 8.15% for equivalent 

DAG type (f)), and gasoline (3.15% to 3.29% for equivalent DAG type (d)) appear to be 

important for explaining the variation in corn price returns.  For the variation in the S&P 
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500 returns, the variation is mostly explained by the residual of own contribution (63.49 

to 75.58%) for equivalent DAG type (d), (e), and (f).  However, the residuals of WTI 

crude oil (4.36% to 29.81%), gasoline (5.64% to 19.02%), and corn (0.83% to 5.91%) 

also appear to be important for the three equivalent DAG types, contrary to sub-periods 

1 and 2.   

 

4.5.    Conclusion 

  In this chapter, we built an econometric model and applied the VAR approach to 

analyze the dynamic causal relationships among the price returns of WTI crude oil, 

gasoline, corn, and the S&P 500.  To investigate the empirical contemporaneous causal 

relationships, we used the Directed Acyclic Graph (DAG) approach following Bessler 

and Lee (2002), Bessler and Yang (2003), Demiralp and Hoover (2003), Moneta (2004), 

Moneta (2008), Swanson and Granger (1997), and Kim and Bessler (2007).  We also 

implemented innovation accounting time series techniques, such as forecast error 

variance decomposition and an impulse response function, to analyze the dynamic 

information transmission among the price returns of WTI crude oil, gasoline, corn, and 

the S&P 500. 

  Most important, we tested for structural breaks by using the procedure developed 

by Bai and Perron (1998) and Bai and Perron (2003).  In our empirical application, we 

found strong evidence of structural breaks in the VAR models of the WTI crude oil, 

gasoline, corn, and the S&P 500 returns.  Additional research found that the two 

structural break points identified in August 2005 and September 2008 related to 
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Hurricane Katrina, ethanol production or the Lehman Brothers bankruptcy.  Based on 

the structural break test results, we divided the full sample period into three sub-periods, 

which enabled us to find consistent sub-sample periods having stable parameters in a 

given VAR framework. 

  Using the DAG results, we found strong contemporaneous causal relationships 

among the residuals from the VAR models of the WTI crude oil, gasoline, corn, and 

S&P 500 returns.  There were significant differences between contemporaneous causal 

structures for each sub-period.  Finding two undirected edges (WTI-gasoline and WTI-

corn) in sub-periods 2 and 3 led us to develop three equivalent DAG types for them.   

  In terms of innovation discovery there are two key findings: (1) WTI crude oil 

changed from a causal sink in sub-period 1 to a causal parent or channel in sub-periods 2 

and 3.  This suggests that the WTI crude oil price return has an exogenous role or 

channel role to transmit the causal influences from the gasoline/agricultural part into the 

agricultural/gasoline part in contemporaneous time after the first structural break; (2) 

The S&P 500 return is isolated from other returns in sub-periods 1 and 2, and changed to 

a causal sink in sub-period 3.  This suggests that the S&P 500 return has an endogenous 

role in contemporaneous time after the second structural break.  

  From the innovation accounting analysis based on our VAR models for each sub-

period, we recognize that the contemporaneous and dynamic responses in returns on the 

WTI crude oil, gasoline, corn, and S&P 500 from one shock significantly differ between 

each sub-period.  These results also show significantly different responses in each return 

from one shock in contemporaneous time on all the equivalent DAG types in sub-period 
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2 and 3.  This is consistent with our DAG results.  However, dynamic responses in 

returns on all equivalent DAG types from one shock are mostly consistent for each sub-

period. 

  We assert that identifying contemporaneous causal relationships and their 

dynamic variations provides important information for future studies of market linkage 

and/or market integration among energy, agricultural and financial markets, and indeed, 

other commodity markets.  Such information can inform future research related to 

identifying and verifying the role of markets in aspects of dynamics and causalities. 
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CHAPTER V 

CONCLUSIONS 

 

We have investigated establishing empirical time series models for price 

dynamics and causation among energy prices, macroeconomic, and financial indicators 

in this dissertation. We focused on three issues: (1) the contemporaneous 

interdependencies and information flows among crude oil, natural gas, and electricity 

prices in the US; (2) the federal fund rate and WTI crude oil price dynamics with 

macroeconomic and financial indicators and their related information transmission 

mechanisms; and (3) structural change in mean equations among US energy, agricultural, 

and financial markets considering contemporaneous causality, dynamics, and structural 

change with unknown break points. 

  In Chapter II, we estimated a causal model for the price dynamics for 

contemporaneous relationships by using the daily price returns of Dated Brent crude oil, 

Henry Hub natural gas, PJM Electricity firm on peak and COB electricity firm on peak.  

We assessed both standardized residuals from within-sample-fit and out-of-sample-

forecast for modeling information flows in contemporaneous time using the VAR-DCC-

GARCH models.  From these processes as well as comparing forecast performance and 

variance-covariance matrices, we found that the within-sample-fit and out-of-sample-

forecast statistically perform similarly, whereas the within-sample-fit model generally 

outperforms the out-of-sample-forecast and contains small elements in variance-

covariance matrix.  Using the PC algorithm in TETRAD IV, we demonstrated that both 
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methods for calculating the standardized residuals show the same graphical patterns.  

However, the price returns of PJM and COB electricity firm on peak in the DAG 

revealed an ambiguous direction of information flows from the given information.  

Therefore, we confirm the proposition that causal flows based on both residuals from 

within-sample-fit and out-of-sample-forecast exhibit consistency.  Moreover, the test 

results for homogeneity of variance-covariance matrices and forecast performance 

(accuracy) support this conclusion.  As a consequence, we can be confident in the out-

of-sample-forecast and its causal results. 

  In Chapter III, we built econometric models for the federal fund rate and the WTI 

crude oil price return using a large panel of macroeconomic time series.  We 

summarized the information with a few estimated factors using PCA, which allowed us 

to interpret and identify the underlying factors.  We augmented these factors as 

regressors in a VAR framework to assess the effects of the federal fund rate and WTI 

crude oil price shocks in the US.  Using the GES algorithm, we inductively inferred the 

contemporaneous causal relationships among innovations of both FAVAR models.  We 

found that the federal fund rate shock is exogenous in contemporaneous time as the 

identifying assumption in the VAR framework of the monetary shock transmission 

mechanism.  This finding is consistent with the identification assumption of Bernanke et 

al. (2005) and the stylized fact of Kwon (2007).  However, we found that the WTI crude 

oil price return is not exogenous in contemporaneous time.  Thus, we argue that the oil 

price shock transmission mechanisms identified in this causal information can be 

inferred from the data. Our innovation accounting results generally align with previous 
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literature (Bernanke et al. 2005; Christiano et al. 1999; Cuaresma et al. 2004; Estrella 

2005; Fair 2002; Kwon 2007; Tufte and Wohar 1999) and appear to make economic 

sense.  Notably, we identify that the price puzzle (Sims 1992) is considerably reduced 

and prices eventually drop to the federal fund rate shocks as Bernanke et al. (2005) and 

Kwon (2007) found.  Thus, we conclude that the inclusion into the model of the 

information captured by the factors succeeds in mitigating the price puzzle.  

Consequently, it is advantageous to use the larger macroeconomic information set for 

analyzing monetary policy and oil price shock transfer mechanisms; the results from our 

out-of-sample-forecasts of the federal fund rate and WTI crude oil price return 

emphasize this finding.  The forecasting performance of FAVAR models based on 

common factors clearly outperforms a model based on individual variables.  More 

importantly, the FAVAR model shows a striking superiority with respect to univariate 

AR models in out-of-sample-forecasts.   

  In Chapter IV, we built an econometric model and applied the VAR approach to 

analyze the dynamic causal relationships among the returns of WTI crude oil, gasoline, 

corn, and the S&P 500.  We tested for structural breaks using the procedure developed 

by Bai and Perron (1998) and Bai and Perron (2003).  Empirically, we found strong 

evidence of two structural breaks.  Based on the structural break test results, we divided 

the full sample period into three sub-periods in order to identify consistent sub-sample 

periods having stable parameters in a given VAR framework.  We found strong 

contemporaneous causal relationships among the residuals from the VAR models and 

significant differences between contemporaneous causal structures for each sub-period.  
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The discovery of two undirected edges (WTI-gasoline and WTI-corn) in sub-periods 2 

and 3 prompted us to provide three equivalent DAG types for the two undirected edges.  

Although it makes little difference how the contemporaneous causal structures among 

the four price returns are modeled, we made several key findings in terms of innovation 

discovery: (1) The WTI crude oil price return change from a causal sink in sub-period 1 

to a causal parent or channel in sub-periods 2 and 3 suggests that this price return has an 

exogenous role or channel role to transmit the causal influences from the 

gasoline/agricultural part into the agricultural/gasoline part in contemporaneous time 

after the first break; (2) The isolated S&P 500 return in sub-periods 1 and 2, which then 

changes to a causal sink, suggests that this price return has an endogenous role in 

contemporaneous time after the second break.  Moreover, the contemporaneous and 

dynamic responses on the WTI crude oil, gasoline, corn, and S&P 500 returns from one 

shock differ significantly between sub-periods. Our finding of significantly different 

responses in each return from one shock in contemporaneous time among each 

equivalent DAG type for each sub-period coincides with our DAG results.  However, the 

dynamic responses in returns on all equivalent DAG types from one shock are mostly 

consistent for each period. 

  This dissertation has two limitations.  First, the PC algorithm assumes no latent 

common causes of the considered variables.  An alternative is the FCI algorithm (Spirtes 

et al. (2000), which does not make this assumption, although we note that its conclusions 

are weaker than the PC algorithm.  Second, we only consider four energy spot prices for 

identifying the proposition that causal flows based on both residuals from within-
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sample-fit and out-of-sample-forecast exhibit consistency.  We suggest that future 

research on other US commodity markets can obtain more comprehensive results. 
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APPENDIX A 

DATA DESCRIPTION 

 

Table A.1 lists the short name of each series, the transformation applied to the 

series, and a brief data description.  In the transformation column (Tcode), 1 denotes no 

transformation, 2 denotes first difference, 3 denotes second differences, 4 denotes 

logarithm, 5 denotes first difference of logarithm and 6 denotes second difference of 

logarithm.  In the slow code column, 1 denotes a variable assumed to be “slow-moving” 

in the estimation, 0 denotes otherwise.   

 

No. Series ID Tcode 
Slow 
Code 

Description 

1 PI 5 1 Personal Income 

2 
PI less 
transfers 

5 1 Personal Income Less Transfer Payments 

3 Consumption 5 1 Real Consumption 

4 M&T sales 5 1 Manufacturing & Trade Sales 

5 Retail sales 5 1 Sales of Retail Stores 

6 IP:total 5 1 Industrial Production Index - Total Index 

7 IP: products 5 1 Industrial Production Index - Products, Total 

8 IP: final prod 5 1 Industrial Production Index - Final Products 

9 IP: cons gds 5 1 Industrial Production Index - Consumer Goods 

10 IP: cons dble 5 1 
Industrial Production Index - Durable Consumer 
Goods 

11 
IP: cons 
nondble 

5 1 
Industrial Production Index - Nondurable 
Consumer Goods 

12 IP: bus eqpt 5 1 
Industrial Production Index - Business 
Equipment 
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13 IP: matls 5 1 Industrial Production Index - Materials 

14 IP: dble matls 5 1 
Industrial Production Index - Durable Goods 
Materials 

15 
IP: nondble 
matls 

5 1 
Industrial Production Index - Nondurable Goods 
Materials 

16 IP: mfg 5 1 Industrial Production Index - Manufacturing 

17 IP: res util 5 1 Industrial Production Index - Residential Utilities 

18 IP: fuels 5 1 Industrial Production Index - Fuels 

19 NAPM prodn 1 1 Napm Production Index (Percent) 

20 Cap util 2 1 Capacity Utilization 

21 
Emp CPS 
total 

5 1 Civilian Labor Force: Employed, Total 

22 U: all 2 1 
Unemployment Rate: All Workers, 16 Years & 
Over 

23 
U: mean 
duration 

2 1 
Unemployment Rate by Duration: Average 
(Mean) Duration in Weeks 

24 U<5 wks 5 1 
Unemployment Rate by Duration: Persons 
Unempl.Less Than 5 Wks 

25 U 5-14 wks 5 1 
Unemployment Rate by Duration: Persons 
Unempl. 5 To 14 Wks 

26 U 15+ wks 5 1 
Unemployment Rate by Duration: Persons 
Unempl. 15 Wks + 

27 U 15-26 wks 5 1 
Unemployment Rate by Duration: Persons 
Unempl. 15 to 26 Wks 

28 U 27+ wks 5 1 
Unemployment Rate by Duration: Persons 
Unempl. 27 Wks + 

29 UI claims 5 1 
Average Weekly Initial Claims, Unemployment 
Insurance 

30 Emp: total 5 1 Employees on Nonfarm Payrolls: Total Private 

31 
Emp: gds 
prod 

5 1 
Employees on Nonfarm Payrolls - Goods-
Producing 

32 Emp: mining 5 1 Employees on Nonfarm Payrolls - Mining 

33 Emp: const 5 1 Employees on Nonfarm Payrolls - Construction 

34 Emp: mfg 5 1 Employees on Nonfarm Payrolls - Manufacturing

35 Emp: dble gds 5 1 
Employees on Nonfarm Payrolls - Durable 
Goods 

36 
Emp: nondble 
gds 

5 1 
Employees on Nonfarm Payrolls - Nondurable 
Goods 
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37 Emp: services 5 1 
Employees on Nonfarm Payrolls - Service-
Providing 

38 Emp: TTU 5 1 
Employees on Nonfarm Payrolls - Trade, 
Transportation & Utilities 

39 
Emp: 
wholesale 

5 1 
Employees on Nonfarm Payrolls - Wholesale 
Trade 

40 Emp: retail 5 1 Employees on Nonfarm Payrolls - Retail Trade 

41 Emp: FIRE 5 1 
Employees on Nonfarm Payrolls - Financial 
Activities 

42 Emp: Govt 5 1 Employees on Nonfarm Payrolls - Government 

43 
Avg hrs: gds 
prod 

1 1 
Avg Weekly Hrs of Prod or Nonsup Workers on 
Private Nonfarm Payrolls - Goods-Producing 

44 
Overtime: 
mfg 

2 1 
Avg Weekly Hrs of Prod or Nonsup Workers on 
Private Nonfarm Payrolls - Mfg Overtime Hours 

45 Avg hrs: mfg 1 1 Average Weekly Hours, Mfg. 

46 NAPM empl 1 1 Napm Employment Index (Percent) 

47 
Starts: 
nonfarm 

4 1 Housing Starts: Total Farm & Nonfarm 

48 Starts: NE 4 0 Housing Starts: Northeast 

49 Starts: MW 4 0 Housing Starts: Midwest 

50 Starts: South 4 0 Housing Starts: South 

51 Starts: West 4 0 Housing Starts: West 

52 BP: total 4 0 
Housing Authorized: Total New Priv Housing 
Units 

53 BP: NE 4 0 Houses Authorized by Build. Permits: Northeast 

54 BP: NW 4 0 Houses Authorized by Build. Permits: Midwest 

55 BP: South 4 0 Houses Authorized by Build. Permits: South 

56 BP: West 4 0 Houses Authorized by Build. Permits: West 

57 PMI 1 0 Purchasing Managers’ Index 

58 
NAPM new 
orders 

1 0 Napm New Orders Index (Percent) 

59 
NAPM 
vendor del 

1 0 Napm Vendor Deliveries Index (Percent) 

60 NAPM invent 1 0 Napm Inventories Index (Percent) 

61 Orders: cons 5 0 Mfrs’ New Orders, Consumer Goods & 
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gds Materials 

62 
Orders: dble 
gds 

5 0 Mfrs’ New Orders, Durable Goods Industries 

63 
Orders: cap 
gds 

5 0 Mfrs’ New Orders, Nondefense Capital Goods 

64 
Unf orders: 
dble 

5 0 Mfrs’ Unfilled Orders, Durable Goods Indus. 

65 M&T invent 5 0 Manufacturing & Trade Inventories 

66 
M&T 
invent/sales 

2 0 Ratio, Mfg. & Trade Inventories To Sales 

67 M1 6 0 
Money Stock: M1(Curr,Trav.Cks,Dem 
Dep,Other Ck’able Dep) 

68 MZM 6 0 Mzm frb St. Louis 

69 M2 6 0 
Money Stock:M2(M1+O’nite 
Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time 
Dep) 

70 MB 6 0 
Monetary Base, Adj for Reserve Requirement 
Changes 

71 Reserve tot 6 0 
Depository Inst Reserves: Total, Adj forReserve 
Req Chgs 

72 
Reserves 
nonbor 

6 0 
Depository Inst Reserves: Nonborrowed,Adj Res 
Req Chgs 

73 Bus loans 6 0 
Commercial & industrial loans at all commercial 
banks 

74 Cons credit 6 0 Consumer Credit Outstanding - Nonrevolving 

75 Inst cred/PI 2 0 
Ratio, Consumer Installment Credit to Personal 
Income 

76 S&P 500 5 0 S&P Common Stock Price Index: Composite 

77 S&P: indust 5 0 S&P Common Stock Price Index: Industrials 

78 S&P div yield 2 0 S&P Composite Common Stock: Dividend Yield 

79 S&P PE ratio 5 0 
S&P Composite Common Stock: Price-Earnings 
Ratio 

80 DJIA 5 0 
Common stock prices: Dow Jones Industrial 
average 

81 Fed Funds 2 0 Interest Rate: Federal Funds (Effective) 

82 3mo T-bill 2 0 Interest Rate: US Treasury Bills,Sec Mkt,3-Mo. 

83 6mo T-bill 2 0 Interest Rate: US Treasury Bills,Sec Mkt,6-Mo. 

84 1yr T-bond 2 0 
Interest Rate: US Treasury Const Maturities,1-
Yr. 
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85 5yr T-bond 2 0 
Interest Rate:  US Treasury Const Maturities,5-
Yr. 

86 10yr T-bond 2 0 
Interest Rate: US Treasury Const Maturities,10-
Yr. 

87 Aaa bond 2 0 Bond Yield: Moody’s Aaa Corporate 

88 Baa bond 2 0 Bond Yield: Moody’s Baa Corporate 

89 
3mo FF 
spread 

1 0 fygm3-fyff 

90 
6mo FF 
spread 

1 0 fygm6-fyff 

91 1yr FF spread 1 0 fygt1-fyff 

92 5yr FF spread 1 0 fygt5-fyff 

93 
10yr FF 
spread 

1 0 fygt10-fyff 

94 
Aaa FF 
spread 

1 0 fyaaac-fyff 

95 Baa FF spread 1 0 fybaac-fyff 

96 Ex rate: avg 5 0 United States: Effective Exchange Rate 

97 Ex rate: Switz 5 0 
Foreign Exchange Rate: Switzerland (Swiss 
Franc per US$) 

98 Ex rate: Japan 5 0 Foreign Exchange Rate: Japan (Yen per US$) 

99 Ex rate: UK 5 0 
Foreign Exchange Rate: United Kingdom (Cents 
per Pound) 

100 
Ex rate: 
Canada 

5 0 
Foreign Exchange Rate: Canada (Canadian$ per 
US$) 

101 PPI: fin gds 6 0 Producer Price Index: Finished Goods 

102 PPI: cons gds 6 0 Producer Price Index: Finished Consumer Goods 

103 PPI: int matls 6 0 
Producer Price Index: Intermed. Mat. Supplies & 
Components 

104 
PPI: crud 
matls 

6 0 Producer Price Index: Crude Materials 

105 
PPI: crude 
petroleum 

6 0 Producer Price Index: Crude Petroleum 

106 CPI-U:all 6 1 Cpi-U: All Items 

107 
CPI-U: 
apparel 

6 1 Cpi-U: Apparel & Upkeep 

108 CPI-U: transp 6 1 Cpi-U: Transportation 

109 CPI-U: 6 1 Cpi-U: Medical Care 
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medical 

110 CPI-U: comm 6 1 Cpi-U: Commodities 

111 CPI-U: dbles 6 1 Cpi-U: Durables 

112 
CPI-
U:services 

6 1 Cpi-U: Services 

113 CPI-U:core 6 1 Cpi-U: All Items Less Food and Energy 

114 
CPI-U: less 
shelter 

6 1 Cpi-U: All Items Less Shelter 

115 
CPI-U: less 
med 

6 1 Cpi-U: All Items Less Medical Care 

116 PCE defl 6 1 Pce, Impl Pr Defl:Pce 

117 
PCE defl: 
dbles 

6 1 Pce, Impl Pr Defl:Pce; Durables 

118 
PEC defl: 
nondbles 

6 1 Pce, Impl Pr Defl:Pce; Nondurables 

119 
PCE defl: 
service 

6 1 Pce, Impl Pr Defl:Pce; Services 

120 AHE: gds 6 1 
Avg Hourly Earnings of Prod or Nonsup 
Workers on Private Nonfarm Payrolls - Goods-
Producing 

121 AHE: const 6 1 
Avg Hourly Earnings of Prod or Nonsup 
Workers on Private Nonfarm Payrolls - 
Construction 

122 AHE: mfg 6 1 
Avg Hourly Earnings of Prod or Nonsup 
Workers on Private Nonfarm Payrolls - 
Manufacturing 

123 RAHE: gds 5 1 
Real avg hrly earnings, prod wrkrs, nonfarm - 
goods-producing 

124 RAHE: const 5 1 
Real avg hrly earnings, prod wrkrs, nonfarm - 
construction 

125 RAHE: mfg 5 1 
Real avg hrly earnings, prod wrkrs, nonfarm - 
mfg 

126 
Consumer 
expect 

2 0 
University of Michigan Index of Consumer 
Expectations 

 

 

 


