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ABSTRACT 

 

Much speculation on extraterrestrial life has focused on finding environments 

where water is present. Heating of smaller icy bodies may create and sustain a possible 

liquid layer below the surface. If liquid water was sustained for geologically significant 

times (> 108 years) within the ubiquitous small bodies in the outer solar system, the 

opportunities for development of simple life are much greater. The lifetime of the liquid 

water layer will depend on several factors, including the rate of rock/water reaction, 

which will depend on the rate at which water can be segregated from a melting ice/rock 

core. For the liquid water phase to migrate toward the surface, the denser rock phase 

must compact. The primary question that this thesis will answer is how fast melt water 

can segregate from the core of an ice-rich planetesimal. 

To answer this question we treat the core as two phase flow problem: a 

compacting viscous “solid” (ice/rock mixture) and a segregating liquid (melt water). The 

model developed here is based on the approach derived to study a different partially 

molten solid: in the viscously deforming partially molten upper mantle. We model a 

planetesimal core that initially a uniform equal mixture of solid ice and rock. We assume 

chondritic levels of radiogenic heating as the only heat source, and numerically solve for 

the evolution of solid and melt velocities and the distribution of melt fraction 

(“porosity”) during the first few million years after accretion. From a suite of numerical 

models, we have determined that the meltwater is segregated out of the core as fast as it 

is created, except in the case of very fast melting times (0.75 My vs. 0.62 My), and small 
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core radius (~25 to 150 km, depending on the viscosity of the ice/rock mixture in the 

solid core). In these latter cases, segregation is slower than migration and a high water 

fraction develops in the core. Heat released by water-rock reactions (not included in this 

model) will tend to drive up melting rates in all cases, which may favor this latter 

endmember.   
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1. INTRODUCTION 

 

Liquid water appears to be a prerequisite for the development and continued 

existence of life. For this reason speculation on extraterrestrial life has focused on 

finding environments where water is present. Because of the components of water 

(hydrogen and oxygen) it is one of the most abundant compounds in the universe. 

However liquid water is stable under temperature and pressure conditions that are 

relatively rare in the solar system, of the other terrestrial planets only Mars and possibly 

Venus have been determined to have the capability of sustaining liquid water either now 

or in the distant past.  Most of the bodies in the solar system are too small to possess a 

sustainable atmosphere, and far enough from the sun that their surfaces are too cold to 

allow surface water. However many smaller planetesimals, comets, & moons in the outer 

solar system have been determined to possess large amounts of water ice (Johnson 

2005), as well as a possible liquid layer below the surface of some of the planetesimals. 

 The potential for long term heat retention is far greater in larger bodies since the 

dominant heat source (radioactive decay) is proportional to volume, while heat loss to 

space is proportional to surface area. Larger planetesimals (> 2000 km diameter) have 

the potential to create liquid water layers that can last for billions of years.  In addition, 

the etched surfaces of the Galilean satellites Europa and Ganymede represent evidence 

of tidal forces generated by the gravitational exertions of Jupiter on the satellite, which 

create a secondary heat source. These two bodies have been shown to currently contain 

liquid water layer “oceans” hundreds of kilometers beneath their frozen crusts (Gurnett 
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et. al. 1996, Sohl et al., 2010 & Sohl 2010). There is also some evidence for such ocean 

layers on other moons such as Titan (Kerr 2012), Enceladus (Choi 2006), Consolmagno 

(1983) and Callisto (Bennett 2001). 

 But there are thousands of ice-rich bodies in our solar-system that are 

considerably smaller than these bodies. The Kuiper belt is the home for the majority of 

these objects. It remains to be determined just how many objects reside past Neptune’s 

orbit (De Sanctis et.al, 2001 & Merk, R. & Prialnik, D., 2006, 2003), but current 

estimates are in the hundreds of thousands over the size of 100 km in diameter. If liquid 

water was sustained within these bodies, the opportunities for development of simple life 

are much greater. These numerous yet small solar bodies lose internal heat at 

significantly faster rates than larger bodies; therefore many may be frozen today. But if 

these planetesimals were able to maintain internal liquid water layers for geologically 

significant times (>     years), there could have been a great many laboratories of 

biological evolution. 

 Models of the thermal evolution of small planetary bodies (Merk and Prialnik, 

2006 & Prialnik and Bar-Nun, 1989) show that heating from early radioactive decay 

causes an increase in internal temperature, leading to melting of the ice phase, followed 

by a slow cooling and refreezing over time. The duration of the liquid water phase will 

depend on the size of the body, the amount of radiogenic heat generation, the rate of 

rock/water reaction, and the radial conductivity and heat production profile, which are 

determined by the distribution of rock, water and ice phases within the planetesimal. 

This distribution will change in time as the denser rock phase compacts to form a core, 
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while the liquid water phase segregates toward the surface. The time scale for this 

segregation has not been previously addressed; it will depend on the mechanism of 

segregation and the temporal evolution of material properties.  

The primary question that this thesis will answer is how fast melt water can 

segregate from the core of an ice-rich planetesimal. One end member possibility is very 

slow segregation which occurs if the permeability is very low, or the solid ice/rock core 

cannot compact easily. In this case the melt does not flow fast enough to segregate into a 

water layer before refreezing or chemically reacting with the rock. The other end 

member is a situation with a high permeability and a solid core  that is capable of 

compacting at a fast rate. This would allow for fast melt flow even when the solid 

compacts to low porosity. Therefore there would be very little melt fraction present 

within the melting core since melt would segregate as fast as it forms. In this case, water 

can be completely removed from the core, to form a trapped water layer (or be lost to 

space. Another implication of this end member is that the thermal properties of water 

won’t have much effect on the core. 

Another aspect of the rate of segregation is its effect on the serpentinization of 

the rock in the core. The silicate part of low pressure planetesimals is made largely of the 

ultramafic minerals olivine and pyroxene (Elkins-Tanton et. al., 2011). These minerals 

are unstable in the presence of liquid water and undergo a chemical reaction to form 

hydrated minerals such as the various forms of serpentine (Malvoisin et. al., 2012). The 

reaction between olivine and water is relatively fast, but if the water were to be removed 

from the system quickly enough it then would have no time to chemically react. This fast 
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extraction of the liquid would limit serpentinization since the heat released by this 

exothermal reaction may be a major heat source.  

The extent and timing of melt water segregation and serpentinization control the 

dynamics of the water layer. For this reason, it is important to be able to estimate the 

time scale of melt segregation. The purpose of this study is to put bounds on the length 

of time necessary for the segregation of the solid matrix and the ice melt, and to 

understand what controls the segregation rate. 

To estimate the time it takes for the segregation of melt water from the melting 

ice/rock core we consider a one dimensional problem of two phase flow; a compacting 

viscous “solid” and a segregating liquid. The model developed here is based on the 

approach derived to study a different partially molten solid: in the viscously deforming 

partially molten upper mantle (McKenzie 1984, Richter & McKenzie 1984, & Ribe 

1985a). The model development is described in Section 2. 

In Section 3, we convert the equations of motion derived in McKenzie’s (1984) 

equations into a radially-symmetric spherical coordinate system. We also follow the 

suggestions of Richter & McKenzie (1984) in introducing the “compaction length” as 

the fundamental length scale that controls the style of migration behavior. We describe a 

computer program to solve these equations numerically. Section 4 compares the 1-D 

cartesian problem of Richter and McKenzie to a similar 1-D spherical case in order to 

highlight the effect of some of the differences from that well-studied problem, primarily 

the effect of geometric spreading with distance from the core and the variation of the 

driving gravity force with radius. In Section 5, we describe results from a series of 
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models in which we vary the key parameters. We identify two key ratios that determine 

whether the meltwater segregation will be very fast or slow: the size of the melting core 

of ice relative to the compaction length, and the rate of melting relative to the rate of 

melt flow. In Section 6 we discuss the implications of these models.   
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2. THE PHYSICS OF MELTING AND DIFFERENTIATING BODIES 
 

2.1 Thermal History of an Icy Planetesimal 

 

The most widely accepted theory of solar system formation is the Nebular 

Hypothesis. This hypothesis holds that all bodies of the solar system were formed from a 

cloud of gas & dust with a composition, similar to that of the Sun. The non-volatile 

component of this composition is represented today by the chondritic meteorites. Our 

model of a rock-ice body assumes a chondritic composition of the rock part mixed with a 

variable amount of water ice (Johnson 2004, McCord & Sotin 2005, Consolmagno & 

Lewis 1978, Wilson et. al., 1999, & Brush 1977).  The ice portion will most likely 

contain other volatile materials, such as CO2 and hydrocarbons, as are also found in 

carbonaceous chondrites. While those materials are crucial for the development of life, 

they will not affect the energy on momentum balances of our model, and can be 

neglected. This work aims to provide constraints on the water segregation process in a 

thermal/chemical model of an icy planetesimal (Farrell et al, 2007). The rest of this 

section outlines the assumptions of the thermal model and the findings that will provide 

inputs to our water segregation model.  

The size of the known bodies in the solar system has a large range, but the 

particular sizes we wish to focus on are the smaller bodies (< 500 km radius). These 

bodies are the best for us to concentrate on for several reasons. These bodies are 

abundant, in both the Asteroid Belt and Kuiper Belt. At this size, most of the heat from 

accretion will be lost to space; therefore the initial planetesimal is “cold”. Finally, 
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internal pressure will be small enough that we will not need to consider solid-state phase 

changes in ice, or pressure effects on various parameters. 

We assume that the only heat source that affects the system is from radioactive 

decay. In the early solar system radiogenic heating was especially strong because of the 

short lived radiogenic elements that existed. The key elements that are hypothesized to 

contribute to this heat are 60Fe, 40K, 232Th, 238U, 235U, and 26Al.  The last element, 26Al, 

initially produces orders of magnitude more heat than the other isotopes, but decays very 

quickly (half-life = 700,000 years).  Therefore the amount of heat produced is uncertain 

because the abundance of 26Al will change strongly with small changes in the time of 

accretion. 

If we assume a chondritic abundance of radiogenic isotopes, most bodies below 

150 km radius that are in thermal equilibrium will never reach the melting temperature 

of water ice, unless there is another heat source (Farrell et al., 2007). In larger bodies, 

radiogenic heating will raise the internal temperature to the melting point. Extremely 

cold exterior temperatures may maintain a frozen crust of ice and rock. The thickness of 

this frozen shell will depend on the rate of heating and size of the body. For the purposes 

of this thesis, we will consider only this “melting core” of the planetesimal (Fig. 1), and 

assume that an overlying shell remains frozen. The radius of the melting core will be 

denoted by   , and contains the compacting rock/ice/water mixture as well as any 

meltwater that segregates to the surface of the core. We will later explore a range of 

sizes of the melting core, recognizing that this radius of the planetesimal is somewhat 

larger. 



 

8 

 

 

Figure 1: The system as it appears at the beginning of melting and after the completion 
of segregation. 

 

 

Further heating goes into the latent heat of the phase change of the ice, buffering 

temperatures at the melting point. Temperatures throughout the core do not begin to 

increase again, until all the interior ice is melted completely. This process has been 

predicted to take between 1 and 150 million years for planetesimals less than 500 km in 

radius, depending on size, initial concentration of  26Al, and the role of serpentinization 

(Farrell et al., 2007). Serpentinization, an exothermic reaction caused by liquid water 

reacting with olivine, is a significant heat source inside of small planetesimals. This 

reaction is also a large source of hydrogen for the system, which is significant because if 

this element is able to make it to the liquid layer it is a potential energy source for the 

evolution of organisms. 
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2.2 Compaction and Fluid Migration 
 

The initial planetesimal we envision is a mixture of solid ice and rock. When the ice 

in the core melts, a fluid phase segregates to the top of the core to form a liquid mantle. 

The segregation process is driven by buoyancy due to the differing densities of the solid 

and liquid materials. These densities will depend on composition; liquid water is denser 

than the solid ice, but less dense than rock. Since we are only considering planetesimals 

with some significant fraction of rock, the solid rock/ice mixture will always be denser 

than the liquid water. Segregation of the phases requires two other characteristics of the 

system: there must be a permeable network that allows fluid flow; and the solid phase 

must be able to deform and compact, in order to fill space vacated by the fluid.  

 As the temperature of the planetesimal initially increases, the ice produces melt 

in pockets and creates pore spaces around the edges of the ice crystals. When the melt 

fraction reaches some critical amount, the pore spaces connect with each other to form a 

permeable network. This critical amount is determined by the dihedral angle in a 

water/ice system. This is the angle between two water-ice surfaces at the triple junction 

of two ice grains and a water-filled pore that is in textural equilibrium, and is determined 

by the surface energies in the system. If the dihedral angle is > 60˚, then the equilibrium 

distribution of water will be isolated pores. The low dihedral angles, < 30˚, measured in 

water/ice systems (Mader, 1992) imply that these permeable networks can form at very 

low melt fractions (< 1%). The resulting fluid networks will extend to all portions of the 

planetary body that are above the solidus temperature. Where the temperature is below 

the solidus, water in small pores quickly freezes. Because surface temperatures in the 
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outer solar system are very low (< 100 K), there will typically be a sub-solidus surface 

crust. Therefore water will migrate upward and collect in a liquid layer beneath the 

frozen crust (as in Europa and other icy satellites). 

Because the ice is deformable at temperatures near its solidus, we can treat the 

“solid” matrix of ice and rock as a very viscous fluid. As the solid deforms it allows the 

liquid to move through the networks that have developed. This makes the problem 

analogous to the mantle melting/magma migration problem; this problem has been 

studied by several workers (Asimow 2002, Richter & McKenzie 1984, McKenzie 1984, 

Ribe 1985b, Rabinowicz & Toplis 2009, Scott and Stevenson, 1986, & Sparks and 

Parmentier, 1991). The problem of magma segregation differs from typical approaches 

to porous flow in geologic systems in that the “porosity” here is not a fixed characteristic 

of the rock, but a varying quantity that depends on the dynamics of the system. As 

demonstrated by McKenzie, 1984, and Spiegelman, 1993b, it is necessary to account for 

the viscous deformation of the “solid” phase, since it can offer significant resisting force, 

and therefore control the timing of melt segregation. 
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Figure 2: Schematic diagram of the evolution of porosity vs. height in a 1-D column 
with an initially small and uniform porosity (blue line). This is based on the problem 

solved in Richter & McKenzie (1984), and solved in Section 5. 
 

 

The schematic Fig. 2 shows the evolution of the porosity    -depth     

relationship of a simplified one-dimensional compacting system that starts with an 

initially uniform porosity,   . The vertical axis is height above an impermeable base, 

below which compaction cannot occur (in our problem, this is the center of the 

planetesimal). The red lines show porosity at different times. Porosity decreases in a 

region near    , the compacting layer. Above this, where porosity is uniform, water is 

flowing upward and the solid phase downward, but the solid is not compacting. At the 
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top of the layer, porosity increases to 1 where the fluid layer collects. The equations that 

describe the two-phase system break down in this region, so it will not be part of our 

calculation. 

Melt buoyancy is the driving force for segregation. It is opposed by the 

interphase frictional resistance (the permeability of the matrix) and by the resistance of 

the solid phase to deformation and compaction. Which of these two resisting forces is 

dominant depends on the properties of the material. McKenzie (1984) defined a 

characteristic length scale over which compaction resistance is important. The 

“compaction length”,  

   [
[   

 ⁄  ]

 
 ]

 
 ⁄

                                                                                                                 

depends on the shear     and bulk viscosity     of the solid, the viscosity of the fluid 

    and the permeability     of the matrix. The permeability is assumed to follow a 

Kozeny-Karman type of law, which depends on the grain size and nonlinearly on the 

porosity. If compaction occurs over a distance that is small compared to    then 

compaction stresses are dominant in determining the segregation rate. If compaction is 

spread over a large area compared to   , then compaction stresses are negligible. 

 The temporal evolution of a given planetesimal will depend on the size of the 

partially molten part of the planetary body, compared to the compaction length scale. If 

the system is many compaction lengths in height, then the solid resistance force will be 

mostly negligible and segregation will be faster. It is important to realize, however, that 

even if the compaction forces are small in most of the system, they must be included in 
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order to impose a no-motion boundary condition at the bottom (center of the 

planetesimal). Therefore the full problem, including compaction forces, must be solved. 

If the system is only a few compaction lengths in size, then the compaction stresses will 

largely control how fast segregation can occur. 

To estimate the range of relevant compaction lengths for icy planetesimals we first 

estimate the permeability of the system. Using a Kozeny-Carman type of relation 

(McKenzie 1984), a porosity of 0.03 and grain sizes from .0001 - .01 m, permeabilities 

will range from ~10-16 to 10-12 m2. The viscosity of water is 10-3 Pa s. Finally the 

combination of bulk and shear viscosities of the solid phase will result from the two 

solid phases. We represent this viscosity as a single variable,   , the viscosity of the 

ice/rock mixture. 

The viscosity of ice near 0  C to be 1014 Pa·s, (McCord & Sotin, 2005) However, 

mixture viscosity of the “solid” phase in this problem depends on the ratio of the 

viscously deformable phase (ice) to the rigid solid phase (rock). To determine the value 

of the viscosity we use a model that was experimentally determined for the effective 

viscosity of a fluid that contains a high concentration of rigid grains (Nian-Sheng 

andWing-Keung, 2003).  

         [
   

 
(

 

         
 
  )]                                                                                   

      is the volume fraction of rigid grains in the mixture,    is the viscosity of pure ice, 

and   is an experimental parameter determined to be between 1.6 and 2.5 for the type of 
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system we are constructing. Figure 2 shows how the mixture viscosity varies with the 

rock fraction. 

 

 
Figure 3: Mixture Viscosity from Eq. (2) scaled by the viscosity of the pure system as a 

function of rock fraction, for three choices of the empirical parameter  . 
 

 

Figure 3 shows that the initial viscosity of the solid phase in a planetesimal that 

is 50% rock by volume is 30 – 100 times the value of ice. However, by the time melting 

and segregation have concentrated the rock phase in the core to 70 %, the viscosity has 

increased by a further 2.5-5 orders of magnitude. At very high rock fractions, the 

mixture viscosity from Eq. (2) becomes infinite.  In the results presented in this thesis, 

we found it practical to use only a single value of solid viscosity for an entire model run. 

A result of this simplification is that we allow the core to compact to nearly 100%  rock, 
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squeezing out all water. We explore values of    ranging over several orders of 

magnitude.  

 The effective compaction length of the problem, the distance over which 

compaction stresses are important, depends on this mixture viscosity: 

   [
  

 
 ]

 
 ⁄

                                                                                                                                

Figure 3 shows the variation of compaction length with the rock fraction of the solid. 

Compaction length varies from a few hundred meters to thousands of km. Therefore, in a 

planetesimal with radii in the range of a few hundred km, compaction stresses could be 

either completely negligible or extremely important throughout the compacting system, 

depending on the assumed mixture viscosity, as seen in Figure 4. 

 

 

Figure 4: Compaction length vs. rock fraction from Eq. (3), where the solid viscosity is 
given by Eq. (2) with three different values of the parameter  . The permeability is 

taken to be 10-15 m2, and the fluid viscosity is 10-3 Pa·s. 
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As previously described our model is best suited to study planetesimals with 

melting cores with radii between 50 and 500 km. Since the problem is scaled by the 

compaction length, we only need determine a range of scaled radii of a melting core 

(  
  

  
).  However, because there is a large range of permissible estimates of the 

viscosity of the solid phase, the compaction length is not that well determined.  With a 

range of mixture viscosity estimates between 103 and 106 times the viscosity of ice, the 

desired range of core radii are modeled by   values ranging from 10 to 1000. A 

particular value of h will correspond to a range of core sizes, depending on what 

estimate of mixture viscosity is assumed. Fig. 5 shows the h values for any given 

combination of mixture viscosity and core size.  Since the required resolution in the 

numerical solution is several grid points per compaction length (we use ten), the large   

values are expensive to calculate. However, for very large values of h, the compaction 

stresses are negligible in almost the entire column, so the solutions in this range are 

easily predictable.  Therefore we restrict our later simulations to   values from 5 to 75.  

A simulation with a particular value of   will correspond to a planetesimal of a range of 

sizes, depending on what estimate of mixture viscosity is assumed. One point to keep in 

mind is that the radius we are analyzing is that of the melting core not the whole 

planetesimal. However, in all but the coolest planetesimals, a large fraction of it will 

undergo melting. 
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Figure 5: A contour map of h values (core radius/compaction length) as a function of 
core radius and viscosity ratio. The compaction length assumes a core permeability of 

            . 
 

Due to the nonlinear dependence of permeability on porosity, any spatial variability 

in porosity will result in strongly correlated variations in melt velocity that cause the 

porosity variations to grow. In the absence of any compaction stresses (the resistance of 

the solid phase to deform quickly), perturbations can grow into “shock waves” of 

porosity:  Because the “speed” of porosity migration is strongly dependent on the 

porosity, perturbations migrate upward and the leading edge will sharpen into a 

discontinuity in porosity (Spiegelman, 1993a). 

Compaction stresses allow porosity variations to grow, but add a length scale (the 

compaction length) over which these variations must occur. Instead of porosity 

discontinuities, “waves” of porosity with finite wavelength will form. Waves of high 
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porosity migrate through the material at a velocity faster than that of the melt itself, and 

each wave will tend to create a chain behind it as it moves. There is a rich set of 

dynamics that arise from this effect, described as “solitary waves” (Spiegelman, 1993a) 

or “magmons” (Scott and Stevenson, 1986). 

Any disturbance, such as a boundary layer, will tend to lead to the formation of 

chains of melt waves that propagate upwind (opposite the melt flow direction) from the 

disturbance. The tracking of these waves is beyond the scope of this work since the total 

time to extract melt from a region is not greatly affected by the waves. We carefully 

choose our boundary conditions to minimize this effect, but porosity waves are clearly 

visible in many of our numerical results. 

 

2.3 Melting and Compaction in a Planetesimal Core 

 

There are several significant differences between the mantle magma migration 

problem, and the problem that we will address, that of a compacting spherical core. The 

first is the obvious one of geometry, which will slightly change the equations (see 

section 3). In addition, the gravitational driving force in this situation is significantly 

different, in that it varies in time and space. Finally, the melting term provides a source 

of fluid that, combined with compaction stresses, controls how the distribution of rock, 

ice, and water evolve. 
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 The driving force behind the segregation of the phases depends on the magnitude 

of the gravitational acceleration, and also on the density difference between the phases. 

In the spherical melting core, gravity will increase outward from the center of the core, 

     
   ∫         

 

 

  
 

If the fluid fraction remains small, we can assume the density is approximately given by 

the solid density, which is nearly uniform in the core. 

     
  

 
                                                                                                                                   

So the gravity force, far from being uniform, varies linearly with radius and vanishes at 

the center of the core. This effect slows migration near the center of the core. 

 A further variation in the driving term comes from the density difference 

between solid and melt which increases as the core becomes more rock-rich during 

segregation. 

                                                                                                                                         

    
                

            
                                                                                                               

where   represents the volume fraction of the different phases. 

The production of meltwater is determined by the rate of radioactive decay. 

Following McCord and Sotin (2005), we calculate the heat production from a particular 

concentration of radioactive isotopes at some initial time t = 0, which represents the time 

of the beginning of solid accretion in the solar system. The concentration of isotope, i, in 

parts per billion (ppb) follows: 
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where   
  is the concentration at     and     is the half-life. The heat given off by the 

isotopes’ decay,   , per kg of rock is 

        

where    is the rate of heat production per kg of isotope. These values are given in  

Table 1. 

 
 

Isotope 
Half-Life (yr.), 

  
 

 

Initial 

Concentration 

(ppb),   
 

 

Heat Produced 

Rate (mW/kg), 

   

Total Heat 

(mW/kg rock), 

   

Uranium – 235 7.04 x 108 17.5 4.01 x 10-4 7.0175 x 10-12 
Uranium – 238 4.47 x 104 52.4 1.04 x 10-4 5.4496 x 10-12 

Potassium – 40 1.28 x 109 430 6.19 x 10-5 2.6617 x 10-11
 

Thorium – 232 1.41 x 1010 130 2.04 x 10-5 2.65 x 10-12 
Aluminum – 26 7.17 x 105 450 .138 6.21 x 10-8 

Iron - 60 2.6 x 106 .8 .0747 5.976 x 10-11 

Table 1: These are the values of each element for the concentration, heat produced, and 
the combined value at a time of zero million years before accretion. (McCord & Sotan, 

2005) 
 

 

 

The total radiogenic heating is given by the sum of the   values. 
   ∑  

 

 

We will approximate the concentration of radiogenic isotopes in the ice and water phases 

as  . Therefore, the total heat production rate will be   times the volume fraction of 

rock. 
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The melting rate, is defined as the rate of mass exchange from solid ice to 

water per unit volume (   

    
). For a core that is at the melting temperature of ice, all of 

the heat production goes into latent heat. The rate of melting ice is therefore 

  
           

 
                                                                                                                             

where   is the latent heat of ice. For a fixed value of          , the melting rate is 

plotted as a function of accretion time in Figure 5. At this rock fraction, the initial core 

contains 500 kg of ice per m3. Therefore total melting time at a given fixed value of   is 

given by 

      
   

  
 

for         
  

    
 the time required to melt all the ice present is only 1.6 M.y.  

Since the total melting times are relatively short, the decay of melting rate with 

time is not very large (on the order of a factor of 2-4). During this time, compaction and 

expulsion of the ice phase will increase the concentration of rock and the heating in the 

core by up to a factor of 2 somewhere counteracting this decay. The dominant heat 

source, 26Al, decays so quickly, a variation of a few million years in the time of accretion 

of different planetesimals will lead to a large variation in heating rates, even if they have 

the same isotopic composition.  Therefore, for simplicity, we hold melting rate constant 

during a simulation, and simply choose widely different initial melting rates that 

approximate different accretion times.  
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In the simulations we will present in section 5, we explored two different rates of 

melting which represent reasonable values that could be produced by radiogenic heating. 

These two rates,            and            , correspond to accretion times of 

        years and      million years. For a melting core that is 50% ice, and assuming 

no migration of the water, these two melting rates would completely melt the ice 

component in 0.36 and 25 My, respectively. Figure 6 is the representation of the melting 

rate as it evolves through the time of accretion. 

 

 

 
Figure 6: Melting rate vs. the time of accretion for a planetesimal. The consultants 
which we have used in the previously described equations were taken from Table 1. 
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Variable Meaning Values Dimensions 

  Unit vector in Vertical direction    

  Unit vector in Radial direction    

  Unit vector in Latitudinal 
direction 

 Deg. 

  Unit vector in Longitudinal 
direction 

 Deg. 

  Time    

  Solid Velocity        

  Liquid Velocity        

  Acceleration due to Gravity        

   Density of Melt              

   Density of Ice              

   Density of Rock              

   Density of Matrix              

   Density Difference (     )                    

     Concentration of Ice        

      Concentration of Rock          

  Porosity of Matrix   
  Melting Rate           

            
           

  Fluid Pressure     

  Dynamic Shear Viscosity of Melt           

K Specific Permeability     

  Fluid-Solid Drag Resistance         

   Compaction Length    

  Bulk viscosity of matrix       

   =                      

  Shear viscosity of matrix       

   =                      

q Mass Flux             

  Designed Constant  m 

   Mixture Viscosity       

  Exponent in Viscosity Equations          

  Gravitation Constant  
  ⁄                    

  
(  

 

 
 )  (  

 

 
 ) 

 

 
 

 

Table 2: This table is a listing of variables that we use in the thesis, including the 
meanings of each variable range of assigned values and the respective units for each. 
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3. THE GOVERNING EQUATIONS OF COMPACTION 

3.1 Compaction Equations in Cartesian Coordinates 

 

The equations that govern the melt migration process were derived originally by 

McKenzie (1984). The vector form conservation of mass for each of the three phases 

(melt, rock, and ice) are written 

 (   )

  
   [    ⃑⃑ ]                                                                                                               

 (       )

  
   [        ⃑⃑⃑ ]                                                                                      

 (       )

  
   [        ⃑⃑⃑ ]                                                                                    

 In these equations we have variables assigned to the rate of melting     (the mass 

transfer from the ice phase to the liquid phase), melt     , rock     ,  and solid ice      

densities (taken to be constant here), melt   ⃑⃑   and solid ( ⃑⃑⃑ ) velocities, and the porosity 

    of the matrix. Here we assume that the two mixed solid phases have the same 

velocity, but only the ice undergoes the phase change. Note that porosity here does not 

denote a fixed property of rock, but the fraction of melt in a given volume, which 

therefore varies in space and time. We can combine the ice and rock equations to get a 

single conservation equation for the solid: 

  

 (     )

  
     [      ⃑⃑⃑ ]                                                                                    
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Because we will assume that the two solid phases do not move relative to each 

other, we will also treat them as a single phase in the momentum equation. The 

conservation of momentum in fluid and solid phase is given by; 

         ⃑⃑    [  ̿ ]                                                                                                       

             ⃑⃑    [      ̿ ]                                                                                

Note that in Eq. (13) we use the solid matrix density    as opposed to the 

conservation of mass problems, where we have used the density of ice   . The density of 

the solid matrix    is given by Eq. (6). 

The slow melting and deformation in this problem means that we can neglect 

acceleration terms, i.e. this is a low Reynolds number system. Therefore buoyancy 

forces are balanced by an interphase drag exerted between the solid and liquid phases, ⃑⃑ , 

and by gradients in stress. The melt has a relatively low viscosity and it is assumed that 

viscous resistance to fluid deformation is small relative to pressure gradients and will be 

subsumed into the fluid-solid drag resistance term. Therefore the melt stress tensor is 

given by the pressure, P: 

 ̿       ̿

where   ̿is the identity tensor. The stress tensor for the solid phase includes viscous 

resistance to both shear and compaction (volume change). 

 ̿      ̿     ̿      ̿  
 

 
  ̿ 

Here   is the bulk viscosity and   is the shear viscosity of the solid,  ̿  is the strain rate 

tensor of the solid, and    is defined as the compaction rate of the solid: 
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       ⃑⃑⃑  

To follow what was done by McKenzie (1984) the interaction force exerted by the solid 

and fluid phases on each other is given as 

 ⃑⃑  
   

 
( ⃑⃑   ⃑⃑⃑ )                                                                                                               

where   and  , are the dynamic shear viscosity of the melt and the permeability of the 

matrix respectively. This form of interaction force ensures that, in the absence of 

compaction forces, the problem reduces to Darcy’s Law for flow through a permeable 

matrix. 

( ⃑⃑   ⃑⃑⃑ )    
 

  
(         )                                                                                               

In these equations we also assume the permeability is a nonlinear function of porosity 

(Richter & McKenzie, 1984): 

  
    

 
 

where   is grain size of the solid phase,   is a scaling constant (1000), and the exponent 

  is 3. Finally, we will make the assumption that spatial variation in both the solid 

fraction       and solid viscosities are small compared to variation in solid velocity. 

Following McKenzie, for compactness, we redefine viscosities to simplify the 

calculations: 

          

          

Substitute Eq. 14 into both Eqs. 12 & 13 and gives; 
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( ⃑⃑   ⃑⃑⃑ )                                                                                            

            
   

 
( ⃑⃑   ⃑⃑⃑ )          (   

  

 
) (   ⃑⃑⃑ )       ⃑⃑⃑ 

                                                                                                                           

We subtract Eq. (16) from Eq. (17) and then substitute Eq. (15) to obtain an 

equation in velocities that eliminates pressure: 

            
  

 
( ⃑⃑   ⃑⃑⃑ )  (   

  

 
) (   ⃑⃑⃑ )       ⃑⃑⃑                               

Richter and McKenzie (1984) have described a simpler one-dimensional 

problem, in which porosity and velocity vary only in the vertical direction. In this system 

the conservation of mass (Eq. 8 & 11) are given by 

  

  
 

     

  
 

 

  
                                                                                                                      

      

  
 

 

  
[      ]   

 

  
                                                                                        

and the conservation of momentum is 

      
   

 
       

  

  
                                                                                         

          
   

 
           

  

  
 (   

 

 
  )

   

   
                             

These two momentum equations (Eq. 21 & 22) are combined with Darcy’s Law (Eq. 

15) to again eliminate the pressure,  

(   
 

 
  )

   

   
 (     )       
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The two mass equations (Eq. 19 and 20) are combined and integrated to solve for the 

fluid velocity in terms of the solid velocity and melting rate: 

   
      

 
 

 

 
∫(

 

  
 

 

  
)                                                                                   

Substituting Eq. 22 into the combined momentum equation (Eq. 21) gives an equation 

for the solid velocity: 

(   
 

 
  )

   

   
          

 

 
(   ∫(

 

  
 

 

  
)   )                              

Eqs. 20 & 25 are the final pair of differential equations that can be solved for   and   

to determine the evolution of fluid segregation. 

 We also need to specify boundary and initial conditions. Richter & McKenzie 

model a non-melting permeable system that is compacting onto a rigid impermeable 

surface at    . Therefore, the bottom boundary condition is: 

                                                                                                                                              

 At the top of the compacting layer a pure liquid layer develops, within which the 

equations of a permeable medium break down. Richter and McKenzie claim to apply the 

boundary conditions of no compaction 

  

  
|
    

   

and fixed porosity 

  
        

at the top of this partially molten mixture,     . The position    drops in time, as the 

system compacts at a rate determined by the solid velocity; 
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These boundary conditions are reasonable during early stages of compaction, when 

porosity changes only near the bottom boundary, and most of the column is simply 

passing fluid to the surface, following Darcy’s Law. However, the figures shown in 

Richter and McKenzie clearly show that at later times, as z drops, porosity does not 

remain constant and velocity gradients do not remain zero. It is unclear what conditions 

were actually applied in this study since their figures also truncate the uppermost part of 

the curve where porosity waves should begin to develop. We wish to use a boundary 

condition that will allow an unimpeded flow of melt out of the top of the partially molten 

region and into the fluid layer, generating as little porosity disturbance as possible that 

can propagate downward as waves.  After several trials, we found that setting the 

gradient in the flux of solid to zero at this boundary is the most effective condition. 

 
       

  
|
    

                                                                                                               

 

3.2 Compaction Equations in Spherical Core 

 

In a spherical coordinate system, with            representing the radial, latitudinal, 

and longitudinal directions, the divergence of a vector                   is written 

as: 
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For a radially symmetric problem, the last two terms will be zero; 

     
 

  

 

  
      

Applying the product rule gives: 

     
  

  
 

  

 
 

where the second term comes about from the radial spreading with increasing r.  

This makes the radial conservation of mass and momentum equations: 
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In the Cartesian analysis, two mass equations are combined to solve for fluid velocity 

(See Eq. 24). Here, Eqs. 28 & 29 combine to give 

 

  
[         ]   

 

 
[         ]  (

 

  
 

 

  
)  

In the limit of large r, the  
 
 term above is relatively small. At a very small value 

of r, the velocities go to zero, while velocity gradients are large. In both cases, the  
 
 term 

above can be neglected. For convenience then, we assume that  (Eq. 22) with z replaced 



 

31 

 

with r, is approximately valid everywhere in the spherical system as well. Using this and 

combining the momentum equations to eliminate   gives; 
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Eqs. 29 & 32 are the spherical versions of Eqs. 20 & 25, and will be solved using the 

finite difference method. We make two more simplifications. Since the exact 

relationship between the shear and bulk viscosity of a viscously-deforming solid is not 

known, for simplicity we assume they are equal. 

      

We will assume that melting rate,  , does not vary with radius throughout the 

core, (i.e., the distribution of radiogenic heat sources remains uniform). Therefore we 

can substitute: 

∫       

Making these substitutions, Eq. (30) becomes: 
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Eq. 33 can be solved for W, and Eq. 29 is solved for  , with the same boundary 

conditions described by Eq. 26 and 27. 
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3.3 Scaling of Spherical Compaction Equations 

 

We scale the system of equations substitution for each variable a dimensionless 

variable times a scaling constant. 

     ’ 

       

       

       

     
   

     ’ 

     ’ 

        
  

   
 

 
     

       

All other quantities (densities of individual phases, fluid viscosities) are treated as 

constants. 
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We then make dimensionless versions of these equations, by dividing by the 

scaling constants on the rate of porosity change term, and the compaction stress term, 

respectively: 

       
  

   
 

    
  

[[
 

   
      

    ]  
       

    

  
]   

    
  

   

 

 
  

 

    
           

        
   

 

       
   

   
   

         
(
 

  
 

 

  
)    

 [
 

 
  [

    

    
 

 

  

   

   
]  

 

 
  [ 

 

  
 ]]    

Following McKenzie (1984), we choose the compaction length as the length 

scale, the Darcy velocity at a melt fraction of    as the velocity scale, and the quotient of 

those two scales as the time scale: 
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For our own problem other scales were needed. The melting rate scale is 
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The maximum gravity at the top of the melting core,     , is taken as the gravity 

scale, 

   
  

 
      

and the initial density difference, when the solid phase is     rock, is taken as the 

density difference scale 

                   

The porosity scale,   , can be chosen arbitrarily. We take it to be     , a representative 

porosity in most of our models. After the substitution we may do away with the primes 

on dimensionless variables and the non-dimensional equations become: 
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where   
 

 
. The non-dimensional boundary conditions, after dropping primes, are 

identical to Eq. 26 and 27. 
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3.4 Numerical Solution 

 

We will solve Eqs. 31 & 32 numerically by substituting finite differentiation 

approximations for the derivatives. For the velocity equation we use the centered 

difference method on all derivatives. The difference equations that holds at grid point i is 
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The resulting equation for the value of    is: 
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If porosity is completely known at an instant in time, we can solve for the distribution of 

solid velocity by iterating over Eq. 36 until convergence.  

Since Eq. 31 is an equation for the solid fraction of the system , we replace the 

porosity with           
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We use forward differencing in time and upwind differencing in space: 
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where   
  is the value of    after one time step and the values of     

        
  are: 

 

    
  

 

 
          

    
  

 

 
          

 

At each time step, using the porosity previously determined, we iterate Eq. 36 using the 

Gauss-Seidel method, to solve for all of the solid velocities. These solid velocities are 

then used in Eq. 37 to solve for a new porosity at the next time step, and the process is 

then repeated to step through time. 
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4. SPHERICAL VS. CARTESIAN COMPARISON, NO MELTING 

 

Since the compaction problem has not been solved in a spherical core before, we first 

present results of a simplified problem to look at the effects of spherecity and variable 

gravity. In this problem, we will set the melting rate to zero, and just track the 

segregation of a small amount of melt. This is based on the illustrative 1-D problem 

done in Richter & McKenzie (1984) with a uniform initial porosity: 

            

Using        , and the boundary conditions Eq. 26 and 27, we redo this problem, 

both in Cartesian coordinates with a fixed gravity, and in the 1-D radial coordinate 

system with a radically-varying gravity. 
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Figure 7: Porosity vs. dimensionless height in a non-melting Cartesian System. The 
separate curves show porosity at ten uniformly spaced times after the initiation of 

compaction. 
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Figure 8: Dimensionless solid velocity vs. dimensionless height in a non-melting 

Cartesian System. Not that these velocities are negative because the solid moves 
downward. The separate curves show porosity at ten uniformly spaced times after the 

initiation of compaction. 
 

Figures 7 & 8 show the evolution of porosity and solid velocity, respectively, for a 

Cartesian system. The multiple curves on each graph plot the gradual decline of both the 

porosity and the velocity with time, as the melt is expelled from the top of the column. 

Note that Fig. 2 is a schematic version of Fig. 7 at very early times. 
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Figure 9: Porosity vs. dimensionless radius in a Spherical system, as in Fig. 7. 
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Figure 10: Dimensionless solid velocity vs. the dimensionless radius in a Spherical 
system, as in Fig. 8. 

 
 

 

Figures 9 & 10 show porosity and solid velocity in a spherical system. One of the 

main differences that we can notice is in the porosity graphs. The porosity in the middle 

of the spherical system is very uniform, whereas in the Cartesian system the porosity 

increases with height. This is a geometric effect: a volume of melt migrating upward 

represents a continually smaller fraction of space as it moves into larger outer shells; this 

counteracts the increase of porosity with height seen in Fig. 7. The velocity graphs show 

us something also. In the spherical system the solid velocity increases nearly linearly 

with radius, whereas in the cartesian system velocity increases more rapidly with height 

over the bottom few compaction lengths. This effect is due to gravity: in the spherical 
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systems the driving force near     is small, so compaction at the center is relatively 

slow. Despite the difference in distribution of porosity the mean porosity in the two 

problems is approximately the same, so the melt in spherical problem does not segregate 

significantly faster or slower. 
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5. RESULTS FOR MELTING PLANETESIMALS 

 

The evolution of porosity within the melting core depends on two characteristics of 

the problem, the melting rate scaled by the time scale for porous flow (Eq. 34),  , and 

the radius of the melting core scaled by the compaction length scale (Eq. 35), h. We 

have conducted experiments at 5 different values of h and two values of  . Each 

simulation begins with a uniform core composed of 50% ice and 50% rock, by volume. 

A uniform constant melting rate is imposed over the entire core. Since the two-phase 

equations break down when the water fraction (porosity) is zero or one, we impose an 

initial 0.2% porosity, and prevent it from decreasing below this level. Each experiment is 

run for at least enough time for the ice to completely melt and the water to finish 

migrating out of the compacted core. Since the core begins at 50% ice, full 

differentiation will leave a smaller core of rock with a radius ~0.8 R0, overlain by a 

mantle of liquid water. 

 Below we illustrate two end-member paths: 1) melting faster than migration, which 

occurs for high melting rates and/or core radii that are only a few compaction lengths, 

and 2) melting slower than migration, which occurs for low melting rates and/or core 

radii that are many compaction lengths. 
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5.1 Endmember 1: Melting Faster than Migration 

 

 
Figure 11: Porosity vs. compaction length with a fast melting value (.86 million years 

accretion time) and a radius of five compaction lengths. The separate curves show 
porosity at different dimensionless times. 

 

 

As an example of the first endmember, we choose a simulation of a melting core 

that is five compaction lengths in radius      , and has a fast melting rate of          

             . Figure 11 shows the evolution over time of porosity vs. radius.  At a 

given time porosity increases nearly linearly with radius, reaching its maximum value at 

the top of the partially molten region (base of the water layer). The porosity in the entire 

core quickly grows to large values, peaking at a dimensionless time of about     , when 
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all ice in the core has melted. After this time, with the source of new meltwater gone, the 

porosity decreases steadily, as the melt drains out. Porosities become very small at the 

bottom of the column due to compaction, and some small porosity waves can be seen 

forming there. The compacted (near melt-free) center of the core grows with time. The 

mid- and outer levels of the core maintain significant porosity for a longer time. This is 

because these regions have an influx of water from the entire underlying portion of the 

core, so these regions take longer to empty of liquid. The position where the top of the 

porosity curves truncate shows how the water layer thickens over time.  

 

 

Figure 12: Velocity of solid phase vs. height for the compacting Spherical model shown 
in Fig. 11.  
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The final porosity curves in Figure 11 show a narrowing region of still-high 

porosity beneath the base of the water layer. This region at the top of the core takes a 

long time to completely compact, because the height of the compacting column has 

become less than one compaction length, and the velocities have decreased.  This is 

shown by the solid velocity profiles in Figure 12. These profiles also reflect the rapid 

increase and slow decrease in porosity, during and after melting, respectively. Note that 

the velocity profiles shown here are different from the no-melting simulation shown in 

the previous section (Figs. 10). In the simulation without melting the velocity profiles 

are more nearly linear with radius from the core than shown in Figure 12. While 

porosity decreases by about a factor of 2 between the end of melting and     , velocity 

decreases by more than an order of magnitude. This is explained partly by the nonlinear 

dependence of permeability on porosity, but also partly by the boundary conditions: with 

zero velocity at the bottom of the compacting column, and zero gradients in the solid 

flux at the top, the velocities are constrained to be rather small. This accounts for the 

slow draining of this top layer, even though porosity is more than 0.1. However, we 

consider the core to be effectively completely drained by a time of 1, because the 

volume of water in the core is < 2% of the initial ice volume.  

We can track the progress of the segregation of water from the core by the radius 

of the base of the accumulated shell of water on top, RW. This radial distance is scaled 

by the original radius of the melting core, so RW always begin at 1 (Figure 13). The 

‘staircase’ nature of this plot is due to rounding RW to the nearest grid point of the 
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numerical model. Once melting stops there is drastic slowdown of the growth of the 

water layer.  

 

 

 

Figure 13: The evolution of the radius of the top of the melting core, scaled by 
the original size of the core, vs. time for the run with h = 5 and              . The 
break in slope, at which time almost all of the melt has segregated from the core, is the 

“end of compaction”. 
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Figure 14: Composition of the melting core (based on volume fraction of ice, rock, and 
water) vs. time at the center of the core ( r = 0 ) for the simulation shown in Fig. 11 & 

12. The area below the red curve represents the volume fraction of ice, and the area 
above the blue curve is the volume fraction of water. The area between the two separate 

curves represents the volume fraction of rock. 
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Figure 15: Composition of the melting core (based on volume fraction of ice, rock, and 

water) vs. time at mid-radius     
 

 
   for the simulation shown in Fig. 11 & 12. See 

Fig. 14 for an explanation of curves. 
 

 

Figures 14 and 15 represent the composition of the melting core as we progress 

through time at two different locations of the core (at the center and at the mid-radius, 

respectively). The curves in these figures show the evolution of the volume fraction of 

the different components. The small area above the blue line represents the water in that 

portion of the core. This water is very quickly removed from that portion of the system 

by being squeezed out. The lower section of the graph shows the reduction of the ice 

component, while the middle section represents the rock component. As melting 

progresses, the solid part of the core becomes increasingly rock-rich, until the ice is gone 

at a dimensionless time of approximately      . At the center (Fig. 14), the water 

fraction never grows above about 2%, since compaction is most effective there. 
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Higher up in the core (Fig. 15), water fraction increases continuously to nearly 

15% while melting is occurring, but not as fast as ice fraction is reduced. Therefore 

water extraction from the core is occurring, but not fast enough to prevent a large 

increase in porosity. Melting stops at this depth at        , or slightly earlier than 

melting at the core center. That is because the high levels of porosity here reduce the 

amount of ice to be melted, and we are assuming a fixed mass rate of ice lost per 

volume. If we take into account the increasing heat source due to the concentration of 

radiogenic isotopes in the rock fraction, we would expect ice to melt even faster at the 

middle and outer levels. After melting stops, the water fraction drops as the segregation 

continues, until a time of     , at which the water has been entirely removed. Note that 

the lower levels of the core become dry faster than the upper levels, as the fully-

compacted region propagates upward (as can be seen from the porosity curves in Fig. 

11).  

 
5.2 Endmember 2: Melting Slower than Migration 

 

As an example of the second endmember, we choose a simulation with h = 5, and 

a much slower melting rate (              . 
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Figure 16: Porosity vs. compaction length with a slow melting value (6.71 million years 
accretion time) and a melting core with a radius of five compaction lengths. Note that 

the time intervals between curves is much longer than in Fig. 10.  
 

 

Because the melting rate here (in Fig. 16) is about a factor of 80 slower than in 

Endmember 1,  the dimensionless times in this run are much longer than in Fig. 11.  The 

main differences we see are that the porosities here are much smaller (notice the scale of 

the x-axis). This shows us that the melt is extracted nearly as fast as it is created in this 

system. Except for the compacting bottom and expanding top layer (plus some small 

porosity waves), the porosity is relatively uniform during melting, porosity drops to zero 

quickly as the melting ends and the melt is then segregated. As in Endmember 1, there is 
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a region which is left undrained at the top of the core for a long time, but this region is 

much smaller than that in Figure 11. 

 

 

 
Figure 17: Velocity of the solid matrix vs. the dimensionless radius for the compacting 

Spherical model from Fig. 16.  
 
 

 

The solid velocity profiles in this simulation (Fig. 17) are drastically different 

from the Endmember 1 case. Whereas the velocity in the Fig. 12 had a gradual decline 

with time that coincided with the slow decrease in porosity, in this case there is an 

immediate drop in velocity and porosity as soon as melting stops. During melting, the 

velocity profile is linear with radius, similar to the no-melting simulations (Figs. 10).  
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This is because, with a relatively small value of the melting rate, the system is 

responding similar to a simple compaction problem, with no melting. The simplest of 

our models is demonstrated in Fig. 18. 

 

 

 

Figure 18: The evolution of the radius of the top of the melting core, scaled by 
the original size of the core, vs. time for the run with h = 5 and              . The 
break in slope, at which time almost all of the melt has segregated from the core, is the 

“end of compaction”. 
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Figure 19: Composition of the melting core (ice, rock, and water) at the center of the 
planetesimal       vs. time for the simulation shown in the Figs. 16 & 17 (melting 

slower than migration endmember). See Fig. 13 for description. 
 
 
 

 
Figure 20: A close up of the water regoin of Fig. 19, showing the small increase in the 

water fraction before it reverts to         (which we do not allow to be extracted). 
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Figure 21: Composition of the melting core (ice, rock, and water) at the (    

 

 
 ) vs. 

time  for the simulations in Figs. 16 & 17. 

 

 
 

 
Figure 22: A close up of the water regoin of Fig. 21, showing the small increase in the 

water fraction before it reverts to         (which we do not allow to be extracted). 
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The ice fraction in the second endmember simulation (shown in the Figs. 19 and 

21) follows a similar pattern as in Endmember 1, except spread over a longer time 

period. However, the increase in the water fraction during melting is very small, hence 

the reason for the close-up graphs, Figs. 20 and 22. In no portion of the core does the 

amount of liquid water increase above 1 percent volume fraction. At the center, there is 

an initial increase to ~0.5% and then a gradual decrease from there to the point at which 

the water is squeezed out of the core. At the mid-radius of the core, the increase and 

decay is slightly larger and more gradual. 

 

5.3 Effect of Melting Rate and Size of Core 

 

This section summarizes the results of 10 simulations of melting core with the two 

melting rates just described, and a range of h values. Larger h corresponds to either a 

larger core, or smaller compaction length (smaller solid viscosity). 
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Figure 23: A composite of all of the porosity (x-axis) vs. dimensionless radius (y-axis) 

graphs for 5 different core size, (h) and two melting rates  
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Figure 23 shows how the porosity varies as h increases, starting from 

Endmember 1 (Fig. 10) and Endmember 2 (Fig. 15). The first end-member (melting 

faster than migration), can be seen in the left uppermost graph (h = 5 in the fast melt 

column) where the porosity has a rapid increase to a high porosity that varies with 

radius, and then a gradual decrease extending past the time of melting. In the simulations 

with higher h, the porosity curves resemble Endmember 2, with melting slower than 

migration. In these cases, porosity increasing rapidly to a nearly-uniform but small 

value, then rapidly decays once melting stops. The slight curvature of the porosity curves 

in a few runs (fast melt, h = 10 and 25, and slow melt, h = 5) indicate a transition 

between these two endmembers, although each of these cases is closer to the second 

endmember. 

For plausible melting rates based on radiogenic heating, any planet core that is 

larger than h = 75 is clearly in the Endmember 2 regime, where migration is significantly 

faster than the melting rate. As h increases, the porosity during melting stays constant 

over a larger and larger fraction of core, because the compaction stresses are important 

only over the bottom few compaction lengths. Because of this we don’t stimulate any 

larger h cores. The porosity waves become very apparent in the high-h simulations: their 

amplitude grows while the wavelength appears to decrease with increasing h.  This is 

because the wavelength of these waves is approximately the compaction length. The 

effect of these waves on total extraction time is relatively small however. 
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Figure 24: These are the results of the program runs for the composition of the melting 
core (based on volume fraction of ice, rock, and water) (y-axis) vs. time at     

 

 
   (x-

axis) for the simulations in Fig. 23. 
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The graphs shown in Figure 24 are the compositions of the individual planetesimal runs 

at the mid-radius and the core. The blue curve showing the water content clearly 

highlights that the Endmember 1 behavior is confined to the smallest, fast melting rate 

simulation. The red curves show that the dimensionless time for complete melting varies 

with core size, h. This is due to the fact that the chosen time scale is dependent on 

gravity, which also varies with core size, and will be discussed in Section 6. 

 

 

 
Figure 25: The position of the base of the accumulated water layer,   , relative to the 

original radius of the melting core vs. dimensionless time, for all of the fast melting rate 
simulations 

 
 

 

Figure 25 shows the drop in    for all the simulations with the fast melting rate. 

Given an initial core that is 50% ice by volume, the predicted value of    after the core 

has squeezed out the entirety of the water is ~     . In the     simulation, the bulk of 
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the segregation is completed much faster, by around        , although a small amount 

trickles out for much longer. This graph shows that the time for complete segregation 

also increases with dimensionless height, similar to the time for complete melting. Fig. 

26 shows a similar relationship in the simulations with the slow melting rate, although 

all of the times are longer. 

 

 

 

 

Figure 26: The position of the base of the accumulated water layer,   , relative to 
the original radius of the melting core vs. dimensionless time, for the slower melting 

rate, and a range of core radii. 
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Figure 27: Maximum core-averaged porosity (at differentsizes of planetesimals) vs. the 

dimensionless planetesimal radii.  
 

 

Figure 27 is a compilation of the core porosity for each simulation. We created 

this graph by first averaging porosity over the entire core (to remove the effect of 

porosity waves) at several times in each simulation, then choose the largest of these 

averages. Nearly all simulations have the same mean porosity as long as they also are 

given the same melt rate, porosity is not a function of core size, except in the 

Endmember 1 case. 
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6. DISCUSSION 

 

 

 
Figure 28: Dimensionless time for complete melting vs. dimensionless core radius. 

 
  
 

As was seen in section 5, the dimensionless time for melting and segregation 

increase with decreasing melting rate and increasing h (dimensionless core radius) [seen 

in Fig. 28]. Fig. 29 & 30 also show a clear linear dependence on h. This is a surprising 

result, since the time for melting should not depend on core size. However this effect 

seen in these figures is a result of the scaling: the time scale depends on h, as will be 

shown in the following section. 
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Figure 29: Dimensionless time for core compaction vs. dimensionless core radius. 

 

 
 

 
Figure 30: Dimensionless time that the maximum core-averaged porosity (Fig. 27) was 

reached for each run vs. the dimensionless planetesimal radii. 
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6.1 Large h Approximation 

 

For large-h simulations, the compaction stresses are not very important except in 

a small layer at the bottom of the core. Therefore, for these situations, we should be able 

to develop an approximate model that describes the averaged behavior. With no effect 

from compaction stresses, we can approximate fluid velocity with the Darcy velocity: 

   
    

  
                                                                                                                                    

The porosity will be dynamically determined by the system to create enough 

permeability to allow the melt flux at any given radius to equal the total rate of melt 

production below that radius. We can find that porosity by setting the fluid mass flux 

passing through a spherical surface of radius r equal to the integrated rate of melting 

produced within a sphere of radius r. 

      (   
   )   (

  

 
  )                                                                                                   

where    is the porosity. Substituting for    

   
    

 
  

 

 
 

where    is the permeability created by the porosity   . Since   varies throughout the 

layer, we substitute the value for gravity at this radius, along with the expression for 

permeability 

  (
     

    )  (
  
     )
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We can solve this for porosity 

   (
     

          
)

 
 ⁄

                                                                                                            

Note that this porosity is not a function of radius, as is clear in the Endmember 2 

cases shown in Fig. 22 (ignoring areas affected by compaction stresses, including the 

bottom and top of the region and porosity waves). The mean porosity for the slow 

melting rates is 0.007, and is 0.03 for the fast melting rates, from Fig. 26. Given that the 

fast melting rate is 71 times larger than the slow melting rates used, Eq. 40 predicts a 

difference of a factor of 4.1 in the porosities, which is exactly what is observed in the 

numerical results. 

Substituting this porosity into Eq. 38 gives 

   
 

   
(
        

 
)

 
 ⁄

(
   

  
)

 
 ⁄

  
 

 ⁄                                                                             

Combining the various constants in Eq. 41 into a single variable,  , we see that melt 

velocity varies linearly with radius, and increases with the melting rate to the   ⁄  power: 

        
 

 ⁄  

We can now define an approximate “migration time scale” as the time melt takes to 

cross the upper 90% of the core (to avoid the region at the bottom where compaction 

stresses are necessary). We define the melt velocity as the rate of change of radial 

position,  , with time.    
  

  
    Since velocity is a linear function of radius, position of 

melt at any time within a core of radius R will be given by  

         
 

 ⁄   
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So the time required to cross an entire core of radius R will be given by 

          
    

  
 

 ⁄
                                                                                                                          

If we compare this extraction time to the time to melt all of the ice in the core (from 

section 2.3) 

        

     
  

    
  

 
 ⁄

⁄

   
 ⁄

 
    

    
 
 

 ⁄  

In the simulations, we assumed a grain size of     .  Using other values for densities 

and melt viscosity (see Table 2),         . For the slower melting in our simulations 

this ratio is 0.12. Since the time to get melt out of the core is less than the time or 

melting the core, this implies that at this melting rate (assuming a core that is many 

compaction lengths in radius), melt will always get out about as fast as it is created. For 

the fast melting rate, this ratio is ~0.5, indicating that melt will accumulate somewhat in 

the core. A melting rate that was 5-10 times faster should overwhelm the ability of the 

melt to migrate, and large porosities will accumulate. 

 

6.2 Timing of Melting and Segregation 

 

Previous Figs. 25 – 30 indicated that the time for melting and segregation both 

depend on melting rate, and dimensionless radius of core. This second dependence is a 

function of the time scale. Not that the chosen time scale depends on the velocity scale. 
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The velocity scale depends on the gravity scale,   , which increases linearly with core 

radius. Substituting for both    and   : 

 

    
  

  

 
           

 

 

   
 

  
 

  

                   
 

 

                     

 

 
 

 

Therefore the time scale varies linearly with compaction length divided by core radius, 

or inversely with h. So while dimensionless melting time varies linearly with h if we 

convert to dimensional time, the dependence on core size disappears. Fig. 31 shows real 

melting times for the simulations, showing that there is no size-dependence.  
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Figure 31: Melting time vs. initial core radius. The conversion to dimensional radius 

assumes a ratio of solid viscosity to ice viscosity of 106.  
 

 

 
Figure 32: Segregation time/Melt time vs. core radius. 
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Figure 32 plots the ratio of the time for segregation of melt to the time for 

complete melting of the core for all of the simulations. In this plot, time to melt is 

defined as the time when ice at the center of the core has completely vanished. This is 

slight underestimate of the total melting time, since end of melting propagates upward 

through the core with time. Segregation time is defined as the time when the rapid 

growth of the water layer ceases. In some cases, this is a slight underestimate of the time, 

because a small amount of water (< 1 % of the total) comes out at a much slower rate. In 

the slow melting cases this ratio is slightly greater than 1, indicating again that melt is 

coming out of the system as fast as it is created. In the fast melting cases with small        

h    , the segregation time is 4 to 12% greater than the melting time, because 

compaction stresses have slowed the migration of melt out of the core. In the larger h 

cases, the ratio is < 1 because of the slower upward propagation of the end of melting.  
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7. CONCLUSION 
 
 

This thesis describes a numerical model of a part of the differentiation history that a 

small ice/rock planetesimal could experience. To do this we adapted the approach 

developed by McKenzie for a partially molten upper mantle in the Earth, to a spherical 

core melting ice mixed with rock. The model is designed to analyze the time necessary 

for a planetesimal of a given size and melting rate to differentiate into a compacted core 

of rock overlain by a mantle of water. This time is affected by the gravity-driven 

buoyancy of the melt, the resistance of the remaining solid core to compaction, and the 

permeability of the core. This required rederiving McKenzie’s formulation in 1-D radial 

coordinates, accounting for the variable gravity in the core of a planetesimal, and the 

uncertainties in the viscosity of the ice/rock mixture. 

 We determined from simple initial models, a small (a few compaction lengths in 

radius) non-melting bodies, the effects of spherical spreading and variable gravity do not 

significantly change the total segregation time from a model done with constant gravity 

in 1-D cartesian coordinates. However, the details of the porosity distribution vs. radius 

are different in the spherical problem. 

 From a suite of numerical models, we have determined that under almost all 

circumstances, the meltwater is segregated out of the core as fast as it is created, and the 

porosity remains < 1%. In these cases, the melting rate controls the amount of time 

necessary for a planetesimal to complete its segregation and compaction. In only one 

model, which we identify as Endmember 1, do we see migration slow enough that the 
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segregation time is significantly longer than the melting time       My vs.      My). 

This situation occurred when the core radius was only five compaction lengths (~25 and 

150 km, depending on the mean core viscosity), and the melting rate was relatively fast 

(corresponding to radiogenic decay that contains a fairly high contribution from 26Al), 

less than 1 My after the beginning of accretion. 

 The segregation in the Endmember 1 case is slower because of compaction 

stresses that resist compaction in the small core. This allows production of new melt to 

overwhelm the migration of melt. However at the slower melting rate we tested, this 

process does not happen even in our smallest core. Therefore, we surmise whether the 

core is melting-dominated or migration-dominated depends strongly on core size in 

compaction lengths, but also weakly on melting rate, and predict that at faster melting 

rates than the one we tested, we would expect the Endmember 1 behavior to extend to 

larger cores. Much larger melting rates due to radiogenic heating might be unlikely, but 

if we were to add in the contribution of serpentinization, the melting rates could be much 

higher. 

 Most of our models indicate that migration is very fast, so the meltwater does not 

stay long in the core, which could inhibit serpentinization. However, any 

serpentinization will tend to drive up melting rates, and create higher water fractions in 

the core, which should help to drive the reaction. Therefore, our model indicates that if 

the water-rock reaction can begin, it will overwhelm migration and lead to a water-rock 

core which can then react while compacting out any excess fluid. A careful study of the 
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kinetics of the water-rock reaction, in conjunction with these models is necessary to 

better determine the evolutionary path of most ice-rock planetesimals. 
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APPENDIX 1 
 
 
 

Finite Difference Fortran program for Melting and Migration in Spherical Coordinate 
system 

 
 
 INTEGER N, M, jcount, Wp 
              PARAMETER (Nmax = 18501) 
              PARAMETER (Maxsteps = 300000) 
              REAL*8 dtfactor, h, p0, pfl, pso, con,spf 
              REAL*8 dr, dtmax, xp, dt, dep 
              REAL*8 W(Nmax), v(Nmax), p(Nmax), ps(Nmax), rf(Nmax), f(Nmax),  
                 1             res(Nmax), psn(Nmax), r(Nmax), S(Nmax), si(Nmax), z(Nmax), 
                 1   g(Nmax), Y(Nmax), X(Nmax), gr(Nmax), ep(Nmax), vis(Nmax), 
                 1   phip(Nmax), rhs(Nmax), Melt(Nmax), Melt0, vis0(Nmax), 
                 1   delp(Nmax), psolid(Nmax) 
              REAL*8 xi(Nmax),xin(Nmax),xr(Nmax),xrn(Nmax) 
              REAL*8 pice,rock0, prock, K, mew 
              REAL*8 pi, avp, Gravity, Me, Mmelt 
              REAL*8 rest(100*Nmax), Wtop(100*Nmax) 
              REAL*8 rm(Maxsteps)  
              REAL*8 incp(Nmax,10), incW(Nmax,10), inci(Nmax,10) 
              REAL*8 incr(Nmax,10), incps(Nmax,10) 
  
      read(*,*) h, N, Metype, ibetatype 
c      N =801 
      ibot=1 
      dtfactor = 0.01 
c      h = 150.0 
      dr = h/(N-1) 
      p0 = 0.02 
      psmax=1./p0 
      rock0=0.5 
      pfl = 1000. 
      pice=920. 
      prock=3300 
      pso = 2000. 
      dep = (pso-pfl) 
      K = 8.e-15 
      mew = 1e-3 
      pi = 4*atan(1.0) 
      avp = 2000. 
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      Gravity = .667e-10 
      if (Metype .eq. 1) then 
          Me = 4.458e-11 
      else if (Metype .eq. 2) then 
          Me =2.66e-12  
      else 
         Me = 6.27e-13 
      endif 
 
      if (ibetatype .eq. 1) then 
        beta = 1.6       
      else  
        beta = 2.5 
      endif 
      
      print*, h, N, Me, beta 
       
c  Scale the melting rate; time scale depends on h. 
      Melt0 = (Me*mew)/(h*pfl*K*(1-p0)*dep*(4/3)*pi*avp*Gravity) 
      print*, Melt0 
       
      con = 5./7. 
       
c if spf=2., this is the spherical equation (this program only does cartesian now) 
      spf=2. 
 
      open(unit=15,file="vis.txt")      
 
 DO          i = 1, N 
      if (spf .eq. 2.) then 
     gr(i) =  float(i-1)/float(N-1)    
                                  else 
     gr(i) =1.    
                                  endif 
        Melt(i) = Melt0 
 END DO 
  
                R(1)=0. 
 DO          i = 2, N 
  R(i) = dr*float(i-1) 
 END DO 
 
                               DO          i = 1, N 
               W(i) = 0.0 
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           v(i) = 0.0 
          p(i) = 0.1 
        ps(i) = (1.-p0*p(i)) 
                                        xr(i)=rock0*ps(i) 
                                        xi(i)=(1-rock0)*ps(i) 
    
              psolid(i) = ((pice*xi(i))+(prock*xr(i))) 
     1            /( xi(i)+xr(i) ) 
         delp(i)=1. 
                        END DO 
 
      dtmax = (dr*(1-p0))/(1+p0) 
      dt = dtfactor*dtmax 
      xp = 3.0 
      rm(1) = (N-1)*dr 
      Mmelt = 0.5/(dt*Melt0) 
 
      print*, 'Mmelt = ', Mmelt 
 
      M = nint(5*Mmelt) 
      jcount = 0  
      N0=N 
 
  open(unit=9, file='xbeginning.txt') 
  open(unit=10, file='xmid.txt') 
  open(unit=11, file='xwater.txt') 
 
                print*, 'melt=',Melt(1) 
      Ntop=N 
      ibot=1 
 
c  %%%%%% BEGIN TIME STEPPING LOOP  %%%%%%%%%%%% 
      DO j = 1, M 
                  tau = j*dt 
                  vissum=0. 
                  xrmin=1. 
                  xrave=0. 
                  pave=0. 
                  nvpts=0 
          do i=ibot,N-1 
           if (xr(i) .lt. 1.) then 
                  pave=pave+p0*p(i) 
                  xrave = xrave +(xr(i)/ps(i)) 
                   nvpts=nvpts+1 
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          endif 
         enddo 
 
 
 
         if (nvpts .gt. 0) then 
                  xrave = min(.75,xrave/float(nvpts)) 
                  pave=pave/float(nvpts) 
         else 
                  xrave = .75 
                  pave=p0*p(N 
          endif 
 
         vissum=1. 
     
               do i=1,N 
                    vis(i)=vissum 
                enddo 
 
write(15,*) tau, vis(1), xrave, pave 
 
write(29,*) xr(1),xr(2),xr(3), ibot 
 
           if (ibot .lt. N-1) then 
    
           DO i=1,ibot 
                 W(i)=0. 
           ENDDO 
 
           DO i = ibot+1, N 
  rf(i) = -2./(dr*dr) 
     1   -1./(vis(i)*(p(i)**xp)) 
     1   -(spf*con)/(r(i)*r(i)) 
 
       f(i) = (1.-pfl/psolid(i))*( (1.-p0*p(i))*gr(i)/(1.-p0) 
     1    +r(i)*Melt(i)/(3.*(p(i)**xp)) )/vis(i) 
 
           END DO 
 
c &&&&&&&&&&&&&& BEGIN ITERATION LOOP&&&&&&&&&&&&&&       
                              itermax=30*N0 
  DO iter = 1, itermax 
 
   DO i = ibot+1,N-1 
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        rhs(i)=(f(i) - (W(i+1)+W(i-1))/(dr*dr) 
     1      -spf*(W(i+1)-W(i-1))/(r(i)*2.*dr) )/ rf(i) 
 
            W(i) = rhs(i) 
 
   END DO 
 
                                    W(N)=W(N-1)*ps(N-1)/ps(N) 
     
   DO  i = ibot+1, N-1 
           res(i) =  rf(i)*W(i) - (f(i) - (W(i+1)+W(i-1))/(dr*dr) 
     1      -spf*(W(i+1)-W(i-1))/(r(i)*2.*dr) )   
                                                         if (W(i) .eq. 0.) res(i)=0. 
   
   END DO 
 
  rest(iter) = rnorm1(res,ibot,N) 
  Wtop(iter) = rnorm1(W,ibot,N) 
  ctest = rest(iter)/Wtop(iter) 
 
   IF (ctest .LT. 0.002) THEN 
    goto 57 
   END IF 
 
  END DO 
 
c &&&&&&&&&&&&&& END ITERATION LOOP &&&&&&&&&&&&&&&& 
                print*, 'not converged'   
 
57      continue 
 
             else 
                    print*, j, 'no compacting region ', ibot, N 
               do i=1,N 
                    W(i)=0. 
               enddo 
             endif 
          
psn(1) = ps(1)- dt*( 3.*ps(2)*W(2)/dr)-dt*pfl*Melt(1)/pice  
xrn(1) = xr(1)- dt*3.*xr(2)*W(2)/dr 
 
   DO  i = 2, N-1 
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                    wsp=0.5*(W(i)+W(i+1)) 
                    wsm=0.5*(W(i)+W(i-1)) 
  psn(i) = ps(i)+ dt*( -(ps(i+1)*wsp-ps(i)*wsm)/(dr) 
     1     - spf*W(i)*ps(i)/r(i)  ) 
     1     - dt*pfl*Melt(i)/pice 
 
  xrn(i) = xr(i)+ dt*( -(xr(i+1)*wsp-xr(i)*wsm)/(dr) 
     1     - spf*W(i)*xr(i)/r(i)  ) 
  
   END DO 
                wsm=0.5*(W(N)+W(N-1)) 
                psn(N) = ps(N)-dt*((ps(N)*W(N)-ps(N)*wsm)/dr) 
     1                             - dt* spf*W(N)*ps(N)/r(N)     
     1  - dt*pfl*Melt(N)/pice   
 
                xrn(N) = xr(N)-dt*((xr(N)*W(N)-xr(N)*wsm)/dr) 
     1                   - dt* spf*W(N)*xr(N)/r(N)     
 
 
                        DO i = 1, N 
   ps(i)=psn(i) 
                               xr(i)=xrn(i) 
c   do not system be compressed to zero porosity  
  if (ps(i) .gt. 0.998) then 
                                 xr(i)=xr(i)-(ps(i)-.998)   
                                         ps(i)=0.998 
                             endif 
 
c  don't let rock fraction go above 0.7 
                           if (xr(i) .gt. 0.998) then 
                                       xr(i)=0.998 
                         endif 
 
c  ice fraction 
                                    xi(i)=ps(i)-xr(i) 
                       if (xi(i) .lt. 0.) then 
                            xi(i)=0. 
                             if ((i.eq.1).and.(Melt(i).gt.0.)) then 
                                  print*, 'bottome done melting' 
                             endif 
                             Melt(i)=0. 
                         endif 
 
c  finally, get water fraction, and recalculate solid density and delta-rho 
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        p(i) = (1.-ps(i))/p0 
 psolid(i) = ((pice*xi(i))+(prock*xr(i))) 
     1    /( xi(i)+xr(i) ) 
 
 delp(i)=(psolid(i)-pf)/(0.5*(prock+pice)-pf) 
                          END DO 
 
 
            xrave=0. 
                do i=1,N 
                  xrave=xrave+xr(i) 
                enddo 
 
            xrave=xrave/float(N) 
  
            rc=h*(0.5/xrave)**(1./3.) 
                Ntop=int(rc/dr) 
  if (N .gt. Ntop) then 
     print*,  j, tau, ibot, ' Top =', Ntop 
     N=Ntop 
  endif 
 
               increment=M/10 
 
  IF  (mod((j-1),increment) == 0) THEN 
       time = dt*(j-1) 
       print*,  j, tau,'iterations = ',iter 
 
       jcount = jcount + 1  
   IF (jcount .LE. 10) THEN 
    DO i= 1,N 
     incp(i,jcount)= p0*p(i) 
    END DO 
    DO i= 1,N 
     incps(i,jcount)= ps(i) 
    END DO 
    DO i= 1,N 
     inci(i,jcount)= xi(i) 
    END DO 
    DO i= 1,N 
     incr(i,jcount)= xr(i) 
    END DO 
    DO i = 1, N 
     incW(i,jcount)=W(i) 
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    END DO 
   END IF 
  END IF  
   write(9,*) tau, xr(1), xi(1), p0*p(1) 
   write(10,*) tau, xr(N/2), xi(N/2), p0*p(N/2) 
                       write(11,*) tau, r(N)/r(N0), ibot 
                     END DO 
c  %%%%%% END TIME STEPPING LOOP  %%%%%%%%%%%% 
    
  open(unit=7, file='rockfraction.txt') 
  DO i = 1, N0 
   write(7,300) r(i), (incr(i,jp),jp=1,min(jcount,10)) 
  END DO 
  open(unit=7, file='icefraction.txt') 
  DO i = 1, N0 
   write(7,300) r(i), (inci(i,jp),jp=1,min(jcount,10)) 
  END DO 
  open(unit=7, file='solidfraction.txt') 
  DO i = 1, N0 
   write(7,300) r(i), (incps(i,jp),jp=1,min(jcount,10)) 
  END DO 
  open(unit=7, file='porosity.txt') 
  DO i = 1, N0 
   write(7,300) r(i), (incp(i,jp),jp=1,min(jcount,10)) 
  END DO 
  open(unit=8, file='velocity.txt') 
  DO i = 1, N0 
   write(8,300) r(i), (incw(i,Wp),Wp=1,min(jcount,10)) 
  END DO 
 300   format(11(E13.4,1x)) 
                print*, 'melt=',Melt(1) 
      END 
       REAL*8  FUNCTION rNORM1(F,ibot,N) 
       REAL*8 F(N),sum 
       sum=0. 
       DO i=ibot+1,N-1 
c        print*, 'F=', F(i) 
  sum=sum+F(i)**2 
       ENDDO 
       rnorm1=sqrt(sum)  
c    print*, rnorm1 
 
       RETURN 
       END 


