

BREAKING THE TENSION: DEVELOPMENT AND INVESTIGATION OF A

CENTRIFUGAL TENSIONED METASTABLE FLUID DETECTOR SYSTEM

A Thesis

by

MATTHEW ALAN SOLOM

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Karen Vierow

Committee Members, Leslie A. Braby

 James T. White

Head of Department, Yassin Hassan

December 2012

Major Subject: Nuclear Engineering

Copyright 2012 Matthew Alan Solom

ii

ABSTRACT

The current knowledge of the performance characteristics of Centrifugal

Tensioned Metastable Fluid Detectors is limited. While a theoretical treatment and

experience with bubble chambers may be applied with some degree of success, they are

no substitute for experimental and operational knowledge of real CTMFD systems. This

research, as with other investigations into CTMFD systems in the past, applies theory

and simulations. In addition, however, an experiment was conducted that for the first

time attempts to determine the threshold energy for triggering a CTMFD system in a

controlled manner.

A CTMFD system works in a manner similar to classic bubble chambers. A

liquid is brought to an unstable state in which it is favorable to form a volume of vapor;

using centrifugal techniques similar to those employed in a Briggs apparatus, the

pressure in the sensitive region can be brought to extremely low values, placing the

liquid in a tensile state. In such states, the energy necessary to cause the formation of

macroscopic bubbles can be vanishingly small, depending on the degree of tension.

When such bubbles form in a CTMFD, if they have a size bigger than a critical value,

they will grow until a large vapor column forms in the sensitive region of the CTMFD.

The experiment developed for this research employed a carefully-controlled laser

to fire pulses of known energies into the sensitive region of a CTMFD. By varying the

laser power, the threshold values for the triggering energy of a CTMFD can be found.

iii

The experiment and simulation demonstrated the ability of the facilities to test

CTMFD systems and the potential to extract their operational characteristics. The

experiment showed a certain viability for the technique of laser-induced cavitation in a

seeded fluid, and demonstrated some of the associated limitations as well. In addition,

the CFD framework developed here can be used to cross-compare experimental results

with computer simulations as well as with the theoretical models developed for this

research.

iv

DEDICATION

For my grandparents.

v

ACKNOWLEDGEMENTS

I would like my advisor, Dr. Karen Vierow, for making this research possible.

Her help, support, and above all, patience, enabled me to complete this work. I would

also like to thank the other members of my committee, Dr. Leslie A. Braby and Dr.

James T. White, for their help and insightful discussions on the mechanics behind the

experiment.

I am also very grateful to the other members of the Laboratory for Nuclear Heat

Transfer Systems, past and present, for the myriad of ways they assisted. Oren Draznin,

Wes Cullum, Brad Beeny, Andrew Dercher, and Patrick McDermott were instrumental

in assembling the experimental facilities. In addition, Dr. Kevin Hogan introduced me

to CFD and was extremely helpful in the early stages of the CFD model development.

I would also like to thank Dr. R. Cable Kurwitz and the Nuclear Power Institute

at Texas A&M University. Their support enabled me to continue after funding for this

research disappeared.

vi

NOMENCLATURE

ATMFD Acoustic Tensioned Metastable Fluid Detector

CAD Computer-Aided Design

CFD Computational Fluid Mechanics

CTMFD Centrifugal Tensioned Metastable Fluid Detector

HEU Highly Enriched Uranium

IR Infrared

LED Light Emitting Diode

P Pressure

PWM Pulse Width Modulation

r Radius

R Gas Constant

SNM Special Nuclear Material

T Temperature

TMFD Tensioned Metastable Fluid Detector

WIMP Weakly Interacting Massive Particle

vii

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

DEDICATION .. iv

ACKNOWLEDGEMENTS ... v

NOMENCLATURE .. vi

TABLE OF CONTENTS ...vii

LIST OF FIGURES .. x

LIST OF TABLES .. xiv

1. INTRODUCTION .. 1

1.1. Problem Statement ... 5
1.2. Technical Approach ... 5

1.3. Thesis Overview ... 6

2. BACKGROUND AND THEORY ... 8

2.1. Bubble Theory .. 8
2.1.1. Limits of Quasi-Static Stability .. 10

2.1.2. Energetics ... 13
2.1.3. Acoustic Dynamics .. 15

2.1.4. Cavitation Damage ... 17
2.2. Nucleation Theory .. 18

2.2.1. Heterogeneous Nucleation ... 18
2.2.2. Homogeneous Nucleation .. 20

2.3. Tensile Fluids ... 25
2.4. Bubble Chambers ... 28
2.5. Tensioned Metastable Fluid Detector Systems .. 30

3. EXPERIMENTAL WORK .. 36

3.1. Experimental Background Theory ... 37

3.1.1. Pulse Width Modulation ... 46
3.1.2. RS-232 .. 47

viii

3.1.3. Optics ... 50
3.2. Experimental Equipment .. 52

3.2.1. Containment Box .. 57
3.2.2. Containment Box Interlock .. 60

3.2.3. CTMFD Hardware ... 61
3.2.4. CTMFD Test Sections .. 64
3.2.5. Speed Sensor .. 68
3.2.6. Cavitation Sensor ... 69
3.2.7. Signal Inverter .. 71

3.2.8. Speed Controller Electronics Unit .. 72
3.2.9. RS-232 Isolator and Power Supply .. 76
3.2.10. Laser System and Optical Assemblies .. 78

3.2.11. Laser Interlock System ... 81
3.2.12. Pulse Generator ... 83
3.2.13. Oscilloscope .. 85

3.2.14. High Speed Camera .. 85
3.2.15. Data Acquisition and Control System .. 86

3.2.16. SpeedControl Software ... 86
3.3. Fluid Choice and Seeding .. 96
3.4. Experimental Procedures.. 97

3.4.1. Pre-Operation Procedures .. 97
3.4.2. Data Operation Procedures ... 99

3.4.3. Shutdown Procedures ... 104
3.4.4. High-Speed Camera Notes ... 104

3.5. Experimental Results.. 105

3.5.1. High Speed Visualization ... 106

3.5.2. First Fill .. 116
3.5.3. Second Fill .. 118
3.5.4. Third Fill .. 121

3.5.5. Fourth Fill ... 122
3.5.6. Discussion and Analysis ... 124

4. COMPUTATIONAL FLUID DYNAMICS WORK ... 130

4.1. CFD Simulation.. 131

4.2. CFD Results ... 141

5. CONCLUSIONS .. 150

5.1. Key Findings .. 151
5.2. Future Work ... 151

REFERENCES ... 153

APPENDIX A .. 156

ix

APPENDIX B .. 193

APPENDIX C .. 355

x

LIST OF FIGURES

 Page

Figure 1: van der Waals Isotherms [1] .. 22

Figure 2: PV Diagram [6] .. 24

Figure 3: CTMFD Concept [5] .. 32

Figure 4: Triggered CTMFD ... 33

Figure 5: Experimental Concept ... 38

Figure 6: Energy Requirements for Bubble Formation ... 44

Figure 7: Fluence Requirements for Bubble Formation .. 44

Figure 8: New Laser Room ... 53

Figure 9: CTMFD Experimental Facility .. 54

Figure 10: CTMFD Experiment with Open Enclosure ... 55

Figure 11: Close-Up of the Mounted Test Section ... 56

Figure 12: CTMFD Setup ... 62

Figure 13: Assembled Test Section A ... 65

Figure 14: Test Section A Glassware ... 66

Figure 15: Flat-Bottomed Glassware .. 67

Figure 16: Controller Output Waveform ... 74

Figure 17: Laser and Mirror on Platform .. 80

Figure 18: Main SpeedControl Window ... 88

Figure 19: Before the Pulse ... 107

xi

Figure 20: Firing the Pulse .. 108

Figure 21: 1 ms Post-Pulse .. 108

Figure 22: 2 ms Post-Pulse .. 109

Figure 23: 3 ms Post-Pulse .. 110

Figure 24: 4 ms Post-Pulse .. 110

Figure 25: 5 ms Post-Pulse .. 111

Figure 26: 6 ms Post-Pulse .. 111

Figure 27: 7 ms Post-Pulse .. 112

Figure 28: 9 ms Post-Pulse .. 113

Figure 29: 11 ms Post-Pulse .. 113

Figure 30: 16 ms Post-Pulse .. 114

Figure 31: 21 ms Post-Pulse .. 115

Figure 32: 41 ms Post-Pulse .. 115

Figure 33: 191 ms Post-Pulse .. 116

Figure 34: First Fill ... 118

Figure 35: Fill 2 Data .. 119

Figure 36: Fill 3 Chart ... 122

Figure 37: Fourth Fill Data .. 124

Figure 38: All Collected Data ... 126

Figure 39: 6 μs Pulse Data .. 127

Figure 40: Comparison with Expected Trend ... 128

Figure 41: CAD model for CFD ... 132

xii

Figure 42: Model Dimensions (mm), Front .. 133

Figure 43: Model Dimensions (mm), Top .. 134

Figure 44: Model Dimensions (mm), Side .. 134

Figure 45: CFD Mesh .. 135

Figure 46: Initial Fill Example .. 136

Figure 47: CFD Pressure Drop .. 145

Figure 48: CFD ΔP Fractions .. 146

Figure 49: Lab-Frame Velocity Distribution .. 147

Figure 50: Pressure Distribution ... 148

Figure 51: Containment Box Interlock Schematic .. 158

Figure 52: Speed Sensor Schematic .. 160

Figure 53: Speed Sensor Adapter Schematic .. 161

Figure 54: Cavitation Sensor Schematic ... 163

Figure 55: Signal Inverter Schematic .. 165

Figure 56: Speed Controller Electronics Overview .. 167

Figure 57: Master Power Subassembly ... 168

Figure 58: Fault Detector Subassembly .. 169

Figure 59: Isolator Subassembly ... 170

Figure 60: Phase Detector Subassembly ... 171

Figure 61: Trigger Subassembly ... 172

Figure 62: Waveform Adapter Subassembly .. 173

Figure 63: Serial Port Isolator Overview .. 177

xiii

Figure 64: Power Supply Subassembly ... 178

Figure 65: Buffer A-B Subassembly ... 179

Figure 66: Buffer C-D Subassembly ... 180

Figure 67: Buffer E-F Subassembly .. 181

Figure 68: Buffer G-H Subassembly ... 182

Figure 69: Laser Interlock System Overview ... 185

Figure 70: Interlock Light 1 Subassembly .. 186

Figure 71: Interlock Light 2 Subassembly .. 187

Figure 72: Interlock Light Flasher Controller Subassembly ... 188

Figure 73: Interlock 12V Supply Subassembly ... 188

Figure 74: Interlock Door and Buttons Subassembly ... 189

Figure 75: Pulse Generator Schematic .. 192

xiv

LIST OF TABLES

Page

Table 1: Properties of Acetone [21] .. 43

Table 2: Antoine Parameters for Acetone [22] ... 43

Table 3: Data from the First Pulse Series .. 117

Table 4: Data from the Second Pulse Series ... 120

Table 5: Data from the Third Pulse Series .. 121

Table 6: Data from the Fourth Pulse Series .. 123

Table 7: Meshing Information ... 137

Table 8: Physics Conditions .. 139

Table 9: Other Conditions ... 140

Table 10: CFD Ramp-Up .. 142

Table 11: Post-Ramp Values ... 143

Table 12: Long-Term Values .. 144

Table 13: Containment Box Interlock Components .. 159

Table 14: Speed Sensor Components .. 161

Table 15: Speed Sensor Adapter Components .. 162

Table 16: Cavitation Sensor Components ... 164

Table 17: Signal Inverter Components .. 165

Table 18: Speed Controller Components, Part 1 ... 174

Table 19: Speed Controller Components, Part 2 ... 175

xv

Table 20: Serial Port Isolator Components, Part 1 .. 183

Table 21: Serial Port Isolator Components, Part 2 .. 184

Table 22: Laser Interlock System Components .. 190

Table 23: Pulse Generator Components .. 191

1

1. INTRODUCTION

Detection of highly enriched uranium (HEU) and other special nuclear materials

(SNM) can be made difficult through shielding and low intrinsic radioactivity signatures

of the potential material. In addition, current detectors designed for use at domestic

points of entry (for the detection of smuggled SNM) tend to be large and expensive

affairs with limited usefulness. The development of an inexpensive, high-performance,

and portable system would therefore greatly help the detection effort and enhance the

deterrence of such activities.

A novel detector based on metastable tensioned fluids has promising

characteristics that would facilitate detection of SNM in an active-interrogation

environment. The detectors can be fabricated out of common, inexpensive materials,

and be scaled from relatively small, portable units to large, fixed detectors by simply

enlarging the tensioned fluid chamber. The threshold for detection can be adjusted by

changing the degree of tension present in the fluid, allowing for the sensitivity to

radiation to be easily adjusted.

There are two major classes of tensioned metastable fluid detectors currently

under investigation to achieve this. One design uses a piezoelectric transducer to induce

acoustic waves in a sensitive resonant region. This results in periods of high pressure at

the peak of the waveform and potentially significant degrees of tension during the

troughs. The detector therefore has an intrinsic duty cycle and will have a minimum

2

insensitive period regardless of the particle flux. Such a system is an acoustic tensioned

metastable fluid detector (ATMFD).

The second design achieves a tensile state in the sensitive region through

centrifugal means. A specially crafted assembly containing the fluid is rotated around its

centerline at a very high rate. Due to the design of the apparatus, the result can be a

significant degree of tension in the fluid at the centerline and for the region surrounding

it. While the pressure in the sensitive region will vary by the distance from the

centerline, it can be essentially time-independent. This eliminates the insensitive periods

inherent in the ATMFD. However, this centrifugal tensioned metastable fluid detector

(CTMFD) has the drawback of being essentially a single-shot device; once the tension is

broken, the device needs to be stopped and restarted to re-tension the fluid. This results

in dead times on the order of tens of seconds. Such a protracted period of insensitivity

makes the device useless for high-flux fields within the device’s sensitive range;

however, it is much less important when the field is extremely weak and detection of the

presence of the field takes priority over quantification of the flux.

While the conditions the fluids experience may be considered exotic, the fluids

themselves need not be. The devices can be designed to use Freon, acetone, or even

water. They take advantage of the tendency of liquids to adhere to the walls of their

containers if the composition is compatible (adhesive forces), for individual molecules to

be attracted to each other (cohesive forces), and for the liquid to remain largely

incompressible. The combination of those properties allow for tensile stresses to be

applied to liquids far in excess of thermodynamic stability. In fact, liquids can be

3

tensioned well beyond the point where the absolute pressure within them is less than

zero [1]. Some liquids have remarkable limits on the amount of tension they can endure;

benzene has been measured to -150 bar [2], and water has been measured to -1400 bar

with a theoretical limit of -1400 to -2000 bar [3].

The ability of liquids to tolerate significant amounts of tension may seem

surprising at first, but it is a known phenomenon. In fact, it is not a rare phenomenon in

nature. Plants are known to take advantage of it; -15 atm can be found in the sap of

redwoods, while -80 atm have been measured in creosote bushes [4].

In such tensile states, the liquids are not stable and tend to separate into liquid +

vapor. However, this is limited when there are no nucleation sites available. These may

be surface irregularities, suspended ‘motes’ in the liquid, dissolved gases, or anything

else that would encourage bubble formation and growth beyond the critical size. If

appropriate nucleation sites are not available, cavitation will not occur and the liquid will

remain a liquid, although unstable. Increasing the degree of tension in the liquid makes

it easier to destabilize and cavitate, and by increasing it far enough either the adhesive or

the cohesive forces maintaining the liquid as such will be overcome and it will cavitate.

Within that range, the minimum required energy for an event to result in cavitation

becomes very small. Depending on the liquid, at some point the localized energy

deposited by a single incident nuclear particle is enough to nucleate a bubble larger than

the critical size, and it will continue to grow until the new liquid + vapor mixture reaches

thermodynamic equilibrium [5]. Given enough of a tensioned liquid with even a modest

4

cross-section, one could build a detector based on the cavitation of the liquid. This is not

unlike the classic bubble chamber, which uses superheated liquid as its working fluid.

From bubble theory, one can easily determine the energy required to grow or

shrink a spherical bubble from one radius to another if the vapor and liquid pressures are

known along with the surface tension of the interface. Any of the aforementioned

irregularities in the liquid may provide an effective ‘bubble’ that can be incited to grow

by local energy deposition. However, it is unclear to what extent a liquid’s properties

may be affected by a metastable tensile state and how influential random microscale

events may be; simple application of thermodynamics and bubble theory may be

insufficient for the realization of the energetics involved in a cavitation event.

Experimentation is necessary to gather sufficient data on the events and to develop

empirical relationships governing cavitation events.

Such experiments can be conducted by providing known energies to liquids with

known tensions. This may be done by focusing a laser pulse to a small region of fairly

uniform tension in a liquid and observing potential cavitation events. By adjusting the

laser’s properties (pulse energy, size of the region of highly focused beam energy, etc.)

one can construct the relationship between energy deposition and liquid tension for laser

induced cavitation.

5

1.1. PROBLEM STATEMENT

The broad goal of this research is the characterization of a CTMFD system

through the use of:

 Theory

 An experiment utilizing laser-induced cavitation

 Computational Fluid Dynamics (CFD)

At present, there is insufficient knowledge of the behavior of fluids in real (rather

than ideal) CTMFD systems to adequately characterize their responses and to optimize

such systems. This research attempts to provide some of the necessary steps to address

that lack of knowledge.

1.2. TECHNICAL APPROACH

The broad goals of this research can be broken into the following facets:

1. To design, construct, and operate an experimental facility for the

evaluation of CTMFD systems and the collection of tensioned liquid

data

2. To explore the use of laser-induced cavitation as an experimental

technique

3. To investigate the energetics of a CTMFD system

4. To develop a CFD framework for modeling a CTMFD system

6

This research will examine tensioned liquids to increase the knowledge of

metastable fluids and their behaviors in dynamic systems. An improved understanding

of tensioned fluids can lead to new types of nuclear detectors based on their unique

properties. Although there have been a number of experiments performed in order to

determine the limiting values of tension in liquids, other properties have not been as

thoroughly probed. The utility of laser-induced cavitation will also be examined as an

experimental technique.

1.3. THESIS OVERVIEW

This thesis describes a multi-faceted research project, and is organized to give

each facet its own section. The first section is a simple introduction. The second section

provides background on TMFD systems as well as some information on the related

bubble detectors. It also provides the theoretical underpinnings for CTMFD systems in

discussions of tensile liquids, bubble theory, and nucleation theory.

The third section contains the largest effort in this research: the development and

early operation of CTMFD experimental facilities. It is subdivided to give details on its

operational theory, including discussions on Gaussian optics, RS-232 interfaces, and

Pulse Width Modulation. Each component is described; many of them were designed

and built specifically for this experiment. The operation of the facility is described as

well, and discussion of the first set of results is included.

The fourth section describes the Computational Fluid Dynamics framework

developed for this research. While the goals of this particular model are relatively

7

modest, it provides a foundation on which to base further research. As with the

experiment, a discussion of the first set of results is included.

Any conclusions that can be drawn are discussed in the fifth section. It brings

together the earlier discussions, draws conclusions, and makes recommendations for

further work. Finally, the Appendices provide details that do not fit well into the main

text; this includes circuit schematics, diagrams, and source code listings.

8

2. BACKGROUND AND THEORY

The theoretical framework for the characterization of TMFD systems has much

in common with that of more traditional bubble-based detectors. They all place their

working fluids in metastable states, and experience cavitation events when incident

particles deposit sufficient energy in the fluid. As a result, bubble theory and nucleation

theory are key to the understanding of all such systems. While these systems may all be

considered superheated, they arrive at that superheat from various methods. TMFD

systems achieve it by placing the liquid in a negative pressure state, so both the limits of

superheat and the overall limits of tension must be considered. Methods of energy

deposition are important as well, but are considered beyond the scope of work.

The key theoretical underpinnings for TMFD systems considered for this scope

of work are bubble theory and nucleation theory. An understanding of tensile fluids is

important as well, as is the application of such theoretical frameworks in TMFD systems

and more conventional bubble detectors.

2.1. BUBBLE THEORY

For the sake of this thesis, simple bubble theory will be applied. Bubbles will be

assumed to be spherical and in a quasi-static state; this allows the analysis to proceed in

a simple and straightforward manner.

A spherical gas bubble at steady state in a liquid has a relationship between the

inner and outer pressure that is based on the bubble radius and surface tension as given

below [6].

9

r

PP LB

2
 (1)

It is clear from Eq. (1) that the internal pressure of the bubble is greater than the

pressure of the bulk liquid surrounding it, and that the difference is more pronounced in

small bubbles than in large ones. It also suggests that, for a given set of constant

pressures, there is one specific stable bubble radius; at a smaller radius, surface tension

will dominate and the bubble will begin to collapse while the opposite is true for a larger

radius. It should be noted that the pressure for the bubble is the total pressure inside it;

there may be several different components to the bubble's contents, and they may make a

difference in the behavior of the bubble. If a component will not dissolve or diffuse

away, its partial pressure will vary with bubble size and temperature, and will not be

constant.

At equilibrium, the bubble will contain a partial pressure of the surrounding

liquid in its vapor state as determined by the temperature of the liquid. It would also

contain partial pressures of gases that are dissolved in the liquid as determined by their

solubility characteristics. It may also have amounts of relatively insoluble gases

contributing. Much of the distinction between the soluble and insoluble gases depends

on the dynamics of the system of interest; for rapid changes in short time scales, many

gases may behave as insoluble gases, but would be expected to maintain equilibrium

concentrations on longer time scales or when changes are slower.

10

2.1.1. Limits of Quasi-Static Stability

When more information is needed, one can turn to the formulae for bubble

dynamics. In general, the Rayleigh-Plesset Equation [6] is the traditional formula used

for spherical bubble dynamics Eq. (2).

r

r
r

rrr
PP

L

L

L

LB







24

2

3 2 


 (2)

While Eq. (2) can be used for simple bubble dynamics, it can also be used to gain

insight into static and quasi-static conditions. If one takes a bubble at equilibrium and

perturbs it, one can determine if that equilibrium point is stable or unstable. Depending

on the gases within the bubble, it may have more than one equilibrium radius. In

modeling bubble dynamics, one may consider the bubble a two-component system: the

vapor from the surrounding liquid, and an insoluble gas. By applying that to the

Rayleigh-Plesset Equation and by using a small perturbation to shift it slightly off-

equilibrium, one can determine the following:

 gvB PPP  (3)

 r
r

rrr
r

PPP
L

LL

Lgv 








4

2

32 2 


 (4)

 3
3 4

3

3

4 r

nRT

r

nRT
Pg





(5)

 







 r

r
rrr

rr

nRT
PP L

LLv









4

2

32

4

3 2

3
 (6)

11

 PPP Lv  , f
rr

nRT






2

4

3
3

, gr
r

rrr L
L 








 




4

2

3 2 (7)

 gfP  (8)

At equilibrium, g=0. That gives a relationship between the equilibrium bubble

size and the local conditions as Eqs. (9) and (10):

 0 fP ; 0
2

4

3
3


rr

nRT
PP Lv




 (9)

   0
4

3
2 23 




nRT
rrPP Lv (10)

Solving for the roots of Eq. (10) gives equilibrium radii. One interesting thing to

note is the situation in which the liquid and vapor pressures are equal and the system is

in equilibrium:

 0
4

3
2 2 




nRT
r (11)

8

3nRT
r  (12)

When r is greater than the value in Eq. (12), f will always be negative. Below

that, f will be positive. In the limit as r gets arbitrarily large, f will approach zero. It will

have a minimum in the same place as ΔP + f as given by Eqs. (13) through (16):

   









rr

nRT

dr

d

dr

df
fP

dr

d 



2

4

3
0

3
 (13)

24

2

4

3
30

rr

nRT 


 (14)

12

22

4

9
r

nRT



 (15)

8

9nRT
r  (16)

Equation (16) is known as the Blake critical radius [6]. On both sides, f will

increase monotonically the further away from this radius a bubble is. When ΔP is

greater than zero, the vapor pressure of the liquid is greater than the bulk liquid pressure,

and the surface tension of the bubble is responsible for maintaining it. Plugging the

Blake critical radius in to f gives a minimum value:

 nRT
f

nRTnRT

nRT

81

128

8

9

2

8

9
4

3 3

min3


























(17)

As a result of Eq. (17), if ΔP is greater in magnitude than fmin and opposite in

sign, then g will always be positive and equilibrium will not be achieved. Conversely, if

ΔP is less than zero, there will be one equilibrium radius. However, if ΔP is between

zero and the negative of fmin, then there will be two equilibrium radii, one on each side of

the Blake critical radius.

The end result is the determination of an upper limit of stability; for equilibrium

bubbles with smaller radii than the Blake critical radius, a small perturbation will result

in the bubble returning to its equilibrium state. If the equilibrium radius is greater than

this limit, it is unstable; a small perturbation will lead to increasing deviations from the

original state. This is due to the monotonically increasing nature of f away from the

Blake critical radius; if the larger bubble is perturbed, g will end up having the same sign

13

as the perturbation and the bubble will change size with positive feedback. On the other

side of the Blake critical radius, however, g will have the opposite sign as the direction

of the perturbation and it will oppose the change [6]. If ΔP is less than zero, however,

the bubble will be unconditionally stable, as the sign of g will always be opposed to the

direction of bubble size deviation. Of course, the preceding analysis assumed that the

bubble is spherical, isothermal, and quasi-static.

From Eq. (16), it is clear that any bubble composed entirely of the vapor of the

surrounding liquid will not be in a stable equilibrium state, as the critical radius of such a

bubble is zero. If it has any deviation from its equilibrium size, it will either grow

explosively or implode. It should also be noted that even with a nonzero quantity of

insoluble gases in a bubble, the surrounding liquid can be placed under tension without

affecting the stability of the bubble if it is small enough; surface tension forces can be

sufficient to override a negative pressure in the surrounding liquid. Therefore, a liquid

may survive being placed under tension without completely removing existing bubbles.

2.1.2. Energetics

It takes energy to grow a bubble in size. The necessary amount of work to grow

a bubble quasi-statically (such that inertial and viscous effects can be ignored) can be

easily calculated by integrating from r1 to r2, which accounts for the PV-work done at

the bubble boundary. In addition, the change in energy of the bubble's contents must

also be accounted for; it may not be an adiabatic process. In a growing bubble, a certain

amount of the surrounding liquid will evaporate and fill the bubble to maintain a

14

constant partial pressure. The gases may also absorb heat from the surroundings if the

process is isothermal. These relationships are expressed in Eqs. (18) through (25):

   









2

1

24
2

r

r

vLPV drr
r

PPW 


 (18)

If the bubble grows from nothing to the critical radius with a constant internal

vapor pressure, Eq. (18) can calculate the net energy necessary, resulting in Eq. (19) [6]:

 2

3

3

16

Lv

CR
PP

W





 (19)

This reflection of the work may not give the entire picture; it excludes the latent

heat of vaporization for the vapor and some of the work done by it. Taking more into

account results in Eqs. (18) to (23). They assume that a bubble is grown from an

essentially zero size sphere of initial liquid (which vaporizes) to a vapor-filled bubble at

the equilibrium radius, and that the volume of liquid vaporized is negligible compared to

the final bubble volume. Heat is not exchanged between the growing bubble and its

surroundings; it only does PV work on them. The necessary energy to supply to that

initial bit of liquid is then given by Eq. (20).

 vapLPVBubble QWE  , (20)

 
















  


c

L
c

r

LLPV r
P

rdrr
r

PW
c

3
44

2 2

0

2

, (21)

 vapvap nhQ  (22)

RT

rP
n cv

3

4 3
 (23)

15

In Eq. (22), the latent heat of vaporization should be expressed in a per mole

basis, allowing a simple application of the Ideal Gas Law in the calculation.

 vap
cv

c
L

cbubble h
RT

rP
r

P
rE

3

4

3
4

3
2 

 







 (24)

  

























 L

vap

v

Lv

bubble P
RT

h
P

PP
E 3

3

16
3

3
 (25)

Substitution of the critical equilibrium radius into Eq. (24) results in the value

given in Eq. (25). The values expressed in Eqs. (18) through (25) reflect reversible

processes; if there is an irreversible component or energy loss, it must also be taken into

account. In addition, they say nothing about the source or availability of the energy. For

this, some discussion of bubble nucleation is necessary.

2.1.3. Acoustic Dynamics

Although the primary focus of this research involves static methods (constant

rotation rates and pressure fields, etc.), some discussion of more dynamic behavior is in

order. As a common experimental technique for the investigation of cavitation and

tensile liquids involves acoustic waves, some consideration of their effects on bubble

stability is worth mentioning.

One important aspect of bubbles exposed to acoustic waves is their behavior

approximating a damped oscillator if the pressure wave’s amplitude is low. This gives

rise to a resonance frequency for the bubble, which is approximated in Eq. (26) [7]. In

it, η is the shear viscosity and κ is the polytropic index, while r0 is the equilibrium

bubble radius and P0 is the constant term in the external pressure oscillation.

16

2

0

2

00

0

0

0

422
3

1

r
P

r
P

r
P

r
vv







 










 (26)

In the undamped case, expressions for the resonance frequency and bubble radius

can be seen in Eqs. (27) and (28) [8].

00

0

2

0

2 22
3

rr
Prr


 










 (27)

 

   

    



























r
A

rr

rr

A

ttt
r

P

tt
r

P

r












cossin
2

sinsin

2

0

22

0 (28)

Another important relationship for bubbles exposed to pressure oscillations is the

limit of stability for such systems. In cases where gas diffusion can play a role, an

expression for the amplitude limit can be seen as Eq. (29) [8], where δ is a damping

factor, the gas concentrations are C0 at saturation and C∞ in the bulk liquid, and β is the

fraction of the resonance frequency.

   2222

00

000

2

0

1
2

1

2
1

2

3







































 



Pr

C

C

Pr

P

P
 (29)

 2

0

2

0

r

P


  (30)

0

22

3 P

r

r 






  (31)

17

A simpler, alternate expression for the value in Eq. (29) can be seen when the

concentration of gas dissolved in the liquid (C∞) is equal to its saturation value (C0), and

the damping factor is zero. It then can be approximated as Eq. (32) [8].

 






















 

8
1

13
2

22

00

2

0 



PrP

P

(32)

2.1.4. Cavitation Damage

Bubble growth may be more relevant to this research, but the collapse of bubbles

bears mentioning as well. Whether the source of nucleation is heterogeneous or

homogenous, the appearance of bubbles in liquid may pose challenges to engineers. In

transient conditions, the bubbles may only exist for moments and can collapse quickly

and violently. Such collapsing bubbles can have powerful effects; they may produce

local high-amplitude shock waves and microjets [6]. Heating in the collapsing bubble

may result in sonoluminescence. Incandescence and thermochemical reactions have

been suggested as mechanisms for light emission from collapsing bubbles, but the

phenomenon is not fully understood [7]. In fact, it has been suggested that collapsing

bubbles can get hot enough to allow for thermonuclear reactions [5], although that

position is not widely accepted.

In any case, if any objects are near violently collapsing bubbles, they may

experience cavitation damage. Such damage has been observed on boat propellers, and

all sorts of hydraulic equipment are susceptible. It is a limiting condition for pump

operation, and is the cause of the Tarbela tunnel collapse in Pakistan in 1974 [1].

18

Therefore, it is a concern to those working on equipment that can be put into such an

environment.

2.2. NUCLEATION THEORY

Bubble nucleation will occur preferentially where discontinuities exist in the

liquid that provide weak spots [9]. This can be observed in the simple case of boiling a

pot of water on a stove; the bubbles will largely form where the water meets the heated

part of the pot. If that surface is scuffed or has other imperfections, those sites

themselves can be observed to be active sources of steam bubbles [9]. This is

exacerbated by the local thermal conditions; the water in the immediate vicinity of the

heated part of the pot will tend to be hotter than the bulk liquid, and may be fairly

superheated. That encourages additional nucleation in those regions.

If such nucleation sites are not available, a liquid will be able to survive a

significant amount of superheat without boiling. This can be seen by placing a smooth

mug of relatively pure water in a microwave oven [10]. If the conditions are right, the

water may be heated well above its boiling point without actually boiling. If it is then

removed from the microwave oven, it can be hazardous; the introduction of nucleation

sites may lead to sudden vigorous boiling that can cause injury [10].

2.2.1. Heterogeneous Nucleation

The discontinuities necessary for heterogeneous bubble nucleation in a liquid can

be provided by the liquid's container. The container wall itself not only provides a

discontinuity, but may also provide locations where gases can become trapped. If there

are crevices in the wall, gas can easily be retained in them when the container is filled

19

with liquid. Under the right conditions, a stable equilibrium can be achieved. If the

pressure is reduced, the trapped gas can expand and may release bubbles into the bulk

liquid. Such trapped gas can be eliminated by pressurizing the liquid to pressures on the

order of 1000 bar and holding there for half an hour or more; this forces the gas to

dissolve into the liquid [1].

Rough container walls are not the only locations that one may find gas-storing

crevices. Motes (particles, often specks of dirt or dust) and contaminants suspended in

the liquid are also prime locations for gas-trapping crevices. In addition, if the

suspended particles encounter each other, bubbles can form through tribonucleation [1].

It is possible for gas trapped in such crevices to remain in the crevice instead of

dissolving into the liquid. If the wall does not get perfectly wetted and the contact angle

is correct, it can reduce the gas pressure in the crevice to that of the equilibrium pressure

from the gas already dissolved in the liquid. Changes in the solubility of additional gas

or in the liquid pressure can upset this equilibrium.

Surface tension and geometry are not the only ways to keep gas bubbles from

dissolving out into the liquid. In fact, small bubbles of gas may stay dispersed in the

liquid without vanishing. Such bubbles are an additional source of weaknesses in the

liquid, and their persistence was unexpected. It is now thought that even trace amounts

of an organic contaminant in the liquid is sufficient to form a sort of skin around the

edges of microbubbles, limiting the diffusion of gas into the liquid [6].

20

2.2.2. Homogeneous Nucleation

When heterogeneous nucleation is limited, homogenous nucleation may

dominate the formation of vapor bubbles. Given a critical radius, there is a finite

probability that a bubble will randomly form within a set time period. Since the rate of

bubble formation is generally expressed as being proportional to Eq. (34) [6], the rate of

formation of bubbles in a mole of tensile liquid can be given as Eq. (36) [11]. This can

be adjusted to give the limit of tension when a bubble forms in a mole of tensile liquid as

a function of time as in Eq. (37); in practice, this relationship can be simplified to Eq.

(38) [11]. Other analyses use the critical temperature in Eq. (33), and it is generally

accepted that when Gb < 11.5, cavitation is assured [6].

kT

W
Gb cr (33)

GbeJJ  0 (34)

m

NJ


2
0  (35)
































 


kT

P
f

h

NkT

kT

Wf

h

NkT

dt

dn 2

3
*

0
max

*

0 3

16

expexp



 (36)

 *

0

3

ln
3

16

f
h

NkTt
kT

Pt













(37)

21











h

NkTkT
Pt

ln
3

16 3

(38)

Such nucleation has the practical effect of limiting the tensile strengths of liquids.

The tensile strength of a liquid can be estimated by envisioning the intermolecular

spaces as existing vapor bubbles and determining the tension in the liquid that would

cause those bubbles to grow. Unfortunately, such an estimate would be incorrect,

frequently missing the mark by several orders of magnitude. It would, however, give

results comparable to those obtained by using compressibility moduli [6]. A better,

although still inaccurate, estimate can be made by application of the van der Waals

Equation, shown as Eq. (39) [1].

   RTbV
V

a
P 










2
 (39)

Tracing an isotherm in the van der Waals Equation reveals a minimum pressure

in the curve, which is the limiting low pressure at that temperature [1]. Example

isotherms are shown in Figure 1. Additionally, there is a local maxima in the curve

which represents the greatest pressure a supercooled vapor can survive without

condensing. By following the minimum pressure at differing temperatures, one can

generate the liquid spinodal curve. Likewise, tracing the location of the local maximum,

one can arrive at the vapor spinodal curve. These curves meet at the critical point, and

only exist below it [6]. When the saturation curve is overlaid on the spinodal curves,

one can see the ranges of the supercooled vapor and superheated liquid. The area

between the saturation curve and the spinodal curves on a PV-diagram are the metastable

22

states for the supercooled vapor and superheated liquid. Since they are not stable,

disturbances in those states can cause a transition from a single-phase system (liquid or

vapor) to a two-phase system (liquid + vapor).

Figure 1: van der Waals Isotherms [1]

23

Formally, a thermodynamic spinode is defined in Eq. (40) [12]. The spinode

exists where, in an isotherm, the partial derivative of the pressure with respect to the

volume of the material is zero.

 0












TV

P
 (40)

In reality, there are deviations from the forms of the spinodal lines given by the

van der Waals Equation; an example curve is given in Figure 2. On a P-T plot, as the

temperature decreases away from the critical point, the liquid spinodal line is expected to

decrease monotonically, but this may not be the case for water. Water, a material known

for behaving in non-ideal manners, is thought to be especially deviant along its liquid

spinodal line, and may not exhibit monotonic behavior [13]. Furthermore, it is not

achievable in practice to bring a metastable fluid all the way to its spinodal limit. The

closer to the limit one approaches, the more likely it is for a random disturbance to cause

nucleation and form a two-phase system.

24

Figure 2: PV Diagram [6]

Homogenous nucleation theory can give an insight into practical limits to

metastable states. Given a critical radius for a vapor bubble, there is a non-zero

probability that a vapor bubble at least that large will spontaneously coalesce in a given

time for a volume of metastable liquid. The closer to the spinodal limits one approaches,

the shorter the waiting time becomes for the random nucleation of a critical-sized

25

bubble. Ultimately, a metastable liquid cannot exist as such beyond the spinodal limits,

and nucleation is assured.

2.3. TENSILE FLUIDS

Much like solids, liquids are able to withstand being "stretched," or placed under

a degree of tension. At first glance, this may seem a bit strange; when the pressure

above a liquid drops below its vapor pressure, it may begin to boil. Indeed, this can be

observed by heating a pot of water on a stove; once the water's temperature is high

enough, its vapor pressure is equal to the pressure of the surrounding air and the pot will

begin to boil. This is a well-known phenomenon; the boiling point of water is common

knowledge, and boiling water is a part of everyday life.

However, it is not always the case that hot water at or above its boiling point will

end up boiling. A mug of water heated in a microwave oven may remain as a liquid well

above its boiling point; this is known as a superheated liquid, and can give an unlucky

observer a close and personal demonstration of superheated water flashing to steam [10].

Such a situation demonstrates two things: liquids can exist as liquids above their boiling

points, and such superheated conditions are not necessarily stable. A superheated liquid,

therefore, is metastable; it can exist in such a state, but if it experiences a sufficient

disturbance, it will move toward its stable equilibrium state.

The reason for this is simple: each molecule of the liquid has some attractive and

repulsive forces between it and its neighbors, and the attractive forces can be quite large;

these forces are large enough that liquids can be considered to be incompressible. The

attractive forces between molecules in the liquid are called cohesive forces, and the

26

attractive forces between the liquid and its container are called adhesive forces. At fluid

interfaces, these forces are agglomerated and called the surface tension.

At the boiling point, the cohesive forces in a liquid can be great enough to

prevent bulk boiling, and it readily occurs only at weak points within the fluid. These

weak points can be provided by bubbles, suspended particles, contaminants or other such

discontinuities.

One result of this is the ability to maintain liquids in superheated or other

metastable states. In fact, it can be such a powerful effect that liquids can be maintained

in metastable states where their vapor pressures are much greater than the total pressure

in the liquid; the total pressure in the liquid can even drop below zero, putting the liquid

in a tensioned rather than compressed state.

The degree of tension that a metastable tensioned liquid can survive can be

surprisingly high. For example, by 1951 benzene had been brought down to -150 bar,

aniline had been brought down to -300 bar, and chloroform had been brought down to

-317 bar [2]. Water in particular can survive a remarkable degree of tension; it has been

tested to be metastable at pressures less than -1400 bar, with a theoretical limit between

-1400 bar and -2000 bar [3]. Limits on tension can be approximated based on

overcoming the attractive forces between individual molecules [6]; however, this method

tends to overestimate the magnitude of the tensile limits by several orders. Better

estimates can be determined by application of nucleation theory [6].

Modern studies of tension in liquids began in the 19th Century; Euler predicted

the presence of tensile stresses in moving liquids in 1754 [1]. François Donny in the

27

1840s experimented with vacuum pumps and sulfuric acid in U-tubes, producing mild

tensions in the liquid. Soon afterward, Berthelot in the 1850s was able to induce tension

at 50 atm in water using an instrument that now bears his name: the Berthelot tube [1].

A Berthelot tube is a sealed cylinder filled with liquid and a small portion of air. The

tube is heated, and the liquid expands until there is no room left for the air, which then

dissolves in the liquid. The tube is then cooled, and tension builds up in the liquid until

the tension breaks, and some of the air comes out of solution as bubbles. There is also a

slight increase in the volume of the tube from just before the breaking of the tension to

afterwards; this is used to help determine the degree of tension at that point [1]. Then, in

the late 19th Century, Reynolds experimented with centrifugal means for tensioning

liquids [1].

While tensile liquids at first glance seem to be a laboratory curiosity or limited to

transient situations due to their metastability, they do appear in nature. In the 1890s, it

was proposed that tension in the sap of tall trees enabled it to be lifted to the top; a

vacuum pump cannot lift water anywhere near 100-m above ground, which is a height

achieved by redwoods [4]. Using a balancing pressure technique, the pressure in the

xylem at the top of an 82-m redwood was measured to be less than -15 atm.

Haplophytes ranged from -35 to -60 atm, and a creosote bush was found with a pressure

lower and -80 atm in the xylem. Mistletoe was found to have significantly lower

pressures than its host, often by 10 to 20 atm [4]. The balancing pressure technique has

been compared to other methods with mixed results. Experiments using modified

pressure probes frequently do not agree with the high degree of tension found by the

28

balancing pressure method. However, centrifugal methods have been found to agree

with the balancing pressure method [14].

2.4. BUBBLE CHAMBERS

The idea that nuclear particles can nucleate bubbles, and that such a process can

be used as a detector, is not new. Glaser experimented with superheated diethyl ether in

the early 1950s, and found that it would erupt in boiling much quicker when in the

presence of ionizing radiation than in the absence of radiation [15]. From those early

experiments, the early bubble chambers were developed and their theories of operation

determined. Fluids such as liquid hydrogen and liquid propane were used with high

fractions of superheat; a liquid hydrogen bubble chamber operating at 27 K has a

superheat of nearly 7 K (with a boiling point of 20.3 K at atmospheric pressure, this is

more than 1/3 greater than the boiling point), and can have a bubble nucleated by a local

deposition of 4.08 eV [16].

Those systems would be operated on a cycle; the detector would be

decompressed to a very superheated state in which the liquid would be very sensitive to

deposited energy. Incident particles would leave tracks made of bubbles, which would

be photographed. Then a fast compression would bring the liquid back to a stable state

in which it would not be sensitive. Then the cycle repeats, with a decompression down

to very superheated states [17]. Such devices had drawbacks resulting from the severe

amounts of superheat applied to the working liquid, and the sensitive period could only

last a few moments [17]. They eventually disappeared from common use, but were not

completely forgotten. The COUPP (Chicagoland Observatory for Underground Particle

29

Physics) experiments have shown a renewed interest in similar devices for the detection

of Weakly Interacting Massive Particles (WIMPs). The superheat is more moderate, and

the fluid is different (CF3I). The COUPP experiments have had a degree of success

taking the sensitive period for the system from moments to indefinitely long periods

[17].

Other modern takes on superheated liquids include emulsion-based devices.

Small droplets of superheated liquid are suspended in an inert matrix; the two fluids are

immiscible and cannot mix. Deposition of sufficient energy can result in the formation

of a vapor bubble within a suspended droplet; the entire droplet may completely flash to

vapor. Such devices have been used as neutron detectors, but are also sensitive to heavy

charged particles [18].

While traditional bubble-based detectors involve superheat at positive pressures,

speculation on devices very much like modern acoustic TMFD systems goes back at

least to 1965. Bertolotti, Sette, and Wanderlingh considered the use of ultrasonic

pressure waves in resonant chambers to grow microbubbles left behind by incident

nuclear particles. If microbubbles were to dissipate slowly and accumulate as the result

of energy deposition from incident radiation, induced ultrasonic cavitation might be able

to reveal a spectrum of energy deposition long after the passage of the depositing

particles [19]. While the descriptions they gave are too limited to draw conclusions

about their work, the system described appears to have a remarkable amount in common

with more modern ATMFD designs.

30

2.5. TENSIONED METASTABLE FLUID DETECTOR SYSTEMS

A novel take on the classic bubble chamber for detecting nuclear particles is the

Tensioned Metastable Fluid Detector (TMFD). In such systems, a liquid is placed under

tension to create a sensitive zone. The idea is that nuclear particles incident in the

sensitive zone may deposit enough energy in the liquid to nucleate a bubble larger than

the local critical size, at which point the bubble will continue to grow until some external

limit is reached. Depending on the fluid properties and the degree of tension, the

necessary deposited energy from such a particle can be quite small. The fluid need not

be exotic; selection of the fluid may be a part of the design optimization process. This

depends on the type, energy, and flux of particles to detect, as well as outside factors

such as cost and availability.

There are two main methods for achieving the necessary tensile state in the

liquid, and these methods define the class of TMFD systems. Both methods are

deceptively simple. One method uses transducers to induce acoustic waves in the

detection fluid; such systems are Acoustic TMFD (ATMFD) systems. The second

method rotates a special assembly rapidly around an axis so that centrifugal effects

create a tensile region in the vicinity of the axis of rotation; this method is used in

Centrifugal TMFD (CTMFD) systems.

Both ATMFD and CTMFD systems can be made of commodity hardware and

have no requirement for exotic or expensive materials; even prototype systems can be

relatively inexpensive to design and construct. They can also be scaled from very small

31

systems to much larger ones. This may be simpler for an ATMFD than for a CTMFD,

as the CTMFD must rotate the entire detection assembly.

In an ATMFD, a resonant chamber is filled with a chosen detection fluid.

Piezoelectric transducers are used to induce acoustic waves in the fluid with a large

amplitude. At the peaks of the acoustic waves, the pressure can be very high in the

surrounding fluid; it is unlikely to be sensitive to incoming nuclear particles in this part

of the cycle. The pressure will drop with the wave, and near the troughs the pressure in

the surrounding liquid can be very low; given a great enough amplitude, the troughs can

place the local liquid in a tensile state. At that time, the surrounding liquid can be

sensitive to incoming particles. During this period, if incident particles deposit enough

energy, cavitation events can occur and the resulting bubbles can quickly grow.

However, when the pressure rises, the bubble growth will be arrested. The period of

high pressure can cause the bubbles to violently collapse; the resulting click and pops

may be audible, and cavitation luminescence may be observed. If the ATMFD is

instrumented, the time and location of collapsing bubbles can be determined to help

characterize the incoming flux. While the sensitivity of the detector is time and position-

dependent, it can handle numerous simultaneous events and can operate continuously.

A CTMFD is similar to devices used by Briggs experimenting with tensile

liquids [1] [20]. The heart of a CTMFD is the specially-shaped detection assembly. It

has a bulb at the bottom along the axis of rotation; this region contains the tensioned

liquid. From the top of the bulb, two tubes extend up and out radially, then bend back

toward each other, meeting again along the axis of rotation some distance above the

32

bulb. The tubes trace a roughly diamond-shaped area above the bulb [5]. In operation,

the bulb and tubes will be filled with liquid to a point above the 'elbows' in the tubes

where they bend back toward each other above the bulb, but not all the way to where

they meet. This is important; when the assembly is rotated, the tension at the centerline

depends on how far out from the axis of rotation the liquid is filled to.

When the detection assembly in a CTMFD system is rotated rapidly about its

axis, the pressure in the centerline depends on three primary things: the density of the

liquid, the rotation rate, and the radial distance to the centerline from the top of the liquid

fill. The pressure at the air-liquid interface (the assembly is open at the top) provides a

necessary reference. Away from the centerline, the pressure in the liquid depends on the

radial position. An illustration of the CTMFD concept is given in Figure 3.

Figure 3: CTMFD Concept [5]

33

During operation in a CTMFD system, the assembly is typically rotated at a

constant rate. As a result, the pressure field in the liquid is essentially time-independent.

It is also very predictable. However, cavitation events are not detected in the same

manner as in an ATMFD, and this provides a limit on the performance of a CTMFD

system. When a bubble that is larger than the critical size is formed, it quickly grows

and merges with any other nearby bubbles. Because there is no pulse of high pressure,

the bubble's growth will not be arrested by it and it will not collapse. Instead, it moves

to the centerline and grows into a vapor column in the bulb; the growth is finally stopped

by the increase in pressure brought by the displaced liquid pushed up into the tubes

above the bulb. An illustration of this is shown in Figure 4. Here, a “triggered”

CTMFD is one that has, in operation, experienced a critical cavitation event and as a

result has a stable vapor column formed in the bulb.

Figure 4: Triggered CTMFD

34

The formation of a vapor column will break the tension in the liquid; the vapor

column can shrink and grow to balance the pressures. Therefore, a CTMFD is

essentially a single-shot detector. Once the vapor column forms, it does not disappear.

Instead, the rotation must be stopped. At that point, the vapor column will shrink to a

much smaller bubble or disappear entirely. Whatever bubble remains must be allowed

to migrate up through the tubes and out to the interface between the liquid and air in the

upper part of the assembly. Otherwise, when the assembly is returned to speed, the

bubble will regrow into the vapor column. The stop-restart sequence can take tens of

seconds, so a CTMFD is not suitable for high detection-rate environments.

One of the more interesting features of a TMFD is the potential ability to reveal

the directionality of incoming particles. If an incoming particle does not lose too much

of its energy in an encounter in the fluid, does not deflect far from its original course,

and has sufficient distance between induced nucleation events, the formation of bubbles

from the high-energy depositions from the particle can provide a track for the particle.

With high capture speeds and sufficient resolution, such tracks can be recorded and be

used to determine the direction from which the particles were coming.

The idea behind a CTMFD is displayed in Figure 3. The main driver behind the

pressure gradient is the differing fill levels in the upper and lower arms during rotation.

Since the gas above the liquid is generally going to be much less dense, the pressure

developed by it is going to be significantly less in the upper arms than that developed by

the liquid in the lower arms. So long as the liquid adheres to the walls of the container

and does not develop bubbles, the liquid will remain trapped in the lower arms and bulb.

35

Assuming incompressibility and neglecting gravity, the pressure drop from one radial

position to another in the liquid is easily calculated as is done in Eq. (41). If it is

assumed that at the liquid-gas interface the pressure Pamb is equal to the outside pressure,

then one can approximate the centerline pressure in the bulb from the liquid’s density,

rotation rate, fill level, and ambient pressure as in Eq. (42) [5].

 
2

1

224

r

r

rdrfP  (41)

 ambambcenterline PrfP  2222 (42)

 While both physical demonstrations and computer simulations of CTMFD

systems have been performed [5], there is a current lack of hard experimental data in

such systems. In particular, the threshold deposition energies for triggering a CTMFD

have not been experimentally verified. Theory and computer simulations are wonderful

tools, but they cannot completely replace experimental testing and verification.

36

3. EXPERIMENTAL WORK

An experimental CTMFD system was designed and constructed with the goal of

examining the energetics of a CTMFD system. In order to do this, it takes a CTMFD

system and attempts to induce cavitation by depositing energy in the working fluid with

laser pulses. The laser pulses are at known intensities and durations, and focused near

the centerline in the CTMFD. The laser power starts of low, and then grows sequentially

in order to find the minimum threshold power necessary to induce cavitation and the

formation of a vapor column in the CTMFD.

The goals of this experiment were to examine the threshold energy for the

formation of a vapor column in a seeded CTMFD with pressures in the -1 atm to -5 atm

range. The liquid was acetone, and the seeding material was printer toner. A side-goal

of this is to demonstrate the ability to successfully assemble a CTMFD system using

standard, inexpensive parts and components. While most of the electrical systems were

not off-the-shelf pieces of equipment, they use standard and relatively inexpensive

components (transistors, diodes, op-amps, etc.) that a serious electronics hobbyist may

be familiar with. Some circuits were made of components found entirely in local

RadioShack retailers. However, there were some exceptions. The CTMFD test section

used glassware that was custom-built by an experienced glassblower, and is not

something that can be readily found or assembled from commercial products. In

addition, the laser system's cost dwarfed that of the other pieces of equipment.

37

The design and construction of the experimental facilities involved a major

effort. While the particular goals of this experiment are somewhat limited, the now-

existing facilities provide a framework for further tests without the need to develop

completely new facilities; they can largely be used as-is.

3.1. EXPERIMENTAL BACKGROUND THEORY

The idea behind the experiment is simple: operate a CTMFD in a known

configuration, and focus pulses of known laser energy into a spot in the immediate

vicinity of the centerline of the CTMFD, and see whether or not it forms a vapor

column. If one did not form, the laser pulse energy would be increased until a threshold

energy was found that did result in such a formation. With the optical system in place,

the energy concentration at the focus point could be estimated, and with properties such

as the Beer-Lambert coefficients, the total energy absorbed at that point could also be

estimated. Using a calculation based off of the rotation rate, fill level, and density of the

liquid under examination, a relationship could be drawn between the operating centerline

pressure and the minimum deposition energy needed for the formation of the vapor

column.

38

Laser Mirror

Lens

Rotating

Spinner

Focus Point
(Expected Origin

of Cavitation)

Figure 5: Experimental Concept

The size of the laser spot would not be varied; only the pulse power and duration

would be. In a ramp test, the duration would be preset, and the pulse power would be

the only thing varied. Since the laser spot was expected to be much larger than the

critical radius of a vapor bubble in the tensile liquid, much of the deposited energy

would be wasted; only a fraction would be used to nucleate the critical bubble.

The minimum reversible energy for the formation of a bubble of with a critical

radius is given from Bubble Theory as Eq. (19); Eq. (25) may also be applied. An

irreversible term can be added as well to describe off-equilibrium energy losses, but that

is not done here. The entirety of this energy must be deposited in the immediate vicinity

of the growing bubble. If this area is limited to a sphere the size of the condensed liquid

39

that would be the vapor fill of a critical bubble, the energy arrives in the form of a

photon flux, and a known fraction of the flux incident on the circle defined by the

projection of the liquid sphere into two dimensions, then, using the time duration of the

flux, an estimate of the laser energy can be made by following Eqs. (43) through (54).

2

condenseddep rA  (43)

 3

4

3
condensedcondensed Vr


 (44)

RT

VPMnMm
V critv

L

L

L

L

L

L
condensed


 (45)

3

3 2

3

4

3

4














Lv

ccrit
PP

rV


 (46)

3

2

3

4














Lv

v

L

L
condensed

PPRT

PM
V




 (47)

 













LvL

vL

condensed
PPRT

PM
r





2
3 (48)

2
3

2

2





















LvL

vL
dep

PPRT

PM
A




 (49)

Area

Energy
 (50)

 

2
3

2

2

3

2

3

16






































LvL

vL

Lv

dep

CR
CR

PPRT

PM

PP

A

W








 (51)

40

 


























































3

4

2

3

16

3
2

2
3

2

2

3









vL

L

LvL

vL

Lv

CR
PM

RT

PPRT

PM

PP
 (52)

 

2
3

2

3

3

2

3
3

16
















































LvL

vL

L

vap

v

Lv

dep

bubble

bubble

PPRT

PM

P
RT

h
P

PP

A

E








 (53)























































Lv

L

vap

v

vL

L
bubble

PP

P
RT

h
P

PM

RT
3

3

43
2


 (54)

focus

PulseLaser

A

tP
 (55)

It should be noted that ML is the molar mass of the liquid. The equations make

the assumption that the bubble will form at the laser focus point, that the entirety of the

laser fluence is available for bubble formation at that point, and that the liquid conditions

are sufficiently far from the spinodal limits that their influence on the energy

requirement is small. They also need the laser focus area to be greater than the bubble’s

energy deposition area. In addition, the pressure in the liquid needs to be below the

liquid’s vapor pressure.

This adds up to a constant value in Eq. (52); it followed the use of the critical

energy, Eq. (19), from nucleation theory. A separate treatment uses the total energy for

41

bubble formation from Eq. (25), resulting in Eq. (54). In the limit as the liquid pressure

gets arbitrarily negative, it asymptotically approaches the value given in Eq. (52).

 It also ignores the effects of irreversible processes, thermal conductivity in the

fluid (which can be significant in the time and length scales under consideration), and

any sort of activation energy necessary for the event. It also assumes that incident

radiant energy would be converted to ordinary heat, but this may not be the case. The

effects of thermal conductivity can be limited by using a sufficiently short pulse period,

if the laser is sufficiently powerful to emit the requisite energy in such a short period.

As for the activation energy, it may be possible to define a limit on its value from

examination of relevant fluid properties. If the necessary activation energy is greater

than the energy necessary to grow a bubble to the critical size, then delivery of the full

bubble growth energy may not be sufficient to nucleate the bubble; the necessary energy

would then depend on delivering the full amount of activation energy. It may be

possible to place a limit on the activation energy by determining how much energy it

would take to heat the volume of liquid under consideration (that necessary to fill a

bubble of the critical radius at the vapor pressure of the bulk liquid) to the liquid

spinodal limit at the operating CTMFD centerline pressure. Past the spinodal limit,

nucleation is assured. If the spinodal limit at the operating pressure is unknown, one

may use the liquid's critical temperature instead as a conservative limit; the spinodal

limits do not exist past the critical point [6]. At the critical point, each molecule has

enough energy to separate from all the other molecules, and the surface tension drops to

zero [6]; the distinction between the liquid and vapor fluid phases disappears. This

42

estimate is shown in Eq. (58); if it is greater than Eq. (54), then the process may be

dominated by the activation energy, but this is not expected to be the case. The

estimated activation energy is expected to be a severe overestimate.

  TTcmE pcondensedact  lim (56)

  TTcrE pcondensedLact  lim

3

3

4



 (57)

  
3

lim

2

3

4














Lv

vL
pact

PPRT

PM
TTcE


 (58)

As an example, the values for acetone at 25° C are given below. The properties

for acetone are listed in Table 1 [21] and Table 2 [22]. The data in Table 2 is used in the

Antoine Equation [22] to determine the vapor pressure at a given temperature; the

Antoine Equation is given in Eq. (59). With those parameters, the vapor pressure of

acetone at 25° C would be 30.6 kPa. The resulting plots of the necessary bubble

formation energy and the laser fluence are given in Figure 6 and Figure 7. While in the

plots, the activation energy dominates for pressures above about -6 bar, the activation

energy term is meant to be little more than an upper bound rather than a best estimate.

43

Table 1: Properties of Acetone [21]

Boiling Point 56.05° C

Surface Tension 0.02272 N/m

Thermal Conductivity 0.161 W/m-K

Density 784.5 kg/m
3

Viscosity 3.06E-4 Pa-s

Heat Capacity 126.3 J/mol-K

Latent Heat of Fusion 29.1 kJ/mol at 56.05° C

 30.99 kJ/mol at 25° C

Molar Mass 56.08 g/mol

Critical Temperature 508.1 K

Critical Pressure 4.7 MPa

  
CT

B
AP


10log (59)

Equation (59) uses the parameters given in Table 2 to determine the vapor

pressure of acetone within the range of the given parameters. This can be used, along

with the properties in Table 1 and the energy relationships in Eqs.(19), (25), (49), (50),

(52), (54), and (58), to produce the curves shown in Figure 6 and Figure 7.

Table 2: Antoine Parameters for Acetone [22]

[P] bar

A 4.42488

B 1312.253

C -32.445

Range 259.16 K to 507.6 K

44

Energy vs Pressure

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

-1000000-800000-600000-400000-2000000200000

Pressure (Pa)

E
n

e
rg

y
 (

J
)

E_Act

W_CR

E_Bubble

Figure 6: Energy Requirements for Bubble Formation

Fluence and Pressure

1

10

100

1000

-1000000-800000-600000-400000-2000000200000

Pressure (Pa)

F
lu

e
n

c
e

 (
J

/m
^

2
)

Phi_Act

Phi_CR

Phi_Bubble

Figure 7: Fluence Requirements for Bubble Formation

45

Unfortunately, things are rarely as simple as the calculations behind Figure 6 and

Figure 7. In this experiment, the working fluid was not a single, homogenous liquid. In

order to ease the energy requirements for successfully inducing cavitation and forming a

vapor column, solid 'seed' particles were mixed in with the liquid. These provided two

benefits: weak points in the liquid to reduce the necessary localized energy deposition,

and a much greater absorption of energy to help localize additional energy deposition

from a given laser pulse. They are widely dispersed so as to limit the extra absorption in

the beam path before the focus point, but are intended to be close enough together to

assure that seed particles will be present in the region of high energy intensity within the

depth of focus. While these may be true, their presence introduces new phenomena and

additional complexity.

The particles chosen were black toner particles from a Dell™ Color Laser Printer

3110cn. If they are assumed to be made entirely of carbon black, they would have a

density of 1.887 g/cm
3
 [23], which is significantly more than that of acetone. Even

when they would remain in suspension under ordinary conditions, it is possible that they

may not when exposed to sufficient operational periods in a CTMFD. They may come

out of suspension as a result of severe centrifugation. For example, at 200 rps and 5 mm

out from the centerline, the centripetal acceleration is more than 7,895 m/s
2
, which is

nearly 805 times the acceleration due to gravity at the surface of the Earth. In addition,

they do not have a uniform size, but have a potentially wide size distribution. They also

introduce an added thermal sink at the point of greatest laser energy absorption; the

energy directed to heating the toner particles will reduce the amount going to heating the

46

acetone. The particles, under the immense sudden heat load, may catastrophically

deform, break apart, melt, or undergo other interesting thermochemical changes. This

can lead to the formation of vapor columns that are less directly connected to the

properties and energetics of the bulk acetone and have more to do with phenomena

primarily occurring in the seed particles themselves. At present, it is unknown what

kind of effects to expect.

A discussion of the theory behind the CTMFD experiment would be incomplete

without mentioning some of the theoretical underpinnings behind the support equipment.

This includes Pulse Width Modulation, RS-232, and some relevant optical theory.

3.1.1. Pulse Width Modulation

There are situations where it is useful to represent analog signals in digital

circuits. This can be achieved by sampling the signal at regular intervals and encoding it

into a more suitable form, making sure that the sampling frequency is high enough to

capture all the important variations in the original signal. One common encoding

technique is Pulse Width Modulation, which "represents a signal by using pulses of

constant amplitude but variable widths" [24]. A simple PWM signal operates on a fixed

frequency; as a result, the meaningful width of each pulse is limited to a maximum of the

period of the PWM frequency. Therefore, a simple PWM signal is a square wave where

the widths of the peaks are varied in relation to the encoded information. The fraction of

time in which the signal is high rather than low is known as its duty cycle [25], and has a

simple relationship with the original signal. If, for example, the original signal was at

75% of its limit, the corresponding duty cycle of the PWM signal would also be 75%. If

47

the original signal dropped to 25% of its limit, the corresponding duty cycle of the PWM

signal would drop to 25% as well.

When a PWM is passed through a low-pass filter, the output is a reconstruction

of the original signal that was encoded with PWM. So long as the original signal does

not get too close to its upper or lower limits, the reconstructed signal will match the

original signal [24].

PWM is commonly used in power conversion circuits; the digital logic helps

enhance the efficiency of those circuits [25]. It can also be expanded beyond simple bi-

state logic to three or more levels, depending on the application; for example, a three-

level PWM signal might have voltage states of +1, 0, and -1 V [24].

PWM variants can be used in circuits that are not strictly digital. For example,

an ordinary thyristor-based dimmer switch [26] typically trims the early part of each

half-cycle in an AC line; the 'pulse' is the remaining part of the sine wave in the latter

part of each half-cycle downstream of the dimmer switch.

3.1.2. RS-232

RS-232 ("Recommended Standard 232") is a standard that defines a type of serial

communication interface commonly found on computers and associated equipment. It

defines what has become the traditional 'serial port' found on PC-compatible computers

since the original IBM PC. The standard itself predates the IBM PC. It is a robust

interface that can tolerate abuse, and is relatively simple to interface with in software. In

addition, user-mode software in Microsoft ® Windows™ operating systems are given a

48

remarkable degree of control over the hardware itself; direct software control of the

'control lines' is permitted. This makes it an attractive interface for a variety of uses.

In RS-232 standards, there are two device types: Data Terminal Equipment

(DTE) and Data Circuit-terminating Equipment (DCE) [27]. The DTE would typically

be a computer or other terminal, while the DCE would be a modem or printer connected

to the computer's serial port; the DTE connects to the DCE in standard setups. The

standards also define a full set of 25 pins, however, it is common for many of the pins to

be absent from an interface. There are recommended uses for all the pins, but many of

them are allowed to be used as seen fit by hardware and software developers.

In RS-232 systems using the DE-9 style interconnects (most PC serial ports are

such), there are 8 signal lines and one ground line. The ground is a common signal

ground for both sides. Instead of using a 'balanced' 4 input and 4 outputs lines, there are

3 lines signaling in one direction and 5 in the other. Which set is input and which is

output then depends on the device type. This is not to be confused with 'unbalanced'

electrical circuits; however, RS-232 is unbalanced electrically as well.

The DTE has 3 signals as its output: Data Terminal Ready (DTR), Request To

Send (RTS), and Transmit Data (TxD or TD). Those signals are input signals on the

DCE. The DCE, then, has 5 output signals: Data Carrier Detect (DCD), Data Set Ready

(DSR), Ring Indicator (RI), Clear To Send (CTS), and Received Data (RxD or RD) [27].

Apart from the data lines TxD and RxD, the other 'control lines' have meanings or

operations that are largely defined by software; user-mode software can easily take

direct control of the state of the control lines.

49

The RS-232 standards also define voltages for the interface. Compliant devices

are required to be able to have any of their pins shorted to each other or to ground

without damage. The signal lines are also required to be able to handle having +/- 25 V

applied, again without damage. However, the signals are required to be between +/- 5 V

and +/- 15 V at the source; the receiving end allows the minimum to drop to +/- 3 V.

The region between -3 V and +3 V is undefined. Valid signals are therefore

between -15 V and -3 V, and between +3 V and +15 V with respect to ground. For most

of the signals, positive voltages reflect a logical 1, and in RS-232 documentation this

state may also be called "true," "on," "asserted," or "mark." Negative signals, then,

reflect a logical 0. Other terms for that state include "false," "off," "not asserted," and

"space." The control lines follow such logic, but the data (TxD and RxD) do not; the

data lines use inverted logic, where a negative voltage reflects a logical 1 and a positive

voltage reflects a logical 0. The data lines also do not allow for the type of user-defined

functionality that the control lines do.

Valid signals are not allowed to linger in the -3 V to +3 V zone; they are only

allowed to be there when transitioning from one state to another. This wide voltage gap

between defined states gives a degree of noise immunity to the system

The RS-232 standard also define limits on such characteristics as the rate of

change for signal voltages (the slew rate) and the maximum data rate. However, it is

common for these limits to be ignored in modern systems in order to allow for faster

communication speeds.

50

3.1.3. Optics

In many materials, certain wavelengths of light can travel relatively unimpeded,

while others may be absorbed in the material. It may also experience various types of

scattering, and can reflect off of the material's interfaces. Some wavelengths may even

cause the material to fluoresce. In the case of simple absorption, quantification of the

absorption is simple and straightforward. The fractional change in intensity of light over

a distance through the material depends on the material's properties and the distance

traversed. This relationship is known as the Beer-Lambert Law, and the absorption

parameter is known as the Beer-Lambert coefficient [28]. The equations are given in

Eqs. (60) and (61). Attention should be paid to the symbols in use in these equations.

While I represents the intensity and N the density, σ is NOT the surface tension; instead,

it represents a cross section for interaction in Eqs. (60) and (61).

 NIdxdI  (60)

Nxe

I

I 
0

 (61)

If the primary interest is in energy absorption around a specified depth, that is

relatively easy to compute. For example, if the region of interest is between x and x + y

in some medium, then the fractional absorption in that region can be given by Eq. (62).

  NyNxyxx

abs ee
I

II
f  




 1
0

 (62)

This works for a homogenous absorbing medium, and may be applied to Eq. (55)

or any of the other fluence equations. In those cases, the distance y would be on the

order of the diameter of the sphere of to-be-vaporized liquid. If there are discontinuities,

51

things are a bit different. If the medium is largely transparent but has highly absorbing

bits scattered throughout it, then most of the energy may be deposited at the absorbing

sites rather than in the bulk medium. If the medium is transparent enough, and the

absorbing sites have great enough absorption parameters, then the incident intensity on

an individual site will be approximately the initial intensity, and it may absorb roughly

all the incident energy. Therefore, the local absorption fraction could approach 1.

The clearest way to think about the Beer-Lambert dropoff in intensity is to think

of following a laser beam through a medium; the further along the beam, the weaker it

gets. This is not entirely due to absorption, however; even a well-collimated beam will

spread out with distance. Laser systems commonly emit a beam that can be described by

how close it is to having a Gaussian profile. A good laser will have its beam be very

close to one of the modes of a Gaussian profile. With a Gaussian profile, the major

parameters used to describe a beam are its diameter and divergence (the angle at which

the beam spreads out). Both of those can be affected by optics in the beam's path.

If a lens is placed in the path of a coherent Gaussian beam, simple ray optics

calculations are insufficient to describe the beam's characteristics after the lens. While it

would seem that a beam could be focused down to an infinitesimally small spot by using

a quality convex lens with a good laser, this is not the case. First, the absolute minimum

spot size is determined by the wavelength of the light (λ). In addition, a Gaussian beam

will not focus to a point; there is a minimum spot diameter (ω0) determined by the

beam’s diameter immediately before entering the lens (D) and the divergence of the

52

beam after the lens, which is related to the focal length of the lens (F). This relationship

is given in Eq. (63) [29].

 

















D

F






4
2 0 (63)

2
8



















D

F
DOF




 (64)

The region in which the beam is close to its minimum size at the focus point has

a finite and easily determined size. This so-called depth of focus, given in Eq. (64) [29],

is the range centered around the beam waist at which point the beam width is SQRT(2)

times as wide as the beam waist. It should be noted that Eqs. (63) and (64) are

approximations of the Gaussian parameters that work for relatively small focal lengths.

3.2. EXPERIMENTAL EQUIPMENT

The experimental setup was constructed in the Nuclear Heat Transfer Systems

Laboratory at the Riverside annex to Texas A&M University. Walls were constructed in

the lab to create a room for the experiment, and the room was provided with an

appropriate interlock system for the Class IIIb laser used in the experiment. A

photograph of the new room can be seen in Figure 8. Like the walls, most of the

equipment used in the experiment were custom-built.

Schematics for all of the custom electrical equipment built for this research are

given in Appendix A. Similarly, the source code for the SpeedControl application

developed to operate the facility is given in Appendix B.

53

Figure 8: New Laser Room

The experiment has a small glass CTMFD test section assembly attached to a

rotating shaft, which is connected to a rotary tool; the shaft and CTMFD were custom-

built, while the rotary tool is a standard power tool available at hardware stores. They in

turn are mounted to an off-the-shelf Dremel ® stand using scrap wood and hose clamps.

The system is instrumented with a custom-built IR speed sensor and optical cavitation

sensor, while the speed is controlled by connecting the rotary tool to a custom-built

controller. Much of this can be seen in Figure 9.

54

Figure 9: CTMFD Experimental Facility

In Figure 9, most of the key components in the experiment can be seen. On the

left, somewhat cut off, are the computer system and oscilloscope. On the same platform,

one can see the RS-232 isolator (bottom), the cavitation sensor box (sitting on the RS-

232 isolator), and the pulse generator (nondescript box next to the oscilloscope with

various wires). Mounted on the containment box are the box interlock (middle), speed

controller electronics (top), laser interlock emergency stop button (red button on the

right), and the experiment (inside). The high speed camera is visible on the bottom, as is

the optical platform. The laser is hidden from view; it can be seen in the bottom in

Figure 10.

55

Figure 10: CTMFD Experiment with Open Enclosure

There are optics that focus the laser (an off-the-shelf system) to a point within the

CTMFD test section. A close-up showing the relation between the focusing lens, test

section and cavitation sensor is shown in Figure 11. While some of these electrical and

optical components are outside, the mechanical components are housed in a heavy

containment box. The containment box is interlocked with custom electronics for safety

reasons, and is separated from the laser and optical mounts to reduce the transmission of

vibrations to the optical assemblies.

56

Figure 11: Close-Up of the Mounted Test Section

The speed sensor, cavitation sensor, speed controller, and laser head are

connected to a custom central power supply and RS-232 interface through applicable

adapters. In addition, the laser head interfaces with the room interlock system and the

pulse generator circuit, both of which were custom-built. The pulse generator circuit, in

turn, connects to the RS-232 interface as well as an oscilloscope. The oscilloscope and

RS-232 interface connect to a desktop computer system for data acquisition and control.

While the computer and its operating system are off-the-shelf commodities, the data

acquisition and control software had to be written from scratch in a major development

effort.

57

RS-232 serial communication was used in the experiment, but not all signals

were used as one might expect from standard RS-232 systems. However, an RS-232

serial port on PC hardware is flexible; in addition to the standard text transmission and

simple logic states, loosely-applied pulse width modulation was used (see Sections 3.1.2

and 3.1.1). Details for each of the components involved in the experiment can be found

in Sections 3.2.1 through 3.2.16.

The above setup works well when calibrated. However, there are phenomena

that it cannot monitor that still garner interest. To gain insight into the dynamics of the

formation of the vapor column, a high speed camera was employed. However, due to

operational difficulties, it is not a standard instrument in the experiment. It was only

used in dedicated runs to collect high speed video of the cavitation events and the rapid

growth of the bubbles into vapor columns.

3.2.1. Containment Box

The containment box is an important part of the experiment. Not only does it

provide physical support to its contents, it also serves as a major component in the

experiment's safety systems. It is more than just a large, heavy assembly of wood,

plastic, and metal.

Physically, the containment box is built up from a lower 2' x 4' platform made of

plywood and 2x4 boards. From the platform, two similarly-sized regions are formed:

the experimental area, and a secondary area. Both are rectangular volumes sitting on the

platform with 2x4 framing. It rises about 3' above the platform. The experimental area

58

is separated from the secondary area by a plywood wall. The remaining four sides of the

experimental area are covered by 0.25" polycarbonate windows.

The thick polycarbonate was chosen to ensure safety in the event of catastrophic

failure in the experimental area. As the rotary tool is capable of speeds in excess of

35,000 rpm (>583 rotations/sec), ensuring safety became a central concern. At that

speed, a device attached to the rotary tool extending out to a radius of just 5 cm would

have a tangential velocity greater than 183 m/s at the edge. While it was expected that

such speeds would not be readily attained, even much slower speeds could still pose a

serious threat. The 0.25" of polycarbonate was deemed necessary to prevent the escape

of projectiles from a failed test section. Should a catastrophic failure occur, the plywood

and polycarbonate enclosure will keep the operator from catastrophically merging with

the failed test section.

While providing physical protection, polycarbonate also provides clear, scratch-

resistant window for observing the experiment in progress. Since the front, top, and left

and right sides have the large polycarbonate windows, there is a large choice of angles to

view the experiment from.

In addition to the windows, the front and top are hinged such that they can be

rotated up as a unit and flipped over the top of the secondary area; it swings open. This

provides a free and clear opening to the experimental area, with unobstructed access

from the front and above. The side windows remain in place. When the access is

closed, a lever arm can be rotated into place that will lock the front and top in the closed

59

position. The interlock on the box senses the position of both the access and the locking

arm, so that attempts to open the box will result in power being cut from the experiment.

The interlock is mounted to the box, on the wall in the secondary area. Aside

from the frame and the floor and wall to the experimental area, the secondary area is

open to the air. In addition to the interlock for the box, the speed control unit is also

mounted to the wall. Two switches are mounted between the interlock and speed control

units; these turn on and off the outlets in the experimental area. One switch turns the

regulated power (the speed control line) on and off, while the other switch controls raw

120 VAC in the experimental area for accessories such as lights.

The wires for power and sensors are fed through penetrations in the plywood

wall in the back of the experimental area into gang boxes on the inside. The AC power

lines (both regulated and unregulated) are attached to outlets in the experimental area to

supply power to the rotary tool and the experimental area's lights. The wires for the

speed sensor and cavitation sensor heads go through a separate penetration into a gang

box with a cover in place. They then go through small openings in the box to reach their

respective pieces of equipment.

In addition to the interior electrical boxes, there is a horizontal support board

near the top of the experimental area. This holds a fluorescent light that illuminates the

interior of the experimental area; the light plugs into the unregulated AC socket. The

support board also allows the Dremel ® stand to be secured at its top, restricting wobble

when the experiment is running. This has the side effect of making the experiment

louder and transmitting additional vibration to the containment box from the experiment.

60

The floor of the experimental area has two major penetrations; both can be seen

in Figure 11. One allows the optical support rod to enter the area and support the lens

without being attached to the vibration-laden containment box. The second penetration

is directly below where the test section is mounted to the shaft; this allows the laser

beam to enter the experimental area and be focused into the test section. It is a relatively

large and unobstructed penetration, but it is positioned such that it is extremely unlikely

for shrapnel from a catastrophically failed experiment to traverse, bounce off something

on the other side, and cause injury to persons in the vicinity.

The entire containment box is mounted on feet, one at each of its four corners.

This elevates the system several inches above the ground. Each of the feet has a thick

rubber strip glued to its bottom; this is intended to reduce the amount of vibration that

can be transmitted to the floor beneath the containment box. There is sufficient room

underneath the containment box to provide space for the laser head and optical

assemblies.

3.2.2. Containment Box Interlock

The interlock on the experiment's containment box was the first circuit to be

designed and constructed. It was recognized early on that hazardous conditions would

exist near the operating experiment, and that some physical separation between

experimenter and experiment would be a prudent measure in order to keep the two from

becoming one. While the box itself works when procedures are strictly followed, it is a

good practice to include the interlock to help enforce safe practices. Should the box be

opened, the interlock acts as a 'kill switch' and cuts the power from the box, shutting

61

down the rotary tool and quickly slowing the rotation down to zero. It does not,

however, affect the operation of the laser.

The containment box interlock centers around two relays. The detector relays is

connected to two microswitches on the experiment: one on the door itself, and a second

one in series with the first on the locking arm. If the door or locking arm is opened to

give physical access to the experiment, the detection circuit is opened and the detector

relay opens. In addition, the second (downstream power) relay opens, cutting off power

to the experiment. This allows separation of the low and high voltage sides of the circuit

and maintains the circuit status -- when the containment box is closed and latched, the

interlock will not automatically reconnect power to the experiment.

The interlock circuit displays its current status via indicator LEDs, and requires

manual 'arming' of the system. Two buttons serve that purpose: one to arm the system,

and one to manually trip it. When the 'arming' button is pushed, the system will only

arm if the containment box is closed and latched, and if the 'trip' button is not

concurrently pushed. Otherwise, the interlock will not connect power to the downstream

components, even while the 'arm' button is held down.

In addition to providing an interlock to the containment box, the interlock circuit

can serve as a source of +12VDC power. However, it is not used with the current

experimental setup.

3.2.3. CTMFD Hardware

The rotary tool is a Craftsman ® Rotary Tool Model 572610950. It has a

maximum rotation rate of 35,000 rpm, and is rated to consume 1.15 Amps at 120VAC.

62

For the experiment, it plugs into the controlled socket inside the containment box, and

has its switch set on high. It is mounted near the top of a fully-extended Dremel ®

stand, which is mounted inside the containment box at its base on the platform and at the

top where the vertical rod meets the support board. This can be seen in Figure 12.

Figure 12: CTMFD Setup

63

The rotary tool attaches to a short 3 mm diameter by 60 mm length rod that has a

pinhole at the far end. This rod is inserted into the receptacle for it in the main shaft, and

the two are secured by passing a clip through their pinholes.

The main shaft itself is made up of several pieces. The top piece (7.96 mm

diameter by 71 mm long) was cut from a paper feeding shaft in an older HP ® Deskjet™

648C printer. A hole was drilled axially into the center of one end to insert the attaching

rod for the rotary tool. A second, smaller hole was drilled through the side at the same

end to allow a locking pin or clip to be inserted through the corresponding hole in the

attaching rod when it is inserted and aligned. The opposite end has interlocking teeth cut

into it to match a similar set on the lower portion.

The lower portion of the main shaft connects to the upper portion using sets of

interlocking teeth cut into the mating surfaces, adhesive glue, and a plastic sleeve cut

from paper feed wheels in the same inkjet printer that the main shaft came from (both

parts were cut from the same rod). The sleeve covers the joint between the upper and

lower portion, and everything is held together by the glue. It extends from the joint 36

mm down to the top of a pipe, traversing most of the length of the pipe.

Below the joint, the lower portion of the main shaft was wrapped in an even

layering of aluminum tape and inserted into the center of a 0.25" SCHD 40 SS304 pipe

with a length of 150 mm. They were secured together with epoxy. This expanded main

shaft is marked using aluminum and black electrical tape running axially down the

central portion; this allows for the speed sensor to see an alternating light and dark

surface as the shaft rotates.

64

The expanded main shaft was then mounted to two high speed ball bearings, one

near each end. The gap between the inner surface of each bearing and the outer surface

of the pipe was filled with tape and epoxy for a permanent mount when the shaft was

inserted into the outer housing.

The outer housing is made of 1" SCHD 80 PVC pipe cut to fit. Appropriate gaps

were cut to hold the high speed bearings in place, and scrap PVC was used to make a

mount at the top for clips to secure the upper high speed bearing in place. A hole was

cut in the center of the housing for the speed sensor to view the rotating shaft inside.

The housing and shaft assembly was mounted vertically to the Dremel ® stand

and held in the correct position using wood blocks, rubber hose used as a cushion/gasket,

and worm gear hose clamps. A piece of aluminum was cut and mounted to the wood

support blocks and is used to support the speed sensor; it is taped into place aimed into

the hole in the shaft housing.

At the bottom of the shaft, an SS304 pipe bushing for 0.25" to 0.5" SCHD 80

was securely threaded onto the 0.25" pipe. The bushing is the interface between the

main shaft and the test section assemblies; the test section assemblies are replaceable and

can quickly and easily be threaded onto the bushing.

3.2.4. CTMFD Test Sections

The test sections are made up of two primary components bonded together by

epoxy: a mount and the CTMFD glassware. The mount is a 0.5" SCHD 80 PVC pipe

coupler with two slots cut in one end on opposite sides. These slots allow the glass test

section to be inserted into the mount while its arms extend out through the slots. Care is

65

taken to ensure an adequate alignment between the mount's center of rotation and the

center of the bulb on the glassware, and the two components are then epoxied securely

together. The mount threads onto the bushing on the bottom of the rotational shaft,

allowing for quick and easy test section swaps. An assembled CTMFD test section can

be seen in Figure 13.

Figure 13: Assembled Test Section A

66

The glassware is a small CTMFD made of 1 mm thick borosilicate. It has a bulb

at the bottom, from which two opposing tubes extend out the top. The tubes extend out a

distance, then have bends that angle them back toward the centerline of the bulb, still

angled upward. They meet and rejoin each other a short distance above the top of the

bulb, at which point they form a vertical tube. These arms, from where they leave the

bulb to where they rejoin, form a diamond-shaped area between them. This can be

clearly seen in Figure 14.

Figure 14: Test Section A Glassware

67

There are two major configurations for the glassware: a bulb with a

hemispherical bottom, and a bulb with a flat bottom. The hemispherical-bottom bulbs

match designs used elsewhere [5], while the flat bottom bulbs present a surface that

should not have seriously unpredictable lensing effects. This should allow for better

focusing of the laser beam to a point within the bulb than is possible with the highly

curved hemispherically-bottomed bulbs. A flat-bottomed bulb can be seen in Figure 15.

Figure 15: Flat-Bottomed Glassware

68

The hemispherically-bottomed bulbs have the following nominal dimensions: 15

mm diameter by ~30 mm total height in the bulb The inner width for the diamond-

shaped region is between 60 and 65 mm, with an outer width between 74 and 80 mm.

The inner height of that area is on the order of 18 to 20 mm. The flat-bottomed bulbs

have the following dimensions: a cylinder of 15 mm in diameter and a height of 31 mm.

The flat-bottomed bulbs were not used for the testing in this thesis.

3.2.5. Speed Sensor

The speed sensor is a relatively simple circuit; it is essentially an optical

tachometer. It consists of three major parts: a sensor head, a control unit, and a signal

adapter. Each part is separated and placed in its own enclosure with cables connecting

the parts.

The sensor head consists of an enclosure mounted near the shaft of the

experiment. The shaft is divided radially into two regions: a dark half and a reflective

half. This was done by applying black electrical tape and aluminum tape along the shaft;

when it rotates, it alternates between the black and reflective surfaces being presented to

the sensor head. The sensor head itself has an infrared LED and an infrared photodiode.

The IR LED illuminates the rotating shaft, while the IR photodiode is used to transform

the amount of reflected radiation into a voltage. That voltage is fed back to the control

unit.

The control unit feeds the voltage from the sensor head into an op-amp, which is

used as a comparator. It differentiates between the light and dark regions on the shaft by

comparing the sensor output voltage to a tunable reference voltage. This reference

69

voltage is developed as part of the calibration of the sensor. To aid in this, two visible

LEDs are included and connected to the output signal: a red LED indicating a low state,

and a green LED indicating a high state. The reference voltage itself comes from a

potentiometer connected to a knob. This is adjusted to determine the threshold between

high and low output states for both the reflective and dark regions on the shaft; it is then

positioned midway between the two limits to provide maximum noise immunity on

either side. When properly operating, the control unit outputs a square-wave signal at

the frequency of rotation. A high output state corresponds to the reflective side of the

shaft being in view of the sensor, while the low state corresponds to the dark side of the

shaft. At constant speeds, the times spent in the high state and low state should be

similar.

The third enclosure, the signal adapter, was a later modification to the circuit. As

the speed sensor was designed and constructed early on, before the DAQ design was

fully worked out, it resulted in an output signal that was not compatible with the final

system. The signal adapter takes the square wave from the control unit and changes the

signal voltage levels to those compatible with RS-232 systems. With the adapter in

place, the signal (still a square wave at the frequency of rotation) can be used directly in

RS-232 control lines.

3.2.6. Cavitation Sensor

The cavitation sensor was designed to be very similar to the speed sensor.

Originally, it used an almost identical circuit based around an IR LED and photodiode.

There were only two differences: it did not need a signal adapter, and the sensor unit

70

was split into two units. The IR LED was in one small enclosure, and the photodiode

was in the other small enclosure. This was intended to allow for flexibility in placing the

units as well as the ability to pick up direct rather than reflected IR radiation from the IR

LED.

However, the original design proved difficult to get working in practice. As a

result, some minor modifications were made. The IR LED and IR photodiode were

replaced with visible-spectrum optoelectronic components; a red LED was substituted

for the original IR LED, and a CdS photocell replaced the original IR photodiode. While

CdS photocells have much slower response times than photodiodes generally do, that is

not a problem with the current experimental setup.

The cavitation sensor works by illuminating the bulb in the test section with the

red LED. When it is filled with a largely transparent fluid, certain lensing effects will

come into play. When there is no vapor column in the bulb, only liquid, the bulb will

tend to concentrate the light from the LED on the opposite side of the bulb. This bright

spot is where the photocell is placed. When cavitation occurs and a vapor column forms,

the concentration of light on the photocell is reduced. If the vapor column is wide

enough, almost all of the light originally concentrated on the photocell will be scattered

elsewhere, and the photocell will see darkness.

The cavitation sensor is mounted on wood blocks secured to the lower platform

inside the containment box. They are aligned and aimed at each other, with the bulb of

the test section in between them.

71

The cavitation sensor is calibrated in essentially the same manner as the speed

sensor. It has a knob and indicator LEDs on the control unit that function the same way

they do in the speed sensor. The knob is turned until the thresholds are found for both

the case where a vapor column exists and the case where it does not. The knob is then

adjusted to a point between the two thresholds. Alignment beforehand is necessary. It

should be noted that additional care must be taken with the cavitation sensor. Not only

does the setpoint have a tendency to drift, but it also has a high degree of sensitivity to

interference from light sources. Ambient illumination changes the setpoint, and care

must be taken that changes in the illumination levels are not enough to impair operation

of the sensor during testing. Sufficient brightness may even prevent the sensor from

operating at all, regardless of the setpoint.

It should be noted that the signal that the cavitation sensor outputs is inverted;

when the design was changed, the meanings of 'high' and 'low' output states were

swapped. As a result, a separate signal inverter was assembled and connected to the

output of the cavitation sensor.

3.2.7. Signal Inverter

The signal inverter is a very simple circuit centered around an op-amp used as a

comparator. It was built as a result of the way the cavitation sensor operates, but it is an

independent device that can be easily connected and disconnected from any of the binary

state signals used in the experiment.

The signal inverter takes an RS-232 signal and reverses its polarity. Therefore, if

the input is 'high' then the output will be 'low,' and vice versa. It can be useful for

72

dealing with changes in the meanings of the high and low states that are not accounted

for elsewhere in the setup. It is currently used to address the change in the meaning of

the output signal from the cavitation sensor.

3.2.8. Speed Controller Electronics Unit

The speed controller unit has two largely separate functional circuits. The first

circuit is a protection system designed to detect faults in the power line. It will

disconnect the hot, neutral, and ground lines in the event of a polarity reversal or other

wiring fault in the electric source. As such faults have been discovered in the wiring at

Riverside in the past, this protection was determined to be warranted. Since the

upstream interlock chassis is metal, its ground was connected to the protection circuit as

well to prevent shocks in the case of a hot-ground reversal.

The second circuit uses a form of pulse width modulation to control the speed of

the attached rotary tool. This output is the same as that of a conventional dimmer

switch. As the AC voltage and current cross zero, the silicon controlled rectifiers in the

circuit return to their non-conductive state. Then, after a period determined by the timer

and control signal, a signal is applied to the silicon controlled rectifiers and they

transition to a fully conductive state. Even when the signal is removed, they remain in

the conductive state until the current through them falls below a threshold value. The

signal, however, is maintained until a short period before the incoming AC voltage

crosses zero.

The product is a modified AC wave where the early parts of both the positive and

negative cycle are cut off and remain at zero. This is a characteristic waveform for SCR

73

and TRIAC circuits, and constitutes a low-frequency variant of pulse width modulation

where each pulse is the 1/120 second period where the input voltage swings sinusoidally

from zero to its peak (either positive or negative) and then back to zero. By removing

parts of the waveform in this manner, the output power can be controlled. It works well

for incandescent light bulbs, but not all circuits can accept it. CFLs that are not specially

designed for dimmer switch operation, for example, will not tolerate it. However, by

trial and error, it was found that the rotary tool employed for this experiment was

compatible with such a method of power control. Controlling the input power for the

rotary tool translates well into a speed control. An example of the waveform output by

the controller electronics is given in Figure 16; it was set near the mid-level, so roughly

the first half of the AC sinusoid half-cycle is dropped. It should be noted that the

oscilloscope in the photograph is not the one used for laser pulse measurements.

74

Figure 16: Controller Output Waveform

The speed controller has two options for managing the output levels: a control

knob and an external input that accepts a modulated input signal at RS-232 voltages.

There is a switch to select between the two. When the knob is used for manual control,

it presents a control voltage from the position of the knob's potentiometer to an op-amp

used as a comparator. The other signal comes from the timing circuit. The timing

circuit uses a rectifier bridge and Zener-based voltage reference along with an op-amp to

determine when the incoming AC voltage is near zero. When the voltage is not near

zero, the op-amp sends a signal to a series of transistors that will charge a capacitor to

reflect the AC phase angle. When the AC voltage swings back to zero, the op-amp (used

75

as a simple comparator) switches from a high output state to a low one, which triggers

the transistors to quickly drain the timing capacitor. Therefore, the voltage across the

capacitor is determined by the progression through each AC half-period.

When the voltage across the timing capacitor is greater than the reference

voltage, another op-amp (again used as a comparator) sends a trigger signal to the driver

circuit that fires the SCRs.

The second input option uses an external signal to generate a reference voltage to

compare to the timing capacitor level. The external signal is connected to an op-amp,

once again used as a simple comparator. The output from the op-amp will therefore be

either high or low. This signal is fed into a simple RC-circuit that acts as a sort of low-

pass filter. With a high-frequency input signal fed into the op-amp, the capacitor in the

RC-circuit will trend toward an average value based on the time that the signal is high

vs. the time that the signal is low. The higher the frequency, the lower the 'ripple'

voltage across the capacitor will be and the closer the voltage will remain to the average.

This can be thought of as a form of a digital-to-analog convertor; an input logic signal

will be converted to an average value based on the time at either level, with a wide input

frequency tolerance.

This wide input frequency tolerance is the result of the high RC time constant

used in the circuit's design; the time constant is 2.2 seconds. The design called for such

a high time constant to reduce the effects of poor timing control in the input signal;

glitches and jitter will be readily filtered out. However, it does have the resulting effect

of slowing down the response time to legitimate signal changes. The 'stroke time' for

76

changing from zero to full power is several seconds, which was deemed to be

acceptable. Controllable speed fluctuations in the rotary tool were assumed to not need a

faster response than was given by the speed control circuitry.

3.2.9. RS-232 Isolator and Power Supply

The main interface between the computer and the rest of the experiment is the

RS-232 serial port isolator and +/- 15VDC power supply. It provides the necessary DC

power to the sensors, signal inverter, and pulse generator. In addition, it provides

connections to the RS-232 serial port on the computer.

The power supply for the isolator is a simple design. It uses a toroidal

transformer to provide a reduced input voltage into the regulators and LC filtering to

smooth out the output power. Rectifiers, inductors, and capacitors connected to the

transformer provide positive and negative unregulated voltages with respect to ground as

input to the regulators. The regulators are simple one-component linear regulators: an

LM7812 on the positive rail and an LM7912 on the negative rail. Zener diodes and

capacitors are used to adjust the ground reference voltage, giving +/- 15V regulated

output. An additional set of filter capacitors are used immediately downstream of the

regulators.

The serial port isolator circuit does not fully isolate the DTE from the DCE side

[29]; the ground line is common to both sides and simple op-amp circuits are used rather

than a fully independent optoisolator system. Four dual op-amp ICs are used, bringing

the number of op-amps to 8, one for each signal line on the DE-9 connector. The heart

of each signal isolator is identical.

77

On power-up, the default signal on each signal line is negative in the absence of

an RS-232 signal. If an existing signal is removed after power-up, then the output of

that line is maintained at the last input value (positive or negative). The op-amps are

used as comparators, and positive feedback is used to help enforce a policy of either

positive or negative output when the isolator has power.

According to RS-232 standards, the voltage range centered around ground - 3 V

to + 3 V is a sort of 'dead zone' to help with noise immunity [27]. Signals are only

allowed to exist in that range when changing states. Therefore, the isolator circuits were

designed to maintain their current state until the input signal fully crosses that voltage

region. At that point, it is clear that the input has changed states and the output will

change to match it, aided by positive feedback.

For this experiment, the computer is treated rather conventionally as DTE, and

the experiment's electronics are the DCE. Therefore, the isolators take 3 inputs from the

computer side and output them to the experiment, while 5 inputs are taken from the

experiment and directed to the computer. Not every signal line is used in the

experiment; while all 3 outputs from the DTE are used, only 3 of the 5 inputs to the DTE

are connected to the experiment. This leaves some room for additional connections in

the future.

The computer is connected to the isolator with a standard 9-pin serial cable. The

experiment then connects easily to the isolator using the banana jacks on the back. In

addition to the 8 sets of banana jacks for the RS-232 signal lines (the signal line and a

78

ground connector), a 3-plug banana jack is there to conveniently supply +15VDC,

ground, and -15VDC.

3.2.10. Laser System and Optical Assemblies

The laser system is a Coherent Cube 405-100C. It is a 100 mW Class IIIb diode

laser with a nominal wavelength of 403 nm. It consists of the laser head, power adapter,

heat sink and fan, keyswitch, and associated cabling.

The laser can connect to a computer via its USB port or through an RS-232 serial

port; it only uses the TxD, RxD, and signal ground lines. Computer control over RS-232

is straightforward; it uses a documented command set that lends itself to easy automated

control.

The laser also operates in several modes. In pure CW mode, the beam power can

be controlled by issuing commands from a computer. It also offers two modes for a

modulated beam: an analog power control option that allows modulation at up to 350

kHz, and an external TTL control for digital modulation up to 150 MHz. In digital pulse

mode, the power is set externally and the beam is turned on or off based on the TTL state

(high or low). Rise and fall times are less than 2 ns. The delay from signal to laser turn-

on is 16 ns, and the fall delay is 15 ns [30].

The laser head is connected to the pulse generator through its SMB connector. It

also connects to TxD, RxD, and a signal ground on the RS-232 isolator. In addition, it

has two connections to the laser interlock system. The interlock loop is connected

through the keyswitch. The interlock's flasher circuitry is connected to the appropriate

terminals wired to the laser head. In addition to the interlock circuitry, the laser has a

79

shutter build into the laser head that will prevent laser radiation from escaping the laser

head when closed.

The laser head is bolted down to the heat sink and fan assembly. Without the

heat sink and fan, the laser will quickly overheat and may be damaged. The connected

laser and cooler assembly is itself mounted to a stage that allows lateral translation,

which greatly assists in beam alignment. The stage in turn is mounted to a platform

made of plywood and 2x4s. The platform is bolted down to the lab floor with a thick

rubber gasket between it and the floor to help resist the transmission of vibrations from

the floor to the platform. The containment box is placed over and around this optical

platform, but they are not attached to each other; the containment box's feet stand on

rubber next to the platform, not on it. This was an attempt to keep as much vibration as

possible from transmitting through the containment box to the optics.

80

Figure 17: Laser and Mirror on Platform

In addition to the laser assembly, an optical component assembly is mounted on a

stage to the optical platform. This is shown in Figure 17. The component assembly

consists of a vertically mounted support rod which rises into the containment box along

with mirror and lens assemblies and their associated support arms. The mirror assembly

consists of a first surface mirror on an adjustable mirror mount extended on a horizontal

support arm that attaches to the vertical support arm with a connector. The mirror is

positioned below the containment box laser penetration and angled to reflect the laser

beam up through the penetration and into the test section. A plano-convex lens is

positioned in the beam path to bring the beam to a focus within the test section; it is held

81

in a lens mount attached to a horizontal support rod which is mounted near the top of the

vertical support rod. The lens is closely below the test section; this part of the assembly

is inside the containment box.

3.2.11. Laser Interlock System

The laser interlock system is designed to address the laser safety requirements

when used in conjunction with the corresponding circuitry built in to the laser system. It

complements the built-in circuits in the laser head by providing the required warning

lamps and interlock circuitry. When the interlock is tripped, the laser will stop firing.

The interlock system consists of the main interlock panel, the two warning

lamps, the two emergency stop buttons, the door open sensors, and the associated

interconnects. The circuit designs were based on schematics provided by Dr. Leslie A.

Braby for an X-Ray system interlock.

The design uses relays to open and close the interlock loop based on the system

status. On powering up, which requires a key, the system will not be armed. Both the

inside and outside warning lamps will activate at half power. There are three separate

interlock circuits in the panel. In order to operate the laser, all three must be in the

'armed' state. Two of the circuits are self-triggering; they only come into play if the

warning lamps have burned out bulbs. If either the inside or outside warning lamp is

burned out, the corresponding circuit will trip and an indicator LED will light up until

the situation is rectified.

In order to arm the third circuit, the door must be closed and both emergency

stop buttons must be pulled out to the 'ready' position. Then the 'arm' button on the

82

panel must be pushed. If the door is open or either emergency stop button is pushed, the

circuit will not arm and will remain in the 'tripped' stat. If the power is turned off, the

door is opened, or an emergency stop button is pushed, it will immediately enter the

tripped state and the corresponding indicator LED will illuminate.

The laser system expects the external interlock to provide a short between the

appropriate contacts to indicate that the interlock system is armed and ready; it is tripped

when the connection is opened. Therefore, when any of the interlock circuits trip, their

respective relays will open, breaking the connection and giving an open circuit on the

interlock line of the laser. Since the interlock circuits are connected in series, only one

will need to open to open the circuit to the laser.

The interlock system is also designed to accept an 'active' signal from the laser

head. When this signal is present, the interlock system will engage the flasher circuitry.

Then the warning lamps will flash; they will alternate between half and full power

instead of maintaining a constant half-power brightness. This can provide an additional

safety check; if the lamps are flashing but the interlock is tripped, then something is

wrong.

The interlock panel itself is locked and requires a key to gain access to the

internal wiring. In addition, the wiring to the lamps and buttons is enclosed in flexible

metal conduit. This is meant to discourage unauthorized personnel from tampering with

the interlock wiring. The conduit is shared by the room lighting; however, its power

branches off at the point where the power cord enters the interlock panel.

83

3.2.12. Pulse Generator

The pulse generator is designed to send a pulse signal to the laser upon receiving

a triggering RS-232 signal. The pulse signal is meant to be much more controlled than

the signal coming from the computer system. When the laser is in pulse mode, it accepts

TTL signals through its SMB connector modulated at frequencies up to 150 MHz. The

pulse generator outputs such a TTL-compatible signal through its BNC coupler, which is

connected to the laser via a BNC-SMB adapter.

The trigger signal coming into the pulse generator should be at least 2

microseconds in duration. This does not pose a problem. However, the triggering signal

may be in the high state arbitrarily long; its duration and timing are poorly controlled

due to the nature of the control software and the computer system. The circuit was

therefore designed to work properly in this situation. It uses an op-amp as a comparator

on the input to transform the RS-232 voltages into something more in line with TTL

signals, and then passes the output from the op-amp into a simple RC-based high-pass

filter. The signal passing through the filter is very short, on the order of 1 to 2

microseconds, and can be used as a triggering signal in an NE555 timing circuit.

The NE555 is a ubiquitous, low-cost precision timer IC. When two NE555

timers are placed on a single IC, the product is the NE556 dual timer. Both the NE555

and NE556 come in a number of variants. The timer used in the pulse generator was a

RadioShack LM556 that was on hand at the time of assembly. It has the capability of

directly driving TTL circuitry, can source or sink up to 200 mA [31], and can do timing

down to microseconds.

84

Only one of the timers in the LM556 is used in the pulse generator, and it is used

in monostable (single-shot) mode. This means that the timer must be triggered

separately for each output pulse; it does not run as an oscillator. The duration of the

output pulse is determined by the values of a resistor and capacitor connected to the IC.

The capacitor used in the pulse generator has a fixed value, while the resistor is a

potentiometer connected to a knob. This allows the duration of the pulse to be easily

changed and set for the experiment. The output pulse can therefore be set from about 4

to around 120 microseconds by rotating the knob.

The pulse generator also includes connectors meant for use in observing the

output pulse. This makes connecting an oscilloscope to the system a simple task. One

connector connects through a 1000-ohm resistor to the output pin on the timer, and

another connects through a 1000-ohm resistor to the output line downstream of the

impedance-matching resistor. The laser head and coupling cables are nominally a 50-

ohm impedance system, and therefore the pulse generator should have its output

impedance matched to that. However, there are other considerations as well. Tolerable

signal voltage and short circuit protection were considered in the design, and so the

impedance match is somewhat less than perfect. Nevertheless, the degree of

imperfection is not considered to be much of an issue at the operating frequencies in the

experiment.

85

3.2.13. Oscilloscope

The oscilloscope used in the experiment is a Tektronix ® TDS 2014C with

Tektronix TPP0201 probes. It nominally responds to frequencies up to 100 MHz, and

has four independent channels for input.

The oscilloscope can communicate with a PC using its built-in USB interface. It

comes with a limited software suite, but its use is not restricted to the included software.

The oscilloscope uses the VISA (Virtual Instrument Software Architecture) software

interfaces and a documented command set. This allows custom software to

communicate with the oscilloscope. However, such software has not been developed for

this experiment; the oscilloscope was used as a stand-alone piece of lab equipment, and

the results were manually read and recorded.

3.2.14. High Speed Camera

The high speed camera used to capture the high-speed footage of the experiment

is an IDT X-Stream™ VISION XS-4. It has 2 GB of onboard memory and can capture

grayscale images. Its resolution is 512 x 512, and at that resolution can capture up to

5,145 frames/second; at certain lower resolutions, it can capture more. It uses a USB

interface to the computer system, which runs IDT X-Vision version 1.13.01 for saving

the footage and controlling the camera.

The lens used for the camera is a Nikon Micro-Nikkor ® 55mm f/2.8 lens,

attached via a Nikon ® F-C Mount Lens Adapter. The entire assembly was mounted to

a platform independent of the experiment, and is outside one of the containment box. It

is aimed through one of the windows and focused on the bulb in the test section.

86

3.2.15. Data Acquisition and Control System

The computer used in the experiment is a Dell ® OptiPlex™ 745. It is used for

data acquisition and for control of the experiment through the SpeedControl software

developed specifically for those tasks. While the system is not meant for high-

performance, it does have suitable characteristics for use in the experiment.

It has 2 GB of RAM and, more importantly, a 2.4 GHz Intel ® Core 2 Duo™

CPU E6600. The multi-core characteristic is important; the SpeedControl software is

multithreaded and one of the threads uses a full CPU core as long as the program is

running. This is due to its practice of polling the serial port for high-speed observation

and control; the main thread cannot afford to sleep (give up large parts of its timeslice

while the CPU does other things). The presence of a second CPU core gives the other

threads and other background tasks system resources in which to execute, largely

without interfering with the time-critical thread.

The system runs Microsoft ® Windows™ XP with Service Pack 3 and is

regularly updated. Since Windows™ XP is a preemptive multitasking system, some

care needed to be taken in the development of the control and data acquisition software

to ensure that time-critical operations do in fact occur in a timely manner, and that the

preemptions that do occur are properly taken into account.

3.2.16. SpeedControl Software

The SpeedControl software provides an integrated package for performing the

functions of instrumentation, control, and data acquisition for the experiment. It

performs low-level control for the experiment and automates a number of higher-level

87

functions. It includes a User's Guide; this document can be accessed any time the

SpeedControl software is running by clicking on the 'Help' button.

A significant development effort went into making the SpeedControl software

functional. It was written in Microsoft ® Visual Basic™ 2005 Express as a .Net™ 2.0

application. It does make direct use of certain Win32 API calls, so its cross-platform

compatibility is somewhat limited. It requires a computer running Microsoft ®

Windows™ 2000 or higher with .Net 2.0™ installed. It also requires more than one

CPU core in order to run properly, and benefits greatly from faster CPU performance.

The presence of at least one serial port is required as well.

3.2.16.1. Using the SpeedControl Software

Upon launch, the User is presented with a loader screen. This lets the User select

the port(s) for use with the speed controller and the laser system if present; it can be the

same port as the speed controller. It is also where the User selects the output logfile,

giving the option of appending or replacing any existing file of the same name and

location. In addition, the choice for the type of speed measurement calculations is made

in the loader screen.

Once the selections are made, the program launches the necessary threads in its

startup process. Once all the appropriate threads have been launched and the

initialization sequence completes, the software will enter its running mode. The User is

presented with a split window that gives options for speed control and laser firing

sequences, with a glimpse at the logfile output and laser I/O; this window is presented in

88

Figure 18. In this mode, the main execution thread will consume as many CPU cycles as

it can on one CPU core.

Figure 18: Main SpeedControl Window

In the main operating mode, the software will monitor the experiment's speed,

cavitation status, and will record data received through the serial port used for the

experiment; if the laser is set to jointly use the port, it will be acknowledged upon

reception of transmitted data. The software will also work to maintain the set speed,

signal laser pulses as appropriate, and transmit the appropriate data to the laser head. In

addition, the software logs the relevant data and maintains a user interface with current

information.

89

From the User Interface window, the User can easily monitor the status of the

experiment. In addition, simple controls are provided for the user-adjustable options

available at runtime. Speed control is accomplished on the left side of the window; the

User simply types in a value for the speed in rotations per second in the appropriate box

and clicks on 'Set' beneath it to set the value. The User can also change the program's

actions when cavitation is detected (continuing, stopping, or pausing and resuming) and

a pause duration if the cavitation action is set to pause and resume the rotation of the test

section. The User can also click 'Start' to start running the experiment; it then gets

grayed out and the 'Stop' button is activated. Pressing 'Stop' halts the experiment and

terminates laser pulsing.

If the software is running with the laser control enabled, such controls can be

accessed on the right hand side of the window. An estimated duration of the pulse can

be entered directly, as can the time delay between pulses. These new values are not set

until the User clicks on the 'Set' button in the laser control area. Additional control and

options can be accessed via their relevant buttons. Text commands can be sent directly

to the laser head through the window brought up when the User clicks on the 'Send

Command to Laser' button. A manual pulse can be issued through the window brought

up when the User clicks on the 'Fire Pulse...' button. It also allows the User to change

the starting power for automatic pulsing by setting the power for the manual pulse and

closing the manual pulse window.

90

The User can also insert a comment into the logfile by clicking on the 'Insert

Comment' button in the main window and typing in the comment. The nearby 'Help'

button brings up the User's Guide, and the 'End' button will exit the program.

3.2.16.2. SpeedControl Software Architecture

The software manages to do much of its operation in its main thread. In the main

operating mode, it loops endlessly without sleeping. This is so that it can get timing

issues handled as well as it possibly can. It does, however, allow certain cooperative OS

functions time at the end of each loop executed. It uses an elevated priority state to help

ensure that timing is not thrown too far off by preemptive OS functions. Timing is

critical in the main thread because it directly handles the logic states of the input sensors

and directly controls the output states, which can have a desirable update or monitoring

frequency on the order of thousands of times each second; the timeslices in Windows do

not have sufficient granularity to properly handle sub-millisecond sleep intervals.

The main loop of the main thread does a number of things in each loop. This

includes

 Clock functions for precision timing and the detection of significant

'dead'/preempted times

 Reading the input state for speed and cavitation sensor, and processing the

information

 Setting the speed control pin as appropriate

91

 Processing the Laser Fire Control Sequence, which can override speed

control values, issues commands to the laser head, and controls the status of

the fire control pin on the serial port

 Determines if enough time has elapsed for the less-frequent tasks to be

executed

 Allowing Windows to process certain events without fully releasing the

timeslice

The less-frequent tasks include

 Speed logging

 Reading and Writing data to and from the serial port data buffers

 Updating the User Interface

 Collecting User-Controlled values

 Additional speed control calculations

- Predicting the speed in the near future with simple linear regression

- Determining if the speed is within tolerance limits

- Determining a time fraction for the speed control pin to be in the

'high' state

 Processing certain delays

The speed measurement is based around a simple tachometer concept: counting

how frequently the light and dark regions on the main shaft go past the speed sensor.

92

Every time the software determines that the sensor changed state (light to dark or dark to

light), the appropriate counter is incremented. In addition, it uses a sort of 'running

average' scheme using exponential decay to keep the transition count and live time up to

date. If a significant 'dead' period is detected (a missing chunk of time long enough to

mask two or more transitions at the current speed), that time period is removed from

consideration for the speed calculation if the 'Advanced Timing Feature' is enabled. The

speed determined in the calculation is logged at a minimum frequency, when certain

events take place (laser firing, entering or leaving the tolerance ranges), and when the

speed has had a significant change from its last recorded value.

Determination of the cavitation status is simpler than the speed calculation. It

looks for a signal from the cavitation sensor of a minimum duration (to eliminate

spurious signals) to determine whether or not a vapor column has formed in the bulb of

the test section. If the minimum duration requirement is met, the cavitation state is

considered to be 'true' and the event is logged.

Management of the speed control output state grew from a relatively simple and

straightforward method to a more complex set of calculations. On its face, the concept is

still simple: the pin should be in a 'high' state for a determined fraction of the time, and

in the 'low' state for the remainder of the time. This is meant to occur on very short

timescales so that this signal gets converted to an analog voltage on a capacitor in the

controller electronics with little ripple; it is much like Pulse Width Modulation at

variable frequencies. This control fraction is set with a simple concept: raise the value

when the speed is low, and reduce it when the speed is high. However, the method of

93

achieving this simple concept became somewhat complex before a working solution was

developed.

The solution required a degree of responsiveness to random fluctuations and at

the same time have the speed remain stable. In practice, making the system more

responsive produced odd behavior; oscillations were seen, and the speed could swing

rapidly and uncontrollably from zero to full speed. Reining in the oscillations reduced

the responsiveness of the system, and random fluctuations in the speed would end up

dominating; the speed would never completely approach the desired value.

To address those issues, the calculations for determining the speed control

fraction take several variables into account. One is a prediction of what the speed will

be in the near future. Another is a running average of the control level as an analog to

the voltage across the control capacitor in the speed controller electronics. In addition,

'dead' times are taken into account. Such periods can result in significant deviations in

the output; the actual output fraction can differ greatly from the desired fraction. These

deviations are detected and incorporated into the value of the fraction for the next time

period. However, a simple calculation does remain at the core of the determination of

the output fraction: the change in the fraction is equal to the sum of the speed deviation

multiplied by a coefficient and the cube of the speed deviation multiplied by another

coefficient. The coefficients are such that the cubic term comes to dominate when the

difference between desired and measured speed is very high; otherwise, the linear term

dominates.

94

The values for the speed control fraction are used for a fraction of a second

before they are updated. Within their use period, the speed control output is high if the

fraction to that point is lower than desired; it gets set low if the time fraction is greater

than desired. Precision timing is therefore critical for proper control of the speed control

signal.

The Laser Fire Control sequence addresses and automates key parts of the

experimental procedure. It takes the procedure to adjust and fire each pulse and breaks

that procedure down into a series of 'stages' where each stage takes certain actions and

will only proceed to the next stage once certain criteria are met. It can take a large

number of cycles through each execution loop for the criteria for moving on to the next

stage to be fulfilled; a stage can take an arbitrarily long time to complete. Therefore, the

software was designed so that the code in each stage would not halt the loop's execution.

For example, a stage that consists of a delay for a certain amount of time will simply

compare the system clock to a timer value each time the main loop is executed. If

insufficient time has passed since the timer was started, the software will return to

executing the main loop without advancing to the next stage. When the timer value has

expired, the software will execute the following stage the next time through the main

loop.

The concept for the firing sequence is simple: halt the rotation of the test section,

adjust the laser power, bring the test section back up to speed, issue a laser pulse, and

finalize the sequence. There are a series of delays in that sequence to ensure that

everything happens in the correct order. If, for example, the laser processed its power

95

setting command slowly and power was changed after the test section started rotating

again, it might cause an inadvertent cavitation event. This is because the laser emits

radiation while it is adjusting its power in pulse mode.

The sequence for a 'manual pulse' is essentially as described above. An

'automatic pulse' is similar, but does have several notable differences. An automatic

pulse sequence, when cavitation is detected, will end. In addition, after the laser power

is adjusted and it returns to speed, more than one shot will be fired. The software will

pulse the laser three times at that particular power with a delay between shots.

Afterward, there is a delay to see if a vapor column develops. Then, if no vapor column

develops, the laser power is incremented by 1 mW and the sequence starts over. This

repeats until the firing sequence is interrupted by cavitation, a timeout, user intervention,

or the next pulse power exceeds the laser's capabilities. In this manner, the software

automates the experiment. It ramps up the laser pulse power until it finds the power

necessary to induce cavitation in a test section rotating at its set speed with its particular

fluid fill parameters.

The threads that the SpeedControl software executes, other than the main thread,

have somewhat mundane tasks. One thread takes the information to log from a buffer

and writes that data to a logfile. Another one acts as an intermediary between the main

thread and the User; it controls the user interface and communicates information back

and forth between the main thread and the UI window. An additional thread only runs

during startup with laser control activated; it sends the initialization sequence to the laser

head. In addition, if the laser port is active but set to be different from the main serial

96

port, its I/O will be handed off to another thread. There is also an underlying monitor

thread that only plays a role during program startup and shutdown, and when threads

terminate unexpectedly. It launches the relevant threads at startup, periodically checks

to make sure they are running during the main operation loop, and attempts to close

resources gracefully on shutdown or when things go awry.

3.3. FLUID CHOICE AND SEEDING

The liquid used in this experiment was hardware-store grade acetone. While it is

understood that such a grade of acetone may be full of impurities, that is not expected to

be one of the primary sources of error in the experiment. The acetone is seeded, and the

seeding material is expected to override any impurities that may be present in such low-

grade acetone.

The original intent was to use a pure liquid without any seeding material. This

would encourage the use of Eq. (62) to determine localized energy deposition in the

liquid. However, early testing suggested that the laser system was not powerful enough

to deposit sufficient localized energy in the tensioned acetone to guarantee an induced

cavitation event and the subsequent formation of a vapor column. Therefore, a material

was needed that could, when mixed with the acetone, provide weak points within the

liquid in order to seed the nucleation of bubbles and enhance the local energy absorption

of the liquid. Black toner from a used toner cartridge was found, through trial and error,

to have some suitable characteristics.

The toner had small particles that would readily disperse into the acetone, and a

significant fraction appeared to stay in suspension for long periods of time. It also

97

absorbed significant fractions of the incident visible light; as 403 nm is nominally within

the visible spectrum, it was thought to provide excellent local absorption and could then

transfer the absorbed radiant energy to its surrounding fluid. Since the toner appeared to

disperse in the acetone as a suspension rather than by dissolving, the energy absorption

should be highly localized to the suspended particles rather than evenly dispersed in the

acetone.

Such a combination was thought to be helpful; the particles would provide local

weaknesses in the liquid, as the adhesive forces were expected to be less than cohesive

forces in the acetone. In addition, the laser energy would be preferentially available to

those weak areas, as the absorption by the toner particles (appearing black to the eye) is

much greater than that of acetone, which is transparent. As a result, it was expected that

this would decrease the demand for laser power in the experiment. However, it may

provide a major source of error, and discourages the use of Eq. (62). As a result, it was

assumed that all (or at least a constant fraction of) the absorbed laser energy would be

made available at the interface between the toner particles and bulk acetone, encouraging

the direct use of the fluence equations with a simple scaling coefficient.

3.4. EXPERIMENTAL PROCEDURES

The performance of an experiment can be broken roughly into three distinct

phases: Pre-Operation, Operation, and Shutdown.

3.4.1. Pre-Operation Procedures

The Pre-Operation procedures are largely independent of data runs. They

involve certain systems checks and preparations.

98

1. Prepare bulk test solutions for future use

a. Measure the mass of each component

b. Mix and store them in CLEAN, AIRTIGHT containers

c. Ensure the containers are properly labeled

2. Check the functionality of the laser interlock system according to the

Standard Operating Procedures for the laser system

3. Power on the RS-232 isolator and check that the speed sensor calibration

is good. If not, adjust the calibration knob

4. Don the protective laser goggles

5. Prepare the room for the laser interlock to be armed

6. Open the shutter on the laser

7. Power on the laser

8. Open the control software provided by the laser vendor

9. Adjust the laser to low-power (less than 5 mW) CW; do not turn on the

beam

10. Arm the interlock system and enable the beam

11. Check the rough alignment of the beam with an index card or something

functionally similar. It should be directed toward the location of the bulb

in the bottom of the test sections; if it is far off, perform a rough

alignment.

12. Disable beam emission and shut down the laser.

99

3.4.2. Data Operation Procedures

These procedures come immediately after the Pre-Operation Procedures, and

may be repeated several times for a day of data collection.

1. Select the test section for use and clean it. This may be difficult to

accomplish.

2. Clean the syringe that will be used to handle the fluid.

3. Choose a fluid solution prepared previously in the Pre-Operation

Procedures. If necessary, agitate the solution to ensure dispersal of

anything that may have settled out.

4. Withdraw a sufficient amount of solution to fill the clean test section

using the clean syringe

5. Fill the test section incompletely; the fluid should be in the upper arms

but filled no further than the outer edge of the PVC mount.

6. Mount the filled test section onto the experiment’s main rotational shaft;

record the bulb and fill fluid used.

7. Making sure that the protective laser goggles are worn, power on the

laser.

8. Using the vendor’s control software, set the laser to low power (< 5 mW)

and check the fine alignment. This is easiest to accomplish if the test

fluid fluoresces; the hardware-store grade acetone does

a. The focus of the beam should be near the center of the bulb, along

the axis of rotation, which may not match the bulb centerline.

100

b. Close the box, power on and arm the box interlock, power on the

speed controller and set the switches to manual control.

c. Adjust the rotation rate to a low speed, but high enough to visually

determine the axis of rotation.

d. Ensure that the focus does correspond to a point along the axis of

rotation sufficiently far above the bottom of the bulb that

cavitation events will not be generated there. Adjust if necessary

e. The alignment should work for several tests using the same test

section; it should not be tweaked needlessly

9. Adjust the calibration of the cavitation sensor

a. Making sure that there is no vapor column in the bulb, find the

knob position for the threshold between “detected” and “not

detected.” The test section should be rotating at a low rate for

this. Note the position of the knob.

b. Ramp up the speed and induce cavitation (this may require use of

the laser; the vendor’s software can be of assistance).

c. Reduce the speed until the vapor column in the bulb is very small.

d. Adjust the calibration knob on the cavitation sensor to find the

threshold position for detection of a vapor column; note the

position of the knob.

e. Set the position of the calibration knob on the speed sensor to

halfway between the two thresholds just determined

101

f. NOTE: since the sensor uses a photocell and incident light

passing through the test section to determine its state, extraneous

or changing illumination may interfere with its correct operation.

It may also have trouble if the liquid absorbs significant amounts

of light in the red frequencies.

g. Set the rotation rate back to zero.

10. Degas the fluid in the test section

a. Check to see if the fluid can maintain the maximum rotation rate

deliverable without forming a vapor column by ramping up the

speed to its limit.

b. If a vapor column forms, stop the rotation, allow the gas bubble to

escape, and repeat the ramp test until a vapor column no longer

appears at the maximum rotation rate.

c. Ramp the speed up to its maximum value.

d. Briefly set the laser power to 100 % in CW mode using the

vendor’s software. Once a vapor column forms, set the power to

zero

e. Slow down the speed until the vapor column is little more than a

bubble in the bulb

f. Maintain this condition for a few minutes to attempt to diffuse any

gas remaining in the liquid out to the vapor column, which should

be largely the vapor of the liquid rather than dissolved gas.

102

g. Repeat as necessary

h. Stop the rotation

11. Exit the laser vendor’s control software

12. Determine a pulse duration to be used for the subsequent tests

a. Disable laser emission.

b. With the oscilloscope attached to the pulse generator’s output,

feed a square wave into the input of the pulse generator that is

compatible with RS-232 voltages and signaling.

c. Adjust the timer knob on the pulse generator until the pulses it

outputs match the desired pulse duration.

d. Reconnect the pulse generator to the appropriate serial port line

13. Make sure the laser is powered on

14. Start the SpeedControl software, and set its initial parameters

15. Once finished starting up, make sure that the software is set to not control

the speed.

16. Switch the electronic speed controller over to external input for speed

control.

17. Perform a test sequence.

a. Using a micrometer, measure the distance between the menisci in

the arms of the test section. Record the value.

b. Close the box and arm its interlock.

103

c. Set the initial laser pulse power and duration in the SpeedControl

software, and enable automatic pulsing. The initial laser pulse

power need not be zero if it is known that cavitation will not occur

below certain values.

d. Set the desired rotation rate in the SpeedControl software, and set

the control to stop once cavitation is detected.

e. Start the control, and allow it to automatically perform its test

sequences.

i. First, the program will stop the rotation and calibrate the

laser pulse power.

ii. Then, the test section is brought back up to its desired

speed.

iii. Up to three pulses are issued to the laser

iv. If no vapor column forms, the laser power is incremented,

the speed brought to zero, and this sequence is repeated

v. If a vapor column forms, then the speed is brought to zero

and the sequence ends.

f. Upon a successful cavitation event, determine the measured

duration of the pulse issued to the laser from the pulse generator.

Record this value.

104

g. Check the logfile and determine the rotation rate at the time the

critical pulse was issued; record this value as well as the laser

power for the pulse.

18. Perform additional test sequences as necessary and desired.

19. Once a test section has been filled with the testing fluid, it should not be

topped off; it should be completely drained and rinsed before refilling.

3.4.3. Shutdown Procedures

These procedures are primarily for the end-of-the-testing-day cleanup.

1. Set the speed controller to manual and adjust it to zero.

2. Power off all the systems that were used, except the laser interlock.

3. Once the laser has been powered off, close the shutter on the laser head.

4. Power off the laser interlock. The laser goggles can now be removed.

5. Dispose of the used testing fluids as necessary.

6. Backup the saved test data.

3.4.4. High-Speed Camera Notes

When a high-speed camera run is performed, it is much like a normal test.

However, some additional “juggling” is involved. Before running the test, it should be

aimed and configured in its software for the appropriate framerate, resolution, etc. It

may be necessary to provide additional illumination; care should be taken to ensure this

does not interfere with the cavitation sensor.

Since the camera has limited onboard memory, it cannot be run for the entirety of

the test sequence. Instead, the user must carefully watch the indicators on the

105

SpeedControl software in the background while in the X-Vision software. Shortly

before a laser pulse is issued, the user must trigger high speed acquisition from the X-

Vision software. Depending on the settings, it may be necessary to do this for each

pulse. Once a cavitation event has been detected, the user can save the high speed

acquisition to the DAQ computer in a variety of formats.

Due to the lack of high-speed camera support in the SpeedControl software, it is

recommended that it only be used in special runs. The recommendation is that instead of

doing a ramp in laser energy to find the cavitation threshold, it be deliberately set WELL

ABOVE the cavitation threshold to ensure a video capture of the event and the formation

of the vapor column.

3.5. EXPERIMENTAL RESULTS

Several tests were successfully performed with the existing experimental setup.

One successful high speed camera run was recorded, and four separate fluid fills were

done for threshold data runs. All runs used the same test section, recorded as Bulb A.

The four threshold data runs drew from the same mixture of acetone and toner, recorded

as Mixture A. However, due to particulate settling, they may not have had identical fills.

In addition, the high speed camera run used an uncharacterized toner/acetone mixture.

The common acetone/toner mixture is relatively clear. The dispersed particles do

not do much to darken the mixture, except when they settle out. The original mixture

used 145.0028 g of acetone, into which was mixed 0.10919 g of collected toner particles.

This amounts to a ratio of 0.753 mg toner per g acetone. However, the larger and

heavier toner particles do not remain suspended long, while the very smallest ones

106

should remain in suspension indefinitely. Indeed, it was seen that the largest of particles

never fully dispersed into the liquid, and instead quickly settled onto the bottom of the

container. Over the course of hours to days after agitating the mixture and subsequently

allowing it to stand undisturbed, additional particles were seen to have settled out on the

bottom of the container. However, the liquid never regained its complete original

clarity, indicating that some material had not come out of suspension/solution.

3.5.1. High Speed Visualization

This test was intended solely to provide visualization of a cavitation event and

the early evolution of a vapor column. As such, the particulate concentration was not

determined, and neither was the operating centerline tension; it is estimated as having

been around -2 atm ± 1 atm based on an apparent mid-level liquid fill. It operated at 200

rps, and the recording framerate was 1000 fps.

The state before and during the laser pulse can be seen in Figure 19 and Figure

20, respectively. A small white dot appears, and a vapor column grows out from there.

The subsequent formation and stabilization of the vapor column is shown proceeding in

time in Figure 21, Figure 22, Figure 23, Figure 24, Figure 25, Figure 26, Figure 27,

Figure 28, Figure 29, Figure 30, Figure 31, Figure 32, and Figure 33. They show the

state of the bulb at 1, 2, 3, 4, 5, 6, 7, 9, 11, 16, 21, 41, and 191 ms after the laser pulse,

respectively.

107

Figure 19: Before the Pulse

One thing that should be recognized is the presence of reflections from the light

sources for the camera. They can be seen in all the high-speed captures, and should not

be confused with the phenomena of interest, especially in Figure 20. The bright

reflections in Figure 20 are very much like those in Figure 19, occurring primarily in the

bottom right and top left of the bulb; less prominent reflections occur elsewhere. The

spot in Figure 20 slightly to the left of the bottom center of the bulb, however, is not a

reflection and is unlikely to be a camera artifact; it is in the same location as the growing

disturbance in Figure 21.

108

Figure 20: Firing the Pulse

Figure 21: 1 ms Post-Pulse

109

Figure 22: 2 ms Post-Pulse

In Figure 21 and Figure 22, it can be seen that there is a rapidly expanding region

in the bottom of the bulb growing out from the initial spot. This region begins to take

shape in Figure 23 and Figure 24 as a column in the bulb. However, it is still in its

initial growth phase; momentum expands it past its long-term (stable) boundaries. The

approximate stable boundaries can be seen in the image taken 191 ms after the laser

pulse.

110

Figure 23: 3 ms Post-Pulse

Figure 24: 4 ms Post-Pulse

111

Figure 25: 5 ms Post-Pulse

Figure 26: 6 ms Post-Pulse

112

In Figure 25 and Figure 26, the initial growth phase of the vapor column is

winding down, and it shifts back towards its eventual steady-state conditions. However,

as seen in Figure 27 and Figure 28, it has a chaotic period of acceleration to undergo.

The liquid at the edge of the new vapor column was originally in the vicinity of the

centerline, and had a low tangential velocity. When the liquid moves out to a new

radius, its tangential velocity is essentially unchanged, and it needs to accelerate to the

appropriate in order to match the angular velocity of the system. This acceleration of

liquid in the bulb results in some chaotic disturbances.

Figure 27: 7 ms Post-Pulse

113

Figure 28: 9 ms Post-Pulse

Figure 29: 11 ms Post-Pulse

114

Figure 30: 16 ms Post-Pulse

Figure 29 and Figure 30 show the largely formed vapor column, but the chaos of

acceleration is still present. After some time, as seen in Figure 31 and Figure 32, the

chaos dies down. Within 16 ms, the vapor column is essentially in its steady state.

Vibrations in the equipment play a major role in the remaining chaotic behavior.

115

Figure 31: 21 ms Post-Pulse

Figure 32: 41 ms Post-Pulse

116

Figure 33: 191 ms Post-Pulse

As seen in Figure 32 and Figure 33, the vapor column after 191 ms is not much

different from the vapor column 41 ms after the laser pulse. The steady-state situation

can continue with few changes for large periods of time. Long-term, the primary causes

of deviations from the steady-state vapor column would include fluctuations in the

rotation rate, vibrations/deformations, and the slow disappearance of acetone out the top

of the test section as it evaporates out to the atmosphere at large. This occurs on time

scales much larger than those used for testing.

3.5.2. First Fill

The first fill was used for a series of 50-μs pulses at 180 rps. In all, 28 threshold

tests were successfully completed before the fill was depleted to a level at which it could

117

not ramp up to speed without the formation of a vapor column. The results are given in

Table 3.

Table 3: Data from the First Pulse Series

Test

Number

Fill

Diameter

(mm)

Power

(mW)

Pulse

Duration

(μs)

Speed

(rps)

Centerline

Pressure

(Pa)

Pulse

Energy (J)

1 38.83 42 50.4 178.196 -8.40E+04 2.12E-06

2 39.24 42 50.4 180.5 -9.29E+04 2.12E-06

3 40.07 56 50.4 180.88 -1.02E+05 2.82E-06

4 40.45 47 50.4 181.04 -1.06E+05 2.37E-06

5 41.22 51 50 180.12 -1.12E+05 2.55E-06

6 41.73 43 50 180.83 -1.19E+05 2.15E-06

7 42.72 55 50 182.97 -1.35E+05 2.75E-06

8 44.17 43 50 179.91 -1.43E+05 2.15E-06

9 45.1 50 50 180.38 -1.55E+05 2.50E-06

10 45.72 47 50 180.89 -1.63E+05 2.35E-06

11 46.25 52 50 180.89 -1.70E+05 2.60E-06

12 46.8 46 50 182.31 -1.80E+05 2.30E-06

13 46.98 56 50 181.59 -1.80E+05 2.80E-06

14 47.2 50 50 180.88 -1.81E+05 2.50E-06

15 47.95 55 50 179.96 -1.87E+05 2.75E-06

16 48.61 57 50 178.77 -1.91E+05 2.85E-06

17 49.43 51 50 181.28 -2.10E+05 2.55E-06

18 50.21 47 50 181.48 -2.20E+05 2.35E-06

19 50.85 46 50 182.68 -2.33E+05 2.30E-06

20 51.5 41 50 180.69 -2.34E+05 2.05E-06

21 51.8 56 50 181.71 -2.42E+05 2.80E-06

22 52.52 54 50 179.99 -2.45E+05 2.70E-06

23 53.6 51 50 181.07 -2.63E+05 2.55E-06

24 54.09 49 50 181.51 -2.72E+05 2.45E-06

25 55.03 53 50 179.96 -2.78E+05 2.65E-06

26 56.4 56 50 181.21 -3.03E+05 2.80E-06

27 58.76 54 50 181.51 -3.39E+05 2.70E-06

28 63.86 46 50 182.21 -4.23E+05 2.30E-06

118

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

-5.00E+05-4.00E+05-3.00E+05-2.00E+05-1.00E+050.00E+00

P
u

ls
e
 E

n
e
rg

y
 (

J
)

Centerline Pressure (Pa)

50 μs Pulse Series - Fill 1

Figure 34: First Fill

The information in Table 3 is represented graphically in Figure 34. As one can

see, there is plenty of scatter in the data. In addition, whatever trend there may be is

hidden by that noise. It would appear that the trend is essentially flat. This can be the

result of thermal diffusion effects. If the pulse is not short enough, significant amounts

of the deposited energy can diffuse away instead of contributing to bubble nucleation;

the diffusing energy may be so large as to completely mask any underlying trend in the

required energy threshold.

3.5.3. Second Fill

The second fill was used for a series of 6-μs pulses at 210 rps. In all, 20

threshold tests were completed before the fill was depleted to a level at which it could

119

not ramp up to speed without the formation of a vapor column. However, one test was

of unusable quality, and an additional four are of questionable quality.

6 μs Pulse Series - Fill 2

0.00E+00

1.00E-07

2.00E-07

3.00E-07

4.00E-07

5.00E-07

6.00E-07

-7.00E+05-6.00E+05-5.00E+05-4.00E+05-3.00E+05-2.00E+05-1.00E+050.00E+00

Centerline Pressure (Pa)

P
u

ls
e
 E

n
e
rg

y
 (

J
)

Figure 35: Fill 2 Data

Table 4 lists the data collected in this sequence, and it is presented graphically in

Figure 35 with all problem points included; each of the questionable points has a red

arrow pointing to it in the figure. Once again, there is a significant amount of noise in

the gathered data which may interfere with the determination of a trend. However, the

early values appear to hint at one, trending towards lower energy with decreasing

pressure.

120

Table 4: Data from the Second Pulse Series

Test

Fill

Diameter

(mm)

Power

(mW)

Pulse

Duration

(μs)

Speed

(rps)

Centerline

Pressure

(Pa)

Pulse

Energy (J) Note

1 37.44 79 5.92 208.18 -1.34E+05 4.68E-07

2 38.14 74 5.92 213.05 -1.54E+05 4.38E-07

3 38.44 74 5.92 210.43 -1.52E+05 4.38E-07

4 38.93 71 5.92 211.5 -1.61E+05 4.20E-07

5 39.41 65 5.92 212.45 -1.70E+05 3.85E-07

Very first

shot

6 39.68 66 5.92 210.05 -1.68E+05 3.91E-07

7 40.51 68 5.92 212.29 -1.85E+05 4.03E-07

8 41.27 62 5.92 210.55 -1.91E+05 3.67E-07

9 41.91 78 5.92 212.09 -2.05E+05 4.62E-07

10 42.54 85 5.88 211.06 -2.11E+05 5.00E-07

11 44 61 5.92 211.32 -2.33E+05 3.61E-07

12 45.66 65 5.92 214.03 -2.68E+05 3.85E-07

13 46 74 5.92 210.51 -2.62E+05 4.38E-07

14 46.8 59 5.92 209.66 -2.71E+05 3.49E-07

3rd shot at

first

power

15 47.53 80 5.92 208.91 -2.80E+05 4.74E-07

16 48.44 65 5.92 213.51 -3.13E+05 3.85E-07

17 49.57 64 5.92 211.22 -3.23E+05 3.79E-07

18 51.99 85 5.88 211.96 -3.69E+05 5.00E-07

Possible

seed

depletion

19 58.01 67 5.88 210.42 -4.75E+05 3.94E-07

Possible

seed

depletion

20 64.89 85 5.88 211.45 -6.28E+05 5.00E-07

Possible

seed

depletion

121

3.5.4. Third Fill

The third fill was used for a series of 6-μs pulses at 180 rps. In all, 4 threshold

tests were completed before the fill was depleted to a level at which it could not ramp up

to speed without the formation of a vapor column. However, the first test ramped all the

way to the limit of the laser’s power without forming a vapor column; as a result, some

of the liquid was removed to start the next ramp at significantly increased tension.

These tests appear to have experienced relatively violent transients, as the other 180 rps

tests did not seem to remove as much fluid from the test section as these tests did in the

54 to 57 mm fill range. The results are given in Table 5.

Table 5: Data from the Third Pulse Series

Test

Fill

Diameter

(mm)

Power

(mW)

Pulse

Duration

(μs)

Speed

(rps)

Centerline

Pressure

(Pa)

Pulse

Energy (J) Note

1 41.24 (none)

Liquid

removed

afterward

2 54.66 82 5.96 181.06 -2.78E+05 4.887E-07

3 56.47 82 5.96 182.88 -3.12E+05 4.887E-07

4 61.63 80 5.96 180.8 -3.79E+05 4.768E-07

The data given in Table 5 is presented graphically in Figure 36. While there does

appear to be a slight downward trend, there are only three points. Given the noise

experienced by the other tests, it is surprising that there was so much consistency in this

series. However, there are too few points to make a good determination of a trend with

any confidence from these points alone.

122

6 μs Pulse Series - Fill 3

0

0.0000001

0.0000002

0.0000003

0.0000004

0.0000005

0.0000006

-400000-350000-300000-250000-200000-150000-100000

Centerline Pressure (Pa)

P
u

ls
e

 E
n

e
rg

y
 (

J
)

Figure 36: Fill 3 Chart

3.5.5. Fourth Fill

The fourth fill was used for a series of 6-μs pulses at 180 rps. In all, 19 threshold

tests were completed before the fill was depleted to a level at which it could not ramp up

to speed without the formation of a vapor column. However, the last test ramped all the

way to the limit of the laser’s power without forming a vapor column. In addition, the

three tests previous to it had questionable qualities. All the data can be seen in Table 6;

as it was the second fill of the day, it did not begin with test one. The third fill was

performed immediately prior to this one.

123

Table 6: Data from the Fourth Pulse Series

Test

Fill

Diameter

(mm)

Power

(mW)

Pulse

Duration

(μs)

Speed

(rps)

Centerline

Pressure

(Pa)

Pulse

Energy (J) Note

5 46.71 94 5.96 181.69 -1.78E+05 5.602E-07

6 47.21 82 5.96 182.09 -1.85E+05 4.887E-07

7 47.82 96 5.96 180.27 -1.86E+05 5.722E-07

8 48.46 83 5.92 180.47 -1.95E+05 4.914E-07

9 49.26 82 5.92 182.08 -2.10E+05 4.854E-07

10 49.51 84 5.92 179.91 -2.06E+05 4.973E-07

11 49.9 76 5.92 180.21 -2.12E+05 4.499E-07

12 50.48 95 5.92 178.93 -2.15E+05 5.624E-07

13 51.2 78 5.92 182.21 -2.36E+05 4.618E-07

14 52.07 95 5.92 181.72 -2.45E+05 5.624E-07

15 52.85 84 5.92 180.67 -2.52E+05 4.973E-07

16 53.39 82 5.92 179.46 -2.54E+05 4.854E-07

17 53.76 73 5.92 180.81 -2.64E+05 4.322E-07

18 54.24 82 5.92 180 -2.68E+05 4.854E-07

19 55.05 75 5.92 182.38 -2.89E+05 4.44E-07

20 55.95 70 5.92 181.75 -2.99E+05 4.144E-07

2nd shot at

first power

21 56.64 65 5.92 180.43 -3.03E+05 3.848E-07

3rd shot at

first power

22 58.62 83 5.92 183.02 -3.44E+05 4.914E-07

Possible

seed

depletion

23 63.07 (none)

Possible

seed

depletion

The values from Table 6 are presented in Figure 37. Out of all the fill sequences,

this one reveals the strongest trend. However, if all the questionable points are removed

(indicated by red arrows in the figure), it becomes less apparent. In addition, the final

test in the sequence did not end with the formation of a vapor column. This could be the

124

result of seed depletion. As the toner particles at this point had been experiencing

significant centrifuging effects, it would not be surprising that enough would come out

of solution to cause issues. It did appear that at the end of the test, some toner had caked

out along the outermost points in the elbows of the test section, but it was not determined

how much toner had actually undergone that.

6 us Pulse Series - Fill 4

0

0.0000001

0.0000002

0.0000003

0.0000004

0.0000005

0.0000006

0.0000007

-4.00E+05-3.50E+05-3.00E+05-2.50E+05-2.00E+05-1.50E+05-1.00E+05-5.00E+040.00E+00

Centerline Pressure (Pa)

P
u

ls
e
 E

n
e
rg

y
 (

J
)

Figure 37: Fourth Fill Data

3.5.6. Discussion and Analysis

A collection of every test is charted in Figure 38 to compare the results. Each

series is provided a different marker. By casual examination, it is clear that the 50

125

microsecond pulse data does not match the 6 microsecond pulse data at all. As there is a

factor of more than 8 between their time scales, it is suspected that they are

phenomenologically different. On the longer time scales, transient heat flow becomes

more significant and may dominate the process. It is also possible that the motion of the

seed particles comes into play in this time scale; they have more time to move into and

out of the laser beam. In addition, since the total average pulse energy in the 50

microsecond tests is on the order of five times as great as that of the 6 microsecond tests,

it is possible that the cavitation events may not be restricted to the zone of high power

density near the focus point. They may happen elsewhere along the beam. This would

only be expected to happen in the situation where seed particles are scarce, and the only

way to deposit energy into the seed particles is to expand the applicable range. Such

effects probably do play a role; it appears that seed depletion is an issue with many of

the tests.

126

All Collected Data

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

-7.00E+05-6.00E+05-5.00E+05-4.00E+05-3.00E+05-2.00E+05-1.00E+050.00E+00

Centerline Pressure (Pa)

P
u

ls
e
 E

n
e
rg

y
 (

J
)

Fill 1 - 50 μs -
180 rps

Fill 2 - 6 μs -
210 rps

Fill 3 - 6 μs -
180 rps

Fill 4 - 6 μs -
180 rps

Figure 38: All Collected Data

When the 6-microsecond pulse data seen in Figure 38 appears without the 50-

microsecond data, the differences between the tests becomes more pronounced. This is

shown in Figure 39. Much of this may depend on variations in the initial fill; as particles

may settle out of solution, even using the same solution at different times (as was done

here) does not guarantee consistency between tests. In addition, the mounting is

expected to be slightly different between tests. While care was taken to thread the test

section onto the shaft consistently across fills, some variation is unavoidable.

127

All 6-μs Pulse Data

0.00E+00

1.00E-07

2.00E-07

3.00E-07

4.00E-07

5.00E-07

6.00E-07

7.00E-07

-7.00E+05-6.00E+05-5.00E+05-4.00E+05-3.00E+05-2.00E+05-1.00E+050.00E+00

Centerline Pressure (Pa)

P
u

ls
e
 E

n
e
rg

y
 (

J
)

Fill 2 - 210 rps

Fill 3 - 180 rps

Fill 4 - 180 rps

Figure 39: 6 μs Pulse Data

One bit of information that was largely neglected was the fluid temperature.

While it was assumed that variations in it would not be significant, that may not be

entirely true. The laser lab has limited air conditioning, and the containment box

prevents most airflow. After prolonged periods of operation, the room warms up

noticeably, and the air in the containment box seems much warmer. This should be no

surprise; the rotary tool can use significant amounts of power and it is an enclosed space.

128

Pressure and Pulse Energy

0.00E+00

1.00E-07

2.00E-07

3.00E-07

4.00E-07

5.00E-07

6.00E-07

7.00E-07

-7.00E+05-6.00E+05-5.00E+05-4.00E+05-3.00E+05-2.00E+05-1.00E+050.00E+00

Centerline Pressure (Pa)

P
u

ls
e
 E

n
e
rg

y
 (

J
)

Fill 2 - 210 rps

Fill 3 - 180 rps

Fill 4 - 180 rps

Expected Trend, Scaled

Figure 40: Comparison with Expected Trend

A comparison with the expected trend is shown in Figure 40 for the 6

microsecond pulse data. The questionable points were removed from the comparison,

and the trend is that given by Eq. (54) using a scaling coefficient of 1.10E-7. It is not a

curve fit or regression analysis; it is simply there for comparison purposes. The scatter

in the data makes such a fit questionable at best; the results appear to neither confirm nor

deny the expected trend. The 50 microsecond pulse data, however, appears to be

essentially flat and would therefore tend to fit a scaled Eq. (52) rather than a scaled Eq.

(54).

129

The comparison with the trend from Eq. (54) is important. It directly relates the

experimental data to the energetics developed from the analysis of Bubble Theory. If

future results show a poor fit to the trend, then Eq. (54) did not adequately capture the

relevant phenomena. If future results do follow the trend, then the next step would be

the development of the proper scaling coefficients. From there, one could determine the

energy deposition characteristics that would be useful for full optimization of CTMFD

systems.

130

4. COMPUTATIONAL FLUID DYNAMICS WORK

Computational Fluid Dynamics simulations can be very useful in the study of

fluid systems. With advances in modern computing systems and CFD software,

reasonable simulations can be performed on a wide variety of systems in decent amounts

of time. In addition, modern tools allow the workload to be spread across several

computer systems, reducing the computational demand on any one node. This allows for

large, complex simulations to be performed even on commodity hardware.

CFD codes solve the equations of fluid mechanics in a discretized, numerical

manner. An important step in a CFD simulation is the conversion of the flow geometry

into a computational domain. In this process, a continuum of locations is divided into a

finite number of places known as vertices, surfaces, and cells [32]. The flow conditions

in each cell can then be described by a set number of parameters; the specific parameters

in question are determined by the particular simulation. For example, in laminar

simulations, turbulence parameters would not be included.

A CFD simulation needs more than just a mesh. Initial conditions are important,

as are wall and boundary conditions. The entry/exit conditions need to be given, and the

fluids themselves need to be defined (i.e., parameters like viscosity and density). In

addition, the simulation models need to be chosen and their parameters defined.

Turbulence models can be used, or flows can be forced into the laminar or inviscid

regimes. If time dependence is not an issue, a steady-state simulation can be performed.

Any applicable extra conditions -- motions in the reference frame, for instance, should

131

be determined as well. Stopping conditions such as time and convergence criteria

should also be given.

When all the necessary conditions are provided and the simulation started, the

solver steps through the calculations in an iterative manner. It applies the discretized

forms of the fluids equations to the mesh and conditions, and solves them in a numerical

rather than symbolic manner. Ideally, each iteration will rapidly bring the computed

solution closer to the true one. Generally, a surrogate for the deviation from the true to

the calculated solution is the residual in the computation (the difference between

succeeding iterations; the exact meaning may vary from code to code). When the

residual is very low, there is not a significant change in the computed solution from

iteration to iteration, and the computed solution is said to have converged on that value.

There may be several levels of convergence, not all of which may be accessible to the

end user. If the calculation is transient, then the solver would proceed on to the next

time step upon meeting the convergence criteria or iteration limits set by the user. If the

residuals remain large, the solution is not converging and may instead diverge. That can

quickly lead to nonphysical results and overflow errors, and should be avoided.

Refinements to the mesh or other inputs can frequently be used to remedy such a

situation.

4.1. CFD SIMULATION

The CFD simulation of a CTMFD was performed in CD-adapco ® Star-CCM+

5.02.009, which uses finite volume computational techniques [32]. It ran on an ad-hoc

Cluster of Workstations, each running a 64-bit version of Microsoft ® Windows™ (the

132

main node runs Windows Vista ®, while all the others run Windows™ 7) and the Win64

version of the MPICH2 v. 1.2.1p1 parallel computing library. The computers were

connected via a Gigabit Ethernet network with Jumbo Frames enabled. The main node

has a dual Intel ® Xeon™ 5520 CPU with a total of 8 physical cores and a total of 6 GB

RAM. Each of the workers has 2 GB of RAM, but they have different processors. One

has an Intel ® Core 2 Duo™ E7200, a second has an Intel ® Core 2 Duo™ E6700, and

the third has a dual Xeon™ 3.2 (Nocona); the third node was largely used for offloading

file storage.

Figure 41: CAD model for CFD

133

The simulation used a model of a small CTMFD developed in SolidWorks™,

exported in the IGES format, and imported into Star-CCM+ 4.02.007 for meshing. The

CAD file describes the inner surface of the CTMFD glassware, and is depicted in Figure

41. It has a bulb with a total height of 26.5 mm and a diameter of 13 mm, an inner

elbow radius of 71.056 mm, a tube inner diameter of 4 mm, and is shown in Figure 42.

Figure 42: Model Dimensions (mm), Front

The straight parts of the arms in the CAD model are set at 60° angles from the

centerline. Alternate views for the model can be seen in Figure 43 and Figure 44. They

give the views from the top and side, respectively. Much of what they depict can be

inferred from Figure 42.

134

Figure 43: Model Dimensions (mm), Top

Figure 44: Model Dimensions (mm), Side

Meshing in Star-CCM+ 4.02.007 with the parameters given in Table 7 produced

a geometry with 347,520 polyhedral cells, which can be seen in Figure 45. This file was

135

saved and eventually imported into Star-CCM+ 5.02.009, which has various

improvements over earlier versions, especially in the realm of execution speed.

Figure 45: CFD Mesh

The simulation modeled a relatively simple transient case. For this simulation,

phase changes and turbulence were disabled; flow was assumed to be laminar. The

initial location of the air-acetone interface was placed at a radius of 2.5 cm by giving the

136

top of the arms in the CTMFD a fill fraction of 1 for air, and all other locations a fill

fraction of 1 for acetone. This results in an initial fill similar to that presented in Figure

46, where “Phase 1” would be air. An air pressure boundary was chosen at the top,

while the sides were set to be walls with the no-slip condition enforced.

Figure 46: Initial Fill Example

The physics models are given in Table 8 and Table 9. This CFD model of a

CTMFD serves as a framework for performing various CFD simulations. By changing

137

the relevant parameters and physics models, it can be used for more simulations than the

one performed here.

The goal of the simulation was to simulate a simple ramp up from stationary to

an operational speed, and to observe the time needed to reach equilibrium at the full,

steady speed. Using a Java macro, the simulation settled for 0.2 s at the beginning, and

then steadily ramped up in speed until it hit 180 rps at t=2.0 s. At that point, the

CTMFD maintained a steady rotational rate. Output files were saved at intervals of 0.1 s

of simulated time out to a maximum of 10.0 s, at which point the simulation ended.

Table 7: Meshing Information

Models

Surface Remesher

Polyhedral Mesher

Prism Layer Mesher

Reference Values

Base Size = 1 mm

4 Prism Layers

Prism Layer Stretching Ratio = 1.5

Prism Layer Thickness = 33.3% of Base

36 Points/Circle

Surface Growth Rate = 1.3

Surface Proximity: 2 Points in gap, 0 m search floor

Relative Minimum Size = 25% of Base

Relative Target Size = 35% of Base

Polyhedral Density and Growth Factor both 1.0

Polyhedral Blending Factor = 1.0

The values given in Table 7 govern the meshing for this model in Star-CCM+.

Polyhedral meshing was chosen because it has advantages over simpler mesh types (i.e.,

tetrahedral or trimmed); a model will need far fewer polyhedral cells for similar results.

138

The base size defines the size of cells in the coarse mesh, and the value of 1 mm was

thought to provide an adequate resultant mesh; cells may be smaller as the need arises

from geometric concerns, etc. The surface remesher was activated to improve the mesh

quality and conformance to the original CAD model, and the prism layer mesher was

enabled to improve the quality of turbulence modeling, if enabled in the future. It

creates small layers of cells near the surfaces of the geometry [32].

The physics models are given in Table 8. Since the simulation is a three-

dimensional, time-dependent, multiphase problem, the relevant models for that must be

enabled. Laminar flow was assumed. The Eulerian Multiphase model used in

conjunction with the Volume of Fluid model is for immiscible fluids where the mesh can

resolve their interfaces [32], and requires the Segregated Flow models. Surface tension

modeling was enabled, as was gravity and a rotating reference frame. The two fluids

that were modeled were air and acetone, both modeled as incompressible using their

built-in fluid characteristics. The surface tension value for acetone was not built-in, and

was defined as 0.02272 N/m [21]. The initial distribution of air and acetone was defined

by two field functions, inair (giving the volume fraction of air in a cell) and inwater

(giving the volume fraction of acetone in a cell); both are given in Table 9.

139

Table 8: Physics Conditions

Models

Cell Quality Remediation

Eulerian Multiphase Flow

 Air, constant density = 1.18415 kg/m
3

 Acetone, constant density = 786.741 kg/m
3

Gravity

Implicit Unsteady

Laminar

Multiphase EOS

Multiphase Mixtures

 Volume-Weighted Viscosity and Thermal Conductivity

 Mass-Weighted Specific Heat

Segregated Flow (2
nd

 order convection)

Segregated Fluid Isothermal, continuum temperature is 300 K

Surface Tension

Three Dimensional

Volume of Fluid Model, 2
nd

 order convection

Reference

Values

Gravity: -9.81 m/s
2
 in the z-direction

Altitude=0

Valid Temperatures between 100 K and 5000 K

Ref. Pressure = 101,325 Pa

Initial

Conditions

Pressure = 101,325 Pa

Temperature = 300 K

Stationary

Volume Fraction based on inair and inwater field functions

140

Table 9: Other Conditions

Solvers

Implicit Unsteady Timestep = 2.0E-4 s, 2
nd

 order temporal

discretization

Rigid Body Motion defaults

Segregated Flow defaults

Segregated VOF defaults

Segregated Energy defaults

Stopping

Criteria

Maximum Inner Iterations = 15

10 s physical time

Reports:

CurrentTime

Dimensions: Time

Definition: $Time

Units: s

Field function

inair

dimensionless scalar

defined as

((($$Centroid[0])*($$Centroid[0])+($$Centroid[1])*($$Centroid[1]))

< 0.000625) ? (($$Centroid[2] > 0.025) ? 1 : 0) : 0

Field function

inwater

dimensionless scalar

defined as ($inair > 0) ? 0 : 1

In Table 9, there are various parameters used in the CFD simulation that were not

shown in Table 7 or Table 8. It includes the definitions of the inair and inwater field

functions that determine the initial fluid distribution, as well as the CurrentTime report

used by the Java macro to help conduct the simulation. The solvers used by the enabled

models largely used their default parameters (relaxation factors, etc.). The Implicit

Unsteady solver used a 2
nd

 order temporal discretization scheme with a 0.2 ms timestep;

this gives 12.96° of rotation per timestep at the full 180 rps. The maximum number of

inner iterations in the calculations was 15. Those parameters resulted in residuals on the

order of 10
-3

 to 10
-4

, and the full 10 seconds of simulated time took nearly two weeks to

compute across 11 CPU cores.

141

The important datum is the centerline pressure in the bulb. This value was

extracted from three axial locations in the centerline of the bulb: one at the top of the

cylindrical section where the upper dome begins, one 6.75 mm below the top of the

cylindrical section, placing it dead center in the bulb, and one 13.5 mm below the top of

the cylindrical section, at the bottom where it meets the lower dome. As the simulation

was run, its state was saved at 0.1 s (simulated time) intervals for later data extraction; a

macro was executed on each save file to help extract the data. Currently, only the mid-

level (6.75 mm) point is used for analysis.

The centerline pressure values were examined over the time period of interest,

and a determination was made as to how long it takes the pressure to settle down to a

roughly constant value. This does not mean that the flows have themselves settled

down, only that they have settled enough for the centerline pressure to reach its steady

state value.

Both of the Java macros used in this effort (one to run the simulation, another to

assist with data extraction) are given in Appendix C.

4.2. CFD RESULTS

Using a macro for assistance, the relevant values were captured from the

simulation after completion. The simulation was operated by another Java macro to

adjust the rotation rate as a function of simulated time; the main User Interface in Star-

CCM+ was not otherwise amenable to fluctuating rotation rates.

The extracted values for the pressure at the midpoint are given in Table 10 for the

period before and during the speed ramp-up. It lists the calculated pressure as well as

142

the drop from the reference (atmospheric) to the centerline pressure; both the CFD

results and the results of the application of Eq. (42) are shown for comparison.

Table 10: CFD Ramp-Up

Time
Rotation
Rate

CFD
Pressure ΔP CFD

Pressure
Eq. (42) ΔP Eq. (42)

0 0 1.01E+05 0.00E+00 1.01E+05 0.00E+00

0.1 0 1.02E+05 -4.00E+02 1.01E+05 0.00E+00

0.2 0 1.02E+05 -4.00E+02 1.01E+05 0.00E+00

0.3002 10 1.01E+05 5.29E+02 1.00E+05 9.71E+02

0.4002 20 9.80E+04 3.28E+03 9.74E+04 3.88E+03

0.5002 30 9.34E+04 7.89E+03 9.26E+04 8.74E+03

0.6002 40 8.70E+04 1.43E+04 8.58E+04 1.55E+04

0.7002 50 7.86E+04 2.27E+04 7.71E+04 2.43E+04

0.8002 60 6.84E+04 3.29E+04 6.64E+04 3.49E+04

0.9002 70 5.63E+04 4.51E+04 5.38E+04 4.76E+04

1.0002 80 4.22E+04 5.91E+04 3.92E+04 6.21E+04

1.1002 90 2.63E+04 7.50E+04 2.27E+04 7.86E+04

1.2002 100 8.48E+03 9.28E+04 4.26E+03 9.71E+04

1.3002 110 -1.12E+04 1.13E+05 -1.61E+04 1.17E+05

1.4002 120 -3.27E+04 1.34E+05 -3.84E+04 1.40E+05

1.5002 130 -5.60E+04 1.57E+05 -6.27E+04 1.64E+05

1.6002 140 -8.11E+04 1.82E+05 -8.89E+04 1.90E+05

1.7002 150 -1.08E+05 2.09E+05 -1.17E+05 2.18E+05

1.8002 160 -1.37E+05 2.38E+05 -1.47E+05 2.48E+05

1.9002 170 -1.67E+05 2.68E+05 -1.79E+05 2.81E+05

2.0002 180 -1.99E+05 3.01E+05 -2.13E+05 3.14E+05

The ramp-up period was from 0.2 s to 2.0 s; that period is contained in Table 10.

After that, the rotation rate was held constant and the solution was allowed to settle on

equilibrium values. The results for the beginning of the equilibration period, 2 s to 6 s,

are given in Table 11. As can be seen, the values quickly converge to a steady-state

solution.

143

Table 11: Post-Ramp Values

Time
Rotation
Rate

CFD
Pressure ΔP CFD

Pressure
Eq. (42) ΔP Eq. (42)

2.1002 180 -2.01E+05 3.02E+05 -2.13E+05 3.14E+05

2.2002 180 -2.02E+05 3.03E+05 -2.13E+05 3.14E+05

2.3002 180 -2.03E+05 3.04E+05 -2.13E+05 3.14E+05

2.4002 180 -2.03E+05 3.04E+05 -2.13E+05 3.14E+05

2.5002 180 -2.03E+05 3.05E+05 -2.13E+05 3.14E+05

2.6002 180 -2.03E+05 3.05E+05 -2.13E+05 3.14E+05

2.7002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

2.8002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

2.9002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.0002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.1002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.2002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.3002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.4002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.5002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.6002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.7002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.8002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

3.9002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.0002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.1002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.2002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.3002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.4002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.5002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.6002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.7002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.8002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

4.9002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.0002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.1002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.2002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.3002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.4002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.5002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.6002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.7002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.8002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

5.9002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

6.0002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

144

Table 12: Long-Term Values

Time
Rotation
Rate

CFD
Pressure ΔP CFD

Pressure
Eq. (42) ΔP Eq. (42)

6.1002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

6.2002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

6.3002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

6.4002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

6.5002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

6.6002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

6.7002 180 -2.04E+05 3.05E+05 -2.13E+05 3.14E+05

6.8002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

6.9002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.0002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.1002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.2002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.3002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.4002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.5002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.6002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.7002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.8002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

7.9002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

8.0002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

8.1002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

8.2002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

8.3002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

8.4002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

8.5002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

8.6002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

8.7002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

8.8002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

8.9002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

9.0002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

9.1002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

9.2002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

9.3002 180 -2.04E+05 3.06E+05 -2.13E+05 3.14E+05

9.4002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

9.5002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

9.6002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

9.7002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

9.8002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

9.9002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

10.0002 180 -2.05E+05 3.06E+05 -2.13E+05 3.14E+05

145

The post-ramp values given in Table 11 do not end at the end of the simulation;

that occurs at 10 s. Continuing on to the final value, Table 12 gives the long-term

approach in the results. The deviations from steady-state tend to be small. After 10 s, it

was assumed that any further changes in the centerline pressure would be negligible, and

that it would represent a steady-state condition.

The values given in Table 10, Table 11, and Table 12 can be charted to

graphically show the time dependence of the difference between atmospheric and

CTMFD centerline pressures. The comparison to values extracted from Eq. (42) are

shown in Figure 47 and Figure 48.

Pressure Difference, Atmospheric to Centerline

-5.00E+04

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05

0 2 4 6 8 10 12

Time (s)

Δ
P

 (
P

a
)

CFD ΔP

Eq. ΔP

Figure 47: CFD Pressure Drop

146

The pressure differences determined by the simple CFD simulation and the

equation, as shown in Figure 47, are very close to each other. The equation assumed that

the rotation rate was steady, not fluctuating, and yet gave remarkably close values to the

CFD calculations. To make this clearer, one can examine Figure 48. It gives the

pressure determined by the CFD calculations as a fraction of its steady-state (10 s) value

and as a fraction of the pressure drop determined by Eq. (42). Even during the ramp

period, the CFD-determined pressure drop closely followed the pressure drop from Eq.

(42); outside of the very early stages of the ramp, it was well within 10% of the

equation’s value.

Fractional Comparison of Pressure Differences

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Time (s)

F
ra

c
ti
o
n

Fraction of Eq. Current ΔP, CFD

Fraction of CFD Final ΔP, CFD

Figure 48: CFD ΔP Fractions

147

The fractional comparison is given in Figure 48. The figure shows two views of

the CFD-determined centerline pressure difference from atmospheric. One is the

fraction of the pressure difference as determined by Eq. (42) at the given time. The

other is the fraction of the pressure difference at the given time compared to the long-

term (10 s) value. From the figure, it can be seen that the centerline pressure in the CFD

calculation approaches its steady-state value well within one second after the end of the

ramp. It also shows that the centerline pressure during ramp-up closely tracks the values

given by Eq. (42) for the speed at the given time. The steady-state values for the lab-

frame velocity magnitude and pressure field are shown in Figure 49 and Figure 50; they

show the distribution of those values using cutaway views of the simulated test section.

Figure 49: Lab-Frame Velocity Distribution

148

In Figure 49, a cutaway view of the CFD model can be seen with the steady-state

velocity distribution. It is presented in the lab frame; within the rotating reference

frame, the velocity magnitudes are close to zero, as is expected. A similar cutaway view

is presented in Figure 50 for the pressure field. It shows a relatively constant pressure in

the upper arms; this region is filled with low-density air, so the result is believable.

Below that, the relatively high-density acetone shows a large radial pressure gradient,

which is steeper going out to toward the elbows. Near the center, the gradient is much

milder.

Figure 50: Pressure Distribution

It would appear from the simulation that the air density makes a slight difference

as to the final centerline pressure. The difference between the simple calculation given

149

in Eq. (42) and the simulation is on the order of 2-3% at steady state, using ambient

pressure as a reference.

It is also notable that the pressures immediately after the speed has finished

ramping up to its maximum value are at 98.3% of their steady state value. After just 0.2

s post-ramp, the pressures cross the 99% mark, reaching 99.2% of their steady-state

values. At 0.4 s post-ramp, the pressures are at 99.5% of the steady-state value. They

slowly, with minor oscillations, approach the full steady-state value after that. At 8.0 s

after the speed has finished ramping up (10.0 s in the simulation) from 0 to 180 rps (in

1.8 s), the pressures are considered to be at their steady-state values and these numbers

are used for the earlier comparisons.

150

5. CONCLUSIONS

This research was intended to increase the current knowledge of the behavior of

CTMFD systems. A multi-pronged approach was taken; this research applied

theoretical, computational, and experimental techniques to combat the lack of

knowledge

The first major goal was to design, construct, and operate an experimental

facility for CTMFD system evaluation. Such a facility was successfully built, and it is

operational.

A second goal was to explore the use of laser-induced cavitation as an

experimental technique in general, with an emphasis on CTMFD systems. This appears

to be a valid technique, as the experimental operations were successful at achieving

laser-induced cavitation in a seeded fluid.

The third goal involved exploring the energetics of a CTMFD system. The

application of theory suggested the result would be a curve based on the pressure in the

fluid. While the experiment as-is successfully determines the broad range of energies

that may work, the results are currently too noisy to confidently establish curve

parameters.

The final major goal was the development of a CFD framework for CTMFD

modeling. This was achieved; a trial run has provided an insight into the rapid approach

to steady-state pressures a CTMFD may experience.

151

While the data collected in the current experimental runs are too noisy for the

proper development of an empirical model, they do suggest that future runs with

improved techniques would be able to achieve that goal. In addition, the CFD

framework developed here can be used to cross-compare experimental results with

computer simulations as well as with the theoretical models developed here.

5.1. KEY FINDINGS

The experiment and simulation demonstrated the ability of the facilities to test

CTMFD systems and the potential to extract their operational characteristics. The

experiment showed a certain viability for the technique of laser-induced cavitation in a

seeded fluid, and demonstrated some of the associated limitations as well. Some of the

key conclusions are listed:

 CTMFD pressures come to their steady-state values relatively fast,

according to a CFD simulation

 Triggering a CTMFD has critical phenomena that occur on less than ms

timescales; the growth of small bubbles to the full vapor column is fast

and violent

 There is a clear threshold for the time-dependence on the energy

deposition rate; if it happens too slowly, then it is phenomenologically

different from a much faster or instant deposition

5.2. FUTURE WORK

There are certain issues that need to be resolved before quantitative results can be

obtained from this research:

152

 Resolution of the issues with glassware curvature at the laser entrance;

the optically flat glassware should be used in future tests

 Full characterization of the seeding material, including particle size

distributions, time to settle out of solution, opacity, thermal conductivity,

heat capacity, interface energy with the surrounding fluid, etc.

 Reduction of the vibrations in the experiment, which may have large

influences on the outcomes

 Finding a more effective way to clean the test sections

 General reduction in the noise/scatter of the data

 Further CFD simulations to compare with theory and experimental data

In addition, the systems developed can be used to collect data for other fluids and

conditions, not just acetone near room temperature. Dyes may be explored as opposed

to particulate seeds. Finally, tests with radioactive sources should be conducted as well

to characterize the system’s responses to different types of radiation.

153

REFERENCES

[1] Trevena, D. H. Cavitation and Tension in Liquids. Bristol, UK: IOP Publishing,

1987.

[2] Briggs, Lyman J. The Limiting Negative Pressure of Acetic Acid, Benzene,

Aniline, Carbon Tetrachloride, and Chloroform. Journal of Chemical Physics 19.7

(1951): 970-972.

[3] Zheng, Q., D. J. Durben, G. H. Wolf, C. A. Angell. Liquids at Large Negative

Pressures: Water at the Homogeneous Nucleation Limit. Science 254.5033

(1991): 829-832.

[4] Scholander, P. F., H. T. Hammel, Edda D. Bradstreet, E. A. Hemmingsen. Sap

Pressure in Vascular Plants: Negative Pressure can be Measured in Plants.

Science 148.3668 (1965): 339-346.

[5] Taleyarkhan, Rusi, J. Lapinskas, Y. Xu. Tensioned Metastable Fluids and

Nanoscale Interactions with External Stimuli—Theoretical-cum-Experimental

Assessments and Nuclear Engineering Applications. Nuclear Engineering and

Design 238.7 (2008): 1820-1827.

[6] Brennen, Christopher E. Cavitation and Bubble Dynamics. New York: Oxford

University Press, Inc., 1995.

[7] Leighton, T. G. The Acoustic Bubble. London: Academic Press Limited, 1994.

[8] Neppiras, E. A. Acoustic Cavitation. Physics Reports 61.3 (1980): 159-251.

[9] Collier, John G., Thome, John R. Convective Boiling and Condensation. 3
rd

 ed.

New York: Oxford University Press, Inc., 1996.

[10] U.S. Food and Drug Administration. Risk of Burns from Eruptions of Hot Water

Overheated in Microwave Ovens. Last Updated 25 April 2012, Retrieved 19 Oct

2012, http://www.fda.gov/Radiation-

EmittingProducts/RadiationEmittingProductsandProcedures/HomeBusinessandEnt

ertainment/ucm142506.htm

[11] Fisher, John C. The Fracture of Liquids. Journal of Applied Physics 19.11 (1948):

1062-1067.

[12] Lienhard, J.H., Karimi, A. Homogeneous Nucleation and the Spinodal Line.

Journal of Heat Transfer 103.1 (1981): 61-64.

http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/HomeBusinessandEntertainment/ucm142506.htm
http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/HomeBusinessandEntertainment/ucm142506.htm
http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/HomeBusinessandEntertainment/ucm142506.htm

154

[13] Poole, Peter H., Francesco Sciortino, Ulrich Essmann, H. Eugene Stanley.

Spinodal of Liquid Water. Physical Review E 48.5 (1993): 3799-3817

[14] Holbrook, N. Michele, Michael J. Burns, Christopher B. Field. Negative Xylem

Pressures in Plants: A Test of the Balancing Pressure Technique. Science

270.5239 (1995): 1193-1194.

[15] Glaser, Donald A. Some Effects of Ionizing Radiation on the Formation of Bubbles

in Liquids. Physical Review 87.4 (1952): 665.

[16] Seitz, Frederick. On the Theory of the Bubble Chamber. Physics of Fluids 1.1

(1958): 2-13.

[17] E. Behnke, J. I. Collar, P. S. Cooper, K. Crum, M. Crisler, M. Hu, I. Levine, D.

Nakazawa, H. Nguyen, B. Odom, E. Ramberg, J. Rasmussen, N. Riley, A.

Sonnenschein, M. Szydagis, R. Tschirhart. Spin-Dependent WIMP Limits from a

Bubble Chamber. Science 319.5865 (2008): 933-936.

[18] Knoll, Glenn F. Radiation Detection and Measurement. 3
rd

 ed. Hoboken, NJ:

John Wiley & Sons, Inc., 2000.

[19] Bertolotti, M., D. Sette, F. Wanderlingh. On the Possibility of High Energy

Particle Detectors Based on Ultrasonic Cavitation. Nuclear Instruments and

Methods 35.1 (1965): 109-112.

[20] Briggs, Lyman J. Limiting Negative Pressure of Water. Journal of Applied

Physics 21.7 (1950): 721-722.

[21] W. M. Haynes, ed. CRC Handbook of Chemistry and Physics. 93
rd

 Edition

(Internet Version 2013), CRC Press/Taylor and Francis, Boca Raton, FL.

[22] National Institute of Standards and Technology. Acetone. Retrieved 5 Oct 2012,

http://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Units=SI&Mask=4#Thermo-

Phase

[23] Sigma-Aldrich. Carbon, Mesoporous Nanopowder, <500 nm Particle Size (DLS),

>99.95% Trace Metals Basis. CAS 1333-86-4. Retrieved 18 Oct 2012,

http://www.sigmaaldrich.com/catalog/product/aldrich/699632?lang=en®ion=U

S

[24] Huang, Jing, K. Padmanabhan, O. M. Collins. The Sampling Theorem with

Constant Amplitude Variable Width Pulses, Circuits and Systems I: Regular

Papers, IEEE Transactions on, 58.6 (2011): 1178-1190.

http://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Units=SI&Mask=4#Thermo-Phase
http://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Units=SI&Mask=4#Thermo-Phase
http://www.sigmaaldrich.com/catalog/product/aldrich/699632?lang=en®ion=US
http://www.sigmaaldrich.com/catalog/product/aldrich/699632?lang=en®ion=US

155

[25] Barr, Michael. Pulse Width Modulation, Embedded Systems Programming (2001):

103-104. Accessible at http://www.barrgroup.com/Embedded-Systems/How-

To/PWM-Pulse-Width-Modulation

[26] Ruilang Smarthome Limited, Types of Dimmer. Retrieved 19 Oct 2012,

http://www.dimming.org/Technical/detail/705.html

[27] Axelson, Jan. Serial Port Complete. Madison, WI: Lakeview Research, 1998.

[28] Tissue, Bryan M. Beer-Lambert Law. Virginia Tech, 2003, Retrieved 19 Oct

2012, http://www.files.chem.vt.edu/chem-ed/spec/beerslaw.html

[29] Newport Corporation. Gaussian Beam Optics Tutorial. Retrieved 7 Oct 2012,

http://www.newport.com/servicesupport/tutorials/default.aspx?id=112

[30] Coherent, Inc. Coherent CUBE™ Laser System Operator’s Manual. Rev. AB.

Santa Clara, CA: Coherent, 2005. Accessible at

http://www.coherent.com/downloads/Cube_RevAB.pdf

[31] National Semiconductor Corporation. LM556 Dual Timer. Santa Clara, CA:

National Semiconductor, March 2000. Texas Instruments Literature Number:

SNAS549. Accessible at http://www.ti.com/lit/ds/symlink/lm556.pdf

[32] CD-adapco. User Guide: Star-CCM+ Version 5.02. Melville, NY: CD-adapco,

2009.

http://www.barrgroup.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation
http://www.barrgroup.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation
http://www.dimming.org/Technical/detail/705.html
http://www.files.chem.vt.edu/chem-ed/spec/beerslaw.html
http://www.newport.com/servicesupport/tutorials/default.aspx?id=112
http://www.coherent.com/downloads/Cube_RevAB.pdf
http://www.ti.com/lit/ds/symlink/lm556.pdf

156

APPENDIX A

ELECTRIC CIRCUIT SCHEMATICS

157

This Appendix contains the electrical schematics for the circuits designed and

built as part of this research effort.

158

A.1 CONTAINMENT BOX INTERLOCK

Figure 51: Containment Box Interlock Schematic

1
2

0

V
A

C

In

F
1

M
a

s
te

r

P
o

w
e

r

S
w

it
c
h

S
1

R
1

R
2

M
a

s
te

r

P
o

w
e

r

L
ig

h
t

D
1

D
4

D
3

D
6

D
5

F
2

R
9

C
5

Y
2

In
te

rl
o

c
k

S
e

n
s
o

r

S
3

M
a

n
u

a
l

T
ri
p

S
2

R
1

0

T
ri
p

L
ig

h
t

D
7

R
1

2

D
1

0

E
n

e
rg

iz
e

S
5

D
9

E
n

e
rg

iz
e

d

L
ig

h
t

D
1

1

R
1

3

Y
1

R
1

1

D
1

2

D
1

4

R
1

4
R

1
5

C
7

C
6

V
R

E
G

+ -1
2

V
D

C

O
u

t

H N

1
2

0

V
A

C

O
u

t

F
3

T
1

U
1

H N

R
3

D
2

D
1

3

D
8

In
te

rl
o

c
k

S
e

n
s
o

r

S
4

C
o

o
lin

g

F
a

n

W
1

C
2

C
3

R
4

C
1

C
4

R
5

R
6

R
7

R
8

159

In Figure 51, the electrical schematic for the interlock on the containment box is

given. The components labeled in the figure have values given in Table 13.

Table 13: Containment Box Interlock Components

C1: 0.047 μF F1: 10 A S1: R13-28D-06-R

C2: 0.047 μF F2: 2.5 A S2: GSW01-R

C3: 0.047 μF F3: 1.5 A S3: GPB006-WH-R

C4: 0.047 μF S4: V3L-1465-D8

C5: 6800 μF R1: 47 Ω S5: V3L-1465-D8

C6: 3300 μF R2: 4.7k Ω 5W

C7: 1000 μF R3: 4.7k Ω 5W T1: QC-5126

 R4: 47 Ω

D1: 5100H1 R5: 10 Ω U1: L7812CV

D2: 1N5822G R6: 10 Ω

D3, D4, D5, D6: KBU6J R7: 10 Ω W1: 3110GL-B4W-B19-P53

D7: 5100H7 R8: 10 Ω

D8: 1N5822G R9: 10k Ω Y1: K10P-11D15-12

D9: 1N5822G R10: 750 Ω ½ W Y2: LB2-12DS-R

D10: 1N5822G R11: 33 Ω 5 W

D11: 5102H5-5V R12: 33 Ω 5 W

D12: 80SQ045 R13: 1k Ω ½ W

D13: 1N5822G R14: 10k Ω

D14: 1N5822G R15: 10k Ω

160

A.2 SPEED SENSOR

Figure 52: Speed Sensor Schematic

In Figure 52, the electrical schematic for the speed sensor circuit is shown. The

components shown in it are detailed in Table 14.

R
1

R
2

G
re

e
n

D
3

R
e

d

D
2

IR
 L

E
D

D
5

R
1

1

+ -

 S
ig

n
a

l

O
u

t

C
o

n
tr

o
l
U

n
it

+ -

R
3

D
1

R
5

C
1

R
1

2

IR
 P

h
o

to
d

io
d

e

D
4

R
6

R
9

R
1

0

1
2

V
D

C

In

R
7

R
8

S
e

n
s
o

r
U

n
it

R
4

U
1

V
+

V
-

+-

161

Table 14: Speed Sensor Components

C1: 560 pF R1: 470 Ω

 R2: 5k Ω

D1: 1N5822G R3: 470 Ω

D2: HLMP-1700-B0002 R4: 220 Ω

D3: HLMP-1790-A0002 R5: 3.9k Ω

D4: BPV22NF(L) R6: 3.9k Ω

D5: L-34F3CS R7: 10 Ω

 R8: 10 Ω

U1: LF353N R9: 220 Ω

 R10: 220 Ω

 R11: 1M Ω

 R12: 560 Ω

A.3 SPEED SENSOR ADAPTER

R1

+

I

+

-

R5

D1

R3

C1

R7

R2

R6

R4

U1
V+

V- +

-

C2

D1

0

S

0

TO

SPEED

SENSOR

TO +/-

15VDC

SYSTEM

Figure 53: Speed Sensor Adapter Schematic

162

The electrical schematic for the speed sensor adapter is given in Figure 53. The

corresponding component details are given in Table 15.

Table 15: Speed Sensor Adapter Components

C1: 10 pF R1: 470k Ω

C2: 10 pF R2: 220 Ω

 R3: 10k Ω

D1: 50SQ100 R4: 1M Ω

D2: 50SQ100 R5: 470k Ω

 R6: 1M Ω

U1: MC34071A R7: 1M Ω

163

A.4 CAVITATION SENSOR

Figure 54: Cavitation Sensor Schematic

R
1

R
2

G
re

e
n

D
3

R
e

d

D
2

R
e

d
 L

E
D

D
4

R
1

5

S G

 S
ig

n
a

l

O
u

t

C
o

n
tr

o
l
U

n
it

+ -

R
3

D
1

R
5

C
1

R
1

7

R
6

R
9

+
1

5

V
D

C

In

R
7

R
8

S
e

n
s
o

r
U

n
it

R
4

U
1

V
+

V
-

+-

G

D
6

C
2

-1
5

V
D

C

In

D
5

R
1

0

R
1

1

0
 V

D
C

G
N

D

Il
lu

m
in

a
ti
o

n

U
n

it

R
1

6
R

1
8

Q
1

R
1

4

R
1

2

R
1

3

164

The electrical schematic for the cavitation sensor is given in Figure 54. Its

corresponding components are listed in Table 16.

Table 16: Cavitation Sensor Components

C1: 560 pF R3: 470 Ω

C2: 560 pF R4: 1k Ω

 R5: 8.2k Ω

D1: 50SQ100 R6: 8.2k Ω

D2: HLMP-1700-B0002 R7: 33 Ω

D3: HLMP-1790-A0002 R8: 33 Ω

D4: Radioshack #276-0307 5mm 660nm 1.7V 20mA 3000mcd

12deg clear-lens LED R9: 220 Ω

D5: 50SQ100 R10: 10 Ω

D6: 1N4615 R11: 10 Ω

 R12: 1.5k Ω

U1: MC34071A R13: 47k Ω

 R14: 3.3k Ω

Q1: CdS Photocell – small one from Radioshack #276-1657

assortment (P1201?) R15: 1.5k Ω

 R16: 10k Ω

R1: 1k Ω R17: 10k Ω

R2: 150k Ω R18: 10k Ω

165

A.5 SIGNAL INVERTER

R1

+

-

R7

D1

R3

C1

R5

R2

R6

R4

U1
V+

V-+

-

C2

D4

G

INPUT

SIGNAL

TO +/-

15VDC

POWER D2

D3

R8

R10

R9

G

S

OUPUT

SIGNAL

S

G

Figure 55: Signal Inverter Schematic

The electrical schematic for the signal inverter is given in Figure 55. The values

for its components are given in Table 17.

Table 17: Signal Inverter Components

C1: 10 μF R1: 1 Ω

C2: 10 μF R2: 1 Ω

 R3: 15k Ω

D1: GP15M R4: 15k Ω

D2: GP15M R5: 10k Ω

D3: GP15M R6: 4.7k Ω

D4: GP15M R7: 10k Ω

 R8: 10k Ω

U1: MC34071AP R9: 100k Ω

 R10: 1k Ω

166

A.6 SPEED CONTROLLER ELECTRONICS

An overview drawing of the subassemblies contained in the Speed Controller

Electronics Unit is given in Figure 56. The Master Power subassembly is given in

Figure 57, the Fault Detector subassembly is given in Figure 58, the Isolator

subassembly is given in Figure 59, the Phase Detector subassembly is given in Figure

60, the Trigger subassembly is given in Figure 61, and the Waveform Adapter

subassembly is given in Figure 62. The components used are listed in Table 18 and

Table 19.

167

OVERVIEW

FAULT PROTECTION AND PHASE

CONTROLLER

JUNE 2012

SWITCHED HOT SWITCHED NEUTRAL

SWITCHED GROUND

FAULT DETECTORMASTER POWER

ISOLATOR

H

N

G

FAULT

PROTECTION

CONTROLLED

HOT OUT

POWER IN

CONTROLLED

NEUTRAL OUT

UNCONTROLLED

NEUTRAL OUT

UNCONTROLLED

GROUND OUT

CONTROLLED

GROUND OUT

GROUND TO

UPSTREAM CHASSIS

UNCONTROLLED

HOT OUT

TRIGGER

WAVEFORM ADAPTERPHASE DETECTOR

SIGNAL INPUT

P1

PHASE

CONTROLLER

Figure 56: Speed Controller Electronics Overview

168

Figure 57: Master Power Subassembly

F
2

F
1

S
1

C
o

o
lin

g

F
a

n

W
1

C
1

R
8

C
5

C
7

R
2

Q
U

E
S

T
IO

N
A

B
L

E

H
O

T

Q
U

E
S

T
IO

N
A

B
L

E

N
E

U
T

R
A

L

Q
U

E
S

T
IO

N
A

B
L

E

G
R

O
U

N
D

H N G

R
1

R
4

D
2

D
4

R
3

R
6

D
1

P
O

W
E

R

D
3

R
7

C
6

N
 P

L
U

S

1
7

0

N
E

U
T

R
A

L

P
L

U
S

V
O

L
T

A
G

E

N
E

U
T

R
A

L

M
IN

U
S

V
O

L
T

A
G

E

M
A

S
T

E
R

P
O

W
E

R

R
5

C
2

C
3

C
4

C
3

0

169

Figure 58: Fault Detector Subassembly

Q
U

E
S

T
IO

N
A

B
L

E

N
E

U
T

R
A

L

N
 P

L
U

S

1
7

0

N
E

U
T

R
A

L

P
L

U
S

V
O

L
T

A
G

E

N
E

U
T

R
A

L

M
IN

U
S

V
O

L
T

A
G

E

R
9

Q
1

R
1

3

D
8

D
7

R
1

6

R
1

1
D

5

D
6

Q
2

R
1

2

R
E

L
A

Y

B
Y

P
A

S
S

R
1

4

R
2

6

R
1

8

Q
3

R
1

5

R
1

7

D
9

C
8

Q
4

R
2

5

R
1

0

C
9

R
1

9

D
1

1

R
2

1

Q
6

Q
5

R
2

3

R
2

2

R
2

4

R
2

0

D
1

0

R
E

L
A

Y

O
U

T
L

E
T

V
O

L
T

A
G

E

F
A

U
L

T

D
E

T
E

C
T

O
R

170

Figure 59: Isolator Subassembly

Q
U

E
S

T
IO

N
A

B
L

E

H
O

T

Q
U

E
S

T
IO

N
A

B
L

E

N
E

U
T

R
A

L

Q
U

E
S

T
IO

N
A

B
L

E

G
R

O
U

N
D

N
 P

L
U

S

1
7

0

R
E

L
A

Y

B
Y

P
A

S
S

R
E

L
A

Y

O
U

T
L

E
T

V
O

L
T

A
G

E

R
2

7

R
2

9

R
2

8

Y
1

R
3

0

D
1

4

R
3

2

Q
8

D
1

3

Q
7

D
1

5

F
A

U
L

T

R
3

1

D
1

2

C
1

0

S
W

IT
C

H
E

D

N
E

U
T

R
A

L

S
W

IT
C

H
E

D

H
O

T

S
W

IT
C

H
E

D

G
R

O
U

N
D

D
1

6

E
N

E
R

G
IZ

E
D

C
1

1

IS
O

L
A

T
O

R

171

Figure 60: Phase Detector Subassembly

D
2

0

T
1

D
1

9

V
R

E
G

V
in

V
o

u
t

G
N

D

U
1

V
R

E
G

V
in

V
o

u
t

G
N

D

U
2

C
1

7

C
1

5

C
1

4

C
1

8 R
4

1

R
4

0

D
2

1

D
2

2

D
2

4

D
2

5

U
3

V
+

V
-

+-

D
2

3

D
2

6

C
1

6R
3

7

C
1

9

C
2

0

R
3

8

R
3

9

R
4

4

R
4

5

R
4

2

R
4

3
R

4
6

IN

P
H

A
S

E

D
1

7
D

1
8

C
1

2
C

1
3

R
3

3

R
3

4
R

3
6

R
3

5

-1
2
V

+
1

2
V

S
W

IT
C

H
E

D

N
E

U
T

R
A

L

S
W

IT
C

H
E

D

H
O

T

+
1

7
0
V

-1
7

0
V

P
H

A
S

E

D
E

T
E

C
T

O
R

172

Figure 61: Trigger Subassembly

T
R

IG
G

E
R

R
6

6

C
2

7

R
5

5

R
6

8

R
6

7

R
6

5

R
6

4

R
6

3C
2

6

S
2

D
3

4

D
3

1

D
3

2

D
3

3

R
6

0

R
6

1

R
6

2

R
5

9

R
5

7

R
5

8

R
E

D

B
L

A
C

K

P
1

D
2

8

R
5

3

R
5

4

+-

-+

U
5

+-

-+

U
4

C
2

1

R
5

6

D
3

0

R
5

1

Q
1

1

R
5

2

Q
1

0

R
5

0

R
4

9

Q
9

D
2

7

R
4

7

R
4

8 -1
2

V

+
1

2
V

F
IR

E

IN

P
H

A
S

E

S
W

IT
C

H
E

D

N
E

U
T

R
A

L

C
2

3

C
2

2
C

2
4

C
2

5

D
2

9
D

3
5

C
3

1

173

Figure 62: Waveform Adapter Subassembly

S
W

IT
C

H
E

D

N
E

U
T

R
A

L

S
W

IT
C

H
E

D

H
O

T

+
1

7
0

V

-1
7

0
V

F
IR

E

R
7

1

R
7

3

L
1

R
7

6

C
2

8

R
7

0

R
7

2
R

6
9

Q
1

2

Q
1

3

D
3

7

D
3

6

R
7

4

D
3

9

D
3

8

R
7

8

R
7

5

D
4

2

D
4

3

D
4

0
R

7
7

D
4

1

Q
1

4

D
4

4

R
7

9

R
8

0

C
2

9

R
8

1R
8

2

H
O

T

O
U

T

W
A

V
E

F
O

R
M

A
D

A
P

T
E

R

174

Table 18: Speed Controller Components, Part 1

C1: 0.01 μF D2: 6A8-T D35: 1N4615

C2: 0.01 μF D3: 6A8-T D36: 1N4005

C3: 0.01 μF D4: 6A8-T D37: STPS3150RL

C4: 0.01 μF D5: 6A8-T D38: 6A8-T

C5: 0.22 μF D6: 1N4615 D39: 6A8-T

C6: 330 μF D7: 1N4615 D40: 6A8-T

C7: 0.22 μF D8: 6A8-T D41: 6A8-T

C8: 47 μF D9: 1N4004 D42: S6020L

C9: 33 μF D10: 1N4742A D43: S6020L

C10: 0.022 μF D11: 1N4742A D44: 6A8-T

C11: 0.1 μF D12: 6A8-T

C12: 330μF D13: BZV85-CV2,113 F1: 10A SLO-BLO

C13: 22 μF D14: BZV85-CV2,113 F2: 10A SLO-BLO

C14: 470 μF D15: 5101H1

C15: 470 μF D16: 1091M5-125VAC L1: 100 μH

C16: 4.7 μF D17: 6A8-T

C17: 47 μF D18: 6A8-T P1: DUAL BINDING POST

C18: 47 μF D19: GBPC3506W-E4/51

C19: 0.22 μF D20: W10G Q1: KSP45

C20: 0.22 μF D21: STPS3150RL Q2: 2N3417

C21: 0.1 μF D22: STPS3150RL Q3: BC557

C22: 0.22 μF D23: 6A8-T Q4: KSP45

C23: 0.22 μF D24: STPS3150RL Q5: KSP45

C24: 0.22 μF D25: STPS3150RL Q6: 2SA1381ESTU

C25: 0.22 μF D26: 1N4615 Q7: KSP45

C26: 4.7 μF D27: STPS3150RL Q8: KSP45

C27: 47 nF D28: STPS3150RL Q9: KSH45H11ITU

C28: 0.1 μF D29: 1N4615 Q10: 2N3417

C29: 47 nF D30: STPS3150RL Q11: KSH45H11ITU

C30: 0.1 μF D31: BZX55B16 Q12: KSA1625K

C31: 10 μF D32: BZX55B16 Q13: KSP45

 D33: BZX55B16 Q14: KSP45

D1: 1091M5-125VAC D34: BZX55B16

175

Table 19: Speed Controller Components, Part 2

R1: 10 MΩ R34: 1 MΩ R67: 150 kΩ 2W

R2: 100 Ω R35: 10 Ω R68: 2.2 kΩ

R3: 4.7 MΩ R36: 1 MΩ R69: 47 kΩ

R4: 33 kΩ R37: 220 kΩ R70: 3.3 kΩ

R5: 4.7 MΩ R38: 15 kΩ 1% R71: 330 kΩ

R6: 4.7 MΩ R39: 200 kΩ 1% R72: 100 kΩ

R7: 10 Ω R40: 1 MΩ R73: 47 kΩ 1W

R8: 33 kΩ R41: 1 MΩ R74: 1 MΩ

R9: 100 kΩ R42: 10 MΩ 1% R75: 15 Ω

R10: 300 kΩ R43: 470 kΩ 1% R76: 15 kΩ 5W

R11: 200 kΩ R44: 10 MΩ 1% R77: 100 kΩ 1W

R12: 100 kΩ R45: 470 kΩ 1% R78: 15 kΩ 5W

R13: 330 kΩ R46: 15 kΩ R79: 330 kΩ

R14: 47 Ω R47: 4.7 kΩ R80: 100 Ω

R15: 100 kΩ R48: 15 kΩ R81: 5.6 kΩ 5W

R16: 200 kΩ R49: 1.5 kΩ R82: 5.6 kΩ 5W

R17: 150 Ω R50: 4.7 kΩ

R18: 47 Ω R51: 4.7 kΩ S1: S821-RO

R19: 2.2 MΩ R52: 220 Ω S2: 103-R13-135C-02-EV

R20: 1 MΩ R53: 27 kΩ 0.1%

R21: 10 MΩ R54: 9.1 Ω T1: 164H36

R22: 2.2 MΩ R55: 10 kΩ

R23: 470 kΩ R56: 10 kΩ U1: LM7812

R24: 470 kΩ R57: 15 kΩ U2: LM7912

R25: 100 kΩ R58: 2.2 kΩ U3: MC34071APG

R26: 470 kΩ R59: 15 kΩ U4: MC34071APG

R27: 6.2 kΩ 5W R60: 1 MΩ U5: TLE2141ACP

R28: 75 kΩ 1W R61: 2.2 kΩ

R29: 16 kΩ 5W R62: 1 MΩ W1: OA80AP-11-2WB

R30: 1.6 kΩ R63: 150 kΩ 0.1%

R31: 470 kΩ R64: 10 kΩ Y1: KUP-14D15-110

R32: 100 kΩ R65: 330 kΩ

R33: 10 Ω R66: 22 kΩ

176

A.7 RS-232 ISOLATOR AND POWER SUPPLY

An overview of the RS-232 Isolator and Power supply is given in Figure 63. The

subassemblies it describes are given in Figure 64, Figure 65, Figure 66, Figure 67, and

Figure 68; the buffer subassemblies are identical, and only differ in their connections to

the interface pins. The list of components is given in Table 20 and Table 21.

177

+15V

-15 V

0 V

F2

F3

P1

+15V

GND

-15V

P2

DCD

DSR

CTS

RI

RxD

TxD

DTR

RTS

GND

A OUTPUT

B OUTPUT

A INPUT

B INPUT

BUFFER A-B

C OUTPUT

D OUTPUT

C INPUT

D INPUT

BUFFER C-D

E OUTPUT

F INPUT

E INPUT

F OUTPUT

BUFFER E-F

G INPUT

H INPUT

G OUTPUT

H OUTPUT BUFFER G-H

GND

P3

REDBLACK

P4

REDBLACK

P5

REDBLACK

P6

REDBLACK

P7

REDBLACK

P8

REDBLACK

P9

REDBLACK

P10

REDBLACK

POWER

OVERVIEW

SERIAL PORT BUFFER AND POWER

JUNE 2011

Figure 63: Serial Port Isolator Overview

178

C
2

D
1

C
1

R2

R1

F1

T
1

P
O

W
E

R

S1

L1 L2

C
o

o
lin

g

F
a

n

W
1

D8

C3 C4

R3 R4 R5

R6 R7

C6C5

C7 C8

D2

D7

D5

D6

D
3 D
4

V
R

E
G

V
in

V
o

u
t

G
N

D

U
1

V
R

E
G

V
in

V
o

u
t

G
N

D

U
2

+
1

5
V

-1
5

 V

0
 V

H
G

Figure 64: Power Supply Subassembly

179

Figure 65: Buffer A-B Subassembly

+
-A

+
-

B

V
+

V
-

U
3

+
1

5
V

-1
5

 V

0
 V

R
1

5

R
1

0

R
1

6

R
1

4
R

1
3

R
1

1

R
9

R
8

C
1

2

C
1

1

C
9

C
1

0

R
1

2
R

2
0

R
1

7

R
2

3

R
2

1

R
1

9

R
1

8

R
2

2

R
2

4

R
2

5

A
 I
N

P
U

T

A
 O

U
T

P
U

T

B
 I
N

P
U

T

B
 O

U
T

P
U

T

B
U

F
F

E
R

 A
-B

180

Figure 66: Buffer C-D Subassembly

+
-A

+
-

B

V
+

V
-

U
4

+
1

5
V

-1
5

 V

0
 V

R
3

3

R
2

8

R
3

4

R
3

2
R

3
1

R
2

9

R
2

7

R
2

6

C
1

6

C
1

5

C
1

3

C
1

4

R
3

0
R

3
8

R
3

5

R
4

1

R
3

9

R
3

7

R
3

6

R
4

0

R
4

2

R
4

3

C
 I
N

P
U

T

C
 O

U
T

P
U

T

D
 I
N

P
U

T

D
 O

U
T

P
U

T

B
U

F
F

E
R

 C
-D

181

Figure 67: Buffer E-F Subassembly

+
-A

+
-

B

V
+

V
-

U
5

+
1

5
V

-1
5

 V

0
 V

R
5

1

R
4

6

R
5

2

R
5

0
R

4
9

R
4

7

R
4

5

R
4

4

C
2

0

C
1

9

C
1

7

C
1

8

R
4

8
R

5
6

R
5

3

R
5

9

R
5

7

R
5

5

R
5

4

R
5

8

R
6

0

R
6

1

E
 I
N

P
U

T

E
 O

U
T

P
U

T

F
 I
N

P
U

T

F
 O

U
T

P
U

T

B
U

F
F

E
R

 E
-F

182

Figure 68: Buffer G-H Subassembly

+
-A

+
-

B

V
+

V
-

U
6

+
1

5
V

-1
5

 V

0
 V

R
6

9

R
6

4

R
7

0

R
6

8
R

6
7

R
6

5

R
6

3

R
6

2

C
2

4

C
2

3

C
2

1

C
2

2

R
6

6
R

7
4

R
7

1

R
7

7

R
7

5

R
7

3

R
7

2

R
7

6

R
7

8

R
7

9

G
 I
N

P
U

T

G
 O

U
T

P
U

T

H
 I
N

P
U

T

H
 O

U
T

P
U

T

B
U

F
F

E
R

 G
-H

G
N

D

183

Table 20: Serial Port Isolator Components, Part 1

C1: 3300 µF D1: GBPC3506W-E4/51 P9: DUAL BINDING POST

C2: 3300 µF D2: 50SQ100 P10: DUAL BINDING POST

C3: 3300 µF D3: 1N5225B

C4: 3300 µF D4: 1N5225B R1: 1.8K Ω 1W

C5: 470 µF D5: 50SQ100 R2: 5.6K Ω

C6: 470 µF D6: 50SQ100 R3: 2.2M Ω

C7: 68 µF D7: 50SQ100 R4: 2.2M Ω

C8: 68 µF D8: 5101H1 R5: 5.6K Ω

C9: 0.22 µF R6: 1M Ω

C10: 0.22 µF F1: 2.5 A R7: 1M Ω

C11: 0.22 µF F2: 1 A R8: 33K Ω

C12: 0.22 µF F3: 1 A R9: 220 Ω

C13: 0.22 µF R10: 2.4M Ω

C14: 0.22 µF L1: 680 µH R11: 30K Ω

C15: 0.22 µF L2: 680 µH R12: 330K Ω

C16: 0.22 µF R13: 160 Ω

C17: 0.22 µF P1: TRIPLE BINDING POST R14: 470K Ω

C18: 0.22 µF P2: DE-9-F R15: 33K Ω

C19: 0.22 µF P3: DUAL BINDING POST R16: 1K Ω

C20: 0.22 µF P4: DUAL BINDING POST R17: 1K Ω

C21: 0.22 µF P5: DUAL BINDING POST R18: 470K Ω

C22: 0.22 µF P6: DUAL BINDING POST R19: 33K Ω

C23: 0.22 µF P7: DUAL BINDING POST R20: 330K Ω

C24: 0.22 µF P8: DUAL BINDING POST R21: 160 Ω

184

Table 21: Serial Port Isolator Components, Part 2

R22: 2.4M Ω R46: 2.4M Ω R70: 1K Ω

R23: 30K Ω R47: 30K Ω R71: 1K Ω

R24: 220 Ω R48: 330K Ω R72: 470K Ω

R25: 33K Ω R49: 160 Ω R73: 33K Ω

R26: 33K Ω R50: 470K Ω R74: 330K Ω

R27: 220 Ω R51: 33K Ω R75: 160 Ω

R28: 2.4M Ω R52: 1K Ω R76: 2.4M Ω

R29: 30K Ω R53: 1K Ω R77: 30K Ω

R30: 330K Ω R54: 470K Ω R78: 220 Ω

R31: 160 Ω R55: 33K Ω R79: 33K Ω

R32: 470K Ω R56: 330K Ω

R33: 33K Ω R57: 160 Ω S1: S301T-RO

R34: 1K Ω R58: 2.4M Ω

R35: 1K Ω R59: 30K Ω T1: VPT30-3330

R36: 470K Ω R60: 220 Ω

R37: 33K Ω R61: 33K Ω U1: LM7812

R38: 330K Ω R62: 33K Ω U2: LM7912

R39: 160 Ω R63: 220 Ω U3: OPA2132PAG4

R40: 2.4M Ω R64: 2.4M Ω U4: OPA2132PAG4

R41: 30K Ω R65: 30K Ω U5: OPA2132PAG4

R42: 220 Ω R66: 330K Ω U6: OPA2132PAG4

R43: 33K Ω R67: 160 Ω

R44: 33K Ω R68: 470K Ω W1: AD0624LB-A70GL-LF

R45: 220 Ω R69: 33K Ω

A.8 LASER INTERLOCK SYSTEM

An overview of the laser interlock system is given in Figure 69. The

subassemblies are shown in Figure 70, Figure 71, Figure 72, Figure 73, and Figure 74.

The components for the system are listed in Table 22.

185

Y
1

Y
2

Y
3

Y
4

Y
5

TO DOOR

TO LIGHT 1

TO LIGHT 2

TO

FLASHERS

TO DOOR

TO LIGHT 2

TO LIGHT 1

TO DOOR

TO LIGHT 2

TO LIGHT 1

TO DOOR

POWER

SWITCH

S1

In
te

rl
o

c
k
 T

o

L
a

s
e

r

F3

T
1

T
O

 D
O

O
R

TO DC12V

F4

ROOM

LIGHTING

H

POWER

D25

OVERVIEW

POWER CORD

GROUND

HOT

NEUTRAL

NHTS LAB LASER ROOM

INTERLOCK SYSTEM

JUNE 2011

Figure 69: Laser Interlock System Overview

186

Figure 70: Interlock Light 1 Subassembly

F
1

D
2

R
5

C
1

R
4

F
L

A
S

H
E

R

U
1

D
1

W
1

D
7

D
6

D
3

D
8

D
5

Q
1

R
1

R
6

C
2

R
3

Y
4

Y
1

H

+
1

2
V

0
 V

R
2

D
4

TO

FLASHERS

TO LIGHT 2

TO

OVERVIEW

L
IG

H
T

 1

187

Figure 71: Interlock Light 2 Subassembly

F
2

D
1

0

R
1

1

C
3R

1
0

F
L

A
S

H
E

R

U
2

D
9

W
2

D
1

5
D

1
4D

1
1

D
1

6

D
1

3

Q
2

R
7

R
1

2
C

4

R
9

Y
5

Y
1 H

+
1

2
V

0
 V

R
8

D
1

2

TO

FLASHERS

TO LIGHT 1

TO

OVERVIEW

L
IG

H
T

 2

188

R15

R17

R16D18

D19

Q3

Y
1

+12V

0 V

5V SIGNAL

FROM

LASER

0 V

TO LASER

TO LIGHT 1

TO LIGHT 2

FLASHERS

Figure 72: Interlock Light Flasher Controller Subassembly

C5

D17

C6
R13

R14

F3

+12V

0 V

T1

T
O

O
V

E
R

V
IE

W

12VDC

Figure 73: Interlock 12V Supply Subassembly

189

Figure 74: Interlock Door and Buttons Subassembly

+
1

2
V

0
 V

R
2

3

R
2

5

R
2

4

R
2

7

R
2

0

R
1

8

R
2

6

R
2

2

R
2

1

R
1

9

Y2

D
2

1

D
2

3
D

2
4

D
2

2

Q
5

Q
6

Q
4

T
R

IP

D
2

0

P
A

N
IC

S
3

P
A

N
IC

S
4

A
R

M

S
2

Y3

P
O

W
E

R

S
W

IT
C

H

S
1

D
O

O
R

S
5

D
O

O
R

S
6

T
O

O
V

E
R

V
IE

W

T
O

O
V

E
R

V
IE

W

T
O

O
V

E
R

V
IE

W

D
O

O
R

 A
N

D

B
U

T
T

O
N

S

190

Table 22: Laser Interlock System Components

C1: 220 μF F1: 7A R19: 750 Ω

C2: 1000 μF F2: 7A R20: 47 Ω 10 W

C3: 220 μF F3: 1.25A R21: 470K Ω

C4: 1000 μF F4: 10A R22: 18 Ω

 R23: 18 Ω

D1: 10A07 Q1: NTE128 R24: 750 Ω

D2: 10A07 Q2: NTE128 R25: 750 Ω

D3: 1N4004 Q3: NTE128 R26: 470K Ω

D4: 1091M7-12V Q4: NTE128 R27: 470K Ω

D5: 1N4004 Q5: NTE128

D6: 10A07 Q6: NTE128 S1: H2011U2F205NQ

D7: 10A07 S2: McMaster # 75759K21

D8: 1N5927BG R1: 180 Ω S3: McMaster # 6785K21

D9: 10A07 R2: 68 Ω S4: McMaster # 6785K21

D10: 10A07

R3: 4.7 Ω 10 W –

30J4R7E

S5: Magnetic/Reed Switch

505-101-WS

D11: 1N4004

R4: 2K Ω 50 W –

RH0502K000FE02

S6: Magnetic/Reed Switch

505-101-WS

D12: 1091M7-12V R5: 10 Ω

D13: 1N4004 R6: 470K Ω T1: 186D10

D14: 10A07 R7: 180 Ω

D15: 10A07 R8: 68 Ω U1: ETN-120-AFT-75

D16: 1N5927BG

R9: 4.7 Ω 10 W –

30J4R7E U2: ETN-120-AFT-75

D17: DFB2520

R10: 2K Ω 50 W –

RH0502K000FE02

D18: 1N4004 R11: 10 Ω

W1: 30-60W

INCANDESCENT BULB

D19: 1N4004 R12: 470K Ω

W2: 30-60W

INCANDESCENT BULB

D20: 1091M7-12V R13: 470K Ω

D21: 1N4004 R14: 470K Ω Y1: HJ2-L-T-DC12V

D22: 1N4004 R15: 18 Ω Y2: HJ2-L-T-DC12V

D23: 1N4004 R16: 390 Ω Y3: HJ2-L-T-DC12V

D24: 1N4004 R17: 470K Ω Y4: HJ2-L-T-DC12V

D25: 1091M1-125VAC R18: 68 Ω Y5: HJ2-L-T-DC12V

191

A.9 PULSE GENERATOR

The electrical schematic for the Pulse Generator is given in Figure 75. The

components for it are listed in Table 23.

Table 23: Pulse Generator Components

C1: 10 μF R1: 1 Ω

C2: 47 μF R2: 1 MΩ

C3: 0.022 μF R3: 1 MΩ

C4: 0.001 μF R4: 1 kΩ

C5: 220 pF R5: 68 Ω

C6: 100 pF R6: 10 kΩ

C7: 10 μF R7: 10 kΩ

C8: 100 pF R8: 100 kΩ

C9: 0.001 μF R9: 10 kΩ

 R10: 10 kΩ

D1: STPS5L40RL R11: 27 kΩ

D2: STPS5L40RL R12: 100 kΩ audio taper

D3: STPS5L40RL R13: 1 kΩ

D4: 1N4614 R14: 1 kΩ

D5: BAT43 R15: 1 kΩ

D6: BAT43 R16: 39 Ω

D7: BAT43 R17: 100 kΩ

 R18: 1 kΩ

U1: LM7805 R19: 1.5 kΩ

U2: TLE2141AC R20: 4.7 kΩ

U3: NE556 R21: 12 kΩ

 R22: 3.3 kΩ

 R23: 1 kΩ

192

Figure 75: Pulse Generator Schematic

P
u

ls
e

 G
e

n
e

ra
to

r

R
5

C
8

R
4

R
1

2

R
8

R
1

R
7

C
3

R
1

0

R
1

3

R
1

4
R

1
5

S
IG

G
N

D

B
N

C

D
2

-+

-+

U
2

C
7

R
9

D
5

R
1

8

R
2

3

R
1

6

R
1

1

D
1

R
1

7

SCOPE

+
1

5
V

G
N

D

C
5

C
1

C
2

C
6

D
4

C
4

V
R

E
G

V
in

V
o

u
t

G
N

D

U
1

D
3

R
2

R
3

R
6

D
7

D
6

Vcc

DIS B

THR B

CV B

RST B

OUT B

TRG B

DIS A

THR A

CV A

RST A

OUT A

TRG A

GND

U3

C
9

S
C

O
P

E

R
2

0
R

2
1

S
IG

R
1

9

R
2

2

J
U

N
E

 2
0

1
2

193

APPENDIX B

SPEEDCONTROL SOURCE CODE

194

A number of separate Visual Basic™ files were developed as part of the source

code and User’s Guide for the SpeedControl software. With the exception of the icons

and certain resource files, they are all listed in this Appendix. A total of 21 files are

included here.

B.1 ASSEMBLYINFO.VB

Imports System.Resources

Imports System

Imports System.Reflection

Imports System.Runtime.InteropServices

' General Information about an assembly is controlled through the following

' set of attributes. Change these attribute values to modify the information

' associated with an assembly.

' Review the values of the assembly attributes

<Assembly: AssemblyTitle("CTMFD Speed and Laser Control Application")>

<Assembly: AssemblyDescription("Control Application for the Speed and Laser in

the NHTS Lab CTMFD Facility")>

<Assembly: AssemblyCompany("Texas Engineering Experiment Station")>

<Assembly: AssemblyProduct("Speed and Laser Controller")>

<Assembly: AssemblyCopyright("Copyright © Texas A&M University 2011")>

<Assembly: AssemblyTrademark("Texas A&M University")>

<Assembly: ComVisible(False)>

'The following GUID is for the ID of the typelib if this project is exposed to

COM

<Assembly: Guid("083d8e3a-fda9-449a-a320-245cafc1a9e3")>

' Version information for an assembly consists of the following four values:

'

' Major Version

' Minor Version

' Build Number

' Revision

'

' You can specify all the values or you can default the Build and Revision

Numbers

' by using the '*' as shown below:

' <Assembly: AssemblyVersion("1.0.*")>

<Assembly: AssemblyVersion("1.0.*")>

<Assembly: AssemblyFileVersion("1.0.1.3")>

<Assembly: NeutralResourcesLanguageAttribute("en-US")>

195

B.2 FIREPULSE.DESIGNER.VB

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Partial Class FirePulse

 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.

 <System.Diagnostics.DebuggerNonUserCode()> _

 Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 Try

 If disposing AndAlso components IsNot Nothing Then

 components.Dispose()

 End If

 Finally

 MyBase.Dispose(disposing)

 End Try

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Dim resources As System.ComponentModel.ComponentResourceManager = New

System.ComponentModel.ComponentResourceManager(GetType(FirePulse))

 Me.CommentBox = New System.Windows.Forms.TextBox

 Me.CancelPulseButton = New System.Windows.Forms.Button

 Me.FireButton = New System.Windows.Forms.Button

 Me.Label1 = New System.Windows.Forms.Label

 Me.Label2 = New System.Windows.Forms.Label

 Me.Label3 = New System.Windows.Forms.Label

 Me.SetValuesButton = New System.Windows.Forms.Button

 Me.DurationDisplay = New System.Windows.Forms.Label

 Me.PowerDisplay = New System.Windows.Forms.Label

 Me.DurationSetBox = New System.Windows.Forms.TextBox

 Me.PowerSetBox = New System.Windows.Forms.TextBox

 Me.SuspendLayout()

 '

 'CommentBox

 '

 Me.CommentBox.Location = New System.Drawing.Point(12, 25)

 Me.CommentBox.MaximumSize = New System.Drawing.Size(289, 74)

 Me.CommentBox.MinimumSize = New System.Drawing.Size(289, 74)

 Me.CommentBox.Multiline = True

 Me.CommentBox.Name = "CommentBox"

 Me.CommentBox.ScrollBars = System.Windows.Forms.ScrollBars.Vertical

 Me.CommentBox.Size = New System.Drawing.Size(289, 74)

 Me.CommentBox.TabIndex = 5

 Me.CommentBox.Text = "(Leave a comment)"

 '

 'CancelPulseButton

 '

 Me.CancelPulseButton.Location = New System.Drawing.Point(226, 194)

 Me.CancelPulseButton.MaximumSize = New System.Drawing.Size(75, 23)

 Me.CancelPulseButton.MinimumSize = New System.Drawing.Size(75, 23)

 Me.CancelPulseButton.Name = "CancelPulseButton"

196

 Me.CancelPulseButton.Size = New System.Drawing.Size(75, 23)

 Me.CancelPulseButton.TabIndex = 4

 Me.CancelPulseButton.Text = "Cancel"

 Me.CancelPulseButton.UseVisualStyleBackColor = True

 '

 'FireButton

 '

 Me.FireButton.Location = New System.Drawing.Point(12, 194)

 Me.FireButton.MaximumSize = New System.Drawing.Size(75, 23)

 Me.FireButton.MinimumSize = New System.Drawing.Size(75, 23)

 Me.FireButton.Name = "FireButton"

 Me.FireButton.Size = New System.Drawing.Size(75, 23)

 Me.FireButton.TabIndex = 3

 Me.FireButton.Text = "FIRE!"

 Me.FireButton.UseVisualStyleBackColor = True

 '

 'Label1

 '

 Me.Label1.AutoSize = True

 Me.Label1.Location = New System.Drawing.Point(9, 9)

 Me.Label1.MaximumSize = New System.Drawing.Size(54, 13)

 Me.Label1.MinimumSize = New System.Drawing.Size(54, 13)

 Me.Label1.Name = "Label1"

 Me.Label1.Size = New System.Drawing.Size(54, 13)

 Me.Label1.TabIndex = 6

 Me.Label1.Text = "Comment:"

 '

 'Label2

 '

 Me.Label2.AutoSize = True

 Me.Label2.Location = New System.Drawing.Point(18, 121)

 Me.Label2.MaximumSize = New System.Drawing.Size(71, 13)

 Me.Label2.MinimumSize = New System.Drawing.Size(71, 13)

 Me.Label2.Name = "Label2"

 Me.Label2.Size = New System.Drawing.Size(71, 13)

 Me.Label2.TabIndex = 7

 Me.Label2.Text = "Est. Duration:"

 '

 'Label3

 '

 Me.Label3.AutoSize = True

 Me.Label3.Location = New System.Drawing.Point(49, 149)

 Me.Label3.MaximumSize = New System.Drawing.Size(40, 13)

 Me.Label3.MinimumSize = New System.Drawing.Size(40, 13)

 Me.Label3.Name = "Label3"

 Me.Label3.Size = New System.Drawing.Size(40, 13)

 Me.Label3.TabIndex = 8

 Me.Label3.Text = "Power:"

 '

 'SetValuesButton

 '

 Me.SetValuesButton.Location = New System.Drawing.Point(120, 194)

 Me.SetValuesButton.MaximumSize = New System.Drawing.Size(75, 23)

 Me.SetValuesButton.MinimumSize = New System.Drawing.Size(75, 23)

 Me.SetValuesButton.Name = "SetValuesButton"

 Me.SetValuesButton.Size = New System.Drawing.Size(75, 23)

 Me.SetValuesButton.TabIndex = 9

 Me.SetValuesButton.Text = "Set Values"

 Me.SetValuesButton.UseVisualStyleBackColor = True

197

 '

 'DurationDisplay

 '

 Me.DurationDisplay.AutoSize = True

 Me.DurationDisplay.BorderStyle =

System.Windows.Forms.BorderStyle.Fixed3D

 Me.DurationDisplay.Location = New System.Drawing.Point(95, 121)

 Me.DurationDisplay.MaximumSize = New System.Drawing.Size(100, 15)

 Me.DurationDisplay.MinimumSize = New System.Drawing.Size(100, 15)

 Me.DurationDisplay.Name = "DurationDisplay"

 Me.DurationDisplay.Size = New System.Drawing.Size(100, 15)

 Me.DurationDisplay.TabIndex = 10

 Me.DurationDisplay.Text = "0.0001"

 '

 'PowerDisplay

 '

 Me.PowerDisplay.AutoSize = True

 Me.PowerDisplay.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D

 Me.PowerDisplay.Location = New System.Drawing.Point(95, 149)

 Me.PowerDisplay.MaximumSize = New System.Drawing.Size(100, 15)

 Me.PowerDisplay.MinimumSize = New System.Drawing.Size(100, 15)

 Me.PowerDisplay.Name = "PowerDisplay"

 Me.PowerDisplay.Size = New System.Drawing.Size(100, 15)

 Me.PowerDisplay.TabIndex = 11

 Me.PowerDisplay.Text = "100"

 '

 'DurationSetBox

 '

 Me.DurationSetBox.Location = New System.Drawing.Point(201, 118)

 Me.DurationSetBox.MaximumSize = New System.Drawing.Size(100, 20)

 Me.DurationSetBox.MaxLength = 12

 Me.DurationSetBox.MinimumSize = New System.Drawing.Size(100, 20)

 Me.DurationSetBox.Name = "DurationSetBox"

 Me.DurationSetBox.Size = New System.Drawing.Size(100, 20)

 Me.DurationSetBox.TabIndex = 12

 Me.DurationSetBox.Text = "0.0001"

 '

 'PowerSetBox

 '

 Me.PowerSetBox.Location = New System.Drawing.Point(201, 146)

 Me.PowerSetBox.MaximumSize = New System.Drawing.Size(100, 20)

 Me.PowerSetBox.MaxLength = 9

 Me.PowerSetBox.MinimumSize = New System.Drawing.Size(100, 20)

 Me.PowerSetBox.Name = "PowerSetBox"

 Me.PowerSetBox.Size = New System.Drawing.Size(100, 20)

 Me.PowerSetBox.TabIndex = 13

 Me.PowerSetBox.Text = "100"

 '

 'FirePulse

 '

 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)

 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

 Me.ClientSize = New System.Drawing.Size(315, 237)

 Me.Controls.Add(Me.PowerSetBox)

 Me.Controls.Add(Me.DurationSetBox)

 Me.Controls.Add(Me.PowerDisplay)

 Me.Controls.Add(Me.DurationDisplay)

 Me.Controls.Add(Me.SetValuesButton)

 Me.Controls.Add(Me.Label3)

198

 Me.Controls.Add(Me.Label2)

 Me.Controls.Add(Me.Label1)

 Me.Controls.Add(Me.CommentBox)

 Me.Controls.Add(Me.CancelPulseButton)

 Me.Controls.Add(Me.FireButton)

 Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedDialog

 Me.Icon = CType(resources.GetObject("$this.Icon"), System.Drawing.Icon)

 Me.MaximizeBox = False

 Me.MaximumSize = New System.Drawing.Size(321, 263)

 Me.MinimizeBox = False

 Me.MinimumSize = New System.Drawing.Size(321, 263)

 Me.Name = "FirePulse"

 Me.ShowIcon = False

 Me.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide

 Me.Text = "Fire a Laser Pulse"

 Me.ResumeLayout(False)

 Me.PerformLayout()

 End Sub

 Friend WithEvents CommentBox As System.Windows.Forms.TextBox

 Friend WithEvents CancelPulseButton As System.Windows.Forms.Button

 Friend WithEvents FireButton As System.Windows.Forms.Button

 Friend WithEvents Label1 As System.Windows.Forms.Label

 Friend WithEvents Label2 As System.Windows.Forms.Label

 Friend WithEvents Label3 As System.Windows.Forms.Label

 Friend WithEvents SetValuesButton As System.Windows.Forms.Button

 Friend WithEvents DurationDisplay As System.Windows.Forms.Label

 Friend WithEvents PowerDisplay As System.Windows.Forms.Label

 Friend WithEvents DurationSetBox As System.Windows.Forms.TextBox

 Friend WithEvents PowerSetBox As System.Windows.Forms.TextBox

End Class

B.3 FIREPULSE.VB

Public Class FirePulse

 'Code for the FirePulse form that shows when the User wants to Fire a

Manually-Issued Laser Pulse

 Private Sub FirePulse_FormClosing(ByVal sender As Object, ByVal e As

System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

 'Stuff to do when the form is closing

 If e.CloseReason <> CloseReason.None Then

 e.Cancel = True

 End If

 End Sub

 Private Sub CancelPulseButton_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles CancelPulseButton.Click

 'User clicked Cancel

 'set the default comment

199

 CommentBox.Text = "(Leave a Comment)"

 CommentBox.Select(0, CommentBox.TextLength)

 CommentBox.Focus()

 DurationSetBox.Text = DurationDisplay.Text

 PowerSetBox.Text = PowerDisplay.Text

 Me.Hide()

 Application.DoEvents()

 End Sub

 Private Sub FirePulse_Shown(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Shown

 'handles stuff when the form is shown

 'set the default comment

 CommentBox.Text = "(Insert Comment Here)"

 CommentBox.Select(0, CommentBox.TextLength)

 CommentBox.Focus()

 DurationSetBox.Text = DurationDisplay.Text

 PowerSetBox.Text = PowerDisplay.Text

 Application.DoEvents()

 End Sub

 Private Sub SetValuesButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles SetValuesButton.Click

 'updates the values from the set boxes

 Try

 Dim ChangedPulseDuration As Boolean = False

 Dim NewPulseDuration As Double = 0

 Dim ChangedPulsePower As Boolean = False

 Dim NewPulsePower As Double = 0

 Dim EnteredDurationValue As Double = -1

 Dim EnteredPowerValue As Double = -1

 'stop autopulsing

 RunBox.StopAutomaticPulsing()

 'test the values for convertibilty

 Try

 EnteredDurationValue = Val(DurationSetBox.Text)

 Catch TooMuchSpeed As OverflowException

 'bad value for duration

 MsgBox("Illegal Value for the new Estimated Duration:" &

vbNewLine & DurationSetBox.Text, , "Overflow")

 EnteredDurationValue = -1

 End Try

 Try

200

 EnteredPowerValue = Val(PowerSetBox.Text)

 Catch TooMuchSpeed As OverflowException

 'bad value for duration

 MsgBox("Illegal Value for the Next Laser Power:" & vbNewLine &

PowerSetBox.Text, , "Overflow")

 EnteredPowerValue = -1

 End Try

 'sanity check

 If EnteredDurationValue >= 0 Then

 'it works so far

 NewPulseDuration = EnteredDurationValue

 If EnteredPowerValue > 0 Then

 'both work

 NewPulsePower = EnteredPowerValue

 SyncLock Windowsill.RunBoxLock

 'load laser control values

 If Windowsill.EstimatedLaserPulseDuration <>

NewPulseDuration Then

 ChangedPulseDuration = True

 Windowsill.EstimatedLaserPulseDuration =

NewPulseDuration

 End If

 If Windowsill.NextLaserPulsePower <> NewPulsePower Then

 ChangedPulsePower = True

 Windowsill.NextLaserPulsePower = NewPulsePower

 End If

 End SyncLock

 Else

 MsgBox("Next Laser Pulse Power must be >0")

 End If

 Else

 MsgBox("Estimated Pulse Duration values must be >=0")

 End If

 'log the changes

 If ChangedPulseDuration = True Then

 Lumberjack.SendToLog("Estimated Laser Pulse Duration changed to

" & Str(NewPulseDuration))

 End If

 If ChangedPulsePower = True Then

 Lumberjack.SendToLog("Changed Next Laser Pulse Power to " &

Str(NewPulsePower))

 End If

 Application.DoEvents()

 Catch TooBig As OverflowException

 'something overflowed

 Lumberjack.SendToLog("Recoverable Exception in " &

Thread.CurrentThread.Name & ": " & TooBig.Message & vbNewLine & "Details: " &

vbNewLine & TooBig.ToString)

 MsgBox("An Overflow Exception has occurred in " &

Thread.CurrentThread.Name & ", but execution will continue. Details: " &

vbNewLine & TooBig.ToString, , "OUCH!")

 Catch BigException As Exception

 'something got really screwed up

 Lumberjack.SendToLog("Exception in " & Thread.CurrentThread.Name &

": " & BigException.Message & vbNewLine & "Details: " & vbNewLine &

BigException.ToString)

201

 MsgBox("An exception has occurred in " & Thread.CurrentThread.Name

& " and the program will shut down." & vbNewLine & BigException.Message, ,

"OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End Try

 End Sub

 Private Sub FireButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles FireButton.Click

 'FIRE!

 'Issues a manual-type pulse to the laser

 Dim PulsePower As Double = 0

 Dim PulseDuration As Double = 0

 Dim PulseComment As String = ""

 Dim PulseInProgress As Boolean = False

 'stop autopulsing

 RunBox.StopAutomaticPulsing()

 'get data to log

 PulseComment = CommentBox.Text

 SyncLock Windowsill.RunBoxLock

 PulsePower = Windowsill.NextLaserPulsePower

 PulseDuration = Windowsill.EstimatedLaserPulseDuration

 End SyncLock

 'prepare the values for when the box is next shown

 Me.Hide()

 PowerSetBox.Text = PowerDisplay.Text

 DurationSetBox.Text = DurationDisplay.Text

 CommentBox.Text = "(Leave a Comment)"

 CommentBox.Select(0, CommentBox.TextLength)

 CommentBox.Focus()

 'log the event

 Lumberjack.SendToLog("The User has Ordered a Manual Laser Pulse with a

Pulse Power of " & PulsePower.ToString & " and an Estimated Pulse Duration of "

& PulseDuration.ToString & " with the following Comment: " & PulseComment)

 'Issue the pulse to the laser controller

 SyncLock Windowsill.RunBoxLock

 PulseInProgress = Windowsill.FireManualPulse

 Windowsill.FireManualPulse = True

 End SyncLock

 'log overlapping manual pulse events

 If PulseInProgress = True Then

 Lumberjack.SendToLog("Manually-Issued Laser Pulse Already in

Progress! A Second Pulse WILL NOT Follow.")

 End If

 Application.DoEvents()

202

 End Sub

End Class

B.4 HELPBOX.DESIGNER.VB

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Partial Class HelpBox

 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.

 <System.Diagnostics.DebuggerNonUserCode()> _

 Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 Try

 If disposing AndAlso components IsNot Nothing Then

 components.Dispose()

 End If

 Finally

 MyBase.Dispose(disposing)

 End Try

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Dim resources As System.ComponentModel.ComponentResourceManager = New

System.ComponentModel.ComponentResourceManager(GetType(HelpBox))

 Me.GuideTextBox = New System.Windows.Forms.TextBox

 Me.Button1 = New System.Windows.Forms.Button

 Me.SuspendLayout()

 '

 'GuideTextBox

 '

 Me.GuideTextBox.AcceptsReturn = True

 Me.GuideTextBox.AcceptsTab = True

 Me.GuideTextBox.BackColor = System.Drawing.SystemColors.Window

 Me.GuideTextBox.Font = New System.Drawing.Font("Microsoft Sans Serif",

10.0!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,

CType(0, Byte))

 Me.GuideTextBox.Location = New System.Drawing.Point(12, 12)

 Me.GuideTextBox.MaximumSize = New System.Drawing.Size(568, 313)

 Me.GuideTextBox.MinimumSize = New System.Drawing.Size(568, 313)

 Me.GuideTextBox.Multiline = True

 Me.GuideTextBox.Name = "GuideTextBox"

 Me.GuideTextBox.ReadOnly = True

 Me.GuideTextBox.ScrollBars = System.Windows.Forms.ScrollBars.Vertical

 Me.GuideTextBox.Size = New System.Drawing.Size(568, 313)

 Me.GuideTextBox.TabIndex = 0

 Me.GuideTextBox.Text = "The User's Guide goes here. " &

Global.Microsoft.VisualBasic.ChrW(13) & Global.Microsoft.VisualBasic.ChrW(10) &

203

Global.Microsoft.VisualBasic.ChrW(13) & Global.Microsoft.VisualBasic.ChrW(10) &

"Jackass."

 '

 'Button1

 '

 Me.Button1.Location = New System.Drawing.Point(505, 331)

 Me.Button1.MaximumSize = New System.Drawing.Size(75, 23)

 Me.Button1.MinimumSize = New System.Drawing.Size(75, 23)

 Me.Button1.Name = "Button1"

 Me.Button1.Size = New System.Drawing.Size(75, 23)

 Me.Button1.TabIndex = 1

 Me.Button1.Text = "D'oh!"

 Me.Button1.UseVisualStyleBackColor = True

 '

 'HelpBox

 '

 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)

 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

 Me.ClientSize = New System.Drawing.Size(594, 375)

 Me.Controls.Add(Me.Button1)

 Me.Controls.Add(Me.GuideTextBox)

 Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedDialog

 Me.Icon = CType(resources.GetObject("$this.Icon"), System.Drawing.Icon)

 Me.MaximizeBox = False

 Me.MaximumSize = New System.Drawing.Size(600, 400)

 Me.MinimizeBox = False

 Me.MinimumSize = New System.Drawing.Size(600, 400)

 Me.Name = "HelpBox"

 Me.ShowIcon = False

 Me.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide

 Me.Text = "Help! I'm stuck in a computer!"

 Me.ResumeLayout(False)

 Me.PerformLayout()

 End Sub

 Friend WithEvents GuideTextBox As System.Windows.Forms.TextBox

 Friend WithEvents Button1 As System.Windows.Forms.Button

End Class

B.5 HELPBOX.VB

Public Class HelpBox

 'Code for the HelpBox form -- the form that shows when the User needs Help

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 'Hide the help box

 Me.Hide()

 End Sub

204

 Private Sub HelpBox_Load(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Load

 'Stuff for when the box is first loaded

 Dim GuideString As String = ""

 'MsgBox("You " & vbNewLine & " IDIOT")

 'Create the head text

 GuideString = My.Application.Info.CompanyName & " " &

My.Application.Info.ProductName & " v. " & My.Application.Info.Version.Major &

"." & My.Application.Info.Version.Minor & vbNewLine

 GuideString = GuideString & "Build " &

My.Application.Info.Version.Build & ", Revision " &

My.Application.Info.Version.Revision & vbNewLine

 GuideString = GuideString &

FileVersionInfo.GetVersionInfo(Reflection.Assembly.GetExecutingAssembly().Locat

ion).OriginalFilename & vbNewLine

 GuideString = GuideString & "File Version: " &

FileVersionInfo.GetVersionInfo(Reflection.Assembly.GetExecutingAssembly().Locat

ion).FileVersion & vbNewLine

 GuideString = GuideString & My.Application.Info.Copyright & vbNewLine &

vbNewLine & vbNewLine & vbNewLine

 'load the user's guide

 GuideString = GuideString & My.Resources.UserGuide.ToString

 'put it all in the text box

 GuideTextBox.Text = GuideString

 'set the initial location of the cursor

 GuideTextBox.SelectionStart = 0

 GuideTextBox.SelectionLength = 0

 End Sub

End Class

B.6 INSERTCOMMENT.DESIGNER.VB

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Partial Class InsertComment

 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.

 <System.Diagnostics.DebuggerNonUserCode()> _

 Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 Try

 If disposing AndAlso components IsNot Nothing Then

 components.Dispose()

 End If

 Finally

 MyBase.Dispose(disposing)

 End Try

 End Sub

205

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Dim resources As System.ComponentModel.ComponentResourceManager = New

System.ComponentModel.ComponentResourceManager(GetType(InsertComment))

 Me.CommentOKButton = New System.Windows.Forms.Button

 Me.CommentCancelButton = New System.Windows.Forms.Button

 Me.CommentBox = New System.Windows.Forms.TextBox

 Me.SuspendLayout()

 '

 'CommentOKButton

 '

 Me.CommentOKButton.Location = New System.Drawing.Point(12, 231)

 Me.CommentOKButton.MaximumSize = New System.Drawing.Size(75, 23)

 Me.CommentOKButton.MinimumSize = New System.Drawing.Size(75, 23)

 Me.CommentOKButton.Name = "CommentOKButton"

 Me.CommentOKButton.Size = New System.Drawing.Size(75, 23)

 Me.CommentOKButton.TabIndex = 0

 Me.CommentOKButton.Text = "OK"

 Me.CommentOKButton.UseVisualStyleBackColor = True

 '

 'CommentCancelButton

 '

 Me.CommentCancelButton.Location = New System.Drawing.Point(205, 231)

 Me.CommentCancelButton.MaximumSize = New System.Drawing.Size(75, 23)

 Me.CommentCancelButton.MinimumSize = New System.Drawing.Size(75, 23)

 Me.CommentCancelButton.Name = "CommentCancelButton"

 Me.CommentCancelButton.Size = New System.Drawing.Size(75, 23)

 Me.CommentCancelButton.TabIndex = 1

 Me.CommentCancelButton.Text = "Cancel"

 Me.CommentCancelButton.UseVisualStyleBackColor = True

 '

 'CommentBox

 '

 Me.CommentBox.Location = New System.Drawing.Point(12, 12)

 Me.CommentBox.MaximumSize = New System.Drawing.Size(268, 213)

 Me.CommentBox.MinimumSize = New System.Drawing.Size(268, 213)

 Me.CommentBox.Multiline = True

 Me.CommentBox.Name = "CommentBox"

 Me.CommentBox.ScrollBars = System.Windows.Forms.ScrollBars.Vertical

 Me.CommentBox.Size = New System.Drawing.Size(268, 213)

 Me.CommentBox.TabIndex = 2

 '

 'InsertComment

 '

 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)

 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

 Me.ClientSize = New System.Drawing.Size(294, 275)

 Me.Controls.Add(Me.CommentBox)

 Me.Controls.Add(Me.CommentCancelButton)

 Me.Controls.Add(Me.CommentOKButton)

 Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedDialog

 Me.Icon = CType(resources.GetObject("$this.Icon"), System.Drawing.Icon)

206

 Me.MaximizeBox = False

 Me.MaximumSize = New System.Drawing.Size(300, 300)

 Me.MinimizeBox = False

 Me.MinimumSize = New System.Drawing.Size(300, 300)

 Me.Name = "InsertComment"

 Me.ShowIcon = False

 Me.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide

 Me.Text = "Insert a Comment"

 Me.ResumeLayout(False)

 Me.PerformLayout()

 End Sub

 Friend WithEvents CommentOKButton As System.Windows.Forms.Button

 Friend WithEvents CommentCancelButton As System.Windows.Forms.Button

 Friend WithEvents CommentBox As System.Windows.Forms.TextBox

End Class

B.7 INSERTCOMMENT.VB

Public Class InsertComment

 'Code for the InsertComment form that shows when the User wants to insert a

Comment into the Log

 Private Sub CommentCancelButton_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles CommentCancelButton.Click

 'User Clicked Cancel Button

 'set the default comment

 CommentBox.Text = "(Insert Comment Here)"

 CommentBox.Select(0, CommentBox.TextLength)

 CommentBox.Focus()

 Me.Hide()

 End Sub

 Private Sub CommentOKButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CommentOKButton.Click

 'User Clicked OK button

 'Send the Comment to the Log

 Lumberjack.SendToLog("User Comment: " & CommentBox.Text)

 'set the default comment

 CommentBox.Text = "(Insert Comment Here)"

 CommentBox.Select(0, CommentBox.TextLength)

 CommentBox.Focus()

 Me.Hide()

 End Sub

 Private Sub InsertComment_Shown(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Shown

207

 'Form is Shown

 'set the default comment

 CommentBox.Text = "(Insert Comment Here)"

 CommentBox.Select(0, CommentBox.TextLength)

 CommentBox.Focus()

 Application.DoEvents()

 End Sub

End Class

B.8 LONGSHOREMAN.VB

Option Explicit On

Option Strict On

Friend NotInheritable Class Longshoreman

 'This class deals with managing the second serial port

 'Its thread only runs if there is a second port in use

 'However, it maintains the Laser Control Mode variable for the program

 '

 '

 Friend Shared LaserPorter As New Thread(AddressOf

Longshoreman.SecondPortManager)

 Friend Shared LaserControlMode As Long = 0

 Friend Shared WithEvents COMPort2 As New System.IO.Ports.SerialPort

 Friend Shared LaserPortLock As New Object

 Private Shared Sub SecondPortManager()

 'Only used in dual-port mode

 'in dual-port mode, the laser is connected to a second serial port

 'instead of piggy-backing on the speed controller port

 Dim LocalExecutionStatus As Long

 Dim LocalProgramExit As Boolean

 Dim Proceed As Boolean

 Dim LocalPortName As String

 Dim LocalPortSpeed As Integer

 Dim LocalPortDataBits As Integer

 Dim LocalPortStopBits As System.IO.Ports.StopBits

 Dim LocalPortFlowControl As System.IO.Ports.Handshake

 Dim LocalPortEncoding As System.Text.Encoding

 Dim LocalPortOpen As Boolean = False

 Dim LocalRXString As String = ""

 Dim LocalTXString As String = ""

 Dim LocalRXChar(0) As Char

 Dim CharactersRead As Integer = 0

 Dim CharactersRemain As Boolean = False

 Dim PreviousCharacterNewline As Boolean = False

 Dim LastRXTimeTicks As Long = 0

 Dim RXTimeoutToLogTicks As Long = 2500000

208

 Dim BytesToSend() As Byte

 Dim NumberBytes As Integer = 0

 Dim SendRefObj As Object = CObj(0)

 Dim ShortString As String = ""

 Dim FoundLimit As Boolean = False

 Dim SendLength As Integer = 0

 Dim WriteNumber As Long = 0

 Dim ClearForLaser As Boolean = False

 Dim LaserEOL As String = ""

 Dim RecentTX As Boolean = False

 Try

 'much of this mirrors stuff that happens elsewhere in other Program

modes

 Thread.CurrentThread.Name = "LaserPorter"

 Proceed = False

 LocalRXChar(0) = CChar("")

 'wait for the speed control port to open

 Do

 'get speed control port status

 SyncLock Windowsill.RunBoxLock

 Proceed = Windowsill.SpeedControlReady

 End SyncLock

 'check for program exit condition

 SyncLock CentralClass.ProgramExitLock

 LocalProgramExit = CentralClass.ExitProgram

 End SyncLock

 If LocalProgramExit = True Then Proceed = True

 Application.DoEvents()

 System.Threading.Thread.Sleep(3500)

 Loop While Proceed = False

 'get port settings and try to open the port

 SyncLock CentralClass.FileOpsLock

 LocalPortName = CentralClass.LaserPort

 LocalPortSpeed = CentralClass.ComPortBaudRate

 LocalPortDataBits = CentralClass.ComPortDataBits

 LocalPortStopBits = CentralClass.ComPortStopBits

 LocalPortFlowControl = CentralClass.ComPortFlowControl

 LocalPortEncoding = CentralClass.ComPortEncoding

 LaserEOL = CentralClass.LaserNewlineString

 End SyncLock

 Proceed = False

 'open the port

 Do

 Try

 'log it

 Lumberjack.SendToLog("Attempting to open Laser Port (" &

LocalPortName & ") with the following settings: " & LocalPortSpeed.ToString &

" baud, " & LocalPortDataBits.ToString & " data bits, " &

LocalPortStopBits.ToString & " stop bits, flow control=" &

LocalPortFlowControl.ToString & ", and " & LocalPortEncoding.ToString & "

Encoding.")

 'set up and open the port

 SyncLock Longshoreman.LaserPortLock

 Longshoreman.COMPort2.PortName = LocalPortName

 Longshoreman.COMPort2.BaudRate = LocalPortSpeed

209

 Longshoreman.COMPort2.DataBits = LocalPortDataBits

 Longshoreman.COMPort2.StopBits = LocalPortStopBits

 Longshoreman.COMPort2.Handshake = LocalPortFlowControl

 Longshoreman.COMPort2.Encoding = LocalPortEncoding

 'set the read and write buffer size in bytes

 Longshoreman.COMPort2.ReadBufferSize = 16384

 Longshoreman.COMPort2.WriteBufferSize = 16384

 'open the port

 Longshoreman.COMPort2.Open()

 LocalPortOpen = Longshoreman.COMPort2.IsOpen

 End SyncLock

 'log the results

 If LocalPortOpen = True Then

 'success

 Lumberjack.SendToLog("Success in Opening the Laser Port

(" & LocalPortName & ")")

 'proceed with the program

 Proceed = True

 Else

 'some failure without an exception getting caught

 Lumberjack.SendToLog("Failure in Opening the Laser Port

(" & LocalPortName & ")")

 'see if user wants to try again

 If MsgBox("Failure in attempt to open the laser port "

& LocalPortName & vbNewLine & "Retry?", MsgBoxStyle.YesNo, "Laser Port

Problem") = MsgBoxResult.Yes Then

 'user wants to retry

 Lumberjack.SendToLog("Will retry opening laser

port")

 Else

 'user wants to abort

 Proceed = True

 Lumberjack.SendToLog("Abort opening laser port,

ending program")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 End If

 Catch SerialException As Exception

 Lumberjack.SendToLog("Exception in attempt to open the

laser port " & LocalPortName & ": " & vbNewLine & SerialException.Message)

 If MsgBox("Exception in attempt to open the laser port " &

LocalPortName & ": " & vbNewLine & SerialException.Message & vbNewLine &

"Retry?", MsgBoxStyle.YesNo, "Laser Port Problem") = MsgBoxResult.Yes Then

 'user wants to retry

 Lumberjack.SendToLog("Will retry opening laser port")

 Else

 'user wants to abort

 Proceed = True

 Lumberjack.SendToLog("Abort opening laser port, ending

program")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 End Try

210

 'Check to see if the program should exit

 SyncLock CentralClass.ProgramExitLock

 If CentralClass.ExitProgram = True Then

 Proceed = True

 LocalProgramExit = True

 End If

 End SyncLock

 Loop While Proceed = False

 'signal that the program is ready

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserPortReady = True

 End SyncLock

 'main part of the program

 'it doesn't care if the program is in early shutdown or pure

operation

 'so it does the same loop until the correct shutdown stage is

reached

 Do

 SyncLock CentralClass.ProgramExitLock

 LocalExecutionStatus = CentralClass.ExecutionStage

 End SyncLock

 System.Threading.Thread.Sleep(65)

 Application.DoEvents()

 '

 'get data from the port

 SyncLock Longshoreman.LaserPortLock

 LocalPortOpen = Longshoreman.COMPort2.IsOpen

 End SyncLock

 If LocalPortOpen = True Then

 'grab the characters buffered by the serialport one at a

time

 Do

 'read one character from the port, if there are any

 SyncLock Longshoreman.LaserPortLock

 If Longshoreman.COMPort2.BytesToRead > 0 Then

 CharactersRead =

Longshoreman.COMPort2.Read(LocalRXChar, 0, 1)

 'remember the last rx read time

 LastRXTimeTicks = Now.Ticks

 Else

 'no characters read

 CharactersRead = 0

 End If

 End SyncLock

 If CharactersRead > 0 Then

 'characters were actually read, process the data

 'check for cr or lf

 If (LocalRXChar(0).ToString = vbCr) Or

(LocalRXChar(0).ToString = vbLf) Then

 'current character is a newline sort of thing

 If PreviousCharacterNewline = True Then

 'previous character was a newline sort of

character

 'so is the current line

211

 'log it all and clear the

previouscharacternewline condition

 PreviousCharacterNewline = False

 LocalRXString = LocalRXString &

LocalRXChar(0).ToString

 'send it all to the runbox

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserRX = Windowsill.LaserRX

& LocalRXString

 End SyncLock

 'log it

 Lumberjack.SendToLog("RX From Laser: " &

LocalRXString)

 'clear the string

 LocalRXString = ""

 Else

 'previous character was NOT a newline

character

 'but the current line is

 'append it to the local rx string, but wait

before logging

 PreviousCharacterNewline = True

 LocalRXString = LocalRXString &

LocalRXChar(0)

 End If

 ElseIf PreviousCharacterNewline = True Then

 'previous but not current character was a

newline

 'send the previous data where they all belong

 'send it all to the runbox

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserRX = Windowsill.LaserRX &

LocalRXString

 End SyncLock

 'log it

 Lumberjack.SendToLog("RX From Laser: " &

LocalRXString)

 'clear the local rx string and put the current

character in it

 LocalRXString = LocalRXChar(0).ToString

 PreviousCharacterNewline = False

 Else

 'neither the current nor the last character

were newlines

 'append the received character to the local rx

string

 LocalRXString = LocalRXString &

LocalRXChar(0).ToString

 End If

 '

 End If

 'check for remaining characters

 SyncLock Longshoreman.LaserPortLock

 If Longshoreman.COMPort2.BytesToRead > 0 Then

 'data remains

 CharactersRemain = True

 Else

 CharactersRemain = False

212

 'no data left

 End If

 End SyncLock

 Loop While CharactersRemain = True

 End If

 'check for time to dump the rx data to the log

 'only if it hasn't received anything in the timeout period

 If (Now.Ticks - LastRXTimeTicks) > RXTimeoutToLogTicks Then

 'last rx time was more than one timeout ago

 'if there's data to log, log it

 If LocalRXString <> "" Then

 'stuff to log

 'send it all to the runbox

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserRX = Windowsill.LaserRX &

LocalRXString

 End SyncLock

 'log it

 Lumberjack.SendToLog("RX From Laser: " &

LocalRXString)

 'clear the string

 LocalRXString = ""

 End If

 End If

 'write block

 'tell fire control to hold off momentarily

 SyncLock Stevedore.SpeedPortLock

 Stevedore.ClearToFireLaser = False

 End SyncLock

 'send data to port here

 'get any data

 RecentTX = False

 SyncLock Windowsill.RunBoxLock

 LocalTXString = LocalTXString & Windowsill.CommandToLaser

 'got the data, clear the shared variable

 Windowsill.CommandToLaser = ""

 End SyncLock

 'only send when the output buffer is empty to ensure it goes in

the correct order

 If LocalTXString <> "" Then

 'set the transmission flag for later use

 RecentTX = True

 'check for an empty buffer

 SyncLock Longshoreman.LaserPortLock

 If Longshoreman.COMPort2.BytesToWrite = 0 Then

 'empty buffer, write data

 'localportencoding

 If LocalPortEncoding.GetByteCount(LocalTXString) >

Longshoreman.COMPort2.WriteBufferSize Then

 'too many characters

 'split the write in half in a loop until it

fits

 FoundLimit = False

 SendLength = LocalTXString.Length

 Do

213

 SendLength = CInt(SendLength / 2)

 'see if the max bytes from that can be

bufferred

 If

LocalPortEncoding.GetMaxByteCount(SendLength) <

Longshoreman.COMPort2.WriteBufferSize Then

 'it works

 FoundLimit = True

 ElseIf SendLength < 10 Then

 'it should be longer, something is

really wrong

 'proceed anyway

 FoundLimit = True

 End If

 Loop While FoundLimit = False

 'get the string to send

 ShortString = LocalTXString.Substring(0,

SendLength)

 'and remove it from the local tx string

 LocalTXString = LocalTXString.Remove(0,

SendLength)

 'encode the string

 BytesToSend =

LocalPortEncoding.GetBytes(ShortString)

 NumberBytes = BytesToSend.Length

 'now it's ready to write

 Else

 'everything can fit in the buffer immediately

 'encode the string

 BytesToSend =

LocalPortEncoding.GetBytes(LocalTXString)

 NumberBytes = BytesToSend.Length

 'clear the local string

 LocalTXString = ""

 'ready to send

 End If

 'write it to the serial port output asynchronously

 SendRefObj = CObj(WriteNumber)

Longshoreman.COMPort2.BaseStream.BeginWrite(BytesToSend, 0, NumberBytes,

AddressOf Longshoreman.FinishedComPort2Send, SendRefObj)

 WriteNumber += 1

 End If

 End SyncLock

 End If

 'Update Laser Fire Control

 ClearForLaser = True

 'check for request to fire

 If ClearForLaser = True Then

 SyncLock Windowsill.RunBoxLock

 If Windowsill.LaserTXDataCritical = False Then

 'laser not in firing sequence, laser is not clear

to fire

 ClearForLaser = False

 End If

 End SyncLock

 End If

 'check saved data

214

 If LocalTXString <> "" Then

 'there's saved data to be transmitted, laser is not clear

to fire

 ClearForLaser = False

 End If

 'check available data

 If ClearForLaser = True Then

 SyncLock Windowsill.RunBoxLock

 If Windowsill.CommandToLaser <> "" Then

 'there's data left to be loaded and transmitted,

laser is not clear to fire

 ClearForLaser = False

 End If

 End SyncLock

 End If

 'check bufferred data

 If ClearForLaser = True Then

 SyncLock Longshoreman.LaserPortLock

 If Longshoreman.COMPort2.BytesToWrite <> 0 Then

 'there's bufferred data in transmission, laser is

not clear to fire

 ClearForLaser = False

 End If

 End SyncLock

 End If

 If RecentTX = True Then

 'don't signal a clear line just yet

 ClearForLaser = False

 End If

 'send value to fire control

 SyncLock Stevedore.SpeedPortLock

 Stevedore.ClearToFireLaser = ClearForLaser

 End SyncLock

 Loop While LocalExecutionStatus < 1020

 'signal fire control to that the laser is not clear to fire

 SyncLock Stevedore.SpeedPortLock

 Stevedore.ClearToFireLaser = False

 End SyncLock

 'close the port

 Try

 'if the port was opened, close it

 If LocalPortOpen = True Then

 'log it

 Lumberjack.SendToLog("Attempting to Close the Laser Port ("

& LocalPortName & ")")

 'send final string to the laser port, if there is one

 'get any data

 SyncLock Windowsill.RunBoxLock

 LocalTXString = LocalTXString &

Windowsill.CommandToLaser

 Windowsill.CommandToLaser = ""

 End SyncLock

 'transmit any data

 LocalTXString = LocalTXString & LaserEOL

 Try

215

 'perform the write

 SyncLock Longshoreman.LaserPortLock

 Longshoreman.COMPort2.Write(LocalTXString)

 End SyncLock

 Catch FinishedWriteException As Exception

 'log the issue

 Lumberjack.SendToLog("Exception in final write on " &

LocalPortName & ": " & FinishedWriteException.Message)

 End Try

 System.Threading.Thread.Sleep(250)

 'get all the data from the port, then close it

 SyncLock Longshoreman.LaserPortLock

 If Longshoreman.COMPort2.IsOpen = True Then

 LocalRXString = LocalRXString &

Longshoreman.COMPort2.ReadExisting()

 'the port is open, close it

 Longshoreman.COMPort2.Close()

 Longshoreman.COMPort2.Dispose()

 End If

 LocalPortOpen = Longshoreman.COMPort2.IsOpen

 End SyncLock

 System.Threading.Thread.Sleep(1000)

 'log success/failure to close the port

 If LocalPortOpen = True Then

 'port is still open, log an error

 Lumberjack.SendToLog("Laser Port (" & LocalPortName &

") did not close successfully")

 Else

 'port closed

 Lumberjack.SendToLog("Successfully Closed the Laser

Port (" & LocalPortName & ")")

 End If

 End If

 Catch SerialPortClosureProblem As Exception

 'log it

 Lumberjack.SendToLog("Exception while attempting to close the

Laser Port (" & LocalPortName & "): " & vbNewLine &

SerialPortClosureProblem.Message)

 End Try

 'send the output where it belongs

 If LocalRXString <> "" Then

 'log the final rx string

 Lumberjack.SendToLog("Final Text Received from the Laser: " &

LocalRXString)

 'mirror it on the runbox

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserRX = Windowsill.LaserRX & LocalRXString

 End SyncLock

 'clear the string

 LocalRXString = ""

 End If

 System.Threading.Thread.Sleep(3000)

 'log termination

 Lumberjack.SendToLog("Laser Port Module Stopping")

216

 Catch ThreadNeededKilling As ThreadAbortException

 'the thread was aborted

 Application.ExitThread()

 Catch BigException As Exception

 'something got really screwed up

 Lumberjack.SendToLog("Exception in " & Thread.CurrentThread.Name &

": " & BigException.Message & vbNewLine & "Details: " & vbNewLine &

BigException.ToString)

 MsgBox("An exception has occurred in " & Thread.CurrentThread.Name

& " and the program will shut down." & vbNewLine & BigException.Message, ,

"OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End Try

 Application.ExitThread()

 End Sub

 Private Shared Sub FinishedComPort2Send(ByVal TXResult As

System.IAsyncResult)

 'gets called in asynchronous writes to the laser port

 'when they finish transmitting data

 Try

 SyncLock Longshoreman.LaserPortLock

 'end the (completed) write

 Longshoreman.COMPort2.BaseStream.EndWrite(TXResult)

 End SyncLock

 Catch ex As Exception

 'something went wrong

 'log the error

 Lumberjack.SendToLog("Exception in the result of transmission to

laser: " & ex.Message)

 Lumberjack.SendToLog("Exception Data: " &

TXResult.AsyncState.ToString())

 End Try

 End Sub

End Class

B.9 LUMBERJACK.VB

Option Explicit On

Option Strict On

Friend NotInheritable Class Lumberjack

 'This class contains the logging system

 'It executes in a thread, here the BostonLogger

217

 'Before the thread is launched, the OutputLogFile needs to be opened for

writing

 'This must be done by an outside routine, not here

 '

 '

 Friend Shared BostonLogger As New Thread(AddressOf Lumberjack.LogWriter)

 Friend Shared OutputLogFile As System.IO.TextWriter

 Friend Shared LogFileLock As New Object

 Private Shared NextOutputString As String = ""

 Private Shared TimberLock As New Object

 Private Shared LogDividerString As String =

"================================"

 Private Shared Function BannerInfo() As String

 'hands the startup info to the logger

 Dim NextString As String = ""

 Dim DividerString As String = Lumberjack.LogDividerString

 SyncLock CentralClass.FileOpsLock

 'startup banner

 NextString = vbNewLine & vbNewLine & DividerString & vbNewLine

 NextString = NextString & My.Application.Info.CompanyName & " " &

My.Application.Info.ProductName & " v. " & My.Application.Info.Version.Major &

"." & My.Application.Info.Version.Minor & vbNewLine

 NextString = NextString & "Build " &

My.Application.Info.Version.Build & ", Revision " &

My.Application.Info.Version.Revision & vbNewLine

 NextString = NextString &

FileVersionInfo.GetVersionInfo(Reflection.Assembly.GetExecutingAssembly().Locat

ion).OriginalFilename & " File Version: " &

FileVersionInfo.GetVersionInfo(Reflection.Assembly.GetExecutingAssembly().Locat

ion).FileVersion & vbNewLine

 NextString = NextString & DividerString & vbNewLine

 'give the filename

 NextString = NextString & "Log File: " & vbNewLine &

System.IO.Path.GetFullPath(CentralClass.Filename) & vbNewLine

 'give append/replace flag

 If CentralClass.AppendFile = True Then

 NextString = NextString & "Appending any existing file." &

vbNewLine

 Else

 NextString = NextString & "Replacing any existing file." &

vbNewLine

 End If

 'reflect status of advanced timing features

 NextString = NextString & "Advanced Timing Features: "

 If CentralClass.AdvancedTiming = True Then

 NextString = NextString & "Enabled" & vbNewLine

 Else

 NextString = NextString & "Disabled" & vbNewLine

 End If

 'give selected ports, speed, and start time

 NextString = NextString & "Speed Controller Port: " &

CentralClass.SpeedPort & vbNewLine

 NextString = NextString & "Laser Port: " & CentralClass.LaserPort

& vbNewLine

218

 NextString = NextString & "Port Speed: " &

CentralClass.ComPortBaudRate & " baud" & vbNewLine

 NextString = NextString & "Program Startup: " &

CentralClass.ProgramStartTime & vbNewLine

 NextString = NextString & DividerString

 NextString = NextString & Lumberjack.LogStamp & "Begin Logging"

 End SyncLock

 BannerInfo = NextString

 End Function

 Private Shared Sub SawmillEcho(ByVal Logged As String)

 'This directs the data logged back out to the runbox mirror

 SyncLock Windowsill.RunBoxLock

 'echo the data to the RunBox

 Windowsill.LogWritten = Windowsill.LogWritten & Logged

 End SyncLock

 End Sub

 Private Shared Function LogStamp() As String

 'gives a new line and the formatted time stamp for the log

 LogStamp = vbNewLine & "[" & Format(Now(), "MM/dd/yyyy HH:mm:ss.ff") &

"]: "

 End Function

 Public Shared Sub SendToLog(ByVal ToLog As String)

 'sends the input string to the log file

 SyncLock Lumberjack.TimberLock

 Lumberjack.NextOutputString = Lumberjack.NextOutputString &

LogStamp() & ToLog

 End SyncLock

 'evidently the thread.interrupt method is dangerous, so it's commented

out here

 'Try

 ' 'if the logger is asleep, wake it

 ' If Lumberjack.BostonLogger.ThreadState =

Threading.ThreadState.WaitSleepJoin Then

 ' Lumberjack.BostonLogger.Interrupt()

 ' End If

 'Catch SomethingUnexpected As Exception

 ' Beep()

 ' 'No exceptions are actually expected to ever appear here

 ' 'If they do, they probably can't be logged

219

 'End Try

 End Sub

 Private Shared Sub LogWriter()

 'this is meant to run in its own thread and send the log queue to the

log file

 'it echoes it to the runbox form as well through the SawmillEcho sub

 Dim NextString As String = ""

 Dim LocalProgramExit As Boolean = False

 Dim DeltaTicks As Long

 Dim LastFlush As Long

 Dim LocalExecutionStage As Long

 Dim LocalTimeoutCounter As Long

 Dim LocalTimeoutDelay As Long

 Dim MaxCharacterTransfer As Integer = 32767

 Dim CharactersToTransfer As Integer = 0

 Dim DividerString As String = Lumberjack.LogDividerString

 'trap otherwise unhandled exceptions, kill the thread if any pop up

 Try

 'startup stuff

 Thread.CurrentThread.Name = "Boston_Logger"

 'set the flush frequency to ~10 seconds

 DeltaTicks = 100000000

 'set timeout to ~1000 seconds

 LocalTimeoutDelay = 10000000000

 NextString = BannerInfo()

 SyncLock Lumberjack.TimberLock

 'purge the next output string, if it already has data

 If Lumberjack.NextOutputString <> "" Then

 'don't get more characters than the i/o can handle

 If NextString.Length + Lumberjack.NextOutputString.Length >

MaxCharacterTransfer Then

 'too long for a single operation

 'only do one, hold the rest over for the main loop

 'next if-then is really only a formality

 If NextString.Length < MaxCharacterTransfer Then

 'we can append it, so do so

 CharactersToTransfer = MaxCharacterTransfer -

NextString.Length

 NextString = NextString &

Lumberjack.NextOutputString.Substring(0, CharactersToTransfer)

 'remove the transferred characters

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString.Remove(0, CharactersToTransfer)

 End If

 Else

 'short enough for a single operation

 NextString = NextString & Lumberjack.NextOutputString

 Lumberjack.NextOutputString = ""

 End If

 End If

 End SyncLock

 'now write the startup material to the log file

220

 SyncLock Lumberjack.LogFileLock

 Try

 Lumberjack.OutputLogFile.Write(NextString)

 LastFlush = Now.Ticks

 Lumberjack.OutputLogFile.Flush()

 Catch ex As Exception

 MsgBox("An exception has occurred in " &

Thread.CurrentThread.Name & " and the program will shut down" & vbNewLine &

ex.Message, , "OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 SyncLock Lumberjack.TimberLock

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString & Lumberjack.LogStamp & "System Error: " &

ex.Message

 End SyncLock

 End Try

 End SyncLock

 'copy the initial logging to the runbox

 Lumberjack.SawmillEcho(NextString)

 'clear the output string

 NextString = ""

 'now loop for the main operation

 Do

 'check for new data

 SyncLock Lumberjack.TimberLock

 'check for new data

 If Lumberjack.NextOutputString <> "" Then

 'don't get more characters than the i/o can handle

 If Lumberjack.NextOutputString.Length >

MaxCharacterTransfer Then

 'too long for a single operation

 'only do one, leave the rest

 CharactersToTransfer = MaxCharacterTransfer

 NextString =

Lumberjack.NextOutputString.Substring(0, CharactersToTransfer)

 'remove the transferred characters

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString.Remove(0, CharactersToTransfer)

 Else

 'short enough for a single operation

 NextString = NextString &

Lumberjack.NextOutputString

 Lumberjack.NextOutputString = ""

 End If

 End If

 End SyncLock

 'write any new data to the disk and RunBox

 If NextString <> "" Then

 SyncLock Lumberjack.LogFileLock

 'write the data

 Try

 Lumberjack.OutputLogFile.Write(NextString)

221

 'check to see if it's time to flush the cache

 If (Now.Ticks - LastFlush) > DeltaTicks Then

 'time to flush

 LastFlush = Now.Ticks

 Lumberjack.OutputLogFile.Flush()

 End If

 Catch ex As Exception

 MsgBox("An exception has occurred in " &

Thread.CurrentThread.Name & " and the program will shut down" & vbNewLine &

ex.Message, , "OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 SyncLock Lumberjack.TimberLock

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString & Lumberjack.LogStamp & "System Error: " &

ex.Message

 End SyncLock

 End Try

 End SyncLock

 Lumberjack.SawmillEcho(NextString)

 'clear the string

 NextString = ""

 End If

 'wait

 Try

 'this was 55 ms, but that expected a thread.interrupt

method, which has turned out to be dangerous

 'so the sleep period was shortened instead

 System.Threading.Thread.Sleep(35)

 Catch ex As ThreadInterruptedException

 'sleep was interrupted

 Exit Try

 End Try

 Application.DoEvents()

 'get exit status

 SyncLock CentralClass.ProgramExitLock

 LocalProgramExit = CentralClass.ExitProgram

 End SyncLock

 Loop While LocalProgramExit = False

 'put shutdown matter here

 LocalTimeoutCounter = Now.Ticks

 Do

 'wait for the correct time to shut all the way down

 'in the meantime, continue to log, but do not echo to runbox if

its exit level has been reached

 'check for new data

 SyncLock Lumberjack.TimberLock

 'check for new data

 If Lumberjack.NextOutputString <> "" Then

 'don't get more characters than the i/o can handle

 If Lumberjack.NextOutputString.Length >

MaxCharacterTransfer Then

 'too long for a single operation

 'only do one, leave the rest

222

 CharactersToTransfer = MaxCharacterTransfer

 NextString =

Lumberjack.NextOutputString.Substring(0, CharactersToTransfer)

 'remove the transferred characters

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString.Remove(0, CharactersToTransfer)

 Else

 'short enough for a single operation

 NextString = NextString &

Lumberjack.NextOutputString

 Lumberjack.NextOutputString = ""

 End If

 End If

 End SyncLock

 'write any new data to the disk

 If NextString <> "" Then

 SyncLock Lumberjack.LogFileLock

 'write the data

 Try

 Lumberjack.OutputLogFile.Write(NextString)

 Catch ex As Exception

 MsgBox("An exception has occurred in " &

Thread.CurrentThread.Name & " and the program will shut down" & vbNewLine &

ex.Message, , "OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 SyncLock Lumberjack.TimberLock

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString & Lumberjack.LogStamp & "System Error: " &

ex.Message

 End SyncLock

 End Try

 End SyncLock

 If LocalExecutionStage < 1050 Then

 'User Interface should still be running

 Lumberjack.SawmillEcho(NextString)

 End If

 'clear the string

 NextString = ""

 End If

 Try

 System.Threading.Thread.Sleep(55)

 Catch ex As ThreadInterruptedException

 'sleep was interrupted

 Exit Try

 End Try

 Application.DoEvents()

 SyncLock CentralClass.ProgramExitLock

 'get the program execution stage

 LocalExecutionStage = CentralClass.ExecutionStage

 End SyncLock

 'nominally, loop until the proper shutdown stage is reached

before exiting

 'but if it takes too long then exit after a timeout

 Loop While ((Now.Ticks - LocalTimeoutCounter) < LocalTimeoutDelay)

And (LocalExecutionStage < 1100)

 'Final Shutdown Stage for Logging

223

 'proceed to exit

 Do

 'loop until all the log material is gathered

 'check for new data

 SyncLock Lumberjack.TimberLock

 'check for new data

 If Lumberjack.NextOutputString <> "" Then

 'don't get more characters than the i/o can handle

 If Lumberjack.NextOutputString.Length >

MaxCharacterTransfer Then

 'too long for a single operation

 'only do one, leave the rest

 CharactersToTransfer = MaxCharacterTransfer

 NextString =

Lumberjack.NextOutputString.Substring(0, CharactersToTransfer)

 'remove the transferred characters

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString.Remove(0, CharactersToTransfer)

 Else

 'short enough for a single operation

 NextString = NextString &

Lumberjack.NextOutputString

 Lumberjack.NextOutputString = ""

 End If

 End If

 End SyncLock

 'write gathered data

 If NextString <> "" Then

 SyncLock Lumberjack.LogFileLock

 'write the data

 Try

 Lumberjack.OutputLogFile.Write(NextString)

 Catch ex As Exception

 MsgBox("An exception has occurred in " &

Thread.CurrentThread.Name & " and the program will shut down" & vbNewLine &

ex.Message, , "OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 SyncLock Lumberjack.TimberLock

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString & Lumberjack.LogStamp & "System Error: " &

ex.Message

 End SyncLock

 End Try

 End SyncLock

 'clear the string

 NextString = ""

 End If

 'see if there's additional data

 SyncLock Lumberjack.TimberLock

 'get number of remaining characters

 CharactersToTransfer = Lumberjack.NextOutputString.Length

 End SyncLock

 Loop While CharactersToTransfer > 0

224

 NextString = NextString & Lumberjack.LogStamp & "End Logging" &

vbNewLine & DividerString & vbNewLine

 'write any new data to the disk

 If NextString <> "" Then

 SyncLock Lumberjack.LogFileLock

 'write the data

 Try

 Lumberjack.OutputLogFile.Write(NextString)

 Catch ex As Exception

 MsgBox("An exception has occurred in " &

Thread.CurrentThread.Name & " and the program will shut down" & vbNewLine &

ex.Message, , "OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 SyncLock Lumberjack.TimberLock

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString & Lumberjack.LogStamp & "System Error: " &

ex.Message

 End SyncLock

 End Try

 End SyncLock

 'clear the string

 NextString = ""

 End If

 SyncLock Lumberjack.LogFileLock

 Try

 'time to flush

 Lumberjack.OutputLogFile.Flush()

 'close the file

 Lumberjack.OutputLogFile.Close()

 Catch ex As Exception

 MsgBox("An exception has occurred in " &

Thread.CurrentThread.Name & " and the program will shut down" & vbNewLine &

ex.Message, , "OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 SyncLock Lumberjack.TimberLock

 Lumberjack.NextOutputString =

Lumberjack.NextOutputString & Lumberjack.LogStamp & "System Error: " &

ex.Message

 End SyncLock

 End Try

 End SyncLock

 Catch ThreadNeededKilling As ThreadAbortException

 'the thread was aborted

 Application.ExitThread()

 Catch BigException As Exception

 'something got really screwed up

 MsgBox("An exception has occurred in " & Thread.CurrentThread.Name

& " and the program will shut down." & vbNewLine & BigException.Message, ,

"OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End Try

225

 Application.ExitThread()

 End Sub

End Class

B.10 MAINCODE.VB

Option Explicit On

Option Strict On

'Imports System.Security.AccessControl

Module MainCode

 Public Declare Function QueryPerformanceCounter Lib "kernel32" (ByRef

lpPerformanceCount As Long) As Long

 Public Declare Function QueryPerformanceFrequency Lib "kernel32" (ByRef

lpFrequency As Long) As Long

 Private Declare Function timeBeginPeriod Lib "winmm.dll" (ByVal uPeriod As

UInt32) As UInt32

 Private Declare Function timeEndPeriod Lib "winmm.dll" (ByVal uPeriod As

UInt32) As UInt32

 Private Declare Function timeGetTime Lib "winmm.dll" () As UInt32

 Private uPeriod As UInt32 = CUInt(1)

 Sub Main()

 'Declarations

 Dim ComPortName As String = ""

 Dim LocalExit As Boolean = False

 Dim a As Long = 0

 Dim FileValid As Boolean = True

 Dim ThreadsLaunched As Boolean = False

 Dim LocalLaserControlMode As Long

 'Dim OutputLogFileACL As FileSecurity

 '

 'Initialization

 'set the system timer to update at 1 ms intervals (normally 15.6),

which is the max

 'the following timeBeginPeriod API call MUST have a corresponding

timeEndPeriod API call!!!!!!!!!!!

 timeBeginPeriod(uPeriod)

 'it will appear at the end of the program

 Application.EnableVisualStyles()

226

 SyncLock CentralClass.FileOpsLock

 'record the starting time

 If TimeZone.CurrentTimeZone.IsDaylightSavingTime(Now()) = True Then

 'daylight saving time

 CentralClass.ProgramStartTime = Format(Now(), "MMMM d, yyyy

HH:mm:ss ") & TimeZone.CurrentTimeZone.DaylightName

 Else

 'standard time

 CentralClass.ProgramStartTime = Format(Now(), "MMMM d, yyyy

HH:mm:ss ") & TimeZone.CurrentTimeZone.StandardName

 End If

 End SyncLock

 'set the process priority

 Process.GetCurrentProcess.PriorityClass =

ProcessPriorityClass.AboveNormal

 Thread.CurrentThread.Name = "Launcher"

 HelpBox.Hide()

 SyncLock Windowsill.RunBoxLock

 Windowsill.SpeedControlReady = False

 Windowsill.LaserPortReady = False

 End SyncLock

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = False

 CentralClass.ExecutionStage = 0

 End SyncLock

 StartupForm.Panel1.BorderStyle = BorderStyle.Fixed3D

 For Each ComPortName In My.Computer.Ports.SerialPortNames

 'Adds the computer's serial ports to port list

 StartupForm.ControllerPortComboBox.Items.Add(ComPortName)

 StartupForm.LaserPortComboBox.Items.Add(ComPortName)

 Next

 Do

 StartupForm.ShowDialog()

 SyncLock CentralClass.ProgramExitLock

 LocalExit = CentralClass.ExitProgram

 End SyncLock

 If LocalExit = True Then

 'The User has chosen to Exit the application

 Beep()

 Exit Do

 Else

 'proceed with the program

 FileValid = True

 'check for valid filename

 SyncLock CentralClass.FileOpsLock

 'check for valid name

 Try

 System.IO.Path.GetFullPath(CentralClass.Filename)

 Catch ex As Exception

227

 'invalid filename

 FileValid = False

 'alert the user

 Beep()

 MsgBox("The file " & CentralClass.Filename & " has

resulted in an exception: " & vbNewLine & ex.Message)

 End Try

 'check if file, not directory, and for a good location

 If FileValid = True Then

 Try

 'see if file exists; if it does, make sure it's not

a directory or read-only

 If System.IO.File.Exists(CentralClass.Filename) =

True Then

 'it exists; check for directory status

 Try

 If

(System.IO.File.GetAttributes(CentralClass.Filename) And

System.IO.FileAttributes.Directory) = System.IO.FileAttributes.Directory Then

 'it's a directory

 FileValid = False

 Beep()

 MsgBox(CentralClass.Filename & " is a

directory. Please choose something else.")

 End If

 Catch ex1 As Exception

 'invalid filename or something

 FileValid = False

 'alert the user

 Beep()

 MsgBox("The file " & CentralClass.Filename

& " has resulted in an exception: " & vbNewLine & ex1.Message)

 End Try

 'check for read-only

 Try

 If

(System.IO.File.GetAttributes(CentralClass.Filename) And

System.IO.FileAttributes.ReadOnly) = System.IO.FileAttributes.ReadOnly Then

 'it's read-only

 FileValid = False

 Beep()

 MsgBox(CentralClass.Filename & " is a

read-only file. Please choose something else.")

 End If

 Catch ex1 As Exception

 'invalid filename or something

 FileValid = False

 'alert the user

 Beep()

 MsgBox("The file " & CentralClass.Filename

& " has resulted in an exception: " & vbNewLine & ex1.Message)

 End Try

 'check for write and modify permissions

 'maybe we'll just do this later by actually

opening the file

228

 'Try

 ' 'get the ACL

 ' OutputLogFileACL =

File.GetAccessControl(CentralClass.Filename, AccessControlSections.All)

 '

'MsgBox(OutputLogFileACL.GetAccessRules(True, True,

GetType(System.Security.Principal.NTAccount)))

 ' 'If (OutputLogFileACL.GetAccessRules(True,

True, GetType(FileSystemRights)) And FileSystemRights.Write) <>

FileSystemRights.Write Then

 ' 'no write permission

 ' FileValid = False

 ' Beep()

 ' Dim accessrules =

OutputLogFileACL.GetAccessRules(True, True,

GetType(System.Security.Principal.NTAccount))

 ' accessrules()

 ' For Each rule As

System.Security.AccessControl.FileSystemAccessRule In accessRules

 ' MsgBox(rule.IdentityReference.Value)

 '

MsgBox(rule.AccessControlType.ToString())

 '

MsgBox(rule.FileSystemRights.ToString())

 ' Next

 ' MsgBox(CentralClass.Filename & " is not

writable by you. Please choose something else.")

 ' 'End If

 'Catch ex1 As Exception

 ' 'invalid filename or something

 ' FileValid = False

 ' 'alert the user

 ' Beep()

 ' MsgBox("The file " & CentralClass.Filename

& " has resulted in an exception: " & vbNewLine & ex1.Message)

 'End Try

 'see if the user REALLY wants to modify the

file

 If FileValid = True Then

 Beep()

 If (CentralClass.AppendFile = True) Then

 'for append

 If MsgBox("The file " & vbNewLine &

CentralClass.Filename & vbNewLine & "already exists. Do you really want to

append it?", MsgBoxStyle.YesNo, "Pin a tail on a donkey?") <> MsgBoxResult.Yes

Then

 'chose not to add on to it

 FileValid = False

 End If

 Else

 'for replace

 If MsgBox("The file " & vbNewLine &

CentralClass.Filename & vbNewLine & "already exists. Do you really want to

replace it? " & vbNewLine & vbNewLine & "THIS WILL ERASE ALL DATA CURRENTLY IN

THE FILE", MsgBoxStyle.YesNo, "Wash your brains?") <> MsgBoxResult.Yes Then

 'chose not to add on to it

 FileValid = False

229

 End If

 End If

 End If

 Else

 'the file does not already exist, see if the

directory does

 Try

 If

System.IO.Directory.Exists(System.IO.Path.GetDirectoryName(CentralClass.Filenam

e)) = False Then

 'path does not exist

 FileValid = False

 Beep()

 MsgBox(CentralClass.Filename & " does

not have a valid path. Please choose something else.")

 End If

 Catch ex1 As Exception

 'invalid filename or something

 FileValid = False

 'alert the user

 Beep()

 MsgBox("The file " & CentralClass.Filename

& " has resulted in an exception: " & vbNewLine & ex1.Message)

 End Try

 End If

 Catch ex As Exception

 'invalid filename

 FileValid = False

 'alert the user

 Beep()

 MsgBox("The file " & CentralClass.Filename & " has

resulted in an exception: " & vbNewLine & ex.Message)

 End Try

 End If

 'prevent the creation of blank files due to no speed port

selection

 SyncLock CentralClass.FileOpsLock

 If CentralClass.SpeedPort = "(none)" Then

 FileValid = False

 Exit Do

 End If

 End SyncLock

 'Now see if we can open the file for editing

 If FileValid = True Then

 SyncLock Lumberjack.LogFileLock

 'try opening the file for writing

 Try

 Lumberjack.OutputLogFile =

System.IO.TextWriter.Synchronized(My.Computer.FileSystem.OpenTextFileWriter(Cen

tralClass.Filename, CentralClass.AppendFile))

 Catch ex As Exception

 'something did not work

230

 FileValid = False

 'alert the user

 Beep()

 MsgBox("The file " & CentralClass.Filename & "

has resulted in an exception: " & vbNewLine & ex.Message)

 End Try

 End SyncLock

 End If

 End SyncLock

 End If

 Loop While FileValid = False

 HelpBox.Hide()

 'just an end program box

 'TestEnder.Show()

 Application.DoEvents()

 Thread.CurrentThread.Priority = ThreadPriority.AboveNormal

 'Get ready to launch the other threads

 SyncLock CentralClass.ProgramExitLock

 LocalExit = CentralClass.ExitProgram

 End SyncLock

 'check for a selected speed controller port, and see if there is a

laser port

 If LocalExit = False Then

 SyncLock CentralClass.FileOpsLock

 'see if a port was chosen for the speed controller

 If CentralClass.SpeedPort = "(none)" Then

 'no controller port, proceed to exit program

 Beep()

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 LocalExit = True

 End SyncLock

 MsgBox("You have not selected a serial port. The Program

will not continue.", , "Uh huh")

 End If

 'see what the user selected for the laser port

 If CentralClass.LaserPort = "(none)" Then

 'no port at all for laser

 LocalLaserControlMode = 0

 Else

 'A port was selected, see what it is

 If CentralClass.LaserPort = CentralClass.SpeedPort Then

 'The laser and speed controller share the same serial

port

 LocalLaserControlMode = 1

 Else

 'The laser has its own independent serial port

 LocalLaserControlMode = 2

 End If

 End If

 End SyncLock

 End If

231

 SyncLock Longshoreman.LaserPortLock

 Longshoreman.LaserControlMode = LocalLaserControlMode

 End SyncLock

 If LocalExit = False Then

 'launch the threads, otherwise continue straight to shutdown

 'start the logger thread

 SyncLock CentralClass.ProgramExitLock

 'Program Status=Launching Threads

 CentralClass.ExecutionStage = 10

 End SyncLock

 Lumberjack.BostonLogger.Start()

 ThreadsLaunched = True

 Thread.Sleep(55)

 Application.DoEvents()

 'echo laser port mode to log

 If LocalLaserControlMode = 0 Then

 'No laser port

 Lumberjack.SendToLog("Starting Up in Speed Control Only Mode")

 ElseIf LocalLaserControlMode = 1 Then

 'laser port is shared with speed controller port

 Lumberjack.SendToLog("Starting Up in Shared Speed and Laser

Port Mode")

 ElseIf LocalLaserControlMode = 2 Then

 'laser port is separate from the speed controller port

 Lumberjack.SendToLog("Starting Up in Dual Port Mode")

 Else

 'what mode is this?

 Lumberjack.SendToLog("What Laser Control Mode is associated

with a value of " & Convert.ToString(LocalLaserControlMode) & "?")

 End If

 'start the user interface thread

 SyncLock CentralClass.ProgramExitLock

 'Program Status=Launching Threads

 CentralClass.ExecutionStage = 20

 End SyncLock

 Lumberjack.SendToLog("Starting the User Interface Module")

 Windowsill.Gooey.Start()

 Thread.Sleep(55)

 Application.DoEvents()

 'start the speed controller thread

 SyncLock CentralClass.ProgramExitLock

 'Program Status=Launching Threads

 CentralClass.ExecutionStage = 30

 End SyncLock

 Lumberjack.SendToLog("Starting the Controller Port Module")

 Stevedore.Col_Sanders.Priority = ThreadPriority.AboveNormal

 Stevedore.Col_Sanders.Start()

 Thread.Sleep(55)

 Application.DoEvents()

 'start the laser port thread, if necessary

 If LocalLaserControlMode = 2 Then

 'laser on a separate port

232

 SyncLock CentralClass.ProgramExitLock

 'Program Status=Launching Threads

 CentralClass.ExecutionStage = 40

 End SyncLock

 Lumberjack.SendToLog("Starting the Laser Port Module")

 Longshoreman.LaserPorter.Start()

 Thread.Sleep(55)

 Application.DoEvents()

 End If

 Thread.Sleep(55)

 Application.DoEvents()

 End If

 SyncLock CentralClass.ProgramExitLock

 LocalExit = CentralClass.ExitProgram

 If LocalExit = False Then

 CentralClass.ExecutionStage = 100

 'Program Status=Threads Launched, Running

 End If

 End SyncLock

 If LocalExit = False Then

 'Log the completion of startup procedures

 Lumberjack.SendToLog("All modules launched, entering Running Mode")

 End If

 'Now sleep until shutdown

 Do

 'make sure threads are still alive

 'check logger

 If Lumberjack.BostonLogger.IsAlive = False Then

 'The Logger Died! End program

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 'check speed controller

 If Stevedore.Col_Sanders.IsAlive = False Then

 'The Speed Controller Died! End program

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 'check user interface

 If Windowsill.Gooey.IsAlive = False Then

 'The User Interface Died! End program

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 'check secondary serial port, if in that mode

 If LocalLaserControlMode = 2 Then

 If Longshoreman.LaserPorter.IsAlive = False Then

 'The Laser Port Died! End program

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 End If

233

 SyncLock CentralClass.ProgramExitLock

 LocalExit = CentralClass.ExitProgram

 If LocalExit = True Then

 'Set Program Status to Beginning Shutdown

 CentralClass.ExecutionStage = 1000

 End If

 End SyncLock

 Thread.Sleep(55)

 Application.DoEvents()

 Loop While LocalExit = False

 'shutdown stuff

 'make sure that the program status is Beginning Shutdown

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExecutionStage = 1000

 End SyncLock

 If ThreadsLaunched = True Then

 'threads were launched, log the shutdown

 Lumberjack.SendToLog("Program Shutdown in Progress")

 End If

 'shut down the speed controller

 Application.DoEvents()

 Thread.Sleep(55)

 If ThreadsLaunched = True Then

 'enter imminent controller shutdown into log

 Lumberjack.SendToLog("Initiate Speed Control Port Termination")

 End If

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExecutionStage = 1010

 'stage that tells the speed controller to finish

 End SyncLock

 Application.DoEvents()

 'now give the thread a few seconds to finish

 Thread.Sleep(55)

 Try

 If Stevedore.Col_Sanders.Join(60000) = False Then

 'it did not finish in time

 'it had a full minute (60000 ms)

 'kill it

 Stevedore.Col_Sanders.Abort()

 'log the issue

 If ThreadsLaunched = True Then

 Lumberjack.SendToLog("The Speed Control Port Thread

Shutdown timed out. The thread was aborted.")

 End If

 End If

 Catch ex As Exception

 'thread hadn't been started

 End Try

 Application.DoEvents()

 Thread.Sleep(55)

 'shut down the laser port

234

 Application.DoEvents()

 Thread.Sleep(55)

 If (ThreadsLaunched = True) And (LocalLaserControlMode = 2) Then

 'enter imminent laser port shutdown into log

 Lumberjack.SendToLog("Initiate Laser Port Termination")

 End If

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExecutionStage = 1020

 'stage that tells the laser port module to finish

 End SyncLock

 Application.DoEvents()

 Thread.Sleep(55)

 'now give the thread a few seconds to finish

 Try

 If Longshoreman.LaserPorter.Join(60000) = False Then

 'it did not finish in time

 'it had a full minute (60000 ms)

 'kill it

 Longshoreman.LaserPorter.Abort()

 'log the issue

 If ThreadsLaunched = True Then

 Lumberjack.SendToLog("The Laser Port Thread Shutdown timed

out. The thread was aborted.")

 End If

 End If

 Catch ex As Exception

 'thread hadn't been started

 End Try

 Application.DoEvents()

 Thread.Sleep(55)

 'shut down the user interface

 Application.DoEvents()

 Thread.Sleep(55)

 If ThreadsLaunched = True Then

 'enter imminent UI shutdown into log

 Lumberjack.SendToLog("Initiate User Interface Termination")

 End If

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExecutionStage = 1050

 'stage that tells the user interface to finish

 End SyncLock

 Application.DoEvents()

 Thread.Sleep(55)

 'now give the thread a few seconds to finish

 Try

 If Windowsill.Gooey.Join(5000) = False Then

 'it did not finish in time

 'kill it

 Windowsill.Gooey.Abort()

 'log the issue

 If ThreadsLaunched = True Then

 Lumberjack.SendToLog("The User Interface Thread Shutdown

timed out. The thread was aborted.")

 End If

 End If

 Catch ex As Exception

 'thread hadn't been started

235

 End Try

 Application.DoEvents()

 Thread.Sleep(100)

 'shut down the logger

 Application.DoEvents()

 Thread.Sleep(100)

 If ThreadsLaunched = True Then

 'enter imminent logger shutdown into log

 Lumberjack.SendToLog("Initiate Logger Termination")

 End If

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExecutionStage = 1100

 'stage that tells the logger to finish

 End SyncLock

 Application.DoEvents()

 Thread.Sleep(55)

 'now give the thread a few seconds to finish

 Try

 If Lumberjack.BostonLogger.Join(5000) = False Then

 'it did not finish in time

 'log the issue

 If ThreadsLaunched = True Then

 Lumberjack.SendToLog("The Logger Thread Shutdown timed out.

The thread will be aborted.")

 End If

 Application.DoEvents()

 Thread.Sleep(250)

 Application.DoEvents()

 'kill it

 Lumberjack.BostonLogger.Abort()

 End If

 Catch ex As Exception

 'thread hadn't been started

 End Try

 Application.DoEvents()

 Thread.Sleep(55)

 Application.DoEvents()

 Thread.Sleep(100)

 'Close any resources that are still open (files, ports, forms)

 'Close and Dispose all forms

 'Dispose the FirePulse box

 Try

 FirePulse.Hide()

 FirePulse.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the Helpbox

 Try

 HelpBox.Hide()

 HelpBox.Dispose()

236

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the InsertComment box

 Try

 InsertComment.Hide()

 InsertComment.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the Runbox

 Try

 RunBox.Hide()

 RunBox.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the SendLaserCommand box

 Try

 SendLaserCommand.Hide()

 SendLaserCommand.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the StartupForm

 Try

 StartupForm.Hide()

 StartupForm.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the TestEnder box

 'Try

 ' TestEnder.Hide()

 ' TestEnder.Dispose()

 'Catch ex As ObjectDisposedException

 'End Try

 Application.DoEvents()

 'Force-Close the log file

 Try

 Lumberjack.OutputLogFile.Flush()

 Lumberjack.OutputLogFile.Close()

 Lumberjack.OutputLogFile.Dispose()

 Catch ex1 As ArgumentNullException

 'never initialized the output file

 Catch ex2 As ObjectDisposedException

 'already closed

 Catch ex3 As NullReferenceException

 'file never opened?

 Catch ex As Exception

 'something else

 MsgBox("An exception occurred. " & vbNewLine & ex.Message, ,

"Argh!")

 End Try

 'Force-Close Serial Port 1 (Controller Port and possibly includes the

laser port)

237

 Try

 If Stevedore.COMPort1.IsOpen = True Then

 Stevedore.COMPort1.DiscardOutBuffer()

 End If

 Stevedore.COMPort1.Close()

 Stevedore.COMPort1.Dispose()

 Catch ex1 As InvalidOperationException

 'port is not open

 Catch ex As Exception

 'something else

 MsgBox("An exception occurred. " & vbNewLine & ex.Message, ,

"Argh!")

 End Try

 'Force-Close Serial Port 2 (laser port, if any and on a separate port)

 Try

 If Longshoreman.COMPort2.IsOpen = True Then

 Longshoreman.COMPort2.DiscardOutBuffer()

 End If

 Longshoreman.COMPort2.Close()

 Longshoreman.COMPort2.Dispose()

 Catch ex1 As InvalidOperationException

 'port is not open

 Catch ex As Exception

 'something else

 MsgBox("An exception occurred. " & vbNewLine & ex.Message, ,

"Argh!")

 End Try

 'THIS IS THE CORRESPONDING API CALL TO THE timeBeginPeriod CALL AT THE

BEGINNING OF THE PROGRAM

 timeEndPeriod(uPeriod)

 Application.DoEvents()

 Thread.Sleep(1000)

 'Then leave the program

 Application.Exit()

 End Sub

End Module

Friend NotInheritable Class CentralClass

 'Application-wide variables

 'The following blocks each have their own undefined new object

 'That object must be used for synclocking that particular block

 'Otherwise, synchronization issues will readily occur

 '

 '

 'File and Startup variables

 Friend Shared Filename As String = ""

 Friend Shared AppendFile As Boolean = True

 Friend Shared AdvancedTiming As Boolean = False

238

 Friend Shared SpeedPort As String = ""

 Friend Shared LaserPort As String = ""

 Friend Shared ComPortBaudRate As Integer = 9600

 Friend Shared ComPortParity As System.IO.Ports.Parity =

System.IO.Ports.Parity.None

 Friend Shared ComPortFlowControl As System.IO.Ports.Handshake =

System.IO.Ports.Handshake.None

 Friend Shared ComPortStopBits As System.IO.Ports.StopBits =

System.IO.Ports.StopBits.One

 Friend Shared ComPortDataBits As Integer = 8

 Friend Shared ComPortEncoding As System.Text.Encoding =

System.Text.Encoding.ASCII

 Friend Shared LaserNewlineString As String = vbCr

 Friend Shared ProgramStartTime As String = ""

 Friend Shared FileOpsLock As New Object

 '

 '

 'Program Control/Exit

 Friend Shared ExecutionStage As Long = 0

 Friend Shared ExitProgram As Boolean = False

 Friend Shared ProgramExitLock As New Object

 '

 '

End Class

B.11 RUNBOX.DESIGNER.VB

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Partial Class RunBox

 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.

 <System.Diagnostics.DebuggerNonUserCode()> _

 Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 Try

 If disposing AndAlso components IsNot Nothing Then

 components.Dispose()

 End If

 Finally

 MyBase.Dispose(disposing)

 End Try

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Dim resources As System.ComponentModel.ComponentResourceManager = New

System.ComponentModel.ComponentResourceManager(GetType(RunBox))

 Me.TimeBox = New System.Windows.Forms.Label

239

 Me.DateBox = New System.Windows.Forms.Label

 Me.Label3 = New System.Windows.Forms.Label

 Me.Label4 = New System.Windows.Forms.Label

 Me.Label5 = New System.Windows.Forms.Label

 Me.CurrentSpeedBox = New System.Windows.Forms.Label

 Me.Label7 = New System.Windows.Forms.Label

 Me.OutputFileBox = New System.Windows.Forms.Label

 Me.Label9 = New System.Windows.Forms.Label

 Me.CavitationBox = New System.Windows.Forms.Label

 Me.Label11 = New System.Windows.Forms.Label

 Me.SpeedInRangeBox = New System.Windows.Forms.Label

 Me.Label13 = New System.Windows.Forms.Label

 Me.CurrentStatusBox = New System.Windows.Forms.Label

 Me.GroupBox1 = New System.Windows.Forms.GroupBox

 Me.Label18 = New System.Windows.Forms.Label

 Me.RestartDelayShowBox = New System.Windows.Forms.Label

 Me.RestartDelayInputBox = New System.Windows.Forms.TextBox

 Me.Label17 = New System.Windows.Forms.Label

 Me.SetSpeedShowBox = New System.Windows.Forms.Label

 Me.SetSpeedInputBox = New System.Windows.Forms.TextBox

 Me.Label15 = New System.Windows.Forms.Label

 Me.ButtonSetSpeed = New System.Windows.Forms.Button

 Me.OnCavitationStopAndRestart = New System.Windows.Forms.RadioButton

 Me.OnCavitationStop = New System.Windows.Forms.RadioButton

 Me.ButtonStopSpeed = New System.Windows.Forms.Button

 Me.ButtonStartSpeed = New System.Windows.Forms.Button

 Me.OnCavitationContinue = New System.Windows.Forms.RadioButton

 Me.GroupBox2 = New System.Windows.Forms.GroupBox

 Me.Label28 = New System.Windows.Forms.Label

 Me.NextPulsePowerShowBox = New System.Windows.Forms.Label

 Me.ButtonSetLaser = New System.Windows.Forms.Button

 Me.Label26 = New System.Windows.Forms.Label

 Me.EstimatedDurationShowBox = New System.Windows.Forms.Label

 Me.EstimatedDurationInputBox = New System.Windows.Forms.TextBox

 Me.Label23 = New System.Windows.Forms.Label

 Me.LaserDelayShowBox = New System.Windows.Forms.Label

 Me.LaserDelayInputBox = New System.Windows.Forms.TextBox

 Me.FireLaserBox = New System.Windows.Forms.Label

 Me.ButtonFireLaser = New System.Windows.Forms.Button

 Me.ButtonSendLaserCommand = New System.Windows.Forms.Button

 Me.Label22 = New System.Windows.Forms.Label

 Me.AutomaticPulsingFalse = New System.Windows.Forms.RadioButton

 Me.Label21 = New System.Windows.Forms.Label

 Me.LaserRxBox = New System.Windows.Forms.TextBox

 Me.AutomaticPulsingTrue = New System.Windows.Forms.RadioButton

 Me.ButtonInsertComment = New System.Windows.Forms.Button

 Me.ButtonEnd = New System.Windows.Forms.Button

 Me.ButtonHelp = New System.Windows.Forms.Button

 Me.LogTrace = New System.Windows.Forms.TextBox

 Me.Label20 = New System.Windows.Forms.Label

 Me.GroupBox1.SuspendLayout()

 Me.GroupBox2.SuspendLayout()

 Me.SuspendLayout()

 '

 'TimeBox

 '

 Me.TimeBox.AutoSize = True

 Me.TimeBox.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D

 Me.TimeBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

240

 Me.TimeBox.Location = New System.Drawing.Point(96, 9)

 Me.TimeBox.MaximumSize = New System.Drawing.Size(134, 15)

 Me.TimeBox.MinimumSize = New System.Drawing.Size(134, 15)

 Me.TimeBox.Name = "TimeBox"

 Me.TimeBox.Size = New System.Drawing.Size(134, 15)

 Me.TimeBox.TabIndex = 1

 Me.TimeBox.Text = "TIME"

 '

 'DateBox

 '

 Me.DateBox.AutoSize = True

 Me.DateBox.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D

 Me.DateBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.DateBox.Location = New System.Drawing.Point(314, 9)

 Me.DateBox.MaximumSize = New System.Drawing.Size(296, 15)

 Me.DateBox.MinimumSize = New System.Drawing.Size(296, 15)

 Me.DateBox.Name = "DateBox"

 Me.DateBox.Size = New System.Drawing.Size(296, 15)

 Me.DateBox.TabIndex = 3

 Me.DateBox.Text = "DATE"

 '

 'Label3

 '

 Me.Label3.AutoSize = True

 Me.Label3.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label3.Location = New System.Drawing.Point(57, 9)

 Me.Label3.MinimumSize = New System.Drawing.Size(33, 13)

 Me.Label3.Name = "Label3"

 Me.Label3.Size = New System.Drawing.Size(33, 13)

 Me.Label3.TabIndex = 0

 Me.Label3.Text = "Time:"

 '

 'Label4

 '

 Me.Label4.AutoSize = True

 Me.Label4.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label4.Location = New System.Drawing.Point(275, 9)

 Me.Label4.MinimumSize = New System.Drawing.Size(33, 13)

 Me.Label4.Name = "Label4"

 Me.Label4.Size = New System.Drawing.Size(33, 13)

 Me.Label4.TabIndex = 2

 Me.Label4.Text = "Date:"

 '

 'Label5

 '

 Me.Label5.AutoSize = True

 Me.Label5.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label5.Location = New System.Drawing.Point(12, 24)

 Me.Label5.MinimumSize = New System.Drawing.Size(78, 13)

 Me.Label5.Name = "Label5"

 Me.Label5.Size = New System.Drawing.Size(78, 13)

 Me.Label5.TabIndex = 4

 Me.Label5.Text = "Current Speed:"

 '

 'CurrentSpeedBox

 '

 Me.CurrentSpeedBox.AutoSize = True

 Me.CurrentSpeedBox.BorderStyle =

System.Windows.Forms.BorderStyle.Fixed3D

241

 Me.CurrentSpeedBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.CurrentSpeedBox.Location = New System.Drawing.Point(96, 24)

 Me.CurrentSpeedBox.MaximumSize = New System.Drawing.Size(134, 15)

 Me.CurrentSpeedBox.MinimumSize = New System.Drawing.Size(134, 15)

 Me.CurrentSpeedBox.Name = "CurrentSpeedBox"

 Me.CurrentSpeedBox.Size = New System.Drawing.Size(134, 15)

 Me.CurrentSpeedBox.TabIndex = 5

 Me.CurrentSpeedBox.Text = "SPEED"

 '

 'Label7

 '

 Me.Label7.AutoSize = True

 Me.Label7.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label7.Location = New System.Drawing.Point(247, 24)

 Me.Label7.MinimumSize = New System.Drawing.Size(61, 13)

 Me.Label7.Name = "Label7"

 Me.Label7.Size = New System.Drawing.Size(61, 13)

 Me.Label7.TabIndex = 6

 Me.Label7.Text = "Output File:"

 '

 'OutputFileBox

 '

 Me.OutputFileBox.AutoEllipsis = True

 Me.OutputFileBox.AutoSize = True

 Me.OutputFileBox.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D

 Me.OutputFileBox.Cursor = System.Windows.Forms.Cursors.Default

 Me.OutputFileBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.OutputFileBox.Location = New System.Drawing.Point(314, 24)

 Me.OutputFileBox.MaximumSize = New System.Drawing.Size(296, 15)

 Me.OutputFileBox.MinimumSize = New System.Drawing.Size(296, 15)

 Me.OutputFileBox.Name = "OutputFileBox"

 Me.OutputFileBox.Size = New System.Drawing.Size(296, 15)

 Me.OutputFileBox.TabIndex = 7

 Me.OutputFileBox.Text = "FILE"

 '

 'Label9

 '

 Me.Label9.AutoSize = True

 Me.Label9.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label9.Location = New System.Drawing.Point(391, 54)

 Me.Label9.MinimumSize = New System.Drawing.Size(104, 13)

 Me.Label9.Name = "Label9"

 Me.Label9.Size = New System.Drawing.Size(104, 13)

 Me.Label9.TabIndex = 12

 Me.Label9.Text = "Cavitation Detected:"

 '

 'CavitationBox

 '

 Me.CavitationBox.AutoSize = True

 Me.CavitationBox.BackColor = System.Drawing.Color.Navy

 Me.CavitationBox.BorderStyle =

System.Windows.Forms.BorderStyle.FixedSingle

 Me.CavitationBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.CavitationBox.Font = New System.Drawing.Font("Microsoft Sans Serif",

8.25!, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point,

CType(0, Byte))

 Me.CavitationBox.ForeColor = System.Drawing.Color.Yellow

 Me.CavitationBox.Location = New System.Drawing.Point(501, 54)

 Me.CavitationBox.MaximumSize = New System.Drawing.Size(40, 15)

242

 Me.CavitationBox.MinimumSize = New System.Drawing.Size(40, 15)

 Me.CavitationBox.Name = "CavitationBox"

 Me.CavitationBox.Size = New System.Drawing.Size(40, 15)

 Me.CavitationBox.TabIndex = 13

 Me.CavitationBox.Text = "NO"

 '

 'Label11

 '

 Me.Label11.AutoSize = True

 Me.Label11.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label11.Location = New System.Drawing.Point(97, 54)

 Me.Label11.MinimumSize = New System.Drawing.Size(87, 13)

 Me.Label11.Name = "Label11"

 Me.Label11.Size = New System.Drawing.Size(87, 13)

 Me.Label11.TabIndex = 10

 Me.Label11.Text = "Speed in Range:"

 '

 'SpeedInRangeBox

 '

 Me.SpeedInRangeBox.AutoSize = True

 Me.SpeedInRangeBox.BackColor = System.Drawing.Color.Navy

 Me.SpeedInRangeBox.BorderStyle =

System.Windows.Forms.BorderStyle.FixedSingle

 Me.SpeedInRangeBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.SpeedInRangeBox.Font = New System.Drawing.Font("Microsoft Sans

Serif", 8.25!, System.Drawing.FontStyle.Bold,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))

 Me.SpeedInRangeBox.ForeColor = System.Drawing.Color.Yellow

 Me.SpeedInRangeBox.Location = New System.Drawing.Point(190, 54)

 Me.SpeedInRangeBox.MaximumSize = New System.Drawing.Size(40, 15)

 Me.SpeedInRangeBox.MinimumSize = New System.Drawing.Size(40, 15)

 Me.SpeedInRangeBox.Name = "SpeedInRangeBox"

 Me.SpeedInRangeBox.Size = New System.Drawing.Size(40, 15)

 Me.SpeedInRangeBox.TabIndex = 11

 Me.SpeedInRangeBox.Text = "NO"

 '

 'Label13

 '

 Me.Label13.AutoSize = True

 Me.Label13.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label13.Location = New System.Drawing.Point(50, 41)

 Me.Label13.MinimumSize = New System.Drawing.Size(40, 13)

 Me.Label13.Name = "Label13"

 Me.Label13.Size = New System.Drawing.Size(40, 13)

 Me.Label13.TabIndex = 8

 Me.Label13.Text = "Status:"

 '

 'CurrentStatusBox

 '

 Me.CurrentStatusBox.AutoSize = True

 Me.CurrentStatusBox.BorderStyle =

System.Windows.Forms.BorderStyle.Fixed3D

 Me.CurrentStatusBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.CurrentStatusBox.Location = New System.Drawing.Point(96, 39)

 Me.CurrentStatusBox.MaximumSize = New System.Drawing.Size(514, 15)

 Me.CurrentStatusBox.MinimumSize = New System.Drawing.Size(514, 15)

 Me.CurrentStatusBox.Name = "CurrentStatusBox"

 Me.CurrentStatusBox.Size = New System.Drawing.Size(514, 15)

 Me.CurrentStatusBox.TabIndex = 9

243

 Me.CurrentStatusBox.Text = "STATUS"

 '

 'GroupBox1

 '

 Me.GroupBox1.Controls.Add(Me.Label18)

 Me.GroupBox1.Controls.Add(Me.RestartDelayShowBox)

 Me.GroupBox1.Controls.Add(Me.RestartDelayInputBox)

 Me.GroupBox1.Controls.Add(Me.Label17)

 Me.GroupBox1.Controls.Add(Me.SetSpeedShowBox)

 Me.GroupBox1.Controls.Add(Me.SetSpeedInputBox)

 Me.GroupBox1.Controls.Add(Me.Label15)

 Me.GroupBox1.Controls.Add(Me.ButtonSetSpeed)

 Me.GroupBox1.Controls.Add(Me.OnCavitationStopAndRestart)

 Me.GroupBox1.Controls.Add(Me.OnCavitationStop)

 Me.GroupBox1.Controls.Add(Me.ButtonStopSpeed)

 Me.GroupBox1.Controls.Add(Me.ButtonStartSpeed)

 Me.GroupBox1.Controls.Add(Me.OnCavitationContinue)

 Me.GroupBox1.Location = New System.Drawing.Point(12, 72)

 Me.GroupBox1.MaximumSize = New System.Drawing.Size(296, 147)

 Me.GroupBox1.MinimumSize = New System.Drawing.Size(296, 147)

 Me.GroupBox1.Name = "GroupBox1"

 Me.GroupBox1.Size = New System.Drawing.Size(296, 147)

 Me.GroupBox1.TabIndex = 14

 Me.GroupBox1.TabStop = False

 Me.GroupBox1.Text = "Speed Controls"

 '

 'Label18

 '

 Me.Label18.AutoSize = True

 Me.Label18.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label18.Location = New System.Drawing.Point(64, 91)

 Me.Label18.MaximumSize = New System.Drawing.Size(74, 13)

 Me.Label18.MinimumSize = New System.Drawing.Size(74, 13)

 Me.Label18.Name = "Label18"

 Me.Label18.Size = New System.Drawing.Size(74, 13)

 Me.Label18.TabIndex = 7

 Me.Label18.Text = "Restart Delay:"

 '

 'RestartDelayShowBox

 '

 Me.RestartDelayShowBox.AutoSize = True

 Me.RestartDelayShowBox.BorderStyle =

System.Windows.Forms.BorderStyle.Fixed3D

 Me.RestartDelayShowBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.RestartDelayShowBox.Location = New System.Drawing.Point(215, 91)

 Me.RestartDelayShowBox.MaximumSize = New System.Drawing.Size(65, 15)

 Me.RestartDelayShowBox.MinimumSize = New System.Drawing.Size(65, 15)

 Me.RestartDelayShowBox.Name = "RestartDelayShowBox"

 Me.RestartDelayShowBox.Size = New System.Drawing.Size(65, 15)

 Me.RestartDelayShowBox.TabIndex = 9

 Me.RestartDelayShowBox.Text = "00000"

 '

 'RestartDelayInputBox

 '

 Me.RestartDelayInputBox.Location = New System.Drawing.Point(144, 88)

 Me.RestartDelayInputBox.MaximumSize = New System.Drawing.Size(65, 20)

 Me.RestartDelayInputBox.MaxLength = 9

 Me.RestartDelayInputBox.MinimumSize = New System.Drawing.Size(65, 20)

 Me.RestartDelayInputBox.Name = "RestartDelayInputBox"

244

 Me.RestartDelayInputBox.Size = New System.Drawing.Size(65, 20)

 Me.RestartDelayInputBox.TabIndex = 8

 Me.RestartDelayInputBox.Text = "00000"

 '

 'Label17

 '

 Me.Label17.AutoSize = True

 Me.Label17.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label17.Location = New System.Drawing.Point(13, 21)

 Me.Label17.MaximumSize = New System.Drawing.Size(60, 13)

 Me.Label17.MinimumSize = New System.Drawing.Size(60, 13)

 Me.Label17.Name = "Label17"

 Me.Label17.Size = New System.Drawing.Size(60, 13)

 Me.Label17.TabIndex = 0

 Me.Label17.Text = "Set Speed:"

 '

 'SetSpeedShowBox

 '

 Me.SetSpeedShowBox.AutoSize = True

 Me.SetSpeedShowBox.BorderStyle =

System.Windows.Forms.BorderStyle.Fixed3D

 Me.SetSpeedShowBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.SetSpeedShowBox.Location = New System.Drawing.Point(16, 67)

 Me.SetSpeedShowBox.MaximumSize = New System.Drawing.Size(65, 15)

 Me.SetSpeedShowBox.MinimumSize = New System.Drawing.Size(65, 15)

 Me.SetSpeedShowBox.Name = "SetSpeedShowBox"

 Me.SetSpeedShowBox.Size = New System.Drawing.Size(65, 15)

 Me.SetSpeedShowBox.TabIndex = 2

 Me.SetSpeedShowBox.Text = "123456789"

 '

 'SetSpeedInputBox

 '

 Me.SetSpeedInputBox.Location = New System.Drawing.Point(16, 41)

 Me.SetSpeedInputBox.MaximumSize = New System.Drawing.Size(65, 20)

 Me.SetSpeedInputBox.MaxLength = 9

 Me.SetSpeedInputBox.MinimumSize = New System.Drawing.Size(65, 20)

 Me.SetSpeedInputBox.Name = "SetSpeedInputBox"

 Me.SetSpeedInputBox.Size = New System.Drawing.Size(65, 20)

 Me.SetSpeedInputBox.TabIndex = 1

 Me.SetSpeedInputBox.Text = "00000"

 '

 'Label15

 '

 Me.Label15.AutoSize = True

 Me.Label15.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label15.Location = New System.Drawing.Point(89, 21)

 Me.Label15.MaximumSize = New System.Drawing.Size(74, 13)

 Me.Label15.MinimumSize = New System.Drawing.Size(74, 13)

 Me.Label15.Name = "Label15"

 Me.Label15.Size = New System.Drawing.Size(74, 13)

 Me.Label15.TabIndex = 3

 Me.Label15.Text = "On Cavitation:"

 '

 'ButtonSetSpeed

 '

 Me.ButtonSetSpeed.Location = New System.Drawing.Point(6, 118)

 Me.ButtonSetSpeed.MaximumSize = New System.Drawing.Size(75, 23)

 Me.ButtonSetSpeed.MinimumSize = New System.Drawing.Size(75, 23)

 Me.ButtonSetSpeed.Name = "ButtonSetSpeed"

245

 Me.ButtonSetSpeed.Size = New System.Drawing.Size(75, 23)

 Me.ButtonSetSpeed.TabIndex = 10

 Me.ButtonSetSpeed.Text = "Set"

 Me.ButtonSetSpeed.UseVisualStyleBackColor = True

 '

 'OnCavitationStopAndRestart

 '

 Me.OnCavitationStopAndRestart.AutoSize = True

 Me.OnCavitationStopAndRestart.Checked = True

 Me.OnCavitationStopAndRestart.Location = New System.Drawing.Point(169,

65)

 Me.OnCavitationStopAndRestart.MaximumSize = New

System.Drawing.Size(115, 17)

 Me.OnCavitationStopAndRestart.MinimumSize = New

System.Drawing.Size(115, 17)

 Me.OnCavitationStopAndRestart.Name = "OnCavitationStopAndRestart"

 Me.OnCavitationStopAndRestart.Size = New System.Drawing.Size(115, 17)

 Me.OnCavitationStopAndRestart.TabIndex = 6

 Me.OnCavitationStopAndRestart.TabStop = True

 Me.OnCavitationStopAndRestart.Text = "Stop + Restart"

 Me.OnCavitationStopAndRestart.UseVisualStyleBackColor = True

 '

 'OnCavitationStop

 '

 Me.OnCavitationStop.AutoSize = True

 Me.OnCavitationStop.Location = New System.Drawing.Point(169, 42)

 Me.OnCavitationStop.MaximumSize = New System.Drawing.Size(115, 17)

 Me.OnCavitationStop.MinimumSize = New System.Drawing.Size(115, 17)

 Me.OnCavitationStop.Name = "OnCavitationStop"

 Me.OnCavitationStop.Size = New System.Drawing.Size(115, 17)

 Me.OnCavitationStop.TabIndex = 5

 Me.OnCavitationStop.Text = "Stop"

 Me.OnCavitationStop.UseVisualStyleBackColor = True

 '

 'ButtonStopSpeed

 '

 Me.ButtonStopSpeed.Enabled = False

 Me.ButtonStopSpeed.Location = New System.Drawing.Point(215, 118)

 Me.ButtonStopSpeed.MaximumSize = New System.Drawing.Size(75, 23)

 Me.ButtonStopSpeed.MinimumSize = New System.Drawing.Size(75, 23)

 Me.ButtonStopSpeed.Name = "ButtonStopSpeed"

 Me.ButtonStopSpeed.Size = New System.Drawing.Size(75, 23)

 Me.ButtonStopSpeed.TabIndex = 12

 Me.ButtonStopSpeed.Text = "Stop"

 Me.ButtonStopSpeed.UseVisualStyleBackColor = True

 '

 'ButtonStartSpeed

 '

 Me.ButtonStartSpeed.Location = New System.Drawing.Point(134, 118)

 Me.ButtonStartSpeed.MaximumSize = New System.Drawing.Size(75, 23)

 Me.ButtonStartSpeed.MinimumSize = New System.Drawing.Size(75, 23)

 Me.ButtonStartSpeed.Name = "ButtonStartSpeed"

 Me.ButtonStartSpeed.Size = New System.Drawing.Size(75, 23)

 Me.ButtonStartSpeed.TabIndex = 11

 Me.ButtonStartSpeed.Text = "Start"

 Me.ButtonStartSpeed.UseVisualStyleBackColor = True

 '

 'OnCavitationContinue

 '

246

 Me.OnCavitationContinue.AutoSize = True

 Me.OnCavitationContinue.Location = New System.Drawing.Point(169, 19)

 Me.OnCavitationContinue.MaximumSize = New System.Drawing.Size(115, 17)

 Me.OnCavitationContinue.MinimumSize = New System.Drawing.Size(115, 17)

 Me.OnCavitationContinue.Name = "OnCavitationContinue"

 Me.OnCavitationContinue.Size = New System.Drawing.Size(115, 17)

 Me.OnCavitationContinue.TabIndex = 4

 Me.OnCavitationContinue.Text = "Continue"

 Me.OnCavitationContinue.UseVisualStyleBackColor = True

 '

 'GroupBox2

 '

 Me.GroupBox2.Controls.Add(Me.Label28)

 Me.GroupBox2.Controls.Add(Me.NextPulsePowerShowBox)

 Me.GroupBox2.Controls.Add(Me.ButtonSetLaser)

 Me.GroupBox2.Controls.Add(Me.Label26)

 Me.GroupBox2.Controls.Add(Me.EstimatedDurationShowBox)

 Me.GroupBox2.Controls.Add(Me.EstimatedDurationInputBox)

 Me.GroupBox2.Controls.Add(Me.Label23)

 Me.GroupBox2.Controls.Add(Me.LaserDelayShowBox)

 Me.GroupBox2.Controls.Add(Me.LaserDelayInputBox)

 Me.GroupBox2.Controls.Add(Me.FireLaserBox)

 Me.GroupBox2.Controls.Add(Me.ButtonFireLaser)

 Me.GroupBox2.Controls.Add(Me.ButtonSendLaserCommand)

 Me.GroupBox2.Controls.Add(Me.Label22)

 Me.GroupBox2.Controls.Add(Me.AutomaticPulsingFalse)

 Me.GroupBox2.Controls.Add(Me.Label21)

 Me.GroupBox2.Controls.Add(Me.LaserRxBox)

 Me.GroupBox2.Controls.Add(Me.AutomaticPulsingTrue)

 Me.GroupBox2.Location = New System.Drawing.Point(314, 72)

 Me.GroupBox2.MaximumSize = New System.Drawing.Size(296, 293)

 Me.GroupBox2.MinimumSize = New System.Drawing.Size(296, 293)

 Me.GroupBox2.Name = "GroupBox2"

 Me.GroupBox2.Size = New System.Drawing.Size(296, 293)

 Me.GroupBox2.TabIndex = 15

 Me.GroupBox2.TabStop = False

 Me.GroupBox2.Text = "Laser Controls"

 '

 'Label28

 '

 Me.Label28.AutoSize = True

 Me.Label28.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label28.Location = New System.Drawing.Point(73, 44)

 Me.Label28.MaximumSize = New System.Drawing.Size(40, 39)

 Me.Label28.MinimumSize = New System.Drawing.Size(40, 39)

 Me.Label28.Name = "Label28"

 Me.Label28.Size = New System.Drawing.Size(40, 39)

 Me.Label28.TabIndex = 4

 Me.Label28.Text = "Next Pulse Power:"

 '

 'NextPulsePowerShowBox

 '

 Me.NextPulsePowerShowBox.AutoSize = True

 Me.NextPulsePowerShowBox.BorderStyle =

System.Windows.Forms.BorderStyle.Fixed3D

 Me.NextPulsePowerShowBox.FlatStyle =

System.Windows.Forms.FlatStyle.Flat

 Me.NextPulsePowerShowBox.Location = New System.Drawing.Point(69, 91)

 Me.NextPulsePowerShowBox.MaximumSize = New System.Drawing.Size(65, 15)

247

 Me.NextPulsePowerShowBox.MinimumSize = New System.Drawing.Size(65, 15)

 Me.NextPulsePowerShowBox.Name = "NextPulsePowerShowBox"

 Me.NextPulsePowerShowBox.Size = New System.Drawing.Size(65, 15)

 Me.NextPulsePowerShowBox.TabIndex = 5

 Me.NextPulsePowerShowBox.Text = "000001100"

 '

 'ButtonSetLaser

 '

 Me.ButtonSetLaser.Location = New System.Drawing.Point(6, 86)

 Me.ButtonSetLaser.MaximumSize = New System.Drawing.Size(57, 23)

 Me.ButtonSetLaser.MinimumSize = New System.Drawing.Size(57, 23)

 Me.ButtonSetLaser.Name = "ButtonSetLaser"

 Me.ButtonSetLaser.Size = New System.Drawing.Size(57, 23)

 Me.ButtonSetLaser.TabIndex = 12

 Me.ButtonSetLaser.Text = "Set"

 Me.ButtonSetLaser.UseVisualStyleBackColor = True

 '

 'Label26

 '

 Me.Label26.AutoSize = True

 Me.Label26.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label26.Location = New System.Drawing.Point(137, 37)

 Me.Label26.MaximumSize = New System.Drawing.Size(56, 26)

 Me.Label26.MinimumSize = New System.Drawing.Size(56, 26)

 Me.Label26.Name = "Label26"

 Me.Label26.Size = New System.Drawing.Size(56, 26)

 Me.Label26.TabIndex = 6

 Me.Label26.Text = "Estimated Duration:"

 '

 'EstimatedDurationShowBox

 '

 Me.EstimatedDurationShowBox.AutoSize = True

 Me.EstimatedDurationShowBox.BorderStyle =

System.Windows.Forms.BorderStyle.Fixed3D

 Me.EstimatedDurationShowBox.FlatStyle =

System.Windows.Forms.FlatStyle.Flat

 Me.EstimatedDurationShowBox.Location = New System.Drawing.Point(140,

91)

 Me.EstimatedDurationShowBox.MaximumSize = New System.Drawing.Size(65,

15)

 Me.EstimatedDurationShowBox.MinimumSize = New System.Drawing.Size(65,

15)

 Me.EstimatedDurationShowBox.Name = "EstimatedDurationShowBox"

 Me.EstimatedDurationShowBox.Size = New System.Drawing.Size(65, 15)

 Me.EstimatedDurationShowBox.TabIndex = 8

 Me.EstimatedDurationShowBox.Text = "00000"

 '

 'EstimatedDurationInputBox

 '

 Me.EstimatedDurationInputBox.Location = New System.Drawing.Point(140,

65)

 Me.EstimatedDurationInputBox.MaximumSize = New System.Drawing.Size(65,

20)

 Me.EstimatedDurationInputBox.MaxLength = 9

 Me.EstimatedDurationInputBox.MinimumSize = New System.Drawing.Size(65,

20)

 Me.EstimatedDurationInputBox.Name = "EstimatedDurationInputBox"

 Me.EstimatedDurationInputBox.Size = New System.Drawing.Size(65, 20)

 Me.EstimatedDurationInputBox.TabIndex = 7

248

 Me.EstimatedDurationInputBox.Text = "00000"

 '

 'Label23

 '

 Me.Label23.AutoSize = True

 Me.Label23.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label23.Location = New System.Drawing.Point(218, 44)

 Me.Label23.MaximumSize = New System.Drawing.Size(37, 13)

 Me.Label23.MinimumSize = New System.Drawing.Size(37, 13)

 Me.Label23.Name = "Label23"

 Me.Label23.Size = New System.Drawing.Size(37, 13)

 Me.Label23.TabIndex = 9

 Me.Label23.Text = "Delay:"

 '

 'LaserDelayShowBox

 '

 Me.LaserDelayShowBox.AutoSize = True

 Me.LaserDelayShowBox.BorderStyle =

System.Windows.Forms.BorderStyle.Fixed3D

 Me.LaserDelayShowBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.LaserDelayShowBox.Location = New System.Drawing.Point(220, 91)

 Me.LaserDelayShowBox.MaximumSize = New System.Drawing.Size(65, 15)

 Me.LaserDelayShowBox.MinimumSize = New System.Drawing.Size(65, 15)

 Me.LaserDelayShowBox.Name = "LaserDelayShowBox"

 Me.LaserDelayShowBox.Size = New System.Drawing.Size(65, 15)

 Me.LaserDelayShowBox.TabIndex = 11

 Me.LaserDelayShowBox.Text = "00000"

 '

 'LaserDelayInputBox

 '

 Me.LaserDelayInputBox.Location = New System.Drawing.Point(220, 65)

 Me.LaserDelayInputBox.MaximumSize = New System.Drawing.Size(65, 20)

 Me.LaserDelayInputBox.MaxLength = 9

 Me.LaserDelayInputBox.MinimumSize = New System.Drawing.Size(65, 20)

 Me.LaserDelayInputBox.Name = "LaserDelayInputBox"

 Me.LaserDelayInputBox.Size = New System.Drawing.Size(65, 20)

 Me.LaserDelayInputBox.TabIndex = 10

 Me.LaserDelayInputBox.Text = "00000"

 '

 'FireLaserBox

 '

 Me.FireLaserBox.AutoSize = True

 Me.FireLaserBox.BackColor = System.Drawing.Color.Crimson

 Me.FireLaserBox.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D

 Me.FireLaserBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.FireLaserBox.Font = New System.Drawing.Font("Microsoft Sans Serif",

8.25!, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point,

CType(0, Byte))

 Me.FireLaserBox.ForeColor = System.Drawing.Color.Yellow

 Me.FireLaserBox.Location = New System.Drawing.Point(6, 44)

 Me.FireLaserBox.MaximumSize = New System.Drawing.Size(60, 30)

 Me.FireLaserBox.MinimumSize = New System.Drawing.Size(60, 30)

 Me.FireLaserBox.Name = "FireLaserBox"

 Me.FireLaserBox.Size = New System.Drawing.Size(60, 30)

 Me.FireLaserBox.TabIndex = 3

 Me.FireLaserBox.Text = "FIRE LASER!"

 Me.FireLaserBox.TextAlign =

System.Drawing.ContentAlignment.MiddleCenter

 '

249

 'ButtonFireLaser

 '

 Me.ButtonFireLaser.Location = New System.Drawing.Point(6, 118)

 Me.ButtonFireLaser.Name = "ButtonFireLaser"

 Me.ButtonFireLaser.Size = New System.Drawing.Size(128, 23)

 Me.ButtonFireLaser.TabIndex = 13

 Me.ButtonFireLaser.Text = "Fire Pulse..."

 Me.ButtonFireLaser.UseVisualStyleBackColor = True

 '

 'ButtonSendLaserCommand

 '

 Me.ButtonSendLaserCommand.Location = New System.Drawing.Point(140, 118)

 Me.ButtonSendLaserCommand.Name = "ButtonSendLaserCommand"

 Me.ButtonSendLaserCommand.Size = New System.Drawing.Size(150, 23)

 Me.ButtonSendLaserCommand.TabIndex = 14

 Me.ButtonSendLaserCommand.Text = "Send Command to Laser"

 Me.ButtonSendLaserCommand.UseVisualStyleBackColor = True

 '

 'Label22

 '

 Me.Label22.AutoSize = True

 Me.Label22.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label22.Location = New System.Drawing.Point(6, 21)

 Me.Label22.MaximumSize = New System.Drawing.Size(110, 13)

 Me.Label22.MinimumSize = New System.Drawing.Size(110, 13)

 Me.Label22.Name = "Label22"

 Me.Label22.Size = New System.Drawing.Size(110, 13)

 Me.Label22.TabIndex = 0

 Me.Label22.Text = "Automatic Pulsing:"

 '

 'AutomaticPulsingFalse

 '

 Me.AutomaticPulsingFalse.AutoSize = True

 Me.AutomaticPulsingFalse.Checked = True

 Me.AutomaticPulsingFalse.Location = New System.Drawing.Point(221, 19)

 Me.AutomaticPulsingFalse.MaximumSize = New System.Drawing.Size(39, 17)

 Me.AutomaticPulsingFalse.MinimumSize = New System.Drawing.Size(39, 17)

 Me.AutomaticPulsingFalse.Name = "AutomaticPulsingFalse"

 Me.AutomaticPulsingFalse.Size = New System.Drawing.Size(39, 17)

 Me.AutomaticPulsingFalse.TabIndex = 2

 Me.AutomaticPulsingFalse.TabStop = True

 Me.AutomaticPulsingFalse.Text = "No"

 Me.AutomaticPulsingFalse.UseVisualStyleBackColor = True

 '

 'Label21

 '

 Me.Label21.AutoSize = True

 Me.Label21.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label21.Location = New System.Drawing.Point(6, 150)

 Me.Label21.MaximumSize = New System.Drawing.Size(128, 13)

 Me.Label21.MinimumSize = New System.Drawing.Size(128, 13)

 Me.Label21.Name = "Label21"

 Me.Label21.Size = New System.Drawing.Size(128, 13)

 Me.Label21.TabIndex = 15

 Me.Label21.Text = "Received from Laser:"

 '

 'LaserRxBox

 '

 Me.LaserRxBox.AcceptsReturn = True

250

 Me.LaserRxBox.BackColor = System.Drawing.SystemColors.Window

 Me.LaserRxBox.Font = New System.Drawing.Font("Lucida Console", 9.0!,

System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0,

Byte))

 Me.LaserRxBox.Location = New System.Drawing.Point(6, 166)

 Me.LaserRxBox.MaximumSize = New System.Drawing.Size(284, 121)

 Me.LaserRxBox.MaxLength = 8192

 Me.LaserRxBox.MinimumSize = New System.Drawing.Size(284, 121)

 Me.LaserRxBox.Multiline = True

 Me.LaserRxBox.Name = "LaserRxBox"

 Me.LaserRxBox.ReadOnly = True

 Me.LaserRxBox.ScrollBars = System.Windows.Forms.ScrollBars.Vertical

 Me.LaserRxBox.Size = New System.Drawing.Size(284, 121)

 Me.LaserRxBox.TabIndex = 16

 Me.LaserRxBox.Text = "Text Received from the Laser: " &

Global.Microsoft.VisualBasic.ChrW(13) & Global.Microsoft.VisualBasic.ChrW(10) &

Global.Microsoft.VisualBasic.ChrW(13) & Global.Microsoft.VisualBasic.ChrW(10)

 '

 'AutomaticPulsingTrue

 '

 Me.AutomaticPulsingTrue.AutoSize = True

 Me.AutomaticPulsingTrue.Location = New System.Drawing.Point(140, 17)

 Me.AutomaticPulsingTrue.MaximumSize = New System.Drawing.Size(43, 17)

 Me.AutomaticPulsingTrue.MinimumSize = New System.Drawing.Size(43, 17)

 Me.AutomaticPulsingTrue.Name = "AutomaticPulsingTrue"

 Me.AutomaticPulsingTrue.Size = New System.Drawing.Size(43, 17)

 Me.AutomaticPulsingTrue.TabIndex = 1

 Me.AutomaticPulsingTrue.Text = "Yes"

 Me.AutomaticPulsingTrue.UseVisualStyleBackColor = True

 '

 'ButtonInsertComment

 '

 Me.ButtonInsertComment.Location = New System.Drawing.Point(314, 371)

 Me.ButtonInsertComment.MaximumSize = New System.Drawing.Size(134, 23)

 Me.ButtonInsertComment.MinimumSize = New System.Drawing.Size(134, 23)

 Me.ButtonInsertComment.Name = "ButtonInsertComment"

 Me.ButtonInsertComment.Size = New System.Drawing.Size(134, 23)

 Me.ButtonInsertComment.TabIndex = 18

 Me.ButtonInsertComment.Text = "Insert Comment"

 Me.ButtonInsertComment.UseVisualStyleBackColor = True

 '

 'ButtonEnd

 '

 Me.ButtonEnd.Location = New System.Drawing.Point(535, 371)

 Me.ButtonEnd.MaximumSize = New System.Drawing.Size(75, 23)

 Me.ButtonEnd.MinimumSize = New System.Drawing.Size(75, 23)

 Me.ButtonEnd.Name = "ButtonEnd"

 Me.ButtonEnd.Size = New System.Drawing.Size(75, 23)

 Me.ButtonEnd.TabIndex = 20

 Me.ButtonEnd.Text = "End"

 Me.ButtonEnd.UseVisualStyleBackColor = True

 '

 'ButtonHelp

 '

 Me.ButtonHelp.Location = New System.Drawing.Point(454, 371)

 Me.ButtonHelp.MaximumSize = New System.Drawing.Size(75, 23)

 Me.ButtonHelp.MinimumSize = New System.Drawing.Size(75, 23)

 Me.ButtonHelp.Name = "ButtonHelp"

 Me.ButtonHelp.Size = New System.Drawing.Size(75, 23)

251

 Me.ButtonHelp.TabIndex = 19

 Me.ButtonHelp.Text = "Help"

 Me.ButtonHelp.UseVisualStyleBackColor = True

 '

 'LogTrace

 '

 Me.LogTrace.AcceptsReturn = True

 Me.LogTrace.BackColor = System.Drawing.SystemColors.Window

 Me.LogTrace.Font = New System.Drawing.Font("Lucida Console", 9.0!,

System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0,

Byte))

 Me.LogTrace.Location = New System.Drawing.Point(12, 238)

 Me.LogTrace.MaximumSize = New System.Drawing.Size(296, 156)

 Me.LogTrace.MaxLength = 8192

 Me.LogTrace.MinimumSize = New System.Drawing.Size(296, 156)

 Me.LogTrace.Multiline = True

 Me.LogTrace.Name = "LogTrace"

 Me.LogTrace.ReadOnly = True

 Me.LogTrace.ScrollBars = System.Windows.Forms.ScrollBars.Vertical

 Me.LogTrace.Size = New System.Drawing.Size(296, 156)

 Me.LogTrace.TabIndex = 17

 Me.LogTrace.Text = "Output Log Follows: " &

Global.Microsoft.VisualBasic.ChrW(13) & Global.Microsoft.VisualBasic.ChrW(10) &

Global.Microsoft.VisualBasic.ChrW(13) & Global.Microsoft.VisualBasic.ChrW(10)

 '

 'Label20

 '

 Me.Label20.AutoSize = True

 Me.Label20.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.Label20.Location = New System.Drawing.Point(12, 222)

 Me.Label20.MaximumSize = New System.Drawing.Size(60, 13)

 Me.Label20.MinimumSize = New System.Drawing.Size(60, 13)

 Me.Label20.Name = "Label20"

 Me.Label20.Size = New System.Drawing.Size(60, 13)

 Me.Label20.TabIndex = 16

 Me.Label20.Text = "Output:"

 '

 'RunBox

 '

 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)

 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

 Me.ClientSize = New System.Drawing.Size(622, 410)

 Me.Controls.Add(Me.Label20)

 Me.Controls.Add(Me.LogTrace)

 Me.Controls.Add(Me.ButtonHelp)

 Me.Controls.Add(Me.ButtonInsertComment)

 Me.Controls.Add(Me.ButtonEnd)

 Me.Controls.Add(Me.GroupBox2)

 Me.Controls.Add(Me.GroupBox1)

 Me.Controls.Add(Me.Label13)

 Me.Controls.Add(Me.CurrentStatusBox)

 Me.Controls.Add(Me.Label11)

 Me.Controls.Add(Me.SpeedInRangeBox)

 Me.Controls.Add(Me.Label9)

 Me.Controls.Add(Me.CavitationBox)

 Me.Controls.Add(Me.Label7)

 Me.Controls.Add(Me.OutputFileBox)

 Me.Controls.Add(Me.Label5)

 Me.Controls.Add(Me.CurrentSpeedBox)

252

 Me.Controls.Add(Me.Label4)

 Me.Controls.Add(Me.Label3)

 Me.Controls.Add(Me.DateBox)

 Me.Controls.Add(Me.TimeBox)

 Me.ForeColor = System.Drawing.SystemColors.WindowText

 Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.Fixed3D

 Me.Icon = CType(resources.GetObject("$this.Icon"), System.Drawing.Icon)

 Me.MaximizeBox = False

 Me.MaximumSize = New System.Drawing.Size(632, 440)

 Me.MinimizeBox = False

 Me.MinimumSize = New System.Drawing.Size(632, 440)

 Me.Name = "RunBox"

 Me.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide

 Me.Text = "RUN RUN RUN!!!"

 Me.GroupBox1.ResumeLayout(False)

 Me.GroupBox1.PerformLayout()

 Me.GroupBox2.ResumeLayout(False)

 Me.GroupBox2.PerformLayout()

 Me.ResumeLayout(False)

 Me.PerformLayout()

 End Sub

 Friend WithEvents TimeBox As System.Windows.Forms.Label

 Friend WithEvents DateBox As System.Windows.Forms.Label

 Friend WithEvents Label3 As System.Windows.Forms.Label

 Friend WithEvents Label4 As System.Windows.Forms.Label

 Friend WithEvents Label5 As System.Windows.Forms.Label

 Friend WithEvents CurrentSpeedBox As System.Windows.Forms.Label

 Friend WithEvents Label7 As System.Windows.Forms.Label

 Friend WithEvents OutputFileBox As System.Windows.Forms.Label

 Friend WithEvents Label9 As System.Windows.Forms.Label

 Friend WithEvents CavitationBox As System.Windows.Forms.Label

 Friend WithEvents Label11 As System.Windows.Forms.Label

 Friend WithEvents SpeedInRangeBox As System.Windows.Forms.Label

 Friend WithEvents Label13 As System.Windows.Forms.Label

 Friend WithEvents CurrentStatusBox As System.Windows.Forms.Label

 Friend WithEvents GroupBox1 As System.Windows.Forms.GroupBox

 Friend WithEvents GroupBox2 As System.Windows.Forms.GroupBox

 Friend WithEvents OnCavitationContinue As System.Windows.Forms.RadioButton

 Friend WithEvents OnCavitationStop As System.Windows.Forms.RadioButton

 Friend WithEvents ButtonInsertComment As System.Windows.Forms.Button

 Friend WithEvents ButtonEnd As System.Windows.Forms.Button

 Friend WithEvents ButtonHelp As System.Windows.Forms.Button

 Friend WithEvents LogTrace As System.Windows.Forms.TextBox

 Friend WithEvents ButtonStopSpeed As System.Windows.Forms.Button

 Friend WithEvents ButtonStartSpeed As System.Windows.Forms.Button

 Friend WithEvents ButtonSetSpeed As System.Windows.Forms.Button

 Friend WithEvents OnCavitationStopAndRestart As

System.Windows.Forms.RadioButton

 Friend WithEvents AutomaticPulsingTrue As System.Windows.Forms.RadioButton

 Friend WithEvents SetSpeedInputBox As System.Windows.Forms.TextBox

 Friend WithEvents Label15 As System.Windows.Forms.Label

 Friend WithEvents Label17 As System.Windows.Forms.Label

 Friend WithEvents SetSpeedShowBox As System.Windows.Forms.Label

 Friend WithEvents Label18 As System.Windows.Forms.Label

 Friend WithEvents RestartDelayShowBox As System.Windows.Forms.Label

 Friend WithEvents RestartDelayInputBox As System.Windows.Forms.TextBox

 Friend WithEvents Label20 As System.Windows.Forms.Label

 Friend WithEvents Label22 As System.Windows.Forms.Label

253

 Friend WithEvents AutomaticPulsingFalse As System.Windows.Forms.RadioButton

 Friend WithEvents Label21 As System.Windows.Forms.Label

 Friend WithEvents LaserRxBox As System.Windows.Forms.TextBox

 Friend WithEvents ButtonFireLaser As System.Windows.Forms.Button

 Friend WithEvents ButtonSendLaserCommand As System.Windows.Forms.Button

 Friend WithEvents FireLaserBox As System.Windows.Forms.Label

 Friend WithEvents ButtonSetLaser As System.Windows.Forms.Button

 Friend WithEvents Label26 As System.Windows.Forms.Label

 Friend WithEvents EstimatedDurationShowBox As System.Windows.Forms.Label

 Friend WithEvents EstimatedDurationInputBox As System.Windows.Forms.TextBox

 Friend WithEvents Label23 As System.Windows.Forms.Label

 Friend WithEvents LaserDelayShowBox As System.Windows.Forms.Label

 Friend WithEvents LaserDelayInputBox As System.Windows.Forms.TextBox

 Friend WithEvents Label28 As System.Windows.Forms.Label

 Friend WithEvents NextPulsePowerShowBox As System.Windows.Forms.Label

End Class

B.12 RUNBOX.VB

Public Class RunBox

 'Code for the RunBox form -- The primary interface between the Code and the

User that is shown during normal operation

 Private Sub RunBox_FormClosing(ByVal sender As Object, ByVal e As

System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

 'Stuff to do when the form is closing

 If e.CloseReason <> CloseReason.None Then

 e.Cancel = True

 End If

 End Sub

 Private Sub RunBox_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 'Stuff to do when the form is loaded

 'set the defaults

 'set the title

 Me.Text = My.Application.Info.ProductName & " v. " &

My.Application.Info.Version.Major & "." & My.Application.Info.Version.Minor &

"." & My.Application.Info.Version.Build & "." &

My.Application.Info.Version.Revision

 'set default values for the speed control side

 OnCavitationStop.Checked = True

 RestartDelayInputBox.Text = "5"

 RestartDelayShowBox.Text = "5"

 SetSpeedInputBox.Text = "0"

 SetSpeedShowBox.Text = "0"

 'set default values for the laser control side

 NextPulsePowerShowBox.Text = "1"

254

 EstimatedDurationInputBox.Text = "0.00001"

 EstimatedDurationShowBox.Text = "0.00001"

 LaserDelayInputBox.Text = "2.5"

 LaserDelayShowBox.Text = "2.5"

 AutomaticPulsingFalse.Checked = True

 'send the values to the shared variables

 SyncLock Windowsill.RunBoxLock

 'load laser control values

 Windowsill.NextLaserPulsePower = Val(NextPulsePowerShowBox.Text)

 Windowsill.EstimatedLaserPulseDuration =

Val(EstimatedDurationShowBox.Text)

 Windowsill.DelayBetweenPulses = Val(LaserDelayShowBox.Text)

 Windowsill.AutomaticPulsing = AutomaticPulsingTrue.Checked

 'load speed control values

 Windowsill.RunButtonClicked = False

 Windowsill.DesiredSpeed = Val(SetSpeedShowBox.Text)

 Windowsill.RestartDelayTime = Val(RestartDelayShowBox.Text)

 If OnCavitationContinue.Checked = True Then

 'continue on cavitation

 Windowsill.CavitationAction = 0

 ElseIf OnCavitationStop.Checked = True Then

 'stop

 Windowsill.CavitationAction = 1

 ElseIf OnCavitationStopAndRestart.Checked = True Then

 'stop and restart

 Windowsill.CavitationAction = 2

 Else

 '?

 Windowsill.CavitationAction = 3

 End If

 End SyncLock

 End Sub

 Private Sub ButtonInsertComment_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles ButtonInsertComment.Click

 'User wants to Insert a Comment into the Logfile

 InsertComment.Show()

 InsertComment.BringToFront()

 End Sub

 Private Sub ButtonHelp_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ButtonHelp.Click

 'User thinks help may be available

 'HAHAHAHAHAHA

 HelpBox.Show()

 HelpBox.BringToFront()

 End Sub

255

 Private Sub ButtonEnd_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ButtonEnd.Click

 'User click on the END button

 Dim LocalExit As Boolean

 'make sure a shutdown is not already in progress

 SyncLock CentralClass.ProgramExitLock

 LocalExit = CentralClass.ExitProgram

 End SyncLock

 If LocalExit = False Then

 'make sure User wants to Exit

 If MsgBox("Do you really want to End the Program?",

MsgBoxStyle.YesNo, "End it all?") = MsgBoxResult.Yes Then

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 Lumberjack.SendToLog("Program Shutdown Initiated by User")

 End If

 End If

 Application.DoEvents()

 End Sub

 Private Sub ButtonFireLaser_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ButtonFireLaser.Click

 'fire a user-defined pulse from the laser

 Dim FormerState As Boolean

 'first disable automatic pulsing

 SyncLock Windowsill.RunBoxLock

 FormerState = Windowsill.AutomaticPulsing

 Windowsill.AutomaticPulsing = False

 Me.AutomaticPulsingFalse.Checked = True

 End SyncLock

 'log the event

 If FormerState = True Then

 Lumberjack.SendToLog("Disable Automatic Laser Pulsing")

 End If

 'then show the pulse box

 FirePulse.Show()

 FirePulse.BringToFront()

 Application.DoEvents()

 End Sub

 Private Sub ButtonSendLaserCommand_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ButtonSendLaserCommand.Click

 'Send a text command to the laser

 Dim FormerState As Boolean

 'first disable automatic pulsing

 SyncLock Windowsill.RunBoxLock

256

 FormerState = Windowsill.AutomaticPulsing

 Windowsill.AutomaticPulsing = False

 Me.AutomaticPulsingFalse.Checked = True

 End SyncLock

 'log the event

 If FormerState = True Then

 Lumberjack.SendToLog("Disable Automatic Laser Pulsing")

 End If

 'then show the command box

 SendLaserCommand.Show()

 SendLaserCommand.BringToFront()

 Application.DoEvents()

 End Sub

 Private Sub AutomaticPulsingFalse_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles AutomaticPulsingFalse.Click

 'immediately disabele automatic pulsing

 Dim FormerState As Boolean

 SyncLock Windowsill.RunBoxLock

 FormerState = Windowsill.AutomaticPulsing

 Windowsill.AutomaticPulsing = False

 Me.AutomaticPulsingFalse.Checked = True

 End SyncLock

 'log the event

 If FormerState = True Then

 Lumberjack.SendToLog("Disable Automatic Laser Pulsing")

 End If

 Application.DoEvents()

 End Sub

 Private Sub ButtonStartSpeed_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles ButtonStartSpeed.Click

 'user pushed start

 'alert the program

 SyncLock Windowsill.RunBoxLock

 Windowsill.RunButtonClicked = True

 End SyncLock

 'disable the start button

 Me.ButtonStartSpeed.Enabled = False

 'enable the stop button

 Me.ButtonStopSpeed.Enabled = True

 'log the event

 Lumberjack.SendToLog("Start Automatically Controlling the Speed")

 Application.DoEvents()

 End Sub

257

 Private Sub ButtonStopSpeed_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ButtonStopSpeed.Click

 'something pushed stop

 Dim OldStatus As Boolean

 Dim ShuttingDown As Boolean

 'alert the program

 SyncLock Windowsill.RunBoxLock

 OldStatus = Windowsill.RunButtonClicked

 Windowsill.RunButtonClicked = False

 End SyncLock

 'disable the stop button

 Me.ButtonStopSpeed.Enabled = False

 'enable the start button, unless shutting down

 Me.ButtonStartSpeed.Enabled = True

 'get shutdown status

 SyncLock CentralClass.ProgramExitLock

 ShuttingDown = CentralClass.ExitProgram

 End SyncLock

 If ShuttingDown = True Then

 'disable button if shutting down

 Me.ButtonStartSpeed.Enabled = False

 End If

 Application.DoEvents()

 'log the event, unless nothing changed

 If OldStatus = True Then

 Lumberjack.SendToLog("Stop Automatically Controlling the Speed")

 End If

 'stop autopulsing

 Call StopAutomaticPulsing()

 End Sub

 Friend Sub StopAutomaticPulsing()

 'call from main thread

 Call AutomaticPulsingFalse_Click(Me, EventArgs.Empty)

 End Sub

 Friend Sub PressStopButton()

 'call from main thread

 Call ButtonStopSpeed_Click(Me, EventArgs.Empty)

 End Sub

 Private Sub ButtonSetSpeed_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ButtonSetSpeed.Click

 'sets the speed control values

258

 Try

 Dim DesiredSpeedChanged As Boolean = False

 Dim NewDesiredSpeed As Double = 0

 Dim RestartDelayTimeChanged As Boolean = False

 Dim NewDelayTime As Double = 0

 Dim CavitationActionChanged As Boolean = False

 Dim NewCavitationAction As Long = 0

 Dim UpdateSpeed As Boolean = False

 Dim UpdateDelay As Boolean = False

 Dim DelayHolder As Double = -1

 'load delay time value

 Try

 DelayHolder = Val(RestartDelayInputBox.Text)

 UpdateDelay = True

 Catch BadDelayValue As OverflowException

 'bad value for new delay time

 UpdateDelay = False

 DelayHolder = -1

 MsgBox("Illegal Value for the new Delay Time" & vbNewLine &

RestartDelayInputBox.Text, , "Overflow")

 End Try

 'send the values to the shared variables

 If DelayHolder >= 0 Then

 NewDelayTime = DelayHolder

 'load speed control values

 Try

 NewDesiredSpeed = Val(SetSpeedInputBox.Text)

 UpdateSpeed = True

 Catch TooMuchSpeed As OverflowException

 'bad value for speed

 UpdateSpeed = False

 MsgBox("Illegal Value for the new Speed" & vbNewLine &

SetSpeedInputBox.Text, , "Overflow")

 End Try

 'cavitation action

 If OnCavitationContinue.Checked = True Then

 'continue on cavitation

 NewCavitationAction = 0

 ElseIf OnCavitationStop.Checked = True Then

 'stop

 NewCavitationAction = 1

 ElseIf OnCavitationStopAndRestart.Checked = True Then

 'stop and restart

 NewCavitationAction = 2

 Else

 '?

 NewCavitationAction = 3

 End If

 SyncLock Windowsill.RunBoxLock

 'commit changes

 If NewCavitationAction <> Windowsill.CavitationAction Then

 'action on cavitation changed

 Windowsill.CavitationAction = NewCavitationAction

 CavitationActionChanged = True

259

 End If

 If UpdateSpeed = True Then

 If NewDesiredSpeed <> Windowsill.DesiredSpeed Then

 'desired speed changed

 Windowsill.DesiredSpeed = NewDesiredSpeed

 DesiredSpeedChanged = True

 End If

 End If

 If UpdateDelay = True Then

 If NewDelayTime <> Windowsill.RestartDelayTime Then

 'restart delay changed

 Windowsill.RestartDelayTime = NewDelayTime

 RestartDelayTimeChanged = True

 End If

 End If

 End SyncLock

 Else

 Beep()

 MsgBox("Restart Delays must be >=0, no values changed")

 End If

 'now log any changes

 If DesiredSpeedChanged = True Then

 Lumberjack.SendToLog("Desired Control Speed changed to " &

Str(NewDesiredSpeed))

 End If

 If RestartDelayTimeChanged = True Then

 Lumberjack.SendToLog("Restart Delay Time changed to " &

Str(NewDelayTime))

 End If

 If CavitationActionChanged = True Then

 If NewCavitationAction = 0 Then

 Lumberjack.SendToLog("Action on cavitation changed to

Continue")

 ElseIf NewCavitationAction = 1 Then

 Lumberjack.SendToLog("Action on cavitation changed to

Stop")

 ElseIf NewCavitationAction = 2 Then

 Lumberjack.SendToLog("Action on cavitation changed to Stop

+ Restart")

 Else

 Lumberjack.SendToLog("Action on cavitation changed to

?????")

 End If

 End If

 Application.DoEvents()

 Catch TooBig As OverflowException

 'something overflowed

 Lumberjack.SendToLog("Recoverable Exception in " &

Thread.CurrentThread.Name & ": " & TooBig.Message & vbNewLine & "Details: " &

vbNewLine & TooBig.ToString)

 MsgBox("An Overflow Exception has occurred in " &

Thread.CurrentThread.Name & ", but execution will continue. Details: " &

vbNewLine & TooBig.ToString, , "OUCH!")

 Catch BigException As Exception

 'something got really screwed up

260

 Lumberjack.SendToLog("Exception in " & Thread.CurrentThread.Name &

": " & BigException.Message & vbNewLine & "Details: " & vbNewLine &

BigException.ToString)

 MsgBox("An exception has occurred in " & Thread.CurrentThread.Name

& " and the program will shut down." & vbNewLine & BigException.Message, ,

"OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End Try

 End Sub

 Private Sub ButtonSetLaser_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ButtonSetLaser.Click

 'sets the laser control values

 Try

 Dim ChangedPulseDuration As Boolean = False

 Dim NewPulseDuration As Double = 0

 Dim ChangedPulseDelay As Boolean = False

 Dim NewPulseDelay As Double = 0

 Dim ChangedAutoPulsing As Boolean = False

 Dim NewAutoPulsing As Boolean = False

 Dim DurationHolder As Double = -1

 Dim DelayHolder As Double = -1

 'test the values

 Try

 DurationHolder = Val(EstimatedDurationInputBox.Text)

 Catch TooMuchSpeed As OverflowException

 'bad value for duration

 MsgBox("Illegal Value for the new Estimated Duration:" &

vbNewLine & EstimatedDurationInputBox.Text, , "Overflow")

 DurationHolder = -1

 End Try

 Try

 DelayHolder = Val(LaserDelayInputBox.Text)

 Catch TooMuchSpeed As OverflowException

 'bad value for duration

 MsgBox("Illegal Value for the new Delay Between Pulses:" &

vbNewLine & LaserDelayInputBox.Text, , "Overflow")

 DelayHolder = -1

 End Try

 'sanity check

 If DurationHolder >= 0 Then

 'it works so far

 NewPulseDuration = DurationHolder

 If DelayHolder > 0 Then

 'both work

 NewPulseDelay = DelayHolder

 NewAutoPulsing = AutomaticPulsingTrue.Checked

 SyncLock Windowsill.RunBoxLock

 'load laser control values

261

 If Windowsill.EstimatedLaserPulseDuration <>

NewPulseDuration Then

 ChangedPulseDuration = True

 Windowsill.EstimatedLaserPulseDuration =

NewPulseDuration

 End If

 If Windowsill.DelayBetweenPulses <> NewPulseDelay Then

 ChangedPulseDelay = True

 Windowsill.DelayBetweenPulses = NewPulseDelay

 End If

 If Windowsill.AutomaticPulsing <> NewAutoPulsing Then

 ChangedAutoPulsing = True

 Windowsill.AutomaticPulsing = NewAutoPulsing

 End If

 End SyncLock

 Else

 MsgBox("Delay between laser pulses must be >0")

 End If

 Else

 MsgBox("Estimated Pulse Duration values must be >=0")

 End If

 'log the changes

 If ChangedPulseDuration = True Then

 Lumberjack.SendToLog("Estimated Laser Pulse Duration changed to

" & Str(NewPulseDuration))

 End If

 If ChangedPulseDelay = True Then

 Lumberjack.SendToLog("Changed Delay between Laser Pulses to " &

Str(NewPulseDelay))

 End If

 If ChangedAutoPulsing = True Then

 If NewAutoPulsing = True Then

 Lumberjack.SendToLog("Changed to Automatic Laser Pulsing")

 Else

 Lumberjack.SendToLog("Changed to Manual Laser Pulsing")

 End If

 End If

 Application.DoEvents()

 Catch TooBig As OverflowException

 'something overflowed

 Lumberjack.SendToLog("Recoverable Exception in " &

Thread.CurrentThread.Name & ": " & TooBig.Message & vbNewLine & "Details: " &

vbNewLine & TooBig.ToString)

 MsgBox("An Overflow Exception has occurred in " &

Thread.CurrentThread.Name & ", but execution will continue. Details: " &

vbNewLine & TooBig.ToString, , "OUCH!")

 Catch BigException As Exception

 'something got really screwed up

 Lumberjack.SendToLog("Exception in " & Thread.CurrentThread.Name &

": " & BigException.Message & vbNewLine & "Details: " & vbNewLine &

BigException.ToString)

 MsgBox("An exception has occurred in " & Thread.CurrentThread.Name

& " and the program will shut down." & vbNewLine & BigException.Message, ,

"OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

262

 End Try

 End Sub

End Class

B.13 SENDLASERCOMMAND.DESIGNER.VB

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Partial Class SendLaserCommand

 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.

 <System.Diagnostics.DebuggerNonUserCode()> _

 Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 Try

 If disposing AndAlso components IsNot Nothing Then

 components.Dispose()

 End If

 Finally

 MyBase.Dispose(disposing)

 End Try

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Dim resources As System.ComponentModel.ComponentResourceManager = New

System.ComponentModel.ComponentResourceManager(GetType(SendLaserCommand))

 Me.CommandText = New System.Windows.Forms.TextBox

 Me.CancelCommandButton = New System.Windows.Forms.Button

 Me.SendCommandButton = New System.Windows.Forms.Button

 Me.CommandNoteBox = New System.Windows.Forms.Label

 Me.NewlineButton = New System.Windows.Forms.Button

 Me.SuspendLayout()

 '

 'CommandText

 '

 Me.CommandText.AcceptsReturn = True

 Me.CommandText.Location = New System.Drawing.Point(12, 12)

 Me.CommandText.MaximumSize = New System.Drawing.Size(270, 206)

 Me.CommandText.MinimumSize = New System.Drawing.Size(270, 206)

 Me.CommandText.Multiline = True

 Me.CommandText.Name = "CommandText"

 Me.CommandText.ScrollBars = System.Windows.Forms.ScrollBars.Vertical

 Me.CommandText.Size = New System.Drawing.Size(270, 206)

 Me.CommandText.TabIndex = 0

 '

 'CancelCommandButton

 '

263

 Me.CancelCommandButton.Location = New System.Drawing.Point(207, 224)

 Me.CancelCommandButton.MaximumSize = New System.Drawing.Size(75, 23)

 Me.CancelCommandButton.MinimumSize = New System.Drawing.Size(75, 23)

 Me.CancelCommandButton.Name = "CancelCommandButton"

 Me.CancelCommandButton.Size = New System.Drawing.Size(75, 23)

 Me.CancelCommandButton.TabIndex = 2

 Me.CancelCommandButton.Text = "Cancel"

 Me.CancelCommandButton.UseVisualStyleBackColor = True

 '

 'SendCommandButton

 '

 Me.SendCommandButton.Location = New System.Drawing.Point(12, 224)

 Me.SendCommandButton.MaximumSize = New System.Drawing.Size(75, 23)

 Me.SendCommandButton.MinimumSize = New System.Drawing.Size(75, 23)

 Me.SendCommandButton.Name = "SendCommandButton"

 Me.SendCommandButton.Size = New System.Drawing.Size(75, 23)

 Me.SendCommandButton.TabIndex = 1

 Me.SendCommandButton.Text = "OK"

 Me.SendCommandButton.UseVisualStyleBackColor = True

 '

 'CommandNoteBox

 '

 Me.CommandNoteBox.AutoSize = True

 Me.CommandNoteBox.BorderStyle =

System.Windows.Forms.BorderStyle.Fixed3D

 Me.CommandNoteBox.FlatStyle = System.Windows.Forms.FlatStyle.Flat

 Me.CommandNoteBox.Location = New System.Drawing.Point(12, 250)

 Me.CommandNoteBox.MaximumSize = New System.Drawing.Size(270, 15)

 Me.CommandNoteBox.MinimumSize = New System.Drawing.Size(270, 15)

 Me.CommandNoteBox.Name = "CommandNoteBox"

 Me.CommandNoteBox.Size = New System.Drawing.Size(270, 15)

 Me.CommandNoteBox.TabIndex = 3

 '

 'NewlineButton

 '

 Me.NewlineButton.Location = New System.Drawing.Point(99, 224)

 Me.NewlineButton.MaximumSize = New System.Drawing.Size(96, 23)

 Me.NewlineButton.MinimumSize = New System.Drawing.Size(96, 23)

 Me.NewlineButton.Name = "NewlineButton"

 Me.NewlineButton.Size = New System.Drawing.Size(96, 23)

 Me.NewlineButton.TabIndex = 4

 Me.NewlineButton.Text = "Insert EOL"

 Me.NewlineButton.UseVisualStyleBackColor = True

 '

 'SendLaserCommand

 '

 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)

 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

 Me.ClientSize = New System.Drawing.Size(294, 268)

 Me.Controls.Add(Me.NewlineButton)

 Me.Controls.Add(Me.CommandNoteBox)

 Me.Controls.Add(Me.CommandText)

 Me.Controls.Add(Me.CancelCommandButton)

 Me.Controls.Add(Me.SendCommandButton)

 Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedDialog

 Me.Icon = CType(resources.GetObject("$this.Icon"), System.Drawing.Icon)

 Me.MaximizeBox = False

 Me.MaximumSize = New System.Drawing.Size(300, 300)

 Me.MinimizeBox = False

264

 Me.MinimumSize = New System.Drawing.Size(300, 300)

 Me.Name = "SendLaserCommand"

 Me.ShowIcon = False

 Me.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide

 Me.Text = "Send Command to Laser"

 Me.ResumeLayout(False)

 Me.PerformLayout()

 End Sub

 Friend WithEvents CommandText As System.Windows.Forms.TextBox

 Friend WithEvents CancelCommandButton As System.Windows.Forms.Button

 Friend WithEvents SendCommandButton As System.Windows.Forms.Button

 Friend WithEvents CommandNoteBox As System.Windows.Forms.Label

 Friend WithEvents NewlineButton As System.Windows.Forms.Button

End Class

B.14 SENDLASERCOMMAND.VB

Public Class SendLaserCommand

 'Code for the SendLaserCommand form -- the form that shows when the User

wishes to manually send a string of text to the laser

 Private Shared SendingCommand As Boolean = False

 Private Shared SendLockObj As New Object

 Private Sub SendLaserCommand_FormClosing(ByVal sender As Object, ByVal e As

System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

 'Stuff to do when the form is closing

 If e.CloseReason <> CloseReason.None Then

 e.Cancel = True

 End If

 End Sub

 Private Sub CancelCommandButton_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles CancelCommandButton.Click

 'cancel any action and close the box

 CommandText.Text = ""

 CommandNoteBox.Text = ""

 Me.Hide()

 End Sub

 Private Sub SendCommandButton_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles SendCommandButton.Click

 'send any text to the laser

265

 Dim TextToSend As String = ""

 Dim DatalineLockdown As Boolean = False

 Dim InUse As Boolean = False

 'only one send at a time

 SyncLock SendLockObj

 InUse = SendingCommand

 If SendingCommand = False Then

 'indicate that the thing is in use

 SendingCommand = True

 End If

 End SyncLock

 If InUse = False Then

 'we can proceed; there is not an overlapping attempt

 'get the command and clear the box

 TextToSend = CommandText.Text

 CommandText.Text = ""

 CommandNoteBox.Text = ""

 Me.Hide()

 SyncLock Windowsill.RunBoxLock

 'only xmit if the line is clear

 DatalineLockdown = Windowsill.LaserTXDataCritical

 If DatalineLockdown = False Then

 'copy the text

 Windowsill.CommandToLaser = Windowsill.CommandToLaser &

TextToSend

 End If

 End SyncLock

 'If the line was not clear, restore the box and show the note

 If DatalineLockdown = True Then

 'restore the box

 Me.Show()

 'show an explanatory note

 CommandNoteBox.Text = "Could Not Proceed, Try Again"

 'restore the command text

 CommandText.Text = TextToSend

 CommandText.Select(CommandText.TextLength, 0)

 CommandText.ScrollToCaret()

 Beep()

 Else

 'the line was open, log the transmission

 Lumberjack.SendToLog("The Following User-Issued Command Will Be

Sent To The Laser: " & TextToSend)

 End If

 'unblock the line

 SyncLock SendLockObj

 SendingCommand = False

 End SyncLock

 End If

 End Sub

266

 Private Sub NewlineButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles NewlineButton.Click

 'inserts a newline character specific to the laser at the caret

location

 Dim EOLString As String

 Dim EditString As String

 Dim CursorLocation As Integer

 Dim SelectedLength As Integer

 'get the newline sequence

 SyncLock CentralClass.FileOpsLock

 EOLString = CentralClass.LaserNewlineString

 End SyncLock

 SyncLock SendLockObj

 'only proceed if a send is not currently being issued

 'lock down the text box

 CommandText.ReadOnly = True

 'get the text

 EditString = CommandText.Text

 'get the caret or selection begin location and selection length

 CursorLocation = CommandText.SelectionStart

 SelectedLength = CommandText.SelectionLength

 'insert the eol sequence

 CommandText.Text = EditString.Insert(CursorLocation, EOLString)

 'shift the selection

 CommandText.SelectionStart = CursorLocation + 1

 CommandText.SelectionLength = SelectedLength

 'unlock the box

 CommandText.ReadOnly = False

 End SyncLock

 End Sub

End Class

B.15 STARTUPFORM.DESIGNER.VB

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Partial Class StartupForm

 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.

 <System.Diagnostics.DebuggerNonUserCode()> _

 Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 Try

 If disposing AndAlso components IsNot Nothing Then

 components.Dispose()

 End If

 Finally

 MyBase.Dispose(disposing)

 End Try

 End Sub

267

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Dim resources As System.ComponentModel.ComponentResourceManager = New

System.ComponentModel.ComponentResourceManager(GetType(StartupForm))

 Me.OKButton = New System.Windows.Forms.Button

 Me.ProgramHelpButton = New System.Windows.Forms.Button

 Me.ExitButton = New System.Windows.Forms.Button

 Me.FilenameBox = New System.Windows.Forms.TextBox

 Me.RadioButtonAppend = New System.Windows.Forms.RadioButton

 Me.RadioButtonReplace = New System.Windows.Forms.RadioButton

 Me.BrowseButton = New System.Windows.Forms.Button

 Me.Panel1 = New System.Windows.Forms.Panel

 Me.Label1 = New System.Windows.Forms.Label

 Me.Label2 = New System.Windows.Forms.Label

 Me.Label3 = New System.Windows.Forms.Label

 Me.ControllerPortComboBox = New System.Windows.Forms.ComboBox

 Me.LaserPortComboBox = New System.Windows.Forms.ComboBox

 Me.PortSpeedComboBox = New System.Windows.Forms.ComboBox

 Me.Label4 = New System.Windows.Forms.Label

 Me.TimingCheckBox = New System.Windows.Forms.CheckBox

 Me.Panel1.SuspendLayout()

 Me.SuspendLayout()

 '

 'OKButton

 '

 Me.OKButton.Location = New System.Drawing.Point(46, 256)

 Me.OKButton.MaximumSize = New System.Drawing.Size(128, 40)

 Me.OKButton.MinimumSize = New System.Drawing.Size(128, 40)

 Me.OKButton.Name = "OKButton"

 Me.OKButton.Size = New System.Drawing.Size(128, 40)

 Me.OKButton.TabIndex = 7

 Me.OKButton.Text = "OK"

 Me.OKButton.UseVisualStyleBackColor = True

 '

 'ProgramHelpButton

 '

 Me.ProgramHelpButton.Location = New System.Drawing.Point(211, 256)

 Me.ProgramHelpButton.MaximumSize = New System.Drawing.Size(128, 40)

 Me.ProgramHelpButton.MinimumSize = New System.Drawing.Size(128, 40)

 Me.ProgramHelpButton.Name = "ProgramHelpButton"

 Me.ProgramHelpButton.Size = New System.Drawing.Size(128, 40)

 Me.ProgramHelpButton.TabIndex = 8

 Me.ProgramHelpButton.Text = "Help"

 Me.ProgramHelpButton.UseVisualStyleBackColor = True

 '

 'ExitButton

 '

 Me.ExitButton.Location = New System.Drawing.Point(368, 256)

 Me.ExitButton.MaximumSize = New System.Drawing.Size(128, 40)

 Me.ExitButton.MinimumSize = New System.Drawing.Size(128, 40)

 Me.ExitButton.Name = "ExitButton"

 Me.ExitButton.Size = New System.Drawing.Size(128, 40)

268

 Me.ExitButton.TabIndex = 9

 Me.ExitButton.Text = "Exit"

 Me.ExitButton.UseVisualStyleBackColor = True

 '

 'FilenameBox

 '

 Me.FilenameBox.Location = New System.Drawing.Point(22, 95)

 Me.FilenameBox.MaximumSize = New System.Drawing.Size(406, 20)

 Me.FilenameBox.MinimumSize = New System.Drawing.Size(406, 20)

 Me.FilenameBox.Name = "FilenameBox"

 Me.FilenameBox.Size = New System.Drawing.Size(406, 20)

 Me.FilenameBox.TabIndex = 4

 Me.FilenameBox.Text = "output.txt"

 '

 'RadioButtonAppend

 '

 Me.RadioButtonAppend.AutoSize = True

 Me.RadioButtonAppend.Checked = True

 Me.RadioButtonAppend.Location = New System.Drawing.Point(194, 51)

 Me.RadioButtonAppend.MaximumSize = New System.Drawing.Size(62, 17)

 Me.RadioButtonAppend.MinimumSize = New System.Drawing.Size(62, 17)

 Me.RadioButtonAppend.Name = "RadioButtonAppend"

 Me.RadioButtonAppend.Size = New System.Drawing.Size(62, 17)

 Me.RadioButtonAppend.TabIndex = 2

 Me.RadioButtonAppend.TabStop = True

 Me.RadioButtonAppend.Text = "Append"

 Me.RadioButtonAppend.UseVisualStyleBackColor = True

 '

 'RadioButtonReplace

 '

 Me.RadioButtonReplace.AutoSize = True

 Me.RadioButtonReplace.Location = New System.Drawing.Point(363, 51)

 Me.RadioButtonReplace.MaximumSize = New System.Drawing.Size(65, 17)

 Me.RadioButtonReplace.MinimumSize = New System.Drawing.Size(65, 17)

 Me.RadioButtonReplace.Name = "RadioButtonReplace"

 Me.RadioButtonReplace.Size = New System.Drawing.Size(65, 17)

 Me.RadioButtonReplace.TabIndex = 3

 Me.RadioButtonReplace.Text = "Replace"

 Me.RadioButtonReplace.UseVisualStyleBackColor = True

 '

 'BrowseButton

 '

 Me.BrowseButton.Location = New System.Drawing.Point(22, 46)

 Me.BrowseButton.MaximumSize = New System.Drawing.Size(86, 26)

 Me.BrowseButton.MinimumSize = New System.Drawing.Size(86, 26)

 Me.BrowseButton.Name = "BrowseButton"

 Me.BrowseButton.Size = New System.Drawing.Size(86, 26)

 Me.BrowseButton.TabIndex = 1

 Me.BrowseButton.Text = "Browse..."

 Me.BrowseButton.UseVisualStyleBackColor = True

 '

 'Panel1

 '

 Me.Panel1.Controls.Add(Me.Label1)

 Me.Panel1.Controls.Add(Me.BrowseButton)

 Me.Panel1.Controls.Add(Me.RadioButtonReplace)

 Me.Panel1.Controls.Add(Me.RadioButtonAppend)

 Me.Panel1.Controls.Add(Me.FilenameBox)

 Me.Panel1.Location = New System.Drawing.Point(46, 97)

269

 Me.Panel1.MaximumSize = New System.Drawing.Size(450, 128)

 Me.Panel1.MinimumSize = New System.Drawing.Size(450, 128)

 Me.Panel1.Name = "Panel1"

 Me.Panel1.Size = New System.Drawing.Size(450, 128)

 Me.Panel1.TabIndex = 6

 '

 'Label1

 '

 Me.Label1.AutoSize = True

 Me.Label1.Font = New System.Drawing.Font("Microsoft Sans Serif", 16.0!,

System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0,

Byte))

 Me.Label1.Location = New System.Drawing.Point(181, 11)

 Me.Label1.MaximumSize = New System.Drawing.Size(89, 26)

 Me.Label1.MinimumSize = New System.Drawing.Size(89, 26)

 Me.Label1.Name = "Label1"

 Me.Label1.Size = New System.Drawing.Size(89, 26)

 Me.Label1.TabIndex = 0

 Me.Label1.Text = "Log File"

 '

 'Label2

 '

 Me.Label2.AutoSize = True

 Me.Label2.Font = New System.Drawing.Font("Microsoft Sans Serif", 12.0!,

System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0,

Byte))

 Me.Label2.Location = New System.Drawing.Point(42, 24)

 Me.Label2.MaximumSize = New System.Drawing.Size(128, 20)

 Me.Label2.MinimumSize = New System.Drawing.Size(120, 20)

 Me.Label2.Name = "Label2"

 Me.Label2.Size = New System.Drawing.Size(120, 20)

 Me.Label2.TabIndex = 0

 Me.Label2.Text = "Controller Port"

 '

 'Label3

 '

 Me.Label3.AutoSize = True

 Me.Label3.Font = New System.Drawing.Font("Microsoft Sans Serif", 12.0!,

System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0,

Byte))

 Me.Label3.Location = New System.Drawing.Point(207, 24)

 Me.Label3.MaximumSize = New System.Drawing.Size(82, 20)

 Me.Label3.MinimumSize = New System.Drawing.Size(82, 20)

 Me.Label3.Name = "Label3"

 Me.Label3.Size = New System.Drawing.Size(82, 20)

 Me.Label3.TabIndex = 2

 Me.Label3.Text = "Laser Port"

 '

 'ControllerPortComboBox

 '

 Me.ControllerPortComboBox.DropDownStyle =

System.Windows.Forms.ComboBoxStyle.DropDownList

 Me.ControllerPortComboBox.FormattingEnabled = True

 Me.ControllerPortComboBox.Items.AddRange(New Object() {"(none)"})

 Me.ControllerPortComboBox.Location = New System.Drawing.Point(46, 47)

 Me.ControllerPortComboBox.MaximumSize = New System.Drawing.Size(128, 0)

 Me.ControllerPortComboBox.MinimumSize = New System.Drawing.Size(128, 0)

 Me.ControllerPortComboBox.Name = "ControllerPortComboBox"

 Me.ControllerPortComboBox.Size = New System.Drawing.Size(128, 21)

270

 Me.ControllerPortComboBox.TabIndex = 1

 '

 'LaserPortComboBox

 '

 Me.LaserPortComboBox.DropDownStyle =

System.Windows.Forms.ComboBoxStyle.DropDownList

 Me.LaserPortComboBox.FormattingEnabled = True

 Me.LaserPortComboBox.Items.AddRange(New Object() {"(none)"})

 Me.LaserPortComboBox.Location = New System.Drawing.Point(211, 47)

 Me.LaserPortComboBox.MaximumSize = New System.Drawing.Size(128, 0)

 Me.LaserPortComboBox.MinimumSize = New System.Drawing.Size(128, 0)

 Me.LaserPortComboBox.Name = "LaserPortComboBox"

 Me.LaserPortComboBox.Size = New System.Drawing.Size(128, 21)

 Me.LaserPortComboBox.TabIndex = 3

 '

 'PortSpeedComboBox

 '

 Me.PortSpeedComboBox.DropDownStyle =

System.Windows.Forms.ComboBoxStyle.DropDownList

 Me.PortSpeedComboBox.FormattingEnabled = True

 Me.PortSpeedComboBox.Items.AddRange(New Object() {"19200"})

 Me.PortSpeedComboBox.Location = New System.Drawing.Point(368, 47)

 Me.PortSpeedComboBox.MaximumSize = New System.Drawing.Size(128, 0)

 Me.PortSpeedComboBox.MinimumSize = New System.Drawing.Size(128, 0)

 Me.PortSpeedComboBox.Name = "PortSpeedComboBox"

 Me.PortSpeedComboBox.Size = New System.Drawing.Size(128, 21)

 Me.PortSpeedComboBox.TabIndex = 5

 '

 'Label4

 '

 Me.Label4.AutoSize = True

 Me.Label4.Font = New System.Drawing.Font("Microsoft Sans Serif", 12.0!,

System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0,

Byte))

 Me.Label4.Location = New System.Drawing.Point(364, 24)

 Me.Label4.MaximumSize = New System.Drawing.Size(89, 20)

 Me.Label4.MinimumSize = New System.Drawing.Size(89, 20)

 Me.Label4.Name = "Label4"

 Me.Label4.Size = New System.Drawing.Size(89, 20)

 Me.Label4.TabIndex = 4

 Me.Label4.Text = "Port Speed"

 '

 'TimingCheckBox

 '

 Me.TimingCheckBox.AutoSize = True

 Me.TimingCheckBox.Checked = True

 Me.TimingCheckBox.CheckState = System.Windows.Forms.CheckState.Checked

 Me.TimingCheckBox.Location = New System.Drawing.Point(46, 74)

 Me.TimingCheckBox.Name = "TimingCheckBox"

 Me.TimingCheckBox.Size = New System.Drawing.Size(131, 17)

 Me.TimingCheckBox.TabIndex = 10

 Me.TimingCheckBox.Text = "Use Advanced Timing"

 Me.TimingCheckBox.UseVisualStyleBackColor = True

 '

 'StartupForm

 '

 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)

 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

 Me.ClientSize = New System.Drawing.Size(540, 347)

271

 Me.Controls.Add(Me.TimingCheckBox)

 Me.Controls.Add(Me.PortSpeedComboBox)

 Me.Controls.Add(Me.Label4)

 Me.Controls.Add(Me.LaserPortComboBox)

 Me.Controls.Add(Me.ControllerPortComboBox)

 Me.Controls.Add(Me.Label3)

 Me.Controls.Add(Me.Label2)

 Me.Controls.Add(Me.Panel1)

 Me.Controls.Add(Me.ExitButton)

 Me.Controls.Add(Me.ProgramHelpButton)

 Me.Controls.Add(Me.OKButton)

 Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.Fixed3D

 Me.Icon = CType(resources.GetObject("$this.Icon"), System.Drawing.Icon)

 Me.MaximizeBox = False

 Me.MaximumSize = New System.Drawing.Size(550, 376)

 Me.MinimumSize = New System.Drawing.Size(550, 376)

 Me.Name = "StartupForm"

 Me.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide

 Me.Text = "Speed Controller Port and Logfile"

 Me.Panel1.ResumeLayout(False)

 Me.Panel1.PerformLayout()

 Me.ResumeLayout(False)

 Me.PerformLayout()

 End Sub

 Friend WithEvents OKButton As System.Windows.Forms.Button

 Friend WithEvents ProgramHelpButton As System.Windows.Forms.Button

 Friend WithEvents ExitButton As System.Windows.Forms.Button

 Friend WithEvents FilenameBox As System.Windows.Forms.TextBox

 Friend WithEvents RadioButtonAppend As System.Windows.Forms.RadioButton

 Friend WithEvents RadioButtonReplace As System.Windows.Forms.RadioButton

 Friend WithEvents BrowseButton As System.Windows.Forms.Button

 Friend WithEvents Panel1 As System.Windows.Forms.Panel

 Friend WithEvents Label1 As System.Windows.Forms.Label

 Friend WithEvents Label2 As System.Windows.Forms.Label

 Friend WithEvents Label3 As System.Windows.Forms.Label

 Friend WithEvents ControllerPortComboBox As System.Windows.Forms.ComboBox

 Friend WithEvents LaserPortComboBox As System.Windows.Forms.ComboBox

 Friend WithEvents PortSpeedComboBox As System.Windows.Forms.ComboBox

 Friend WithEvents Label4 As System.Windows.Forms.Label

 Friend WithEvents TimingCheckBox As System.Windows.Forms.CheckBox

End Class

B.16 STARTUPFORM.VB

Public Class StartupForm

 'Code for the StartupForm -- the first form seen by the User on Program

Startup

 Private Sub BrowseButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles BrowseButton.Click

 'The User has clicked on the Browse button in the startup form

 'Shows a file dialog to save the output log file

 'Create the SaveFileDialog

272

 Dim LogFileDialog1 As New SaveFileDialog

 'Set the windows title

 LogFileDialog1.Title = "Output Log File"

 'Set the File Filters, defaulting to text

 LogFileDialog1.Filter = "Text File (*.txt)|*.txt|All Files (*.*)|*.*"

 LogFileDialog1.FilterIndex = 1

 'Set the initial directory to My Documents

 LogFileDialog1.InitialDirectory =

Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments)

 'Automatically add an extension matching the filter

 LogFileDialog1.DefaultExt = ""

 LogFileDialog1.AddExtension = True

 LogFileDialog1.CheckFileExists = False

 LogFileDialog1.OverwritePrompt = False

 LogFileDialog1.CheckPathExists = True

 'Show the dialog

 LogFileDialog1.ShowDialog()

 'Copy the filename to the filename textbox

 If LogFileDialog1.FileName <> "" Then

 FilenameBox.Text = LogFileDialog1.FileName

 End If

 Application.DoEvents()

 End Sub

 Private Sub ExitButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ExitButton.Click

 'Exit Button has been clicked, shut down

 'This should already be the case, but to be sure set the Exit flag

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 Me.Hide()

 End Sub

 Private Sub OKButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles OKButton.Click

 'OK Button has been clicked, do final checks and continue

 Dim CurrentSender As New System.Object

 Dim SecondArg As New

System.Windows.Forms.FormClosingEventArgs(CloseReason.None, False)

 'Set the Exit flag to False to continue execution

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = False

 End SyncLock

 StartupForm_FormClosing(CurrentSender, SecondArg)

 Me.Hide()

 End Sub

273

 Private Sub StartupForm_FormClosing(ByVal sender As Object, ByVal e As

System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

 'Stuff to run when the form is closing

 'loads the form's data into the main class

 SyncLock CentralClass.FileOpsLock

 'set the filename

 CentralClass.Filename = FilenameBox.Text

 'set the append/replace flag

 If RadioButtonAppend.Checked = True Then

 CentralClass.AppendFile = True

 ElseIf RadioButtonReplace.Checked = True Then

 CentralClass.AppendFile = False

 End If

 'set the port speed

 CentralClass.ComPortBaudRate =

CInt((Val(PortSpeedComboBox.SelectedItem)))

 'set the ports

 CentralClass.LaserPort = LaserPortComboBox.SelectedItem.ToString

 CentralClass.SpeedPort =

ControllerPortComboBox.SelectedItem.ToString

 'set the timing feature

 CentralClass.AdvancedTiming = TimingCheckBox.Checked

 End SyncLock

 End Sub

 Private Sub StartupForm_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 'Startup events for when the form is loaded

 'Default Selections in the combobox

 ControllerPortComboBox.SelectedIndex = 0

 LaserPortComboBox.SelectedIndex = 0

 PortSpeedComboBox.SelectedIndex = 0

 'default file and location

 FilenameBox.Text =

Environment.GetFolderPath(Environment.SpecialFolder.Desktop) & "\output.txt"

 End Sub

 Private Sub ProgramHelpButton_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles ProgramHelpButton.Click

 'The User wants help

 'HAHAHAHAHAHAHAHAHA

 'MsgBox("Yeah, right.")

 HelpBox.Show()

 End Sub

274

 Private Sub StartupForm_Shown(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Shown

 'Runs every time the form is shown, not just the first time it is

loaded

 'Set the Exit flag so that if the form unexpectedly closes the program

ends

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End Sub

End Class

B.17 STEVEDORE.VB

Option Explicit On

Option Strict On

Friend NotInheritable Class Stevedore

 'This class handles the primary serial port

 'It controls the speed

 'It also generates the signals for laser control

 'If the mode is correct, those signals will be sent to the primary serial

port

 'However, if two-port mode is being used, the signals will be sent

 'to the other port handler and will be dealt with there

 '

 '

 Friend Shared Col_Sanders As New Thread(AddressOf Stevedore.Colonel)

 '

 '

 'Serial Port 1 (Speed Port, possibly with Laser Control)

 Friend Shared WithEvents COMPort1 As New System.IO.Ports.SerialPort

 Friend Shared ClearToFireLaser As Boolean = False

 Friend Shared SpeedPortLock As New Object

 '

 '

 'Speed Control Port Reader Internal Statics

 Private Shared LastRXTimeTicksSaved As Long = 0

 Private Shared TempRXString As String = ""

 Private Shared NewlineRX As Boolean = False

 Private Shared MainPortReaderLock As New Object

 '

 '

 'Speed Control Port Writer Internal Statics

 Private Shared SavedTXString As String = ""

 Private Shared SavedWriteNumber As Integer = 0

 Private Shared MainPortWriterLock As New Object

 Private Shared Sub Colonel()

275

 'This is the single most important part of the program

 'It handles the speed controller serial port

 'It maintains the correct speed depending on program state

 'Issues the laser fire trigger

 'Determines the speed

 'And eats up CPU cycles like a fat guy on weed

 '

 'Individual pins on the serial port should be connected as follows:

 '

 'Laser Fire Signal: RTS

 'Laser Fire Ground: GND

 'Speed Controller Signal: DTR

 'Speed Controller Ground: GND

 'Speed Sensor Signal: DSR

 'Speed Sensor Ground: GND

 'Cavitation Sensor Signal: CD

 'Cavitation Sensor Ground: GND

 '

 'If the Laser Data Port is connected to the Speed Control Port (Program

Mode 1)

 'Connect the additional pins as follows:

 '

 'Data TO Laser Signal: TXD

 'Data TO Laser Ground: GND

 'Data FROM Laser Signal: RXD

 'Data FROM Laser Ground: GND

 '

 'For the Control Pins (NOT TXD, RXD, GND):

 'A POSITIVE Voltage is shown as the Boolean 'TRUE' in the SerialPort

Holding and Enable values

 'A NEGATIVE Voltage is, likewise, a Boolean 'FALSE'

 'The hardware default should be a NEGATIVE voltage on every pin

 '

 'The Advanced Timing Feature is a trick to try to get a more accurate

measurement of the speed

 'The speed is measured by counting changes in a control line on the

serial port

 'However, if the OS preempts the measurement for a long period, some of

those changes might be missed

 'And the speed would therefore get an artificially low measurement

 'So, enabling the Advanced Timing Feature looks for overly large chunks

of missing time

 'The chunks must be more than twice the average loop duration, and

larger than the period for a half-cycle for the speed

 'If it finds such a timeperiod, it will remove that period from the

speed calculations (and consider it a sort of 'dead time')

 'It will replace that long time with the time it takes for an average

Main Loop to execute

 'Declarations

 Dim LocalExecutionStage As Long = 0

 Dim ContinueExecution As Boolean = True

 Dim LocalTXString As String = ""

 Dim LocalRXString As String = ""

 Dim LastTime As Long = 0

 Dim Tock As Long = 0

 Dim Freq As Long = 0

276

 Dim LastTimeCheckedRead As Long = 0

 Dim LastTimeCheckedWrite As Long = 0

 Dim LastTimeUpdated As Long = 0

 Dim SendData As Boolean = False

 Dim TimeBetweenReads As Long = 0

 Dim TimeBetweenWriteChecks As Long = 0

 Dim TimeBetweenUpdates As Long = 0

 Dim Proceed As Boolean = False

 Dim LocalPortName As String = ""

 Dim LocalPortSpeed As Integer = 0

 Dim LocalPortDataBits As Integer = 0

 Dim LocalPortStopBits As System.IO.Ports.StopBits =

System.IO.Ports.StopBits.One

 Dim LocalPortFlowControl As System.IO.Ports.Handshake =

System.IO.Ports.Handshake.None

 Dim LocalPortEncoding As System.Text.Encoding =

System.Text.Encoding.UTF8

 Dim LocalPortOpen As Boolean = False

 Dim PortUseString As String = ""

 Dim LocalProgramMode As Long = 0

 Dim SpeedPulsesUp As Double = 0

 Dim SpeedPulsesDown As Double = 0

 Dim CalculatedSpeed As Double = 0

 Dim TargetSpeed As Double = 0

 Dim SpeedError As Double = 0.02

 Dim TargetSpeedAcquired As Boolean = False

 Dim TargetSpeedAcquiredDelayTime As Long = 0

 Dim TargetSpeedAcquiredCounterTocks As Long = 0

 Dim CavitationDetected As Boolean = False

 Dim CavitationDetectedPrevious As Boolean = False

 Dim LocalCavitationAction As Long = 1

 Dim FiredLaser As Boolean = False

 Dim NextLaserPower As Double = 0

 Dim SpeedRestartTimeLeft As Double = 0

 Dim SpeedRestartStatus As Long = 0

 Dim AutoPulsing As Boolean = False

 Dim StopAutopulsing As Boolean = False

 Dim TimeBetweenPulses As Double = 100

 Dim PulseTimer As Long = 0

 Dim StopTimeoutTicks As Long = 100000000

 Dim TimeoutBeginTicks As Long = 0

 Dim CavitationPinPositive As Boolean = False

 Dim CavitationPinPositivePrevious As Boolean = False

 Dim CavitationStartTime As Long = 0

 Dim CavitationTimeoutTicks As Long = 1000000

 Dim CavitationTimeoutTocks As Long = 0

 Dim SpeedDetectorPinPositive As Boolean = False

 Dim SpeedDetectorPinPositivePrevious As Boolean = False

 Dim HalfLifeTicks As Long = 2500000

 Dim DecayConstant As Double = -0.1

 Dim SpeedLambda As Double = 0

 Dim RemainingFraction As Double = 1

 Dim TotalTimeTocks As Double = 0

 Dim MeasuredOutputPinPositiveFraction As Double = 0

 Dim PositiveTimeTocks As Double = 0

 Dim SpeedControlPinPositive As Boolean = False

 Dim LaserFirePinPositive As Boolean = False

 Dim LocalRunButtonClicked As Boolean = False

 Dim LocalRestartDelayTime As Double = 1

277

 Dim FormerRestartStatus As Long = 0

 Dim DesiredSpeedPinPositiveFraction As Double = 0

 Dim StopSpeedValue As Double = 0.1

 Dim LastRecordedSpeed As Double = -100

 Dim LastRecordedSpeedTime As Long = 0

 Dim MaxTimeBetweenSpeedRecordingTicks As Long = 100000000

 Dim MaxDeltaSpeedRecording As Double = 5

 Dim SpeedDeltaFraction As Double = 0

 Dim LaserFireStage As Integer = 0

 Dim LocalFireManualPulse As Boolean = False

 Dim NextLaserString As String = ""

 Dim LaserCommandClearanceTimeTocks As Long = 0

 Dim LocalPulseDuration As Double = 0

 Dim LastLaserPulseTimeTocks As Long = 0

 Dim FireNumber As Long = 0

 Dim AutoPulseWaitCounter As Long = 0

 Dim LaserPowerLimit As Double = 100

 Dim LaserSequenceTimeout As Long = 120

 Dim PulseSequenceTimer As Long = 0

 Dim SpinnerStopTimeoutCounter As Long = 0

 Dim LaserEOL As String = ""

 Dim PowerCommand As String = "CAL="

 Dim CommandSeparation As Long = 3500000

 Dim CommandSeparationTimer As Long = 0

 Dim PulseReps As Integer = 0

 Dim MaxPulseReps As Integer = 3

 Dim LaserInitComplete As Boolean = True

 Dim AdvancedTimingFeature As Boolean = False

 Dim UsedAdvancedTiming As Boolean = False

 Dim LoopStartTocks As Long = 0

 Dim LoopEndTocks As Long = 0

 Dim DeltaTocks As Long = 0

 Dim AdvancedDeltaTocks As Long = 0

 Dim LiveTocks As Long = 0

 Dim AllTocks As Long = 0

 Dim RecentTocks As Double = 0

 Dim RecentLoops As Double = 0

 Dim RecentDecayFactor As Double = 0

 Dim MaxDetectableSpeedHalfLife As Double = 1

 Dim RemainingLiveFraction As Double = 0

 Dim LoggedLiveTocks As Long = 0

 Dim LoggedTotalTocks As Long = 0

 Dim RestartDelayTimerTocks As Long = 0

 Dim SpeedZeroCutoff As Double = 0.001

 Dim TotalLoops As Long = 0

 Dim AdvancedTimingCounts As Long = 0

 Dim SpeedDeltaCoefficient As Double = 0.0025 'change rate, pin positive

fraction * seconds / rotation - change

 Dim SpeedDeltaLimiter As Double = 2.0 'max change rate, pin positive

fraction / second

 Dim Look_Ahead_Time As Double = 0.5

 Dim LookAheadTocks As Long

 Dim Regression_Delta As Double

 Dim Regression_xbar As Double

278

 Dim Regression_ybar As Double

 Dim Regression_s_xx As Double

 Dim Regression_s_xy As Double

 Dim Regression_s_yy As Double

 Dim Regression_Beta0 As Double

 Dim Regression_Beta1 As Double

 Dim Regression_Counter As Integer = 0

 Dim Regression_nmax As Integer = 5

 Dim Regression_x_Tocks() As Long

 Dim Regression_x() As Double

 Dim Regression_y() As Double

 Dim PredictedSpeed As Double = 0

 Dim DeltaSpeed As Double = 0

 Dim CrossoverSpeed As Double = 8

 Dim JumpCount As Long = 0

 Dim JumpSlope As Double = 2500

 Dim JumpSlopeTock As Double = 0

 Dim LastJumpTock As Long = 0

 Dim TimeBetweenJumps As Double = 1.0

 Dim TocksBetweenJumps As Long = 0

 Dim JumpValue As Double = 0.0000025

 Dim RC As Double = 0 'Resistor x Capacitor, 1/s, set later on

 Dim Capacitor As Double = 0

 Dim PinDeviation As Double = 0

 Dim SpeedOverride As Boolean = False

 Dim FastResume As Double = 0.75 'the fraction of the initial Capacitor

value to use when resuming in pulse sequences

 Try

 'Startup Routine

 Thread.CurrentThread.Name = "Kernel_Sanders"

 'get the program/port mode

 SyncLock Longshoreman.LaserPortLock

 LocalProgramMode = Longshoreman.LaserControlMode

 End SyncLock

 'set the port use string

 If LocalProgramMode = 1 Then

 'shared laser and speed control port

 PortUseString = "Speed Controller/Laser Port"

 Else

 'port only used for speed control

 PortUseString = "Speed Controller Port"

 End If

 'get advanced timing features and laser EOL

 SyncLock CentralClass.FileOpsLock

 AdvancedTimingFeature = CentralClass.AdvancedTiming

 LaserEOL = CentralClass.LaserNewlineString

 End SyncLock

 'set variable defaults and check for the performance counter

 ContinueExecution = True

279

 If QueryPerformanceCounter(Tock) = 0 Then

 ContinueExecution = False

 MsgBox("Find a computer with a performance timer.")

 'No performance counter, can't run

 'log the result and set the shutdown flag

 Lumberjack.SendToLog("Computer does not have a performance

timer. Execution cannot continue, shutting down the Program")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 'get the performance counter's frequency (per second)

 QueryPerformanceFrequency(Freq)

 'Set the Target Speed Acquired Countdown, default is one second in

tocks

 TargetSpeedAcquiredDelayTime = Freq * (1)

 'set early values

 If ContinueExecution = True Then

 QueryPerformanceCounter(LastTimeCheckedRead)

 QueryPerformanceCounter(LastTimeCheckedWrite)

 'set the RC-time constant to match the experimental setup

 RC = 150000 * (0.0000047 + 0.00001)

 'Capacitor expresses the stored fraction from 0 to 1 estimated

to exist in the electronics

 Capacitor = 0

 'set time between reads to 1/50 second

 TimeBetweenReads = CLng(Freq / 50)

 'set update frequency to 30/sec

 TimeBetweenUpdates = CLng(Freq / 30)

 'set write check frequency to 60/sec

 TimeBetweenWriteChecks = CLng(Freq / 60)

 'set the decay value in units of 1/tocks (Tocks, NOT Ticks; 1

Tock=1/Freq seconds)

 DecayConstant = -(Math.Log(2) / (HalfLifeTicks * Freq /

10000000))

 'set the conversion factor

 'the divide by two is because it will be used to average the

speed from two different sources

 'the sources are summed up then multiplied by the conversion

factor

 SpeedLambda = (-Freq) * DecayConstant / 2

 'the speed is determined by taking the rate of pulses coming in

and 'smearing' them out

 'using an exponential decay scheme

 'set the cavitation detection timeout period

 CavitationTimeoutTocks = CLng(CavitationTimeoutTicks * Freq /

10000000)

 'amount of time to look ahead and predict the speed

 LookAheadTocks = CLng(Look_Ahead_Time * Freq)

 'set the critical jump slope

 JumpSlopeTock = JumpSlope / Freq

 'set the minimum time between jumps

 TocksBetweenJumps = CLng(TimeBetweenJumps * Freq)

 'determine the delta for use in the Deming Regression

computation

 'Deming Regression is a linear least-squares technique to fit

data to a line and uses the following relationships:

280

 '

 ' y ~ b0 + b1 * x

 '

 ' xbar = (1/n) * SUM{ x_i }

 '

 ' ybar = (1/n) * SUM{ y_i }

 '

 ' s_xx = (1/[n-1]) * SUM{ (x_i - xbar)^2 }

 '

 ' s_yy = (1/[n-1]) * SUM{ (y_i - ybar)^2 }

 '

 ' s_xy = (1/[n-1]) * SUM{ (x_i - xbar) * (y_i - ybar) }

 '

 ' d = sigma_y^2 / sigma_x^2 --> delta uses the error in the

x and y samples themselves, not the variances of the sets of x and y points

 '

 ' beta1 = (s_yy - [d * s_xx] + SQRT{ (s_yy - [d * s_xx])^2 +

(4 * d * s_xy^2) }) / (2 * s_xy)

 ' which is a solution to

 ' -s_xy * beta1^2 + (s_yy - d * s_xx) * beta1 + d * s_xy = 0

 '

 ' beta0 = ybar - (beta1 * xbar)

 '

 'for now, use delta=1 (orthogonal regression) (delta is d

above)

 Regression_Delta = 1

 'the delta is defined as d = variance_y / variance_x

 'where the variance is based on the error in the sample itself

 'using the error propagation formula, the delta here would be

expressed as

 '

 ' d = Speed^2 * DecayConstant^2 * exp[2 * DecayConstant * {Avg.

Loop Tocks}] / (1 - exp[2 * DecayConstant * {Avg. Loop Tocks}])

 '

 'which is not only dependent on speed, but also tends to

produce results on the order of 2E-12

 'if delta --> infinity, then the Deming Regression becomes

standard OLS regression and beta = cov(x,y) / var(x)

 'where the variance and covariance are determined from the

recorded data set undergoing regression analysis

 'if delta --> 0, then beta = var(y) / cov(x,y)

 'An earlier attempt used a dummy loop to estimate loop time and

a speed of 1, and that earlier code is commented out below:

 '

 '

 '

 'QueryPerformanceCounter(Tock)

 'LastTime = Tock

 ''do a few things in a loop to simulate the real loop; the next

few lines through the Do loop are deliberate junk

 'RecentDecayFactor = -10

 'TotalLoops = 0

 'Do

 ' TotalLoops += 1

 ' SyncLock Stevedore.SpeedPortLock

 ' 'just because it eats up a few cycles;

 ' RecentDecayFactor = RecentDecayFactor * Math.Exp(-3 *

Math.Log(4) + Math.Log(1.2)) + 3.14

281

 ' End SyncLock

 ' QueryPerformanceCounter(Tock)

 ' Application.DoEvents()

 'Loop While TotalLoops < 3

 'TotalLoops = 0

 'If Tock - LastTime <> 0 Then

 ' Regression_Delta = (DecayConstant ^ 2) * Math.Exp(2 *

DecayConstant * (Tock - LastTime)) / (1 - Math.Exp(2 * DecayConstant * (Tock -

LastTime)))

 ' Lumberjack.SendToLog("Using a Deming Variance Ratio of " &

Regression_Delta.ToString & "and a loop time estimated at " & Str(Tock -

LastTime) & " Tocks")

 'Else

 ' 'something won't work, exit

 ' Lumberjack.SendToLog("Something Went Wrong with the Deming

Variance Ratio Calculation")

 ' SyncLock CentralClass.ProgramExitLock

 ' CentralClass.ExitProgram = True

 ' End SyncLock

 'End If

 End If

 'set the array sizes for the Deming Regression routine

 ReDim Regression_x_Tocks(Regression_nmax)

 ReDim Regression_x(Regression_nmax)

 ReDim Regression_y(Regression_nmax)

 For Regression_Counter = 0 To Regression_nmax

 Regression_x_Tocks(Regression_Counter) = 0

 Regression_x(Regression_Counter) = 0

 Regression_y(Regression_Counter) = 0

 Next

 'wait for the right time

 Proceed = False

 Do

 'wait for the runbox to finish loading

 SyncLock Windowsill.RunBoxLock

 If Windowsill.RunBoxReady = True Then

 'ready to proceed

 Proceed = True

 End If

 End SyncLock

 'check for an exit program signal

 SyncLock CentralClass.ProgramExitLock

 If CentralClass.ExitProgram = True Then

 'exiting program

 Proceed = True

 ContinueExecution = False

 End If

 End SyncLock

 Thread.Sleep(55)

 Application.DoEvents()

 Loop While Proceed = False

 Thread.Sleep(200)

 Application.DoEvents()

 'then open the serial port

 'get port settings and try to open the port

282

 SyncLock CentralClass.FileOpsLock

 LocalPortName = CentralClass.SpeedPort

 LocalPortSpeed = CentralClass.ComPortBaudRate

 LocalPortDataBits = CentralClass.ComPortDataBits

 LocalPortStopBits = CentralClass.ComPortStopBits

 LocalPortFlowControl = CentralClass.ComPortFlowControl

 LocalPortEncoding = CentralClass.ComPortEncoding

 End SyncLock

 Proceed = False

 'open the port

 Do

 Try

 'log it

 Lumberjack.SendToLog("Attempting to open the " &

PortUseString & " (" & LocalPortName & ") with the following settings: " &

LocalPortSpeed.ToString & " baud, " & LocalPortDataBits.ToString & " data bits,

" & LocalPortStopBits.ToString & " stop bits, flow control=" &

LocalPortFlowControl.ToString & ", and " & LocalPortEncoding.ToString & "

Encoding.")

 'set up and open the port

 SyncLock Stevedore.SpeedPortLock

 Stevedore.COMPort1.PortName = LocalPortName

 Stevedore.COMPort1.BaudRate = LocalPortSpeed

 Stevedore.COMPort1.DataBits = LocalPortDataBits

 Stevedore.COMPort1.StopBits = LocalPortStopBits

 Stevedore.COMPort1.Handshake = LocalPortFlowControl

 Stevedore.COMPort1.Encoding = LocalPortEncoding

 'set the read and write buffer size in bytes

 Stevedore.COMPort1.ReadBufferSize = 16384

 Stevedore.COMPort1.WriteBufferSize = 16384

 'open the port

 Stevedore.COMPort1.Open()

 LocalPortOpen = Stevedore.COMPort1.IsOpen

 End SyncLock

 'log the results

 If LocalPortOpen = True Then

 'success

 Lumberjack.SendToLog("Success in Opening the " &

PortUseString & " (" & LocalPortName & ")")

 'set the laser pulse and speed pins low

 SyncLock Stevedore.SpeedPortLock

 Stevedore.COMPort1.DtrEnable = False

 Stevedore.COMPort1.RtsEnable = False

 End SyncLock

 'proceed with the program

 Proceed = True

 Else

 'some failure without an exception getting caught

 Lumberjack.SendToLog("Failure in Opening the " &

PortUseString & " (" & LocalPortName & ")")

 'see if user wants to try again

 If MsgBox("Failure in attempt to open the " &

PortUseString & " (" & LocalPortName & ")" & vbNewLine & "Retry?",

MsgBoxStyle.YesNo, "Port Problem") = MsgBoxResult.Yes Then

 'user wants to retry

 Lumberjack.SendToLog("Will retry opening the " &

PortUseString)

283

 Else

 'user wants to abort

 Proceed = True

 Lumberjack.SendToLog("Abort opening " &

PortUseString & ", ending program")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 End If

 Catch SerialException As Exception

 'it didn't go

 Lumberjack.SendToLog("Exception in attempt to open the " &

PortUseString & " (" & LocalPortName & ")" & ": " & vbNewLine &

SerialException.Message)

 If MsgBox("Exception in attempt to open the " &

PortUseString & " (" & LocalPortName & ")" & ": " & vbNewLine &

SerialException.Message & vbNewLine & "Retry?", MsgBoxStyle.YesNo, "Laser Port

Problem") = MsgBoxResult.Yes Then

 'user wants to retry

 Lumberjack.SendToLog("Will retry opening the " &

PortUseString)

 Else

 'user wants to abort

 Proceed = True

 Lumberjack.SendToLog("Abort opening " & PortUseString &

", ending program")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 End Try

 'Check to see if the program should exit

 SyncLock CentralClass.ProgramExitLock

 If CentralClass.ExitProgram = True Then

 Proceed = True

 ContinueExecution = False

 End If

 End SyncLock

 Loop While Proceed = False

 'signal that the program is ready

 SyncLock Windowsill.RunBoxLock

 If ContinueExecution = True Then

 Windowsill.SpeedControlReady = True

 'signal available laser port if in the correct mode

 If (LocalProgramMode = 0) Or (LocalProgramMode = 1) Then

 'in a mode for full control by this thread

 Windowsill.LaserPortReady = True

 End If

 End If

 End SyncLock

 'Main Loop follows

 'It is the whole point of the program

284

 'check for an exit condition

 SyncLock CentralClass.ProgramExitLock

 ContinueExecution = Not CentralClass.ExitProgram

 End SyncLock

 If ContinueExecution = True Then

 'start of main loop in tocks

 QueryPerformanceCounter(LoopStartTocks)

 End If

 Do While (ContinueExecution = True)

 'This is the main loop of the program

 'It executes continuously while the program is in execution

mode; it does not sleep

 'It monitors the speed and cavitation

 'It controls the speed and laser pulses

 'It handles RXD on the main serial port

 'And TXD as well if the laser is on it

 TotalLoops += 1

 'Clock (using Win32 Performance Counters)

 LastTime = Tock

 QueryPerformanceCounter(Tock)

 DeltaTocks = Tock - LastTime

 'advanced timing calculations here

 If AdvancedTimingFeature = True Then

 'calculate advanced timing if necessary

 If CalculatedSpeed > (1.0R / CDbl(Freq)) Then

 'nonzero speed, can proceed

 'using 1/freq above is to prevent overflows

 If (DeltaTocks > (2L * (Tock - LoopStartTocks) /

TotalLoops)) And (DeltaTocks > CLng((0.75R) * Freq / CalculatedSpeed)) Then

 'only use advanced calculation if there appears to

be a chunk of time missing; i.e., the OS took over for a bit

 'and only if it might have wiped out speed pulses;

 'the missing chunk of time must be greater than

0.75 times the pulse period

 'and must also be greater than twice the average

loop time

 '(a pulse can be wiped out at ~1/2 of the pulse

period, but is somewhat unlikely)

 'If so, the total elapsed time will be replaced by

the average loop time

 AdvancedDeltaTocks = CLng((Tock - LoopStartTocks) /

TotalLoops)

 AdvancedTimingCounts += 1

 'if not already used, mark the use of advanced

timing

 If UsedAdvancedTiming = False Then

 'mark it as true

 UsedAdvancedTiming = True

 'log it

 Lumberjack.SendToLog("Begin Use of Advanced

Timing Features")

 'start the live time logging variables

285

 LoggedTotalTocks = LastTime

 LoggedLiveTocks = LiveTocks

 End If

 Else

 AdvancedDeltaTocks = DeltaTocks

 End If

 Else

 'speed is zero

 AdvancedDeltaTocks = DeltaTocks

 End If

 Else

 'disabled advanced timing

 AdvancedDeltaTocks = DeltaTocks

 End If

 'record the live time

 LiveTocks = LiveTocks + AdvancedDeltaTocks

 AllTocks = AllTocks + DeltaTocks

 'Calculations for the max detectable speed

 RecentDecayFactor = Math.Exp(-Math.Log(2) * AdvancedDeltaTocks

/ (Freq * MaxDetectableSpeedHalfLife))

 RecentLoops = (RecentLoops * RecentDecayFactor) + 1

 RecentTocks = (RecentTocks * RecentDecayFactor) +

AdvancedDeltaTocks

 'Put Input Event handlers here

 'check the speed and cavitation sensor pins

 'as well as the 'Fire Laser' and Speed Controller pins

 'store the previous values

 SpeedDetectorPinPositivePrevious = SpeedDetectorPinPositive

 CavitationPinPositivePrevious = CavitationPinPositive

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.COMPort1.IsOpen = True Then

 'get the speed pin status

 SpeedDetectorPinPositive =

Stevedore.COMPort1.DsrHolding

 'get the cavitation pin status

 'positive means the instrument can receive greater

amounts of light than the negative status

 'which should happen when a vapor column appears

 CavitationPinPositive = Stevedore.COMPort1.CDHolding

 'get the speed controller pin status

 SpeedControlPinPositive = Stevedore.COMPort1.DtrEnable

 'get the laser fire pin status

 LaserFirePinPositive = Stevedore.COMPort1.RtsEnable

 Else

 'the port is not open, close the program

 ContinueExecution = False

 End If

 End SyncLock

 If ContinueExecution = False Then

 'signal a program exit

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 'process the input pin status meanings

286

 'if the speed pin's current state and previous state are

different, increment the appropriate counter

 If SpeedDetectorPinPositive <> SpeedDetectorPinPositivePrevious

Then

 'speed pulse received, see if pin went high

 If SpeedDetectorPinPositive = True Then

 'the pin went positive

 'increment the speedpulsesup counter

 SpeedPulsesUp += 1

 Else

 'the pin went negative

 'increment the other counter

 SpeedPulsesDown += 1

 End If

 End If

 'do some speed processing: calculate the remaining 'sum' of

pulses

 'it uses the advanced timing variable, but if advanced timing

is disabled, the advanced variable should equal the standard one

 RemainingFraction = Math.Exp(DecayConstant * CDbl(DeltaTocks))

 RemainingLiveFraction = Math.Exp(DecayConstant *

CDbl(AdvancedDeltaTocks))

 SpeedPulsesUp = SpeedPulsesUp * RemainingLiveFraction

 SpeedPulsesDown = SpeedPulsesDown * RemainingLiveFraction

 'calculate timing

 'calculate the total time

 TotalTimeTocks = (TotalTimeTocks + CDbl(DeltaTocks)) *

RemainingFraction

 If SpeedOverride = False Then

 'The speed isn't overridden, behave normally

 'LiveTimeTocks = (LiveTimeTocks + CDbl(AdvancedDeltaTocks))

* RemainingLiveFraction

 'calculate the time the output pin is positive and update

the Capacitor estimate

 If SpeedControlPinPositive = True Then

 'pin is positive, add to the time

 PositiveTimeTocks = (PositiveTimeTocks +

CDbl(DeltaTocks)) * RemainingFraction

 'bring the capacitor fraction closer to 1

 Capacitor = 1 - (1 - Capacitor) * Math.Exp(-

(CDbl(DeltaTocks) / Freq) / RC)

 Else

 'pin is negative, lose time

 PositiveTimeTocks = PositiveTimeTocks *

RemainingFraction

 'decay the capacitor fraction toward zero

 Capacitor = Capacitor * Math.Exp(-(CDbl(DeltaTocks) /

Freq) / RC)

 End If

 'calculate the fraction of the time that the speed control

output pin is positive

 If TotalTimeTocks > 0 Then

 'avoiding a divide-by-zero error

 MeasuredOutputPinPositiveFraction = PositiveTimeTocks /

TotalTimeTocks

 Else

 'total time is zero (unlikely to be negative)

 MeasuredOutputPinPositiveFraction = 0

287

 End If

 Else

 'the speed is overridden

 'this is off-normal operation

 'will not adjust the capacitor value here, allowing fast

resumption after the off-normal condition ends

 'sed the measured output value to the desired value to

avoid extra deviation behavior

 MeasuredOutputPinPositiveFraction =

DesiredSpeedPinPositiveFraction

 End If

 'process the cavitation status

 CavitationDetectedPrevious = CavitationDetected

 If CavitationPinPositive = True Then

 'cavitation detected? give it a timeout to make sure

 If CavitationPinPositive <> CavitationPinPositivePrevious

Then

 'new signal, start the countdown

 CavitationStartTime = Tock

 Else

 'continuing signal, see if the countdown has completed

 If Tock > (CavitationStartTime +

CavitationTimeoutTocks) Then

 'countdown has finished without sensing a non-

cavitation condition in the meantime

 CavitationDetected = True

 'log it if it's a first-time event

 If CavitationDetectedPrevious = False Then

 'first-time event, log the detection

 Lumberjack.SendToLog("Cavitation Detected!

Speed is " & CalculatedSpeed.ToString)

 End If

 End If

 End If

 Else

 'Cavitation not detected

 CavitationDetected = False

 'log termination of cavitation condition if it existed

 If CavitationDetectedPrevious = True Then

 'cavitation condition just stopped, log it

 Lumberjack.SendToLog("Cavitation Condition No Longer

Detected")

 End If

 End If

 If CavitationDetected = True Then

 'for Mode 1, Press Stop

 If LocalCavitationAction = 1 Then

 SyncLock Windowsill.RunBoxLock

 Windowsill.StopAction = True

 End SyncLock

 End If

 'Terminate Autopulsing on Cavitation Detection

 If AutoPulsing = True Then

 AutoPulsing = False

 StopAutopulsing = True

 End If

 End If

288

 'Output Event handlers go here

 'Largely for changes in serial port control pins

 'Somewhat mischaracterized; Events are unused

 'update speed control output pin

 SyncLock Stevedore.SpeedPortLock

 'only do it if the port is still open

 If Stevedore.COMPort1.IsOpen = True Then

 'set/make sure the pin is in the correct state for the

particular case

 If (DesiredSpeedPinPositiveFraction = 0) Or

(SpeedOverride = True) Then

 'it should be set to negative, make sure of it

 If SpeedControlPinPositive = True Then

 'it's not set to negative, set it

 Stevedore.COMPort1.DtrEnable = False

 End If

 ElseIf DesiredSpeedPinPositiveFraction = 1 Then

 'it should be set to positive, make sure

 If SpeedControlPinPositive = False Then

 'it's negative, set it positive

 Stevedore.COMPort1.DtrEnable = True

 End If

 Else

 'see if it's time to change pin states

 'if the desired fraction is equal to the measured

fraction, leave it alone

 If DesiredSpeedPinPositiveFraction >

MeasuredOutputPinPositiveFraction Then

 'it should be set to positive

 If SpeedControlPinPositive = False Then

 'change it

 Stevedore.COMPort1.DtrEnable = True

 End If

 ElseIf DesiredSpeedPinPositiveFraction <

MeasuredOutputPinPositiveFraction Then

 'it should be set negative

 If SpeedControlPinPositive = True Then

 'change it

 Stevedore.COMPort1.DtrEnable = False

 End If

 Else

 'LEAVE IT ALONE!

 'That is all

 End If

 End If

 End If

 End SyncLock

 'Fire Control Block

 'This section handles the "Fire Laser!" pin

 'and associated Laser Logic

 'The firing logic goes through a number of stages

 'only one stage executes in a given progression through the

block; once per major loop in this thread

 'these stages control various parts of the firing sequence:

taking over the laser lines, adjusting the power, timers, issues pulses, etc.

 'It gets a bit messy

289

 SpeedOverride = False

 If LocalProgramMode >= 1 Then

 'Laser Control Mode is enabled

 SyncLock Windowsill.RunBoxLock

 LaserInitComplete = Windowsill.FinishedStartup

 End SyncLock

 If LocalFireManualPulse = True Then

 'the user wants to fire a pulse, follow that sequence

 'clear autopulsing values

 If AutoPulsing = True Then

 AutoPulsing = False

 StopAutopulsing = True

 End If

 If LaserFireStage = 0 Then

 PulseReps = 0

 'go to stage 100

 LaserFireStage = 100

 'start the timer

 AutoPulseWaitCounter = Tock

 PulseSequenceTimer = Tock

 'halt the speed to adjust laser power

 SpeedOverride = True

 ElseIf (LaserFireStage > 0) And (LaserFireStage < 100)

Then

 'an autopulse was interrupted, go to stage 0 up

before proceeding

 'log it

 Lumberjack.SendToLog("A Laser Pulse Operation

appears to have been interrupted at Stage " & LaserFireStage.ToString)

 LaserFireStage = 0

 ElseIf LaserFireStage = 100 Then

 'halt the speed to adjust laser power

 SpeedOverride = True

 'proceed once stopped

 If CalculatedSpeed < StopSpeedValue Then

 LaserFireStage = 150

 End If

 'check the timeout (120 seconds since beginning)

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel pulsing, and log it

 Lumberjack.SendToLog("Manual Pulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating Pulse")

 LaserFireStage = 0

 LocalFireManualPulse = False

 End If

 ElseIf LaserFireStage = 150 Then

 'lock down the laser dataline and transmit the

laser pulse power

 'form the command that will adjust the laser power

 'it should use NextLaserPower, which is copied from

windowsill.nextlaserpulsepower

 'halt the speed to adjust laser power

 SpeedOverride = True

 If NextLaserPower > LaserPowerLimit Then

 'too high, cancel pulse

 NextLaserPower = 1

290

 'log the event

 Lumberjack.SendToLog("Pulse Power Has Exceeded

Limits: Cancel Manual Pulse")

 'cancel the pulse

 SyncLock Windowsill.RunBoxLock

 Windowsill.FireManualPulse = False

 End SyncLock

 'end the sequence

 LocalFireManualPulse = False

 LaserFireStage = 0

 Else

 NextLaserString = LaserEOL

 'log the transmission

 Lumberjack.SendToLog("Automatically Generated

Command to be sent to the laser: " & NextLaserString)

 SyncLock Windowsill.RunBoxLock

 'lock down the dataline

 Windowsill.LaserTXDataCritical = True

 'send the next power command to the laser

head

 Windowsill.CommandToLaser =

Windowsill.CommandToLaser & NextLaserString

 End SyncLock

 'proceed to the next step

 NextLaserString = ""

 LaserFireStage = 200

 CommandSeparationTimer = Now.Ticks

 End If

 'check the timeout (x seconds since beginning

stage)

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel pulsing, and log it

 Lumberjack.SendToLog("Manual Pulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating Pulse")

 LaserFireStage = 0

 LocalFireManualPulse = False

 End If

 ElseIf LaserFireStage = 200 Then

 'wait for the bufferred command to complete its

transmission

 'see if the shared buffer has cleared

 'halt the speed to adjust laser power

 SpeedOverride = True

 SyncLock Windowsill.RunBoxLock

 NextLaserString = Windowsill.CommandToLaser

 End SyncLock

 If NextLaserString = "" Then

 'it's been loaded past the shared buffer, see

if the system is ready

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.ClearToFireLaser = True Then

 If Now.Ticks - CommandSeparationTimer >

CommandSeparation Then

 'proceed to the next stage

 NextLaserString = PowerCommand &

NextLaserPower.ToString & LaserEOL

 'log the transmission

291

 Lumberjack.SendToLog("Automatically

Generated Command to be sent to the laser: " & NextLaserString)

 SyncLock Windowsill.RunBoxLock

 'lock down the dataline

 Windowsill.LaserTXDataCritical

= True

 'send the next power command to

the laser head

 Windowsill.CommandToLaser =

Windowsill.CommandToLaser & NextLaserString

 End SyncLock

 'proceed to the next step

 NextLaserString = ""

 LaserFireStage = 250

 LaserCommandClearanceTimeTocks =

Tock

 End If

 Else

 'update the timer so that the laser has

some time to process the pre-command eol

 CommandSeparationTimer = Now.Ticks

 End If

 End SyncLock

 Else

 'update the timer so that the laser has some

time to process the pre-command eol

 CommandSeparationTimer = Now.Ticks

 End If

 'check the timeout (120 seconds since beginning)

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel pulsing, and log it

 Lumberjack.SendToLog("Manual Pulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating Pulse")

 LaserFireStage = 0

 LocalFireManualPulse = False

 End If

 ElseIf LaserFireStage = 250 Then

 'wait for the bufferred command to complete its

transmission

 'see if the shared buffer has cleared

 'halt the speed to adjust laser power

 SpeedOverride = True

 SyncLock Windowsill.RunBoxLock

 NextLaserString = Windowsill.CommandToLaser

 End SyncLock

 If NextLaserString = "" Then

 'it's been loaded past the shared buffer, see

if the system is ready

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.ClearToFireLaser = True Then

 'proceed to the next stage

 LaserFireStage = 300

 LaserCommandClearanceTimeTocks = Tock

 End If

 End SyncLock

 End If

 'check the timeout (120 seconds since beginning)

292

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel pulsing, and log it

 Lumberjack.SendToLog("Manual Pulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating Pulse")

 LaserFireStage = 0

 LocalFireManualPulse = False

 End If

 ElseIf LaserFireStage = 300 Then

 'halt the speed to adjust laser power

 SpeedOverride = True

 'this step is a timer to ensure the laser has

processed the command (4 seconds) fully

 If (CDbl(Tock - LaserCommandClearanceTimeTocks) /

CDbl(Freq)) > 4 Then

 'proceed

 LaserFireStage = 350

 'compensate for an expected overreaction; the

speed will come back online after this

 Capacitor = Capacitor * FastResume

 End If

 'check the timeout (120 seconds since beginning)

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel pulsing, and log it

 Lumberjack.SendToLog("Manual Pulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating Pulse")

 LaserFireStage = 0

 LocalFireManualPulse = False

 End If

 ElseIf LaserFireStage = 350 Then

 'start the spinup counter and move to the next

stage

 LaserFireStage = 400

 LaserCommandClearanceTimeTocks = Tock

 'check the timeout (120 seconds since beginning)

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel pulsing, and log it

 Lumberjack.SendToLog("Manual Pulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating Pulse")

 LaserFireStage = 0

 LocalFireManualPulse = False

 End If

 ElseIf LaserFireStage = 400 Then

 'wait 20 seconds as the speed goes back to where it

was before being overridden

 If (CDbl(Tock - LaserCommandClearanceTimeTocks) /

CDbl(Freq)) > 20 Then

 'proceed

 LaserFireStage = 450

 End If

 'check the timeout (x seconds since beginning)

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

293

 'cancel pulsing, and log it

 Lumberjack.SendToLog("Manual Pulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating Pulse")

 LaserFireStage = 0

 LocalFireManualPulse = False

 End If

 ElseIf LaserFireStage = 450 Then

 'start the delay between pulses

 AutoPulseWaitCounter = Tock

 'proceed to the next stage

 LaserFireStage = 500

 ElseIf LaserFireStage = 500 Then

 'wait for delay to complete

 If CDbl(Tock - AutoPulseWaitCounter) / CDbl(Freq) >

TimeBetweenPulses Then

 'delay has finished, proceed

 LaserFireStage = 550

 AutoPulseWaitCounter = Tock

 End If

 'check the timeout (x seconds since beginning)

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel pulsing, and log it

 Lumberjack.SendToLog("Manual Pulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating Pulse")

 LaserFireStage = 0

 LocalFireManualPulse = False

 End If

 ElseIf LaserFireStage = 550 Then

 'FIRE!

 FireNumber += 1

 'log the event

 Lumberjack.SendToLog("Firing Laser with a Pulse

Power of " & NextLaserPower.ToString & " and an estimated duration of " &

LocalPulseDuration.ToString)

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 Lumberjack.SendToLog("FIRE " & FireNumber.ToString

& "!")

 'Fire the Laser: Raise the RTS signal

 SyncLock Stevedore.SpeedPortLock

 Stevedore.COMPort1.RtsEnable = True

 End SyncLock

 'raise the fired laser flags

 FiredLaser = True

 'update the last fire time

 LastLaserPulseTimeTocks = Tock

 'proceed to the next stage

 LaserFireStage = 600

 'check the timeout (x seconds since beginning)

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel pulsing, and log it

 Lumberjack.SendToLog("Manual Pulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating Pulse")

 LaserFireStage = 0

 LocalFireManualPulse = False

294

 End If

 ElseIf LaserFireStage = 600 Then

 'complete the firing sequence

 'lower the fired laser flag

 SyncLock Stevedore.SpeedPortLock

 Stevedore.COMPort1.RtsEnable = False

 End SyncLock

 'release the laser dataline

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserTXDataCritical = False

 Windowsill.FireManualPulse = False

 End SyncLock

 'end the sequence

 LocalFireManualPulse = False

 LaserFireStage = 0

 Else

 'Unknown stage

 'log the event and clear it

 Lumberjack.SendToLog("Unknown Fire Control Stage:

Manual Pulse Stage " & LaserFireStage.ToString)

 LocalFireManualPulse = False

 LaserFireStage = 0

 End If

 ElseIf AutoPulsing = True Then

 'automatic fire control sequence

 If LocalRunButtonClicked = False Then

 'not controlling the speed, do not fire

 If LaserFireStage <> 0 Then

 'interrupting a pulse, log it

 Lumberjack.SendToLog("A Laser Pulse Operation

appears to have been interrupted at Stage " & LaserFireStage.ToString)

 LaserFireStage = 0

 End If

 LaserFireStage = 0

 ElseIf LaserFireStage = 0 Then

 'go to the first stage

 LaserFireStage = 5

 ElseIf LaserFireStage >= 100 Then

 'a manual pulse was interrupted, go to stage 0

first

 'log it

 Lumberjack.SendToLog("A Laser Pulse Operation

appears to have been interrupted at Stage " & LaserFireStage.ToString)

 LaserFireStage = 0

 ElseIf LaserFireStage = 5 Then

 'get things started and go on

 'start the timer

 AutoPulseWaitCounter = Tock

 PulseSequenceTimer = Tock

 'go to the next step

 LaserFireStage = 10

 'halt the speed to adjust laser power

 SpeedOverride = True

 'set the number of pulse repetitions to 0

 PulseReps = 0

 ElseIf LaserFireStage = 10 Then

 'check to see if the conditions are right to

proceed

295

 'or if it's timed out

 If (CavitationDetected = False) And

(CalculatedSpeed < StopSpeedValue) Then

 'conditions are right to move on to the next

step

 LaserFireStage = 15

 End If

 'halt the speed to adjust laser power

 SpeedOverride = True

 'check for a timeout

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 End If

 ElseIf LaserFireStage = 15 Then

 'lock down the laser dataline and transmit the

laser pulse power

 'form the command that will adjust the laser power

 'it should use NextLaserPower, which is copied from

windowsill.nextlaserpulsepower

 'halt the speed to adjust laser power

 SpeedOverride = True

 If NextLaserPower > LaserPowerLimit Then

 'too high, end autopulsing

 NextLaserPower = 1

 StopAutopulsing = True

 AutoPulsing = False

 'log the event

 Lumberjack.SendToLog("Autopulsing Power Has

Exceeded Limits: End Autopulsing")

 LaserFireStage = 0

 Else

 NextLaserString = LaserEOL

 'log the transmission

 Lumberjack.SendToLog("Automatically Generated

Command to be sent to the laser: " & NextLaserString)

 SyncLock Windowsill.RunBoxLock

 'lock down the dataline

 Windowsill.LaserTXDataCritical = True

 'send the next power command to the laser

head

 Windowsill.CommandToLaser =

Windowsill.CommandToLaser & NextLaserString

 End SyncLock

 'proceed to the next step

 NextLaserString = ""

 LaserFireStage = 20

 CommandSeparationTimer = Now.Ticks

 End If

 'check for a timeout

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

296

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 End If

 ElseIf LaserFireStage = 20 Then

 'wait for the bufferred command to complete its

transmission

 'see if the shared buffer has cleared

 'halt the speed to adjust laser power

 SpeedOverride = True

 SyncLock Windowsill.RunBoxLock

 NextLaserString = Windowsill.CommandToLaser

 End SyncLock

 If NextLaserString = "" Then

 'it's been loaded past the shared buffer, see

if the system is ready

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.ClearToFireLaser = True Then

 'check for a completed delay from the

last command

 If Now.Ticks - CommandSeparationTimer >

CommandSeparation Then

 'issue the next laser command

 'and proceed to the next stage

 NextLaserString = PowerCommand &

NextLaserPower.ToString & LaserEOL

 'log the transmission

 Lumberjack.SendToLog("Automatically

Generated Command to be sent to the laser: " & NextLaserString)

 SyncLock Windowsill.RunBoxLock

 'send the next power command to

the laser head

 Windowsill.CommandToLaser =

Windowsill.CommandToLaser & NextLaserString

 End SyncLock

 'proceed to the next step

 NextLaserString = ""

 LaserFireStage = 25

 LaserCommandClearanceTimeTocks =

Tock

 End If

 Else

 'update the timer so that the laser has

some time to process the pre-command eol

 CommandSeparationTimer = Now.Ticks

 End If

 End SyncLock

 Else

 'update the timer so that the laser has some

time to process the pre-command eol

 CommandSeparationTimer = Now.Ticks

 End If

 'check for a timeout

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

297

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 End If

 ElseIf LaserFireStage = 25 Then

 'halt the speed to adjust laser power

 SpeedOverride = True

 'wait for the bufferred command to complete its

transmission

 'see if the shared buffer has cleared

 SyncLock Windowsill.RunBoxLock

 NextLaserString = Windowsill.CommandToLaser

 End SyncLock

 If NextLaserString = "" Then

 'it's been loaded past the shared buffer, see

if the system is ready

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.ClearToFireLaser = True Then

 'proceed to the next stage

 LaserFireStage = 30

 LaserCommandClearanceTimeTocks = Tock

 End If

 End SyncLock

 End If

 'check for a timeout

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 End If

 ElseIf LaserFireStage = 30 Then

 'halt the speed to adjust laser power

 SpeedOverride = True

 'this step is just a short timer to ensure the

laser has processed the command (4 seconds)

 If (CDbl(Tock - LaserCommandClearanceTimeTocks) /

CDbl(Freq)) > 4 Then

 'proceed

 LaserFireStage = 35

 'compensate for an expected overreaction; the

speed will come back online after this

 Capacitor = Capacitor * FastResume

 End If

 'check for a timeout

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

 LaserFireStage = 0

298

 StopAutopulsing = True

 AutoPulsing = False

 End If

 ElseIf LaserFireStage = 35 Then

 'start the delay between pulses

 AutoPulseWaitCounter = Tock

 'proceed to the next stage

 LaserFireStage = 40

 'check for a timeout

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 End If

 ElseIf LaserFireStage = 40 Then

 'wait for delay to complete

 If CDbl(Tock - AutoPulseWaitCounter) / CDbl(Freq) >

TimeBetweenPulses Then

 'delay has finished, proceed

 LaserFireStage = 45

 AutoPulseWaitCounter = Tock

 End If

 'check for a timeout

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 End If

 ElseIf LaserFireStage = 45 Then

 'FIRE!!!

 'or something

 If CavitationDetected = True Then

 'stop autopulsing on cavitation detection

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 'unblock the datalink

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserTXDataCritical = False

 End SyncLock

 'log it

 Lumberjack.SendToLog("Cavitation Detected: End

Autopulsing")

 ElseIf (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

299

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 ElseIf (TargetSpeedAcquired = True) And

(CavitationPinPositive = False) Then

 'ready to fire, find the correct theta:

 If (SpeedDetectorPinPositive = True) And

SpeedDetectorPinPositivePrevious = False Then

 'found the correct theta (just after the

detector pin goes positive)

 'FIRE LASER!!!!

 'FIRE!

 FireNumber += 1

 PulseReps += 1

 'log the event

 Lumberjack.SendToLog("Firing Laser with a

Pulse Power of " & NextLaserPower.ToString & " and an estimated duration of " &

LocalPulseDuration.ToString)

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 Lumberjack.SendToLog("FIRE " &

FireNumber.ToString & "!")

 'Fire the Laser: Raise the RTS signal

 SyncLock Stevedore.SpeedPortLock

 Stevedore.COMPort1.RtsEnable = True

 End SyncLock

 'raise the fired laser flags

 FiredLaser = True

 'update the last fire time

 LastLaserPulseTimeTocks = Tock

 'proceed to the next stage

 LaserFireStage = 50

 End If

 End If

 ElseIf LaserFireStage = 50 Then

 'complete the firing sequence

 'lower the fire laser signal

 SyncLock Stevedore.SpeedPortLock

 Stevedore.COMPort1.RtsEnable = False

 End SyncLock

 'Autopulse mode fires a cluster of pulses with a

common energy, and only shifts the energy value between clusters

 If PulseReps >= MaxPulseReps Then

 'the cluster of pulses has completed, move on

 'release the laser dataline

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserTXDataCritical = False

 End SyncLock

 'update the pulse energy

 NextLaserPower = NextLaserPower + 1

 If NextLaserPower > LaserPowerLimit Then

 'too high, end autopulsing

 NextLaserPower = 1

 StopAutopulsing = True

 AutoPulsing = False

 'log the event

 Lumberjack.SendToLog("Autopulsing Power Has

Exceeded Limits: End Autopulsing")

 End If

300

 SyncLock Windowsill.RunBoxLock

 Windowsill.NextLaserPulsePower =

NextLaserPower

 End SyncLock

 'end the sequence

 LaserFireStage = 55

 AutoPulseWaitCounter = Tock

 Else

 'the cluster of pulses has not completed,

repeat the pulse from the delay between them

 LaserFireStage = 35

 'check for a timeout

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 End If

 End If

 ElseIf LaserFireStage = 55 Then

 'end the sequence

 'this is just a post-cluster timer to give the

cavitation a chance to develop before the next sequence is applied

 'wait for delay to complete

 If CDbl(Tock - AutoPulseWaitCounter) / CDbl(Freq) >

TimeBetweenPulses Then

 'delay has finished, so has the sequence

 LaserFireStage = 0

 AutoPulseWaitCounter = Tock

 End If

 'check for a timeout

 If (Tock - PulseSequenceTimer) / Freq >

LaserSequenceTimeout Then

 'timed out (default is 120 seconds)

 'cancel autopulsing, and log it

 Lumberjack.SendToLog("AutoPulse Timeout in

Stage " & LaserFireStage.ToString & "; terminating AutoPulse Mode")

 LaserFireStage = 0

 StopAutopulsing = True

 AutoPulsing = False

 End If

 Else

 'Unknown stage

 'log the event and clear it

 Lumberjack.SendToLog("Unknown Fire Control Stage:

Autopulse Stage " & LaserFireStage.ToString)

 LaserFireStage = 0

 End If

 Else

 'fire control disabled

 If LaserFireStage <> 0 Then

 'fire control was disabled in firing operations

 'log the pulse cancellation

 Lumberjack.SendToLog("Current Laser Pulse Operation

Cancelled at Stage " & LaserFireStage.ToString)

301

 LaserFireStage = 0

 End If

 End If

 Else

 'fire control disabled

 LaserFireStage = 0

 End If

 If LaserFireStage = 0 Then

 'make sure the laser is not being told to fire at this

point

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.COMPort1.RtsEnable = True Then

 'lower the laser fire signal

 Stevedore.COMPort1.RtsEnable = False

 End If

 End SyncLock

 'make sure the laser datalink is unblocked

 If LaserInitComplete = True Then

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserTXDataCritical = False

 End SyncLock

 End If

 End If

 'Timed events go here

 'check for updated speed settings here?

 'update calculated speed

 'etc.

 'update logged speed if the conditions are met

 'those include time and speed change

 If (Tock - LastRecordedSpeedTime) / Freq >

(MaxTimeBetweenSpeedRecordingTicks / 10000000) Then

 'it's time to log the speed

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 'log the live fraction, if applicable

 If UsedAdvancedTiming = True Then

 'advanced timing has been applied

 Lumberjack.SendToLog("Current Live Fraction: " &

(CDbl(LiveTocks - LoggedLiveTocks) / CDbl(Tock - LoggedTotalTocks)).ToString)

 'update the logged times

 LoggedLiveTocks = LiveTocks

 LoggedTotalTocks = Tock

 End If

 ElseIf CalculatedSpeed > StopSpeedValue Then

 'it is not stopped

 'check for standard delta

 If Math.Abs(CalculatedSpeed - LastRecordedSpeed) >

MaxDeltaSpeedRecording Then

 'Speed is different enough to update in the log

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

302

 LastRecordedSpeedTime = Tock

 'log the live fraction, if applicable

 If UsedAdvancedTiming = True Then

 'advanced timing has been applied

 Lumberjack.SendToLog("Current Live Fraction: " &

(CDbl(LiveTocks - LoggedLiveTocks) / CDbl(Tock - LoggedTotalTocks)).ToString)

 'update the logged times

 LoggedLiveTocks = LiveTocks

 LoggedTotalTocks = Tock

 End If

 ElseIf (TargetSpeed > 0) And (LocalRunButtonClicked = True)

Then

 'see if it has crossed in to the fine-tune region or if

it changed enough within it

 If Math.Abs((CalculatedSpeed - TargetSpeed) /

TargetSpeed) <= 1.25 * SpeedError Then

 'in fine-tune region

 'see if it crossed into the fine-tune region

 If Math.Abs((LastRecordedSpeed - TargetSpeed) /

TargetSpeed) > 1.25 * SpeedError Then

 'it crossed into the fine-tune region, log it

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 'log the live fraction, if applicable

 If UsedAdvancedTiming = True Then

 'advanced timing has been applied

 Lumberjack.SendToLog("Current Live

Fraction: " & (CDbl(LiveTocks - LoggedLiveTocks) / CDbl(Tock -

LoggedTotalTocks)).ToString)

 'update the logged times

 LoggedLiveTocks = LiveTocks

 LoggedTotalTocks = Tock

 End If

 ElseIf (Math.Abs((LastRecordedSpeed -

CalculatedSpeed) / TargetSpeed) > (SpeedError / 3)) Or

(Math.Abs(LastRecordedSpeed - CalculatedSpeed) > (MaxDeltaSpeedRecording / 5))

Then

 'big enough change in the fine-tune region to

log

 'add one more requirement: minimum change

 If Math.Abs(LastRecordedSpeed -

CalculatedSpeed) > 0.5 Then

 'this prevents microscopic changes from

being logged

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 'log the live fraction, if applicable

 If UsedAdvancedTiming = True Then

 'advanced timing has been applied

 Lumberjack.SendToLog("Current Live

Fraction: " & (CDbl(LiveTocks - LoggedLiveTocks) / CDbl(Tock -

LoggedTotalTocks)).ToString)

 'update the logged times

303

 LoggedLiveTocks = LiveTocks

 LoggedTotalTocks = Tock

 End If

 End If

 End If

 'difference in the fine-tune region is big enough

 ElseIf Math.Abs((LastRecordedSpeed - TargetSpeed) /

TargetSpeed) <= 1.25 * SpeedError Then

 'moved outside target range

 'log it

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 'log the live fraction, if applicable

 If UsedAdvancedTiming = True Then

 'advanced timing has been applied

 Lumberjack.SendToLog("Current Live Fraction: "

& (CDbl(LiveTocks - LoggedLiveTocks) / CDbl(Tock - LoggedTotalTocks)).ToString)

 'update the logged times

 LoggedLiveTocks = LiveTocks

 LoggedTotalTocks = Tock

 End If

 End If

 End If

 Else

 'it's currently stopped, see if it was before

 If LastRecordedSpeed > StopSpeedValue Then

 'wasn't stopped last time, log it

 Lumberjack.SendToLog("Speed Effectively Stopped")

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 'log the live fraction, if applicable

 If UsedAdvancedTiming = True Then

 'advanced timing has been applied

 Lumberjack.SendToLog("Current Live Fraction: " &

(CDbl(LiveTocks - LoggedLiveTocks) / CDbl(Tock - LoggedTotalTocks)).ToString)

 'update the logged times

 LoggedLiveTocks = LiveTocks

 LoggedTotalTocks = Tock

 End If

 End If

 End If

 'Read the Serial Port data, if it's time

 If Tock > LastTimeCheckedRead + TimeBetweenReads Then

 'check for data in the serial port

 Stevedore.MainPortReader()

 'update checked time

 LastTimeCheckedRead = Tock

 End If

 'Transmit data through the Speed Port (Mode 1 only)

 If LocalProgramMode = 1 Then

 SendData = False

304

 'check for write

 SyncLock Stevedore.MainPortWriterLock

 'see if there was a write in progress

 If Stevedore.SavedTXString <> "" Then

 'call the write routine

 SendData = True

 End If

 End SyncLock

 If Tock > LastTimeCheckedWrite + TimeBetweenWriteChecks

Then

 'time to pulse the data x-mit routine

 SendData = True

 End If

 If SendData = True Then

 'write data

 Stevedore.MainPortWriter()

 'update time

 LastTimeCheckedWrite = Tock

 End If

 End If

 'UI, Speed calculation update: synchronize!

 If Tock > LastTimeUpdated + TimeBetweenUpdates Then

 'update the last update time

 LastTimeUpdated = Tock

 'Determine the Speed Pin Positive Fraction Deviation

 'Calculates how far off the actual value is

 PinDeviation = DesiredSpeedPinPositiveFraction -

MeasuredOutputPinPositiveFraction

 If Math.Abs(PinDeviation) > 0.05 Then

 'A significant Deviation existed in the last frame; log

it

 Lumberjack.SendToLog("NOTE: The previous Frame had a

high Speed Control Deviation: " & PinDeviation.ToString)

 End If

 'calculate the speed

 CalculatedSpeed = SpeedLambda * (SpeedPulsesUp +

SpeedPulsesDown)

 'set speed to zero if below cutoff

 If CalculatedSpeed < SpeedZeroCutoff Then

 CalculatedSpeed = 0

 End If

 If CalculatedSpeed > ((Freq * RecentLoops) / (RecentTocks *

2.5)) Then

 'speed is at or approaching immeasurably high values

 Lumberjack.SendToLog("WARNING: CURRENT SPEED IS AT OR

NEAR IMMEASURABLY HIGH VALUES; CURRENT SPEED = " & CalculatedSpeed.ToString &

"; CURRENT LIMIT = " & (0.5 * (Freq * RecentLoops) / RecentTocks).ToString)

 End If

 'update the speed and time arrays

 'the values get shifted to lower indices such that the most

recent is in the highest index

 For Regression_Counter = 0 To Regression_nmax - 1

 'time

305

 Regression_x_Tocks(Regression_Counter) =

Regression_x_Tocks(Regression_Counter + 1)

 'speed

 Regression_y(Regression_Counter) =

Regression_y(Regression_Counter + 1)

 Next

 Regression_x_Tocks(Regression_nmax) = Tock

 Regression_y(Regression_nmax) = CalculatedSpeed

 'the Regression_x array is time relative to now, in seconds

(it should be decreasingly negative; the highest index should have a value of

zero)

 For Regression_Counter = 0 To Regression_nmax

 Regression_x(Regression_Counter) =

(Regression_x_Tocks(Regression_Counter) - Tock) / Freq

 Next

 'determine whether or not the speed is in range

 If (TargetSpeed > 5) And (LocalRunButtonClicked = True)

Then

 'target speed is in the control range, see if it's

within error bounds of the target

 If Math.Abs((CalculatedSpeed - TargetSpeed) /

TargetSpeed) < SpeedError Then

 'speed is inside target range, count

 'the counter stores the tock when the speed entered

the range, so

 If (Tock - TargetSpeedAcquiredCounterTocks) >

TargetSpeedAcquiredDelayTime Then

 'it endured the countdown and is fully within

range

 'log it, for entry into the range

 If TargetSpeedAcquired = False Then

 Lumberjack.SendToLog("Speed has entered the

Target Range; currently " & CalculatedSpeed.ToString)

 End If

 TargetSpeedAcquired = True

 End If

 Else

 'speed is outside the target range

 If TargetSpeedAcquired = True Then

 'log the departure from the target range

 Lumberjack.SendToLog("Speed has left the Target

Range; currently " & CalculatedSpeed.ToString)

 End If

 TargetSpeedAcquired = False

 TargetSpeedAcquiredCounterTocks = Tock

 End If

 Else

 'target speed is outside the control range or system is

not running

 If TargetSpeedAcquired = True Then

 'log the departure from the target range

 Lumberjack.SendToLog("Speed has left the Target

Range; currently " & CalculatedSpeed.ToString)

 End If

 TargetSpeedAcquired = False

 TargetSpeedAcquiredCounterTocks = Tock

 End If

306

 'limit the influence of the past frame's target speed pin

positive fractions

 If (TotalTimeTocks > 0) And (TotalTimeTocks > 0.00025 *

TimeBetweenUpdates) Then

 'can limit, set it to a fraction of the time of the

last frame in tocks

 'do it for both the total and positive time

 PositiveTimeTocks = PositiveTimeTocks * (0.00025 *

TimeBetweenUpdates / TotalTimeTocks)

 'don't rewrite the following equation in case rounding

errors are significant

 TotalTimeTocks = TotalTimeTocks * (0.00025 *

TimeBetweenUpdates / TotalTimeTocks)

 End If

 'Send Values

 SyncLock Windowsill.RunBoxLock

 'speed

 Windowsill.DetectedSpeed = CalculatedSpeed

 'speed in range indicator

 Windowsill.ProperSpeed = TargetSpeedAcquired

 'cavitation

 Windowsill.Cavitation = CavitationDetected

 'laser fired indication

 If FiredLaser = True Then

 'laser was fired

 Windowsill.LaserFireIndicator = True

 'clear the flag once transmitted

 FiredLaser = False

 End If

 'Speed restart stuff

 Windowsill.RestartStatus = SpeedRestartStatus

 Windowsill.RestartTimeLeft = CLng(SpeedRestartTimeLeft)

 'autopulsing

 If StopAutopulsing = True Then

 'no autopulsing

 Windowsill.DisableAutomaticPulsing = True

 StopAutopulsing = False

 End If

 'laser stage

 Windowsill.LaserStage = LaserFireStage

 End SyncLock

 'Load Values

 SyncLock Windowsill.RunBoxLock

 'automatic pulsing

 If (Windowsill.AutomaticPulsing = False) Or

(Windowsill.DisableAutomaticPulsing = True) Then

 'no autopulsing the laser

 AutoPulsing = False

 ElseIf StopAutopulsing = True Then

 AutoPulsing = False

 Else

 'enable autopulsing

 AutoPulsing = True

 End If

 'check for a manually-issued laser pulse

 LocalFireManualPulse = Windowsill.FireManualPulse

 'control speed

307

 TargetSpeed = Windowsill.DesiredSpeed

 'pulse power

 NextLaserPower = Windowsill.NextLaserPulsePower

 'time between pulses

 TimeBetweenPulses = Windowsill.DelayBetweenPulses

 'get the pulse duration

 LocalPulseDuration =

Windowsill.EstimatedLaserPulseDuration

 'run status

 LocalRunButtonClicked = Windowsill.RunButtonClicked

 'get the restart delay

 LocalRestartDelayTime = Windowsill.RestartDelayTime

 'get the action when cavitation is detected

 LocalCavitationAction = Windowsill.CavitationAction

 End SyncLock

 'Set the target speed to zero if there is a pause state

 FormerRestartStatus = SpeedRestartStatus

 'make sure that any activity gets cancelled if the status

is not correct

 If (LocalRunButtonClicked = False) Or

(LocalCavitationAction <> 2) Then

 SpeedRestartStatus = 0

 End If

 If (CavitationDetected = True) And (LocalCavitationAction =

2) Then

 'set the speed to zero and the restart status to 1

 'disable autopulsing

 'and wait for the cavitation condition to end

 TargetSpeed = 0

 SpeedRestartStatus = 1

 StopAutopulsing = True

 AutoPulsing = False

 'see if it should be logged

 If FormerRestartStatus <> SpeedRestartStatus Then

 'status changed, log it

 Lumberjack.SendToLog("Speed Halting on Cavitation,

will restart")

 End If

 ElseIf SpeedRestartStatus = 2 Then

 'COUNTDOWN!

 SpeedRestartTimeLeft = SpeedRestartTimeLeft -

(CDbl(Tock - RestartDelayTimerTocks) / CDbl(Freq))

 RestartDelayTimerTocks = Tock

 'set target speed

 TargetSpeed = 0

 'see if the Countdown has completed

 If SpeedRestartTimeLeft <= 0 Then

 'it finished

 SpeedRestartTimeLeft = 0

 'change the status

 SpeedRestartStatus = 0

 'log the end

 Lumberjack.SendToLog("Speed Restart Sequence

Completed, Resuming")

 End If

 ElseIf ((LocalCavitationAction = 2) And (SpeedRestartStatus

= 1)) And ((CavitationDetected = False) And (CalculatedSpeed <=

StopSpeedValue)) Then

308

 'we're in stop and restart mode, cavitation was

detected and cleared, and the spinner has stopped

 'move on to Phase 2

 SpeedRestartStatus = 2

 'start the countdown

 SpeedRestartTimeLeft = LocalRestartDelayTime

 RestartDelayTimerTocks = Tock

 'log it

 Lumberjack.SendToLog("Speed Halted and Cavitation

Cleared, will wait " & SpeedRestartTimeLeft.ToString & " s before Resuming")

 'set target speed

 TargetSpeed = 0

 ElseIf ((LocalCavitationAction = 2) And (SpeedRestartStatus

= 1)) Then

 'in a stop+restart sequence

 'wait for it to stop

 'maintain target speed at zero

 TargetSpeed = 0

 Else

 'set the restart status to zero

 If SpeedRestartStatus <> 0 Then

 SpeedRestartStatus = 0

 'log the return to normalcy

 Lumberjack.SendToLog("Speed Restart Sequence

Ended")

 End If

 End If

 'Determine the new time fraction for positive output on the

speed control pin

 If (TargetSpeed = 0) Or (LocalRunButtonClicked = False)

Then

 'either the control is disabled or the speed is zero

 'set target fraction to zero

 DesiredSpeedPinPositiveFraction = 0

 ElseIf TargetSpeed < 0 Then

 'a negative target speed means full speed ahead if

equal to or less than -1

 'otherwise, it sets the pin positive fraction as its

negative

 'i.e., if TargetSpeed = -0.25, then

DesiredSpeedPinPositiveFractio = 0.25

 If TargetSpeed < -1 Then

 'set target fraction to one

 DesiredSpeedPinPositiveFraction = 1

 Else

 'set target fraction to the negative of the

targetspeed

 DesiredSpeedPinPositiveFraction = -TargetSpeed

 End If

 Else

 'calculate the new value between zero and one,

inclusive

 'use an appriopriate difference in the fraction; there

are limits

 '

 'What this section attempts to do is

 ' (1) Predict what the speed will be in the very near

future using a linear regression scheme

309

 ' (2) Use the predicted speed in comparison with the

desired speed to find a speed difference

 ' (3) Use the speed difference to come up with a

delta from the stored output fraction

 ' The stored output fraction is in the Capacitor

variable, and is a sort of running average

 ' of the output fraction on the speed pin,

simulating the phase capacitor in the electronics

 ' (4) Within limits, determine the new output

fraction by summing the Capacitor variable with the

 ' delta and a fraction of the Deviation from the

previous Frame's desired value

 'Perform the Regression Calculations

 Regression_xbar = 0

 Regression_ybar = 0

 Regression_s_xy = 0

 Regression_s_xx = 0

 Regression_s_yy = 0

 'set the averages

 For Regression_Counter = 0 To Regression_nmax

 Regression_xbar = Regression_xbar + (1 /

CDbl(Regression_nmax + 1)) * Regression_x(Regression_Counter)

 Regression_ybar = Regression_ybar + (1 /

CDbl(Regression_nmax + 1)) * Regression_y(Regression_Counter)

 Next

 'set the s-values

 For Regression_Counter = 0 To Regression_nmax

 Regression_s_xy = Regression_s_xy + (1 /

CDbl(Regression_nmax)) * (Regression_x(Regression_Counter) - Regression_xbar) *

(Regression_y(Regression_Counter) - Regression_ybar)

 Regression_s_xx = Regression_s_xx + (1 /

CDbl(Regression_nmax)) * (Regression_x(Regression_Counter) - Regression_xbar) ^

2

 'Regression_s_yy = Regression_s_yy + (1 /

CDbl(Regression_nmax)) * (Regression_y(Regression_Counter) - Regression_ybar) ^

2

 Next

 'calculate the beta-values

 'If Regression_s_xy <> 0 Then

 ' 'no divide-by-zero

 ' Regression_Beta1 = (Regression_s_yy -

(Regression_Delta * Regression_s_xx) + Math.Sqrt((Regression_s_yy -

(Regression_Delta * Regression_s_xx)) ^ 2 + (4 * Regression_Delta *

(Regression_s_xy ^ 2)))) / (2 * Regression_s_xy)

 'Else

 ' Regression_Beta1 = 0

 ' 'a divide-by-zero was prevented, and is probably

the result of a constant speed=0

 'End If

 'DEBUGGING ALTERATION

 'SINCE THE ORIGINAL DEMING REGRESSION WAS PRODUCING

OCCASIONAL WEIRD RESULTS

 'FALL BACK TO SIMPLE LINEAR REGRESSION

 If Regression_s_xx <> 0 Then

 'it's simple

 'no divide by zero here

310

 Regression_Beta1 = Regression_s_xy /

Regression_s_xx

 Else

 'this might happen once

 Regression_Beta1 = 0

 End If

 Regression_Beta0 = Regression_ybar - (Regression_Beta1

* Regression_xbar)

 'determine the predicted speed

 'this is in the form of y = b + m*x

 'where x is the time-value; time=0 is indexed to 'Tock'

in the Regression Calculations above

 PredictedSpeed = Regression_Beta0 + (Regression_Beta1 *

Look_Ahead_Time)

 'determine the difference in predicted speed and the

target speed

 DeltaSpeed = TargetSpeed - PredictedSpeed

 'calculate the resulting speed pin positive fraction

change

 SpeedDeltaFraction = (SpeedDeltaCoefficient *

DeltaSpeed) + (SpeedDeltaCoefficient * (DeltaSpeed / CrossoverSpeed) ^ 3)

 'limit the change

 If SpeedDeltaFraction > SpeedDeltaLimiter *

TimeBetweenUpdates / Freq Then

 'fraction change too high, cap it

 SpeedDeltaFraction = SpeedDeltaLimiter *

TimeBetweenUpdates / Freq

 ElseIf SpeedDeltaFraction < (-SpeedDeltaLimiter) *

TimeBetweenUpdates / Freq Then

 'fraction change too negative, cap it

 SpeedDeltaFraction = (-SpeedDeltaLimiter) *

TimeBetweenUpdates / Freq

 End If

 'Check for a Jump condition

 'a Jump is when the speed makes a sudden, rapid, and

unexpected change

 'it can happen with a constant output fraction

 If Math.Abs(Regression_Beta1) >= JumpSlope Then

 'the slope condition is met, check for the others

 Lumberjack.SendToLog("DEBUG MSG: Jump Condition #1

(Slope) met")

 If ((-DeltaSpeed / TargetSpeed > SpeedError) And

(Regression_Beta1 > 0)) Or ((-DeltaSpeed / TargetSpeed < -SpeedError) And

(Regression_Beta1 < 0)) Then

 'the Difference condition is met

 Lumberjack.SendToLog("DEBUG MSG: Jump

Condition #2 (Difference) met")

 If Math.Abs((CalculatedSpeed - TargetSpeed) /

TargetSpeed) <= 3.0R * SpeedError Then

 'The Speed Condition is met

 Lumberjack.SendToLog("DEBUG MSG: Jump

Condition #3 (Speed) met")

 If Tock - LastJumpTock >= TocksBetweenJumps

Then

311

 'The Delay (time between events)

condition is met

 Lumberjack.SendToLog("DEBUG MSG: Jump

Condition #4 (Time) met")

 'The Jump conditions have been met,

apply the Jump Countermeasures

 'record the Jump Countermeasures event

 JumpCount += 1

 LastJumpTock = Tock

 Lumberjack.SendToLog("Speed Jump

Condition detected, applying Countermeasures # " & JumpCount.ToString)

 'apply the Countermeasures

 SpeedDeltaFraction = SpeedDeltaFraction

- (JumpValue * Regression_Beta1 / JumpSlope)

 End If

 End If

 End If

 End If

 'get the new value if the speed is not overridden

 If SpeedOverride = False Then

 DesiredSpeedPinPositiveFraction = Capacitor +

SpeedDeltaFraction + (0.5 * PinDeviation)

 End If

 'make sure the new value is within range

 If DesiredSpeedPinPositiveFraction > 1 Then

 'it's too high, cap it at 1

 DesiredSpeedPinPositiveFraction = 1

 ElseIf DesiredSpeedPinPositiveFraction < 0 Then

 'too low, limit it to zero

 DesiredSpeedPinPositiveFraction = 0

 End If

 'DEBUG OUTPUT BLOCK

 'Lumberjack.SendToLog("DEBUGGING OUTPUT MESSAGE:

CURRENT SPEED = " & CalculatedSpeed.ToString)

 'Lumberjack.SendToLog("DEBUGGING OUTPUT MESSAGE:

PREDICT SPEED = " & PredictedSpeed.ToString)

 'Lumberjack.SendToLog("DEBUGGING OUTPUT MESSAGE: NEW

SPD PIN F = " & DesiredSpeedPinPositiveFraction.ToString)

 'Lumberjack.SendToLog("DEBUGGING OUTPUT MESSAGE:

DEMING BETA 0 = " & Regression_Beta0.ToString)

 'Lumberjack.SendToLog("DEBUGGING OUTPUT MESSAGE:

DEMING BETA 1 = " & Regression_Beta1.ToString)

 'Lumberjack.SendToLog("DEBUGGING OUTPUT MESSAGE:

DEMING S XX 1 = " & Regression_s_xx.ToString)

 'Lumberjack.SendToLog("DEBUGGING OUTPUT MESSAGE:

DEMING S YY 1 = " & Regression_s_yy.ToString)

 'Lumberjack.SendToLog("DEBUGGING OUTPUT MESSAGE:

DEMING S XY 1 = " & Regression_s_xy.ToString)

 End If

 End If

 'Release Control

 Application.DoEvents()

 SyncLock CentralClass.ProgramExitLock

 ContinueExecution = Not CentralClass.ExitProgram

312

 End SyncLock

 Loop

 'get the loop end time

 QueryPerformanceCounter(LoopEndTocks)

 'Shutdown Routine

 'perform preliminary shutdown tasks here

 'press stop

 SyncLock Windowsill.RunBoxLock

 Windowsill.StopAction = True

 End SyncLock

 'make sure the laser dataline is unblocked

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserTXDataCritical = False

 End SyncLock

 'set speed control and laser fire pins

 If LocalPortOpen = True Then

 'set the laser pulse and speed pins low

 'this SHOULD stop the spinner and end any laser pulsing

 SyncLock Stevedore.SpeedPortLock

 Stevedore.COMPort1.DtrEnable = False

 Stevedore.COMPort1.RtsEnable = False

 End SyncLock

 End If

 'Send Values to the Runbox

 SyncLock Windowsill.RunBoxLock

 'speed

 Windowsill.DetectedSpeed = CalculatedSpeed

 'speed in range indicator

 Windowsill.ProperSpeed = False

 'cavitation

 Windowsill.Cavitation = False

 'Speed restart stuff

 Windowsill.RestartStatus = 0

 Windowsill.RestartTimeLeft = 0

 'autopulsing

 Windowsill.DisableAutomaticPulsing = True

 End SyncLock

 If UsedAdvancedTiming = True Then

 Lumberjack.SendToLog("Disabling Advanced Timing Feature")

 'because I'm being a lazy programmer and don't want to change

the following code

 'since accuracy no longer matters at this point in execution

 'log the live fraction, if applicable

 Lumberjack.SendToLog("Current Live Fraction: " &

(CDbl(LiveTocks - LoggedLiveTocks) / CDbl(Tock - LoggedTotalTocks)).ToString)

 'update the logged times

 LoggedLiveTocks = LiveTocks

 LoggedTotalTocks = Tock

 End If

313

 'wait for the correct shutdown state to complete

 Do

 'continue monitoring and reporting the speed

 SyncLock CentralClass.ProgramExitLock

 LocalExecutionStage = CentralClass.ExecutionStage

 End SyncLock

 'Clock

 LastTime = Tock

 QueryPerformanceCounter(Tock)

 DeltaTocks = Tock - LastTime

 SpeedDetectorPinPositivePrevious = SpeedDetectorPinPositive

 CavitationPinPositivePrevious = CavitationPinPositive

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.COMPort1.IsOpen = True Then

 'get the speed pin status

 SpeedDetectorPinPositive =

Stevedore.COMPort1.DsrHolding

 'get the cavitation pin status

 'positive means the instrument can receive greater

amounts of light than the negative status

 'which should happen when a vapor column appears

 CavitationPinPositive = Stevedore.COMPort1.CDHolding

 'get the speed controller pin status

 SpeedControlPinPositive = Stevedore.COMPort1.DtrEnable

 'get the laser fire pin status

 LaserFirePinPositive = Stevedore.COMPort1.RtsEnable

 Else

 'the port is not open, close the program

 ContinueExecution = False

 End If

 End SyncLock

 If ContinueExecution = False Then

 'signal a program exit

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 'process the input pin status meanings

 'if the speed pin's current state and previous state are

different, increment the appropriate counter

 If SpeedDetectorPinPositive <> SpeedDetectorPinPositivePrevious

Then

 'speed pulse received, see if pin went high

 If SpeedDetectorPinPositive = True Then

 'the pin went positive

 'increment the speedpulsesup counter

 SpeedPulsesUp += 1

 Else

 'the pin went negative

 'increment the other counter

 SpeedPulsesDown += 1

 End If

 End If

 'do some speed processing: calculate the remaining 'sum' of

pulses

 RemainingFraction = Math.Exp(DecayConstant * CDbl(DeltaTocks))

314

 SpeedPulsesUp = SpeedPulsesUp * RemainingFraction

 SpeedPulsesDown = SpeedPulsesDown * RemainingFraction

 'process the cavitation status

 CavitationDetectedPrevious = CavitationDetected

 If CavitationPinPositive = True Then

 'cavitation detected? give it a timeout to make sure

 If CavitationPinPositive <> CavitationPinPositivePrevious

Then

 'new signal, start the countdown

 CavitationStartTime = Tock

 Else

 'continuing signal, see if the countdown has completed

 If Tock > (CavitationStartTime +

CavitationTimeoutTocks) Then

 'countdown has finished without sensing a non-

cavitation condition in the meantime

 CavitationDetected = True

 'log it if it's a first-time event

 If CavitationDetectedPrevious = False Then

 'first-time event, log the detection

 Lumberjack.SendToLog("Cavitation Detected!

Speed is " & CalculatedSpeed.ToString)

 End If

 End If

 End If

 Else

 'Cavitation not detected

 CavitationDetected = False

 'log termination of cavitation condition if it existed

 If CavitationDetectedPrevious = True Then

 'cavitation condition just stopped, log it

 Lumberjack.SendToLog("Cavitation Condition No Longer

Detected")

 End If

 End If

 'Read the Serial Port data, if it's time

 If Tock > LastTimeCheckedRead + TimeBetweenReads Then

 'check for data in the serial port

 Stevedore.MainPortReader()

 'update checked time

 LastTimeCheckedRead = Tock

 End If

 'Transmit data through the Speed Port (Mode 1 only)

 If LocalProgramMode = 1 Then

 SendData = False

 'check for write

 SyncLock Stevedore.MainPortWriterLock

 'see if there was a write in progress

 If Stevedore.SavedTXString <> "" Then

 'call the write routine

 SendData = True

 End If

 End SyncLock

 If Tock > LastTimeCheckedWrite + TimeBetweenWriteChecks

Then

 'time to pulse the x-mit routine

315

 SendData = True

 End If

 If SendData = True Then

 'write data

 Stevedore.MainPortWriter()

 'update time

 LastTimeCheckedWrite = Tock

 End If

 End If

 'calculate the speed

 CalculatedSpeed = SpeedLambda * (SpeedPulsesUp +

SpeedPulsesDown)

 'set speed to zero if below cutoff

 If CalculatedSpeed < SpeedZeroCutoff Then

 CalculatedSpeed = 0

 End If

 'update logged speed if the conditions are met

 'those include time and speed change

 If (Tock - LastRecordedSpeedTime) / Freq >

(MaxTimeBetweenSpeedRecordingTicks / 10000000) Then

 'it's time to log the speed

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 ElseIf CalculatedSpeed > StopSpeedValue Then

 'it is not stopped

 'check for standard delta

 If Math.Abs(CalculatedSpeed - LastRecordedSpeed) >

MaxDeltaSpeedRecording Then

 'Speed is different enough to update in the log

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 End If

 Else

 'it's currently stopped, see if it was before

 If LastRecordedSpeed > StopSpeedValue Then

 'wasn't stopped last time, log it

 Lumberjack.SendToLog("Speed Effectively Stopped")

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 End If

 End If

 'Update display

 If Tock > LastTimeUpdated + TimeBetweenUpdates Then

 'update the last update time

 LastTimeUpdated = Tock

 'Send Values

316

 SyncLock Windowsill.RunBoxLock

 'speed

 Windowsill.DetectedSpeed = CalculatedSpeed

 'speed in range indicator

 Windowsill.ProperSpeed = TargetSpeedAcquired

 'cavitation

 Windowsill.Cavitation = CavitationDetected

 'laser fired indication

 If FiredLaser = True Then

 'laser was fired

 Windowsill.LaserFireIndicator = True

 'clear the flag once transmitted

 FiredLaser = False

 End If

 'Speed restart stuff

 Windowsill.RestartStatus = SpeedRestartStatus

 Windowsill.RestartTimeLeft = CLng(SpeedRestartTimeLeft)

 'autopulsing

 If StopAutopulsing = True Then

 'no autopulsing

 Windowsill.DisableAutomaticPulsing = True

 StopAutopulsing = False

 End If

 End SyncLock

 End If

 'Release Control

 Application.DoEvents()

 Loop While LocalExecutionStage < 1010

 'wait for spinner to stop, or give an error message

 SpinnerStopTimeoutCounter = Tock

 Do

 'Clock

 LastTime = Tock

 QueryPerformanceCounter(Tock)

 DeltaTocks = Tock - LastTime

 SpeedDetectorPinPositivePrevious = SpeedDetectorPinPositive

 CavitationPinPositivePrevious = CavitationPinPositive

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.COMPort1.IsOpen = True Then

 'get the speed pin status

 SpeedDetectorPinPositive =

Stevedore.COMPort1.DsrHolding

 'get the cavitation pin status

 'positive means the instrument can receive greater

amounts of light than the negative status

 'which should happen when a vapor column appears

 CavitationPinPositive = Stevedore.COMPort1.CDHolding

 'get the speed controller pin status

 SpeedControlPinPositive = Stevedore.COMPort1.DtrEnable

 'get the laser fire pin status

 LaserFirePinPositive = Stevedore.COMPort1.RtsEnable

 Else

 'the port is not open, close the program

 ContinueExecution = False

317

 End If

 End SyncLock

 If ContinueExecution = False Then

 'signal a program exit

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End If

 'process the input pin status meanings

 'if the speed pin's current state and previous state are

different, increment the appropriate counter

 If SpeedDetectorPinPositive <> SpeedDetectorPinPositivePrevious

Then

 'speed pulse received, see if pin went high

 If SpeedDetectorPinPositive = True Then

 'the pin went positive

 'increment the speedpulsesup counter

 SpeedPulsesUp += 1

 Else

 'the pin went negative

 'increment the other counter

 SpeedPulsesDown += 1

 End If

 End If

 'do some speed processing: calculate the remaining 'sum' of

pulses

 RemainingFraction = Math.Exp(DecayConstant * CDbl(DeltaTocks))

 SpeedPulsesUp = SpeedPulsesUp * RemainingFraction

 SpeedPulsesDown = SpeedPulsesDown * RemainingFraction

 'process the cavitation status

 CavitationDetectedPrevious = CavitationDetected

 If CavitationPinPositive = True Then

 'cavitation detected? give it a timeout to make sure

 If CavitationPinPositive <> CavitationPinPositivePrevious

Then

 'new signal, start the countdown

 CavitationStartTime = Tock

 Else

 'continuing signal, see if the countdown has completed

 If Tock > (CavitationStartTime +

CavitationTimeoutTocks) Then

 'countdown has finished without sensing a non-

cavitation condition in the meantime

 CavitationDetected = True

 'log it if it's a first-time event

 If CavitationDetectedPrevious = False Then

 'first-time event, log the detection

 Lumberjack.SendToLog("Cavitation Detected!

Speed is " & CalculatedSpeed.ToString)

 End If

 End If

 End If

 Else

 'Cavitation not detected

 CavitationDetected = False

 'log termination of cavitation condition if it existed

 If CavitationDetectedPrevious = True Then

318

 'cavitation condition just stopped, log it

 Lumberjack.SendToLog("Cavitation Condition No Longer

Detected")

 End If

 End If

 'Read the Serial Port data, if it's time

 If Tock > LastTimeCheckedRead + TimeBetweenReads Then

 'check for data in the serial port

 Stevedore.MainPortReader()

 'update checked time

 LastTimeCheckedRead = Tock

 End If

 'Transmit data through the Speed Port (Mode 1 only)

 If LocalProgramMode = 1 Then

 SendData = False

 'check for write

 SyncLock Stevedore.MainPortWriterLock

 'see if there was a write in progress

 If Stevedore.SavedTXString <> "" Then

 'call the write routine

 SendData = True

 End If

 End SyncLock

 If Tock > LastTimeCheckedWrite + TimeBetweenWriteChecks

Then

 'time to pulse the x-mit routine

 SendData = True

 End If

 If SendData = True Then

 'write data

 Stevedore.MainPortWriter()

 'update time

 LastTimeCheckedWrite = Tock

 End If

 End If

 'calculate the speed

 CalculatedSpeed = SpeedLambda * (SpeedPulsesUp +

SpeedPulsesDown)

 'set speed to zero if below cutoff

 If CalculatedSpeed < SpeedZeroCutoff Then

 CalculatedSpeed = 0

 End If

 'update logged speed if the conditions are met

 'those include time and speed change

 If (Tock - LastRecordedSpeedTime) / Freq >

(MaxTimeBetweenSpeedRecordingTicks / 10000000) Then

 'it's time to log the speed

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 ElseIf CalculatedSpeed > StopSpeedValue Then

 'it is not stopped

319

 'check for standard delta

 If Math.Abs(CalculatedSpeed - LastRecordedSpeed) >

MaxDeltaSpeedRecording Then

 'Speed is different enough to update in the log

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 End If

 Else

 'it's currently stopped, see if it was before

 If LastRecordedSpeed > StopSpeedValue Then

 'wasn't stopped last time, log it

 Lumberjack.SendToLog("Speed Effectively Stopped")

 Lumberjack.SendToLog("Current Speed: " &

CalculatedSpeed.ToString)

 'update the speed recording time and value

 LastRecordedSpeed = CalculatedSpeed

 LastRecordedSpeedTime = Tock

 End If

 End If

 'Update display

 If Tock > LastTimeUpdated + TimeBetweenUpdates Then

 'update the last update time

 LastTimeUpdated = Tock

 'Send Values

 SyncLock Windowsill.RunBoxLock

 'speed

 Windowsill.DetectedSpeed = CalculatedSpeed

 'speed in range indicator

 Windowsill.ProperSpeed = TargetSpeedAcquired

 'cavitation

 Windowsill.Cavitation = CavitationDetected

 'laser fired indication

 If FiredLaser = True Then

 'laser was fired

 Windowsill.LaserFireIndicator = True

 'clear the flag once transmitted

 FiredLaser = False

 End If

 'Speed restart stuff

 Windowsill.RestartStatus = SpeedRestartStatus

 Windowsill.RestartTimeLeft = CLng(SpeedRestartTimeLeft)

 'autopulsing

 If StopAutopulsing = True Then

 'no autopulsing

 Windowsill.DisableAutomaticPulsing = True

 StopAutopulsing = False

 End If

 End SyncLock

 End If

 'Release Control

 Application.DoEvents()

 If (Tock - SpinnerStopTimeoutCounter) / Freq > 30 Then

 'timeout waiting for the spinner to halt

320

 'log it and move on

 Lumberjack.SendToLog("Timeout waiting for spinner to halt;

speed is " & CalculatedSpeed.ToString)

 Exit Do

 End If

 Loop While CalculatedSpeed > StopSpeedValue

 Application.DoEvents()

 'Close the Port

 Try

 'if the port was opened, close it

 If LocalPortOpen = True Then

 'log it

 Lumberjack.SendToLog("Attempting to Close the " &

PortUseString & " (" & LocalPortName & ")")

 'send final string to the port, if there is one

 'get any data

 If LocalProgramMode = 1 Then

 'this thread controls the port, get final data to send

 SyncLock Stevedore.MainPortWriterLock

 'get leftover string, if any

 LocalTXString = Stevedore.SavedTXString

 Stevedore.SavedTXString = ""

 End SyncLock

 SyncLock Windowsill.RunBoxLock

 'get any last commands

 LocalTXString = LocalTXString &

Windowsill.CommandToLaser

 Windowsill.CommandToLaser = ""

 End SyncLock

 'append a newline character

 LocalTXString = LocalTXString & LaserEOL

 Else

 'laser either on another port, disconnected, or ignored

 'send a newline character

 LocalTXString = LaserEOL

 End If

 Try

 'transmit any data

 If LocalTXString <> "" Then

 SyncLock Stevedore.SpeedPortLock

 Stevedore.COMPort1.Write(LocalTXString)

 End SyncLock

 End If

 Catch FinishedWriteException As Exception

 'log the issue

 Lumberjack.SendToLog("Exception in final write on " &

LocalPortName & ": " & FinishedWriteException.Message)

 End Try

 Thread.Sleep(250)

 'get all the data from the port, then close it

 SyncLock Stevedore.MainPortReaderLock

 'collect any text waiting to be logged

 LocalRXString = Stevedore.TempRXString

321

 Stevedore.TempRXString = ""

 End SyncLock

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.COMPort1.IsOpen = True Then

 'get the last bit of data from the port

 LocalRXString = LocalRXString &

Stevedore.COMPort1.ReadExisting()

 'the port is open, close it

 Stevedore.COMPort1.Close()

 Stevedore.COMPort1.Dispose()

 End If

 LocalPortOpen = Stevedore.COMPort1.IsOpen

 End SyncLock

 Thread.Sleep(1000)

 'log success/failure to close the port

 If LocalPortOpen = True Then

 'port is still open, log an error

 Lumberjack.SendToLog(PortUseString & " (" &

LocalPortName & ") did not close successfully")

 Else

 'port closed

 Lumberjack.SendToLog("Successfully Closed the " &

PortUseString & " (" & LocalPortName & ")")

 End If

 End If

 Catch SerialPortClosureProblem As Exception

 'log it

 Lumberjack.SendToLog("Exception while attempting to close the "

& PortUseString & " (" & LocalPortName & "): " & vbNewLine &

SerialPortClosureProblem.Message)

 End Try

 'send the output where it belongs

 If LocalRXString <> "" Then

 'log the final rx string

 Lumberjack.SendToLog("Final Text Received from the " &

PortUseString & " (" & LocalPortName & "): " & LocalRXString)

 'mirror it on the runbox

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserRX = Windowsill.LaserRX & LocalRXString

 End SyncLock

 'clear the string

 LocalRXString = ""

 End If

 Thread.Sleep(3000)

 'log final comments

 Lumberjack.SendToLog(Freq.ToString & " Tocks/second")

 Lumberjack.SendToLog(LiveTocks.ToString & " Tocks Live")

 Lumberjack.SendToLog(AllTocks.ToString & " Tocks Total")

 If AllTocks <> 0 Then

 'prevent divide by zero errors

 Lumberjack.SendToLog((100 * LiveTocks / AllTocks).ToString & "

% Live Time")

 End If

 If TotalLoops <> 0 Then

 'prevent divide by zero

322

 Lumberjack.SendToLog((AllTocks / TotalLoops).ToString & "

Tocks/MainLoop")

 End If

 'log the live fraction, if applicable

 If UsedAdvancedTiming = True Then

 'advanced timing has been applied

 Lumberjack.SendToLog("Number of Applications of the Advanced

Timing Feature: " & AdvancedTimingCounts.ToString)

 End If

 'log termination

 Lumberjack.SendToLog("Speed Port Module Stopping")

 'now perform final shutdown tasks

 Lumberjack.SendToLog("Kernel Sanders Says " & TotalLoops & "

Loops")

 'now exit the thread

 Lumberjack.SendToLog("DEBUG MSG: LookAheadTocks = " &

LookAheadTocks.ToString)

 Catch ThreadNeededKilling As ThreadAbortException

 'the thread was aborted

 Application.ExitThread()

 Catch BigException As Exception

 'something unhandled occurred, exit the program

 Lumberjack.SendToLog("Exception in " & Thread.CurrentThread.Name &

": " & BigException.Message & vbNewLine & "Details: " & vbNewLine &

BigException.ToString)

 MsgBox("An exception has occurred in " & Thread.CurrentThread.Name

& " and the program will shut down." & vbNewLine & BigException.Message, ,

"OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End Try

 Application.ExitThread()

 End Sub

 Private Shared Sub MainPortReader()

 'performs the read operations for the speed/laser port

 Dim LocalPortOpen As Boolean = False

 Dim LastRXTimeTicks As Long = 0

 Dim CharactersRead As Integer = 0

 Dim LocalRXChar(0) As Char

 Dim PreviousCharacterNewline As Boolean = False

 Dim LocalRXString As String = ""

 Dim CharactersRemain As Boolean = False

 Dim RXTimeoutToLogTicks As Long = 2500000

 Dim RXTag As String = ""

 'get variable data

 LocalRXChar(0) = CChar("")

 SyncLock Longshoreman.LaserPortLock

323

 If Longshoreman.LaserControlMode = 1 Then

 'laser on the speed control port

 RXTag = "RX from Laser: "

 Else

 'laser is on another port

 RXTag = "RX from Speed Control Port: "

 End If

 End SyncLock

 'load saved values

 SyncLock Stevedore.MainPortReaderLock

 LastRXTimeTicks = Stevedore.LastRXTimeTicksSaved

 PreviousCharacterNewline = Stevedore.NewlineRX

 LocalRXString = Stevedore.TempRXString

 End SyncLock

 'get data from the port

 SyncLock Stevedore.SpeedPortLock

 LocalPortOpen = Stevedore.COMPort1.IsOpen

 End SyncLock

 If LocalPortOpen = True Then

 'grab the characters buffered by the serialport one at a time

 Do

 'read one character from the port, if there are any

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.COMPort1.BytesToRead > 0 Then

 CharactersRead = Stevedore.COMPort1.Read(LocalRXChar,

0, 1)

 'remember the last rx read time

 LastRXTimeTicks = Now.Ticks

 Else

 'no characters read

 CharactersRead = 0

 End If

 End SyncLock

 If CharactersRead > 0 Then

 'characters were actually read, process the data

 'check for cr or lf

 If (LocalRXChar(0).ToString = vbCr) Or

(LocalRXChar(0).ToString = vbLf) Then

 'current character is a newline sort of thing

 If PreviousCharacterNewline = True Then

 'previous character was a newline sort of character

 'so is the current line

 'log it all and clear the previouscharacternewline

condition

 PreviousCharacterNewline = False

 LocalRXString = LocalRXString &

LocalRXChar(0).ToString

 'send it all to the runbox

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserRX = Windowsill.LaserRX &

LocalRXString

 End SyncLock

 'log it

 Lumberjack.SendToLog(RXTag & LocalRXString)

 'clear the string

 LocalRXString = ""

324

 Else

 'previous character was NOT a newline character

 'but the current line is

 'append it to the local rx string, but wait before

logging

 PreviousCharacterNewline = True

 LocalRXString = LocalRXString & LocalRXChar(0)

 End If

 ElseIf PreviousCharacterNewline = True Then

 'previous but not current character was a newline

 'send the previous data where they all belong

 'send it all to the runbox

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserRX = Windowsill.LaserRX &

LocalRXString

 End SyncLock

 'log it

 Lumberjack.SendToLog(RXTag & LocalRXString)

 'clear the local rx string and put the current

character in it

 LocalRXString = LocalRXChar(0).ToString

 PreviousCharacterNewline = False

 Else

 'neither the current nor the last character were

newlines

 'append the received character to the local rx string

 LocalRXString = LocalRXString & LocalRXChar(0).ToString

 End If

 '

 End If

 'check for remaining characters

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.COMPort1.BytesToRead > 0 Then

 'data remains

 CharactersRemain = True

 Else

 CharactersRemain = False

 'no data left

 End If

 End SyncLock

 Loop While CharactersRemain = True

 End If

 'check for time to dump the rx data to the log

 'only if it hasn't received anything in the timeout period

 If (Now.Ticks - LastRXTimeTicks) > RXTimeoutToLogTicks Then

 'last rx time was more than one timeout ago

 'if there's data to log, log it

 If LocalRXString <> "" Then

 'stuff to log

 'send it all to the runbox

 SyncLock Windowsill.RunBoxLock

 Windowsill.LaserRX = Windowsill.LaserRX & LocalRXString

 End SyncLock

 'log it

 Lumberjack.SendToLog(RXTag & LocalRXString)

 'clear the string

 LocalRXString = ""

325

 End If

 End If

 'save values

 SyncLock Stevedore.MainPortReaderLock

 Stevedore.LastRXTimeTicksSaved = LastRXTimeTicks

 Stevedore.NewlineRX = PreviousCharacterNewline

 Stevedore.TempRXString = LocalRXString

 End SyncLock

 End Sub

 Private Shared Sub MainPortWriter()

 'Performs the write operations when the speed controller port is shared

with the laser

 Dim LocalTXString As String = ""

 Dim LocalPortEncoding As System.Text.Encoding

 Dim FoundLimit As Boolean = False

 Dim SendLength As Integer = 0

 Dim ShortString As String = ""

 Dim BytesToSend() As Byte

 Dim NumberBytes As Integer = 0

 Dim SendRefObj As Object = 0

 Dim WriteNumber As Integer = 0

 Dim ClearForLaser As Boolean = False

 Dim RecentTX As Boolean = False

 'load values

 SyncLock CentralClass.FileOpsLock

 LocalPortEncoding = CentralClass.ComPortEncoding

 End SyncLock

 'load saved values

 SyncLock Stevedore.MainPortReaderLock

 LocalTXString = Stevedore.SavedTXString

 WriteNumber = Stevedore.SavedWriteNumber

 End SyncLock

 'tell fire control to hold off momentarily

 SyncLock Stevedore.SpeedPortLock

 Stevedore.ClearToFireLaser = False

 End SyncLock

 'get any data

 RecentTX = False

 SyncLock Windowsill.RunBoxLock

 LocalTXString = LocalTXString & Windowsill.CommandToLaser

 'got the data, clear the shared variable

 Windowsill.CommandToLaser = ""

 End SyncLock

 'only send when the output buffer is empty to ensure it goes in the

correct order

 If LocalTXString <> "" Then

 'set the transmission flag for later use

 RecentTX = True

 'check for an empty buffer

 SyncLock Stevedore.SpeedPortLock

326

 If Stevedore.COMPort1.BytesToWrite = 0 Then

 'empty buffer, write data

 'localportencoding

 If LocalPortEncoding.GetByteCount(LocalTXString) >

Stevedore.COMPort1.WriteBufferSize Then

 'too many characters

 'split the write in half in a loop until it fits

 FoundLimit = False

 SendLength = LocalTXString.Length

 Do

 SendLength = CInt(SendLength / 2)

 'see if the max bytes from that can be bufferred

 If LocalPortEncoding.GetMaxByteCount(SendLength) <

Stevedore.COMPort1.WriteBufferSize Then

 'it works

 FoundLimit = True

 ElseIf SendLength < 10 Then

 'it should be longer, something is really wrong

 'proceed anyway

 FoundLimit = True

 End If

 Loop While FoundLimit = False

 'get the string to send

 ShortString = LocalTXString.Substring(0, SendLength)

 'and remove it from the local tx string

 LocalTXString = LocalTXString.Remove(0, SendLength)

 'encode the string

 BytesToSend = LocalPortEncoding.GetBytes(ShortString)

 NumberBytes = BytesToSend.Length

 'now it's ready to write

 Else

 'everything can fit in the buffer immediately

 'encode the string

 BytesToSend = LocalPortEncoding.GetBytes(LocalTXString)

 NumberBytes = BytesToSend.Length

 'clear the local string

 LocalTXString = ""

 'ready to send

 End If

 'write it to the serial port output asynchronously

 SendRefObj = CObj(WriteNumber)

 Stevedore.COMPort1.BaseStream.BeginWrite(BytesToSend, 0,

NumberBytes, AddressOf Stevedore.FinishedComPort1Send, SendRefObj)

 WriteNumber += 1

 End If

 End SyncLock

 End If

 'save values

 SyncLock Stevedore.MainPortWriterLock

 Stevedore.SavedTXString = LocalTXString

 Stevedore.SavedWriteNumber = WriteNumber

 End SyncLock

 'Update Laser Fire Control

 ClearForLaser = True

 'check for request to fire

 If ClearForLaser = True Then

 SyncLock Windowsill.RunBoxLock

327

 If Windowsill.LaserTXDataCritical = False Then

 'laser not in firing sequence, laser is not clear to fire

 ClearForLaser = False

 End If

 End SyncLock

 End If

 'check saved data

 If ClearForLaser = True Then

 SyncLock Stevedore.MainPortWriterLock

 If Stevedore.SavedTXString <> "" Then

 'there's saved data to be transmitted, laser is not clear

to fire

 ClearForLaser = False

 End If

 End SyncLock

 End If

 'check available data

 If ClearForLaser = True Then

 SyncLock Windowsill.RunBoxLock

 If Windowsill.CommandToLaser <> "" Then

 'there's data left to be loaded and transmitted, laser is

not clear to fire

 ClearForLaser = False

 End If

 End SyncLock

 End If

 'check bufferred data

 If ClearForLaser = True Then

 SyncLock Stevedore.SpeedPortLock

 If Stevedore.COMPort1.BytesToWrite <> 0 Then

 'there's bufferred data in transmission, laser is not clear

to fire

 ClearForLaser = False

 End If

 End SyncLock

 End If

 If RecentTX = True Then

 'don't signal a clear line just yet

 ClearForLaser = False

 End If

 'send value to fire control

 SyncLock Stevedore.SpeedPortLock

 Stevedore.ClearToFireLaser = ClearForLaser

 End SyncLock

 End Sub

 Private Shared Sub FinishedComPort1Send(ByVal TXResult As

System.IAsyncResult)

 'gets called in asynchronous writes to the speed/laser port

 'when they finish transmitting data

 Try

 SyncLock Stevedore.SpeedPortLock

 'end the (completed) write

 Stevedore.COMPort1.BaseStream.EndWrite(TXResult)

 End SyncLock

328

 Catch ex As Exception

 'something went wrong

 'log the error

 Lumberjack.SendToLog("Exception in the result of transmission to

laser: " & ex.Message)

 Lumberjack.SendToLog("Exception Data: " &

TXResult.AsyncState.ToString())

 End Try

 End Sub

End Class

B.18 TESTENDER.DESIGNER.VB

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Partial Class TestEnder

 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.

 <System.Diagnostics.DebuggerNonUserCode()> _

 Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 Try

 If disposing AndAlso components IsNot Nothing Then

 components.Dispose()

 End If

 Finally

 MyBase.Dispose(disposing)

 End Try

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Dim resources As System.ComponentModel.ComponentResourceManager = New

System.ComponentModel.ComponentResourceManager(GetType(TestEnder))

 Me.EndButton = New System.Windows.Forms.Button

 Me.Label1 = New System.Windows.Forms.Label

 Me.SuspendLayout()

 '

 'EndButton

 '

 Me.EndButton.Location = New System.Drawing.Point(12, 32)

 Me.EndButton.Name = "EndButton"

 Me.EndButton.Size = New System.Drawing.Size(109, 23)

 Me.EndButton.TabIndex = 0

 Me.EndButton.Text = "End"

 Me.EndButton.UseVisualStyleBackColor = True

 '

 'Label1

329

 '

 Me.Label1.AutoSize = True

 Me.Label1.Location = New System.Drawing.Point(13, 9)

 Me.Label1.Name = "Label1"

 Me.Label1.Size = New System.Drawing.Size(106, 13)

 Me.Label1.TabIndex = 1

 Me.Label1.Text = "Click to End Program"

 '

 'TestEnder

 '

 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)

 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

 Me.ClientSize = New System.Drawing.Size(133, 67)

 Me.Controls.Add(Me.Label1)

 Me.Controls.Add(Me.EndButton)

 Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.Fixed3D

 Me.Icon = CType(resources.GetObject("$this.Icon"), System.Drawing.Icon)

 Me.MaximizeBox = False

 Me.MinimizeBox = False

 Me.Name = "TestEnder"

 Me.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide

 Me.Text = "Exiter"

 Me.ResumeLayout(False)

 Me.PerformLayout()

 End Sub

 Friend WithEvents EndButton As System.Windows.Forms.Button

 Friend WithEvents Label1 As System.Windows.Forms.Label

End Class

B.19 TESTENDER.VB

Public Class TestEnder

 'A debugging-oriented form that can only initiate a program shutdown

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles EndButton.Click

 'Ends the program

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 Lumberjack.SendToLog("Program Shutdown Initiated")

 Me.Hide()

 End Sub

 Private Sub TestEnder_FormClosing(ByVal sender As Object, ByVal e As

System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

 'Do not allow the form to be closed

 If e.CloseReason <> CloseReason.None Then

 e.Cancel = True

330

 End If

 End Sub

End Class

B.20 WINDOWSILL.VB

Option Explicit On

Option Strict On

Friend NotInheritable Class Windowsill

 'This class houses the thread, code, and related variables that operate the

RunBox

 '

 '

 Friend Shared Gooey As New Thread(AddressOf Windowsill.UserController)

 '

 '

 Private Shared FirstOrders As New Thread(AddressOf Windowsill.LaserInitTX)

 Private Shared InitComplete As Boolean = False

 '

 '

 Friend Shared LaserRX As String = ""

 Friend Shared CommandToLaser As String = ""

 Friend Shared LaserTXDataCritical As Boolean = False

 Friend Shared FireManualPulse As Boolean = False

 Friend Shared LogWritten As String = ""

 Friend Shared SpeedControlReady As Boolean = False

 Friend Shared LaserPortReady As Boolean = False

 Friend Shared RunBoxReady As Boolean = False

 Friend Shared DetectedSpeed As Double = 0

 Friend Shared ProperSpeed As Boolean = False

 Friend Shared Cavitation As Boolean = False

 Friend Shared LaserControlsUpdated As Boolean = False

 Friend Shared LaserFireIndicator As Boolean = False

 Friend Shared NextLaserPulsePower As Double = 0

 Friend Shared EstimatedLaserPulseDuration As Double = 0.000000001

 Friend Shared DelayBetweenPulses As Double = 1

 Friend Shared AutomaticPulsing As Boolean = False

 Friend Shared DisableAutomaticPulsing As Boolean = False

 Friend Shared SpeedControlsUpdated As Boolean = False

 Friend Shared DesiredSpeed As Double = 0

 Friend Shared RestartDelayTime As Double = 10

 Friend Shared CavitationAction As Long = 1

 Friend Shared RunButtonClicked As Boolean = False

 Friend Shared FinishedStartup As Boolean = False

 Friend Shared RestartStatus As Long = 0

 Friend Shared RestartTimeLeft As Long = 0

 Friend Shared StopAction As Boolean = False

 Friend Shared LaserStage As Long = 0

 Friend Shared RunBoxLock As New Object

331

 Private Shared Sub UserController()

 'User Interface routine

 'Handles I/O, updates on the RunBox

 Dim LocalExit As Boolean

 Dim MaxCharacters As Long

 Dim ProgramMode As Long

 Dim StartupDone As Boolean

 Dim LocalExecutionStage As Long

 Dim LastLaserPulseTime As Long

 Dim LaserPulseFlashDurationTicks As Long

 Dim LocalLaserFired As Boolean

 Dim ShowFireLaser As Boolean

 Dim LocalLaserPulsePower As Double

 Dim DetectedCavitation As Boolean

 Dim SpeedInRange As Boolean

 Dim LocalSpeed As Double

 Dim HighlightLaserReady As Boolean

 Dim LocalDisablePulsing As Boolean

 Dim LocalSetSpeed As Double

 Dim LocalRestartDelay As Double

 Dim LocalPulseDuration As Double

 Dim LocalPulseDelay As Double

 Dim LocalRestartStatus As Long

 Dim LocalRestartTimeLeft As Long

 Dim LocalRunButtonClicked As Boolean

 Dim StatusString As String

 Dim LocalCavitationBehavior As Long

 Dim LocalStopAction As Boolean

 Dim LocalLaserStage As Long = 0

 Dim LaserEOL As String = ""

 Dim LaserInitTimeout As Long = 1200000000

 Dim LaserInitTime As Long = 0

 Try

 'Program Startup

 Thread.CurrentThread.Name = "Gooey"

 StartupDone = False

 LocalLaserFired = False

 ShowFireLaser = False

 StatusString = ""

 FirePulse.Hide()

 InsertComment.Hide()

 RunBox.Hide()

 SendLaserCommand.Hide()

 'set the duration it ticks (=100 ns/tick) that the "FIRE LASER!"

signal is shown

 LaserPulseFlashDurationTicks = 2500000

 'first, set up the RunBox

 RunBox.FireLaserBox.BackColor = System.Drawing.SystemColors.Control

 'Crimson while firing

 RunBox.FireLaserBox.ForeColor =

System.Drawing.SystemColors.ControlLight

 'Yellow while firing

 'set the maximum number of characters in the log/laser output trace

 MaxCharacters = 4096

 'now set status, date, and time

 RunBox.DateBox.Text = Format(Now(), "dddd, MMMM d, yyyy")

332

 RunBox.TimeBox.Text = Format(Now(), "HH:mm:ss")

 RunBox.CurrentStatusBox.Text = "Starting Up"

 RunBox.CurrentSpeedBox.Text = "Not Available"

 'show output log filename

 SyncLock CentralClass.FileOpsLock

 RunBox.OutputFileBox.Text =

System.IO.Path.GetFullPath(CentralClass.Filename)

 End SyncLock

 RunBox.OutputFileBox.AutoEllipsis = True

 'Append the Log Trace Box with any current log text, then clear the

shared variable

 SyncLock Windowsill.RunBoxLock

 RunBox.LogTrace.AppendText(Windowsill.LogWritten)

 Windowsill.LogWritten = ""

 'set the initial state of the run button and startup

 Windowsill.RunButtonClicked = False

 Windowsill.FinishedStartup = False

 End SyncLock

 RunBox.LogTrace.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LogTrace.ScrollToCaret()

 'disable controls

 RunBox.ButtonSetSpeed.Enabled = False

 RunBox.ButtonStartSpeed.Enabled = False

 RunBox.ButtonStopSpeed.Enabled = False

 RunBox.ButtonSetLaser.Enabled = False

 RunBox.ButtonFireLaser.Enabled = False

 RunBox.ButtonSendLaserCommand.Enabled = False

 RunBox.RestartDelayInputBox.Enabled = False

 RunBox.SetSpeedInputBox.Enabled = False

 RunBox.OnCavitationContinue.Enabled = False

 RunBox.OnCavitationStop.Enabled = False

 RunBox.OnCavitationStopAndRestart.Enabled = False

 RunBox.AutomaticPulsingTrue.Enabled = False

 RunBox.AutomaticPulsingFalse.Enabled = False

 RunBox.LaserRxBox.Enabled = False

 RunBox.EstimatedDurationInputBox.Enabled = False

 RunBox.LaserDelayInputBox.Enabled = False

 'get the laser eol sequence

 SyncLock CentralClass.FileOpsLock

 LaserEOL = CentralClass.LaserNewlineString

 End SyncLock

 RunBox.Show()

 LocalExit = False

 Application.DoEvents()

 'get the operating mode

 SyncLock Longshoreman.LaserPortLock

 ProgramMode = Longshoreman.LaserControlMode

 End SyncLock

 'announce the readiness of the RunBox

 SyncLock Windowsill.RunBoxLock

 Windowsill.RunBoxReady = True

 End SyncLock

 'wait for other startup tasks to complete

333

 Do

 'check for speed control readiness

 SyncLock Windowsill.RunBoxLock

 If (Windowsill.LaserPortReady = True) And

(Windowsill.SpeedControlReady) = True Then

 'other threads ready, proceed to main loop

 StartupDone = True

 End If

 End SyncLock

 'update date

 If RunBox.DateBox.Text <> Format(Now(), "dddd, MMMM d, yyyy")

Then

 RunBox.DateBox.Text = Format(Now(), "dddd, MMMM d, yyyy")

 End If

 'update time

 If RunBox.TimeBox.Text <> Format(Now(), "HH:mm:ss") Then

 RunBox.TimeBox.Text = Format(Now(), "HH:mm:ss")

 End If

 'Append the Log Trace Box with any current log text, then clear

the shared variable

 SyncLock Windowsill.RunBoxLock

 If Windowsill.LogWritten <> "" Then

 RunBox.LogTrace.AppendText(Windowsill.LogWritten)

 Windowsill.LogWritten = ""

 'move the cursor to the end

 RunBox.LogTrace.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LogTrace.ScrollToCaret()

 End If

 End SyncLock

 'Check and see if the log trace has too many characters

 If RunBox.LogTrace.TextLength > MaxCharacters Then

 'too many characters in the log trace, eliminate enough

upstream characters to reduce its length to max

 RunBox.LogTrace.Text = RunBox.LogTrace.Text.Remove(0,

CInt(RunBox.LogTrace.TextLength - MaxCharacters))

 'move the cursor to the end

 RunBox.LogTrace.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LogTrace.ScrollToCaret()

 End If

 'Append the Laser Rx Box with any current text, then clear the

shared variable

 SyncLock Windowsill.RunBoxLock

 If Windowsill.LaserRX <> "" Then

 RunBox.LaserRxBox.AppendText(Windowsill.LaserRX)

 Windowsill.LaserRX = ""

 'move the cursor to the end

 RunBox.LaserRxBox.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LaserRxBox.ScrollToCaret()

 End If

 End SyncLock

 'Check and see if the Laser Rx Box has too many characters

 If RunBox.LaserRxBox.TextLength > MaxCharacters Then

 'too many characters in the laser rx box, eliminate enough

upstream characters to reduce its length to max

 RunBox.LaserRxBox.Text = RunBox.LaserRxBox.Text.Remove(0,

CInt(RunBox.LaserRxBox.TextLength - MaxCharacters))

 'move the cursor to the end

 RunBox.LaserRxBox.Select(RunBox.LaserRxBox.TextLength, 0)

 RunBox.LaserRxBox.ScrollToCaret()

334

 End If

 'check for program exit status

 'bypass startup if shutdown condition exists

 SyncLock CentralClass.ProgramExitLock

 LocalExit = CentralClass.ExitProgram

 End SyncLock

 If LocalExit = True Then StartupDone = True

 Application.DoEvents()

 Thread.Sleep(55)

 Loop While StartupDone = False

 'Transmit the laser init string

 If ProgramMode <> 0 Then

 'start the thread to transmit the string

 SyncLock Windowsill.RunBoxLock

 Windowsill.InitComplete = False

 LaserInitTime = Now.Ticks

 Windowsill.FirstOrders.Start()

 End SyncLock

 Else

 'indicate that laser init is complete

 SyncLock Windowsill.RunBoxLock

 Windowsill.InitComplete = True

 End SyncLock

 End If

 'make sure the laser init string completes transmission

 StartupDone = False

 Do

 'check for completion of transmission of the init string

 If ProgramMode <> 0 Then

 'the string should be transmitted; check on completion

 SyncLock Windowsill.RunBoxLock

 If Windowsill.InitComplete = True Then

 'laser init finished, proceed to main loop

 StartupDone = True

 End If

 End SyncLock

 If (StartupDone = False) And (Now.Ticks - LaserInitTime >

LaserInitTimeout) Then

 'too long waiting for the laser to finish init

 StartupDone = True

 Lumberjack.SendToLog("Error: Timeout in Laser

Initialization, Terminating")

 'abort program

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 LocalExit = True

 End If

 Else

 StartupDone = True

 End If

 'update date

 If RunBox.DateBox.Text <> Format(Now(), "dddd, MMMM d, yyyy")

Then

 RunBox.DateBox.Text = Format(Now(), "dddd, MMMM d, yyyy")

 End If

 'update time

335

 If RunBox.TimeBox.Text <> Format(Now(), "HH:mm:ss") Then

 RunBox.TimeBox.Text = Format(Now(), "HH:mm:ss")

 End If

 'Append the Log Trace Box with any current log text, then clear

the shared variable

 SyncLock Windowsill.RunBoxLock

 If Windowsill.LogWritten <> "" Then

 RunBox.LogTrace.AppendText(Windowsill.LogWritten)

 Windowsill.LogWritten = ""

 'move the cursor to the end

 RunBox.LogTrace.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LogTrace.ScrollToCaret()

 End If

 End SyncLock

 'Check and see if the log trace has too many characters

 If RunBox.LogTrace.TextLength > MaxCharacters Then

 'too many characters in the log trace, eliminate enough

upstream characters to reduce its length to max

 RunBox.LogTrace.Text = RunBox.LogTrace.Text.Remove(0,

CInt(RunBox.LogTrace.TextLength - MaxCharacters))

 'move the cursor to the end

 RunBox.LogTrace.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LogTrace.ScrollToCaret()

 End If

 'Append the Laser Rx Box with any current text, then clear the

shared variable

 SyncLock Windowsill.RunBoxLock

 If Windowsill.LaserRX <> "" Then

 RunBox.LaserRxBox.AppendText(Windowsill.LaserRX)

 Windowsill.LaserRX = ""

 'move the cursor to the end

 RunBox.LaserRxBox.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LaserRxBox.ScrollToCaret()

 End If

 End SyncLock

 'Check and see if the Laser Rx Box has too many characters

 If RunBox.LaserRxBox.TextLength > MaxCharacters Then

 'too many characters in the laser rx box, eliminate enough

upstream characters to reduce its length to max

 RunBox.LaserRxBox.Text = RunBox.LaserRxBox.Text.Remove(0,

CInt(RunBox.LaserRxBox.TextLength - MaxCharacters))

 'move the cursor to the end

 RunBox.LaserRxBox.Select(RunBox.LaserRxBox.TextLength, 0)

 RunBox.LaserRxBox.ScrollToCaret()

 End If

 'check for program exit status

 'bypass startup if shutdown condition exists

 SyncLock CentralClass.ProgramExitLock

 LocalExit = CentralClass.ExitProgram

 End SyncLock

 If LocalExit = True Then StartupDone = True

 Application.DoEvents()

 Thread.Sleep(55)

 Loop While StartupDone = False

 'finish starting up

 'only enter main mode if the program is not shutting down

 If LocalExit = False Then

 'enable applicable controls

336

 'first, enable speed controls EXCEPT the 'stop' button

 'it is only applicabe once started

 RunBox.ButtonStopSpeed.Enabled = False

 RunBox.OnCavitationContinue.Enabled = True

 RunBox.OnCavitationStop.Enabled = True

 RunBox.OnCavitationStopAndRestart.Enabled = True

 RunBox.SetSpeedInputBox.Enabled = True

 RunBox.RestartDelayInputBox.Enabled = True

 RunBox.ButtonSetSpeed.Enabled = True

 RunBox.ButtonStartSpeed.Enabled = True

 'next, enable laser controls IF the mode is correct

 If ProgramMode <> 0 Then

 'laser control enabled, so enable the controls

 'now enable the controls

 RunBox.AutomaticPulsingTrue.Enabled = True

 RunBox.AutomaticPulsingFalse.Enabled = True

 RunBox.LaserRxBox.Enabled = True

 RunBox.EstimatedDurationInputBox.Enabled = True

 RunBox.LaserDelayInputBox.Enabled = True

 RunBox.ButtonSetLaser.Enabled = True

 RunBox.ButtonFireLaser.Enabled = True

 RunBox.ButtonSendLaserCommand.Enabled = True

 End If

 SyncLock Windowsill.RunBoxLock

 LocalLaserPulsePower = Windowsill.NextLaserPulsePower

 End SyncLock

 'log the default selections

 Lumberjack.SendToLog("Default Control Speed: " &

RunBox.SetSpeedShowBox.Text)

 Lumberjack.SendToLog("Default Delay Before Restart: " &

RunBox.RestartDelayShowBox.Text)

 'log default action on cavitation

 If RunBox.OnCavitationContinue.Checked = True Then

 Lumberjack.SendToLog("Default Action on Cavitation:

Continue")

 ElseIf RunBox.OnCavitationStop.Checked = True Then

 Lumberjack.SendToLog("Default Action on Cavitation: Stop")

 ElseIf RunBox.OnCavitationStopAndRestart.Checked = True Then

 Lumberjack.SendToLog("Default Action on Cavitation: Stop

and Restart")

 Else

 'Unknown state

 Lumberjack.SendToLog("Unknown Default Action on

Cavitation")

 End If

 'log default value of start/stop speed control

 If RunBox.ButtonStartSpeed.Enabled = True Then

 Lumberjack.SendToLog("Default Speed Control State:

Started")

 Else

 Lumberjack.SendToLog("Default Speed Control State:

Stopped")

 End If

 'log laser setup if mode <> 0

 If ProgramMode <> 0 Then

 If RunBox.AutomaticPulsingTrue.Checked = True Then

337

 Lumberjack.SendToLog("Default Laser Pulse Control:

Automatic")

 ElseIf RunBox.AutomaticPulsingFalse.Checked = True Then

 Lumberjack.SendToLog("Default Laser Pulse Control:

Manual")

 Else

 'unknown state

 Lumberjack.SendToLog("Unknown Default Laser Pulse

Control")

 End If

 Lumberjack.SendToLog("Initial Laser Pulse Power: " &

Str(LocalLaserPulsePower))

 Lumberjack.SendToLog("Default Estimated Laser Pulse

Duration: " & RunBox.EstimatedDurationShowBox.Text)

 Lumberjack.SendToLog("Default Delay Between Laser Pulses:

" & RunBox.LaserDelayShowBox.Text)

 End If

 'log completion of user interface startup

 RunBox.CurrentStatusBox.Text = "Ready"

 Lumberjack.SendToLog("User Interface Startup Complete; Program

Ready")

 SyncLock Windowsill.RunBoxLock

 Windowsill.FinishedStartup = True

 End SyncLock

 'main loop

 Do

 SyncLock CentralClass.ProgramExitLock

 LocalExit = CentralClass.ExitProgram

 End SyncLock

 'update date

 If RunBox.DateBox.Text <> Format(Now(), "dddd, MMMM d,

yyyy") Then

 RunBox.DateBox.Text = Format(Now(), "dddd, MMMM d,

yyyy")

 End If

 'update time

 If RunBox.TimeBox.Text <> Format(Now(), "HH:mm:ss") Then

 RunBox.TimeBox.Text = Format(Now(), "HH:mm:ss")

 End If

 'Append the Log Trace Box with any current log text, then

clear the shared variable

 SyncLock Windowsill.RunBoxLock

 If Windowsill.LogWritten <> "" Then

 RunBox.LogTrace.AppendText(Windowsill.LogWritten)

 Windowsill.LogWritten = ""

 'move the cursor to the end

 RunBox.LogTrace.Select(RunBox.LogTrace.TextLength,

0)

 RunBox.LogTrace.ScrollToCaret()

 End If

 End SyncLock

 'Check and see if the log trace has too many characters

 If RunBox.LogTrace.TextLength > MaxCharacters Then

 'too many characters in the log trace, eliminate enough

upstream characters to reduce its length to max

 RunBox.LogTrace.Text = RunBox.LogTrace.Text.Remove(0,

CInt(RunBox.LogTrace.TextLength - MaxCharacters))

338

 'move the cursor to the end

 RunBox.LogTrace.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LogTrace.ScrollToCaret()

 End If

 'Append the Laser Rx Box with any current text, then clear

the shared variable

 SyncLock Windowsill.RunBoxLock

 If Windowsill.LaserRX <> "" Then

 RunBox.LaserRxBox.AppendText(Windowsill.LaserRX)

 Windowsill.LaserRX = ""

 'move the cursor to the end

RunBox.LaserRxBox.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LaserRxBox.ScrollToCaret()

 End If

 End SyncLock

 'Check and see if the Laser Rx Box has too many characters

 If RunBox.LaserRxBox.TextLength > MaxCharacters Then

 'too many characters in the laser rx box, eliminate

enough upstream characters to reduce its length to max

 RunBox.LaserRxBox.Text =

RunBox.LaserRxBox.Text.Remove(0, CInt(RunBox.LaserRxBox.TextLength -

MaxCharacters))

 'move the cursor to the end

 RunBox.LaserRxBox.Select(RunBox.LaserRxBox.TextLength,

0)

 RunBox.LaserRxBox.ScrollToCaret()

 End If

 'Check for updated globals to show in the runbox

 SyncLock Windowsill.RunBoxLock

 'see if the speed needs to be stopped

 LocalStopAction = Windowsill.StopAction

 'check for fired laser

 If Windowsill.LaserFireIndicator = True Then

 'laser was recently fired, show it

 LastLaserPulseTime = Now.Ticks

 LocalLaserFired = True

 'clear the flag

 Windowsill.LaserFireIndicator = False

 End If

 'check for laser firing readiness

 If ProgramMode > 0 Then

 'only if there's a laser to fire

 If Windowsill.AutomaticPulsing = False Then

 'set it yellow

 HighlightLaserReady = True

 ShowFireLaser = False

 ElseIf Windowsill.ProperSpeed = True Then

 'speed in range, set to yellow

 HighlightLaserReady = True

 ShowFireLaser = True

 Else

 'not ready, set to default color

 HighlightLaserReady = False

 ShowFireLaser = False

 End If

 End If

 'check for disabling of automatic pulsing

339

 If Windowsill.DisableAutomaticPulsing = True Then

 'disable automaticpulsing

 LocalDisablePulsing = True

 Windowsill.AutomaticPulsing = False

 Windowsill.DisableAutomaticPulsing = False

 End If

 'get speed, speed in range, and cavitation status

 LocalSpeed = Windowsill.DetectedSpeed

 SpeedInRange = Windowsill.ProperSpeed

 DetectedCavitation = Windowsill.Cavitation

 'get setspeed, restart delay, pulse duration, pulse

delay

 LocalSetSpeed = Windowsill.DesiredSpeed

 LocalRestartDelay = Windowsill.RestartDelayTime

 LocalPulseDuration =

Windowsill.EstimatedLaserPulseDuration

 LocalPulseDelay = Windowsill.DelayBetweenPulses

 'get next pulse power

 LocalLaserPulsePower = Windowsill.NextLaserPulsePower

 'get run and restart status

 LocalRestartStatus = Windowsill.RestartStatus

 LocalRestartTimeLeft = Windowsill.RestartTimeLeft

 LocalRunButtonClicked = Windowsill.RunButtonClicked

 LocalCavitationBehavior = Windowsill.CavitationAction

 'get laser fire sequence stage

 LocalLaserStage = Windowsill.LaserStage

 End SyncLock

 'if necessary, press stop

 If LocalStopAction = True Then

 RunBox.PressStopButton()

 'clear the variable demanding the stop

 SyncLock Windowsill.RunBoxLock

 Windowsill.StopAction = False

 End SyncLock

 End If

 If LocalDisablePulsing = True Then

 'continue to disable autopulsing

 RunBox.StopAutomaticPulsing()

 LocalDisablePulsing = False

 End If

 'show updated values

 'update the speed (includes padding/trimming on right hand

side)

 If RunBox.CurrentSpeedBox.Text <> LocalSpeed.ToString("E2")

Then

 RunBox.CurrentSpeedBox.Text = LocalSpeed.ToString("E2")

 End If

 'update the setspeed

 If RunBox.SetSpeedShowBox.Text <>

LocalSetSpeed.ToString("E2") Then

 RunBox.SetSpeedShowBox.Text =

LocalSetSpeed.ToString("E2")

 End If

 'update the restart delay

 If RunBox.RestartDelayShowBox.Text <>

LocalRestartDelay.ToString("E2") Then

340

 RunBox.RestartDelayShowBox.Text =

LocalRestartDelay.ToString("E2")

 End If

 'update the pulse duration

 If RunBox.EstimatedDurationShowBox.Text <>

LocalPulseDuration.ToString("E2") Then

 RunBox.EstimatedDurationShowBox.Text =

LocalPulseDuration.ToString("E2")

 End If

 If FirePulse.DurationDisplay.Text <>

LocalPulseDuration.ToString("E6") Then

 FirePulse.DurationDisplay.Text =

LocalPulseDuration.ToString("E6")

 End If

 'update pulse delay

 If RunBox.LaserDelayShowBox.Text <>

LocalPulseDelay.ToString("E2") Then

 RunBox.LaserDelayShowBox.Text =

LocalPulseDelay.ToString("E2")

 End If

 'update pulse power

 If RunBox.NextPulsePowerShowBox.Text <>

LocalLaserPulsePower.ToString("E2") Then

 RunBox.NextPulsePowerShowBox.Text =

LocalLaserPulsePower.ToString("E2")

 End If

 If FirePulse.PowerDisplay.Text <>

LocalLaserPulsePower.ToString("E6") Then

 FirePulse.PowerDisplay.Text =

LocalLaserPulsePower.ToString("E6")

 End If

 'update the indicators

 If DetectedCavitation = True Then

 'cavitation has been detected

 If RunBox.CavitationBox.Text <> "YES" Then

 'update the box

 RunBox.CavitationBox.Text = "YES"

 RunBox.CavitationBox.BackColor = Color.Maroon

 End If

 Else

 'cavitation sensor shows no cavitation

 If RunBox.CavitationBox.Text <> "NO" Then

 'update the box

 RunBox.CavitationBox.Text = "NO"

 RunBox.CavitationBox.BackColor = Color.Navy

 End If

 End If

 If SpeedInRange = True Then

 'the speed is in range

 If RunBox.SpeedInRangeBox.Text <> "YES" Then

 'update the box

 RunBox.SpeedInRangeBox.Text = "YES"

 RunBox.SpeedInRangeBox.BackColor = Color.DarkGreen

 End If

 Else

 If RunBox.SpeedInRangeBox.Text <> "NO" Then

 'update the box

 RunBox.SpeedInRangeBox.Text = "NO"

341

 RunBox.SpeedInRangeBox.BackColor = Color.Navy

 End If

 End If

 'what to show in the Fire Laser! box

 If HighlightLaserReady = True Then

 'speed in range, set to yellow

 If RunBox.FireLaserBox.ForeColor <> Color.Yellow Then

 RunBox.FireLaserBox.ForeColor = Color.Yellow

 End If

 Else

 'not ready, set to default color

 If RunBox.FireLaserBox.ForeColor <>

System.Drawing.SystemColors.ControlLight Then

 RunBox.FireLaserBox.ForeColor =

System.Drawing.SystemColors.ControlLight

 End If

 End If

 'show laser fire status

 If LocalLaserFired = True Then

 'laser has recently been fired

 'check timeout

 If (Now.Ticks - LastLaserPulseTime) >

LaserPulseFlashDurationTicks Then

 'timed out

 LocalLaserFired = False

 'clear the flash

 RunBox.FireLaserBox.BackColor =

System.Drawing.SystemColors.Control

 Else

 If RunBox.FireLaserBox.BackColor <> Color.Crimson

Then

 'set it to flash crimson

 RunBox.FireLaserBox.BackColor = Color.Crimson

 End If

 End If

 End If

 'show the current status

 If LocalRunButtonClicked = True Then

 'current status is running

 StatusString = "Running"

 'append it with other tags

 'display speed in range

 If SpeedInRange = True Then

 StatusString = StatusString & ", Speed in Target

Range"

 Else

 StatusString = StatusString & ", Adjusting Speed"

 End If

 If LocalRestartStatus = 0 Then

 'running normally

 'check for laser readiness

 If ProgramMode > 0 Then

 If ShowFireLaser = True Then

 'laser control active

 StatusString = StatusString & ", Ready to

Fire Laser"

 End If

342

 End If

 ElseIf LocalRestartStatus = 1 Then

 'stopping

 StatusString = StatusString & ", Stopping"

 ElseIf LocalRestartStatus = 2 Then

 'paused

 StatusString = StatusString & ", Waiting for

Restart, " & LocalRestartTimeLeft & " s Remaining"

 End If

 Else

 'current status is stopped

 StatusString = "Not Running, Ready"

 End If

 If LocalLaserStage <> 0 Then

 'reflect the laser firing sequence

 StatusString = StatusString & ", Laser Pulse at Stage "

& LocalLaserStage.ToString

 End If

 'show status text

 If RunBox.CurrentStatusBox.Text <> StatusString Then

 RunBox.CurrentStatusBox.Text = StatusString

 End If

 'stop if cavitation detected in that mode

 If DetectedCavitation = True Then

 'cavitated, check the mode

 If LocalCavitationBehavior = 1 Then

 'stop

 RunBox.PressStopButton()

 End If

 End If

 Application.DoEvents()

 Thread.Sleep(55)

 Loop While LocalExit = False

 End If

 'shutdown routine

 'disable all controls

 RunBox.ButtonSetSpeed.Enabled = False

 RunBox.ButtonStartSpeed.Enabled = False

 RunBox.ButtonStopSpeed.Enabled = False

 RunBox.ButtonSetLaser.Enabled = False

 RunBox.ButtonFireLaser.Enabled = False

 RunBox.ButtonSendLaserCommand.Enabled = False

 RunBox.ButtonEnd.Enabled = False

 RunBox.ButtonInsertComment.Enabled = False

 RunBox.ButtonHelp.Enabled = False

 RunBox.RestartDelayInputBox.Enabled = False

 RunBox.SetSpeedInputBox.Enabled = False

 RunBox.OnCavitationContinue.Enabled = False

 RunBox.OnCavitationStop.Enabled = False

 RunBox.OnCavitationStopAndRestart.Enabled = False

 RunBox.AutomaticPulsingTrue.Enabled = False

 RunBox.AutomaticPulsingFalse.Enabled = False

 RunBox.EstimatedDurationInputBox.Enabled = False

 RunBox.LaserDelayInputBox.Enabled = False

 'reset colors and status boxes

343

 RunBox.CurrentStatusBox.Text = "Shutting Down"

 RunBox.FireLaserBox.BackColor = System.Drawing.SystemColors.Control

 RunBox.FireLaserBox.ForeColor =

System.Drawing.SystemColors.ControlLight

 RunBox.CavitationBox.Text = "NO"

 RunBox.CavitationBox.ForeColor = Color.Yellow

 RunBox.CavitationBox.BackColor = Color.Navy

 RunBox.SpeedInRangeBox.Text = "NO"

 RunBox.SpeedInRangeBox.ForeColor = Color.Yellow

 RunBox.SpeedInRangeBox.BackColor = Color.Navy

 'hide additional boxes

 FirePulse.Hide()

 InsertComment.Hide()

 SendLaserCommand.Hide()

 HelpBox.Hide()

 Application.DoEvents()

 'wait for the right stage

 Do

 'get execution stage

 SyncLock CentralClass.ProgramExitLock

 LocalExecutionStage = CentralClass.ExecutionStage

 End SyncLock

 'update the speed

 SyncLock Windowsill.RunBoxLock

 LocalSpeed = Windowsill.DetectedSpeed

 End SyncLock

 If RunBox.CurrentSpeedBox.Text <> LocalSpeed.ToString("E2")

Then

 RunBox.CurrentSpeedBox.Text = LocalSpeed.ToString("E2")

 End If

 'update date

 If RunBox.DateBox.Text <> Format(Now(), "dddd, MMMM d, yyyy")

Then

 RunBox.DateBox.Text = Format(Now(), "dddd, MMMM d, yyyy")

 End If

 'update time

 If RunBox.TimeBox.Text <> Format(Now(), "HH:mm:ss") Then

 RunBox.TimeBox.Text = Format(Now(), "HH:mm:ss")

 End If

 'Append the Log Trace Box with any current log text, then clear

the shared variable

 SyncLock Windowsill.RunBoxLock

 If Windowsill.LogWritten <> "" Then

 RunBox.LogTrace.AppendText(Windowsill.LogWritten)

 Windowsill.LogWritten = ""

 'move the cursor to the end

 RunBox.LogTrace.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LogTrace.ScrollToCaret()

 End If

 End SyncLock

 'Check and see if the log trace has too many characters

 If RunBox.LogTrace.TextLength > MaxCharacters Then

 'too many characters in the log trace, eliminate enough

upstream characters to reduce its length to max

 RunBox.LogTrace.Text = RunBox.LogTrace.Text.Remove(0,

CInt(RunBox.LogTrace.TextLength - MaxCharacters))

 'move the cursor to the end

344

 RunBox.LogTrace.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LogTrace.ScrollToCaret()

 End If

 'Append the Laser Rx Box with any current text, then clear the

shared variable

 SyncLock Windowsill.RunBoxLock

 If Windowsill.LaserRX <> "" Then

 RunBox.LaserRxBox.AppendText(Windowsill.LaserRX)

 Windowsill.LaserRX = ""

 'move the cursor to the end

 RunBox.LaserRxBox.Select(RunBox.LogTrace.TextLength, 0)

 RunBox.LaserRxBox.ScrollToCaret()

 End If

 End SyncLock

 'Check and see if the Laser Rx Box has too many characters

 If RunBox.LaserRxBox.TextLength > MaxCharacters Then

 'too many characters in the laser rx box, eliminate enough

upstream characters to reduce its length to max

 RunBox.LaserRxBox.Text = RunBox.LaserRxBox.Text.Remove(0,

CInt(RunBox.LaserRxBox.TextLength - MaxCharacters))

 'move the cursor to the end

 RunBox.LaserRxBox.Select(RunBox.LaserRxBox.TextLength, 0)

 RunBox.LaserRxBox.ScrollToCaret()

 End If

 Application.DoEvents()

 Thread.Sleep(55)

 Loop While LocalExecutionStage < 1050

 'Dispose of the forms

 'Dispose the FirePulse box

 Try

 FirePulse.Hide()

 FirePulse.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the Helpbox

 Try

 HelpBox.Hide()

 HelpBox.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the InsertComment box

 Try

 InsertComment.Hide()

 InsertComment.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the Runbox

 Try

 RunBox.Hide()

 RunBox.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 'Dispose the SendLaserCommand box

 Try

345

 SendLaserCommand.Hide()

 SendLaserCommand.Dispose()

 Catch ex As ObjectDisposedException

 End Try

 Application.DoEvents()

 'final shutdown steps

 Lumberjack.SendToLog("User Interface Stopping")

 RunBox.Hide()

 'make sure the laser init thread terminates

 SyncLock Windowsill.RunBoxLock

 Try

 'terminate the laser init thread

 If Windowsill.FirstOrders.Join(100) = False Then

 Windowsill.FirstOrders.Abort()

 End If

 Catch ex As Exception

 'nothing to do here

 End Try

 End SyncLock

 Catch ThreadNeededKilling As ThreadAbortException

 'the thread was aborted

 Application.ExitThread()

 'make sure the laser init thread terminates

 SyncLock Windowsill.RunBoxLock

 Try

 'terminate the init thread

 Windowsill.FirstOrders.Abort()

 Catch ex As Exception

 'nothing to do here

 End Try

 End SyncLock

 Catch BigException As Exception

 'something got really screwed up

 Lumberjack.SendToLog("Exception in " & Thread.CurrentThread.Name &

": " & BigException.Message & vbNewLine & "Details: " & vbNewLine &

BigException.ToString)

 MsgBox("An exception has occurred in " & Thread.CurrentThread.Name

& " and the program will shut down." & vbNewLine & BigException.Message, ,

"OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 'make sure the laser init thread terminates

 SyncLock Windowsill.RunBoxLock

 Try

 'terminate the init thread

 Windowsill.FirstOrders.Abort()

 Catch ex As Exception

 'nothing to do here

 End Try

 End SyncLock

 End Try

346

 Application.ExitThread()

 End Sub

 Private Shared Sub LaserInitTX()

 'transmits the initialization commands to the laser, one at a time

 'it is expected that this will be spun off in its own thread

 Dim FullString As String = ""

 Dim LaserInitString(0) As String

 Dim LaserEOL As String = ""

 Dim n As Integer = 0

 Dim TotalCommands As Integer = 0

 Dim WaitTime As Integer = 500

 Dim ProceedStatus As Boolean = False

 Dim LocalClearLine As Boolean = False

 Dim FirstDelay As Boolean = False

 Try

 'set the startup conditions

 Thread.CurrentThread.Name = "FireStarter"

 SyncLock Windowsill.RunBoxLock

 Windowsill.InitComplete = False

 'lock down the laser dataline

 Windowsill.LaserTXDataCritical = True

 End SyncLock

 'get the laser end-of-line character

 SyncLock CentralClass.FileOpsLock

 LaserEOL = CentralClass.LaserNewlineString

 End SyncLock

 'set the laser initialization string as a sequence of commands

 n = 0

 LaserInitString(n) = LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "E=1" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "CDRH=1" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "CW=1" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "P=100" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "CW=0" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "L=1" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

347

 LaserInitString(n) = "?HID" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "?S" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "?INT" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "?HH" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "?FL" & LaserEOL

 n += 1

 ReDim Preserve LaserInitString(n)

 LaserInitString(n) = "CAL=4" & LaserEOL

 TotalCommands = UBound(LaserInitString)

 'assemble the full string

 FullString = ""

 For n = 0 To TotalCommands

 FullString = FullString & LaserInitString(n) & vbNewLine

 Next

 'log the transmission

 Lumberjack.SendToLog("Transmitting the Following Laser

Initialization Sequence: " & FullString)

 Application.DoEvents()

 'transmit the string, one command at a time

 For n = 0 To TotalCommands

 ProceedStatus = False

 FirstDelay = False

 'wait for the line to clear, then xmit command n

 Do

 If FirstDelay = False Then

 'inserts a delay from the discovery of a clear line

 'check the statuses

 'check for a clear line

 SyncLock Stevedore.SpeedPortLock

 LocalClearLine = Stevedore.ClearToFireLaser

 End SyncLock

 'then check for an empty buffer

 If LocalClearLine = True Then

 SyncLock Windowsill.RunBoxLock

 If Windowsill.CommandToLaser = "" Then

 'good to go

 FirstDelay = True

 End If

 End SyncLock

 End If

 'insert the first delay if ready

 If FirstDelay = True Then

 'play nicely, and take a nap

 Application.DoEvents()

 Thread.Sleep(WaitTime)

348

 Application.DoEvents()

 End If

 Else

 'passed the first delay, continue

 'check the line status

 SyncLock Stevedore.SpeedPortLock

 LocalClearLine = Stevedore.ClearToFireLaser

 End SyncLock

 SyncLock Windowsill.RunBoxLock

 If Windowsill.CommandToLaser = "" And

LocalClearLine = True Then

 ProceedStatus = True

 'transmit

 Windowsill.CommandToLaser =

Windowsill.CommandToLaser & LaserInitString(n)

 End If

 End SyncLock

 End If

 'play nicely

 Application.DoEvents()

 Thread.Sleep(1)

 Application.DoEvents()

 Loop While ProceedStatus = False

 'add a second delay post-transmission

 Application.DoEvents()

 Thread.Sleep(WaitTime)

 Application.DoEvents()

 Next

 'finish up

 SyncLock Windowsill.RunBoxLock

 Windowsill.InitComplete = True

 Windowsill.LaserTXDataCritical = False

 End SyncLock

 Catch ThreadNeededKilling As ThreadAbortException

 'the thread was aborted

 Application.ExitThread()

 Catch BigException As Exception

 'something got really screwed up

 Lumberjack.SendToLog("Exception in " & Thread.CurrentThread.Name &

": " & BigException.Message & vbNewLine & "Details: " & vbNewLine &

BigException.ToString)

 MsgBox("An exception has occurred in " & Thread.CurrentThread.Name

& " and the program will shut down." & vbNewLine & BigException.Message, ,

"OUCH!")

 SyncLock CentralClass.ProgramExitLock

 CentralClass.ExitProgram = True

 End SyncLock

 End Try

 Application.ExitThread()

 End Sub

End Class

349

B.21 USERGUIDE.TXT

SpeedControl User's Guide

================

Contents

================

1. Don't Sue Me. Don't Blame Me, Either.

2. Introduction

3. Ports and Connections

4. Program Startup & Shutdown

5. Program Operation

 A. Speed Control

 B. Laser Control

6. Final Remarks

================

1. Liability

================

The User agrees to indemnify the Program Author against any and all damages

resulting from any direct or indirect use or misuse of the program. The User

shall bear any and all responsibility for the use and/or misuse of the Program.

The Program comes 'As-Is' without any warranty of any kind, express or implied,

including suitability for a given purpose. Use of the Program is at the User's

own risk.

The Program is *NOT* to be used for, with, or in conjunction with any kind of

illicit, unethical, or illegal activity.

================

2. Introduction

================

The SpeedContral Program is designed to be used for the control and basic data

acquisition of the Centrifugal Tensioned Metastable Fluid Detector (CTMFD)

Experiment in the Nuclear Heat Transfer Systems Laboratory at Texas A&M

University. It controls the rotational speed of the CTMFD apparatus, issues

pulses to the laser system (if connected), and maintains a log of the Program's

activities as well as certain sensor readings.

The primary interface of the Program to the Experiment is through the

Computer's RS-232 serial port(s). The speed controller box, along with the

applicable sensors and a laser pulse line, are connected to a primary serial

350

port. A laser system, if used, may be connected to the data lines of the

primary serial port as well; however, the Program also allows it to be

connected through a second RS-232 serial port if the Computer supports it.

The Goal of the Program is fine control of the Experiment's rotational speed

and the proper issuance of Laser Pulses in order to find the minimum Laser

Pulse Energy that can induce cavitation in the Experiment.

The Program requires a Computer with Windows 2000 or newer, and the .NET

Framework 2.0. A modern system with at least two processing cores is highly

recommended.

The Laser Control features target a 100 mW Coherent CUBE-series laser system,

and may not be compatible with other power levels or systems.

================

3. Ports and Connections

================

The Program will use either one (1) or two (2) RS-232 Serial Ports on the

Computer.

The Primary Serial Port should have its signal lines connected as follows:

 1. GND: Common Signal Ground

 2. RTS: Laser Fire Signal

 3. DTR: Speed Controller Signal

 4. DSR: Speed Sensor Signal

 5. DCD: Cavitation Sensor Signal

If a Laser System is used it may be connected to the Primary Serial Port or to

a Secondary Serial Port. In either case, its lines should be connected to the

port as follows:

 1. GND: Common Signal Ground

 2. TXD: Data TO Laser Signal

 3. RXD: Data FROM Laser Signal

All other lines on the Serial Port(s) are unused.

Aside from the Data (TXD and RXD) and Ground (GND) lines, a Positive (+) signal

on the line is used internally as a Boolean 'True' and a Negative (-) signal is

interpreted as a Boolean 'False' in the same manner. RS-232 standard voltages

apply. The hardware default should be a Negative voltage on every line except

Ground.

================

4. Program Startup & Shutdown

================

On Startup, a dialog will appear giving the User a choice of Serial Ports found

in the system for use as the (Primary) Controller Port and a Laser Port. The

User should select (from the list) the Serial Port that is applicable for each

connection. For example, if the Speed Controller is connected to COM2, then

COM2 should be selected for the Controller port. If a Laser System is

351

connected to that port as well, then COM2 should also be selected for the Laser

Port (it does not need to be connected to the same port). If no laser system

is used, then the Laser port should be indicated as 'None' in the list. The

proper Port Speed must also be chosen from the list.

The User will also be able to select a Log file for use with the Program. If

it exists, it may either be appended or completely overwritten, depending on

the selection made by the User. It will be written as a standard text file, so

the extension .TXT is highly recommended.

The User may also enable the "Advanced Timing" Feature at the Program's

startup; that option will not appear later on. If the checkbox is checked,

then the Program's speed measurement will potentially be affected. The Feature

only comes into play if it detects chunks of missing execution time in the

Program; that can be the result of preemption in a multitasking environment.

As the speed is determined by counting changes in an unbufferred serial port

control line, such chunks of 'dead time' may have serious effects on the

calculated speed's value. If the chunks are large enough, complete cycles of

changes will be lost and the speed will be underreported. The Feature combats

that by finding chunks of such 'dead time' and excluding them from

consideration.

When all the selections are correct and the User is ready, the User should

click on the 'OK' button to proceed to the main part of the Program.

The Program may be ended by clicking on 'Exit' in the Startup form or by

clicking on 'End' (and confirming the choice to exit) when the main part of the

Program is running. All ports and files in use will be closed, and the Program

will terminate. The Program may also terminate if it encounters an error.

================

5. Program Operation

================

Once the User proceeds to the main part of the Program, a number of options are

given in the form. On the top of the main form, there is an information array.

This includes the current time, day, speed, log file, and status. It also has

color-coded indicators that show whether or not the speed is controlled and

within bounds of the desired range as well as a cavitation indicator. Below

the information array, speed controls take up space on the left, and laser

controls take up space on the right. On the bottom left is a box showing the

recently added data to the log file. On the bottom left there are three

buttons: Insert Comment, Help, and End. Clicking on End will close the

Program, once the User confirms. The Help Button brings up the User's Guide.

The Insert Comment button brings up a window that allows the User to type in a

comment and insert it into the log file. Clicking on OK will send whatever is

in the box immediately to the log, and will close the window. Clicking on

Cancel or the Close Button will close the window without sending anything to

the log.

The Speed and Laser controls are discussed in their own sections below.

5.A. Speed Control

================

352

There are a number of controls available in the Speed Controls area. On the

left, the User may enter the desired speed for the Experiment. The current set

speed is shown immediately below the entry box; no changes are made until the

User clicks on the 'Set' button in the Speed Controls area.

The User has a choice of three things to do in the event cavitation is detected

in the Experiment. The first option is to ignore it and continue running. The

second option is to stop (just as if the User clicked on the Stop button while

running). The third option, Stop + Restart, halts the Experiment for the

amount of time set in the Restart Delay option, and then resumes to the desired

speed. The Restart Delay is the amount of time, in seconds, that the

Experiment will be held at zero speed until it resumes maintaining the desired

speed. No changes to any of those values will be used until the User clicks on

the 'Set' button.

The two buttons on the bottom right of the Speed Controls area will start and

stop the Experiment. Once the 'Start' button is clicked, it should become

unavailable (and 'Stop' will become available), and the Program will begin

controlling the speed of the Experiment. Clicking on 'Stop' will end this; it

will become unavailable while 'Start' becomes available again, and the

Experiment should halt.

The User should be aware of the special values that exist for the set speed.

Any valid negative value below -1 will drive the speed control output pin high

when the Experiment is Started or Running. This should run the Experiment at

its maximum possible speed; however, the speed will never be "In Range" when

this feature is used. Values between -1 and 0 will force the fraction of time

that the speed control pin is high to the negative of that value; for example,

setting it to -0.25 will set the speed control pin to be in the high state 25%

of the time. As with values less than or equal to -1, the speed will never be

"In Range" for these values. In addition, values for the set speed between 0

and 5 (inclusive) are not considered to have stable resulting speeds.

Therefore, in those ranges, the speed will not be considered "In Range"

regardless of how close it is to the desired value. It should be noted that

automatic laser pulses will not be issued for those speed values as a result of

this.

5.B. Laser Control

================

The Laser Controls area has controls for a laser system, if connected. If the

Laser Port was selected as 'None' then the entire area will be unavailable. At

the bottom of the area there is a box showing the text received from the laser,

if any.

As with the Speed Control area, many of the settings do not take effect until

the User clicks on the 'Set' button in the Laser Controls Area. The Estimated

Duration and Delay values are set that way. Enabling of automatic pulsing also

requires the User to click on the 'Set' button; however, if the User clicks on

'No' for Automatic Pulsing, it is immediately disabled.

The Estimated Duration value is meant to be an estimate of the duration of the

laser pulse. It is not measured, and not used for any computations. It is

simply stored in the log. However, it will only allow nonzero positive values

to be entered.

353

The Delay value will also only allow positive nonzero values to be entered.

It, however, is used by the Program. It defines the minimum time delay (in

seconds) between the issuance of automated laser pulses.

The Next Pulse Power value is the laser power demanded of the laser for the

next pulse. It will increment automatically when Automatic Pulsing is used.

It can be set from the 'Fire Pulse' window.

When Automatic Pulsing is used, the Program will wait for the Experiment's

speed to be controlled within range, and will automatically issue pulses to the

laser system with the set delay between pulses. Each time, the pulse power

will be incremented until one of four things occur: Stopping the Experiment,

Disabling Automatic Pulsing, Cavitation, or an out-of bounds pulse power.

Automatic Pulsing will be disabled not only if the 'No' button is clicked, but

also if the User clicks on the 'Fire Pulse' or 'Send Command to Laser' buttons

as well.

The 'Send Command to Laser' button brings up a window that allows the User to

enter any text and send it to the laser system. If there is a current

operation prohibiting it, the User will be notified and may try to send the

command again. An additional button, "Insert EOL" will insert a <CR> character

(ASCII code 0xD, 13 in decimal) at the caret location or immediately before the

selected text. Without explicit inclusion, no end-of-line characters will be

included in the transmission. WARNING -- ANY COMMAND MAY BE SENT TO THE LASER

SYSTEM, INCLUDING THOSE THAT HAVE THE POTENTIAL TO CAUSE DAMAGE OR INJURY. YOU

CAN **REALLY** SCREW UP AN EXPENSIVE PIECE OF EQUIPMENT OR CAUSE BODILY HARM IF

YOU DON'T USE CARE WHEN ISSUING COMMANDS.

The 'Fire Pulse' button brings up a window that allows the User to manually

issue a pulse to the laser as well as to modify the values for laser power and

estimated pulse duration. As with many other Program settings, these do not

take effect until the User clicks on the 'Set Values' button. The 'FIRE'

button will *NOT* set the values. The User may also enter a Comment for the

log that goes with the manually-issued pulse. Clicking on the 'FIRE' button

will disable automatic pulsing and issue the manual pulse.

The Laser Control area has an indicator that reflects the current laser

operation. If automatic pulsing is disabled, or, if it is enabled and the

speed is in range, it will display 'FIRE LASER' in the indicator. It will

flash once a pulse has been issued, whether automatically or manually.

================

6. Final Remarks

================

This Program is resource intensive. It is *HIGHLY* recommended that the

Computer system have at least TWO CPU cores and is not running anything aside

from the Program. It is multithreaded, and one of its threads will use every

available CPU cycle it can. This is so that it can read and write to the

serial ports thousands of times per second.

Since Windows is a preemptive multitasking system, the speed readout *MAY* be

inaccurate. I have not closely examined this. If the thread 'misses' a

cyclical change in the speed readout pin, it will not give a fully accurate

measurement. A higher-performing system may reduce that vulnerability. The

Advanced Timing Feature is designed to alleviate this issue; however, it may

introduce its own degree of error.

354

The Program uses the Win32 high-resolution performance counter. On some

systems, this may be erratic. Certain multi-core systems can see issues if the

threads get moved from core to core. Other systems may need to disable certain

power-saving features if the system's high-resolution performance counter is

tied, for example, to a CPU frequency that gets adjusted.

This Program was written in Microsoft Visual Basic 2005 Express.

================

THE END

================

355

APPENDIX C

STAR-CCM+ JAVA MACROS

356

This Appendix includes the two Java macros used to run the Star-CCM+

simulation and to assist in data extraction.

C.1 GETOUT.JAVA

// STAR-CCM+ macro: getout.java

package macro;

import java.util.*;

import star.common.*;

import star.base.neo.*;

import star.vis.*;

import star.base.report.*;

import star.motion.*;

public class getout extends StarMacro {

 public void execute() {

 execute0();

 }

 private void execute0() {

 Simulation simulation_0 =

 getActiveSimulation();

 PointPart pointPart_0 =

 simulation_0.getPartManager().createPointPart(new NeoObjectVector(new

Object[] {}), new DoubleVector(new double[] {0.0, 0.0, 0.0}));

 Region region_0 =

 simulation_0.getRegionManager().getRegion("Fluids");

 pointPart_0.getInputParts().setObjects(region_0);

 PointPart pointPart_1 =

 simulation_0.getPartManager().createPointPart(new NeoObjectVector(new

Object[] {}), new DoubleVector(new double[] {0.0, 0.0, 0.0}));

 pointPart_1.setPresentationName("Copy of point");

 pointPart_1.copyProperties(pointPart_0);

 PointPart pointPart_2 =

 simulation_0.getPartManager().createPointPart(new NeoObjectVector(new

Object[] {}), new DoubleVector(new double[] {0.0, 0.0, 0.0}));

 pointPart_2.setPresentationName("Copy of point");

 pointPart_2.copyProperties(pointPart_0);

 Coordinate coordinate_0 =

 pointPart_1.getPointCoordinate();

 Units units_0 =

357

 ((Units) simulation_0.getUnitsManager().getObject("m"));

 coordinate_0.setCoordinate(units_0, units_0, units_0, new DoubleVector(new

double[] {0.0, 0.0, -0.00675}));

 Coordinate coordinate_1 =

 pointPart_2.getPointCoordinate();

 coordinate_1.setCoordinate(units_0, units_0, units_0, new DoubleVector(new

double[] {0.0, 0.0, -0.015}));

 SumReport sumReport_0 =

 simulation_0.getReportManager().createReport(SumReport.class);

 PrimitiveFieldFunction primitiveFieldFunction_0 =

 ((PrimitiveFieldFunction)

simulation_0.getFieldFunctionManager().getFunction("Pressure"));

 sumReport_0.setScalar(primitiveFieldFunction_0);

 sumReport_0.getParts().setObjects(pointPart_1, pointPart_2, pointPart_0);

 ExpressionReport expressionReport_0 =

 ((ExpressionReport)

simulation_0.getReportManager().getReport("CurrentTime"));

 sumReport_0.printReport();

 expressionReport_0.printReport();

 // Get the rotating motion object

 RotatingMotion rotatingMotion_0 =

 ((RotatingMotion)

simulation_0.get(MotionManager.class).getObject("Rotation in Fluids"));

 simulation_0.println("omega = " +

rotatingMotion_0.getRotationRate().getValue());

 }

}

C.2 RAMP_UP.JAVA

// STAR-CCM+ macro: ramp_up.java

package macro;

import java.util.*;

import star.common.*;

import star.base.neo.*;

import star.base.report.*;

import star.motion.*;

public class ramp_up extends StarMacro {

 public void execute() {

 execute0();

 }

358

 private void execute0() {

 // This macro is meant to adjust the rotation rate as a function of time

 // constants

 double pi_val = 3.141592653589793238;

 double rate_min = 0; // Minimum rotation rate, rad/s

 double rate_max = 180 * 2 * pi_val; // Maximum rotation rate, rad/s

 double ramp_begin_time = 0.2; // time to begin ramping

 double ramp_end_time = 2; // time to end ramping

 double sim_time_now = 0; // will be used later for the current time

 double ramp_rate = 0; // will be used later for the ramp rate

 boolean stop_crit_met = false; // stopping criteria

 // Get the current simulation

 Simulation simulation_0 =

 getActiveSimulation();

 // Get the rotating motion object

 RotatingMotion rotatingMotion_0 =

 ((RotatingMotion)

simulation_0.get(MotionManager.class).getObject("Rotation in Fluids"));

 // Get the stopping criteria

 PhysicalTimeStoppingCriterion PhyTimeSC =

 ((PhysicalTimeStoppingCriterion)

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion("Ma

ximum Physical Time"));

 StepStoppingCriterion StepSC =

 ((StepStoppingCriterion)

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion("Ma

ximum Steps"));

 AbortFileStoppingCriterion AbortFileSC =

 ((AbortFileStoppingCriterion)

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion("St

op File"));

 // Check the status of the stopping criteria

 stop_crit_met =

 (AbortFileSC.getIsUsed() && AbortFileSC.getIsSatisfied()) ||

(StepSC.getIsUsed() && StepSC.getIsSatisfied()) || (PhyTimeSC.getIsUsed() &&

PhyTimeSC.getIsSatisfied());

 // Connect to the time inside the simulation

 ExpressionReport TimeVal =

 ((ExpressionReport)

simulation_0.getReportManager().getReport("CurrentTime"));

 while (stop_crit_met == false) {

 // Get the current time

 sim_time_now =

 TimeVal.monitoredValue();

359

 // Calculate the new ramp rate

 if (sim_time_now < ramp_begin_time){

 // before the beginning of the ramp

 ramp_rate = rate_min;

 simulation_0.println("Currently Before the Ramp");

 } else if (sim_time_now > ramp_end_time){

 // after the end of the ramp

 ramp_rate = rate_max;

 simulation_0.println("Now After the Ramp");

 } else {

 // during the ramp, ramp linearly

 ramp_rate = ((sim_time_now - ramp_begin_time) * (rate_max - rate_min) /

(ramp_end_time - ramp_begin_time)) + rate_min;

 simulation_0.println("Currently During the Ramp");

 }

 // Set the new rotation rate

 simulation_0.println("Setting the Rotational Rate (rad/s) = " +

ramp_rate);

 rotatingMotion_0.getRotationRate().setValue(ramp_rate);

 // step one time step

 simulation_0.getSimulationIterator().step(1, true);

 // Check the status of the stopping criteria

 stop_crit_met =

 (AbortFileSC.getIsUsed() && AbortFileSC.getIsSatisfied()) ||

(StepSC.getIsUsed() && StepSC.getIsSatisfied()) || (PhyTimeSC.getIsUsed() &&

PhyTimeSC.getIsSatisfied());

 }

 }

}

	Abstract
	Dedication
	Acknowledgements
	Nomenclature
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Problem Statement
	1.2. Technical Approach
	1.3. Thesis Overview

	2. Background and Theory
	2.1. Bubble Theory
	2.1.1. Limits of Quasi-Static Stability
	2.1.2. Energetics
	2.1.3. Acoustic Dynamics
	2.1.4. Cavitation Damage

	2.2. Nucleation Theory
	2.2.1. Heterogeneous Nucleation
	2.2.2. Homogeneous Nucleation

	2.3. Tensile Fluids
	2.4. Bubble Chambers
	2.5. Tensioned Metastable Fluid Detector Systems

	3. Experimental Work
	3.1. Experimental Background Theory
	3.1.1. Pulse Width Modulation
	3.1.2. RS-232
	3.1.3. Optics

	3.2. Experimental Equipment
	3.2.1. Containment Box
	3.2.2. Containment Box Interlock
	3.2.3. CTMFD Hardware
	3.2.4. CTMFD Test Sections
	3.2.5. Speed Sensor
	3.2.6. Cavitation Sensor
	3.2.7. Signal Inverter
	3.2.8. Speed Controller Electronics Unit
	3.2.9. RS-232 Isolator and Power Supply
	3.2.10. Laser System and Optical Assemblies
	3.2.11. Laser Interlock System
	3.2.12. Pulse Generator
	3.2.13. Oscilloscope
	3.2.14. High Speed Camera
	3.2.15. Data Acquisition and Control System
	3.2.16. SpeedControl Software
	3.2.16.1. Using the SpeedControl Software
	3.2.16.2. SpeedControl Software Architecture

	3.3. Fluid Choice and Seeding
	3.4. Experimental Procedures
	3.4.1. Pre-Operation Procedures
	3.4.2. Data Operation Procedures
	3.4.3. Shutdown Procedures
	3.4.4. High-Speed Camera Notes

	3.5. Experimental Results
	3.5.1. High Speed Visualization
	3.5.2. First Fill
	3.5.3. Second Fill
	3.5.4. Third Fill
	3.5.5. Fourth Fill
	3.5.6. Discussion and Analysis

	4. Computational Fluid Dynamics Work
	4.1. CFD Simulation
	4.2. CFD Results

	5. Conclusions
	5.1. Key Findings
	5.2. Future Work

	References
	Appendix A
	Appendix B
	Appendix C

