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ABSTRACT 

 

 

Foredunes are formed and developed in association with vegetation. A bare sand 

area has been viewed as a measure of dune mobility or activity and researched in 

association with climate controls: particularly wind power, annual mean precipitation, 

and temperature, expressed in annual mean potential evapotranspiration. There has been 

no research that utilized the patterns of bare sand areas to classify foredune areas in 

coastal dune systems and investigated climate controls related to sand patch patterns, or 

“foredune textures” such as size, number, and distribution of sand patches.  

Four foredune types were classified based on four landscape metrics (PLAND: 

percentage of bare sand area, PLADJ: proportion of like-adjacencies, NLSI: normalized 

landscape shape index, and ENN_RA: range of Euclidean nearest neighbor), by applying 

the concepts and methodologies of landscape ecology. Four climate variables (annual 

mean precipitation, annual mean potential evapotranspiration, Lancaster’s mobility 

index, and the standard deviation of annual mean precipitation) were found to affect the 

foredune types and help in distinguishing one foredune type from another. 

 The amount of bare sand area on coastal foredune areas can be explained by 

annual mean precipitation (R2 is 0.52 at the 99 % confidence level), standard deviation 

of precipitation (R2 is 0.51 at the 99 % confidence level), and Lancaster’s mobility index 

(R2 is 0.37 at the 99 % confidence level) but wind variables such as drift potential do not 

explain much (R2 is 0.04 at maximum). This suggests that dune activity or stabilization 
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in coastal dune systems is mainly controlled by vegetation cover, which is in turn 

affected by precipitation. Foredune textures can be a useful tool to predict foredune 

types in association with future climate change, and the optimal averaging period of 

precipitation for each bare sand area was seven years. 
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1 INTRODUCTION 

 

A foredune is the seawardmost feature of a coastal dune system, formed on the 

top of the backshore by an accumulation of sand being transported by wind above the 

threshold velocity (Hesp 2002). When wind approaches vegetation, wind speed 

decreases and wind-blown sand is trapped around vegetation and starts to accumulate 

(Hesp 1983). Hence, vegetation is important in forming foredunes and also providing a 

barrier that protects inland areas (Miller, Gornish, and Buckley 2010). In this way, wind 

(for sand transport), and precipitation and temperature, often expressed in potential 

evapotranspiration, (for vegetation cover) are considered the most fundamental variables 

for foredunes (Thomas and Leason, 2005). However, vegetated dunes are the most 

sensitive and fragile to any effect of changes (damages) of the components of the active 

littoral zone because the dunes retain the damages for a long time (Rust and Illenberger 

1996). After the vegetation cover is damaged or destroyed by various climatic causes 

such as waves or washovers due to severe storms or hurricanes, prolonged drought, fire, 

or burial due to an excessive amount of sand transport (Hesp 2002), a bare sand area on 

the dunes allows the remobilization of sand from stabilized dunes (Van der Meulen and 

Salman 1996). In this manner, the extent of bare sand areas or active dune areas have 

been viewed as an index of dune activity or mobility and researched in an attempt to find 

the relationships between dune activity/mobility and recent climate variability (Thomas 

and Leason 2005; Hugenholtz and Wolfe 2005b; Tsoar 2005). On coastal dunes, bare 

sand areas have been researched mainly in association with blowouts or parabolic dunes 
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often focused on aeolian processes (Gares 1992; Gares and Nordstrom 1988; Hesp and 

Hyde 1996). On the other hand, on inland or desert dunes, most research on bare sand 

areas have been used as a measure of dune migration in association with climate 

variables such as wind, precipitation and potential evapotranspiration (Barchyn and 

Hugenholtz 2012; Hugenholtz et al. 2012; Nield and Baas 2008). For this reason, several 

researchers such as Lancaster (1988) and Tsoar (2005) created mobility indices (Bullard 

et al. 1997). The overall results of the research on dune mobility and its climate control 

were that areas with low vegetation cover during the dry season are more susceptible to 

aeolian processes.  

 

Figure 1.1. Different patterns of bare sand on foredune areas: a) Plum Island, MA; b) Manzanita, OR; and 
c) Vandenberg, CA. 

 

 

The patterns of bare sand on foredune areas are different at each site, and can be 

easily seen in aerial photographs (Figure 1.1). So not only the amount of bare sand area, 

but also the patterns of bare sand are thought to be meaningful on the foredunes. The 
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study of patterns has been a main subject in landscape ecology (Forman and Godron 

1986) and perhaps, foredunes can be classified based on the size, shape, and distribution 

of sand patches by applying the concepts and methodology of landscape ecology. In this 

way, foredune texture is defined as the appearance or character of patches on a foredune, 

such as size, number, shape, and distribution of sand patches. Further, the relationships 

between bare sand patterns and climate can be explored. However, there has been no 

research on foredune classification based on the bare sand patterns and the relationships 

with climate on coastal sand dunes. If this is successful, we could better understand the 

development of foredunes in terms of pattern types and climate. Furthermore, this 

knowledge will enable us to estimate or predict foredune types in the future in 

association with climate change and vice versa. 

The hypotheses of this study are:  

I. The potential mobility and nature of foredune areas of coastal dune fields 

can be classified based on bare sand patterns. 

II. The foredune types are related to climate variables such as wind, 

precipitation, potential evapotranspiration, and mobility indices. 

III. The relationship between the foredune types and climate variables 

enables us to predict dune types through climate change. 

The objectives of this study in support of testing the hypotheses mentioned above 

are: 

I. To identify a diverse set of coastal foredunes in the U.S. 
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II. To quantify bare sand patterns of foredunes on the coastal dune fields of 

the United States using digital aerial photographs. 

III. To classify foredune types based on the patterns of bare sand.  

IV. To investigate which climate variables play an important role in 

controlling the foredune types. 

V. To investigate how many years of climate data we need. 

VI. To compare two mobility indices and find which one works better for this 

study. 

VII. To examine how we can estimate or predict the development of foredunes 

in terms of the classified foredune types in association with climate 

change.  



 

5 
 

2 BACKGROUND 

2.1 Chapter introduction 

This chapter begins with an introduction to the foredune systems. The concept of 

dune mobility/activity and two mobility indices, Lancaster’s (1988) and Tsoar’s (2005), 

are described. The introductory concept of landscape ecology is discussed and then 

widely used software, Fragstats, is described. Details of this study to understand data 

collection and methods for this study are described; selection of study sites, 

identification of foredunes, identification of foredunes, image processing, Fragstats, 

climate data, dune/sand patch types, climate controls, and optimal climate data averaging 

period. 

2.2 Foredune systems 

Foredunes are the seawardmost feature of coastal sand dune systems, formed on 

the top of the backshore by an accumulation of sand (Hesp 2002). Sand transported by 

wind above threshold velocity starts to accumulate around vegetation, which slows the 

wind and deposits the sand. Once foredunes start to form as incipient dunes around 

clumps of vegetation or other materials such as rocks or wrack (Nordstrom, Jackson, and 

Korotky 2011), more vegetation grows on and around the foredunes and they increase in 

size and become ridges. Foredunes are breached or destroyed partly as a result of the 

destruction of vegetation by various causes such as waves or washovers during severe 

storms, trampling by humans or animals, vegetation loss because of prolonged droughts 

or fire, or burial by excessive amounts of sand transported by wind (Gares and 

Nordstrom 1988; Hesp 2002; Hesp and Hyde 1996). Blowouts, either elongated ones at 
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the front of foredunes or saucer-shaped ones on the top of the foredunes, help sand 

grains to move inland and allow the bare sand areas to expand laterally when wind 

exceeds threshold velocity (Hesp and Hyde 1996; Gares and Nordstrom 1995; Gares 

1992). Those once destroyed foredunes recover through the regrowth of vegetation 

(Priestas and Fagherazzi 2010).  

2.3 Dune mobility/activity  

Research has been done to understand the relationship between dune 

mobility/activity or stabilization and climate variables (Chepil, Armbrust, and Siddoway 

1963; Talbot 1984; Lancaster 1988; Tsoar 2005). Most research on dune 

mobility/activity were conducted in deserts of inland dune fields (Ash and Wasson 1983; 

Bullard et al. 1997; Hugenholtz and Wolfe 2005b; Lancaster 1988; Wasson 1984; Tsoar 

2005). Research on dune mobility commonly considered wind power as a forcing factor 

and vegetation cover as a resisting factor. Vegetation cover is strongly linked to rainfall 

or rainfall efficiency (ratio of precipitation to evapotranspiration: PPT/PET), and so most 

equations for dune mobility/activity use wind power, precipitation, and actual or 

potential evapotranspiration (Bullard et al. 1997). Wind power is expressed in various 

ways such as the cube of the average wind speed (Thomas, Knight, and Wiggs 2005; 

Chepil, Armbrust, and Siddoway 1963), drift potential (Tsoar 2005), or percentage of 

wind above threshold velocity (Lancaster 1988). Precipitation (PPT) and potential 

evapotranspiration (PET) are often used together, PPT/PET, to express moisture 

efficiency (Wasson 1984; Lancaster 1988). 
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Although the term dune mobility implies dune migration (Hugenholtz et al. 

2012), I use the term dune mobility rather than dune activity because I focus on 

Lancaster’s (Lancaster 1988) and Tsoar’s (Tsoar 2005) mobility indices and their 

concepts. However, the term “dune mobility” in this study means the potential for 

redistribution of sand rather than dune migration.  

I chose Lancaster’s mobility index because it is simple to calculate with basic 

climate data: wind speed, precipitation, and temperature, and has often been tested and 

applied in many environments (Muhs and Maat 1993; Lancaster and Helm 2000; 

Hugenholtz et al. 2012; Tsoar 2005; Hugenholtz and Wolfe 2005b). I also chose Tsoar’s 

mobility index for this study because the concept of his mobility index is different from 

Lancaster’s and the two indices can be compared. Tsoar (2005) suggested that moisture 

is not important in desert sand dunes because dune sand has the unique characteristics of 

high permeability, lack of cohesion, and big pore space, so that rainfall (PPT) and 

rainfall efficiency (P/PET) is not a decisive factor in dune mobility, but high wind power 

is. I will apply these two indices in my study to determine which index will be a better fit. 

Lancaster’s mobility index (MB) is calculated as follows: 

 
     (

 

  
) 

 

where W is the percentage of time the wind is blowing above the threshold velocity 

(Vt/All in this study), P is Precipitation (PPT in this study), and PET is potential 

evapotranspiration. He found critical values of MB for the Namib sand sea and 

southwestern Kalahari: values of the index were >200 for fully active dunes with 

vegetation cover <10% and <50 for inactive dunes with vegetation cover >20%.  
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The percentage of the time the wind blew above threshold velocity (W), shown in 

the above equation, came from Fryberger’s model (Fryberger and Dean 1979). Fryberger 

used drift potential to compare wind regimes with dune forms (barchanoid, linear, or star 

dunes) on a worldwide basis. Drift potential is wind power expressed in vector units. 

Wind roses were made based on drift potential for each direction of the total 16 compass 

directions to express graphically both the amount of drift potential and its directional 

variability. Using the model, Fryberger found that barchanoid dunes are linked to narrow 

unimodal wind roses, linear dunes are linked to bimodal roses, and star dunes are linked 

to complex roses. His model was useful for this study because the model provides 

information about how dune mobility can be affected by the amount of W or degree of 

wind convergence. 

Tsoar’s mobility index is calculated as follows: 

 
    

  

     (   
   

  
)
 

 

where DP is drift potential, a vector unit of wind power, and RDP is resultant drift 

potential, the magnitude of the vector results of drift potential from 16 compass 

directions. 

2.4 Landscape ecology 

Landscape is defined as “a heterogeneous land area composed of a cluster of 

interacting ecosystems that is repeated in similar form throughout” (Forman and Godron 

1986). Overall, landscape ecology examines the physical environment and the ecological 

effects occurring in the environment. In other words, it analyzes the structures and 



9 
 

functions of a landscape, the interactions among the spatial elements such as energy flow, 

materials, and species, and the changes in the structure and function of the ecological 

landscape over time.  

The concept of landscape ecology, first coined by Troll in 1939, through its 

theory, applications, and methodology has become one of the main interdisciplinary 

studies in geography and environmental sciences (Wu and Hobbs 2002; Forman 1995b). 

Landscape ecology has emerged in relation to the ecological mapping of vast areas 

because quantifying landscape structures is very important in landscape ecology research. 

So digital images and GIS technology are very useful for its analysis (McGarigal et al. 

2002; Burel and Baudry 2003; Steiniger and Hay 2009). 

Patch is a fundamental term in landscape ecology and is defined as a relatively 

homogeneous area that differs from its surroundings (Forman 1995a). In this study, a 

sand patch is defined as a bare sand area on remotely sensed images and can be a cell or 

a set of cells. A collection of patches of the same type is called a class. In this study, 

there are only two classes: “sand” and “other.” The class “other” can be any feature 

other than bare sand such as vegetation, buildings, water bodies, etc. This study 

investigates patterns of sand patches in each coastal dune field. These sand patch 

patterns will be compared across all study sites and then classified into several sand 

patch types. In order to accomplish this goal, it is necessary to understand and apply the 

concepts and methodologies of landscape ecology in this study. 
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2.5 Characterization with Fragstats 

Fragstats is a software program originally written by Barbara Marks and Kevin 

McGarigal in 1995 (McGarigal et al. 2002). It is designed to quantify landscape patterns 

for categorical maps and has been widely used in landscape ecology since then. Fragstats 

(version 2) was first publicly released in 1995, updated in 2002 (version 3), and updated 

again in 2012 (version 4). This latest version works with ArcGIS 10. In Fragstats the 

calculations of a number of statistics that characterize the concepts used in landscape 

ecology can be done quickly and easily at each level of an individual patch, class (all 

patches of the same type), and landscape (full extent of the data). Fragstats is very useful 

when working with digital images created through GIS programs. Statistics, called 

metrics in Fragstats, have been researched in many studies of landscape ecology (Li et al. 

2001; Raines 2002; Luck and Wu 2002; Hargis, Bissonette, and David 1998; Uuemaa et 

al. 2009), so it is easy to understand the concepts, meanings, usages, and pros and cons 

of metrics that can be applied to studies. 

2.6 Details of the study 

2.6.1 Selection of study sites 

In order for coastal dune systems to represent climate controls, they must be in a 

nearly natural state, minimally developed, or with little interference. Coastal dune fields 

have often been used for agriculture (timber, grazing, etc.), sand mining, military field 

training, or recreation (Nordstrom and Lotstein 1989), and most coastal dunes in the 

United States have been altered by human activities, which are discussed in many 

studies such as those by Cooper (1967), Capece (2001), Carls et al. (1990), Dolan et al. 
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(1973), and Savoy et al. (1985), and can be observed from aerial photographs. Therefore, 

dunes that have had severe interference inland, but not on the foredunes, or that have 

minimal evidence of human usage on the foredunes were accepted sites for this study. In 

addition, dunes selected for this study had to have substantial alongshore extent and total 

area. 

2.6.2 Identification of foredunes 

A foredune area is defined as a ridge that includes the dune toe, dune crest, and 

leeward side of the dune ridge, and is the most active feature of a dune system because it 

can  change in a short period of time. From an image processing perspective, a foredune 

line is sometimes hard to detect on the aerial photographs. For these reasons, in this 

study, I decided that foredune areas are sections 100 m wide from the dune toe, which 

can sometimes include dune slacks and parts of secondary dunes. Foredune areas of a 

100 m width are suitable because the 30 year-long climate data used in this study might 

show impacts not only on the current foredune ridges, but also on those more inland that 

might have been foredune ridges several decades ago. 

2.6.3 Image processing 

Fragstats uses categorical maps to calculate statistics, but original images such as 

aerial photographs contain a lot of information, so they should be processed into 

categorical images divided into classes. Image classification is a method of categorizing 

digital images through either a supervised or unsupervised classification (see chapter 3, 

Methodology, for the details). One of the disadvantages of image classification is that no 

perfect classification can be made. Therefore, users could use their own knowledge or 
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expertise or could use other photos or images as supplements to obtain classified images 

that correspond with the desired information classes. 

2.6.4 Fragstats 

This study calculates metrics at only the class level because it focuses only on a 

single class, “sand.” Fragstats can calculate 109 metrics at the class level in different 

categories such as “area-edge,” “shape,” “core area,” “contrast,” and “aggregation.” To 

understand the relationships between sand patches and climate, the amount of bare sand 

area on each dune field is the most straightforward and important metric. In addition, the 

shape (complexity) and distribution of sand patches are also metrics to be considered in 

order to understand bare sand structures in more detail. However, metrics in the category 

“core area” and “contrast” are not considered in this study. These two types of metrics 

are important in the study of ecosystems and ecology because of the “edge effect” in 

which the edges between patches can influence adjacent ecosystems in both or either 

abiotic or biotic environments (Murcia 1995). This study has only two patch types: 

“sand” and “other,” so edge effect does not play a significant role. Thus, core area, 

which is an area after removal of edge depth (distance between patches), and edge 

contrast between patches was not considered. Although core area and contrast metrics 

were not considered in this study, edge density (ED) was calculated because it represents 

patch extent and complexity. 

2.6.5 Climate data 

Among all climate variables, moisture and wind are considered the most 

fundamental in aeolian research (Ash and Wasson 1983; Bullard et al. 1997; Chepil, 
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Armbrust, and Siddoway 1963; Lancaster 1988; Wiggs et al. 1995). Wind is directly 

involved in sand transport and moisture, which is expressed in rainfall (PPT) or rainfall 

efficiency (ratio of precipitation to potential evapotranspiration (PET), (PPT/PET), 

controls vegetation cover in dune systems. Wind data, especially at 10 m above the 

ground, which is the standard height for wind measurement, is the most difficult to 

obtain because not all weather stations measure wind data, and if they do, the height of 

anemometers is not provided in many cases. In addition, because wind is the most 

variable, even for a short period of time, the time period for collecting wind data is 

critical. Therefore, wind data provided from the NARR (North America Regional 

Reanalysis) are very useful because the wind is modeled at 10 m above ground and the 

time period for the wind data is every 3 hours. Temperature is frequently converted into 

PET to be coupled with precipitation in many studies (Hugenholtz and Wolfe 2005a, 

2006; Lancaster 1988; Marin et al. 2005). PPT and temperature data were obtained from 

PRISM (Parameter-elevation Regressions on Independent Slopes Model). See 4.1.2, 

climate data in the Methodology chapter for more details of PRISM. 

2.6.6 Dune/sand patch types 

By viewing sand dune fields in the United State through aerial photographs it is 

not hard to find regional characteristics in terms of bare sand areas or sand patches. The 

most typical is sand patches on the dune fields of Southern California, where the sand 

patches are few and large (i.e. Santa Maria and Vandenberg). On the other hand, dune 

fields in Oregon consist of a large number of patches, but of small sizes. In addition, on 

the west coast, the orientation of sand patches tends to represent the prevailing wind, 
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west or northwest, but on the east coast, this pattern is rarely found. Patterns and 

structures of not only such easily visible patterns, but also those that are invisible or 

undetectable can be seen if they are quantified by statistics available in Fragstats. 

Analysis of the quantified sand patches enables us to find similarities and differences in 

the patch patterns of each dune field, and to cluster dune fields into several groups, if 

possible. The study of patch patterns or structures has been a subject in landscape 

ecology, so the application of this to geomorphology can provide a new perspective on 

the study of the texture or structure of geomorphological features at larger scales. 

2.6.7 Climate controls 

Climate variables such as precipitation, potential evapotranspiration, and wind 

regime play an important role in the initiation and development of coastal sand dunes 

(Marin et al. 2005; Hugenholtz and Wolfe 2005a; Chepil, Armbrust, and Siddoway 

1963). In order for dunes to form, wind should be fast enough to move sand grains and 

blow onshore for some period of time. Vegetation slows down wind speed, helps moving 

sand to deposit around the vegetation, and the growth of vegetation helps to stabilize and 

maintain sand dunes. The amount of moisture controls vegetation growth and prolonged 

drought withers vegetation and helps bare sand areas expand inland.  

However, little is known about how much and in what ways such climate 

variables affect the patterns and textures of sand patches. For example, at microscale, 

wind is the most important factor in sand transport, but how will wind affect larger 

spatial and temporal scales such as entire foredune areas and for several years to decades? 
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Such knowledge can provide a better understanding of the geomorphology and 

management of coastal sand dunes.  

2.6.8 Optimal climate data averaging period 

Thirty years is the time period for the calculation of normal climate 

(www.ncdc.noaa.gov), but what if available climate data is short of 30 years? How many 

years of climate data is needed to investigate the bare sand area on coastal sand dune 

systems? If the optimal number of years of averaged climate data is known, it is helpful 

in understanding the relationship between climate and the amount of bare sand areas 

with the least number of years of climate data. This study calculates cumulative averages 

of climate variables and tries to find the optimal period in association with bare sand 

patch patterns.  

In a number of papers, relating climate data to dune mobility, active sand areas, 

or bare sand areas are used as a measure of dune mobility/activity, and climate periods 

depend on the availability of data. For example, Hugenholtz and Wolfe (2005b) and 

Levin (2011) evaluated the bare sand areas of dune activity with climate data for 

available years: Hugenholtz and Wolfe examined 24 years of wind speed and PPT:PET, 

and Levin explored 52 years of wind and 69 years of rainfall data.  
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3 STUDY SITES 

 

In this study, the focus is on the nature of bare sand areas (patches) that occur 

within foredune systems only. This is because foredunes tend to be geomorphologically 

dynamic and represent the most recently formed dune system within a particular coastal 

system. The bare sand patches that occur landward of foredune systems may be the 

manifestation of any number of causes not necessarily related to local climate, especially 

in the 30 years of recent climate data that were used for this study. In most coastal 

environments it is difficult to determine the landward extent (in particular) of a foredune 

system using only aerial photographs. As an analytical expedient, therefore, I chose to 

delineate a representative width of 100 m perpendicular to a line along the seaward 

foredune toe. The created foredune “area” is deemed representative of the characteristics 

of the foredune sand patches in each studied environment. More details about the 

delineation are described in the methodology chapter.  

Study sites were selected from the shorelines of the 48 contiguous United States 

using two fundamental criteria:  1) a site must be located within a dune system of 

substantial alongshore extent and total area; and 2) a site must display minimal or no 

human disturbance or development. Google Earth™ imagery was used to scan the 

coastline of the contiguous U.S., and, using the criteria above, 22 dune fields were 

identified for study (Figure 3.1). Among the 22 sites, four are in Oregon, eight in 

California (four in Southern California), one in Texas, one in Florida, two in North 

Carolina, one in Virginia, one in New Jersey, one in New York, and three in 
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Massachusetts. There are many other dune fields, but they do not satisfy both of the 

criteria. For instance, dune fields in Louisiana are too narrow to have extensive foredune 

ridges and many dune fields on the Florida coasts are too developed. For example the 

east side of the Santa Rosa Island dunes in the panhandle area of Florida is developed for 

residences and resorts and the west side is relatively natural but destroyed by many 

washovers. 

The characteristics of each dune field are described below in terms of geography, 

geology, and climate. Some dune fields are described in groups, because they are located 

very close to each other and have similar characteristics. 

Figure 3.1. Map of study sites 

 

 

3.1 The Oregon coast 

In Oregon, the dune fields at Manzanita, Netarts, Nestucca, and Coos Bay were 

selected for this study. The first three are on the northern coast of Oregon and their areas 
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are relatively small. The Coos Bay dune field is the southernmost and its area is the 

largest of any site in this study. Other Oregon dune fields are very small because the 

state’s coastal strip is mountainous and provides little accommodation space.   

The descriptions of the geology and climate of the Oregon coast are based on 

Cooper (1958) except as otherwise noted. Most of the shoreline in Oregon is rocky and 

irregular. The bars and spits usually associated with river mouths are small and scarce; 

as is found in Manzanita and Neskowin. Other large dune fields, for example dunes in 

the river mouths of the Siuslaw, Umpqua, and Coquille rivers have been developed for 

golf courses, cities, or recreation areas. The grain sizes of most particles in the dune 

fields of the Oregon coast fall between 0.125 and 0.50 mm. 

According to Köppen’s climate classifications (See Appendix, p.185), north 

Oregon is categorized as Cfb without precipitation deficiency, and the south is 

categorized as Cs, with a long dry summer season (Table 3.1). However, the difference 

between the temperature maximum and minimum in northern and southern in Oregon is 

small; 13.7°F in the north (North Head on the border between Washington and Oregon, 

46°18’N) and 15.5°F at North Bend in Coos Bay, 43°25’N. The patterns of precipitation 

are similar throughout Oregon; abundant heavy winter precipitation and a summer 

deficiency in July and August. There is minimal coastal snow fall. 

Average winds in Oregon vary with the seasons. In winter, the most common 

wind directions are from the south and east; in summer, they are from the west and 

northwest (Taylor and Hannan 1999). The average wind direction is south and southwest 
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in July, and north and northwest in January. In summer, onshore winds predominate; in 

winter, low velocity offshore winds are most frequent. 

 

Figure 3.2. Map of the Northern Oregon Coast 
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Table 3.1. Summary of climate & Köppen’s climate classification. Precipitation data (1979-2008) were 
obtained from PRISM, and temperature and wind from NARR. 

 
Temperature Precipitation Wind Speed 

Wind 
Direction 

Kö-
ppen’s 
classifi-
cation 

 
Site 

Average Range Annual Total Avg. Range Avg. Range Average 

°F °C °F °C in cm in cm m/s m/s deg NEWS 

Manzanita, 
OR 

52.6 11.3 16.2 8.9 77.3 196.3 15.6 39.7 5.9 2.9 272 W Cfb 

Netarts, OR 50.5 10.2 15.9 8.7 86.0 218.4 17.3 44.0 5.0 2.4 256 WSW Cfb 

Nestucca, OR 52.3 11.2 16.4 9.0 73.1 185.8 14.8 37.5 5.0 2.4 267 W Cfb 

Coos Bay, OR 52.7 11.4 14.2 7.8 66.5 168.9 15.4 39.1 6.1 3.3 267 W Csb 

St. George, CA 52.1 11.0 11.9 6.5 70.6 179.4 17.1 43.5 5.3 1.5 234 SW Csb 

Eureka, CA 52.9 11.5 10.8 5.9 40.7 103.5 10.9 27.7 6.0 2.0 306 NW Csb 

Pt. Arena, CA 53.1 11.6 11.2 6.2 41.1 104.3 12.7 32.2 7.0 2.0 259 W Csb 

Tomales, CA 59.0 14.9 19.2 10.6 34.1 86.7 12.0 30.4 5.6 2.2 316 NW Csb 

Marina, CA 56.7 13.6 10.8 5.9 16.8 42.6 5.4 13.7 3.5 0.8 273 W Csb 

Morro Bay, CA 55.9 13.2 8.2 4.5 17.3 44.0 6.1 15.6 5.3 1.5 297 WNW Csb 

St. Maria, CA 58.5 14.6 9.5 5.2 16.4 41.7 6.0 15.2 4.6 1.8 316 NW Csb 

Vandenberg, 
CA 

59.7 15.2 12.2 6.7 16.1 41.0 5.9 15.1 5.6 2.2 298 WNW Csb 

Padre Island, 
TX 

73.5 22.8 27.9 15.3 30.6 77.8 7.6 19.4 4.7 1.2 256 WSW Cfa 

St. Joseph, FL 68.3 20.0 29.2 16.1 58.6 148.9 9.8 24.8 3.7 1.5 321 NW Cfa 

Bear Island, 
NC 

62.7 16.9 35.5 19.5 56.8 144.3 8.6 21.9 5.3 2.6 239 WSW Cfa 

Hatteras, NC 62.8 16.9 33.1 18.2 51.5 130.8 6.9 17.4 5.3 2.9 261 W Cfa 

False Cape, 
VA 

60.1 15.5 37.7 20.7 46.1 117.2 7.0 17.8 4.3 1.7 341 NNW Cfa 

Island Beach, 
NJ 

53.1 11.6 43.8 24.1 45.7 116.2 6.0 15.3 5.3 2.5 256 WSW Dfa 

Fire Island, NY 52.4 11.2 43.7 24.0 48.9 124.3 7.1 18.0 4.4 1.8 263 W Dfa 

Chappaquiddi
ck, MA 

50.5 10.2 39.8 21.9 48.3 122.8 6.7 16.9 4.9 2.0 267 W Dfb 

Barnstable, 
MA 

49.5 9.6 41.3 22.7 44.3 112.6 6.6 16.7 5.8 2.8 262 W Dfb 

Plum, MA 47.4 8.5 43.7 24.0 48.3 122.8 7.8 19.8 5.2 1.3 119 ESE Dfb 

 

3.1.1 Manzanita 

The Manzanita dune system is located at approximately 45° 40’N, 123° 56’W, 

backed by Nehalem Bay and located south of the city of Manzanita (Figure 3.3). The dune 

system is formed on a spit that is about 6 km in length, ranges from 0.3 to 0.6 km in 

width, and extends almost exactly from north to south. Cape Falcon is located at the 
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northern end of the spit (Figure 3.2) and a deflation plain lies behind the foredune 

(Peterson et al. 2011). European beach grass, or marram grass (Ammophila arenaria) 

was introduced and planted on the foredune during the 19th century (Nordstrom 2004). 

Largehead sedge (Carex macrocephala Willd.) is abundant and the coastal sand verbena 

(Abronia latifolia Escsch.) and two species of bur ragweed (Franseria bipinnatifida Nutt. 

and F. chamissonis Less.) are common on the foredune (Cooper 1958). The median 

grain diameter of this area is 0.32 mm (Komar, Carpenter, and McDougal 1995). Except 

for small roads, the dune field is little developed and well vegetated. 

Climate descriptions are based on the analysis of 30 year data (1979-2008) from 

PRISM and NARR except as otherwise noted. The average temperature is 52.6°F 

(11.3°C) and the temperature range is 16.2°F (8.9°C) (Table 3.1). The total annual 

precipitation is 75.74 inches (192.4 cm). Summer precipitation is much less than that 

during winter (Figure 3.4), but this site falls in the Cfb category (Marine West Coast 

Climate), not in the Csb category (Mediterranean Dry-Summer Climate) according to 

Köppen’s classification (Table 3.1), because even the driest summer month has more 

than 3 cm precipitation. The average annual wind speed is 5.9 m/s (Table 3.1). Winds 

are faster in winter and the annual range is only 2.9 m/s. Prevailing wind directions from 

April to October are from the west or northwest, shifting to southerly (SW ~ S) in winter 

(Figure 3.5). The annual average wind direction is west (273°) but stronger winds are 

south and southwest (Figure 3.6). 
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Figure 3.3. Map of Manzanita, OR. Foredune area (ca. 0.42 km2) is in red box. 
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Figure 3.4. Average monthly precipitation and temperature in Manzanita, OR (1979-2008). 

 

 

Figure 3.5. Average monthly wind speed and direction in Manzanita, OR (1979-2008). 
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Figure 3.6. Wind rose in Manzanita, OR (1979-2008) 
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Martin, and Frenkel 1979). The middle to southern part of the spit is well vegetated, 

especially with coniferous forest dominated by Sitka spruce (Picea sitchensis) (Losey 

2005), and several blowouts are encroaching on the forest inland . Human interference is 

rare found in the dune field, however the spit was inhabited from A.D. 1300 until the 

mid- to late 1700s according to Losey (2005). Tidal marshes are at the southern end of 

the bay (Shennan et al. 1998). Blowouts are in the middle of the spit. 

The temperature and precipitation patterns in Netarts are almost the same as at 

Manzanita (Figure 3.4 and Figure 3.8). The annual average temperature at this site is 

50.5°F (10.2°C) and the temperature range is 15.9°F (8.7°C). The annual total 

precipitation is 90.4 inches (229.6 cm). This site falls in the Cfb category (Maritime 

West Coast Climate) according to Köppen’s climate classification system (Table 3.1). 

The annual average wind speed is 5.0 m/s. Winds are faster in winter and its annual 

range is only 2.4 m/s. The annual average wind direction is west-southwest (257°) and 

the stronger winds are south and southwest (Figure 3.10). Wind direction in May is 

west-southwest, shifting to west-northwest or north-northwest through September, and 

ending up southerly in winter (Figure 3.9). 
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Figure 3.7. Map of Netarts, OR.  Foredune area (ca. 0.59 km2) is in red box. 
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Figure 3.8. Average monthly precipitation and temperature in Netarts, OR (1979-2008) 

 

 

Figure 3.9. Average monthly wind speed and direction in Netarts, OR (1979-2008) 
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Figure 3.10. Wind rose in Netarts, OR (1979-2008) 
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The Nestucca dune field is in the Bob Straub State Park located south of Pacific 

City (Figure 3.11). The dune field is about 4 km long, 0.2 – 1.0 km wide, formed at the 

mouth of the Nestucca River at the Nestucca Bay, and is on a spit at the south end. Its 

location is 45°11’N and 123°58’W. Although the northern end of the park is developed 

for recreation, the rest of the dune is little developed, except for some roads and parking 

lots. Haystack Rock and Cape Kiwanda (Figure 3.2) are located at the northern end of 

the dune fields and protect the weaker material behind them. Several remnants of 

parabolic dunes cut by the Nestucca River are located north of Pacific City (Figure 3.11), 

W

E

S

N

SW SE

NW NE

1.63%

1.63%

1
.6

3
%

1
.6

3
%

3.26%

3.26%

3
.2

6
%

3
.2

6
%

4.89%

4.89%

4
.8

9
%

4
.8

9
%

6.52%

6.52%

6
.5

2
%

6
.5

2
%

8.15%

8.15%

8
.1

5
%

8
.1

5
%

9.78%

9.78%

9
.7

8
%

9
.7

8
%

11.41%

11.41%

1
1
.4

1
%

1
1
.4

1
%

13.04%

13.04%

1
3
.0

4
%

1
3
.0

4
%

0
3.06

6.12

9.18

12.24

15.30

18.37

21.43

24.49

Marked sectors percentage: 100.0%, mean azimuth: 256.9°

Speed weighted percentage: 100.0%, mean speed value: 5.0, azim: 225.5°



 

29 
 

and were stabilized with hardwood forest (Cooper 1958). The dune field on the 

peninsula has a well-developed and stabilized foredune, up to 7 m in height, and there is 

a large deflation area behind it with many bare sand areas but also with grass and 

hardwood cover. There is a tidal marsh between the dune field and the bay. The 

vegetation cover of this dune field is similar to that of the dune fields in northern Oregon 

(Cooper 1958). 

Temperature and precipitation patterns at Nestucca are similar to those in the two 

other dune fields in northern Oregon (Figure 3.12). The annual average temperature at 

this site is 52.3°F (11.2°C) and the temperature range is 16.4°F (9.0°C). The annual total 

precipitation is 82.5 inches (209.6 cm). This site falls in the Cfb category (Maritime 

West Coast Climate) according to Köppen’s climate classification system (Table 3.1). 

The annual average wind speed is 5.0 m/s. Winds are faster in winter with an annual 

range of 2.4 m/s. The annual average wind direction is west (268°), but wind directions 

fluctuate around the west throughout the year (west-southwest – west-northwest), which 

is different from the wind patterns of the two previous sites (Figure 3.13). In Manzanita 

and Netarts, northerly and southerly winds are more frequent and southerly winds are 

stronger, whereas in Nestucca westerly winds are more frequent and stronger (Figure 

3.14). 
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Figure 3.11. Map of Nestucca, OR. Foredune area (ca. 0.25 km2) is in red box. 
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Figure 3.12. Average monthly precipitation and temperature in Nestucca, OR (1979-2008) 

  

 

Figure 3.13. Average monthly wind speed and direction in Nestucca, OR (1979-2008) 
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Figure 3.14. Wind rose in Nestucca, OR (1979-2008) 
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forests. The third episode is represented by the active foredune system in the west and 

will develop further.  

As in other Oregon dune fields, European marram grass was introduced as a dune 

stabilizer in this area and spread rapidly so that a larger foredune was formed 

(Wiedemann 1998). Two active dune ridges (western and eastern) lie inland, behind the 

foredune. Between the two ridges is a deflation plain where there are several shallow 

lakes, some of which are of considerable size. 

There are many roads and paths on the Coos Bay dune field that might have been 

created by off road vehicles on both active and stabilized dunes. However, the foredune 

area, which is defined as a 100 m width from the dune toe inland, has fewer sand patches 

than inland areas and contains roads for transportation and some parking lots. Most of 

the foredune is well vegetated but there are many small sand patches. 

The annual average temperature in Coos Bay is 52.7°F (11.4°C) and the 

temperature range is 14.2°F (7.8°C) (Table 3.1). The annual total precipitation is 64.4 

inches (163.7 cm), which is 10 to 20 inches less than that of the three northern sites in 

Oregon. This site falls in the Csb category (Maritime Dry-Summer Climate) according to 

Köppen’s climate classification system because the driest summer month has less than 3 

cm of precipitation. The annual average wind speed is 6.1 m/s. In winter winds are 

northwesterly and fast, and southwesterly in summer (Figure 3.17). Annual wind range 

is 3.3 m/s. Annual average wind direction is west (267°) (Figure 3.18) and monthly wind 

directions fluctuate around the west throughout the year (southwest – west-northwest). 
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Figure 3.15. Map of Coos Bay dune field, OR. Foredune area (ca. 1.62 km2) is in red box. 
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Figure 3.16. Average monthly precipitation and temperature in Coos Bay, OR (1979-2008) 

 

 

Figure 3.17. Average monthly wind speed and direction in Coos Bay, OR (1979-2008) 
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Figure 3.18 Wind rose in Coos Bay, OR (1979-2008) 

 

 

3.2 The California coast 
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related to faults and the ridges and the mountains end at the coastline with projecting 

headlands composed of resistant rock. In association with these features, most dunes 

were developed on coastal plains of deltaic origin or on barrier spits. The primary 

sources of sediment for California beaches are from stream and headland erosions. Sand 

transport by littoral drift is predominantly southward. As seen along the Oregon coast, 

marram grass was introduced to the California coast in 1869 and spread rapidly. 

All the California dune fields for this study are categorized as Csb 

(Mediterranean climate), with a mild temperature throughout the year and summer 

drought. The annual average temperatures do not vary substantially between sites. For 

instance, the temperature difference between the northernmost study site, St. George, 

(11.0 °C) and the southernmost, Vandenberg, (15.2°C) is only 4.2°C (Table 3.1). 

However, precipitation begins to decrease abruptly in Eureka. The annual precipitation 

difference between Eureka (96.8 cm) and Point St. George (169.7 cm) is 72.9 cm, 

although the two sites are only one degree of latitude apart. Precipitation decreases as 

one goes further south.  

Westerly winds prevail along the California coast. Cooper (1967) mentioned five 

factors that control the California coast’s wind regime: (1) prevailing westerly wind 

favoring onshore winds, (2) the north Pacific high pressure center, in summer at ca. 

40°N and in winter 10° southward, (3) sea-land breezes, (4) cyclonic disturbances, and 

(5) direction parallelism with the coast due to barriers such as mountains or hills. These 

features add more variations to the wind regime in the California coast. The California 
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coast also has more northerly winds than the Oregon coast and the annual wind speed 

decreases as it moves southward. 

 

Figure 3.19. Map of the California Coast: D.F. means dune field 
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3.2.1 Point St. George 

The Point St. George dune field is located at 41°53’N and 124°12’W, two miles 

north of Crescent City, and it is about 18 km long and is widest at 9 km. The dune field 

extends south-southwestward from the mouth of the Smith River to Point St. George 

(Figure 3.23). This dune field can be divided into two parts near Lake Tolowa. The 

northern half of the dune field was chosen for this study and extends 5.5 km south from 

the Smith River mouth. The southern half was not considered in this study because there 

is evidence of human influence such as roads and parking lots. Coastal development has 

been minimal since the 1960s (Savoy et al. 1985). 

The inner dune field is older and stabilized by mostly Sitka spruce (Picea 

sitchensis (Bong.) Carr.) and lodgepole pine (Pinus contorta Douglas). Younger dune 

development is in a narrow belt along the shoreline, 0.5 – 0.7 m wide, whose dominant 

species are burweed (Franseria chamissonis Less.), beach morning glory (Convolvulus 

soldanella L.), yellow sand verbena (Abroina latifolia Escchs.), and marram grass 

(Ammophila arenaria) (Cooper 1967).  

This dune field has a series of old parabolic dunes covered with vegetation on the 

southern half. Except for the coastal roads, the foredune is well vegetated with small 

sand patches. Effective wind is apparently northwest and a pyramid point on the north 

and the Smith River are the main sand sources for the dune field (Cooper 1967). 

The annual average temperature in Point St. George is 52.1°F (11°C) and the 

temperature range is 11.9°F (6.5°C), which is slightly less than those in Oregon (Table 

3.1). The annual total precipitation is 66.8 inches (169.7 cm). The annual average wind 
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speed is 5.3 m/s. Winds are faster in summer. The annual range of wind speed is 1.5 m/s. 

The annual average wind direction is southwest (234°) (Figure 3.22), but the wind 

directions vary dramatically in different months. Winds blow northwest in January and 

February, changes to southwest in April, south in June, east in September, northeast in 

October, and returns to the northwest in December (Figure 3.21). 

 

Figure 3.20. Average monthly precipitation and temperature in St. George, CA (1979-2008) 
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Figure 3.21. Average monthly wind speed and direction in St. George, CA (1979-2008) 

 

 

Figure 3.22. Wind rose in St. George, CA (1979-2008) 
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Figure 3.23. Map of Point St. George dune field. Note that foredune area (ca. 0.53 km2) is in red box. 
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3.2.2 Eureka 

The Eureka dune field is between Trinidad Head and the mouth of Humboldt Bay, 

and is located at 40°52’N and 124°09’W, two miles north of the city of Eureka (Figure 

3.24). The length of the dune field is about 40 km, but for this study, about 7 km of the 

middle area was chosen extending from the mouth of the Mad River to the New Navy 

Base Road at the city of Samoa. This is because the northernmost dune field between the 

Little River and the Mad River is a narrow strip and the southern part near the city of 

Samoa is developed. American dunegrass (Elymus mollis Trin.), European searocket 

(Cakile maritime Scop.), European beachgrass (Ammophila arenaria), and thicket 

tribisee (lasiacis ligulata Hitchc. & Chase) are abundant on the dune field (Barbour, de 

Jong, and Johnson 1976). 

Two major rivers, one flowing north (Mad River) and one flowing south (Eel 

River) of the dune field, created wide alluvial fans backed by the two bays and provide a 

good sand source for the dune field (Savoy et al. 1985). Cooper (1967) mentioned two 

episodes of dune ridges. The older dune ridges are inland and are parabolic dunes 

stabilized by spruces and pines. The younger dunes are seaward and continuous from the 

Mad River to Samoa. The inner edges of the younger dunes are lobate and parabolic, and 

extend southeast, indicating the prevailing wind direction, northwest. Except for several 

roads, most of the foredune areas are not developed. 

The annual average temperature in Eureka is 52.9°F (11.5°C) and the 

temperature range is 10.8°F (5.9°C) (Table 3.1). The annual total precipitation is 38.1 

inches (96.8 cm). The annual average wind speed is 6 m/s. Winds are faster in winter 
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and the annual range of the wind speed is 2 m/s. The annual average wind direction is 

northwest (307°) (Figure 3.28). Winds are southerly in January, become northerly in 

summer, and then return to southerly in December (Figure 3.27).  

 

Figure 3.24. Map of Eureka dune field, CA. Note that foredune area (ca. 0.67 km2) is in red box. 
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Figure 3.25. Average monthly precipitation and temperature in Eureka, CA (1979-2008) 

 

 

Figure 3.26. Average monthly wind speed and direction in Eureka, CA (1979-2008) 
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Figure 3.27. Wind rose in Eureka, CA (1979-2008) 
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Records Project (www.californiacoastline.org) and it is probably the result of dune 

erosion during storms. The foredunes are well vegetated with scattered small sand 

patches. Except for roads, human interference is minimal. 

The annual average temperature in Point Arena is 53.1°F (11.6°C) and the 

temperature range is 11.2°F (6.2°C) (Table 3.1). The annual total precipitation is 41.9 

inches (106.3 cm). The average wind speed is 7 m/s, faster than any other site, probably 

because of the projecting angle of the coast. Winds are faster in summer (May ~ July) 

(Figure 3.30) and the annual range of wind speed is 2 m/s. The annual average wind 

direction is west (260°) (Figure 3.31). Winds are south-southwest in May through 

August, changing to westerly and then northwesterly fall through winter. 

 



 

48 
 

Figure 3.28. Map of Point Arena dune field, CA. Note that foredune area (ca. 0.28 km2) is in red box 

 



 

49 
 

Figure 3.29. Average monthly precipitation and temperature in Pt. Arena, CA (1979-2008) 

 

 

Figure 3.30. Average monthly wind speed and direction in Pt. Arena, CA (1979-2008) 
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Figure 3.31. Wind rose in Pt. Arena, CA (1997-2008) 

 

 

3.2.4 Tomales 

The Tomales dune field is located at 38°5'N and 122°57'W, is about 18 km long 

reaching from Kehoe Beach to Point Reyes (Figure 3.32), and is 0.2 – 1.0 km in width. 
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(www.californiacoastline.org). The foredunes are stabilized with marram grass and other 

native species (Cooper 1967). The Tomales dune field is characterized by lobate and 

stabilized parabolic dunes superimposed by younger active dunes. The parabolic dunes 

tend southward representing prevailing wind direction. Because the dune field is 

protected within Point Reyes National Seashore, human interference is minimal. 

The average temperature in Tomales is 59°F (14.9°C) and the temperature range 

is 19.2°F (10.6°C) (Table 3.1). The temperature in Tomales is the highest among all sites 

on the west coast in the U.S (Figure 3.33). The annual total precipitation is 34.3 inches 

(87.1 cm). Point Reyes is one of the foggiest area on the California Coast during the 

driest months (Pitts and Barbour 1979). The annual average wind speed is 5.6 m/s. 

Winds are faster in spring (March ~ June) and slow down in summer (July ~ September) 

(Figure 3.35). The annual range of wind speed is 2.2 m/s. The annual average wind 

direction is predominantly northwest (316°) (Figure 3.36) and is consistent throughout 

the year (Figure 3.35).  
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Figure 3.32. Map of Tomales dune field, CA. Note that foredune area (ca. 0.72 km2) is in red box. 
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Figure 3.33. Annual average temperature of all sites. Note that Tomales’ temperature is the highest among 
all sites in California 

 

 

Figure 3.34. Average monthly precipitation and temperature in Tomales, CA (1979-2008) 
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Figure 3.35. Average monthly wind speed and direction in Tomales, CA (1979-2008) 

 

 

Figure 3.36. Wind rose in Tomales, CA (1979-2008) 
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3.2.5 Marina 

The Marina dune field system occurs along the coast from Santa Cruz Point 

south to the Monterey Peninsula and is 48 km long (Figure 3.37). The largest dune field 

within the system lies on the lower flood plain between the Salinas River on the north 

and the foot of the Monterey Peninsula on the south and at its widest part extends up to 

13 km (Cooper 1967). The site chosen for this study extends from the mouth of the 

Salinas River to the south 2 km. Cliff erosion to the north and rivers – the Salinas and 

Pajaro and the streams that flow into Elkhorn Slough – are major sediment sources for 

the dune field (Cooper 1967). The longshore current is southward. 

The elevation of the dune field increases gradually inland and the foredunes are 5 

– 8 m in height. The foredune lines are broken by multiple rows of trough blowouts, but 

on the south end the foredunes are scarped due to storm-wave erosion. Parabolic dunes, 

either stabilized or still active, tending west-southwest, the prevailing wind direction, lie 

over pre-Flandrian sand dunes inland (Cooper 1967). The crests of the active parabolic 

dunes are about 33 m in height. There are several low spots in this area, vegetated by 

shrubs and wet plants. Except for parking lots and beach roads, the selected area has 

little human interference. The southern end of the study site is developed for residential 

and recreational uses. According to McBride and Stone (1976), the foredunes are 

dominated mostly by marram grass (Ammophila arenaria) with shrubs and sedges 

toward inland and the older dunes are dominated by California live oak (Quercus 

agrifolia) and Monterey pine (Pinus radiate D. Don) and 89 % of the dune sands are 

medium sized (0.25-0.5 mm) and 18 % fine sand (0.1 – 0.25 mm). Ice plant 
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(Carpobrotus edulis), a succulent and perennial plant introduced in early 1900s from 

South Africa into coastal dune fields in Monterey, U.S. to stabilize dunes (D'Antonio 

1993; Guinon and Allen 1990). 

The annual average temperature in Marina is 56.7°F (13.6°C) and the 

temperature range is 10.8°F (5.9°C) (Table 3.1). The annual total precipitation is 20.4 

inches (51.7 cm), which is about 14 inches (35 cm) less than at Tomales. The annual 

average wind speed is 3.5 m/s. This is the slowest among all 22 sites. Winds are faster in 

spring (March ~ June), but they are consistent throughout the year with an annual wind 

speed range of 0.8 m/s (Figure 3.39). The annual average wind direction is west (274°) 

(Figure 3.41), but winds are north and northwest between May and October, but shift 

abruptly to southerly in November and continue until February (Figure 3.39). The wind 

pattern in Marina is different from other dune fields in southern California; they are 

slower and have a spreading wind direction (Figure 3.39, and Figure 3.40). This is 

probably because the site is in a large concave bay and winds diffuse over the bay 

(Figure 3.19 and Figure 3.37) (Cooper 1967). 
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Figure 3.37. Map of Marina dune field, CA. Note that foredune area (ca. 0.19 km2) is in red box. 
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Figure 3.38. Average monthly precipitation and temperature in Marina, CA (1979-2008) 

 

 

Figure 3.39. Average monthly wind speed and direction in Marina, CA (1979-2008) 
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Figure 3.40. Annual average wind speed of all sites. Note that Marina has the lowest wind speed among all 
sites. 

 

 

Figure 3.41. Wind rose in Marina, CA 

 

man 

net nes 

coo 

stg 

eur 

pta 

tom 

mar 

mor 
stm 

van 

pad 

stj 

bea 

sha 

hat 

fal 

isl 

fir 
cha 

bar 
plu 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 5 10 15 20 25

W
in

d
 s

p
e

e
d

 (
m

/s
) 

Wind Speed 

W

E

S

N

SW SE

NW NE

2.10%

2.10%

2
.1

0
%

2
.1

0
%

4.20%

4.20%

4
.2

0
%

4
.2

0
%

6.29%

6.29%

6
.2

9
%

6
.2

9
%

8.39%

8.39%

8
.3

9
%

8
.3

9
%

10.49%

10.49%

1
0
.4

9
%

1
0
.4

9
%

12.59%

12.59%

1
2
.5

9
%

1
2
.5

9
%

14.69%

14.69%

1
4
.6

9
%

1
4
.6

9
%

16.79%

16.79%

1
6
.7

9
%

1
6
.7

9
%

0
1.84

3.68

5.52

7.36

9.20

11.04

12.88

14.72

Marked sectors percentage: 100.0%, mean azimuth: 273.6°

Speed weighted percentage: 100.0%, mean speed value: 3.5, azim: 269.6°



 

60 
 

3.2.6 Morro Bay 

The Morro Bay dune field is on a spit extending northward in front of Morro Bay 

and is located at 35° 20’ N and 120° 51’ W (Figure 3.42). The spit is about 9 km long 

and 0.3 – 0.65 km wide. Morro Bay is an estuary that was closed during the Holocene 

transgression. It is backed by intertidal mud flats and marshes (Orme 2005). The 

foredunes are dominated by European searocket (Cakile maritime) and red sand verbena 

(Abronia maritima) and a number of active blowouts and parabolic dunes have 

penetrated to the inland (Williams and Potter 1972), and the lobate margins of the active 

parabolic dunes extend across the spit to the bay and tidal mud flats (Cooper 1967).  The 

area chosen for this study is 6 km long.  

The annual average temperature in Morro Bay is 55.9°F (13.2°C) and the 

temperature range is 8.2°F (4.5°C) (Table 3.1). The annual total precipitation is 17.6 

inches (44.7 cm). The annual average wind speed is 5.3 m/s and is relatively consistent 

throughout the year (4.7~6.2 m/s) (Figure 3.44). The annual average direction (298°) and 

prevailing wind direction are west-northwest (Figure 3.45). Wind direction is north in 

winter and shifts to the west in summer (Figure 3.44). 
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Figure 3.42. Map of Morro Bay dune field, CA. Note that foredune area (ca. 0.60 km2) is in red box. 

 

 



 

62 
 

Figure 3.43. Average monthly precipitation and temperature in Morro Bay, CA (1979-2008) 

 

 

Figure 3.44. Average monthly wind speed and direction in Morro Bay, CA (1979-2008) 
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Figure 3.45. Wind rose in Morro Bay, CA (1979-2008) 
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The south complex, Mussel Rock Dune Complex (Cooper 1967), is the smallest 

among the three and is located between the Santa Maria River and Point Sal, at 

approximately 34° 56’ N and 120° 38’ W. The shoreline is curved, facing north-

northwest. The dune field is about 7 km long and 8 km wide and includes established 

dunes extending back to Corralitos Canyon. This field is composed of extensive sand 

sheets like the Callender Dune Complex and several stabilized parabolic dunes. The 

transverse dunes in this complex are trending southeast, more oblique to its shoreline 

than in the other two fields. 

The middle complex, the Guadalupe Dune Complex (Cooper 1967), is located at 

approximately 34° 59’ N and 120° 37’ W and was chosen for this study (Figure 3.46). 

This dune complex has more vegetation cover than the other two. The descriptions of 

geology are based on Cooper (Cooper 1967) except as otherwise noted. No pre-

Flandrian dunes are found in this field. The dune field lies on an extensive flood plain of 

the Santa Maria River and is extensively invaded inland.  

In the foredune areas, there are numerous elongated blowout openings between 

vegetated hillocks and ridges and they develop into active parabolic dunes inland. The 

reason why the middle complex was chosen for this study is that it is the least disturbed 

by human activity. Little human interference is found in the foredune areas while there 

are many roads, parking lots and oil rigs inland. 

The annual average temperature in St. Maria is 58.5°F (14.6°C) and the 

temperature range is 9.5°F (5.2°C) (Table 3.1). The annual total precipitation is 17.8 

inches (45.2 cm). The pattern of temperature and precipitation in St. Maria is similar to 
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that of Morro Bay (Figure 3.47). The annual average wind speed is 4.6 m/s and the range 

of the wind speed is 1.8 m/s. The annual average wind direction is northwest (316°) 

(Figure 3.49) and is very consistent throughout the year (Figure 3.48). 

 

Figure 3.46. Map of St. Maria, CA. Note that foredune area (ca. 0.66 km2) is in red box. 
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Figure 3.47. Average monthly precipitation and temperature in St. Marina, CA (1979-2008) 

 

 

Figure 3.48. Average monthly wind speed and direction in St. Marina, CA (1979-2008) 
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Figure 3.49. Wind rose in St. Maria, CA (1979-2008) 
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considered to be a marine terrace surface. In the foredune areas, a series of narrow and 

straight blowout openings developed into active parabolic dunes, tending southeastward, 

representing the prevailing northwesterly wind. Sediment sources are meager, mostly 

from cliff erosion at Point Sal on the north, resulting in thinner sand sheets than those in 

the St. Maria dune field. Little evidence of human interference is found on the foredunes, 

but roads, parking lots, and buildings are found inland. 

The annual average temperature at Vandenberg is 59.7°F (15.2°C) and the 

temperature range is 12.2°F (6.7°C). The annual total precipitation is 15.9 inches (40.3 

cm). The precipitation at Vandenberg is the lowest among all the sites but the 

temperature is the highest among sites on the west coast (Table 3.1). The annual average 

wind speed is 5.6 m/s and the range of wind speed is 2.2 m/s. The annual average wind 

direction is west-northwest (299°) (Figure 3.53) and it is very consistent throughout the 

year, fluctuating between north-northwest and west-northwest (Figure 3.52).   
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Figure 3.50. Map of Vandenberg, CA. Note that foredune area (ca. 0.44 km2) is in red box. 

 



 

70 
 

Figure 3.51. Average monthly precipitation and temperature in Vandenberg, CA (1979-2008) 

 

 

Figure 3.52. Average monthly wind speed and direction in Vandenberg, CA (1979-2008) 
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Figure 3.53. Wind rose in Vandenberg, CA (1979-2008) 

 

 

3.3 Gulf of Mexico 

Parts of Padre Island, Texas, and the Saint Joseph barrier island, Florida, were 
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extensively developed for human usage. The undeveloped dune fields in these states are 

not large enough to form established dunes. Examples are the barrier islands on the 

Mississippi coast, and Cat Island, Horn Island, or Dauphin Island on the Alabama coast 

(Figure 3.54). This is partly due to a lack of sediment sources, especially from the 
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Mississippi Delta due to westward sediment transport (Bird and Schwartz 1985), and the 

chronic erosion of their barriers. 

The Louisiana coast is characterized by a deltaic system and the Atchafalaya and 

the Balize are still building delta complexes seaward (Mendelssohn et al. 1991). Most 

dune fields on the Louisiana coast are formed on barrier islands, but they are not big 

enough to have secondary dunes. Barrier islands in Louisiana are formed by eroded and 

reworked sediments from abandoned deltas  and the existing barriers are being used as a 

sediment source for the further development of other barriers (Bird and Schwartz 1985; 

Mendelssohn et al. 1991).  

The descriptions of the Texas coast are based on Bird and Schwartz (1985) 

except as otherwise noted. The entire Texas coastline is about 590 km long. A littoral 

drift convergence zone occurs at about 27° N with westward drift on the north and 

north/northeastward on the south from the convergence zone. Rainfall decreases and 

temperature increases southward. Hurricanes have played a major role in the Texas coast 

morphology and sediment regime; the hurricane-generated storm surges create 

washovers, move sand inland, and accrete and erode beaches and dunes. Sediments of 

the Texas coastline are fine to very fine and there is well-sorted sand on dunes and 

beaches.  

The descriptions of the Florida coast are based on Davis (1997) except as 

otherwise noted. The Florida coast around the Saint Joseph barrier island is wave-

dominated and the rates of the sediment influx are the highest on the Florida coast. The 

primary sediment source is from the Apalachicola Delta. The barriers around 
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Apalachicola Bay were formed by the reworked sediment transported by waves and 

extensive northward littoral drift. Consequently, the northern end of St. Joseph Island is 

prograding, resulting in the growth of many beach ridges. 

 

Figure 3.54. Map of the Louisiana, Mississippi and Alabama coasts 

 

 

3.3.1 Padre Island 

Padre Island is the longest barrier island in the United States, ranging for more 

than 180 km from southeast of Corpus Christi to the border of the U.S. and Mexico 

(Figure 3.55). The northern island is protected within the Padre Island National Seashore. 

The shoreline is concave seaward. Padre Island is relatively young and was formed 

3,000 – 5,000 years ago. It is separated from the Texas mainland by Laguna Madre and 

was formed and developed from an offshore submerged sandbar, by spit accretion by 

longshore drift (Wise and White 1980). In addition, tropical storms and hurricanes strike 
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South Padre Island about every six years and the average return period for all hurricanes 

on North Padre Island is 14 years (Muller and Stone 2001). Dominant vegetation species 

are Heterotheca subaxillaris and Chamaecrista fasciculate on the primary dunes and P. 

monostachyum, S. scoparium, and Indigofera miniata on the secondary dunes (Carls, 

Lonard, and Fenn 1991). Sediments are comprised of fine sand and shell fragments and 

the average grain sizes of the beaches are about 0.12 mm on North Padre Island and 0.17 

mm on South Padre Island (Bible 1962; Carls, Lonard, and Fenn 1990; Mazzullo and 

Kennedy 1985).  

The northern part of the Padre National Sea Shore, specifically from the south of 

the  visitor center to 13 km southward was chosen for this study because it is little 

disturbed and is protected within Padre Island National Seashore (Figure 3.55). It is 

located at approximately 27° 23’ N and 97° 18’ W. Some blowouts are found on 

foredunes, but the secondary dunes are well vegetated except for oval blowouts and 

parabolic dunes with bare sand. Stabilized parabolic dunes are further inland backed by 

marshes and an extensive lagoon, Laguna Madre. Little evidence of human activity is 

found except roads, but off-road vehicles and pedestrian traffic can be seen from place to 

place (McAtee and Drawe 1980). 

The annual average temperature on Padre Island, TX is 73.5°F (22.8°C), the 

highest among all sites and the temperature range of 27.9°F (15.3°C) is also the greatest 

(Table 3.1). The annual total precipitation is 33.4 inches (84.9 cm) and it is humid 

throughout the year (Figure 3.56). This site falls in the Cfa category (Humid Subtropical 

Hot-Summer Climate) according to Köppen’s climate classification system. The annual 
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average wind speed is 4.7 m/s and the wind speed range is 1.2 m/s. The annual average 

wind direction is west-southwest (257°) (Figure 3.58). Wind direction changes 

dramatically from northwest to south. Offshore, northwesterly winds prevail from May 

to October, and onshore, southerly winds for the rest of year (Figure 3.57). 

 

Figure 3.55. Map of Padre Island dune field, TX. Note that foredune area (ca. 1.13 km2) is in red box. 
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Figure 3.56. Average monthly precipitation and temperature in Padre Island, TX (1979-2008) 

 

 

Figure 3.57. Average monthly wind speed and direction in Padre Island, TX (1979-2008) 
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Figure 3.58. Wind rose in Padre Island, TX (1979-2008) 
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many dune ridges on the northern part of the St. Joseph spit. The spit has been affected 

by tropical storms and hurricanes, at an annual probability of 7 % (Bush et al. 2001) and 

W

E

S

N

SW SE

NW NE

1.63%

1.63%

1
.6

3
%

1
.6

3
%

3.26%

3.26%

3
.2

6
%

3
.2

6
%

4.89%

4.89%

4
.8

9
%

4
.8

9
%

6.52%

6.52%

6
.5

2
%

6
.5

2
%

8.15%

8.15%

8
.1

5
%

8
.1

5
%

9.78%

9.78%

9
.7

8
%

9
.7

8
%

11.41%

11.41%

1
1
.4

1
%

1
1
.4

1
%

13.04%

13.04%

1
3
.0

4
%

1
3
.0

4
%

0
2.52

5.04

7.56

10.08

12.60

15.12

17.64

20.17

Marked sectors percentage: 100.0%, mean azimuth: 256.9°

Speed weighted percentage: 100.0%, mean speed value: 4.7, azim: 239.2°



 

78 
 

100-year flood levels are estimated at 9.5 to 12.5 feet above mean sea level (Doyle et al. 

1984).  

The sediment in this area is predominantly quartz sand and fragmented shells 

(Stauble and Warnke 1974). The dominant vegetation species on the dunes is Uniola 

paniculata and ground-clinging plants such as Cnidoscolus stimulosus  and Croton 

punctatus (beach tea) are common (Carlton 1977). Foredune areas have blowouts, either 

individual or merged, causing complicated sand patches. The site chosen for this study is 

about 10 km long, starting north of Eagle Harbor to the northern end of the peninsula. 

There are several roads parallel to the shoreline and some access roads to the beach. The 

secondary dunes are well vegetated, but small sand patches occur along beach ridges.  

The annual average temperature in St. Joseph is 68.3°F (20°C) and the 

temperature range is 29.2°F (16.1°C) (Table 3.1). The annual total precipitation is 56.5 

inches (143.5 cm) and it is humid throughout the year (Figure 3.60). This site falls in the 

Cfa category (Humid Subtropical Hot-Summer Climate) according to Köppen’s climate 

classification system. The annual average wind speed is relatively low, 3.7 m/s and the 

wind speed range is 1.5 m/s. The prevailing wind direction is northwest (321°) (Figure 

3.62). Wind directions vary throughout the year; northwesterly wind between April and 

October and southeasterly for the rest of year (Figure 3.61).  
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Figure 3.59. Map of St. Joseph dune field. Note that foredune area (ca. 1.04 km2) is in red box. 
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Figure 3.60. Average monthly precipitation and temperature in St. Joseph, FL (1979-2008) 

 

 

Figure 3.61. Average monthly wind speed and direction in St. Joseph, FL (1979-2008) 
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Figure 3.62. Wind rose in St. Joseph, FL (1979-2008) 
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Three dune fields were chosen for this study on or near the Outer Banks barrier 
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formed 3,000 to 5,000 years ago, are covered with maritime forests of pine and oak, and  

the sediments are predominantly fine to coarse sand and shells (Inman and Dolan 1989).  

Brush fences were built on the barrier islands of the Outer Banks in the early 

1930’s by the Works Progress Administration – Civilian Conservation Corps (WPA – 

CCC) in order to encourage sand accumulation to stabilize the islands. This was 

followed by extensive dune stabilization by the National Park Service in the 1950’s 

(Dolan 1972). The North Carolina coastline is characterized by wide coastal plains and 

gentle sloping continental shelves on trailing edges which are tectonically stable (Inman 

and Nordstrom 1971).  

According to Bird and Schwartz (1985), the areas along the South Atlantic coast 

have abundant precipitation, frequent hurricanes at a rate of 3.5 storms per decade, and 

prevailing winds are offshore except during those storm events. 
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Figure 3.63. Map of the Outer Banks. 

 

 

3.4.1 Bear Island 

The Bear Island dune field is on a barrier island in North Carolina, located at 34° 

38’N and 77° 08’ W, on Onslow Bay (Figure 3.64). The island trends northeastward, 

influenced by a northeasterly gulf stream (Hofmann, Pietrafesa, and Atkinson 1981) and 

is about 6 km long and 0.4 – 0.6 km wide. Active dunes are 4 – 5 m in height and 
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stabilized dunes are up to 10 m in height. On the back of the island is a tidal flat and 

marshes. Bear Island is a thin “perched” barrier that overlays older geologic units and 

this feature is common in other barrier islands of the southeast coastline of North 

Carolina (Hofmann, Pietrafesa, and Atkinson 1981; Riggs, Cleary, and Snyder 1995). 

The dune field is protected within Hammocks Beach State Park, but had been used as a 

military reservation for target practice during World War II (www.ncparks.gov) and 

large bare sand hollows can be seen on the stabilized dune (Pilkey et al. 1980; Parks). 

The entire shoreline was used in this study. The dune field, whether on foredunes or 

inland, has a number of large sand patches and their shapes are irregular and very 

complicated.  

The annual average temperature is 62.7°F (16.9°C) and the temperature range is 

35.5°F (19.5°C) (Table 3.1). The annual total precipitation is 54.1 inches (137.3 cm). 

The precipitation is consistent throughout the year with slightly more precipitation in 

July – September (Figure 3.65). This site falls under the Cfa category (Humid 

Subtropical Hot-Summer Climate) according to Köppen’s climate classification system. 

The annual average wind speed is 5.3 m/s. Winds are faster in winter and the annual 

range is only 2.6 m/s. Although the annual average wind direction is west-southwest 

(239°) (Figure 3.67), wind directions vary throughout the year (Figure 3.66). Most winds 

are offshore, but northwesterly and westerly winds are stronger in the winter. Winds start 

northwesterly in January, changes to southerly in May, and returns to northerly in winter.   
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Figure 3.64. Map of Bear Island, NC dune field. Note that foredune area (ca. 0.41 km2) is in red box. 
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Figure 3.65. Average monthly precipitation and temperature in Bear Island, NC (1979-2008) 

 

 

Figure 3.66. Average monthly wind speed and direction in Bear Island, NC (1979-2008) 
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Figure 3.67. Wind rose in Bear Island dune field, NC (1979-2008) 
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northern end of Hatteras Island (Figure 3.68). The shoreline of the study site is straight 

and northward. The Outer Banks were formed during the Holocene on a “trailing edge” 

coast, a stable plate margin away from the tectonically active plate, characterized by 
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level rise formed barrier islands such as Cape Hatteras (Inman and Dolan 1989). Man-

made stabilization has been employed on the dunes that were in danger of thinning  

because of high wave energy and sea-level rise (Dolan, Godfrey, and Odum 1973; Pilkey 

1998). American beach grass (Ammophila breviligulata) and sea oats (Uniola paniculata) 

are dominant on the foredunes, Spartina patens, golden rod (solidago) on flat areas such 

as washovers, and Juniperus virginana and Quercus virginiana on the  inland areas 

(Dolan, Godfrey, and Odum 1973). The grain size is between 0.2 and 0.3 mm (Inman 

and Dolan 1989). 

The total length of the Hatteras Island is approximately 60 km from the Oregon 

inlet to Hatteras Bight. This barrier island is relatively narrow and most of it is less than 

1 km in width. The dune field used in this study is 5.3 km long, extending from Liza 

Lumps to Cat Island. The foredune areas have many different sizes of sand patches, most 

of which are small to medium and are of a complex shape. In the middle of the dune 

field there is a road (No. 12) parallel to the shoreline and there are several boardwalks 

for access to the beach.  

The annual average temperature is 62.8°F (16.9°C) and the temperature range is 

33.1°F (18.2°C) (Table 3.1). The annual total precipitation is 57.8 inches (146.7 cm). 

Precipitation is consistent throughout the year (Figure 3.69) and this site falls under the 

Cfa category (Humid Subtropical Hot-Summer Climate) according to Köppen’s climate 

classification system. The annual average wind speed is 5.3 m/s but the range is 2.9 m/s. 

Winds are faster in winter and the annual average wind direction is west (261°) (Figure 

3.71). Winds are northwesterly in January, change to southwesterly in summer, and end 
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up westerly in October (Figure 3.70). Throughout the year, offshore winds are 

predominant. 

 

Figure 3.68. Map of Hatteras dune field. Note that foredune area (ca. 0.54 km2) is in red box. 
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Figure 3.69. Average monthly precipitation and temperature in Hatteras, NC (1979-2008) 

 

 

Figure 3.70. Average monthly wind speed and direction in Hatteras, NC (1979-2008) 
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Figure 3.71. Wind rose in Hatteras dune field, NC (1979-2008) 
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foredune in the 1940’s and 1950’s, but during the 1960’s the Commonwealth of Virginia 

began purchasing the land to build a state park and expand the sand fencing project. 

Prior to the introduction of sand fences, the False Cape dune field was covered by a sand 

sheet. Sand hills, or “medoñas,” that were formed due to extensive sand fencing and the 

seaward expansion of the maritime forest later developed into large parabolic dunes. 

The foredune area has many sand patches associated with blowouts and parabolic 

dunes. The parabolic dunes are stabilized by forest and are elongated to the south, 

parallel to the shoreline. Those sand patches associated with the parabolic dunes are 

connected and merge with one another so that the sand patches appear very complicated. 

Except for some buildings along the bay shore and roads in the middle of the dune field, 

other human disturbances are not found. According to the state park 

(www.dcr.virginia.gov), vehicular access is prohibited, because the south end of the park 

is a wildlife refuge.   

The annual average temperature is 60.1°F (15.5°C) and the temperature range is 

37.7°F (20.7°C) (Table 3.1). The annual total precipitation is 46 inches (116.8 cm). 

Precipitation is consistent throughout the year (Figure 3.73) and this site falls under the 

Cfa category (Humid Subtropical Hot-Summer Climate) according to Köppen’s climate 

classification system. The annual average wind speed is 4.3 m/s and the range is 1.7 m/s. 

Winds are faster in winter (Figure 3.74). Average wind direction is north-northwest 

(341°) (Figure 3.75). All monthly average wind directions are offshore. Winds are south-

southeasterly in winter and becomes northwesterly or northerly in summer. 
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Figure 3.72. Map of False Cape, VA. Note that foredune area (ca. 0.64 km2) is in red box. 
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Figure 3.73. Average monthly precipitation and temperature in False Cape, VA (1979-2008) 

 

 

Figure 3.74. Average monthly wind speed and direction in False Cape, VA (1979-2008) 
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Figure 3.75. Wind rose in False Cape, VA (1979-2008) 

 

 

3.5 The Northeastern Atlantic coast    

Five dune fields were chosen from the Northeastern Atlantic Coast: Island Beach 

in New Jersey, Fire Island, New York, Chappaquiddick, Massachusetts, Barnstable, 

Massachusetts, and Plum Island, Massachusetts (Figure 3.76). The coastline in this 

region lies on a wide coastal plain/continental shelf and is transgressing rapidly. The 

shoreline features Holocene deposits such as barrier islands, bays or lagoons, and 

estuaries. The barrier islands along the coastline are wave-dominated and micro-tidal 

and the tidal range is 1 m along Fire Island to 3 m along Cape Cod (Bird and Schwartz 

1985).  
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The coast line development is related to the final retreat of the glaciers of the 

Wisconsinan Stage during which the maximum extent of the ice sheet reached southern 

Long Island (Fitzgerald and Van Heteren 1999).  The New Jersey coast was considered 

to be in a similar condition to Long Island because of its proximity to the southernmost 

extension of the ice sheet (Bird and Schwartz 1985). When the glaciers retreated, vast 

amounts of water were released and sediment was transported to the sea, resulting in 

sediment deposition because isostatic rebound exceeded eustatic sea-level rise (Jones 

and Cameron 1977; Fitzgerald and Van Heteren 1999; Roman et al. 2000).  

Ammophila breviligulata is the dominant vegetation in the dunes (Godfrey 1977). 

Precipitation is abundant throughout the year and southeasterly offshore winds are 

predominant in summer, but northeasterly winds with higher velocity occur during 

storms in winter, resulting in southward littoral drift. Northeasterly storm winds occur 

about five to six times a year and hurricanes once every 16 years (Bird and Schwartz 

1985). 
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Figure 3.76 Map of North Atlantic Coast 

 

 

3.5.1 Island Beach 

The Island Beach dune field is on a barrier spit and is part of the Island Beach 

State Park in New Jersey, which extends 15 km from the northern border of the park to 
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Barnegat Inlet on the south (Figure 3.77). The park was disturbed by human usage such as 

resorts, walkways, etc., but after the state obtained the land, the dunes were protected 

and stabilized by sand fences and vegetation planting which was conducted between 

1962 and 1977 (Gares 1992; Gares and Nordstrom 1995; Nordstrom et al. 1986).  

The site chosen for this study is located at about 39° 49’N and 74° 05’W, and is 

3.5 km long, starting from south of the parking lot on the north to the south and is 0.3 – 

1.0 km wide (Figure 3.77). The barrier island is thin and low, and it is 4 – 5 m in height. 

The shoreline is straight and trends southward. A main road (Central Avenue) runs 

parallel to the shoreline and several parking lots are on the dune field. There are 

numerous blowouts through which pathways were made, trending southwestward. At the 

back of the barrier island are marshes and Barnegat Bay. Dominant species are 

American beachgrass (Ammophila breviligulata) on  the foredunes, beachheather 

(Hudsonia tomemtosa) on low, protected dunes in the primary and secondary backdune 

areas, and Reedgrass (Phragmites communis) on sandy ridges bordered by the bay shore 

(Martin 1959). Mean grain size of the undeveloped beach is 0.375 mm (Gares 1987). 

The annual average temperature is 53.1°F (11.6°C) and the temperature range is 

43.8°F (24.1°C) (Table 3.1). The annual total precipitation is 48.8 inches (124 cm). 

Precipitation is consistent throughout the year (Figure 3.78). According to Köppen’s 

climate classification system, this site falls under the Dfa category (Humid Continental 

Hot-Summer Climate), where there is at least one month with a temperature below zero, 

and it is in January. The annual average wind speed is 5.3 m/s and its range is 2.5 m/s. 

Winds are faster in winter (Figure 3.79) and the annual average wind direction is west-
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southwest (256°) (Figure 3.80). The wind direction varies throughout the year. In 

November winds are northwesterly, become westerly, and end up northwesterly. Most 

winds are offshore (easterly or northeasterly) except in September and October, but 

onshore winds are stronger and associated with storms. 

 

Figure 3.77. Map of Island Beach dune field. Note that foredune area (ca. 0.36 km2) is in red box. 
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Figure 3.78. Average monthly precipitation and temperature in Island Beach, NJ (1979-2008) 

 

 

Figure 3.79. Average monthly wind speed and direction in Island Beach, NJ (1979-2008) 
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Figure 3.80. Wind rose in Island Beach, NJ (1979-2008) 
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(Leatherman 1985). Prevailing winds are offshore (southwesterly), and onshore winds 

(easterly) are not frequent but are stronger with storms (Schwab et al. 2000). Hurricanes 

and extratropical storms affect this island one or two times per decade (Schwab et al. 

2000). 

Although Fire Island is a National Seashore, it is extensively developed for 

recreation. The area selected for this study is relatively undeveloped with no buildings or 

paved roads. A large road running parallel to the shoreline and many other access roads 

and pathways branching off from it are numerous on the dunes and such disturbances are 

probably associated with off-road vehicle activities.  

The annual average temperature is 52.4°F (11.2°C) and the temperature range is 

43.7°F (24.0°C) (Table 3.1). The annual total precipitation is 46.5 inches (118.2 cm). 

Precipitation is consistent throughout the year (Figure 3.82). This site falls in the 

category Dfa (Humid Continental Hot-Summer Climate) according to Köppen’s climate 

classification system. The annual average wind speed is 4.4 m/s and its range is 1.8 m/s. 

Winds are faster in the winter and the annual average wind direction is west (262°) 

(Figure 3.84). The wind direction varies throughout the year and the pattern is almost the 

same as at Island Beach, New Jersey (Figure 3.83). Southeasterly onshore winds occur 

between May and August. 
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Figure 3.81. Map of Fire Island dune field. Note that foredune area (ca. 0.37 km2) is in red box. 
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Figure 3.82. Average monthly precipitation and temperature in Fire Island, NY (1979-2008) 

 

 

Figure 3.83. Average monthly wind speed and direction in Fire Island, NY (1979-2008) 
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Figure 3.84. Wind rose in Fire Island, NY (1979-2008) 
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settlers have used it for grazing livestock since the 1600’s. Most of the Cape Poge Bay 

area was donated to the Trustee of Reservation by the mid-1900’s.  

The site chosen for this study is about 2.5 km long, extending from southeastern 

Cape Poge Bay to the north, and is 0.1 – 0.3 km wide. The shoreline is almost straight, 

facing east, formed by a southward longshore drift and developed from a terminal 

moraine of Wisconsin glaciation (Bird and Schwartz 1985). The average frequency of 

severe hurricanes is once every five years (Arpin 1970). 

The study site is not within a protected area. Several of unpaved roads run along 

the shoreline and some access roads are on the dune field. Numerous irregular and 

complex sand patches connected with one another are on the foredune area.  

The annual average temperature is 50.5°F (10.2°C) and the temperature range is 

39.8°F (21.9°C) (Table 3.1). The annual total precipitation is 46.1 inches (117 cm). 

Precipitation is consistent throughout the year (Figure 3.866). This site falls in the Dfb 

category (Humid Continental Mild-Summer Climate) according to Köppen’s climate 

classification system. The annual average wind speed is 4.9 m/s and its range is 2 m/s. 

Winds are faster in winter and the annual average wind direction is west (267°) (Figure 

3.88), fluctuating between southwesterly in summer and northwesterly in winter (Figure 

3.87).  
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Figure 3.85. Map of Chappaquiddick dune field. Note that foredune area (ca. 0.24 km2) is in red box. 
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Figure 3.86. Average monthly precipitation and temperature in Chappaquiddick, MA (1979-2008) 

 

 

Figure 3.87. Average monthly wind speed and direction in Chappaquiddick, MA (1979-2008) 
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Figure 3.88. Wind rose in Chappaquiddick, MA (1979-2008) 
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about 10 km long and 07 – 1.3 km wide, located at approximately 41° 44’N and 70° 

21’W, and it is not within a protected area. This area is a meso-tidal (mean tidal range 

2.9 m), mixed energy barrier spit, developed on the southern shore of Cape Cod, 
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road vehicles, pedestrians, and sports fishermen since the early 1980’s (Shumway 1996). 
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 The site chosen for this study is about 7.5 km long, and excludes the easternmost 

margin of the spit. There is a main road and access roads running along the edge of the 

back dune. Off-road vehicles are allowed only on the beach. The entire dune field is 

covered by a bare sand area with vegetation clumps. Most bare sand areas consist of 

numerous blowouts and parabolic dunes, which tend toward the east or southeast.  

The annual average temperature is 49.5°F (9.6°C) and the temperature range is 

41.3°F (22.7°C) (Table 3.1). The annual total precipitation is 43 inches (109.3 cm). 

Precipitation is consistent throughout the year (Figure 3.90). This site falls in the Dfb 

category (Humid Continental Mild-Summer Climate) according to Köppen’s climate 

classification system. The annual average wind speed is 5.8 m/s and its range is 2.8 m/s. 

Winds are faster in winter (Figure 3.91) and the annual average wind direction is west 

(262°) (Figure 3.92) with a seasonal pattern almost the same as Chappaquiddick, 

Massachusetts. Onshore winds occur only in summer. 
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Figure 3.89. Map of Barnstable dune field, MA. Note that foredune area (ca. 0.72 km2) is in red box. 
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Figure 3.90. Average monthly precipitation and temperature in Barnstable, MA (1979-2008) 

 

 

Figure 3.91. Average monthly wind speed and direction in Barnstable, MA (1979-2008) 
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Figure 3.92. Sand rose of Barnstable, MA (1979-2008) 
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southward littoral drift (McIntire and Morgan 1962). The prevailing westerly wind 

direction is offshore, but southerly (including southeasterly) high velocity winds 

associated with storms caused by frequent low pressure cells result in extensive 

overwash and inland sediment transport make this dune field subject to erosion (Jones 

and Cameron 1977; McIntire and Morgan 1962). 

The site chosen for this study is 9.6 km long, excluding a developed area in the 

north. A paved road runs along the edge of the back dune and there are some boardwalks 

for beach access and paths on the dunes. The foredune line is clearly visible due to the 

vegetation line, but there are many blowouts and bare sand areas on both the foredune 

and inland. Dominant vegetation species are American beachgrass (Ammophila 

breviligulata), beach pea (Lathyrus japonicas), and dusty miller (Artemisia stellariana) 

on the foredune area, and Woolly beachheather (Hudsonia tomemtosa) inland 

(McDonnell 1981). The mean grain size in this area is 0.49 mm (Jones and Cameron 

1976).  

The annual average temperature is 47.4°F (8.5°C) and the temperature range is 

43.7°F (24°C) (Table 3.1). The annual total precipitation is 46.9 inches (119.1 cm). 

Precipitation is consistent throughout the year (Figure 3.94). This site falls in the Dfb 

category (Humid Continental Mild-Summer Climate) according to Köppen’s climate 

classification system (Table 3.1). The average wind speed is 5.2 m/s and with a range of 

1.3 m/s. Winds are slightly faster in winter, but are almost consistent throughout the year 

(Figure 3.95). September has the lowest velocity at 4.4 m/s.  The annual average wind 
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direction is east-southeast (120°) (Figure 3.96), which is parallel to the shoreline, 

fluctuating between east and south.   

 

Figure 3.93. Map of Plum dune field, MA. Note that foredune area (ca. 0.95 km2) is in red box. 

 



 

116 
 

Figure 3.94. Average monthly precipitation and temperature in Plum, MA (1979-2008) 

 

 

Figure 3.95. Average monthly wind speed and direction in Plum, MA (1979-2008) 
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Figure 3.96. Wind rose in Plum, MA (1979-2008) 
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4 METHODOLOGY 

 

4.1 Data sources 

4.1.1 Aerial photographs 

The aerial photographs used in this study were downloaded from the National 

Map Seamless Server (http://seamless.usgs.gov). The photographs are seamless 

orthoimages which are geospatially-accurate digital maps corrected by removing any of 

the distortions caused by the tilt of the camera or topography of the land. Two types of 

orthoimagery from the National Map Seamless Server were used for this study: Digital 

Orthophoto Quadrangles (DOQ) and U.S. Department of Agriculture (USDA) National 

Agriculture Imagery Program (NAIP). DOQs are produced by the U.S. Geological 

Survey (USGS) as gray-scale, natural color, or color-infrared images with a 1-meter 

ground resolution and cover an area measuring 3.75-minutes latitude by 3.75-minutes 

longitude or 7.5-minutes latitude by 7.5-minutes longitude. The NAIP acquires imagery 

during the agricultural peak growing seasons for the conterminous United States with a 

resolution ranging from 0.5 m to 1 m. This study uses either DOQ or NAIP images. The 

geographic coordinate system of both image types is UTM (Universal Transverse 

Mercator) in projection and NAD (North American Datum) 83 in horizontal datum. 

Each study site isrepresented by two aerial photographs taken at different times 

so that the stability of the vegetation patterns through time could be assessed. This also 

reduces the chance of assessing a foredune system that is not in a characteristic 

configuration because of short-term conditions, such as severe foredune erosion caused 
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by storm waves. The years of the old image sets range from 1988 to 1999 and the new 

sets from 2005 to 2009. Details of the images for this study are in Table 4.1.  

 

Table 4.1. Information on aerial photographs. B/W: black and white, N: Natural color, I: infrared color. 
The order of sites is from the northwest coast through the Gulf of Mexico to the northeast coast. 

Site Time (month/year) Resolution (m) Color 
Old New Old New Old New 

Manzanita, OR 4/1998 6/2005 1.0 0.5 B/W N 
Netarts, OR 8/1994 6/2009 1.0 1.0 B/W N 
Nestucca, OR 5/1994 6/2005 1.0 0.5 B/W N 
Coos Bay, OR 5/1994 6/2005 1.0 0.5 B/W N 
St. George, CA 8/1988 6/2005 1.0 0.5 I N 
Eureka, CA 4/1989 6/2009 1.0 1.0 I N 
Pt. Arena, CA 9/1989 6/2009 1.0 1.0 B/W N 
Tomales, CA 7/1993 6/2009 1.0 1.0 B/W N 
Marina, CA 6/1993 6/2009 1.0 1.0 B/W N 
Morro, CA 5/1994 6/2009 1.0 1.0 B/W N 
St. Maria, CA 9/1994 6/2009 1.0 1.0 B/W N 
Vandenberg, CA 9/1994 7/2009 1.0 1.0 B/W N 
Padre Island, TX 1/1995 10/2008 1.0 1.0 N N 
St. Joseph, FL 1/1994 3/2006 1.0 1.0 I N 
Bear Island, NC 1/1998 5/2009 1.0 1.0 I N 
Hatteras, NC 2/1998 8/2009 1.0 1.0 I N 
False Cape, VA 3/1994 6/2009 1.0 1.0 I N 
Island Beach, NJ 3/1995 8/2008 1.0 1.0 I N 
Fire Island, NY 4/1994 5/2009 1.0 1.0 I N 
Barnstable, MA 3/1995 7/2008 1.0 1.0 B/W I 
Chappaquiddick, MA 3/1995 7/2008 1.0 0.5 B/W N 
Plum Island, MA 3/1995 7/2008 1.0 1.0 B/W N 
 
 
 

      

4.1.2 Climate data 

Precipitation data and temperature data to calculate the potential 

evapotranspiration (PET) were downloaded from the PRISM (Parameter-elevation 

Regressions on Independent Slopes Model) climate mapping system, which is a model 

that incorporates point data, a digital elevation model, and expert knowledge of complex 
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climatic extremes, including rain shadows, coastal effects, and temperature inversions 

(http://www.prism.oregonstate.edu). The resolution of PRISM is 4 km (2.5 arc min). The 

datasets for the precipitation and temperature are monthly for 30 years (1979-2008). 

PRISM provides only mean maximum and mean minimum for temperature, so the mean 

monthly temperature was calculated by averaging the two min and max temperatures for 

each month.  

Wind data (wind speed at 10 m above the surface and its direction) were obtained 

from the NCEP (National Centers for Environmental Prediction) and the NARR (North 

American Regional Reanalysis Archive: http://dss.ucar.edu/pub/narr/). The NARR 

model is NCEP’s high resolution (32 km) combined model and assimilated dataset and 

covers the years 1979 to the near present. NARR data can be usable in spreadsheet 

programs after they are retrieved by using the GrADS (The Grid Analysis and Display 

System) program, which is downloadable from the website (http://www. Iges.org/grads/). 

GrADS is a useful tool for accessing, manipulating, and visualizing earth science data. 

Among many data file formats, GRIB (GRIdded Binary) data were used in this study. 

GrADS uses a 5-dimensional data environment: longitude, latitude, vertical level, time, 

and an optional 5th dimension. The wind data used in this study are every three hours (8 

sets on each day: 0-, 3-, 6-, 9-, 12-, 15-, 18-, 21-hour) for 30 years (1979-2008). 

4.2 Image analysis 

The purpose of the classification process is to categorize all pixels in a digital 

map into several land cover classes (themes) by classifying each individual pixel based 
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on spectral information. Two types of classifications are generally used in image 

processing: unsupervised and supervised classifications and both were used in this study. 

Unsupervised classification arranges pixels into distinct clusters based on similar 

spectral characteristics. Unsupervised classification does not have user-defined classes. 

The two most commonly used algorithms for unsupervised classification are K-means 

and ISODATA. Both of these algorithms are interative procedures in which 1) an initial 

cluster vector is assigned; 2) each pixel is classified to the closest cluster; and 3) the new 

cluster mean-vectors are calculated based on all the pixels in one cluster (Center). The 

second and third steps are repeated until a given iteration number is reached. The 

ISODATA algorithm can be further refined by splitting and merging of clusters based on 

a certain threshold which can be given by users (Jensen 2000). 

A supervised classification clusters pixels into classes corresponding to user-

defined training areas, so the knowledge of an area of interest is desirable. Two 

commonly used algorithms are maximum likelihood and parallelepiped. A maximum 

likelihood classification calculates the probability of a given pixel belonging to a certain 

class and each pixel is assigned to a class of the highest probability. The parallelepiped 

classification defines dimensions based on a standard deviation threshold from the mean 

of each selected class. If a pixel value lies below the threshold, the pixel is assigned to 

the class. If two threshold values are set, a pixel between the high threshold and low 

threshold is assigned to the class. If the pixel value falls in more than one class, the pixel 

is assigned to the last class matched, and if the pixel does not fall within any classes, the 

pixel is unclassified (Solutions). 
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4.2.1 Unsupervised classification 

If a site requires more than one image to cover the whole area, the images were 

mosaicked geographically using ENVI 4.7. Afterwards, a classification technique was 

used to extract bare sand from the images using ENVI 4.7. All black and white images, 

because single band images cannot be classified by supervised classification, and some 

of natural color and infrared color images were classified by unsupervised classification. 

The results of classification vary with the classification methods; ISODATA or K-means, 

and the number of classes and iterations (Figure 4.1). The method that showed better 

results was chosen for each site, after the images were examined. 

The best result was selected after the classified image was examined with a 

different number of classes and iterations, and compared with images of Google Earth™ 

or those in websites related to the study site. A histogram enhancement technique 

(Figure 4.2) was also used for some images in order to compare an original image to the 

classified image to see if sand patches were well classified. The images that resulted 

from the histogram enhancement, however, were not directly used for classification. 
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Figure 4.1. Unsupervised classified images. Image (a) is classified by ISODATA with 3 iterations and 
image (b) is by K-means with 7 classes and 3 iterations. 

 

 

The classified images were converted into ArcView Raster (*.bil) in ENVI and 

then imported to ArcMap 9.3 (Figure 4.4 b). Because bare sand is the surface of interest 

in this study, a class (or classes) considered to be sand was reclassified in “sand” and 

assigned ‘1’ using the Spatial Analyst tools in ArcMap. All the other classes such as 

water, buildings, vegetation, etc. were reclassified as “others” and assigned ‘0’ (Figure 

4.4 c). The reclassified images were converted into GRID in “Reclassify” in “Spatial 

Analyst” in ArcToolbox. The image in GRID can be used for the calculation of metrics 

in Fragstats, a computer program to calculate landscape metrics. 
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Figure 4.2. An example: interactive contrast stretching dialog for histogram enhancement in ENVI 4.7 

 

 

4.2.2 Supervised classification 

Software such as ENVI lets you define Regions of Interest (ROIs) as training 

areas. In ENVI 4.7, I selected Tools > Region of Interest > ROI Tool, then the ROI Tool 

dialog box appeared. I named each class and drew polygons corresponding to those 

classes (Figure 4.3). Once I made ROIs, I selected Classification > Supervised > 

Maximum Likelihood (or Parallelpiped) with the ROIs. I first performed the maximum 

likelihood method, but if a classified image was not satisfying, I tried parallelpiped. 

ROIs may be edited or more ROIs added to the original set until the classification 

was done correctly. Once a classified image was made, the image was saved as an 

ArcView raster (*.bil) in ENVI and then converted into GRID in ArcMap. The rest of 
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the procedures, such as image conversion, reclassifying, etc., were the same as described 

in the unsupervised classification section.  

 

Figure 4.3. Region of Interest (ROIs) of an image (Neskowin, OR). Polygons in yellow are sand and those 
in green are others. 

 

 

4.2.3 Removal of interfering human features 

Some images include human features such as roads or parking spaces, which 

should be eliminated because in this study only the sand patterns caused by natural 

processes are considered. However, some of the features, especially in the dunes on the 

east coast (e.g. Island Beach dune field), were hard to attribute to either natural processes, 

human interference or both. Only features obviously considered human features (e.g. 

long, linear sand patches) were eliminated from the classified images. 



 

126 
 

The following process was used to remove unwanted features. First, I copied and 

pasted a reclassified image of interest into the ArcCatalog. In the toolbar of ArcMap, I 

opened “Customize” and checked “‘Editor,” “ArcScan,” and “Raster Paining” in 

“Toolbars.”” I also checked ArcScan in “Extensions” in “Customize” tool, so that I 

could use the toolbars I checked. In “‘Editor,” I clicked “Start Editing,” and chose a 

raster image from which I wanted to remove features. Then, in the ArcScan toolbar, I 

chose the same raster as in “Editor,” and then chose the “Raster Painting” toolbar in 

“Raster Cleanup” of the ArcScan toolbar. In the “Raster Painting” toolbar, I selected the 

type and size of brush, and toggled “Swaps BG/FG,” and then removed the features. 

After the removal was done, I chose “Stop Cleanup,” “Stop Editing” and then saved the 

editing by using “Save Editing.”  

4.2.4 Delineating study sites 

In most dune fields, only a representative length of foredune area was analyzed. 

This was done for three reasons. First, if a foredune is on a barrier island, the ends of the 

barrier island are active and controlled by short-term changes, so I excluded both ends of 

the foredune area. Second, I excluded areas that were substantially modified, destroyed, 

or developed by humans. Third, if a scene comprised more than one image, and the 

images had different colors, it was sometimes too difficult to classify in the same color 

scale, so I chose only part of a dune field. 

Within each dune field it was necessary to delineate an area of foredune 

environment for analysis because it is difficult to determine the landward extent of a 

foredune system using aerial photographs. I chose to delineate a representative width of 
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100 m perpendicular to a line along the seaward foredune toe. To do this, I made a new 

polygon shape file and drew a polygon. Once I finished drawing the polygon in a shape 

file, I masked the reclassified image with the polygon (Figure 4.4 e). The seaward end of 

a foredune polygon was drawn to represent the natural line where the foredune and the 

beach meet, but the landward end was drawn as a straight line (Figure 4.4 d). 
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Figure 4.4. Examples of image processing of Bear Island, NC: a) original image b) a classified image, c) a 
reclassified image assigned ‘1’ as sand (yellow) and ‘0’ as others (black), d) an original image with 
polygon shape file (red), and e) a reclassified image masked by a polygon shape file 

 

 

4.3 Calculation of metrics (indices) in Fragstats 

In this study, because I was interested in the patterns of bare sand areas on dune 

fields as a whole, I chose the class level. In Fragstats 4.0 (Figure 4.5), to calculate 
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metrics for each site, I clicked “New” from the menu bar and added layers (ArcGIS 

GRID) by using the “Add layer” button. In the “Add layer” dialogue box, I selected data 

type, browsed and chose a dataset name, and inserted row and column numbers for each 

file, background value, and cell size.  A batch file can be used to add several layers at 

once. Refer to McGarigal et al. (2012) for information on how to make a batch file. 

A class properties file is necessary to run the Fragstats program. There are only 

two classes in my study: “sand” assigned “1” and “others” assigned “0.” Refer to 

McGarigal et al. (2012) for instructions about how to make a class descriptor file. Once 

all the layers were inserted, I clicked the “Analysis parameters” tab to save the results 

and checked “Class metrics” only in the multi-level structure section.  

Once all the information was typed in, in the right window, metrics can be 

chosen at each level and the quick results can be seen in the results option. Some metrics 

require putting in more information such as edge depth or threshold distance, but it was 

not necessary in my study because core area and contrast related metrics were not 

considered (see the next paragraph). Once all the metrics that I wanted to calculate were 

checked in, I clicked the “Run” button on the toolbar to allow Fragstats to calculate the 

metrics. After the calculation was completed, I opened the result files in an Excel 2010 

spreadsheet. 

The total number of metrics at class level available in Fragstats 4.0 is one 

hundred nine. I chose thirty three metrics that were commonly used and can be easily 

interpreted. Metrics in the category “core area” and “contrast” were not considered in 

this study. The two types of metrics are important in the study of ecosystem and ecology 
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because of “edge effects” – that the edges between patches can influence adjacent 

ecosystems in both or either abiotic or biotic environments (Murcia 1995). However, this 

study has only two patch types; “sand” and “others,” so edge effects does not play a 

significant role. Thus, a core area, which is an area after removal of edge depth (distance 

between patches) and edge contrast between patches, was not considered. Although core 

areas and contrast metrics were not considered in this study, edge density (ED) was 

calculated. 

In addition, I only considered mean (_MN), area-weighted mean (_AM), range 

(_RA), and coefficient of variance (_CV). Because mean is a robust average, median for 

average is redundant in this study, and CV is independent of unit. Further, I chose only 

metrics that are commonly used and simple and easy to interpret for the sand patch 

patterns. 

After all the metrics for the old and new images for each site were calculated, 

each pair of metrics for both the old and new images of the same site was averaged 

because a single aerial photo cannot represent the general geomorphology of a dune field. 

A coastal zone is a very dynamic environment, so a single climatic event with a large 

magnitude such as a severe storm can alter a landform significantly, which can lead to a 

biased analysis if only a single image is considered. The averaged metrics of a pair of 

images taken at different times can decrease such risks and also provide more robust 

results. 

Some metrics are strongly correlated to one another and are redundant (Riitters et 

al. 1995), so I eliminated them. I made a correlation coefficient matrix of the averaged 
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metrics in SPSS 16.0 GP, made a table of metrics groups that are correlated to each other 

by greater than either positive or negative 0.90 rounded after two decimal points, and 

then selected  only one metric that represent each group.  

 

Figure 4.5. Image capture showing the main window of Fragstats 4.0  

 

 

4.4 Calculation of climate variables 

4.4.1 Precipitation 

The dataset of PRISM is point data, but the sites are polygons. So the x, y 

coordinates of each site was roughly obtained from Google Earth ™ and then multiple 

precipitation point data within the polygons were obtained in ArcMap and averaged for 
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each site in Excel. The unit of the precipitation data in mm x 100 was then converted 

into mm. 

Average annual precipitation (PPT) for each site was calculated by averaging the 

sum of each year’s total precipitation for 30 years. Each year’s standard deviation and 

coefficient of variance were calculated and then averaged to calculate the annual 

standard deviation (PPT_SD) and coefficient variance (PPT_CV) of each site for 30 

years. 

4.4.2 Potential evapotranspiration 

PET was calculated using Thornthwaite’s equation (Thornthwaite 1948); 
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where PET is the estimated potential evapotranspiration (mm/month), Ta is the average 

daily temperature in Celsius, N is the number of days in the month being calculated, and 

L is the average day length (hours) of the month. To calculate the mean possible duration 

of sunlight, (  
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), I referred to Table V in Thornthwaite (1948, p. 93). 

I is a heat index, the sum of the heat index for each month and is calculated as 

follows: 

   ∑(
  

 
)
       

   

 (4.2) 

Exponent α can be calculated as follows: 
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Average annual potential evapotranspiration (PET) for each site was calculated 

by averaging the sum of each year’s total potential evapotranspiration for 30 years. Each 

year’s standard deviation and coefficient of variance were calculated and then averaged 

to calculate the annual standard deviation (PET_SD) and coefficient variance (PET_CV) 

of each site for 30 years. 

4.4.3 Moisture index 

The moisture index (MI) was calculated according to Thornthwaite and Mather 

(1955) and the equation is as follows:  
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(4.3) 

where MI is moisture index, PPT is precipitation and PET is potential evapotranspiration. 

The original equation of this is as follows:  

       [
      

  
] (4.4) 

where S is the moisture surplus, D is the moisture deficit. When the expression is 

integrated over the “average” year, S  max[(P-E),0], where E is actual 

evapotranspiration, the moisture index (MI) becomes the first equation.  

4.4.4 Wind data and drift potential 

Wind that involves sediment movement should be above threshold velocity, 

which is 11.6 knots (ca. 5.975 m/s) according to Fryberger (1979). In this study, only 

wind speeds above 5.975 m/s were considered and winds below the threshold were 

discarded.  
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For the wind direction, only onshore winds were examined because offshore 

winds might not have played a significant role in creating sand patches in the foredune 

areas, although offshore winds could be involved in somehow moving sediment. In this 

study, onshore wind is defined as a wind that blows within between 0 and 180 degrees 

along the straight shoreline, representing the entire shoreline. 

Fryberger (1979) proposed a sand migration model known as drift potential (DP), 

which is numerically expressed in vector units and the formula for DP is as follows: 

     (    )    (4.5) 

where Q is a proportionate amount of sand drift, V is average wind velocity at a 10 m 

height, Vt is impact threshold wind velocity, and t is the time that the wind above the 

threshold velocity blew (%). 

Fryberger derived this equation from Belly (1964), in which a sand surface of 

0.30 mm average diameter quartz sand, the surface roughness factor (z’) during sand 

driving was 0.3048 cm and the threshold wind velocity at height z’ (V’t) was 274 cm/s 

and V*t was 16 cm/s. Therefore, V’t may be extrapolated to a 10 m height using the 

equation below: 

 
 (   )        

    
 

  
   

  
(4.6) 

From this equation, a value of 11.613 (knots) is obtained for Vt. For this study, the value 

was converted into 5.757 m/s for calculations. 

In this study, to obtain the onshore DP above the threshold wind velocity (OSDP), 

offshore winds and wind velocity (5.975 m/s) below the threshold were discarded. Based 
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on the monthly average DP and OSDP, the annual average, the annual standard deviation 

and coefficient variance of DP and OSDP were also calculated.  

I calculated the annual average of resultant drift potential (RDP), which is the 

magnitude of the vector resultants of drift potentials from onshore directions, and the 

ratio of resultant drift potential to the drift potential, known as RDP/DP. The greater the 

directional variability of the effective winds at a station, the lower its associated 

RDP/DP will be. Annual average onshore RDP (OSRDP) and onshore RDP/DP 

(OSRDP/DP) were also calculated. 

In addition, the ratio of onshore winds over all winds at a site (OS/ALL) and the 

ratio of winds above the threshold velocity over all winds at a site (Vt/ALL) were 

proposed in this study to see how the wind direction can affect the sand patterns. The 

number of all wind events was calculated as follows: 30 years × 365 (or 366) days × 8 of 

3 hour events. 

4.4.5 Mobility indices 

Two mobility indices were calculated. Both indices were proposed for sand 

movement in inland deserts. Lancaster (1988) suggested that there are two main factors 

in sand movement in deserts: wind velocity and vegetation cover. Wind velocity is the 

driving force of sand mobility, while vegetation cover is a resistant force. The ratio of 

precipitation (P) and potential evapotranspiration (PE) is for the portion of vegetation 

cover and the percentage of the time the wind is blowing above threshold velocity (W; 

the same as Vt/ALL in this study) is for the portion of the wind. I calculated Lancaster’s 

original mobility index (MB) and also the onshore mobility index (OSMB) by using 
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OS/ALL for W, instead of Vt/ALL. The equation for these two forces is suggested 

below: 

 
     (

 

  
) 

(4.7) 

He found critical values of MB for the Namib sand sea and the southwestern Kalahari; a 

value index of >200 for fully active dunes with a vegetation cover of <10%, of <50 for 

inactive dunes with a vegetation cover of >20%. 

The second mobility index (MB2) was proposed by Tsoar (2005). He thought that 

rainfall was not an important factor in dune mobilization because sand’s permeability is 

much greater than soil composed of silt and clay. Therefore drift potential is a better 

index of sand mobility. So he proposed a sand mobility equation based on drift potential 

as shown below: 
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(4.8) 

I calculated the original MB2 and also calculated the onshore MB2 (OSMB2) by using 

onshore DP (OSDP) and onshore RDP (OSRDP). Lancaster’s (MB) and Tsoar’s sand 

mobility (MB2) indices were calculated and will be compared to see which one provides 

a better explanation for sand patch patterns in coastal areas. 
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Table 4.2. Climate variables calculated in this study 

Climate variable Description 

PPT Annual average precipitation 
PET Annual average evapotranspiration 

MI Moisture index 

MI_SD Standard deviation of MI 

MI_CV Coefficient of variance of MI 

MB Lancaster's sand mobility index 

OSMB Onshore winds above the threshold velocity of MB 

OSALLMB Onshore winds of all wind events of MB 

OS/Vt Onshore winds above the threshold velocity (%) 

OS/ALL Onshore winds of all wind events (%) 

Vt/ALL Wind above the threshold velocity (%) 

DP Drift potential 

RDP Resultant drift potential 

RDP/DP Resultant drift potential / drift potential 

OSDP Onshore portion of all DP 

OSRDP Onshore portion of all RDP 

OSRDP/DP OSRDP/OSDP 

MB2 Tsoar's sand mobility index 

OSMB2 MB2 calculated with OSRDP and OSDP 

PPT_SD Standard deviation of PPT 

PPT_CV Coefficient of variance of PPT 

PET_SD Standard deviation of PET 

PET_CV Coefficient of variance of PET 

P:PET Ratio of PPT to PET 

 

4.4.6 Cumulative averages 

Using monthly averages of precipitation (PPT), potential evapotranspiration 

(PET) and drift potential (DP), cumulative averages were calculated for each variable set 

in order to see if the number of sand patches (PLAND) were related to the climate 

variables as time went on. The average of the first year was calculated first, starting from 



 

138 
 

the month of the previous year when an image was taken. For instance, if an image was 

taken in August 1998, the first yearly cumulative average was from August 1997 to July 

1998. For the second average, the next previous yearly average was added to it and this 

procedure was repeated until the earliest year (1979) of the data. Cumulative averages 

were calculated for both old images and new images.  

I also calculated the ratio of PPT to PET in order to compare the results obtained 

in this study with the results of Hugenholtz and Wolfe (2005b). All climate variables 

used in this study and their descriptions are shown in Table 4.2. 

4.5 Cluster analysis 

Hierarchical cluster analysis was conducted in SPSS 16.0 GP by using the twenty 

three metrics. For cluster analysis, four or five clusters would be an appropriate number 

because less than four clusters can have more than half the number of study sites in one 

cluster, and more than five clusters can have too few sites in one cluster, which would be 

harder to interpret. In addition, I used four or five metrics for cluster analysis because 

more than five metrics would not make better clusters and less than four clusters tend to 

make fewer and aggregated clusters, which would be against expectations. I mostly used 

Ward’s method with Euclidean distance or squared Euclidean distance, but also tried 

other methods such as nearest neighbor or farthest neighbor. I sometimes standardized 

the values with z scores to have each variable contribute equally.  

A metric, PLAND (percentage of bare sand area) is a very simple metric used to 

easily understand and interpret the sand patch patterns of sand dunes (Hugenholtz and 

Wolfe 2005a; Hugenholtz and Wolfe 2005b). I used PLAND as a pivotal metric and 
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added as many other variables from each metric category as I could. For instance, 

PLAND is in an area-edge category and I chose three or four other metrics from other 

categories and added them to PLAND. And I also tried almost all combinations of all 

metrics, no matter what categories the metrics belonged to. Cluster analysis was 

continued until the most reasonable result was found. The most reasonable result in this 

case would mean that clusters after cluster analysis would match visually with the 

classified images in terms of the patterns and textures of the bare sand area and possibly 

with their geographical locations too.  

For hierarchical analysis, in SPSS I clicked “Analyze” from the toolbar, moved 

the metrics that I chose to analyze into the “Variable(s)” window, and checked 

“Dendrogram” in the Plots menu. In the “Method” menu, I chose a method from 

“Cluster Method.” a measure from the “Interval” menu, and z scores for standardization 

from the “Transform Values” menu. 

4.6 Clusters and climate comparison 

Once clusters were made, the next step was to examine the relationship between 

climate variables and the metrics of clusters. To do this, I made a matrix scatter plot in 

SPSS 16.0 GP, with all climate variables that were calculated. The markers in the scatter 

plots were set in different colors by cluster numbers. If I found a graph that could 

separate more than or equal to one cluster from the rest of the other clusters, I recorded 

the two climate variables comprising the graph and made another matrix scatter plot 

without it. Once the second cluster was separated from the others, I recorded the climate 

variables and then made another matrix scatter plot without the second cluster to see 
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what climate variables separated the third cluster from the others. This procedure was 

repeated until all the clusters were separated from all the others as much as possible.  
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5 RESULTS 

 

5.1 Processed images 

All twenty-two study sites were classified by either an unsupervised or 

supervised method and were delineated by a narrow strip in the foredune area 100 m 

wide.  Figure 5.1 shows all of the processed images masked by the 100 m wide narrow 

strips. Sand was classified as yellow and all other classes, such as vegetation, were in 

black. Images are presented geographically from the northwest coast through the south 

to the northeast coast, but have been rotated from their true orientation for presentation 

purposes only. 

 

 
Figure 5.1. Twenty-two processed images (scale: 1:7,000). Sand is in yellow and other classes are in black. 
Dates when the original images were taken, are written in parentheses. 
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Figure 5.1 continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

143 
 

Figure 5.1 continued. 
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Figure 5.1 continued. 
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Figure 5.1 continued. 
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Figure 5.1 continued. 
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Figure 5.1 continued. 
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Figure 5.1 continued. 
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Figure 5.1 continued. 

 

 

 

 

 

 

 

 



 

150 
 

Figure 5.1 continued. 
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5.2 Summary of Fragstats metrics 

Thirty-three metrics were calculated in Fragstats 4.0 using the images above. 

Metrics that were correlated at 0.90 or more were removed (Table 5.1). This left twenty-

three metrics for further analyses in this study. Table 5.2 presents the values that were 

averaged from old and new images for each site.  

 

Table 5.1. Twenty-three representative metrics used in this study. 

Representative 
metric 

Metrics 
category 

Group members Name (unit)* 

PLAND Area-Edge LPI Percentage of landscape (%) 
PD Aggregation  Patch density (number/100 ha) 
ED Area-Edge  Edge density (m/ha) 
LSI Aggregation  Landscape shape index 
AREA_MN Area-Edge  Mean area (ha) 
AREA_AM Area-Edge AREA_RA, DIVISION, 

MESH 
Area-weighted mean area (ha) 

AREA_CV Area-Edge  Coefficient variance of area 
SHAPE_MN Shape  Mean shape index 
SHAPE_AM Shape SHAPE_RA Area-weighted mean shape index 
SHAPE_CV Shape  Coefficient variance of shape index 
FRAC_MN Shape  Mean fractal dimension index 
FRAC_AM Shape  Area-weighted mean FRAC 
FRAC_CV Shape FRAC_RA Coefficient variance of FRAC 
CIRCLE_MN Shape CIRCLE_CV Mean of related circumscribing circle 
CIRCLE_RA Shape  Area-weighted mean CIRCLE 
PAFRAC Shape  Coefficient variance of CIRCLE 
ENN_MN Aggregation  Mean Euclidean nearest neighbor 

distance (m) 
ENN_AM Aggregation COHESION Area-weighted mean ENN (m) 
ENN_RA Aggregation  Range of ENN (m) 
ENN_CV Aggregation  Coefficient variance of ENN (m) 
PLADJ Aggregation CIRCLE_AM, AI Proportion of like adjacencies (%) 
SPLIT Aggregation  Splitting index 
NLSI Aggregation CLUMPY, COHESION, AI Normalized LSI 

* Dimensionless unit is in blank  
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Table 5.2. Metrics used for this study. The values were averaged from old and new images. 

Site* PLA
ND PD ED LSI AREA_M

N 
AREA_A

M 
AREA_C

V 
SHAPE_M

N 
SHAPE_A

M 
SHAPE_C

V 
FRAC_M

N 
FRAC_A

M 
FRAC_C

V 

man 28.86 3916.04 1155.9 32.49 0.01 6.53 2855.50 1.14 20.91 68.30 1.10 1.55 44.40 

net 2.30 1949.31 219.0 25.42 0.00 0.09 780.19 1.14 3.51 32.46 1.17 1.39 19.17 

nes 7.79 3740.65 669.7 33.71 0.00 0.41 1378.01 1.27 6.92 49.60 1.22 1.49 43.52 

coo 9.32 10372.1
2 1206.6 123.7

3 0.00 0.59 1882.64 1.16 5.59 35.58 1.19 1.43 22.12 

stg 7.17 7128.66 911.3 67.78 0.00 0.16 865.38 1.18 4.29 36.43 1.20 1.40 20.25 

eur 55.33 1861.65 1784.5 29.67 0.03 7.89 1621.88 1.35 21.22 95.45 1.19 1.51 17.11 

pta 18.09 4905.02 1342.3 43.06 0.00 0.57 1025.89 1.27 6.88 52.51 1.22 1.44 18.63 

tom 39.94 3351.82 1455.3 53.52 0.01 3.89 1779.97 1.27 10.97 62.60 1.20 1.46 16.15 

mar 40.06 2583.31 1292.4 24.65 0.02 4.68 1472.88 1.26 12.69 68.60 1.21 1.48 17.23 

mor 91.54 323.94 543.65 15.42 0.29 54.69 1385.48 1.28 14.23 78.76 1.19 1.40 12.67 

stm 70.88 769.66 1639.9 43.01 0.09 14.21 1172.43 1.47 16.37 120.91 1.20 1.48 14.91 

van 85.08 154.15 1074.0 23.04 0.77 37.55 786.45 1.50 22.69 183.63 1.15 1.48 14.53 

pad 24.76 4713.49 1198.2 74.39 0.01 2.93 1629.82 1.25 7.84 47.84 1.20 1.40 16.02 

stj 62.76 640.60 810.5 22.58 0.10 19.86 1255.03 1.28 13.57 77.72 1.17 1.42 13.03 

bea 23.42 9008.13 1678.9 55.86 0.01 0.46 991.82 1.32 5.24 51.26 1.21 1.43 18.71 

hat 36.22 4880.54 2119.8 68.71 0.01 3.97 2062.59 1.29 18.37 80.03 1.20 1.54 18.16 

fal 42.52 2183.83 1644.0 44.34 0.02 11.79 2428.60 1.34 25.71 85.52 1.21 1.53 18.07 

isl 56.44 1868.11 1109.2 27.45 0.10 14.72 1073.56 1.29 10.25 70.93 1.19 1.41 14.73 

fir 35.42 2750.55 1519.9 41.20 0.01 0.86 765.70 1.37 6.63 64.75 1.21 1.42 16.45 

cha 43.03 5650.89 1946.3 38.56 0.01 2.53 1805.98 1.26 10.82 59.77 1.20 1.46 19.29 

bar 61.42 949.74 790.37 25.49 0.07 12.66 1379.24 1.33 9.48 60.03 1.19 1.38 15.67 

plu 57.76 1284.73 962.71 35.66 0.05 36.86 1950.67 1.23 16.19 64.07 1.18 1.41 16.63 
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Table 5.2. continued. 
Site* CIRCLE_MN CIRCLE_RA PAFRAC ENN_MN ENN_AM ENN_RA ENN_CV PLADJ SPLIT NLSI 

man 0.30 0.99 1.36 3.07 1.53 43.37 7.45 91.92 26.40 0.08 

net 0.31 0.93 1.44 4.83 3.25 81.35 3.66 58.38 456344.74 0.41 

nes 0.39 0.98 1.40 2.91 1.71 42.07 8.44 81.98 915.20 0.18 

coo 0.29 0.95 1.48 3.93 3.12 40.21 4.81 58.35 631451.69 0.41 

stg 0.34 0.95 1.41 3.92 2.63 36.01 5.42 65.62 63858.92 0.34 

eur 0.39 0.96 1.38 3.01 2.06 15.87 9.27 91.05 4.67 0.11 

pta 0.40 0.96 1.40 3.64 2.31 38.71 6.75 80.09 1356.32 0.20 

tom 0.41 0.96 1.38 3.46 2.09 27.71 7.25 89.97 48.26 0.10 

mar 0.41 0.97 1.39 3.75 2.07 24.74 6.45 90.38 22.26 0.09 

mor 0.46 0.98 1.36 3.21 2.00 7.21 7.73 97.93 1.21 0.21 

stm 0.43 0.96 1.42 2.96 2.02 8.42 9.11 93.44 10.10 0.15 

van 0.35 0.98 1.42 4.24 2.00 15.64 7.02 96.24 1.39 0.20 

pad 0.42 0.96 1.36 3.72 2.30 43.32 6.74 84.49 1156.84 0.15 

stj 0.44 0.97 1.31 5.13 2.07 28.18 5.53 96.17 8.77 0.06 

bea 0.40 0.96 1.44 3.33 2.24 32.65 6.86 77.23 601.56 0.22 

hat 0.38 0.97 1.43 3.02 2.07 44.55 8.02 83.84 54.45 0.16 

fal 0.40 0.98 1.40 3.38 2.11 31.79 7.67 89.82 10.09 0.10 

isl 0.42 0.94 1.33 3.51 2.13 22.74 8.00 92.59 71.85 0.12 

fir 0.43 0.94 1.38 3.42 2.13 21.88 8.06 88.56 148.77 0.11 

cha 0.36 0.96 1.40 2.76 2.06 17.79 8.96 87.62 22.51 0.12 

bar 0.42 0.97 1.33 3.90 2.09 28.92 7.09 96.14 10.85 0.06 

plu 0.37 0.96 1.32 3.75 2.20 26.40 7.33 94.80 81.79 0.10 
* Site abbreviations: man: Manzanita, net: Netarts, nes: Nestucca, coo: Coos Bay, stg: Saint George, eur: Eureka, pta: Point Arena, 
tom: Tomales, mar: Marina, mor: Morro Bay, stm: Santa Maria, van: Vandenberg, pad: Padre Island, stj: Saint Joseph, bea: Bear 

Island, hat: Hatteras, fal: False Cape, isl: Island Beach, fir: Fire Island, cha: Chappaquiddick, bar: Barnstable, and plu: Plum Island. 
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5.3 Climate variables 

There were twenty-four climate variables calculated for this study. Pearson’s 

one-tailed correlation coefficient matrix for all the climate variables was made and it 

showed that eighteen variables were correlated by 0.90 or more, rounded after two 

decimal points (Table 5.3). All twenty-four climate variables are summarized in Table 

5.4. 

 

Table 5.3. Climate variables correlated by greater than 0.90. (See Table 4.2. for the description of climate 
variables.) 
Representative climate variables Variables with correlation > 0.9 
PPT MI, P:PET 
PET TEMP 
PPT_SD MI_SD 
MB OSMB 
OSALLMB OSMB 
DP MB2 
OSDP OSRDP, OSMB2 
RDP MB2 
PPT_CV PET_CV 
MI_CV N/A 
Vt/ALL N/A 
OS/ALL N/A 
RDP/DP N/A 
OSRDP/DP N/A 
PET_SD N/A 
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Table 5.4. Climate variables used in this study. 
Site PPT PET MI MI_SD MI_CV MB OSMB OsAllMB Vt/ALL OS/ALL DP RDP RDP/DP OSDP OSRDP 

man 1963.0 636.2 208.6 55.3 0.3 13.8 21.1 40.5 42.7 27.8 118.5 41.3 0.3 132.5 105.6 
net 2183.5 630.0 246.6 58.9 0.2 8.3 20.7 17.3 28.7 20.6 96.4 74.4 0.8 77.6 67.6 
nes 1857.6 641.7 189.5 47.8 0.3 9.3 22.8 28.6 26.9 17.8 59.3 18.3 0.3 42.6 27.6 
coo 1688.7 653.7 157.9 48.2 0.3 18.2 27.5 97.3 47.0 33.4 160.4 58.6 0.4 110.7 82.0 
stg 1793.9 657.2 172.8 61.5 0.4 13.9 20.2 192.8 38.1 21.0 72.8 7.9 0.1 41.9 25.5 
eur 1035.1 657.5 57.4 43.3 0.8 29.3 39.4 439.7 46.1 28.6 167.2 88.9 0.5 72.2 19.9 
pta 1043.0 656.7 58.4 52.2 0.9 36.9 36.7 550.3 58.6 34.1 268.8 60.4 0.2 156.1 108.4 
tom 866.8 672.2 28.9 44.0 1.5 34.4 72.0 767.4 44.3 41.1 100.8 78.6 0.8 90.8 88.0 
mar 425.8 706.9 -39.9 22.3 -0.6 13.1 126.2 147.3 7.9 6.0 6.0 1.3 0.2 4.0 2.3 
mor 440.0 690.8 -36.5 26.5 -0.7 59.9 137.9 1165.8 38.1 33.5 72.9 46.5 0.6 60.5 54.6 
stm 417.3 713.1 -41.6 23.7 -0.6 49.5 143.9 645.7 29.0 24.4 70.8 32.5 0.5 55.0 43.9 
van 410.0 723.6 -43.4 22.8 -0.5 78.0 158.5 1256.9 44.2 39.7 100.5 74.6 0.7 90.3 83.0 
pad 777.7 1256.5 -37.9 17.1 -0.5 45.9 62.1 60.2 28.4 10.9 55.0 37.7 0.7 21.8 17.1 
stj 1488.9 1058.5 40.9 25.6 0.6 8.3 38.7 9.5 11.7 6.4 10.2 0.1 0.0 5.4 2.4 
bea 1443.4 915.0 58.0 24.6 0.4 22.7 26.5 11.6 35.8 14.9 84.4 33.0 0.4 24.5 18.3 
hat 1308.4 904.0 44.8 25.9 0.6 24.3 20.1 7.5 35.1 10.2 87.6 33.0 0.4 26.8 20.7 
fal 1172.2 864.0 35.8 30.9 0.9 15.8 36.3 8.9 21.4 10.5 29.2 1.1 0.0 14.2 6.7 
isl 1161.7 722.7 61.1 26.3 0.4 21.8 18.4 7.0 35.1 10.4 79.5 35.5 0.4 15.9 6.7 
fir 1243.3 703.0 77.1 31.5 0.4 12.7 16.9 4.4 22.5 6.7 34.1 16.6 0.5 7.0 4.5 
cha 1228.0 659.0 85.9 21.7 0.3 16.2 20.7 6.3 30.1 11.6 50.5 9.7 0.2 21.8 13.3 
bar 1125.8 657.0 71.4 22.3 0.3 24.9 30.9 10.0 42.7 22.6 118.5 41.3 0.3 72.7 50.6 
plu 1227.9 640.1 91.8 29.7 0.3 18.8 45.5 23.2 36.0 31.4 58.6 23.5 0.4 49.1 26.7 
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Table 5.4. continued  

Site OSRDP/DP MB2 OSMB2 PPT_SD PPT_CV PET_SD PET_CV P:PET TEMP 

man 0.8 0.2 0.3 129.4 0.8 27.7 0.5 3.1 10.3 
net 0.9 0.2 0.2 144.0 0.8 27.3 0.5 3.5 10.2 
nes 0.6 0.1 0.1 121.4 0.8 26.7 0.5 2.9 10.7 
coo 0.7 0.2 0.2 126.4 0.9 24.8 0.5 2.6 11.4 
stg 0.6 0.1 0.1 141.2 0.9 22.4 0.4 2.7 11.7 
eur 0.3 0.3 0.1 90.9 1.1 20.4 0.4 1.6 11.9 
pta 0.7 0.3 0.3 105.8 1.2 19.8 0.4 1.6 11.9 
tom 1.0 0.2 0.3 96.8 1.3 17.7 0.3 1.3 12.8 
mar 0.6 0.0 0.0 45.8 1.3 21.8 0.4 0.6 13.9 
mor 0.9 0.1 0.2 51.7 1.4 16.7 0.3 0.6 13.7 
stm 0.8 0.1 0.1 49.6 1.4 18.7 0.3 0.6 14.4 
van 0.9 0.2 0.3 49.2 1.4 21.4 0.4 0.6 14.7 
pad 0.8 0.1 0.1 59.6 0.9 68.7 0.7 0.6 22.3 
stj 0.5 0.0 0.0 76.0 0.6 60.6 0.7 1.4 20.0 
bea 0.7 0.1 0.1 65.9 0.5 57.9 0.8 1.6 17.2 
hat 0.8 0.1 0.1 52.3 0.5 58.3 0.8 1.4 17.0 
fal 0.5 0.0 0.0 53.0 0.5 58.0 0.8 1.4 15.9 
isl 0.4 0.1 0.0 46.1 0.5 54.4 0.9 1.6 12.0 
fir 0.6 0.1 0.0 53.8 0.5 53.5 0.9 1.8 11.4 
cha 0.6 0.1 0.0 50.9 0.5 50.6 0.9 1.9 10.2 
bar 0.7 0.2 0.2 50.9 0.5 49.9 0.9 1.7 10.3 
plu 0.5 0.1 0.1 58.6 0.6 50.9 1.0 1.9 9.4 
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5.4 Cluster analysis 

In the cluster analysis, I used PLAND as a pivotal metric and added two to four 

other variables, each of which represented patch number, patch shape, or patch 

distribution. For example, I started the cluster analysis with PLAND and PD, a metric of 

a patch number, and then I added the patch shape metric PAFRAC or other metric for 

patch shape to PLAND and PD. If this showed a good result, then I added another metric 

such as ENN_MN, representing aggregation, to the result to see if the clusters changed 

or showed a better result. In this way, I tried up to five metrics (including PLAND) that 

can discern three to five clusters. I also tried two or three metrics representing the same 

characteristics. For example, I added NLSI and ENN_RA to PLAND at the same time. 

Both metrics are associated with patch distribution, although NLSI represents patch 

aggregation and ENN_RA represents the range of distance between patches.  

After the many combinations that all the metrics could make were examined, I 

found four metrics,  PLAND, PLADJ, NLSI, and ENN_RA (Figure 5.2, Table 5.5), that 

showed the most reasonable results because the results matched well with both 

geographical locations and sand patch patterns. The resultant hierarchical cluster 

analysis was completed using Ward’s method with Euclidean distance and was 

standardized by z-scores.   

Four clusters were obtained by cutting the dendrogram at between 5 and 10 of 

the rescaled distances. Cluster 1 had six sites: Manzanita, OR; Nestucca, OR; Pt. Arena, 

CA; Padre Island, TX; Bear Island, NC; and Hatteras, NC. Cluster 2 had three sites: 

Netarts, OR; Coos Bay, OR; and St. George, CA. Cluster 3 had three sites: Morro Bay, 
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CA; St. Maria, CA; and Vandenberg, CA. Cluster 4 had ten sites: Eureka, CA; Tomales, 

CA; Marina, CA; St. Joseph, FL; False Cape, VA; Island Beach, NJ; Fire Island, NY; 

Chappaquiddick, MA; Barnstable, MA; and Plum Island, MA. The dendrogram is shown 

in Figure 5.2 and the sites are presented geographically in Figure 5.3 

 

Figure 5.2. Dendrogram created by SPSS 16.0 GP. Ward’s method with Euclidean distance standardized z 
scores. 

 

 

PLAND is the percentage of patch of the same class (sand in this study) of an 

entire landscape and a simple metric measuring the total amount of patches of the same 

type. PLADJ is the percentage of like adjacencies of the class of interest and equals the 

number of like adjacencies of a class of interest, divided by the total number of cell 

adjacencies, multiplied by 100. PLADJ equals 0 when the class is maximally 
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disaggregated (i.e. every cell is a different patch), and equals 100 when the landscape 

consists of a single patch and all the adjacencies are between the same class. NLSI is a 

normalized landscape shape index and is calculated as below. 

 
     

         

             
 

(5.1) 

 where ei equals the total length of the edge of class i, min ei equals the minimum total 

length of the edge of class i, and max ei equals the maximum total length of the edge of 

class i. NLSI equals 0 when the landscape consists of a single square or maximally 

compact (almost square) patch of a corresponding type; LSI equals 1 when the patch 

type is maximally disaggregated. ENN is Euclidean nearest-neighbor distance and equals 

the distance (m) to the nearest neighboring patch of the same type, based on shortest 

edge-to-edge distance (cell center to cell center). ENN approaches 0 as the distance to 

the nearest neighbor decreases. ENN is a simple measure of patch isolation and 

ENN_RA is the range of ENN. See the website of Fragstats for more detailed 

information (www.umass.edu/landeco/research/fragstats/fragstats.html). 

 

Table 5.5. Four resulting metrics after hierarchical cluster analysis. 
Name Meaning Unit Range Description Note 

PLAND Percentage of 
landscape 

% 0~100 Percentage of the areas of 
all sand patches 

 

PLADJ Percentage of 
like-adjacencies 

% 0~100 Number of like adjacencies 
involving the focal class, 
divided by total number of 
cell adjacencies involving 
focal class 

0, when maximally 
disaggregated; 100, 
when only one single 
patch is in the 
landscape. 

NLSI Normalized 
landscape shape 
index 

None 0~1 Simple measure of class 
aggregation or clumpiness 

Increases as sand 
patches become 
increasingly 
disaggregated. 
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Table 5.5. continued 
 
Name Meaning Unit Range Description Note 

ENN_RA Range of 
Euclidean nearest 
neighbor 

Meter >0, no 
limit 

Distance to the nearest 
neighboring patch based on 
cell center to cell center 

Approaches 0 as the 
distance to the 
nearest neighbor 
decreases. 

  

 

Figure 5.3. Geographical presentation of clusters: cluster 1 in red; cluster 2 in orange; cluster 3 in green; 
and cluster 4 in blue. 

 

 

A scatter plot matrix (Figure 5.4) shows the characteristics of each site based on 

each metric. Cluster 3 (green circle) has the highest value of PLAND and PLADJ, and 

the lowest ENN_RA and consists of few, but very large sand patches. All sites in cluster 

3 are located on the southwestern coast. Cluster 2 has the lowest value of PLAND and 

PLADJ, and the highest NLSI, and thus consists of sand patches that are small, 

irregularly shaped, and disaggregated. All sites in cluster 2 are located on the 

northwestern coast. Cluster 4 has high PLADJ and low NLSI, and mid PLAND and 



 

161 
 

ENN_RA and consists of few relatively large sand patches that are disaggregated. Ten 

sites are in cluster 4. Six of these sites are located on the eastern coast and the other sites 

are scattered. The value of the metrics of cluster 1 is around mid-range. Sites in cluster 1 

are comprised of small and somewhat disaggregated patches, located on the southeastern 

and northwestern coasts and on the Gulf of Mexico. See Table 5.6 for a summary of the 

characteristics and sand patch pattern types of each cluster. Figure 5.5 shows the 

representative sites for each foredune type. 

 

Figure 5.4. Scatter plot matrix of four metrics: PLAND, PLADJ, NLSI, and ENN_RA. Cluster 1 in red, 2 
in orange, 3 in green, and 4 in blue. 
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Table 5.6. Summary of characteristics of sand patch pattern types. 
Patch type Sites Metrics Characteristics 

  PLAND PLADJ NLSI ENN_RA 
 

1 
man, nes, pta, 
pad, bea, hat 

Low-
mid 

Mid-
high Mid Mid Small patches, somewhat 

aggregated 

2 net, coo, stg Low Low High Mid 
Small and irregular 
patches, disaggregated 
with long distance 

3 mor, stm, van High High Mid Low Very large, but few sand 
patches 

4 

eur, mar, tom, 
stj, fal, isl, fir, 
cha, bar, plu 

Mid High Low-
mid Low-mid Relatively large, but few 

sand patches, aggregated 
 

      

 

 

  

Figure 5.5. Representative images for foredune types based on sand patch textures. See Table 5.6 for the 
characteristics of foredune types. 
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5.5 Patch pattern types and climate comparison 

The four types of patch patterns that were created through cluster analysis were 

compared to climate variables in order to see the relationship between climate variables 

and each patch pattern type. A scatter plot matrix of all the climate variables marked by 

cluster numbers was made and I found that two scatter plots, one with PPT (annual 

average precipitation) and MB (Lancaster’s mobility index) and another with PET 

(annual average potential evapotranspiration) and PPT_SD (standard deviation of annual 

average precipitation), better distinguished the types.  

 

Figure 5.6. Scatter plots of four climate variables, marked by clusters: cluster 1 in red; cluster 2 in orange; 
cluster 3 in green; and cluster 4 in blue. Clusters were grouped by circles and called types1 through 4. 

 

 

The scatter plot in Figure 5.6, a) shows that PPT and MB distinguished type 3 

from the other types, and also type 1 from type 4. On the other hand, scatter plot b) 

shows that PET and PPT_SD distinguished type 2 from the other types. Overall, four 

climate variables (annual average precipitation and its annual variability, annual average 

potential transpiration, and Lancaster’s mobility index, which includes PPT and PET, 
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and percentage of wind that blew above threshold velocity) were found to enable us to 

interpret the relationship between sand patch patterns and climate variables. Climate 

characteristics of each patch pattern type are shown in Table 5.7 and metrics and climate 

variables for each study site are shown in Table 5.8. The summary of statistics of metrics 

and climate variables for each texture type are shown in Table 5.9. 

 

Table 5.7. Climate characteristics of each patch pattern type. 

 Climate characteristics 

Type PPT (mm) PET (mm) PPT_SD (mm) MB 
1 M (ca. 700-2000) 

  
L-M 

2 
 

L (<700) H (>120) 
 3 L (<500) 

  
MH (> ca. 50) 

4 L-M (<1500) 
  

LM (<40) 

L: low, M: mid, H: high, LM: low to mid, and MH: mid to high 
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Table 5.8. Metrics and climate variables of each study site with patch pattern types. 

Site Type Metrics Climate variables 
  PLAND PLADJ NLSI ENN_RA PPT PET MB PPT_SD 
man  1 28.86 91.92 0.08 43.37 1963.04 636.23 13.83 129.35 
net  2 2.30 58.38 0.41 81.35 2183.51 629.98 8.28 143.97 
nes  1 7.79 81.98 0.18 42.07 1857.56 641.72 9.28 121.42 
coo  2 9.32 58.35 0.41 40.21 1688.74 653.71 18.18 126.39 
stg  2 7.17 65.62 0.34 36.01 1793.85 657.20 13.94 141.19 
eur  4 55.33 91.05 0.11 15.87 1035.10 657.54 29.26 90.92 
pta  1 18.09 80.09 0.20 38.71 1043.00 656.73 36.87 105.77 
tom  4 39.94 89.97 0.10 27.71 866.80 672.17 34.36 96.75 
mar  4 40.06 90.38 0.09 24.74 425.79 706.87 13.14 45.77 
mor  3 91.54 97.93 0.21 7.21 439.99 690.84 59.87 51.73 
stm  3 70.88 93.44 0.15 8.42 417.34 713.06 49.48 49.59 
van  3 85.08 96.24 0.20 15.64 409.96 723.56 77.99 49.17 
pad  1 24.76 84.49 0.15 43.32 777.68 1256.48 45.95 59.56 
stj 4 62.76 96.17 0.06 28.18 1488.94 1058.49 8.35 76.03 
bea  1 23.42 77.23 0.22 32.65 1443.35 915.00 22.66 65.87 
hat  1 36.22 83.84 0.16 44.55 1308.36 903.96 24.27 52.26 
fal  4 42.52 89.82 0.10 31.79 1172.23 863.99 15.76 53.02 
isl 4 56.44 92.59 0.12 22.74 1161.70 722.71 21.82 46.14 
fir  4 35.42 88.56 0.11 21.88 1243.26 703.03 12.71 53.77 
cha  4 43.03 87.62 0.12 17.79 1227.97 659.01 16.16 50.88 
bar  4 61.42 96.14 0.06 28.92 1125.80 656.96 24.90 50.89 
plu  4 57.76 94.80 0.10 26.40 1227.86 640.14 18.75 58.58 
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Table 5.9. Summary of statistics of metrics and climate variables for each type 

Type PLAND PLADJ NLSI ENN_RA 

Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD Max Min 

1 23.19 9.67 36.22 7.79 83.26 5.00 91.92 77.23 0.16 0.05 0.20 0.08 40.78 4.46 44.55 32.65 

2 6.26 3.59 9.32 2.30 60.78 4.19 65.62 58.35 0.39 0.04 0.41 0.34 52.53 25.05 81.35 36.01 

3 82.50 10.57 91.54 70.88 95.87 2.27 97.93 93.44 0.19 0.03 0.21 0.15 10.42 4.56 15.64 7.21 

4 49.47 10.21 62.76 35.42 91.71 3.08 96.17 87.62 0.10 0.02 0.12 0.06 24.60 5.05 31.79 15.87 

                 
Type PPT MB PPT_SD PET 

Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD Max Min 

1 1398.83 458.56 1963.04 777.68 25.48 13.83 45.95 9.28 89.04 33.80 129.35 52.26 835.02 243.90 1256.48 636.2 

2 1888.70 260.67 2183.51 1688.74 13.47 4.96 18.18 8.28 137.18 9.45 143.97 126.39 646.96 14.81 657.20 630.0 

3 422.43 15.65 439.99 409.96 62.45 14.43 77.99 49.48 50.16 1.37 51.73 49.17 709.15 16.70 723.56 690.9 

4 1097.54 284.27 1488.94 425.79 19.52 8.08 34.36 8.35 62.27 18.75 96.75 45.77 734.09 130.83 1058.49 640.1 
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5.6 Regression analysis of metrics and climate variables 

Linear regressions with four metrics (PLAND, PLADJ, NLSI, and ENN_RA) 

and the four climate variables: PPT, PET, PPT_SD, and MB, identified in the scatter 

diagrams as distinguishing the foredune patch pattern types, were made in SPSS 16.0 GP 

to see which climate variables could explain the metrics (Table 5.10). In the regression, 

each metric is a dependent variable and each climate variable is an independent variable. 

Linear regression analysis reveals statistically important relationships between PLAND 

and PPT (R2 = 0.517); PLAND and PPT_SD (R2 = 0.508); PLADJ and PPT_SD (R2 = 

0.507); NLSI and PPT_SD (R2 = 0.353); ENN_RA and PPT (R2 = 0.533); and ENN_RA 

and PPT_SD (R2 = 0.42). 

 

Table 5.10. Linear regression analysis of metrics and climate variables. 

Metrics  
  Climate variables 
  PPT PET PPT_SD MB 

PLAND R2 0.517 0.084 0.508 0.366 

 
Significance level 0.000 0.449 0.000 0.001 

PLADJ R2 0.392 0.014 0.507 0.135 

 
Significance level 0.001 0.299 0.000 0.046 

NLSI R2 0.155 0.036 0.353 0.000 

 
Significance level 0.035 0.199 0.002 0.498 

ENN_RA R2 0.533 0.006 0.420 0.220 

 
Significance level 0.000 0.363 0.001 0.014 

 

In addition, multiple regression analyses were done in SPSS 16.0 GP in which 

each metric was a dependent variable and the four climate variables were independent 

variables. The results of these multiple regressions are shown in Table 5.11. PLAND has 

the highest regression (R2 = 0.691), but the rest of the metrics also had high regression 
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values. Only the significance level of NLSI was a bit higher (R2 = 0.035), but its 

regression value was still high (0.439) at the 5 % significance level.  

 

Table 5.11. Multiple regression results with four climate variables (PPT, PET, PPT_SD, and MB). 

Metric  Value 

PLAND R2 0.691 

 Significance level 0.003 

PLADJ R2 0.541 

 
Significance level 0.000 

NLSI R2 0.439 

 
Significance level 0.035 

ENN_RA R2 0.629 

 
Significance level 0.001 

 

5.7 Climate (cumulative average) and bare sand area 

To see how many years of climate data are optimal for the statistical prediction 

of the amount of bare sand area (PLAND), linear regressions were performed using 

SPSS. Metric PLAND from both old and new images was set as a dependent variable 

and each year of cumulative averages of PPT for both old and new images was set as an 

independent variable. Figure 5.7 a) shows that a plateau occurs after the 7th year and 

several abrupt breaks occur in the 15th, 20th and 27th years. Figure 5.7 b) is a scatter plot 

made with PLAND and cumulative averages of PPT for only 13 of the sites that have all 

30 years of cumulative averages of PPT. The graph also shows that a plateau occurs after 

the 7th year. 
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Figure 5.7. Scatter plots showing regression with PLAND and PPT. a) all 44 old and new images, and b) 
only 13 new images that have all 30 years of PPT, because the original aerial photos were taken in 2009. 
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6 DISCUSSION 

 

6.1 Section introduction 

In this chapter the results presented in the previous chapter are discussed. The 

first section explains how foredune texture types obtained from cluster analysis are 

related to climate variables and how the types are distinguished one from another. 

Lancaster’s (1988) and Tsoar’s (2005) dune mobility indices are compared and then a 

better index for this study is discussed in more detail. Relationships between bare sand 

areas and mean annual precipitation are discussed and compared with Hugenholtz and 

Wolfe’s (2005b) results. This chapter concludes with a discussion on foredune 

development resulting from climate change in the future. 

6.2 Foredune texture types and climate controls 

Figure 6.1 a) shows that plots of type 1 (red) that are small and somewhat 

aggregated in foredune texture, are located parallel to those of type 4 (blue). On the other 

hand, Figure 6.1 b) shows that plots of the two types (type 1 and 4) are distributed 

without any trend. Figure 5.4 (scatter plot matrix) shows that types 1 and 4 are close to 

each other in any metric combinations, while types 2 and 3 tend to be at the extreme 

sides. However, type 1 and type 4 can be divided by the line in Figure 6.1 a) whose slope 

and intercept are 0.035 and 68 respectively. Therefore, given the annual mean 

precipitation (PPT) and the mobility index (MB), if a site is up from the line (y = 0.035x 

+ 68), the site falls into type 1; if a site is down from the line, the site falls into type 4.  
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Figure 6.1. Foredune texture types and climate controls. Type 1 is in red; 2 in orange; 3 in green; and 4 in 
blue. a) PPT vs MB marked by clusters and b) PET vs PPT_SD. Note: x axis of diagram b) starts from 600. 
Note: mar (Marina, CA), man (Manzanita, OR), and nes (Nestucca, OR). 

 

 

Type 2 (Nestucca, OR, Coos Bay, OR, and St. George, CA) that is small, 

irregular, and disaggregated in foredune texture, can be distinguished by a line whose 

slope and intercept are 0.73 and 600 respectively (Figure 6.1 b). However, as shown in 

Figure 6.1 a), type 2 is also above the line, but mixed with some type 1 sites. So in order 

for a site to fall into type 1 or 2, it is necessary to use both the lines shown in Figure 6.1 

a) and b). The two type 1 sites that plot very close to type 2 sites are Manzanita, OR and 

Nestucca, OR. These three type 2 sites and two type 1 sites (Manzanita and Nestucca) 

are located near each other on the northwest coast of the United States (Figure 5.3). In 

terms of foredune texture, Manzanita and Nestucca are similar to type 2; the latter is 

more disaggregated. The values of PLAND (the percentage of bare sand area) 

demonstrate this, showing that the PLAND values of old images of the two (Manzanita 

and Nestucca) are greater than those of new images: old 36% and new 21% in Manzanita; 

and old 9% and new 6% in Nestucca. Therefore, it is suggested that the Manzanita and 
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Nestucca sites are in transition from type 1 to type 2 (to restoration status with more 

vegetation cover).  

Sites of type 3 (Morro Bay, CA, St. Maria, CA, and Vandenberg, CA) that are 

very large, but few in foredune texture are all on the southwest coast of the United States. 

They received the smallest amount of rainfall–less than 500 mm annually (Figure 6.1 a). 

Although type 3 sites have higher annual mean potential evapotranspiration (PET: 

average PET is ca. 709 mm) than other sites on the west coast, (average annual PET is ca. 

657 mm), PET values of all study sites except five (Padre Island, TX, St. Joseph, FL, 

Bear Island, NC, Hatters, NC, and False Cape, VA) are less than 800 mm (Table 3.1 and 

Figure 6.3). Therefore, PET does not play a significant role in distinguishing type 3 sites 

from others. Instead, a relatively high MB, greater than ca. 50, and low PPT, less than 

500 mm, are the most important climate variables associated with type 3 sites.  

Type 4 sites (Eureka, CA, Tomales, CA, Marina, CA, St. Joseph, FL, False Cape, 

VA, Island Beach, NJ, Fire Island, NY, Chappaquiddick, MA, Barnstable, MA, and 

Plum Island, MA) that are relatively large, but few and aggregated in foredune texture, 

have three sites on the west coast, one on the Gulf of Mexico, and the others are on the 

northeast coast of the United States. Type 4 sites can be distinguished from type 1 by the 

line in Figure 6.1 a). Both types 3 and 4 have similar climate characteristics: mid to high 

PPT (except Marina, Manzanita and Nestucca) and low to mid MB.  

One site, Marina, a type 4, is located outside the majority of type 4s shown in 

plot a) in Figure 6.1. This is probably because Marina is located in Monterey Bay, CA 

(Figure 6.2), which is concave seaward. As Cooper (1967) mentioned, approaching wind 
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diffuses over the bay and its speed decreases. Table 3.1 shows that the mean wind speed 

of Marina, CA is 3.5 m/s, less than the sites nearby, and is the least wind speed among 

all other study sites. In addition to it, the invasion of non-native species, ice plant 

(Carpobrotus edulis) can account for this. Ice plant is a succulent and perennial plant 

introduced in early 1900s from South Africa into coastal dune fields in Monterey, U.S. 

to stabilize dunes (D'Antonio 1993; Guinon and Allen 1990). Marina dune field 

stabilized with the thick and mat-forming plant was probably more resistant to drier 

condition. 

As described in the Background chapter, moisture and wind are the most 

important factors controlling coastal dune growth and development. The results of this 

study confirm this. Two moisture variables and a wind variable are associated with sand 

patch patterns in this study: annual mean precipitation (PPT), annual variability of 

precipitation (PPT_SD), and Lancaster’s mobility index (MB), which contains the 

percentage of wind above threshold velocity (Vt) of all wind events (All). However, MB 

can be either a moisture or wind variable because it contains the terms PPT/PET and 

Vt/All (percentage of wind above threshold velocity). 
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Figure 6.2. Google image showing the Marina dune field that is located in Monterey Bay, CA. 
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Figure 6.3. Potential evapotranspiration (PET) of all study sites. Except for five sites (pad, stj, bea, hat, 
and fal), all other sites measure less than 800 mm in PET. 

 

 

6.3 Dune mobility index and coastal sand dune fields 

I evaluated the two mobility indices of Tsoar (2005) and Lancaster (1988). I 

found that Lancaster’s mobility index (MB) is useful as one of the climate variables to 

distinguish sand patch pattern types, but I did not find any relationship between Tsoar’s 

mobility index (MB2) and sand patch patterns. The reason why Lancaster’s mobility 

index works better for this study is because Lancaster’s index contains a moisture 

component (P/PET), whereas Tsoar’s index does not. Tsoar considered only wind power 

(drift potential: DP and resultant drift potential: RDP) in dune mobility because he said 

that moisture was not important due to sand’s unique characteristics of high permeability 

and large pore space. This is probably true because he applied his index only to desert 

dunes. MB has been applied to arid environments and was successful (Muhs and Maat 

1993; Muhs and Holliday 1995; Wolfe 1997).  
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In order to understand how MB influences foredune texture, it is necessary to 

understand how PPT/PET and Vt/All work in MB. First, I found that PPT:PET is 

strongly correlated with PPT (R = 0.95), so I made a scatter plot of PPT and inverse 

PPT:PET (PPT:PET/1) (Figure 6.4) to make it look similar to Figure 6.1 a). The patterns 

of the plot are similar to those of Figure 6.1 a), but the plot cannot distinguish type 4 

from others because type 4 sites are more spread out than those shown in Figure 6.1 a) 

and mixed with sites of different types, for example types 1 and 3. I also calculated the 

correlation of Vt/All with each of four metrics (PLAND, PLADJ, NLSI, and ENN_RA) 

and found that there is no correlation between Vt/All and all the metrics. The R2 of all 

metrics with Vt/All are less than 1 %. In this way, MB containing PPT:PET and Vt/All 

can explain a part of the sand patch patter types, but P:PET or Vt/All alone does not.  

 

Figure 6.4. Plots with PPT and inverse P:PET. Inverse P:PET is used to compare with PPT and MB. Dots 
are marked by the type of foredune texture: type 1 in red, 2 in orange, 3 in green, and 4 in blue. Note that a 
site of type 1 (red arrow) is among type 4 and a site of type 4 (blue arrow) is among type 3. Compare this 
plot with Figure 6.1 a). 
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6.4 Relationship between bare sand area and mean annual PPT 

Hugenholtz (2005b) investigated dune mobility and climate variations in 

southern Canadian prairies from the early 1900s to 1997. He compared average values 

for PPT:PET and wind speed with the decrease in dune mobility. R2 values showed that 

the average annual wind speed explains only 4 % of the variability in dune stabilization 

and PPT:PET explains 28 % at the 95 % confidence level. Although only a small part of 

the variability can be explained by the small values of R2 of the two climate variables 

(PPT:PET and average wind speed) in terms of dune stabilization, he suggested that 

dune activity can respond to recent climate variations, particularly aridity from the 1700s. 

Prior to investigating the relationship between bare sand area (PLAND) and 

mean annual precipitation (PPT), a linear regression between average PPT:PET and 

PLAND was calculated and compared to the regression between PPT and PLAND 

(Figure 6.5). The R2 of PLAND with PPT (0.52) is slightly greater than R2 with PPT:PET 

(0.48) and both are at the 99 % confidence level. So I use PPT instead of PPT:PET to 

investigate the relationship between bare sand area and climate to compare Hugenholtz’s 

results because PPT explains PLAND better than PPT:PET, and as described in the 

section above, PET is not a decisive factor in this study.  

 



 

178 
 

Figure 6.5. Plots of  a) PLAND with PPT and b) PPT:PET. The R2 values of both are at the 99 % 
confidence level. 

 

 

The R2 value of PLAND and PPT (0.52) in this study is almost twice that of the 

decrease in dune activity and PPT:PET (0.28) in Hugenholtz (2005b). It is probably 

because coastal dune systems have much more rainfall than inland dune systems in the 

Canadian Prairie, so moisture availability is a decisive factor for dune mobility in coastal 

dune systems. A high correlation between PLAND and PPT_SD (0.51) shown in Table 

5.9 demonstrates that moisture is very important to dune mobility expressed in the 

amount of bare sand area. 

In order to understand the relationship between PLAND and wind power, linear 

regressions were conducted between PLAND and variables related to wind speed: DP 

(drift potential), OSDP (onshore drift potential), RDP (resultant drift potential), RDP/DP, 

OSRDP (onshore RDP), MB2 (Tsoar’s mobility index), OSRDP/DP (onshore RDP/DP), 

Vt/All (percentage of wind above threshold velocity out of all wind events), and OS/All 

(percentage of onshore wind out of all wind events). None of them showed a significant 

correlation. The maximum value of R2 is only 0.04 (PLAND and DP), which 
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corresponds to Hugenholtz’ result (0.04) conducted in a land dune system. This shows 

that a wind variable alone cannot explain PLAND. On the other hand, the R2 value of 

PLAND and Lancaster’s mobility index (MB) is 0.37 at a 99% confidence level (Figure 

6.6). This shows that Lancaster’s mobility index can explain some of the variability in 

terms of dune activity in coastal systems, which is different from the result of 

Hugenholtz. Considering all of these, I suggest that dune activity or stabilization in a 

coastal dune system is mainly controlled by vegetation cover, which is in turn affected 

by annual mean rainfall. 

 

Figure 6.6. Positive correlations between PLAND and MB (Lancaster’s mobility index) 

 

 

In addition, linear regressions were performed to find an optimal averaging 

period of PPT for PLAND. The R2 value of PLAND and cumulative averages of PPT for 

all 44 sites of both old and new images is 0.45 at the 7th year where the slope of the plot 
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starts to significantly decrease and become a plateau (Figure 6.7 a). On the other hand, 

the R2 value for 13 sites that are new images having all 30 years of averages is 0.68 at 

the 7th year where the slope of the plot starts to decrease (Figure 6.7 b). Figure 6.7 a) 

shows abrupt breaks that occur at the 15th, 20th, and 27th years. This is because, as shown 

in Table 4.1, the years when old images were taken are different. The oldest image (St. 

George, CA) was taken in 1988, the next oldest ones in 1989, and then in 1993. From the 

15th year (in 1993), five sites are eliminated, so the R2 value increases and an abrupt 

break occurs. From the 20th year (in 1998), all the old images are eliminated and only the 

new images are left and so on. However, in Figure 6.7 b), no abrupt break is found, 

because all the images have 30 year cumulative averages. The result shows that no 

matter what the R2 values are, 7 year PPT data is enough to investigate bare sand areas 

on coastal dune systems.  

 

Figure 6.7. Plots showing the regression of PLAND and cumulative averages of PPT. a) all 44 old and 
new images, and b) only 13 new images that have all 30 years of PPT. The red arrows indicate the year 
when plateaus start; both occur at the 7th year. 
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6.5 Comparison of bare sand area between old and new images 

The amount of bare sand area (PLAND) of both old and new images for each site 

was examined and Island Beach, NJ and Plum Island, MA, showed the biggest 

differences between the old and new images (Figure 6.8). The values of the old PLAND 

for both sites are greater than those of the new PLAND, which indicates that the bare 

sand areas had been covered again with vegetation. However, climate data cannot 

account for the differences, because 30 year climate of the two sites have similar patterns 

to those of the close sites (Table 3.1 and 5.8). 

The larger amount of bare sand areas of the old images of the east coast taken in 

1995 can be explained by Northeasters in 1991 and 1992 that were major events 

damaging the east coast of the U.S. (Butman, Sherwood, and Dalyander 2008). The New 

Jersey coast was seriously damaged by the northeast storms that occurred on October 28 

– November 2, 1991, followed by another storm on December 11 – 12, 1992 (Donnelly 

et al. 2004). Particularly, the December 1992 storm was severe on the New Jersey coast 

(Zhang, Douglas, and Leatherman 2001) and it generated a significant wave height of 

7.6 m, maximum wind gusts at 24.7 m/s at Atlantic City, and a maximum water level 

elevation of 2.25 m above mean sea level which caused severe erosion of dunes 

(Nordstrom and Jackson 1995).  
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Figure 6.8. Comparison of bare sand area (PLAND). Island Beach, NJ (‘isl’) and Plum Island, MA (‘plu’) 
show the biggest differences between old and new images.  

 

 

The November 1991 storm (aka Halloween Eve Storm or “Perfect Storm”) was 

of unusually long duration and it generated high waves, a storm surge, and a high wind 

velocity of over 40 knots in combination with the remnants of Hurricane Grace (Davis 

and Dolan 1992). The 1991 storm damaged the east coast, from Cape Cod, NC through 

the coast of Maine and caused severe erosions of beaches and foredunes, particularly in 

Massachusetts (FitzGerald, van Heteren, and Montello 1994) where the cost of damage 

to the state reached $100,000,000’s (McCown 2011).  

Foredunes damaged by the storms have been restored through time by vegetation 

cover, which can be observed on the aerial photographs. The 1995 images for both 

Island Beach and Plum Island might still have shown that the areas were not fully 

recovered from the damage in three years, but 2008 images for both sites show that they 
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had significantly recovered from 82 % of PLAND to 36 % on Island Beach (Figure 5.1 

r-1 and r-2) and from79 % to 36 % on Plum Island (Figure 5.1 v-1 and v-2). However, 

the damage of other east coast sites of the U.S. such as Hatteras, NC, False Cape, VA, 

Fire Island, NY, and Chappaquiddick and Barnstable, MA, might not have been to the 

same degree. This is probably because actual damage can be affected by many different 

local factors such as the ocean-bottom profile, the shoreline’s orientation to the open 

ocean, tides, and the extent of dunes (Davis and Dolan 1993; Sallenger Jr 2000; Houser, 

Hapke, and Hamilton 2008).  

6.6 Climate change and foredune development 

According to the Fourth Assessment Report of Intergovernmental Panel on 

Climate Change (IPCC) (Christensen et al. 2007), annual mean precipitation will 

generally increase in North America, except for southwest and the south of the U.S. 

Researchers agreed that dune mobility is associated with vegetation cover and the 

vegetation is affected by precipitation and wind speed (Barchyn and Hugenholtz 2012; 

Hugenholtz and Wolfe 2006; Marin et al. 2005; Nield and Baas 2008). A drier climate, 

higher wind velocity, and concentrated wind direction accelerates dune activity caused 

by the destruction of vegetation cover.  

Muhs and Maat (1993) investigated the relationship between dune activity and 

global climate change in Great Plains of the U.S. They used Lancaster’s mobility index 

to observe the dune activity and found that the most dunes of the study sites were 

stabilized. They increased W (the time that wind above threshold velocity blew) by 20 % 

and found that dunes responded to increase in W. Thus, increased MB with increase in 
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W shows that the most dune fields would evolve into active dunes. This was 

demonstrated by comparing two aerial photographs taken in 1936 and 1983. In the 1930s, 

higher temperatures and wind speed and lower precipitation in this area cause 1936 

aerial photographs to show fully active transverse and barchan dunes, although 1983 

aerial photographs showed that most dunes were stabilized. 

My study shows that four climate variables (PPT, PET, PPT_SD, and MB) are 

related to foredune textures. Particularly, Figure 6.1 a) shows that two climate variables 

(PPT and MB) are useful in explaining foredune textures. In order to investigate how 

foredune textures will change with PPT, I assumed that PPT will decrease by 10 %, 

20 %, and 30 % and increase by 10 %, 20 %, and 30 % from the current average (1979 – 

2008), but wind speed and temperature expressed in annual mean potential 

evapotranspiration (PET) will not change. 
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Figure 6.9. Diagrams showing decrease in PPT. Dots are foredune textures and circles are the original 
places of foredune textures. Texture type 1 is in red, 2 in orange, 3 in green, and 4 in blue. 

 

     

In this way, I made six plots of MB vs. PPT. The first three diagrams are plots 

that show decrease in PPT by 10 %, 20 %, and 30 % and the second three plots show 

increase in PPT by 10 %, 20 %, and 30 %. Circles are the original places of the plots 

under current climate conditions (1979 – 2008). The decrease in PPT causes foredune 

texture types to move left, and at the same time, the increase in MB causes patch types to 

move upward, because MB has PPT in the equation. When PPT decreases by 10 % 

(Figure 6.9 a), the overall movement of texture types is left. Decrease in PPT by 10 % 

does not cause foredune textures to change from one type to another except a site (‘coo’: 
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Coos Bay, OR) of type 2 (orange). When PPT decreases by 20 % (Figure 6.9 b), one site 

(Padre Island, TX) of type 1 (red) changes to type 3 (green) and one site (‘nes’: Nestucca, 

OR) of type 1 changes to type 4 (blue). However, most sites of type 4 remain in the 

current type. The decrease in PPT by 30 % (Figure 6.9 c) causes texture types to change 

significantly. Although sites of type 1 are likely to remain in the current type or around 

the boundary between type 1 and 4, all sites of type 2 (orange) change to texture types 

between type 1 and 4. Type 3 will move further toward upper left corner. Most sites of 

type 4 remain in the current type. 

The increase in PPT causes foredune texture types to move right, and at the same 

time, the decrease in MB causes patch types to move downward, because MB has PPT in 

the equation. When PPT increases by 10 % (Figure 6.10 a), the overall movement of 

texture types is right. Increase in PPT by 10 % causes several sites (‘man’: Manzanita, 

OR of type 1, and ‘stj’: St. Joseph, FL of type 4) to move to other types, but most sites 

still remain in the current types. Increase in PPT by 20 % (Figure 6.10 b) causes two 

sites of type 1 to move to type 2 and most sites of type 4 to move toward type 1, but 

remain around the boundary between type 2 and 4. Increase in PPT by 30 % (Figure 6.10 

c) causes most sites of type 4 except for Marina, CA (‘mar’) to move to type 1, but type 

2 and 3 still remain in the current types, although type 2 move further right. 

According to Figure 11.12 (p. 890) in the report of IPCC (Christensen et al. 2007, 

p. 890), the southwest and south of the U.S. will likely have less annual precipitation by 

about 5 to 10 %. Hence, the diagram of decrease in PPT by 10 % (Figure 6.9 a) will be 

applied to those sites (all type 3 sites (Morro Bay, St. Maria, and Vandenberg, CA) in 



 

187 
 

green and Padre Island (‘pad’) of type 1 in red), but those sites will remain in the current 

type, although they move toward upper left corner. The amount of bare sand area of type 

3 sites is greater than 70 % and the average of them is about 83 %. Therefore, they seem 

to be responding to drier climate in the diagrams, but they will not change much, 

because the almost entire dune fields are already filled with sand patches. Increase in 

annual PPT by 10 % will likely occur in the northeast of the U.S. and hence, the diagram 

of increase in PPT by 10 % can be applied to the sites (Figure 6.10 a). However, the sites 

will remain in the type 4, although they move toward type 1. For the northeast sites to 

change their texture types, this result shows that PPT should increase by more than 10 %. 
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Figure 6.10. Diagrams showing increase in PPT. Dots are foredune textures and circles are the original 
places of foredune textures. Texture type 1 is in red, 2 in orange, 3 in green, and 4 in blue. Broken box  
indicates sites located on the northeast coast in the U.S., including Island Beach, NJ, Fire Island, NY, 
Chappaquiddick, MA, Barnstable, MA, and Plum Island, MA. 
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7 CONCLUSIONS 

 

Digital aerial photographs of twenty-two dune fields on the coastal dune systems 

of the United States were quantified based on sand patch textures by applying the 

concepts and methodology of landscape ecology. Four foredune types were obtained 

through hierarchical cluster analysis and the metrics of PLAND (percentage of bare sand 

area), PLADJ (proportion of like adjacencies), NLSI (normalized landscape shape index), 

and ENN_RA (range of Euclidean nearest neighbor) were used to characterize in the 

foredune types. The characteristics of each type are as follows. 

 Type 1 is comprised of small patches, somewhat aggregated mainly on the 

seaward slope of foredunes. 

 Type 2 is composed of small and irregular patches, but foredune texture is 

disaggregated with a long distance between patches. 

 Type 3 is made up of several, very large sized patches. 

 Type 4 is relatively large, (smaller than type 3), but has few and aggregated 

sand patches. 

Four climate variables (annual mean precipitation (PPT), annual mean potential 

transpiration (PET), Lancaster’s mobility index (MB), and standard deviation of PPT 

(PPT_SD)) were found to be involved in the foredune types and in distinguishing one 

foredune type from another. The characteristics of climate for each foredune type are as 

follows. 
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 Type 1 is mid to high in PPT and low to mid in MB, and similar to type 4 in 

climate characteristics. Type 1 can be distinguished by a line (y = 0.035x + 68) 

of a plot of PPT and MB. 

 Type 2 is high in PPT, low in MB, and low in PET, and can be distinguished 

from other types by a line (y = 0.73x + 600) of a plot of PET and PPT_SD. 

 Type 3 is low in PPT and mid to high in MB. Because type 3 has unique 

climate characteristics, it can easily be distinguished from other types.  

 Type 4 is mid in PPT and low to mid in MB. Type 1 and type 4 have similar 

climate characteristics and can be distinguished one from another by a line (y 

= 0.035x + 68) of a plot of PPT and MB. 

Lancaster’s mobility index (1988) works well for this study because it contains 

PPT and PET terms in the equation. However, Tsoar’s mobility index (2005) does not 

show any relationships with the foredune types because it has only wind power terms 

(DP: drift potential and RDP: resultant drift potential). The R2 value of the amount of 

bare sand area with PPT is 0.52, 0.51 with PPT_SD, and 0.37 with MB. MB, containing 

the ratio of PPT to PET (PPT:PET) and the percentage of threshold velocity of all wind 

events (Vt/All), can explain a part of the sand patch textures (R2 = 0.37), but PPT:PET or 

Vt/All alone does not. The R2 value (0.52) of PPT with PLAND suggested that dune 

activity or stabilization in coastal dune systems is mainly controlled by vegetation cover, 

which is in turn affected by PPT. Foredune types can be predicted in association with 

climate change. A drier climate will cause sand patches to become larger and more 

aggregated and eventually current foredune types will be similar to current type 3. 
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The optimal averaging period of precipitation for each bare sand area was 

obtained using linear regression between each cumulative averages of precipitation and 

PLAND.  The R2 values start to stabilize at the 7th year of cumulative averages of PPT in 

both old and new images and new image with all 30 year averages. It was suggested that 

7 year annual mean precipitation data is enough to investigate bare sand areas on coastal 

dune systems. 

A foredune is a dynamic feature in a coastal system and forms and grows in 

association with vegetation. Climate variables such as wind (for sand transport) and 

rainfall or rainfall efficiency (for vegetation cover) are important for foredunes. 

However, vegetated dunes are susceptible to the effects of natural changes and those 

created by humans.  This study demonstrates this in that climate variables, particularly 

annual mean precipitation and its variations, and mobility index, are important to 

foredune types classified by sand patch size and patterns, which enables prediction of the 

future development of foredune types in association with climate change.
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APPENDIX 

Köppen’s Climate Classification System 

Classification of major climatic types according to the Köppen-Geiger-Pohl scheme letter symbol 

   
1st 2nd 3rd criterion 

A    temperature of coolest month 18 degrees Celsius or higher 

 f  precipitation in driest month at least 60 mm 

 m  
precipitation in driest month less than 60 mm but equal to or greater than 100 – 
r/25)1 

  w   precipitation in driest month less than 60 mm and less than 100 – (r/25) 

B2    

70% or more of annual precipitation falls in the summer half of the year and r less 
than 20t + 280, or 70% or more of annual precipitation falls in the winter half of the 
year and r less than 20t, or neither half of the year has 70% or more of annual 
precipitation and r less than 20t + 1403 

 W  r is less than one-half of the upper limit for classification as a B type (see above) 

 S  
r is less than the upper limit for classification as a B type but is more than one-half of 
that amount 

   h t equal to or greater than 18 degrees Celsius 

    k t less than 18 degrees Celsius 

C    

temperature of warmest month greater than or equal to 10 degrees Celsius, and 
temperature of coldest month less than 18 degrees Celsius but greater than –3 
degrees Celsius 

 s  
precipitation in driest month of summer half of the year is less than 30 mm and less 
than one-third of the wettest month of the winter half 

 w  
precipitation in driest month of the winter half of the year less than one-tenth of the 
amount in the wettest month of the summer half 

 f  
precipitation more evenly distributed throughout year; criteria for neither s nor w 
satisfied 

   a temperature of warmest month 22 degrees Celsius or above 

   b temperature of each of four warmest months 10 degrees Celsius or above but 
warmest month less than 22 degrees Celsius 

    c temperature of one to three months 10 degrees Celsius or above but warmest month 
less than 22 degrees Celsius 

D    
temperature of warmest month greater than or equal to 10 degrees Celsius, and 
temperature of coldest month –3 degrees Celsius or lower 
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Table continued 
1st 2nd 3rd criterion 

 s  same as for type C 

 w  same as for type C 

 f  same as for type C 

   a same as for type C 

   b same as for type C 

   c same as for type C 

    d temperature of coldest month less than –38 degrees Celsius (d designation then used 
instead of a, b, or c) 

E    temperature of warmest month less than 10 degrees Celsius 

 T  
temperature of warmest month greater than 0 degrees Celsius but less than 10 
degrees Celsius 

  F   temperature of warmest month 0 degrees Celsius or below 

H4    
temperature and precipitation characteristics highly dependent on traits of adjacent 
zones and overall elevation—highland climates may occur at any latitude 

1In the formulas above, r is average annual precipitation total (mm) and t is average annual temperature (degrees Celsius). All other 
temperatures are monthly means (degrees Celsius), and all other precipitation amounts are mean monthly totals (mm). 
2Any climate that satisfies the criteria for designation as a B type is classified as such, irrespective of its other characteristics. 
3The summer half of the year is defined as the months April–September for the Northern Hemisphere and October–March for the 
Southern Hemisphere. 
4Most modern climate schemes consider the role of altitude. The highland zone has been taken from Trewartha (1968). 

 
Type A climates 

 Af : Wet equatorial climate 
 Am: Tropical monsoon and trade-wind littoral climate 
 Aw: Tropical wet dry 

Type B climates 
 Bwh (part of BWk): Tropical and subtropical desert climate 
 Bsh: Mid-latitude steppe and desert climate 
 Bsk (part of BWk): Tropical and subtropical steppe climate 

Type C and D climates 
 Cfa, Cwa: Humid subtropical climate 
 Csa, Csb: Mediterranean climate 
 Cfb, Cfc: Marine west coast climate 
 Dfa, Dfb, Dwa, Dwb: Humid continental climate 
 Dfc, Dfd, Dwc, Dwd: Continental subarctic climate 

Type E and H climates 
 ET: Tundra climate 
 EF: Snow and ice climate 
 H: Highland climate 

 
(Source: www.britannica.com) 




