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ABSTRACT 

 

 Very High Temperature Rector (VHTR) had been designated as one of those 

promising reactors for the Next Generation (IV) Nuclear Plant (NGNP).  For a prismatic 

core VHTR, one of the most crucial design considerations is the bypass flow and 

crossflow effect.  The bypass flow occurs when the coolant flow into gaps between fuel 

blocks. These gaps are formed as a result of carbon expansion and shrinkage induced by 

radiations and manufacturing and installation errors.  Hot spots may appear in the core if 

the large portion of the coolant flows into bypass gaps instead of coolant channels in 

which the cooling efficiency is much higher. 

 A preliminary three dimensional steady-state CFD analysis was performed with 

commercial code STARCCM+ 6.04 to investigate the bypass flow and crossflow 

phenomenon in the prismatic VHTR core. The k-ε turbulence model was selected 

because of its robustness and low computational cost with respect to a decent accuracy 

for varied flow patterns. The wall treatment used in the present work is two-layer all y+ 

wall treatment to blend the wall laws to estimate the shear stress. Uniform mass flow 

rate was chose as the inlet condition and the outlet condition was zero gauge pressure 

outlet. 

 Grid independence study was performed and the results indicated that the 

discrepancy of the solution due to the mesh density was within 2% of the bypass flow 

fraction. The computational results showed that the bypass flow fraction was around 

12%. Furthermore, the presence of the crossflow gap resulted in a up to 28% reduction 
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of the coolant in the bypass flow gap while mass flow rate of coolant in coolant channels 

increased by around 5%. The pressure drop at the inlet due to the sudden contraction in 

area could be around 1kpa while the value was about 180 Pa around the crossflow gap 

region. The error analysis was also performed to evaluate the accumulated errors from 

the process of discretization and iteration. It was found that the total error was around 

4% and the variation for the bypass flow fraction was within 1%. 
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NOMENCLATURE 

 

BG        Bypass Flow Gap  

CG        Crossflow Gap 

ID        Internal Diameter 

Re        Reynolds Number 

ReCH            Reynolds Number based on the Coolant Channels 

          Fluid Density 

D             Hydraulic Diameter 

 ̅         Average Velocity 

          Fluid Dynamic Viscosity 

P        Pressure 

V        Velocity 

ɸ        Flow Variable (velocity or pressure)  

F        Strength of the Convection of Flow 

                            

          Friction Velocity 

          Wall Shear Stress 

         Boundary Thickness 

L         Turbulence Length Scale 

            Volume of ith Domain 

N         Total Number of Cells 
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h        The Representative Mesh Size 

vb            Average Velocity in the Bypass Flow Gap    

            Reynolds Number based on the Bypass Flow Gap 

ξ         Pressure Loss Factor 

∆P         Pressure Drop 

              Entrance Length for the Turbulent Flow 

           Accumulated Error 

            Independent Random Errors 

εd             Discretization Error 

εI             Iterative Convergence Error 
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1. INTRODUCTION 

 

 Climate change, air pollution and energy shortage in the past decades had given 

rise to renewed concerns over the ability of nuclear energy to meet the fast growth of 

electricity demand. Since Very High Temperature Gas-cooled Reactor (VHTR) was 

selected as one of the six types of nuclear reactors for Next generation (Generation IV) 

nuclear plants in 2002, it has been a popular research topic for both National Labs and 

Universities around the world. This chapter will introduce a basic background of VHTR 

and the significance of core bypass flow and crossflow in the reactor core. Also, some 

fundamental knowledge of Computational Fluid Dynamics (CFD) and its applications 

will be covered.  A literature review and purpose of present study close this chapter.  

 

1.1 Very High Temperature Gas-cooled Reactor (VHTR) 

 As early as in 2002, led by US, Generation IV International Forum (GIF) 

selected six types of nuclear reactors to serve for the Next Generation (IV) Nuclear Plant 

(NGNP). The Very High Temperature Rector (VHTR) is designated as one of those 

candidates because of its high efficiency and high outlet temperature (~950 ℃) and 

possible application in the process of hydrogen production as well as coal gasification.  

This reactor concept is a thermal spectrum nuclear reactor moderated by graphite and 

cooled by helium. It employs the Brayton cycle to increase the efficiency of reactor. 

VHTR will use tristructural-isotropic (TRISO) fuel for its high integrity and high 

pressure boundary of keeping fission product gases leaking to the outside of the reactor  
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(J. W. Sterbenz, 2007). The core can be either pebble bed (Chinese HTR-10 or PBMR 

under development in South Africa) or Prismatic blocks (GT-MHR under development 

by General Atomics) as shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Fig. 1 Cross-sectional view of GT-MHR (P.E., MacDonald, 2003) 

 It is seen that the prismatic VHTR is mainly composed by annular active core 

consisting of prismatic fuel blocks, inner and outer graphite reflectors and other 

necessary safety control components. The inherent safety characteristics based on its 
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strong negative fuel temperature coefficient, helium cooled feature and large mass of 

graphite will enable VTHR to meet the safety requirement of the NGNP.  

 The core arrangement is presented in Fig. 2 and the red annular part is the fuel 

region while the remaining white region is the reflector. The fuel assembly consists of 

fuel holes and coolant channels as shown and the heat is transferred from the hot fuels to 

the graphite first and then removed by cold helium out of the core. Neutrons are 

produced in the annular core region and the graphite reflects those leaking neutrons back 

to the fuel region to initialize more sustainable chain reactions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Core Arrangement of GT- MHR (Tak, N.I., Kim, M.-H., et al., 2008) 
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 The fuel used for the VHTR is called TRISO fuel which has fuel kernel in the 

center of the sphere and several layers surrounding the kernel to keep the fission gases 

inside the fuel and also to increase the structural strength. The TRISO fuel is mixed with 

graphite to form the fuel compact which will be inserted into the fuel holes to form the 

fuel block. Fig. 3 presents the formation of the fuel used in the prismatic VHTR.   

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Bypass Flow and Crossflow Phenomenon in a VHTR Core 

  For the prismatic core VHTR, the bypass flow and crossflow effect are important 

design considerations. The bypass flow occurs when the coolant flows into gaps between 

fuel blocks. These gaps are formed as a result of carbon dimensional changes including 

Fig. 3 The formation process of the VHTR fuel (J. Ortensi, J.J., Cogliati,  2010) 
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expansion and shrinkage induced by radiation exposure, thermal stress, and 

manufacturing tolerances. Fig. 4 presents the linear change of dimensions as a function 

of the neutron fluence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The reason why this issue has attracted so much attention is that there would be a 

risk of fuel melting if the fraction of bypass flow becomes too high as less coolant would 

flow into coolant channels at which the cooling is more efficient. Also, there is another 

gap between fuel blocks which are vertically connected called cross gap. These two 

types of gaps are illustrated in Fig. 5. The bypass flow gap and crossflow gap will result 

Fig. 4 Graphite dimensional change as a function of irradiation fluence  

(Kim, M. H., Lim, H. S. 2011) 
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in the coolant redistribution in the reactor core. Hot spots will appear if the coolant flow 

fails to cool down the core evenly and efficiently.   In addition, the block will be titled 

due to the volume change of the graphite, which will increase the uncertainty of the 

coolant flow distribution in the core area.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Sketch of the bypass flow and crossflow in a prismatic VTHR core 
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1.3 Previous Works Review  

 In 1977, Fort St. Vrain VHTR in Colorado, US was reported to have experienced 

37 fluctuations including inlet temperature of primary coolant and steam generator main 

temperature in a rise to power test program and finally bypass flows and cross flows 

were blamed for that abnormal phenomenon (Olson, H. G., Brey, H. L., et al. 1982).  A 

few studies had been conducted focusing on the flow distribution in these gap regions 

after that scenario.  Experiment performed by H.G. Groehn investigated the influence of 

cross flow on the main flow distribution for a HTGR (H. G. Groehn, 1980) but the result 

indicated that there were up to 72%  flow reduction because of the cross flow which was 

not realistic in the practical reactor operating conditions. Basic and full scale 

experiments carried out in Japan (Kaburaki, H. and Takizuka, T. 1985) found that the 

leakage flow or cross flow could be described well by the two dimensional laminar flow 

between parallel planes. Also the authors came up a simple flow model which 

established a relationship between the mass flow rate and pressure difference to predict 

the leakage flow in VHTR fuel elements.  

 Later on, numerical method such as on one dimensional based flow network 

analysis and finite element method were employed to investigate the effect of the width 

variation of the bypass and cross flow gap as well as cross flow rates, which agreed well 

with their experimental data accord to the author (Kaburaki, H. and Takizuka, T. 

1987,1990).  

 In recent several years, with rapid development of computer hardwares and 

decreasing of the computational cost, computation fluid dynamic (CFD) codes have been 
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widely used in the nuclear industry, especially in the field of thermal hydraulic design of 

the nuclear reactors. A three dimensional simulation using commercial CFD code CFX 

11 was performed by N. Tak (Tak, N.I., Kim, M.-H., et al. 2008). A simple unit cell 

model which was a one-twelfth sector of a typical fuel blocks were applied to evaluate 

the temperature distribution within the fuel blocks. A similar simulation carried out by 

H. Sato (Sato, H., Johnson, R., and Schultz, R. 2010) also employed this simplified 

model to investigate the effect of gap width, turbulence models and uniform and cosine 

power profiles. Both teams found that bypass flow had a significant influence on the 

cooling effect of the fuels. And the possibility for the fuels have hot spots is proportional 

to the width of the bypass flow gap.  More parameters were investigated including the 

total heat generation, graphite block geometry (Johnson, R.W., Sato, H. 2012) and 

graphite surface roughness (Tung, Y. H., Johnson, R. W., Sato, H. 2011). They 

concluded that the presence of bypass flow gap flow and increase of the total heat 

generation as well as the surface roughness increased the maximum outlet coolant 

temperature and its variation as well. In addition, different turbulence models were 

compared and the results indicated that the realizable k-ε model provided an acceptable 

estimation of the flow characteristics in the bypass flow region. The related experiment 

which will be used to validate the CFD results is in progress in Idaho National Lab 

(INL).  

 Besides in US, several works regarding the bypass flow can crossflow 

phenomenon in the VHTR core have been performed both experimentally and 

numerically in Korea. Experiments based on a multi-block air test facility indicated that 
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the bypass flow fraction was independent of the inlet mass flow condition and crossflow 

plays a significant role in the flow and pressure distributions. Also, axial bypass flow 

gap profile played an important practical factor in determining the bypass flow 

distribution since the bypass flow gap was not uniform in reality. CFD commercial 

package CFX-12 was adapted to perform the computational work and the results agreed 

well with the experimental data (S.J. Yoon, J.H. Lee, et al, 2011, 2012). A procedure to 

estimate the bypass flow gap size variations during the core lifetime was developed so 

that the influence from the irradiation, thermal expansions could be examined 

quantitatively. It was found that the neutron fluence and the temperature distribution in 

the core had a significant influence on the local sizes of the bypass flow gaps which in 

turn change the coolant flow distributions through the core (Kim, M. H., Lim, H. S. 

2011).  

 

1.4 Objective of the Present Study 

 The intent of present study is to evaluate the capability of commercial CFD code 

STARCCM+ in investigating the bypass flow and crossflow phenomenon in a prismatic 

VHTR core. A two-block prismatic VHTR experimental setup built in Texas A&M 

University is chosen as the reference facility. The effect of width of bypass flow gap on 

the coolant flow distribution will be studied the gap sizes vary from 2mm to 6mm. In 

addition, the influence of the presence of the uniform and wedge-shape crossflow gaps is 

to be evaluated numerically. The simulation results will provide the experimental 

researchers a preliminary results regarding with the coolant velocity and pressure 
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distribution in the facility so that proper experimental procedures can be designed and 

also appropriate instruments such us pressure taps can be selected. Furthermore, results 

from present study will be validated against with the experimental data in future. 
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2. REFERENCE EXPERIMENTAL FACILITY 

 

  The CFD model in present simulation was produced based on the experimental 

facility built in Texas A&M University. The experimental apparatus consists of fuel 

blocks, bypass gap, collector, gap divider and other related supporters and sealing 

components. It has two layers and each layer includes three one-third sections of one 

whole block. Considering the objective of the experiment is to investigate bypass flow 

and crossflow phenomenon adiabatically, the fuel rods are ignored and there are six 

coolant channels only in each one-third section. The diameter was properly chosen to 

match the Reynolds number in a real operating condition. The material of the facility is 

acrylic which has the same refraction index with the P-cymene, the running fluid for the 

experiment, which enables researchers to employ the Matched Index of Refraction 

(MIR) method.  

  The reference experimental facility is designed based on the GA concept. Table 1 

compares the dimensions of the GA concept and the TAMU model. The main guideline 

for the design of the TAMU model is to match the Reynolds number in the practical 

operation and porosity of the GA concept VHTR. The reason why these two parameters 

are crucial and so kept the same during the scaling process is that Reynolds number 

determines the flow characteristics while the porosity influences the relative distribution 

of the coolant in the coolant channels and in the bypass flow gaps. That is why the 

coolant diameter of the TAMU model is much larger than that in the GA concept since 

the number of coolant channels are much smaller in the TAMU model. For the height of 
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the core and width across the flats, TAMU model keeps the scale factor constant which 

is 0.6. Since the widths of the bypass flow gap and the crossflow gap are unknown so far 

the estimated values are chosen for the TAMU model and the scale factor is 1.0.  

 

Table 1 Summary of the dimensions for the GA concept and the TAMU model 

Parameter GA concept TAMU model Scale Factor 

BG width Unknown 2mm , 4mm , 6mm 1.0 

CG width Unknown 
1 mm (Uniform) & 1-
2 mm(Wedge-shape) 

1.0 

Coolant hole ID 15.9mm 25.4mm 1.6 

Effective core height 793mm 500mm 0.6 

Width across flats 360mm 233.8 0.6 

Porosity 0.2 0.2 1.0 

ReCH
1 up to 6x104 at full 

power2 
1.2x104 ~ 3.8x104 1.0 

 
1
ReCH is the Reynolds number in the coolant channels; 

2
It is an estimated value based on a report from INL (R.R. Schultz, 2011). 

 

 Fig. 6 presents the scaling process from the GA concept to the TAMU model. To 

keep the bypass gap intact one third of each neighboring block was selected. That is, 

there are three rhomboids in each layer and total of six rhomboids for the whole facility.  

The fuel and coolant channels in the GA concept are represented by the enlarged coolant 

holes in the TAMU model to match the Reynolds number and porosity. The length of the 
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side for each rhomboid is 135 mm and the inner diameter of the coolant holes is 25.4 

mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  Other important dimensions of the TAMU model are indicated in Fig. 7. The 

crossflow gap is not shown in this figure but can be seen in the CFD model mentioned in 

the next session. The facility is 1500 mm long including two layers of blocks and one 

layer for the collectors. Each layer is connected by flanges which are sealed with screws 

and gaskets. With collectors installed the coolant flow rate of each rhomboid can be 

measured either using Particle Image Velocimetry (PIV) technique or ultrasonic flow 

meter. After use of the total flow rate measured by a turbine flow meter, the bypass flow 

 Fig. 6 Scale process from GA concept
*
 (left) to the TAMU model (right) 

* This is just a representation of the GA concept fuel block but not the original GA design 
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fraction can be calculated. Variation of the bypass flow gap width is achieved by 

employing different gap dividers shown in Fig. 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 In order to match the Reynolds number in the real operation (estimated to be 

30,000 at the medium power) an experimental loop was built as presented in Fig. 8 to 

increase the stability of the whole facility under high Reynolds number. The loop mainly 

consists of pump (7.5 KW, 3500 RPM), turbine flow meter, 500 gallon tank and three 

electronic flow meters. The main pipe is three inches connected by flexible valves. The 

Fig.7 TAMU experimental facility  
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sealing components in the loop are made of materials that are resistant to the P-cymene 

which is one of the working fluid. The loop is capable of providing of 250 gpm water 

which is equivalent to a Reynolds number of 38,524 in the coolant channel of the 

facility. In addition, several draining outlets were installed to prevent the working fluid 

like P-cymene from corroding the pipes and valves after the experiment is finished. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.8 Experimental loop 
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where ReCH is the Reynolds number in the coolant channels. 

           
    ̅

 
       (1) 

  is the fluid density, Dh is the hydraulic diameter,  ̅ is the average velocity and   is the 

fluid dynamic viscosity. 

 Fig. 9 presents the Reynolds number based on the coolant channel as a function 

of the volumetric flow rate for the experimental facility. The facility is able to reach a 

Reynolds number that matches the real operational condition at an intermediate power 

level. In addition, it is clear that the flow in the coolant channels is turbulent. The 

working fluid here is water but not P-cymene because it is not convenient to use P-
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Fig.9 ReCH vs. Volumetric Flow Rate 
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cymene to test the loop since it is corrosive. Thus water is suitable to perform the 

preliminary test or experiment as well as corresponding CFD analysis.  
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3. CFD SIMULATIONS 

 

3.1 Computational Domain 

 Commercial CFD code STARCCM+ 6.04 was employed to perform all mesh 

generations and simulations in present study. A three dimensional geometry model 

which represents the computational or fluid region only was firstly built in Solidworks. 

Considering future challenge of the meshing work for the bypass gap and cross gap with 

a thickness of only several millimeters, each part of the model was created separately 

and was assembled later, which enables one to assign varied mesh size for different 

parts. With this multi-region meshing technique the meshing and computation will 

become more efficient and economical. A small drawback of this option is that a proper 

setup of interfaces is required to allow mass and momentum transferred among these 

parts. A stagnation box with a height of 150 mm is added to create a unified inlet 

condition for the coolant channels and bypass flow gap otherwise 19 inlets would need 

to be specified. Fig. 10 shows the computational model for the 6mm bypass flow gap 

with 1mm crossflow gap case. 
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  The model is mainly composed of six parts, stagnation box (inlet) and three 

outlets, coolant channel, crossflow gap, bypass flow gap and three collectors. The height 

of the stagnation box has been optimized so that the pressure loss can be reduced as 

much as possible but meanwhile a uniform inlet condition is achievable. The reason why 

the crossflow gap can be created as what is shown in Fig. 10 is the average mass flow 

rate within the crossflow gap is almost the same for each block when the system reaches 

equilibrium. Thus the crossflow gap can be isolated and treated as a part of the block 

itself. This assumption does not hold if there is net mass gain or loss for the crossflow 

Fig.10 Computational Domain 
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gap because the mass cannot be conserved when the crossflow gap is isolated when the 

system has not reached steady state.  

 

3.2 Discretization 

 The discretization is a process to subdivide the fluid domain into a number of 

smaller, non-overlapping subdomains called grid or mesh of cells. It is part of the first 

main element of any CFD codes, pre-processing and the other two elements are solving 

and post-processing (Versteeg, H. K., Malalasekera, W. 2007).  For lots of flow 

problems the analytical solution is not obtainable and thus the differential governing 

equations needs to be converted to sets of algebraic or discretization equations so that 

they are able to be solved by computers. Mainly the governing equations for fluid flow 

are the mass and momentum conservation equations as shown in Eq. (2) and Eq. (3) if 

there is no heat transfer involved (Energy equation is not considered).  

 

                                         
  

  
                             (2) 

                    
 

  
     [       ]      [     ]                    (3) 

 As mentioned above, the flow variable such as pressure P or velocity V in a 

continuous domain is defined at each grid point as Pi or Vi. The values at other locations 

are obtained by interpreting the values at the grid points. Then the value of the flow 

variable at each grid is determined by solving this set of coupled algebraic equations in 

the discrete system. There are several popular discretization methods such as Finite 
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Difference Method (FDM), Finite Element Method (FEM) and Finite Volume Method 

(FVM) which is employed in the code STARCCM+. For the FVM, the continuous fluid 

domain is divided into a number of control volumes or cells and the flow variables are 

located at the center of these control volumes. By integrating the differential form of the 

governing equations over the each control volume the discretization equation is 

obtained. The largest advantage of the FVM is the resulting solution conserves mass, 

momentum or energy.  

 There are three mesh models provided in STARCCM+, tetrahedral mesh, 

trimmer mesh (hexahedra) and polyhedral mesh. Since multi-region meshing is not 

available under trimmer mesh model, only tetrahedra and polyhedra were taken into 

consideration. The advantage of tetrahedral cells is the fast speed to generate and low 

cost of memory. However, since there are only four neighbors around one control 

volume and also it's possible that these neighbors are located almost in the same plane, it 

would be difficult to capture the velocity gradient accurately. In contrast, each 

polyhedral cell has more than 10 neighbors from which more accurate results can be 

obtained. Also, polyhedra mesh needs less cells than that for the tetrahedral meshes, 

which means less computational hours consumption (M. Peric, et al, 2005). Table 2 

indicates the details of some important parameters for the mesh generation for the case 

of bypass gap 6mm with 1mm cross gap abbreviated as BG6CG1.  Default values were 

chosen for the rest.   
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Table 2 Summary of Parameters for Mesh Generation (Case BG6CG1) 

Parameter Value 

Globe Base Size(mm) 3 

Number of Prism Layers 5 

Prism Layer Stretching 1.2 

Prism Layer Thickness(mm) 1 

Surface Growth Rate 1.3 

Base Size for Bypass Gap(mm) 3 

Base Size for Cross Gap(mm) 0.3 

 

 Fig. 11 presents the multi-region mesh technique employed in this work. The 

fluid domain is divided into three regions in which different mesh densities are specified. 

The crossflow gap region characterizes for a very thin thickness so more cells are 

created to capture the flow profile within the narrow gap. Compared to the narrow gaps, 

the main body has a relative larger volume so low density meshes are adequate to obtain 

accurate results with respect to the computation economy.  
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 Another concern regarding the multi-region meshing is the mesh condition on the 

interfaces. Generally a significant error may be introduced if the mesh on the interface is 

non-conformal meaning that the two faces on the interfaces are meshed with different 

sizes of elements given that two parts are connected tightly without any rotation. Thus at 

most of the time the conformal is mesh is preferred. Fig. 12 shows the conformal mesh 

generated in the present study.  

 

 

 

Fig.11 Illustration of the multi-region meshing technique 
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3.3 Physics Models and Boundary Conditions 

3.3.1 Differencing Scheme  

 STARCCM+ is a control-volume based computational technique which 

integrates the governing equations for each single control volume.  In present work, in 

order to improve the computational accuracy the second-order upwind scheme was used 

to calculate the convective terms at the interface of each cell. Although the first order 

upwind scheme was not selected, it still worths a discussion of the algorithm to have a 

better understanding of the second order upwind scheme which is more widely used in 

CFD calculations. Given a diffusion-convection problem, the one-dimension control 

volume is illustrated in Fig. 13.  

Fig.12 Illustration of conformal Mesh on the interface of                  

the stagnation box and the bypass gap 
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 The flow viable ɸ can be velocity or pressure as mentioned in previous chapter. 

The upper-case letters (W, P, and E) stand for the control volume centroid while the 

lower-case letter such as w and e represent the value at the cell faces. The fluid flows 

from the west to the east passing through the midpoint P between W and E. To calculate 

the value at the cell faces, the first order upwind scheme sets the value of ɸ at the cell 

face or interface (ɸw or ɸe) to be equal to the value of ɸ at the grid point (ɸW or ɸP) on the 

upwind side of the interface. That is, 

                                                               (4) 

                                                                  (5) 

where 

         

        

Fig.13 Control volume for the one-dimension diffusion-convection 

problem (Versteeg, H. K., Malalasekera, W. 2007) 
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U is the velocity and F represents the strength of the convection of flow (S.V. Patankar, 

1980). The accuracy of this scheme can be evaluated by the Taylor series analysis.  

 

               
  

  
  

      
 

  

   

   
                          (6) 

 

 Now it is clear to see that the scheme is a first-order algorithm based on the 

backward differencing scheme. Thus it is not adequate for calculations which require 

high accuracy without significant false diffusion. Second-order Upwind Differencing 

Scheme with fine mesh will dampen this drawback. The value of ɸ is determined from 

the cell values in the two cells upstream of the face as illustrated in Fig. 14.  It can be 

seen that the value of ɸe is calculated based on a linear interpolation. Assuming the 

length of segment WP is the same as that of PE, ɸe is  

 

        
      

 
                  (7)
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Fig.14 Second-order upwind differencing scheme 
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3.3.2 Turbulence Modeling   

 Turbulent flow is characterized by its irregularity, diffusivity, unsteadiness and 

dissipation. The energy is transferred by stretching and rotation of large eddies to 

smaller eddies where the kinetic energy is eventually dissipated into heat. The 

difficulties of describing turbulence lie in the fact that instantaneous contributions to the 

flows can vary capriciously as a function of time. Fortunately, it is found that all 

variables in a flow can be decomposed into a time-averaged value ( ̅) and a fluctuating 

part     

             ̅                      (8) 

which is called Reynolds decomposition. By substituting Eq. (8) into the Navier-Stokes 

equations, it gives the so-called Reynolds-averaged Navier-Stokes (RANS) equations 

presented as below (viscosity is constant).  
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 The term       ̅̅ ̅̅ ̅̅  is a compact tensor and is usually referred to as the Reynolds 

stresses. The Reynolds stresses are complicated functions of the position and the 

turbulence intensity (Bird, R. B, Stewart, W.E., et al, 2006). Thus empirically 

correlations or models need to be introduced to resolve the Reynolds stresses term and 

this process is called turbulence modeling.  The realizable k-ε turbulence model used in 

the present study is one of the most widely used models because of its robustness and 

low computational cost with respect to a decent accuracy for varied flow patterns. 

“Realizable” here means that the model satisfies some constraints that are consistent 

with the physics of turbulence (T. H. Shih et al, 1995).  

Turbulence kinetic energy (k) equation: 

           [(   
  

  
)  ]      

       (12) 

Specific dissipation rate equation: 

           [(   
  

  
)  ]            

  

   √  
   (13) 

Where 

      (     
 

   
) 

       C2 = 1.9 

Eddy viscosity: 
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       (14) 

Instead of constant in the standard k-ε model,    in the realizable k-ε model is computed 

from: 

    
 

        
 

 

      (15) 

Where 

       

    √                   (16) 

   √    (
 

 
      (√  ))    (17) 

   
√          

  
               (18) 
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        (19) 

 

3.3.3 Near Wall Treatment   

 The presence of walls will significantly affect the turbulent flows because of the 

existence of large gradients in the flow variables in the near-wall regions. The gradients 

are produced due to the fact that the non-slip condition holds and the fluid is viscous. In 

addition, the k-ε turbulence model is valid away from the walls. Thus special treatment 

for the near-wall region is necessary. Traditionally, the near-wall region can be 

subdivided into three sub-regions as shown in Fig. 15.    
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Here the y
+
 is a non-dimensional wall distance defined in Eq. (20) to evaluate the grid 

resolution near the wall.  

       
   

 
     (20) 

Where   is the friction velocity defined as     √
  

 
  ,    is the wall shear stress and   

is the fluid density, y is the physical distance  to the nearest wall and    is the kinetic 

viscosity. 

Fig.15 Subdivisions of the near-wall region for the turbulent flow 

 (Bird, R. B, Stewart, W.E., et al, 2006) 
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 There are mainly two approaches to model the flow in the near-wall regions. One 

is called wall function approach which employs semi-empirical wall functions to connect 

the viscosity-affected region between the wall and the main turbulent region. This 

approach does not resolve the viscous sublayer and buffer layer. In contrast, the other 

approach, the near-wall model approach, requires very fine mesh in the near-wall region 

to resolve the flow in the inner region including the viscous sublayer and buffer layer 

(FLUENT, 2009). These two approaches are illustrated in Fig. 16.  

 

 

 

 

 

 

 

 

 

 

 Obviously, the near-wall model approach is more accurate since fine meshes are 

created all the way down to the wall. However, the increase of cells in the near-wall 

region will dramatically increase the total number of cells in the whole domain, which 

decreases the computational economy. Considering the focus of the present study does 

not lie in the study of the flow near the wall, the wall function approach is employed.  

Fig.16 Two approaches for the wall treatment  

(FLUENT, 2009)   
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The two-layer all y
+ 

wall treatment was used in the present study to blend the wall laws 

to estimate the shear stress. It is a hybrid treatment that attempts to emulate the high y
+
 

wall treatment for coarse meshes and the low y
+
 wall treatment for the fine meshes. It 

also provides satisfactory answers for the intermediate meshes (STARCCM+, 2011).  

Although the wall function approach does not require very fine mesh in the near-wall 

region, coarse meshes will fail to capture the large gradients in the flow near the wall 

accurately. Five prism layers were chosen with a stretching ratio of 1.2, which produces 

a reasonable local y
+
 value (within the logarithmic layer) in the interested regions.  The 

following equations were used to estimate the value of y
+
. Eq. (20) can be rewritten as: 

       
    

 
     (21)  

Where   is the fluid dynamic viscosity,   is the fluid density.  

    √
  

 
       (22) 

Shear Stress                                          
 

 
            

     (23) 

Where skin friction coefficient can be estimated using Schlichting skin-friction 

correlation: 

                          [                ]
      , for Rex < 10

9
   (24) 

Reynolds number          
                           

 
                (25) 

 For a pipe flow, the free stream velocity can be treated as average velocity which 

is calculated using the known mass flow rate and the area of the cross section. The 

characteristic length Lboundary layer is the thickness of the boundary layer at a certain 
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distance x away from the inlet of the flow. This thickness can be approximately 

evaluated using Eq. (26) (R. W. Fox, 2006) which is, however, is mainly to estimate the 

boundary thickness for the turbulent flow over a flat plate.  

     
      

   
 
 

      (26) 

 It was found that the y
+
 value in present work ranges from 30 to 150 depends on 

the position selected. Thus the first prism layer is located within the buffer layer or 

inertial layer (logarithmic layer) which is adequate to employ the two-layer all y
+
 wall 

treatment (STARCCM+, 2011). 

 

3.3.4 Setup for Other Models  

 Gravity was considered in the calculation since it would be more realistic and 

easy for one to compare with experimental results at least for liquid. The fluid was 

assumed to be incompressible and isothermal. The current simulation adapted the three 

dimensional steady state models as the outlets of the facility are basically three long 

cylindrical pipes where no significant recirculation would be expected and a steady state 

solution could be obtained.  

 

3.3.5 Boundary Conditions 

 The inlet boundary conditions were specified as the uniform mass flow rate 

condition and the values vary from 80 gpm (5.0 kg/s) to 250 gpm (15.8 kg/s).  The zero 

pressure (gauge pressure) outlet boundary was applied to the bypass gap outlet and three 
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coolant collector outlets. The intensity + turbulence length scale was used in the option 

of turbulence specification. In pipe flows, the turbulence length scale (TLS) was 

estimated using Eq. (27): 

                                               L = 0.07 Dh        (27) 

Where L is the turbulence length scale and Dh is hydraulic diameter. 

 

3.4 Grid Independence Study 

 The Reynolds-averaged Navier-Stokes (RANS) equations are solved by 

discretizing the fluid domain so that the partial differential equations can be represented 

by sets of algebraic equations.  This gives rise to recognized numerical errors including 

discretization errors. The other two errors are roundoff errors and iterative convergence 

errors (Versteeg, H. K., Malalasekera, W. 2007) which will be discussed in the 

uncertainly analysis chapter.   

 

3.4.1 Discretization Errors vs. Grid Resolution 

 For a flow variable ɸ(x) the Taylor series expansion (2
nd

 order) around point x is 

                  
  

  
      (

   

   
)
 

   

 
              (28) 

So the truncated term        or        in general is the source of the discretization 

errors when the fluid domain is cut into small pieces. Apparently this truncation error or 

the discretization error is proportional to the grid spacing or inversely proportional to the 

mesh density or gird resolution. The relationship between discretization error and the 

number of cells are qualitatively illustrated in Fig. 17.  
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 However, larger cell densities do not guaranty smaller errors because the 

roundoff error will be significant as the mesh sizes become very small. Thus constrains 

here are only the computational cost but also the roundoff errors when the mesh sizes are 

small. In order to investigate the influence to the results from the sizes of the mesh a grid 

independence study is necessary. A solution which is not mesh independent is always 

preferred.  

 

3.4.2 Richardson Extrapolation Approach 

 Although the application of CFD has helped engineers save time and money in 

design and product improvement and also have a deeper understanding of the flow 

characteristics without building complex experimental facilities, inaccurate results will 

Fig.17 Discretization error vs. Number of cells 
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be a waste time and effort and even cause a failure of products. Obviously sensitivity 

study will provide engineers a better understanding and help the industry obtain a more 

accurate estimation of any limits of their products.  There are a number of guidelines for 

best practice in CFD (Versteeg, H. K., Malalasekera, W. 2007) such as AIAA (1998) 

and ERCOFTAC (2000) guidelines. After years of development these guidelines have 

been revised many times to meet the new requirements. In recent years guidelines from 

the Journal of Fluid Engineering recommend that the Grid Convergence Indices (GCI) 

Method based on the Richardson extrapolation (RE) method can be used for estimation 

of the discretization error. The main procedure is briefly described below (Celik, I.B., 

Ghia, U, et al, 2008): 

 Step 1. A representative mesh size h is defined (three dimensions case). 

       [
 

 
∑      
 
   ]

 

        (29) 

where     is the volume of ith domain and N is the total number of cells. In present 

study, h is treated as the global mesh size. 

 Step 2. Generate three sets of meshes with different grid densities, for example, 

low, medium and high. The ratio r = hcoarse / hfine should be greater than 1.3. 

 Step 3. Calculate the apparent order p of the method using the expression 
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        (31) 
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where r21 = h2 / h1, r32 = h3 / h2, here h1< h2 < h3,     = Φ3 – Φ2,     = Φ2 – Φ1, and Φk is 

the solution of any flow variables that is important. Eq. (30) - (32) can be solved using 

fixed-point iteration, with the initial guess equal to the first term.  

 Step 4. The p in Eq. (31) will be used to calculate the extrapolated values by 

        
       

             
          (33) 

         
       

             
          (34) 

 Step 5. Error can be estimated by 

Approximate relative error,    

         
   |

      

  
|       (35) 

Extrapolated relative error, 

 

         
   |

    
      

    
  |       (36) 

The fine-grid convergence index, 

              
    

      
  

   
 
  

       (37) 

 In present study, three meshes with different mesh densities were generated for 

three cases, bypass flow gaps of 6mm, 4mm and 2mm. The crossflow gap is uniform and 

the width is 1mm for all three cases. The mesh sizes are summarized in Table 3. In order 

to maintain a relatively high meshing efficiency only the global base size and the 

crossflow gap base size were kept constant for three cases. It is not reasonable to set the 

base size of bypass flow gap to be the same. For example, the base size of the bypass 

flow gap is 3 mm for the coarse mesh (BG6CG1 case) but this dimension cannot be 
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applied to the BG2CG1 case since the base size itself is larger than the bypass flow gap 

size which is 2 mm. Thus it is still reasonable and acceptable to use global base size to 

perform the grid independence study and to investigate the corresponding errors based 

on the Richardson extrapolation.  

 

Table 3 Summary of cases investigated for the grid independence study 

Case 

Global base size 

(mm) 

BG base size 

(mm) 

CG base size 

(mm) 

Number of cells 

(million) 

BG6CG1 

8.00 3.00 0.50 4.76 

6.00 2.30 0.35 9.50 

4.50 1.70 0.26 18.32 

BG4CG1 

8.00 2.00 0.50 5.77 

6.00 1.50 0.35 11.56 

4.50 1.10 0.26 22.57 

BG2CG1 

8.00 1.00 0.50 11.14 

6.00 0.75 0.35 22.21 

4.50 0.55 0.26 40.41 

 

Note: BG - Bypass flow Gap, CG - Crossflow Gap 

 

3.4.3 Results of the Grid Independence Study 

 Forty eight steady state simulations were run to investigate the influence to the 

solution from the grid base size. The bypass flow fraction was selected as the crucial 

variable which is the Φ mentioned in the section 3.4.2.  For each size of the bypass flow 
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gap, three different meshing densities were specified, low, intermediate and high. Fig. 

18– Fig. 20 presents the bypass flow fraction as a function of volumetric flow rate for 

each bypass flow gap size.   
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Fig.18 Bypass flow fraction vs. Volumetric flow Rate (BG6CG1) 
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Fig.19 Bypass flow fraction vs. Volumetric flow Rate (BG4CG1) 

Fig.20 Bypass flow fraction vs. Volumetric flow Rate (BG2CG1) 
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 The discrepancy regards to the bypass flow fraction ranges from 0.4% 

(BG2CG1) to 2% (BG6CG1). This discrepancy decreases when the bypass flow gap 

becomes narrower as the total number of cells for the 2mm bypass flow gap case is 

much greater than that of the 6mm case. A larger number of cells means that the 

truncation error is reduced. Clearly, even the coarse polyhedral mesh can meet the 

requirement since the difference between the coarse and fine mesh is not significant 

although the model with coarse mesh does overestimate the bypass flow fraction. 

Another interesting observation is the coupling relationship between the bypass flow 

fraction and the flow rate becomes weak when the gap is narrow. For the 2mm bypass 

gap case, the slop reduces significantly when the flow rate reaches 250 gpm. It is 

because the resistance within the narrow gap is so large that it is not easy for coolant to 

flow into the gap even with a higher flow rate.  

 Extrapolated values were also calculated based on the Richardson Extrapolation 

Method shown as the red lines in these figures. Considering the fact that finer mesh can 

reduce the discretization errors only variables     and    were selected to calculate the 

extrapolated value     
   using Eq. (33). All three figures show that the discrepancies 

between the extrapolated value and the solution from the finest mesh are relatively 

small. The extrapolated solutions can be treated as solutions from the “finest” mesh 

which is only achievable in theory. However, it is obvious not the exact or analytic 

solution because there are other sources of errors, such as modeling errors, round off 

errors and so on. The significance of the extrapolation values is that it provides the 

criteria to evaluate that how far is the solution obtained from a mesh of certain density 
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(fine or coarse) from the solutions  based on the “finest”  mesh in theory. Fig. 21 

combines these three figures together to demonstrate the relative trend for each case. It is 

clear that the discrepancy is reduced when the bypass flow gap width decreases. In 

addition, coarser mesh is trending to predict a higher bypass flow fraction. Thus an 

optimized mesh is required in order for obtaining a relatively accurate solution with 

respect to the computational cost.  

 

 

 

 

 To sum up, the mesh with good quality is prerequisite for generating a relatively 

accurate solution by reducing the discretization errors. To achieve this goal the grid 

independence study is recommended to be performed to seek the optimized mesh sizes. 
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Fig.21 Bypass flow fraction vs. Volumetric flow Rate (All Cases) 
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Richardson Extrapolation Method can be employed to calculate the extrapolated values 

from a set of meshes of different sizes. The discretization errors are quantified by 

comparing the solutions obtained from the simulation with those extrapolated values.  
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4. RESULTS AND DISCUSSION 

 Although the grid independence study indicates that the fine mesh offers a 

solution with smaller error, a different mesh size matrix was selected to present the 

results. The total number of cells is larger or equal to the fine mesh case. There is no any 

meaningful reason for this option but only simply because simulations used to 

demonstrate the results in this chapter were generated before the grid independence 

study was performed. It is acceptable to do the analysis in this sequence as long as the 

corresponding uncertainties are quantified and reported. Uncertainties were calculated 

based on the algorithm discussed in previous chapter and the results will be discussed in 

next chapter. Table 4 shows the information of the meshes used for generation of the 

solutions.  

Table 4 Total number of cells for each case investigated 

Case Number of cells (million) 

BG6CG1 21.2 

BG4CG1 22.6 

BG2CG1 40.4 

BG6CG0 15.3 

BG4CG0 12.5 

BG2CG0 14.0 

BG6CG1_2* 24.8 

*1_2 means the crossflow gap ranges from 1mm to 2mm and it is a wedge-shape gap. 

 

4.1 Effect of the Bypass Flow Gap Width 

 In the prismatic Very High Temperature Gas-cooled Nuclear Reactor (VHTR), 

the dimension of the reflector (graphite) changes as a result of the presence of radiations 
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and the thermal expansion and shrinkage. However, it is difficult to determine what the 

exact gap size present in the reactor because the change is a dynamic process and the gap 

size differs from reactor by reactor. Thus it is necessary to analyze the coolant 

distribution with different gap sizes present in the reactor. In present work, three sizes of 

the bypass flow gap were studied, 2mm, 4mm, and 6mm. The bypass flow gap is 

assumed to be uniform through the reactor and the crossflow gap effect was not 

considered in this section. Fig. 22 presents the influence of the bypass flow gap width to 

the bypass flow fraction for different Reynolds numbers.  

 

 

 

 

 

 

 

 

 

 

  

  

 It is seen that the bypass flow fraction is proportional to the gap width and the 

Reynolds number. The fraction ranges from 11.3% to 12.8% for the widest gap and from  

Fig.22 Bypass flow fraction vs. ReBG for varied bypass flow gap widths 
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1.1% to 1.7% for the narrowest one. This phenomenon can be explained that the coolant 

will confront more resistance from the narrower gap so more fluid will flow into places 

in which the resistance is smaller. Those places refer to the coolant channels where the 

coolant efficiency is much higher. However, this does not guaranty that there will be hot 

spots appearing when the gap is large because coolant is still able to cool down the 

graphite around the gap region, which still can remove certain amount of heat. Power 

distribution involving neutronic calculations is required before drawing any conclusion.  

 Another point which needs to be looked into is the Reynolds number in the 

bypass flow gap. Approximately, flow becomes turbulent when the Reynolds number is 

greater than 1,300 for the flow within narrow parallel plates. Thus, the flow is mainly 

laminar flow for the 2mm bypass flow gap case. In contrast, flows in the 4mm and 6mm 

gap are turbulent. This is mainly because the space for the flow is so narrow for the 2mm 

gap that the chance for any eddies, swirls or significant fluctuations become small. These 

fluctuations would be dampened by the very narrow gap if there has been any tendency 

for them to be formed. But it doesn’t mean the flow cannot be turbulent but just indicates 

that the turbulence may not exist in the case studied in the present work.  

 

4.2 Effect of the Crossflow Gap 

 As mentioned earlier, bypass flow fraction is a key factor during the VHTR 

design process. A high bypass flow fraction may be a threat to the nuclear reactor safety 

while an appropriate value of the fraction may significantly cool the near-gap region 

(Sato, H., Johnson, R., and Schultz, R. 2010). However, the presence of the crossflow 
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gap may also impact the coolant distribution in the core. The mechanism is that the 

coolant will be redistributed when passing through the crossflow gap because of the 

pressure difference in the bypass flow gap and the coolant channels. In order for a better 

understanding of the crossflow gap discussed in the present work, a schematic figure is 

presented below. Fig. 23 (a) is for the case of no crossflow gap. Fig. 23 (b) represents the 

1mm uniform crossflow gap case and (c) illustrates the condition when the 1
st
 layer of 

blocks is titled so a wedge-shape crossflow gap is formed. The minimum width is 1mm 

and the maximum is 2mm. 

 

 

 

 

 

 

 

 

 

  

 For the wedge-shape gap the inclination angle, ϴ shown in the Fig. 23 (c), is only 

0.2˚ which is a very small angle. However, it is this small angle that changes the coolant 

flow path and may bring significant effect on the pressure and velocity distributions.  

Fig. 24 demonstrates the relationship between the bypass flow fraction and the Reynolds 

Fig.23 Sketch of crossflow gap shapes 
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number in the bypass flow gap for three cases, uniform, wedge-shape and absence of 

crossflow gap. Please note if there is no specific explanation, the default bypass flow gap 

is 6mm.  

 

 

  

 

 Here Reynolds number has its usual meaning which is defined in Eq. (38). 

          
       

 
    (38) 

where vb is the average velocity in the bypass flow gap and it is calculated based on the 

mass flow rate and the cross area of the bypass gap. Dh is the hydraulic diameter of the 

bypass gap and other symbols have their usual meanings. 

 The overall bypass flow fraction is about 12% which is close to the real reactor 

operating conditions. A higher Reynolds number produces a larger bypass flow fraction. 

9

10

11

12

13

14

1000 3000 5000 7000 9000 11000

B
yp

as
s 

Fl
o

w
 F

ra
ct

io
n

 (
%

) 
 

ReBG 

1mm_cross_gap

titled_cross_gap

no_cross_gap
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For the same Reynolds number, the case with a titled crossflow gap has the largest 

bypass flow fraction while the fraction for the case without crossflow gap is the smallest. 

This can be explained by the fact that the flow will be redistributed when it passes by a 

crossflow gap. The pressure in the bypass gap is higher than that in the coolant channel 

so some portions of the flow originally from bypass gap may prefer to flow into the 

coolant channel where the resistance is much lower. For the titled and uniform crossflow 

gap cases, titled one provides more room for the flow to be redistributed in the crossflow 

gap region, which results in a lower bypass flow fraction. 

 In order to evaluate the pressure loss in the system in a dimensionless way, a 

parameter named pressure loss factor ξ is defined as: 

        
  

 

 
   

 
     (39) 

where ∆P is the summation of the major pressure loss due to friction and minor pressure 

loss due to flow area changes; ρ is the density of the fluid (water for the present study); 

vb is the same as that in Eq. (38).  The pressure loss factor as a function of Re_bypass is 

plotted in Fig. 25. 
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 Although the three cases share the same trend again but obviously the model with 

a titled crossflow gap has a significantly higher pressure drop. The reason may be that 

flow is redistributed in the crossflow gap region, which produces a large number of 

recirculations. These eddies increase the energy dissipation and large pressure drop can 

be expected. Also, it is highly possible that certain amount of low will hit the wall 

between coolant channels instead of directly flow into those holes due to inclined flow 

paths, which also can increase the pressure loss.   

 The velocity field were computed though the middle plane of the crossflow gap 

for both the uniform gap case and the wedge-shape gap case with a volumetric flow rate 

of 180 gpm (11.36 in kg/s approximately). Fig. 26 and Fig. 27 present the tangential 

velocity field. The normal vector of the middle plane is parallel to the flow direction in 
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the positive z direction. In Fig. 27, the 1mm crossflow gap side (lower side) is located at 

the lower right corner while the 2mm one (higher side) is at the upper left corner. 

 It is noticeable that no matter the block is titled or not there is a strong secondary 

flow moving from the bypass flow gap towards coolant channel regions. This horizontal 

flow is very important as it will increase the mass flow rate in the coolant channels. 

Those coolant holes far from the bypass flow gap will receive less increment compared 

to those in the regions close to the gap, which may result in an uneven distribution of the 

coolant. It is possible that this asymmetry would bring in physical vibration of the block 

itself and also influence the temperature distribution in the fuel region. The differences 

in these two figures lie in that the horizontal flow is able to flow faster and further 

towards coolant channels for the wedge-shape crossflow gap.      

 

 

 

  

 

 

 

 

 

 

 
Fig. 26 Velocity field for the uniform gap case 
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 To verify the statements above, it is necessary to investigate the influence to the 

mass flow rate distribution from the crossflow gap. To begin with, mass flow rates are 

computed for each single coolant channel and bypass flow gap on both Plane A and 

Plane B illustrated in Fig. 28. These two planes are located at the 1mm higher of the 

crossflow gap while the other one is at 1mm below the gap respectively. 

 

 

 

 

 

Fig.27 Velocity field for the wedge-shape gap case 
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 Although for a uniform crossflow gap the mass flow rate is expected to be evenly 

distributed though the interested planes, the computational results show that this may not 

be the case. Fig. 29 presents the mass flow rate in percentage with respect to the total 

flow rate for both coolant channels and bypass flow gap region. The values in the 

peripheral region are slightly higher than those in the inner part which can be explained 

that bypass flow gap “steal” a small portion of coolant which should originally flow into 

those coolant holes near to the bypass flow gap. Overall, the mass flow rate in each 

coolant hole is symmetrical along the bypass gap. 

 

 

Fig. 28 Sketch of planes used for calculation 
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 After the flow pass through the crossflow gap, the flow will be redistributed. 

Mass flow rates on Plane B are computed and Fig. 30 indicates the change between 

values on Plane A and Plane B in percentage with respect to mass flow rates on Plane A. 

 

 

 

 

Fig.29 Mass flow rate on Plane A for the uniform gap case 



 

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The distribution of mass flow rate change shows a good symmetry along the 

bypass flow gap.  As expected above, more coolants flow into those coolant channels 

near to the gap. Meanwhile, flow in the bypass flow gap decreases by about 16% for the 

three partial sections and 7.7% for the small triangular region in the middle. It is hard to 

draw any conclusions about whether the drop in the bypass flow gap is good or not 

because this may reduce the cooling effect for those fuel rods near to the bypass flow 

gap although the cooling in coolant holes is more efficient. Hence, more works involved 

in heat transfer need to be done. 

Increase 

Decrease 

Fig.30Mass flow rate change for the uniform gap case  
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 Fig. 31 demonstrates the mass flow rate change for the titled block. The mass 

flow rate distribution is in accordance with the velocity field with more significant 

increase at the upper left corner. It can be observed that there is an approximately 23% 

drop for the coolant in the bypass flow gap and 4-5% increase in the coolant channels 

while the values for the upper left corner are -28.8% and +6.1% respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Another important concern besides the mass flow rate distribution is the pressure 

field. Fig. 32 presents the pressure distribution for the wedge-shape crossflow gap 

Increase 

Decrease 

Fig.31 Mass flow rate change for the wedge-shape gap case  
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computed on the same plane shown in Fig. 26.  It is seen that there is about 500 Pa 

pressure difference between the bypass flow gap and coolant holes, which produces the 

secondary flow observed in Fig. 27.   

 

 

 

 

 

 

 

 

 

 

 

 

  

 The static pressure distributions in a coolant channel (#H in Fig. 31) and in the 

bypass flow gap are shown in Fig. 33. The measuring point for the bypass flow gap is 

located in the middle of the section #Y in Fig. 31. The hydraulic pressure drop due the 

gravity is ignored and the pressure at the outlet boundary is taken as zero. It is observed 

that there is significant pressure drop at the inlet of the coolant channel and the bypass 

Fig.32 Pressure distribution within the crossflow gap 
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flow gap due to area reduction. Also pressure decreases by 180 Pa after the flow pass 

through the crossflow gap. 

 

 

 

 

 

 

 

 

 

 

 

 

 Due to the fact that the pressure drop is related to the flow entrance length in the 

coolant channel, it is of interest to investigate how the flow develops in the coolant 

channel. Six planes A-F shown in Fig. 34 are taken at the first layer of the facility. Plane 

A is located at 0 mm in the positive z direction and F is at 450 mm. It should be clear 

that the bottom of the stagnation box or the inlet of the coolant channels is at z = -4mm 

and the height of the first layer is 500mm. 

 

 

Fig.33 Static pressure distribution  
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 The velocity profile is computed in the coolant #A shown in Fig. 31 for the 

wedge-shape crossflow gap case with a Reynolds number of 28076 in coolant holes. Fig. 

35 presents the result from which it is seen the flow is turbulent and is still developing at 

least at Plane E (z = 400mm) as the shape is still changing. When it comes to z = 450 

mm, the change of the profile is very small which can be observed in the zoom-in circle 

(a) and (b).   However, the change is not small enough to be neglected. That is, the 

turbulent flow in the coolant hole #A in the first layer of the block is not fully developed 

at least at z = 450 mm although it may be close.  If a widely used empirical relation 

Fig.34 Planes used for entrance length study   
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shown in Eq. (30) is used to determine the entrance length of the turbulent flow, the 

length will be about 616mm.   

                     
         (30) 

where L is the entrance length, Re is the Reynolds number and Dh is the hydraulic 

diameter. For the coolant channel in present study, Dh is the diameter of the coolant hole 

directly which is equal to 25.4mm.  Fig. 36 shows another scalar scene of the velocity 

profile in coolant channel #A (top) and #F (bottom).   

 

 

 

 

 

Fig.35 Velocity profile in a coolant channel   
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#F 

Fig.36   Velocity Profile in coolant channel #A and #F 
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5. ERROR ANALYSIS 

 

 Although the application of CFD has been widely used as an engineering tool for 

its cost saving and enhancement of understating the flow details, how confident the CFD 

results are is addressed because it would be a huge waste of the money and time if those 

colorful pictures are meaningless and untruthful. Of course verifying the computational 

results against the experimental data is a way to quantify these errors but it is necessary 

to assess the computational errors and uncertainties during the process of CFD modeling 

itself. According to the guides from AIAA (AIAA, 1998) the error is defined as a 

recognizable deficiency in a CFD model that is not caused by lack of knowledge. The 

uncertainty is a potential deficiency in a CFD model that is caused by lack of knowledge 

(AIAA, 1998). Although there is a difference between them, usually uncertainty analysis 

is called “propagation of error”. The true results of a given problem may not be known 

but the results could lie in a range with certain uncertain in which results could be 

trusted. Table 5 provides a classification of sources of errors (NASA, 2012).  
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Table 5 Sources of errors in CFD modeling 

Acknowledged Error 

 
Physical modeling error 
 

Geometry modeling error 
 

Round-off error 
 

Iterative convergence error 
 

Discretization error 
 

Unacknowledged Error 

 
Computer programming error 

Usage error 

 

 Since the unacknowledged error is negligible compared to the acknowledged one 

and also it is not accessible usually, acknowledged error is what will be focused on and 

investigated. More specifically, the iterative convergence error and the discretization 

error will be quantitatively discussed. The physical modeling error refers to the error 

generated when a real problem is represented by a mathematical model. For example, the 

turbulence models widely used in the CFD applications are necessary approximations 

when solving for the Navier-Stokes equations for the turbulent flow. Error from this 

modeling process is hard to be quantified except comparing the results against the 

experimental data. The geometry modeling error is treated negligible because four digits 

were kept for the dimension of the CFD model built in the SolidWorks in present work. 

At least three digits were kept for all the calculations involved in the present work and so 

the round-off error can also be neglected.  
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 Iterative convergence error is generated when the iteration is terminated in the 

condition that certain convergence criteria set before the iteration starts is satisfied.  For 

example, it is recommended that at least three or four orders of magnitude of the 

residuals decrease to achieve the iterative convergence. However, this doesn’t mean that 

the orders dropped smaller than three or four indicate a non-converge condition. The 

convergence can be evaluated by monitoring if the residuals and the solution of some 

interested variables are constant or their average momentum doesn’t change 

significantly. In present work, the stopping criteria was set to be 1,000 iterations 

considering the accuracy and the computational cost.  Obviously there were errors 

involved during this approximating process. For illustrative purpose, Fig. 37 presents the 

plot of the residuals for the BG4CG0 case with a volumetric flow rate of 80 gpm. It is 

seen that the residuals drop by an order of four and become constant after 700 iterations.  

Furthermore, bypass mass flow rate was selected as the target variable to investigate the 

convergence condition of the simulation. The solution as a function of the number of 

iterations is shown in Fig. 38 and a zoom-in view is followed by Fig. 39 to make sure 

that any fluctuations were not hidden due to the large range of change of the solution at 

the beginning of the iteration.  It can be found that the convergence had been achieved as 

the change of the solution is negligible and the residuals are constant as well.  
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Fig.37 Residuals for the BG4CG0 case with a flow rate of 80 gpm 

Fig.38   Mass flow rate of the bypass flow at outlet as a 

function of the number of iterations 
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 It is relatively easy for the solution to be converged for the no-crossflow-gap case 

but flow becomes more complicated and it is harder to meet the converging requirement 

once the crossflow is involved, especially when the first layer of the block is titled.  

Given the stopping convergence is fixed for cost-economy purpose with respect to 

accuracy, errors will be involved and so it is necessary to quantify them. The way to 

calculate the error is to run more iterations (5,000 for present work) until the change of 

the solution is negligible and compare this “accurate” solution with the one obtained 

after 1,000 iterations. Since this error is function of the flow pattern or differs case by 

case, only the cases BG6CG1_2, BG6CG1 and BG6CG0 were studied with a volumetric 

velocity of 180 gpm.  Bypass flow fraction in percentage was chosen as the target 

variable to demonstrate related errors. The errors in percentage were found to be 0.64%, 

0.27% and 0.08% respectively.  These values will be applied to all six flow rates for 

Fig.39   A zoom-in view of Fig. 38 



 

67 

 

each case and obviously this is an approximation because it is not necessary or it would 

not be worth to run 5,000 iterations for each case with six different flow rates.  

 Another source of error is the discretization error which is from the truncation of 

higher order term in the Taylor serials when the governing equations are discretized. The 

discretization error can be investigated by performing the grid independence study and 

quantified by employing the Richardson Extrapolation Method.  Fig. 40 presents the 

errors using error bars for the results from the grid independence study. The “High” in 

the legend means high mesh density. The average errors in percentage for the case 

BG6CG1, BG4CG1 and BG2CG1 are 3.9%, 4.9% and 7.0% respectively. It is 

interesting to see that the case BG2CG1 has the largest error although the error bars are 

insignificant. This is because that the difficulties in meshing increase as the bypass flow 

gap becomes narrower, that is, the chance for low quality meshes existing in the model 

increases. Furthermore, the roundoff error cannot be neglected when the mesh size 

becomes small. The reason why error bars are almost invisible is simply because the 

solution values themselves are too small. Although the errors range from 4.9% to 7.0%, 

the change in the bypass flow fraction is still small (around 1% to 2%).  
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 Thus the total errors will be the combination of the iterative convergence error 

and the discretization error. The general rule of calculating the error propagation or the 

accumulated error is described in Eq. (31). 

       √ 
    ⃗⃗  

   
    

     
    ⃗⃗  

   
    

        (31) 

where    is the accumulated error, F( ⃗ ) is a function of  ⃗ ,         are independent 

random errors. However, this rule cannot be applied to the current problem because the 

discretization and the iteration are two successive events and corresponding errors are 

not independent random errors. The error from the discretization will be embedded into 

the iteration process.  
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Fig.40 Grid independence study results with error bars 
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 An approximation is needed before calculating the total errors. It is noticed that 

the iterative convergence error was evaluated by the cases which will be used to 

demonstrate the results including BG6CG0, BG6CG1 and BG6CG1_2. However, the 

discretization error was studied based on the cases BG6CG1, BG4CG1 and BG6CG0. 

Since the globe base size for the mesh is similar for these two sets of cases, it is 

reasonable to assume that the discretization errors for both sets of data are also similar. 

With this approximation the accumulated error can be evaluated.  

 Instead of using the error propagation rule the deterministic method was 

employed which is akin to the process of finding the probability of two successive 

events. As shown in Fig. 41, the value of the flow variable   ranges from   
    and 

  
    after the discretization error εd is introduced into the system. Then this error is 

brought into the iteration process and contributes to the iterative convergence error and 

also to the final results. By repeating the calculation with the given iterative convergence 

error εI the new upper limit value    
     and the new lower limit   

     can be obtained. 

These two limits would be the possible maximum and minimum values for the fluid 

variable   , that is, the simulation results could be trusted in this certain range given that 

the physical modeling error and other errors discussed above are neglected.  
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 Fig. 42 presents same results as that in Fig. 25 but with error bars included. The 

average accumulated errors are about 4% relative to the results directly obtained from 

the simulation but the bypass flow fraction itself varies within 1%. It is seen that the 

solutions for each case will overlap with each other if the errors are considered. This is 

because the crossflow gap size is only 1mm and the influence to the redistribution of the 

coolant is still limited. That is why the differences in bypass flow fraction among these 

cases are small and in the same range of the errors. It is expected that differences would 

increase if the crossflow gap size is increased or the first layer of the fuel block is titled 

more. Meanwhile, the discretization error, the majority of the source of errors, would 

also be reduced as the meshing difficulties would be much smaller when the dimension 

of the gap is increased. But if the titled-crossflow-gap case and the no-crossflow-gap 

case are compared considering the errors, the conclusion drawn based on the results 

shown in Fig. 24 still holds, that is, the presence of the wedge-shape crossflow gap will 
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Fig.41 Flow chart of the deterministic method to calculate the accumulated errors 
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decrease the bypass flow fraction as the coolant prefers to flow into coolant channels 

after passing through the crossflow gap because the flow receives less resistance in the 

coolant holes.  

 

 

 

  

 However, the discretization error needs to be reduced further if simulation results 

are close for different cases. The possible ways to dampen the influence from the 

discretization include further refining of the mesh around the interested regions or very 

narrow regions such as crossflow gap and optimization of the prism layer thickness and 

the number of prism layers to make sure that the mesh is able to capture the velocity 
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Fig.42 Bypass flow fraction as a function of ReBG with accumulated errors 
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gradient in the boundary region. But obviously, the computational cost needs to be 

evaluated when the cell density is increased.  

 Another possible option is to change the type the mesh used in the present study 

or at least to try other types of meshes, such as the trimmer mesh and hexahedral mesh. 

But it may need the experimental data to evaluate which type of the mesh predicts the 

best results for the bypass flow and crossflow phenomenon in the prismatic VHTR core. 
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6. CONCLUSION 

 

 A preliminary three-dimensional steady state simulation was performed in the 

commercial CFD code STARCCM+ 6.02.014 for a two-layer block of VHTR model 

built in the Texas A&M University.  Polyhedral mesh is applied to discretize the fluid 

domain and the total number of cells ranges from 10 to 50 million. Multi-region meshing 

technique was used to improve the meshing efficiency. The widely used k-ε turbulence 

model was chosen for its robustness and good computational efficiency with respect to 

satisfying accuracy. The second-order upwind differencing scheme and two-layer all y
+
 

wall treatment were selected to calculate the convection on the face of each cell and to 

blend the laws to predict the shear stress respectively. Grid independence study was 

performed to find the optimized the mesh size to make sure that the solution obtained is 

independent of mesh sizes.  

 The effect of bypass flow gap width and the presence of crossflow gap as well as 

its shape were investigated. The computational results indicated that the Reynolds 

number in the coolant channels could meet the design requirement of 30,000 which was 

close to the real condition (medium power level) in the prismatic VHTR. The bypass 

flow fraction was around 12% and it was found that the flow was laminar in the 2mm 

bypass flow gap but it was turbulent for the 4mm and 6mm case. Also the bypass flow 

fraction is proportional to the Reynolds number and the bypass flow gap width. Then the 

influence from the crossflow gap to the distribution of the coolant in the system was 

studied. It was observed that the presence of the crossflow gap and its shape had a 
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significant effect on the redistribution of the flow when the coolant passes through the 

crossflow gap. A significant secondary flow moving from the bypass flow gap towards 

coolant holes was found, which resulted in a up to 28% reduction of the coolant mass 

flow rate in the bypass flow gap while the value for flow in the coolant channels 

increased by around 5%. The pressure distributions in the crossflow gap region and in 

the coolant channel were evaluated in a non-dimensional way and results demonstrated 

that pressure in the bypass flow gap was much higher than that in the coolant channels. 

The pressure drop at the inlet due to the sudden contraction in area could be around 1kpa 

while the value was about 180 Pa around the crossflow gap region.  

 Two major errors, discretization error and iterative convergence error, were 

quantified based on the grid independence study and a deterministic method. The 

iterative convergence errors in percentage range from 0.08% and 0.64% which were 

evaluated based on the variation of the crossflow gap shape. The discretization error was 

calculated using Richardson Extrapolation Method for the uniform crossflow gap but 

with varied bypass flow gap sizes. The errors for the case BG6CG1, BG4CG1 and 

BG2CG1 were 3.9%, 4.9% and 7.0% respectively. Assumption was made to treat the 

discretization error obtained from the uniform crossflow gap case as the same as that for 

the no-crossflow-gap case and the wedge-shape case so that these two errors could be 

combined. However, the rule of error propagation cannot be applied in calculating the 

accumulated errors because those two errors are not independent random errors. Instead, 

the deterministic method was used to determine the upper and lower limit of the solution 

when errors were introduced. The average total errors were around 4%. For future work, 
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the discretization error needs to be reduced so that the bypass flow fraction for varied 

cases could be distinguished. In addition, other turbulence models should be studied to 

find which model predicts the best results after comparing the data with experimental 

results.    
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