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ABSTRACT

Sketch recognition allows computers to understand and model hand drawn sketches

and diagrams. Traditionally sketch recognition systems required a pen based PC in-

terface, but powerful mobile devices such as tablets and smartphones can provide a

new platform for sketch recognition systems. We describe a new sketch recognition

library, Strontium (SrL) that combines several existing sketch recognition libraries

modified to run on both personal computers and on the Android platform. We ana-

lyzed the recognition speed and accuracy implications of performing low-level shape

recognition on smartphones with touch screens. We found that there is a large gap

in recognition speed on mobile devices between recognizing simple shapes and more

complex ones, suggesting that mobile sketch interface designers limit the complexity

of their sketch domains. We also found that a low sampling rate on mobile devices

can affect recognition accuracy of complex and curved shapes. Despite this, we found

no evidence to suggest that using a finger as an input implement leads to a decrease

in simple shape recognition accuracy. These results show that the same geometric

shape recognizers developed for pen applications can be used in mobile applications,

provided that developers keep shape domains simple and ensure that input sampling

rate is kept as high as possible.
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1. INTRODUCTION

1.1 Sketch Recognition Overview

Sketch as a form of computer-human interaction has had a long and varied history.

In the early 1960s Ivan Sutherland developed one of the earliest pen-based computer

interfaces, with the Sketchpad [26]. Using a light pen as input, Sketchpad functioned

as a computer aided design (CAD) system, where the user could use the pen to define

the geometry of shapes and more complex structures. This led to many systems using

light pens for CAD input, but it wasn’t until the early 1990s that pen and sketch

systems would become more general use. The PenPoint OS by the GO corporation

was an early attempt to develop a commercial mobile system built around pen-based

input. Personal Digital Assistants (PDAs) such as the Apple Newton and PalmPilot

were arguably the first pen-based systems to see widespread adoption, with stylus

based interfaces providing not only point and click interface capabilities, but gesture

and handwriting recognition as well. Microsoft’s Windows for Tablets was somewhat

successful at bringing pen computing into the workplace, particularly in niche settings

where using a traditional laptop keyboard and mouse is too cumbersome, such as

emergency medical workers and military field planners. Wacom also helped expand

pen computing, particularly in digital arts and design, through their many inductive

digitizer pen systems, from inexpensive input tablets like the Bamboo to the high

end Cintiq displays. Just as Wacom has popularized pens in the design community,

so has the SMART board popularized the use of digital pen systems in classrooms.

Researchers have used such systems to develop a class of intelligent human com-

puter interfaces focused on using drawn sketches as a mode of input. This research,

generally known as Sketch Recognition, is focused on deciphering sketches, and trying
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to understand the user’s intention. This is particularly useful for specific domains of

hand drawn diagrams where there is established and codified meaning behind drawn

symbols. This allows the computer to build models from sketches as they are being

drawn, providing the user with visual feedback through partial-to-complete drawing

beautification, and ultimately storing the sketch in such a way that it can be parsed

in a domain specific way.

Despite advances in the sophistication and accuracy of generic and domain recog-

nition, sketch recognition as a whole has arguably remained a niche form of computer

human interaction, limited to those systems which are capable of supporting true

sketch interaction. While true pen devices may still be limited in number, multi-

touch displays capable of free hand drawing through touch or capacitive styli have

becoming increasingly prevalent. The popularity of these devices, such as the iPad

and Android mobile devices, provide an opportunity for sketch interaction to be used

in new domains and at a much greater volume than ever before. Many applications

on these devices, whether games [18], note taking [36] or painting applications [2],

already take advantage of the inherent affordances for drawing on this hardware.

Very few, however, have ventured into the use of true intelligent sketch interaction

beyond character recognition.

1.2 Touch Input and Mobile Devices

Considering the promise that these devices have as sketch devices it is surprising

that they are still relatively unexplored within the context of sketch recognition.

Part of this may be due to the challenges that these devices pose when developing

sketch recognition applications. The first challenge is the relative difficulty of using

fingers for the tasks of sketching and writing. While pens and styli require significant

training to use effectively, once sufficient proficiency is achieved they provide a level of
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accuracy and speed that is difficult to match with the fingertip. This is mostly due to

the precise nature of the tip of the implement, which allows for greater precision and

greater movement speed due to a corresponding decrease in surface area and friction.

In addition pens provide a greater range of motion with less hand movement due to

the increased leverage that they provide.

The relatively large surface area of the finger can also lead to some ambiguity

for interpreting user input on touch screen devices. With pixel densities in touch

screens continuing to increase, it more difficult to accurately interpret exactly where

a user intended to touch the screen at a pixel or sub-pixel level. While this is

less of an issue in standard user interfaces where lack of accuracy can be made

up for with larger buttons or hit areas, this could be problematic for sketches and

drawings where changes in accuracy can lead to a lot of jitter. Poor quality touch

sensors can compound these problems, leading to ladder effects when drawing across

a screen. Though this is not an issue unique to touch sensors, the effect can be more

pronounced than in more expensive and refined pen systems, such as those developed

by Wacom.

Despite all of these issues, touch is a compelling form of input and should be

considered a practical medium for the use of sketch recognition. There are several

reasons why touch enabled devices would benefit from the addition of intelligent

sketch interfaces. The first is the noted lack of content authoring tools on touch-

based mobile platforms. While the multitouch screen is excellent for viewing and

exploring content, the lack of input precision relative to devices like the mouse makes

developing effective content authoring tools difficult. Using interactions techniques

from sketch recognition could prove more natural for multitouch content authoring,

through the use of symbolic drawing, gestural commands, intuitive workspace scaling,

and direct manipulation of workspace objects. Such content editing tools are also
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necessary to make true ”work” applications built for expert users with niche uses.

While such tools are common on established PC environments, the combination of the

light-weight power and intuitive touch interface of today’s tablet and smartphones

with sophisticated tools could bring mobility and flexibility to working environments.

1.3 Supporting Mobile Sketch Recognition

Given the potential of sketch interaction on modern touch devices, we propose

that new and modified tools should be developed to help modern mobile applica-

tion developers make sketch-based interfaces. Such tools should be sophisticated to

support large sketch domains, but also be simple so that even developers without

expertise in sketch recognition could take advantage of them. Just like multitouch

development tools and libraries have brought multitouch gestures to many applica-

tions, so too should sketch tools encourage the everyday use of sophisticated sketch

algorithms without undue effort on the part of developers.

We address this challenge with a combination of sketch libraries, collectively

known as the Strontium Sketch Recognition Library (SrL), that we have developed

to run on Android as well as on the standard Java platform. This library is available

with a BSD license, and provides a collection of open source sketch recognition

algorithms and libraries that have been collected and developed over the last half

decade at the Sketch Recognition Lab of Texas A&M University. Arguably the

most important of these is the PaleoSketch library, which provides easy automatic

recognition and beautification of basic shapes.

Before such tools can be released to developers at large, there are a number of

challenges that must be addressed, and are indeed currently being addressed in the

sketch recognition community at large.
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1.3.1 Adjusting for Touch

In order to use touch input effectively for sketch recognition we must consider

how input data differs from the pen systems we have already extensively developed

for. As mentioned previously, there are several bio-mechanical reasons why pen input

might be different from touch input. While these differences may have an impact

on user ergonomics and usage patterns, we will focus simply on the end effect of

different input implements on recognition accuracy. Recognition accuracy could be

affected by any number of changes, such as the speed and length of basic strokes, to

the smoothness and size of drawn shapes and strokes. Assumptions about hardware

device and screen characteristics could also affect performance, such as expecta-

tions of specific pixel densities for stroke lengths measured in pixels, input device

sampling rates and, as described before, input device accuracy. To address these

problems as they pertain to the performance of the Strontium library, we performed

a comparative evaluation of its performance, or more specifically the performance of

the PaleoSketch basic shape recognizer. We describe our process in chapter 4, and

discuss the implications of our findings.

1.3.2 Sketch Recognition Software for Mobile Devices

In addition to the touch input there are other challenges to using sketch recog-

nition on mobile devices, specifically limitations of hardware, storage and practical

limitations in porting established sketch recognition libraries to native device appli-

cation programming interfaces (APIs).

With the Strontium library we go about solving these issues in two ways. The first

way is to port Java based sketch libraries to the Android platform, which is capable

of running a certain subset of Java code. This involved removing dependencies on

code not available on the Android platform, such as most user interface code and
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specific geometry libraries. This process, described later in this paper, provides us

with a stable base for native application development on both PCs and Android, so

that algorithms refined on traditional pen-based systems and already written in Java

can be easily ported. Unfortunately, this does not necessarily address performance

issues with lower powered mobile hardware, and it most certainly does not address

the highly competitive and divided nature of current mobile platforms.

Our solution to the problem of fractured mobile platforms is to provide a dis-

tributed recognition environment, where simple client applications can send sketch

data over standard transport protocols to higher-powered and standardized servers.

These servers can perform recognition and return results so that recognition system

do not need to be developed for each individual mobile platform. This approach has

the added benefit of making it easier to update recognition software and add new

recognition domains continuously and to collect sample data in a single centralized

location. We describe our specific distributed recognition architecture in chapter 3,

demonstrate some uses of it and evaluate its performance.

Finally, while we could theorize about how individual device capabilities might ul-

timately affect recognition speed, the only practical way to determine this is through

direct evaluation. Again we focused on the performance of PaleoSketch, as the ser-

vice it provides, basic shape recognition, typically serves as the core of high level

sketch recognition systems and must therefore perform at an acceptable level. We

evaluated its recognition speed across all three target platforms of the Strontium

library: personal computer, Android and distributed. We describe this evaluation

and discuss its implications in chapter 4.
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2. RELATED WORK

2.1 Pen versus Touch

One of the central purposes of this thesis is to determine the differences in recog-

nition accuracy between current pen-based PC systems and touch-based systems

such as smartphones and tablets. These differences, if there are differences, most

likely come down to the input characteristics of the implement used by the user to

draw, as well as the digitizer that is used to capture that physical input and turn

it into a digital format. We are interested in two general classes of input device,

the inductive digital pen system, typified by those on Wacom tablets [30], and the

capacitive multitouch screen, made popular by the original iPhone. While inductive

pen systems generally only support one user implement, the pen, capacitive screens

support two types, the finger and the capacitive stylus.

From the perspective of sketch recognition, we need to understand the implica-

tions of these differences in the context of the geometric features that we use to

extract meaning from user-drawn strokes.

MacLean et al. attempt to address this question directly by comparing finger

and stylus in the context of mathematical sketch recognition applications [17]. In

the study, the authors evaluated the performance of the mathematical equation recog-

nition system MathBrush [12], over three distinct user interaction situations: using

a stylus on a tablet PC, using a finger on an iPad and using an capacitative stylus

on an iPad. The results of the study show a significant difference in accuracy of the

math sketch system as a whole between the tablet PC and iPad, with the capacitive

stylus and touch interaction being lower than the tablet PC’s electromagnetic dig-

itizer. The authors theorize that this is due to the higher sampling resolution and
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rate of the PC’s pen versus the iPad, which led to a higher level of individual symbol

recognition, thereby improving recognition of the mathematical statement in gen-

eral. When comparing between the capacitive stylus and touch input, however, the

results become more nuanced. The finger drawn symbols had a higher classification

accuracy in isolation, possibly due to the inherently slower and more careful draw-

ing process with a finger, but the capacitative stylus had a higher accuracy for the

drawing as a whole. This contradiction was likely caused by problems in segmenting

between shapes caused by difficulties in accurately placing the finger (i.e. The Fat

Finger Problem [32]).

The MacLean study also measured differences in the physical characteristics of

strokes drawn on the capacitative screen and those drawn with a stylus and electro-

magnetic digitizer. The time spent on each stroke, time between strokes and overall

time spent drawing an expression was significantly lower in each case on the tablet

PC. In addition, the overall size of symbols (measured through average stroke height)

proved to be higher for those drawn on the tablet PC.

Tu et. al. have also performed a comparative study between touch and stylus

input [27], with a more specific focus on the geometric differences between the two

forms of input over hand-drawn gestures of varying degrees of complexity. In their

study, they analyzed the effect that input implement had on nine features commonly

used in gesture and sketch recognition systems. Out of the nine features compared,

four showed significant similarities between pen and finger drawn gestures: stroke

articulation time (pen down to pen up), indicative angle difference, axial symmetry

and proportional shape distance. The other five features tested, average speed, size

ratio, aperture between start and end point, corner shape distance and intersection

points deviation were shown to be significantly different.
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2.2 Low Level Shape Recognition

As shown by MacLean et. al., implement can have a significant effect on the

accuracy of a sketch recognition system as a whole. These effects can be felt at many

different levels of the sketch recognition process, from the recognition of individual

strokes, to the proper clustering of related strokes and therefore proper classification

of higher level shapes and structures. While higher level recognition is key to the

performance of a specific sketch recognition system, such systems are highly domain

specific and would require a different approach to remedy the differences in each case.

Instead we will focus on lower level sketch recognition

Low level sketch recognition is typically achieved using template matching, mo-

tion based or geometric recognition techniques. The $1 gesture recognizer [33] and

Li’s derived Protractor [15] are examples of template matching shape and gesture

recognizers. To classify an unknown shape, these systems perform some preprocess-

ing on the stroke, then calculate a distance metric from template shapes from each

possible class of shapes.

Motion based recognizers use sets of numeric features extracted from a stroke’s

inherent geometry in order to perform classification. Rubine’s formative work [23]

defined a set of features that could be extracted from a stroke which could be used

in a linear classifier to perform shape recognition. Long et al. improved on Rubine’s

feature set by removing correlated features and adding several new features [16].

These features have since been used in many different gesture and sketch recognition

systems [13, 24].

Both template and motion based approaches work well for a known set of gestures,

particularly when they are performed in isolation, have a well-defined shape and well-

defined stroke direction and order. These constraints, however, make it difficult to
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use template based systems in a free sketching system as users are constrained in

the ways in which they can draw shapes. Paulson et al. were able to overcome some

of the limitations in motion based recognition by including features that were not

feature dependent [21].

Geometric recognitionm on the other hand, attempts to match a shape to a ge-

ometric primitive that can best describe the drawn shape. This means that they

are not restricted to matching to trained classes of shapes but attempt to be more

generally descriptive, meaning that there is more flexibility in the way that a shape

may be drawn for it to be classified correctly. There are several low level recogni-

tion systems that use geometric techniques, such as CALI [8] and Rata.SSR [4] and

PaleoSketch [20].

There are typically two steps to the geometric recognition process, stroke segmen-

tation and shape fitting. There are many different techniques for performing stroke

segmentation, such as the Douglas Peucker algorithm [7], which identify corners and

segmentation points of strokes and split them into component sub-strokes. Once a

stroke is properly segmented, the sub-strokes can be classified in isolation and can be

used to identify the shape of the original stroke. One such segmentation algorithm,

ShortStraw has been proved to be both simple to implement and accurate in all-or-

nothing accuracy for finding segment corners [34]. ShortStraw has been extended

several times to achieve an overall accuracy of up to 99% [37]. While ShortStraw

does not depend on time-dependent features such as speed, it is heavily reliant on

the curvature of shapes at their corners, which may be affected by the differences in

input device described previously.

The process of fitting strokes to prototypical shapes generally involves building

ideal forms of various shapes and calculating error metrics between the idealized fit

and the original stroke. PaleoSketch supports fitting up to 19 basic single-stroke
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shapes: line, arc, ellipse, circle, curve, helix, spiral, arrow, complex, poly-line, poly-

gon, rectangle, square, diamond, dot, wave, gull, blob and infinity. There are many

shape-specific fitting metrics, but there are two specific measures that are used across

many of these fits and are of particular interest in determining the effect of input

device on accuracy. These features are the Direction Change Ratio (DCR) and the

Normalized Distance between Direction Extremes (NDDE), and both are described

in the original PaleoSketch paper [20]. In simple terms, DCR is the maximum change

in stroke direction between points, divided by the average change in direction be-

tween points. DCR gives a general measure of how ”pointy” a stroke is, that is

does it have sharp corners. A high DCR generally indicates a stroke with multiple

line segments, and a low DCR means few corners and a smooth shape. NDDE is

the distance between the global maximum and minimum change in direction divided

by the overall length of the stroke. NDDE is also a measure indicating the present

or absence of sudden direction changes like corners, but a high NDDE indicates a

smooth shape and a low NDDE indicates a shape with sharp corners. We monitored

these fitting metrics while evaluating the relative recognition performance of pen and

touch.

2.3 Distributed Recognition

In the introduction we briefly described the use of a distributed recognition sys-

tem to overcome platform and performance limitations of mobile devices. This is a

frequently used architecture when the tasks involved require a large amount of data

retrieval, heavy processing, or must be able to access numerous recognition domains.

Systems such as Apple’s Siri [1] and Google’s Goggles [10] application are good ex-

amples of what can be achieved using distributed recognition systems. Avola et

al. [3] developed just such a system for sketch recognition, accepting stroke data via
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XML over HTTP from client systems. Once the data is received, the server encodes

the stroke data and performs basic segmentation, identifying poly-lines and closed

shapes, then ovals and lines. Finally the recognition results encoded in the SketchML

XML format and sent back to the client system. We used a similar general approach

with our distributed recognizer, and evaluated the recognition speed and response

time necessary to send and receive sketch and recognition data.
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3. IMPLEMENTATION

In order to provide a general use sketch recognition library that would be easy for

mobile developers to use we collected and modified several existing sketch recognition

libraries. For primitive geometric shape recognition we include PaleoSketch [20]. For

appearance base shape recognition we include an implementation of Wobbrocks $1

recognizer [33]. For motion based shape recognition we provide Rubine’s feature

extractor [23]. Finally for higher level shape recognition we include portions of the

constraint description system of LADDER [11].

3.1 OpenAWT

We used an initial implementation of these algorithms and libraries written in

Java, depending on the Java Development Kit (JDK) to provide tools for geomet-

ric analysis and user interface visualization. Unfortunately, the Android platform

does not provide the complete JDK platform, so much of the code we relied upon

for geometry, the java.awt.geom package, was not available. This required that we

find an alternative Java geometry library to serve our needs. We investigated the

JavaGeom [14] library as well as the Java Topology Suite [29], but neither of them

provided a direct porting route for our existing code.

Instead we built our own library, OpenAWT1, by forking code from the OpenJDK

project [19] to serve as a self contained version of the java.awt.geom package. This

new library contains code for geometry, shapes and colors, and is able to function

equally well on both the Android and standard JDK platform. In addition to the

java.awt.geom code, we also developed a simple Scalable Vector Graphics [35] imple-

mentation that is integrated into OpenAWT. Using SVG we created a separation of

1OpenAWT available from https://github.com/eyce9000/OpenAWT
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visual representation and geometric model, so that the process of drawing a shape

is defined by a well known standard, and functions consistently across different user

interfaces.

3.2 Strontium Library

Using OpenAWT we were able to develop a single sketch recognition library

that could function across not only the JDK and Android, but also other non-JDK

Java platforms, such as Google App Engine. We call this new library the Stron-

tium Library (SrL)2. The Strontium Library is composed of 5 major portions: Core,

Recognition, Distributed, Swing UI and Android UI.

• Core - Includes essential sketch classes, such as Point, Stroke, Sketch and

Shape.

• Recognition - Contains all included sketch recognition libraries, such as Pa-

leoSketch, $1 Recognizer and portions of LADDER.

• Distributed - Provides a reference implementation of client/server sketch

recognition architecture.

• Swing UI - Provides user interface classes for the JDK platform, such as

SketchCanvas and SketchPanel.

• Android UI - Provides user interface classes for the Android platform, such

as the SketchView.

3.3 Data and Representation

The Strontium Library supports several different formats for storing sketch data.

The primary format we use for storing data on disk is the text-based Extensible

2SrL available from https://github.com/eyce9000/strontium
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Figure 3.1: SVG+XML Hybrid encoding of a sketch

Figure 3.2: JSON encoding of a sketch object
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Markup Language (XML). Specifically we use a hybrid XML format that stores a

visual representation of the sketch as SVG shapes in the same file as the rest of the

sketch metadata (Figure 3.1). This means that a sketch file can be viewed using

any standard SVG viewing application, while retaining the metadata necessary to

edit it and perform recognition using the Strontium library. Since SVG is a specific

form of XML, we are able to write and read it using a standard Java XML library,

specifically the open source Simple XML [9] library.

The second data format supported is JavaScript Object Notation (JSON). This

is another text-based data representation format that is popular for use with web

technology, due to its simple and easy to read syntax, generally compact size and

its compatibility with the popular JavaScript language. JSON is well supported by

many languages, libraries and platforms beyond the web and JavaScript, and it is

because of this that we chose to use JSON for our distributed recognition approach

described later in this section. For reading and writing JSON in the Strontium

library we use the open source Jackson JSON library [5]. An example of a sketch

encoded in JSON is shown in Figure 3.2.

3.4 Sample Android Applications

Using the Strontium Library, we developed a series of applications, where some

were simple proofs of concept, and others were more complete applications. We will

describe a few of them here.

3.4.1 Sketchpad

We developed a very simple drawing application called Sketchpad (Figure 3.3).

Sketchpad provides a small drawing canvas that beautifies shapes as the user draws

them. Sketchpad automatically applies PaleoSketch recognition to each stroke, gets

the most probable shape fit and replaces the original stroke with the beautified
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version of the matched shape. We used this application to test the recognition time

and responsiveness of the application during recognition. The timing performance

results for the original set of 9 PaleoSketch shapes is discussed in section 4.3.

3.4.2 SOUSAPhone

SOUSAPhone is a more capable sketch data collection application built using

the Strontium library that is integrated with the SOUSA platform [22]. SOUSA is

a web-based application that allows researchers to create, modify and run sketch

data collection user studies. SOUSAPhone is an implementation of the SOUSA data

collection client, thereby allowing Android users to participate in data collection

studies and also providing a tool for collecting touch-specific datasets from Android

devices. We used this application to collect sketch data the performance evaluation

of Strontium, as described in section 4.1.

3.4.3 Mobile Mechanix

To test the practicality of higher level domain sketch recognition on mobile de-

vices we developed the Mobile Mechanix application (Figure 3.4). This application

recognizes truss diagrams from mechanical engineering, using a recognizer developed

for the Mechanix intelligent tutoring system [28]. As the user draws strokes, the

strokes are turned into primitive shapes using PaleoSketch and combined together.

They are then processed by the Mechanix truss recognizer which builds a model of

the drawn truss, complete with axes and applied forces. This application proved

to be sluggish, specifically during high-level recognition as the sketch became more

complex. This was likely due to the original truss recognition algorithms which are

typically order N2 in nature. While these algorithms were sufficiently quick on the

PC where they were initially developed, these prove much slower on lower-powered

mobile devices. This performance problem provided some of the impetus for devel-

17



Figure 3.3: Sketchpad Android application user interface

Figure 3.4: Mobile Mechanix Android application user interface
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Figure 3.5: Unmanned Aerial System Android application user interface

oping the distributed sketch architecture in section 3.5.

3.4.4 Unmanned Aerial System

Another application developed using the Strontium Library is the Unmanned

Aerial System (UAS) mobile application [6] (Figure 3.5). This application was de-

veloped to help non-experts build flight-plans for unmanned aerial resupply vehicles

in combat zones. The application walks users through the process of sketching out a

flight plan, drawing important features of the flight plan, such as the landing zone,

potential obstacles and enemy and friendly forces on a map. This application pri-

marily used PaleoSketch shapes and a few simple combined shapes using constraints

as its recognition domain. Using this limited domain, recognition performance was

fast and more than sufficient for the task. As this application was specifically de-

signed for use in the field on lightweight Android tablets, it is a good example of the

potential of bringing sketch recognition into a mobile context.
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3.5 Distributed Recognition

While using OpenAWT makes it possible to bring Java-based sketch recognition

libraries to Android, there are still other mobile platforms to consider, many of which

cannot run Java code. To address this issue we developed a reference implementa-

tion of a light-weight client/server architecture for sketch recognition. We created a

modified and simplified version of the distributed sketch recognition architecture de-

scribed by Avola et. al [3], where a client application collects raw stroke data, sends it

to a server for recognition and then displays the recognition results. Our architecture

uses JavaScript Object Notation (JSON) formatted request and response messages

to send data between a client and server using HTTP. The server is a simple Java

Enterprise Edition Servlet that reads each JSON message, performs the requested

action and returns a response. Since JSON and HTTP are common and well sup-

ported by many platforms, this architecture can provide basic and higher level sketch

recognition to clients running on systems without any Java support. Using this dis-

tributed recognition architecture, we developed two sample applications to show the

versatility of our approach, PaleoSketch Online (Figure 3.6) and Mechanix Online

(Figure 3.7).

3.5.1 PaleoSketch Online

PaleoSketch Online (Figure 3.6) is a simple HTML application that can run in

most modern browsers. Through the use of the HTML Canvas tag [31], we can

allow users to draw basic shapes in their browser window. As each stroke is drawn,

we then serialize the stroke and send it to the Strontium distributed server running

on Google App Engine as a PaleoRecognitionRequest message. On the server we

deserialize the request message, process the stroke, run it through PaleoSketch and

return the resulting shape with its newly recognized label. When the recognized

20



shape arrives back at the user’s browser, we are then able to display the label to the

user. On a typical PC this whole process takes under a second to perform. No special

processing of the sketch happens in the browser (the client), and as such, developing

the client application required none of the code from the Strontium library, or any

other sketch library. This is particularly important for browser-based applications

as they typically are written in JavaScript, a language with little relation to Java.

3.5.2 Mechanix Online

To demonstrate a more complex example of distributed sketch recognition, we

developed the Mechanix Online (Figure 3.7) proof of concept application. Just like

PaleoSketch Online, Mechanix Online runs in a web browser and uses the HTML

Canvas to display shapes that the user draws. Unlike the PaleoSketch application,

we want to apply higher-level sketch recognition to the sketches, specifically in the

mechanical engineering domain. To do this, we used the truss recognition system of

the Mechanix application [28], which was originally written in Java.

As with PaleoSketch Online, all of the sketch recognition occurs on the Strontium

server. As a user draws a truss diagram in the browser client, their strokes are

sent to the Strontium server (Figure 3.8). Once the strokes are received, they are

processed using PaleoSketch, then combined with all of the user’s previous strokes

into a complete model. Using this model the Mechanix truss recognizer is able to

identify individual strokes as parts of the diagram. In this case, the drawn arrow is in

fact a force applied to a truss. After this domain recognition is complete, the server

updates its own model of the user’s sketch and sends the results back to the client

browser application. The resulting diagram, complete with colors and additional

beautification such as truss node loci, can then be displayed in the browser.

Initially we did not store the complete user’s sketch on the server. We found,
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Figure 3.6: PaleoSketch Online browser-based HTML interface

Figure 3.7: Mechanix Online browser-based HTML interface
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Figure 3.8: The distributed sketch recognition process

however, that sending the entire sketch each time the user modified it to be pro-

hibitively slow, both due to increase in client and server serialization, as well as the

consequent increase in data transmission over the internet. Keeping the sketch in

memory on the server proved much more practical, allowing us to send only changes

made to the sketch and the resulting changes to the domain model.
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4. PALEOSKETCH MOBILE PERFORMANCE

PaleoSketch forms the core of the recognition capabilities of the Strontium sketch

library (SrL). Its performance, both in accuracy and in speed, is key to the perfor-

mance of any higher level recognition system built on top of it. While the original

versions of the PaleoSketch library are fast and accurate, they were designed for use

on powerful personal computer hardware as well as using precise Wacom pen systems.

This may mean that some assumptions we make about the performance characteris-

tics of the library are not valid on the lower powered processors and cheaper touch

screens of mobile systems. In order to determine those effects, we performed two par-

allel series of studies to evaluate the comparative speed and accuracy of the single

Strontium code base on the personal computer and Android platforms. Additionally

we evaluate the speed of our PaleoSketch Online distributed recognition, using client

applications on both personal computer and Android.

4.1 Data Collection

For both our speed and accuracy evaluation, we collected samples of the 9 basic

PaleoSketch shapes using both pen and touch inputs. The 9 shapes were as follows:

• Arcs

• Circles

• Ellipse

• Helix

• Spiral

24



• Line

• Polyline

• Curves

• Complex shapes, containing curves and line segments in a single stroke

To collect the sketch data we used the SOUSA [22] sketch-data collection platform.

Our pen sample data was collected using SOUSA’s built in web-based collection

application and using a Wacom 21UX as the pen input device. In order to collect

data from mobile devices, we had to develop a companion application for SOUSA

that allowed us to collect sketch data on Android, called SOUSAPhone [25]. We

then collected the data using SOUSAPhone running on Google Nexus Ones running

Android 2.3.3.

We collected a total of 2848 sample shapes, 1605 pen samples and 1243 touch

samples, over a series of two studies with a total of 10 users. The whole set was used

for comparing accuracy, while an subset of touch shapes from the first study was

used to evaluate the speed performance.

4.2 PaleoSketch Recognition Accuracy

Accuracy is of key importance in primitive shape recognition. If a primitive shape

is mis-recognized, then any high-level recognition dependent on that outcome will

likely be incorrect as well. Fortunately, PaleoSketch has been shown to be a very

accurate recognizer, with accuracy of up to 98% over our study set of 9 shapes [20].

Using the testing data from the original PaleoSketch we performed our own accuracy

evaluation and got a high accuracy of 95.89% (Table 4.1). We wanted to reproduce

these results for pen and see if they held true when using an input device that

PaleoSketch was not optimized for: capacitive touch screens.
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Table 4.1: Baseline accuracy for PaleoSketch across 9 shapes

Shape Accuracy
Arc 99%
Circle 90%
Complex 84%
Curve 94%
Ellipse 99%
Helix 100%
Line 100%
Polyline 97%
Spiral 100.00%
All 95.89%

(a) Curve (b) Complex

Figure 4.1: Examples from the original PaleoSketch testing set

Early on in our evaluation we performed a test comparing a collected set of touch

samples against one of the original PaleoSketch test dataset. We noticed that there

was a large gap in accuracy between the two datasets, with the original dataset having

an average accuracy of 95% versus an accuracy of 82% for the touch sample. The gap

in accuracy was particularly high for curve and complex shapes. After comparing

the sets of curve and complex shapes we found that there was a qualitative difference

in the variance of shapes of both of those classes. While curves and complex shapes

are theoretically highly variable and infinitely variable shapes, a majority of the
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(a) Specified Curve Shapes

(b) Specified Complex Shapes

(c) Specified Polyline Shapes

Figure 4.2: Specific complex variable shapes collected in evaluation.
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samples of these two classes in the original test set were variations of one or two

shapes (Figure 4.1). On the other hand, when collecting touch samples we gave no

indication to our users about what specific complex or curved shapes to draw. While

we filtered out some shapes, the two datasets were clearly not comparable.

To address this problem we collected a second set of samples for all 9 shape classes,

both on pen and touch. This time we also asked users to draw samples of specific

complex, curve and poly-line shapes (Figure 4.2) so that we could perform a more

direct comparison. We also asked users to make up or provide additional examples

of complex, curve and poly-line shapes, so that we would have both controlled and

uncontrolled shapes.

Using this new dataset, we compared the accuracy accross shapes and device, as

well the values for a set of common geometric features described in [21]. We were

most interested in the values of Direction Change Ratio (DCR) and Normalized Dis-

tance between Direction Extremes (NDDE) as they are extremely important for the

function of PaleoSketch’s ranking systems in distinguishing between curved shapes

and shapes with sharp corners (see section 2.2). Any significant difference between

these two over input device type might indicate a difference in how PaleoSketch’s

heuristics would react.

4.2.1 Results

Despite our new sample, there still remained a large difference in accuracy be-

tween the two input devices. As seen in Table 4.2, pen accuracy remained at ap-

proximately 91% and touch accuracy at 82%, with large gaps in accuracy remaining

for the curve and complex shapes. In addition to accuracy we were able to identify

several other basic differences between the pen and touch data (Table 4.3). Of par-

ticular interest was the difference in implement velocity (pixels per millisecond), the
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Table 4.2: Initial accuracy results

Shape Pen Accuracy Touch Accuracy
Arc 95.26% 97.35%
Circle 99.42% 87.85%
Complex 84.35% 62.32%
Curve 67.63% 46.92%
Ellipse 97.83% 92.14%
Helix 95.00% 99.23%
Line 100.00% 85.71%
Polyline 90.00% 69.23%
Spiral 97.05% 97.87%
All 92.02% 82.05%

Table 4.3: Initial comparison results using a two-tailed t-test (α = .05)

Measure Pen Touch P Value
Accuracy 91% 82% ~0.000
Length 814 px 860 px 0.0165
Time 1070 ms 1387 ms ~0.000

Velocity
0.6011 
px/ms

0.3002 
px/ms

~0.000

Sample 
Rate

100.638 Hz 29.79 Hz ~0.000

DCR 5.7662 3.9015 ~0.000
NDDE 0.764 0.779 0.1658
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Table 4.4: Results after resampling

Measure Pen Touch P Value
Accuracy 82.80% 82.10% 0.642
Length 814 px 860 px 0.0165
Time 1070 ms 1387 ms ~0.000

Velocity
0.6011 
px/ms

0.3002 
px/ms

~0.000

Sample 
Rate

30.72 Hz 26.73 Hz ~0.000

DCR 3.587 3.735 0.111
NDDE 0.737 0.779 0.0001

difference in DCR, and the substantial difference in sample rate. The difference in

DCR was particularly interesting as it seemed to indicate that touch input produced

a generally more ”smooth” stroke. However, the much lower sample rate of touch

could be directly responsible, as DCR is calculated from differences from point to

point in direction change normalized by the number of points.

To see what effect sample rate had on DCR and more generally the accuracy

rate, we down-sampled both our pen and touch data with a target point frequency

of 29 Hz. As shown by the results (Table 4.4), after downsampling, the pen accuracy

became equivalent to that of the touch data. Indeed, this drop in accuracy is reflected

across several shapes, most specifically complex and curve shapes (Figure 4.3). The

difference in DCR is now eliminated as well, so we surmise that it was caused by the

difference in sample rate affecting the average change in direction between points.

From our results, we can see that low sample rate when collecting sketches can sig-

nificantly affect accuracy across most shapes, particularly complex and curve shapes.
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Figure 4.3: Accuracy by Shape

However, with this study we found no clear indicators of a difference between im-

plements in accuracy. Indeed, beyond significant differences in stroke speed, time

and length, there were no clear trends that could not be affected by the difference in

sample rate. This would seem to agree with the results of Tu et al. [27], who found

no significant difference in error measures across implement. Those error measures

are a key part of recognition in PaleoSketch, as it calculates the error between each

stroke and the ideal version of each shape it is fit against.

Still, our primary goal of this study was to verify that the accuracy when using

a finger as implement could be equivalent to the accuracy of using a pen, and the

results of our main study cannot show that. To address this we performed a small

study to test the maximum accuracy of touch as implement. Since our original
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Table 4.5: Results of direct comparison with pen baseline using a two-tailed t-test
(α = .05)

Measure
Pen 
Baseline

Touch P Value

Accuracy 96.90% 97.80% 0.395
Length 778.7 px 539.1 px 0.037
Time 953 ms 2691 ms ~0.000

Velocity
0.482 
px/ms

0.1575 
px/ms

~0.000

Sample 
Rate

113.72 Hz 56.95 Hz ~0.000

DCR 5.775 5.501 0.195
NDDE 0.75 0.766 0.415

SOUSAPhone application produced a low sample rate, we rebuilt the application

to focus on high frequency capture. We collected a new dataset with a single user

providing 30 samples of each shape, drawing similar shapes to those found in the

original PaleoSketch testing data. Since we conducted this study with one user, we

do not claim the results to be fully representative. That being said, when comparing

the results of this simplified study with those of the original PaleoSketch test dataset,

we found no significant difference in accuracy (Table 4.5). Indeed, with the nearly

doubled sample rate, we found no significant difference between the DCR or NDDE

metrics either. It should be noted, however, that the average drawing time of each

stroke using the finger was nearly double that of our original finger study.

4.2.2 Discussion

From the results of these studies we can make several observations.

1. Sample rate, as might be expected, can affect accuracy greatly, particularly for
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Figure 4.4: Confusion matrix of raw pen data

Figure 4.5: Confusion matrix of resampled pen data

Figure 4.6: Confusion matrix of raw touch data
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curved and complex shapes. This trend is evident when comparing the confu-

sion matrix of the original sampling rate when using pen (Figure 4.4) and the

confusion matrix of the resampled rate when using pen (Figure 4.5). Note that

the resampled rate looks similar to the confusion matrix of the non-resampled

touch data (Figure 4.6). This means that developers of touch applications

must focus specifically on keeping that sample rate has high as possible, by

keeping any recognition or computationally intensive task off of the main user

interface thread. Additionally, visual niceties such as anti-aliasing sketches or

stroke-smoothing should be avoided on less capable systems.

2. There seems to be no clear link between the implement itself and primitive

shape recognition accuracy. This means that no large scale changes need to be

made to the underlying recognition engine of PaleoSketch to adjust to different

input devices. There are still some smaller adjustments that must be made,

however, at both the PaleoSketch and application level.

(a) Adjust for pixel density. Mobile devices typically have a much higher

pixel density than current pen-displays from Wacom and others, and this

is likely only going to get higher with time. In our study we used Nexus

One devices that had a pixel density of 254 pixels per inch (ppi), where

our Wacom 21UX devices had a screen pixel density of 94 ppi. That is

not to say that a higher pixel density means the input device is more

precise. What it does mean is that absolute distance measures such as

stroke length must be adjusted for this increase in density.

(b) Be aware of speed. From the results of both of our studies we can see

that touch input will generally take longer, in some cases 2 times longer,

for finger input. Therefore do not use any absolute measures of speed for
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performing recognition unless targeting a specific device or user.

(c) Be aware of size. As noted by MacLean et al. [17] and as shown here,

shapes drawn with touch tend to be larger than those drawn with pen. In

the case of MacLean, the differences in size may have had a detrimental

effect on symbol recognition. While we do not see that same detrimen-

tal effect here for PaleoSketch, developers of applications and high level

recognizers should be aware of the difference. As much space as possible

should be given for touch input, particularly in the constrained space of

smaller mobile devices.

4.3 PaleoSketch Recognition Speed

Sketching is typically a fast-paced task, therefore sketch recognition systems must

be fast enough to keep up with users. Geometric primitive recognition using Pa-

leoSketch is at the core of the sketch recognition systems that we describe here.

Because of this, PaleoSketch must consistenly perform shape recognition at a rapid

pace in order to feed shapes to more complex and slower domain-specific recognition

systems. If a sketch system is going to be truly interactive, this must all happen in

a very short period of time, otherwise the user will perceive a lag in the system.

To see if PaleoSketch operated with sufficient speed we performed a recognition

time evaluation. We used a subset of 896 shapes evenly spread across all 9 shapes

and tested the recognition time on each of our target platforms: personal computer,

Android and distributed recognizer. Our personal computer test platform was a

2010 Macbook Pro with an Intel 2.4 Ghz Core 2 Duo and 8 GB of RAM running

Apple’s implementation of Java 1.6 with 2GB of heap space. The Android device

we used for testing was a 2010 HTC G2 with an 800 Mhz Qualcomm S2 processor

and 512MB of RAM running Android 2.3.3 (CyanogenMod 7.2) with a VM heap size
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Table 4.6: The recognition time on the Android and PC platforms, both locally on
the device and using the distributed sketch recognition system.

Device Local Rec µ Local Rec σ Remote Rec µ Remote Rec σ
Android 1803.54 ms 3880.15 ms 2831.89 ms 524.87
PC 34.54 ms 61.82 ms 801.83 ms 906.57

of 32 MB. For the distributed recognizer, we used the server from the PaleoSketch

Online application (see section 3.5.1) running on Google App Engine F1 instance

with equivalent 600Mhz processing speed and 128MB of RAM. We evaluated the

recognition time on the personal computer and Android locally, then using the online

server with each of them to see how much overhead and time was incurred through

that method.

4.3.1 Results

As can be seen in Table 4.6 there is a very large performance gap between the

two platforms, both in terms of their local recognition time and remote recognition.

The local recognition time varies greatly depending on which shape was drawn, from

simple shapes like lines and arcs, to complex shapes such as helixes and spirals

(Figure 4.7). This is due to the number of points in the shape, and the recognition

time is exponentially related to the number of points in the shape (Figure 4.8).

4.3.2 Discussion

Our results show that recognition speed on Android is generally poor, and that

recognition time will need to be considered when designing interactive systems and

higher level recognition domains. Despite this, for simpler shapes Android performs

relatively quickly, meaning that simple shape domains may work well enough on
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Android. Indeed this result is not surprising as we qualitatively experienced this

when developing the sample applications, particularly in comparing our experience

with Mechanix Mobile (Section 3.4.3), where high level recognition bogged down,

to our experience with Unmanned Aerial System (Section 3.4.4) which was more

responsive with a simpler domain of shapes.

Unlike local recognition, in the remote recognition task, none of the recognition

is performed on the local device, meaning that differences in device timing are due

solely to the time necessary to serialize and deserialize data being sent to and from the

server. Indeed, Figure 4.9 shows that there is no real difference in the timing once the

data is being sent to the remote server, but there are massive differences between

the Android and personal computer serialization and deserialization time. There

are any number of combined reasons for this difference in performance. While the

difference in raw processing speed of the two devices may explain some of the result,

it is likely that some of the difference in performance is how the JSON serialization

library Jackson performs on the two different java virtual machines. Indeed some of

the problem may be due to inefficiencies in the less mature Dalvik virtual machine

found in Android 2.3.3, which may have been addressed in later versions of Android.

Despite the drawbacks of slow serialization on Android, there were some cases

where sending shapes to a remote server proved more efficient than performing the

recognition locally, specifically for the helix shape. In the case of the helix, the

mean recognition time locally was 7852 milliseconds whereas the mean time for total

remote recognition was 3083 milliseconds. In the case of a complex domain, it may

be worthwhile to use both local and remote recognition, where local primitive shape

recognition could be used for intermediate user interface visualization while primitive

and high level recognition are being performed on the remote server.

Ultimately we may need to adapt our serialization techniques to the capabilities
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Figure 4.9: Timing results for remote recognition

of our target systems. While we initially used JSON due to its popularity, readability,

flexibility and simplicity, text-based serialization using generic serialization libraries

is inherently inefficient. Therefore we may need to develop a binary transmission

protocol, or a simpler text protocol, for sending messages between server and client.

Still JSON may be the best format we can use if we want to balance the dual goals

of ease of use and speed. It is much easier to develop representations of new types of

objects in JSON rather than trying to modify an already optimized binary format.

In any case, many of these issues will likely be addressed in the coming years

as more and more efficient and powerful mobile processors become available, and as

the virtual machine software matures. Additionally, the increasing use of multi-core
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processors in mobile devices could make it profitable to parallelize PaleoSketch, as it

currently performs all computation in a single thread, but contains many elements

that are trivially parallelized. Further investigation would need to be done to de-

termine if such parallelization would provide sufficient increases in performance to

merit the increased overhead of multi-threaded and parallel programming.
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5. CONCLUSIONS

We have presented a new combined sketch recognition library called Strontium

that is capable of running on personal computers via the Java Development Kit

(JDK), on Android mobile devices and as a distributed web service. We then eval-

uated the performance of this library, in both speed and accuracy, on all three plat-

forms.

Strontium combines a number of popular gesture and sketch recognition libraries,

including the $1 recognizer, PaleoSketch, Rubine’s feature extractor and portions of

the LADDER constraint definition language. All of these have been modified to

remove dependencies on the JDK through the use of a new open source geometry

library called OpenAWT. This allows high-level sketch recognition algorithms writ-

ten with this library to be run on many different Java-based platforms, without

requiring full support for the JDK, such as Android and Google App Engine. Using

OpenAWT we are also able to provide unified shape drawing code, making it easier to

build different user interfaces for different platforms without worrying about drawing

sketches on the screen. We demonstrated this with several sample applications that

use sketch interfaces and sketch recognition in a variety of domains and tasks.

Since PaleoSketch is the heart of the Strontium library, we evaluated its perfor-

mance, both in recognition speed and accuracy, to make sure that sufficient per-

formance could be achieved using mobile hardware and touch-screens for sketching.

Our accuracy evaluation found that a major limiting factor of the touch screen is

the sampling rate. When the sampling rate of the touch sensor falls below 50 Hz,

whether through hardware or software induced lag, accuracy drops swiftly. However,

we found no evidence of any other difference between touch screens and pen-driven
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devices as far as the accuracy of PaleoSketch is concerned. This means that with

sufficient sample rate, a finger should produce the same recognition accuracy as a

pen. Most algorithms developed for pen interfaces should work on touch-screens as

well, provided they are not heavily dependent on absolute pixel lengths or drawing

velocity, as these were different between pens and touch.

Finally, we evaluated the recognition speed locally on each device and using dis-

tributed recognition. We found that there are some performance issues with recogni-

tion speeds on Android, but that these are mainly limited to more complex shapes.

We also found some problems with the distributed recognition on mobile devices as

serialization and deserialization of sketches and recognition results took much longer

than we anticipated. Still, distributed recognition worked well when these overhead

costs were lower, particularly on the personal computer platform. This means the

approach can be useful, both for developing web-based interfaces for PC systems,

and in performing distributed high-level recognition for mobile devices where even

with the associated overhead, distributed recognition may be faster. In any case,

we anticipate that these mobile performance issues will be lessened by the the in-

creased processing capabilities of current and future hardware. We will also continue

optimizing the software to improve performance.

Our goal with this library is to encourage the development of intelligent sketch-

based interfaces by non-expert developers. Ultimately the success of this project will

be measured by what impact it has on sketch recognition as an interaction method

on mobile devices.
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