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ABSTRACT 

 

Railroad bridges and culverts in the United States are often subject to extreme 

floods, which have been known to washout sections of track and ultimately lead to 

derailments. The potential for these events is particularly high in the western U.S. due to 

the lack of data, inadequate radar coverage, and the high spatial and temporal variability 

of storm events and terrain.  

  In this work, a hydrologic model is developed that is capable of effectively 

describing the rainfall-runoff relationship of extreme thunderstorms in arid and semi-arid 

regions. The model was calibrated and validated using data from ten storms at the semi-

arid Walnut Gulch Experimental Watershed. A methodology is also proposed for 

reducing the amount of raingages required to provide acceptable inputs to the hydrologic 

model, and also determining the most appropriate placement location for these gages. 

  Results show that the model is capable of reproducing peak discharges, peak 

timings, and total volumes to within 22.1%, 12 min, and 32.8%, respectively. Results of 

the gage reduction procedure show that a decrease in the amount of raingages used to 

drive the model results in a disproportionally smaller decrease in model accuracy. 

Results also indicate that choosing gages using the minimization of correlation approach 

that is described herein will lead to an increase in model accuracy as opposed to 

selecting gages on a random basis.  
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1. INTRODUCTION* 

 

1.1  Problem Statement 

Trains provide an efficient method of transportation for people and goods across 

the United States, and are essential for commerce and keeping the economy on track 

(Blanton and Marcus, 2009). In creating the extensive network of railroad infrastructure 

required for this trade to be possible, these railroads have no choice but to cross 

numerous drainage networks and are consequently subject to damages from flooding. 

Railroads are particularly susceptible to impairment from flash floods, or extreme 

hydrologic events that have a relatively rapid time-to-peak. If a crossing is not of 

adequate size to accommodate the large flood discharge, scouring can occur and 

undermine the track subgrade, or even wash out the crossing completely. These 

washouts or “railway hydraulic hazards” have been known to occur anywhere from large 

bridge crossings to small culvert crossings. As these events occur very quickly, there is 

often little time for identification of these track failures, and many ultimately lead to 

derailments as trains attempt to cross these washed out sections of track without 

knowing of the threat that lies ahead. 

Over the past thirty years in the U.S., railway hydraulic hazard events have 

resulted in over $105 million in railroad track and equipment damages, as well as several 

casualties (Huff, et al. 2012).  

 
 
____________ 
*Reprinted with “Advanced Technology for Railway Hydraulic Hazard Forecasting
by Huff, W. E., Brumbelow, J. K., and Cahill, T. C., 2012. World Environmental and
Water Resources Congress 2012: Crossing Boundaries, ASCE, Albuquerque, NM,
May 20-24, 2012. Copyright 2012 by ASCE. 
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Table 1.1 shows the damages resulting from these events as reported to the 

Federal Railroad Administration (FRA) for the period of 1982-2011. This data was 

compiled from the FRA Office of Safety Analysis website (FRA, 2011). A map of the 

railway hydraulic hazard events over the same time period is displayed in Figure 1.1. 

 
 
Table 1.1. U.S. Railway Hydraulic Hazard Damage Statistics 
 

Railway Hydraulic Hazard Events (1982-2011) 

Incidents: 263 

Equipment/Track Damages:* $105,741,067 

Fatalities: 14 

Injuries: 211 

Average Damages Per Incident:* $402,057 

Maximum Single Event Damages:* $6,200,500 

*Does not include value of lost revenue or loss of life 
 
 

 

Fig. 1.1. Map of Total Railway Hydraulic Hazard Events from 1982-2011 
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1.2  Project Scope 

The scope of this project is the remote western United States, which is dominated 

by arid and semi-arid climates. This location was selected for the project due to its 

increased potential for flash flooding, as well as the unique challenges that exist to 

modeling in the region.  

While there are many factors that are taken into consideration, the primary metric 

used to define aridity is the average annual precipitation of an area. Arid and semi-arid 

regions can be classified as those in which the average annual precipitation falls between 

50-200 mm/yr and 200-500 mm/yr (approximately 2-8 in./yr and 8-20 in./yr), 

respectively (Lloyd, 1986). There are many factors that make arid and semi-arid regions 

especially prone to flash flooding events. Although these areas are characterized by a 

relatively dry environment and low annual rainfall, storm events in arid and semi-arid 

regions are often high in intensity and have a high spatial and temporal variability. Most 

of these flash flood-producing storms are convective thunderstorms, generally occurring 

in the summer months. These storms are generated by moist air which combines with 

strong convective heating, made possible by the lack of cloud cover and the dry surface 

conditions typical of the region (Osborn et al. 1970). As the precipitation rate resulting 

from these storms typically exceeds the infiltration capacity of the soil, runoff 

production is consequently controlled by the Hortonian, or infiltration excess, 

mechanism (Horton, 1933). 

Arid and semi-arid regions are also predominately characterized by large areas of 

bare soils, usually having a low permeability. These poorly-drained soils, when 
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combined with high intensity storms, usually result in an enormous amount of runoff and 

ultimately an elevated potential for flash flooding. McIntyre (1958) attributes the low 

permeability of arid soils to the formation of a thin compacted crust layer on the surface 

of bare soils, which has a sealing effect on the surface. Adding to the already high flash 

flood potential, the high temperatures and overall lack of moisture make arid and semi-

arid regions more prone to wildfires. As Neary et al. (2005) points out, wildfires can 

increase runoff by removing surface vegetation and making soils “hydrophobic”, or 

water repelling, decreasing their infiltration capacity.  

One problem typical of the western U.S. that makes it particularly difficult to 

model is the overall lack of observed data. Many of the more remote areas are severely 

lacking in real-time rainfall and stream-flow monitoring stations, as well as competent 

rainfall-runoff models to predict the resulting floods, and also past data from which to 

calibrate these models. This often necessitates the use of overly complex models that can 

be extremely data and time intensive. 

Yet another problem that characterizes the western U.S. is the limited weather 

radar coverage. The National Weather Service has around 148 Next Generation Radar 

(NEXRAD) stations which are capable of sensing most precipitation within 

approximately 90 mi of the radar, as well as intense rain or snow within approximately 

155 mi of the radar stations (Weather Underground, 2011). As highlighted by Figure 1.2, 

several of these NEXRAD stations in the western U.S. are spaced farther than this 

effective 90 mi coverage distance, leaving these areas potentially blind to approaching 

storms and increasing the potential for railway hydraulic hazard events. In 2002, the 
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National Weather Service Western Region (NWS-WR) identified a list of features that a 

flash flood forecasting model should include (Gupta et al., 2006). One of the major 

requirements identified was the inclusion of a rainfall-runoff model that was capable of 

using radar precipitation inputs. This is clearly not possible in areas where there is 

limited radar coverage, making the use of other precipitation inputs essential.  

 

 

Fig. 1.2. 90 mi Effective Radar Coverage for Reliable Rainfall Rate 
Determination 

 

 
To summarize, railroads in the arid and semi-arid western United States are highly 

susceptible to hydraulic hazard related derailments, which can be attributed to numerous 

problems including: 

 An elevated potential for flash flooding in the region, 

 Lack of real-time and historical rainfall and stream-flow data, 



 

6 
 

 High intensity thunderstorms that are extremely variable in space and 

time, and 

 Limited weather radar coverage in the region. 

 

1.3  The Railway Hydraulic Hazard Monitoring System 

Through an ongoing project with Texas A&M University and the Association of 

American Railroads (AAR), researchers have investigated the feasibility of a web-based 

decision support system, the Railway Hydraulic Hazard Monitoring System (RHHMS), 

for real-time forecasting of potential railway hydraulic hazard events (Peschel, et al. 

2010). The goal of RHHMS is to convey information from a complex series of dynamic 

hydrologic calculations, into a simple visualization of flood hazards for railway bridges 

that have been identified as particularly vulnerable.  

To facilitate RHHMS, researchers have also investigated the use of an economic 

package of raingages, soil moisture sensors, and stream gages, to provide data to a 

hydrologic model for advanced identification of these flash flood events. In the final 

phase of this project, these real-time sensors would ultimately provide precipitation and 

soil moisture data to the model through a telemetry system. In addition, a real-time web 

camera would potentially be positioned at each instrumented crossing to provide further 

confirmation of a potential threat to the railway structure. The objective of this proposed 

combinatorial optimization approach to hydrologic measurement is to provide multiple 

lines of evidence, for greater accuracy, as well as redundancy in the event that one or 

more of the instruments malfunction.  
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For each of the instrumented sites, this approach would allow for both the current 

and the forecasted flow conditions at the crossing to be displayed and an alert could then 

be issued to railroad operators if a structure is in danger of sustaining damage. Railroad 

officials have also expressed interest in a wayside system tied directly into a signal 

alongside the track. This feature would take the decision-making out of the hands of 

railroad operators and ultimately lead to a quicker response. While a prototype of the 

RHHMS user interface has been developed in previous work, RHHMS is still far from 

operational.  

 

1.4  Motivation and Objective of Study 

The primary goal of this thesis is to identify and develop a hydrologic model that 

can be used to provide adequate flood forecasts to RHHMS. The model must be capable 

of accurately predicting the rainfall-runoff relationship of extreme storm events in 

remote arid and semi-arid basins. Requirements of the model include being able to 

operate in areas where the radar coverage is limited (i.e. operate using raingage data), 

being able to account for the spatial and temporal variability of storm events as well as 

parameter data, and being able to operate with relatively small time steps in order to 

accurately model flash flood events. 

Once a suitable hydrologic model has been identified, the model must be 

calibrated and validated using gaged data from an arid or semi-arid watershed in the 

western U.S. Specifically; the objective of this process is to minimize the modeled error 
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in peak discharge. Secondary objectives include minimizing the modeled error in peak 

timing and total runoff volume.  

Another major goal of this work is to identify a methodology for reducing the 

number of raingages that are used to provide inputs to a hydrologic model, while still 

maintaining an acceptable level of model prediction accuracy. The specific objectives of 

this methodology include minimizing the costs associated with hydrologic measurement 

as well as maximizing the capacity of a gage network to accurately capture the spatial 

variability of rainfall in a particular area. By reducing the density of a gage network and 

examining the changes in model performance, this can provide some insight into the 

tradeoff between the density of a raingage network, versus the resulting prediction 

accuracy of the hydrologic model that it provides inputs to. 

In summary, the specific goals of this project include the following: 

 Develop a hydrologic model capable of effectively predicting the runoff 

peak discharge and timing resulting from high intensity, spatially variable 

storm events in arid and semi-arid areas,  

 Calibrate and validate the model using data from a semi-arid watershed in 

the western U.S., and 

 Determine a methodology for reducing the number of raingages that are 

used to provide inputs to the model, while still providing an acceptable 

level of model accuracy.  
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2. LITERATURE REVIEW 

 

2.1  Introduction to Rainfall-runoff Modeling 

One of the primary tools of the hydrologist is the rainfall-runoff model, also 

known as the hydrologic or watershed model. A rainfall-runoff model is a mathematical 

tool used to simulate hydrologic processes, in which the major input is precipitation and 

the major output is the runoff hydrograph, describing the volume and timing of flood 

discharges. Some models are simpler, in that they only calculate the peak discharge 

volume instead of the complete hydrograph. The system in which this occurs is the 

watershed, also known as the catchment or basin. The hydrologic processes in the model 

that are used to convert rainfall to runoff typically include evapotranspiration, 

interception, detention storage, soil moisture accounting, infiltration, overland flow, 

channelized flow, and groundwater flow. To date, there are hundreds of these models 

being used in a variety of different applications. Models are selected based on the 

environment in which they will be used as well as the existence of data, as well as the 

quality of data that are available, and are typically classified to help convey their 

suitability for a particular application. Each model has its own unique strengths and 

weaknesses depending on the situation in which it is used. While there is no universal 

classification system for rainfall-runoff models, three categories will be discussed 

herein, including empirical and conceptual models, lumped and distributed-parameter 

models, as well as event-based and continuous simulation models.  
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Rainfall-runoff models can be described as either empirical or conceptual (Wurbs 

and James, 2002). Empirical models rely on historic gaged data and attempt to reproduce 

observed flows using best-fit equations. These models contain minimal or no physical 

transfer functions to relate the input to the output, but rather rely on finding a statistical 

relationship between the two (Anderson and Burt, 1985). Empirical models are generally 

developed for specific locations and situations, and can be very useful if adequate data 

exists for the study area. One popular example of an empirical model is the unit 

hydrograph method (Sherman, 1932). Conceptual models, also known as physically-

based models, are derived from physical equations including conservation of mass, 

momentum, and energy, and attempt to simulate the actual physical processes involved 

in runoff production and routing. As conceptual models usually require less gaged data 

to calibrate, they are more easily applied to ungaged basins. While these models are 

powerful, they also come with a price in that they are very data and time intensive, but 

they are becoming much more feasible with the increasing availability of digital data. 

Examples of conceptual models include KINEROS (Woolhiser et al., 1990) and GSSHA 

(Downer and Ogden, 2006). 

Rainfall-runoff models can also be classified as either lumped-parameter or 

distributed-parameter models. Lumped-parameter models spatially average the 

parameters of a watershed (i.e. surface roughness coefficient, soil saturated hydraulic 

conductivity, etc.) over the entire area and treat the watershed as a single unit. Widely 

used examples of lumped-parameter models include the Rational Method (Kuichling, 

1889) and the Curve Number method (NRCS, 1986). Distributed-parameter models 
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subdivide a watershed into smaller elements or grid cells, and attempt to account for the 

spatial variability of parameters by simulating the hydrologic processes that take place 

within each element. It should be noted, however, that all models are lumped to a certain 

degree, and are limited by the resolution of the parameter data that is available. 

KINEROS and GSSHA are also example of distributed models.   

Finally, models can be described as being either event-based or continuous 

simulation. Event-based, also known as event-oriented, models are used to simulate 

individual storm events over relatively short periods of time. The time scales used for 

event-based models are generally small, and typically range from minutes to hours 

(Knapp et al. 1991). Event-based models usually do not include processes that account 

for changes in soil moisture. Continuous simulation models are generally used to 

simulate longer periods of time and can include multiple precipitation events as well as 

the dry periods in between. Evapotranspiration and soil moisture accounting are usually 

incorporated in continuous simulation models in order to maintain a water balance in 

between storms. These models typically have a larger time scale, usually ranging from 

less than an hour to several days (Knapp et al. 1991). 

 

2.2  Physically-based, Distributed-parameter Models 

The Kinematic Runoff and Erosion model (KINEROS) is an example of a 

physically-based, distributed-parameter, event-based model that was developed by 

Woolhiser et al. (1990) to estimate the hydrologic response of ungaged watersheds. In 

this model, watersheds are broken up into a cascade of one-dimensional overland flow 
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and channel elements, and routed downstream using an approximation of the kinematic 

wave equation (Woolhiser et al., 1990). The model uses Hortonian infiltration-excess, 

generated overland flow processes to calculate the amount of surface runoff that is 

produced.  

Like the KINEROS model, CASC2D is also a physically-based, distributed 

parameter model that was developed by Julien et al. (1995) and funded by the U.S. 

Army and the Environmental Protection Agency (EPA) to simulate runoff generated by 

the Hortonian mechanism. The major processes simulated by the CASC2D model 

include rainfall distribution, interception, infiltration, two-dimensional overland flow 

routing, and one-dimensional channelized flow routing. While the two models are very 

similar, the primary difference between KINEROS and CASC2D is that CASC2D uses 

an approximation of the diffusive wave equation to route flow, instead of the kinematic 

wave equation that is used in the KINEROS model. Also, CASC2D is capable of 

continuous simulations as well as single event simulations. Among the objectives in the 

formulation of CASC2D was the need to accurately simulate flash floods caused by 

intense thunderstorms. The model has been proven to work well in remote arid and semi-

arid regions, where the principal runoff production mechanism is generally Hortonian 

(Downer, et al. 2002). Senarath et al. (2000) used the Goodwin Creek Experimental 

Watershed in northeast Mississippi to test and verify the capabilities of the CASC2D 

model. Researchers concluded that the model was successful in reproducing flows at the 

outlet as well as interior stream gages. Ogden et al. (2000) used CASC2D to successfully 

simulate the extreme flooding that occurred in Fort Collins, Colorado in 1997, which 
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caused significant damage to the city including railroad infrastructure and ultimately led 

to a train derailment.  

 

2.3  Real-time Hydrology and Flash Flood Forecasting 

Flash floods are defined as those occurring less than 6 hours of the causative 

storm event (NWS, 2002). These floods account for the highest amount of casualties 

among all natural disasters, and billions of dollars in property damages each year (AMS, 

1985). The National Weather Service (NWS) provides flood warnings to the U.S., and is 

divided into 13 River Forecast Centers (RFC’s). These RFC’s provide daily river 

forecasts using two rainfall-runoff models (Gupta and Schaffner, 2006). The two models 

that are used in these predictions are the Sacramento Soil Moisture Accounting Model 

(SAC-SMA), and the Continuous-API Model (CONT-API), which is based on the 

Antecedent Precipitation Index (API; Kohler and Linsley, 1951). SAC-SMA is a 

continuous, lumped parameter model which is conceptual in nature (Burnash et al., 

1973). CONT-API is also a continuous, lumped-parameter model, however is empirical 

in nature (Sittner et al., 1969). Both of these models run at either a 6-hour or a 1-hour 

time step, which can be inadequate for a short-fused flash flood event.  

Flash flood warnings are issued on a county-by-county basis using rainfall-runoff 

models similar to those of the RFC’s, but which run at either a 1-hour or 0.5-hour time 

step (Yatheendradas, 2007). Model inputs come from areal average rainfall values 

calculated using a combination of radar and gage data. While these models can be very 

effective in some regions, they are not very accurate for arid and semi-arid regions as the 
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models are lumped, and cannot accurately convey the spatial heterogeneity of either the 

rainfall or the watershed parameters. Furthermore, the time steps used in the models are 

too large to simulate flash floods, which can peak in less than 15 minutes in some cases 

(Yatheendradas, 2007). 

Gupta and Schaffner (2006) recommend that a good flash flood forecasting 

model should include the following: 

 Account for rainfall inputs with a high spatial and temporal variability,  

 Be distributed-parameter to account for spatial heterogeneities,  

 Include an infiltration-excess runoff mechanism, and  

 Be able to accurately represent channel transmission losses. 

Yatheendradas et al. (2008) suggests that protection from flash flooding can be 

best achieved by implementing a real-time warning system with a built in hydrologic 

model. Researchers used the KINEROS2 model along with data from storm events at the 

Walnut Gulch Experimental Watershed to evaluate sources of uncertainty in such a 

system. Researchers found that uncertainties existing in rainfall estimates, model 

parameters and initial conditions are very significant, and can greatly reduce the 

reliability of a flash flood forecasting model (Yatheendradas et al. 2008).  

 

2.4  Walnut Gulch Experimental Watershed 

The hydrologic model developed for RHHMS was tested and validated using 

ground based hydrologic data from the Walnut Gulch Experimental Watershed 

(WGEW) located in southeastern Arizona. In 1953, research was initiated at WGEW by 
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the Research Division of the Soil Conservation Service (SCS) for the purpose of 

improving the knowledge of hydrologic processes in semi-arid rangelands. Currently, 

the site is touted as the foremost semi-arid experimental watershed in the world (USDA, 

2003) and is operated by the USDA Southwest Watershed Research Center (SWRC). 

The watershed encompasses approximately 149 km² of land in the upper San Pedro 

River Basin and is dominated by desert shrubs in the lower two-thirds and grasses in the 

upper one-third (Renard et al., 2008). Streams in the WGEW are ephemeral and are dry 

for the majority of the year, and almost all of the runoff events are generated by high-

intensity convective thunderstorms during the summer months (USDA, 2003). At 

WGEW, the interaction of groundwater flow does not play a significant role in runoff 

production as the groundwater table lies from 50 m to 145 m below the land surface. 

Instrumentation at the site includes 88 raingages and 11 flumes, all outfitted with 

electronic sensors and data loggers that collect data and transmit it by means of radio 

telemetry to a computer at the SWRC office in Tombstone where the data is archived. 
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3. MODELING APPROACH 

 

3.1  Model Description and Overview  

 While the RHHMS hydrologic model was developed and coded independently, it 

is based largely upon the principles of the U.S. Army Corps of Engineers’ Gridded 

Surface/Subsurface Hydrologic Analysis (GSSHA) model 

(http://chl.erdc.usace.army.mil/gssha). The GSSHA model is an evolution of CASC2D, 

and was developed by Ogden et al. (2000) to extend the modeling capabilities of 

CASC2D to non-Hortonian watersheds, and include the interaction of groundwater flow 

when saturation excess is the primary runoff production mechanism. Unlike its 

predecessor CASC2D, the GSSHA model also includes the option to use the Richards 

equation to estimate changes in soil moisture, allowing for continuous simulations as 

well as single event simulations. For regions where snowmelt contributes significantly to 

runoff, GSSHA also includes a component for measuring snow accumulation and 

melting using an energy balance method. Ultimately, the GSSHA model’s accuracy as a 

physically-based, distributed-parameter model, and its ability to simulate the hydrologic 

response of a watershed in a variety of different environments was the primary reason 

that it was selected for use in this project. 

Downer and Ogden (2003) used the Goodwin Creek Experimental Watershed 

(GCEW) to verify GSSHA’s ability to predict surface water runoff and estimate soil 

moistures in the unsaturated zone. GCEW is a small agricultural watershed located in 

northeastern Mississippi, where groundwater does not play a significant role in runoff 
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production and the chief runoff mechanism is infiltration-excess (Downer and Ogden, 

2003). Researchers found that the model was able to reproduce peak discharges to within 

31%, discharge volumes within 43%, and soil moisture profiles with a RMSE of 0.078 

(Downer and Ogden, 2003).  

Downer and Ogden (2004) again confirmed GSSHA’s ability to predict surface 

water runoff, this time at the Muddy Brook watershed. Muddy Brook is a small 

watershed located in northeastern Connecticut which receives a large contribution of its 

runoff at the outlet from groundwater discharge and has a very shallow groundwater 

table (Downer and Ogden, 2004). Using GSSHA in this non-Hortonian basin, 

researchers were able to reproduce peak flows and total volumes within approximately 

22% and 35%, respectively, of observed values (Downer and Ogden, 2004). 

Sharif et al. (2010) explored the use of GSSHA to recreate an extreme flooding 

event that occurred in a sub-basin of the Guadalupe River in Texas, which is an area of 

the state that is known for being very prone to flash flooding. Researchers used 

precipitation inputs from both radar estimates and rain gages to drive the GSSHA model. 

At 1,630 km2, the catchment area was relatively large as well as the simulation period of 

eleven days. The flood event had two main peaks, and researchers found that the 

GSSHA model was able to reproduce the two peak discharges with errors of 7.4% and 

5.0%, respectively (Sharif et al., 2010). 
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3.2  Model Formulation  

 The major processes that are incorporated into the RHHMS hydrologic model 

include precipitation distribution, interception, infiltration, overland flow routing, and 

channelized flow routing. In developing the model, several key assumptions were made 

due to the intended implementation of the system in the arid and semi-arid western 

United States. One of the main assumptions made was that the primary runoff 

production mechanism is infiltration-excess. This can be expected from the type of 

intense convective thunderstorms that the region is known for, storms that are severe 

enough to produce a flash flood. Because soil moisture data was readily available at the 

testing location and because the model will ultimately have the use of real-time soil 

moisture sensors, evapotranspiration was not calculated. Finally, the interaction of 

groundwater flow was assumed to be negligible, as the depth to the groundwater table is 

typically very large in these arid and semi-arid regions. The formulas for each of the 

processes previously listed are explained below. 

 

Precipitation Distribution 

As there are a finite number of raingages and because the precipitation rate is not 

uniform across the watershed, the precipitation data that is recorded at each of the gages 

within the watershed must be interpolated throughout the ungaged areas in the 

watershed. To accomplish this, the inverse distance squared interpolation formula 

(Rojas, et al. 2003) was used and is shown in Equation (3.1) below:  
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∑

∑ 1  (3.1) 

where  is the calculated precipitation rate (in./hr) at the cell;  is the total number 

of raingages in the watershed;  is the precipitation rate (in./hr) recorded at the mth 

raingage; dm is the distance (ft) from the current cell to the mth raingage. 

 

Interception  

The portion of rainfall that is intercepted by the vegetation cover is calculated 

using Gray’s empirical 2-parameter method (Gray, 1970) which is shown in Equation 

(3.2) below:   

 
for  

for  
(3.2)

where  is the rate of interception (in./hr); a is the storage capacity (in.); b is the 

interception coefficient;  is the cumulative interception depth (in.). Storage capacity 

and interception coefficient values are estimated from land cover data (Downer and 

Ogden, 2006).  These values can be found in Gray (1970) or Bras (1990). The calculated 

interception rate is then subtracted from the precipitation rate, yielding the net 

precipitation rate, , which is the precipitation value that is used in all subsequent 

calculations. 
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Infiltration 

Neglecting the amount of surface ponding that occurs, the losses due to 

infiltration are then calculated using the Green-Ampt equation (Green and Ampt, 1911). 

This equation assumes that there is a sharp wetting front, and the soil above the wetting 

front is completely saturated. Initially, while the net precipitation rate is less than the 

saturated hydraulic conductivity, all of the water infiltrates and the rate of infiltration is 

simply equal to the net precipitation rate. Equations (3.3) and (3.4) calculate the 

infiltration rate and cumulative infiltration depth. 

  (3.3)

 1  (3.4)

where  is the rate of infiltration (in./hr);  is the net precipitation rate (in./hr); 

 is the cumulative infiltration depth (in.) at the current time step; 1  is the 

cumulative infiltration depth (in.) in the previous time step;  is the length of the time 

step (hr). 

Once the net precipitation rate surpasses the saturated hydraulic conductivity, 

there is the potential for ponding to occur in the current time step. First, the infiltration 

depth at ponding is calculated in Equation (3.5). Next, the time to ponding is calculated 

in Equation (3.6). If the time to ponding does in fact fall within the current time step, the 

cumulative infiltrated depth is calculated using the Mein-Larson extension of the Green-

Ampt equation (Mein and Larson, 1973). As the cumulative infiltration depth is located 

on both sides of Equation (3.8), it must be solved for using an iterative solution 

algorithm. 
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1

 (3.5)

  
1

1  (3.6)

 
 

ln 1
 

(3.7)

 ln 1  (3.8)

 
1

 (3.9)

where  is the infiltration depth (in.) at ponding;  is the total porosity of the soil;  is 

the initial soil moisture content;  is the wetting front suction head (in.);  is the soil 

saturated hydraulic conductivity (in./hr);  is the time (hr) at which the water begins to 

pond on the surface;  is the equivalent time (hr) to infiltrate the cumulative infiltration 

depth at ponding, assuming initial surface ponding. The three soil parameters that are 

required for this equation, Ks, n, and , can be found in Rawls et al. (1983). Initial soil 

moisture content must be measured in the field or estimated if necessary.  

 

Overland Flow Routing 

Overland flow is routed throughout the watershed using a form of the Manning 

equation to calculate the flow of water from cell to cell (Downer and Ogden, 2006). The 

following calculations apply to cells that are not located within the stream network. 

Initially, the surface is assumed to have no water accumulated, and the flow direction for 
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the first time step is calculated using the elevation data alone. For each following time 

step, the flow direction is updated using both the elevation and water depth of each 

neighboring cell. After calculating the friction slope in Equation (3.10), the flow of 

water from the current cell to its downstream neighbor is calculated in Equation (3.11) 

as: 

  (3.10)

 
1.49

 (3.11)

where  is the flow (ft3/s) leaving the cell at the current time step;   is the Manning 

roughness coefficient of the cell;  is the depth of water (ft) in the current cell; 

 is the depth of water (ft) in the downstream cell;  is the friction slope 

between the current cell and the downstream cell;  is the elevation (ft) of the current 

cell,  is the elevation (ft) of the downstream cell;  is the grid cell size (ft). 

Water depth in the next time step is then calculated using Equation (3.12) by 

subtracting the losses from infiltration and the flow leaving the cell, as well as adding 

the precipitation inputs and the flow coming into the cell from any neighboring cells that 

flow into the cell. 

1       (3.12)  

where 1  is the depth of water (ft) in the cell at the next time step;  is the 

flow (ft3/s) entering the cell from any of the eight neighboring cells. 
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If at any time the friction slope is negative causing the flow to move upstream, 

the flow rate at the current cell is calculated in Equation (3.13) using the parameters of 

the downstream cell, with the resulting flow rate being a negative value. 

 1.49
 (3.13)

 

Channelized Flow Routing 

When the surface flow reaches a defined channel network, the Manning equation 

is again used to relate the water depth to discharge, this time in a slightly altered form 

shown in Equation (3.14) below (Downer and Ogden, 2006). 

 
1.49 / /

 (3.14)

where  is the cross-sectional area (ft²) of the channel;  is the hydraulic radius 

(ft²/ft) of the channel. 

The volume of the cell at the next time step is then calculated using Equation 

(3.15) in a manner similar to the overland flow depth calculation, and finally the water 

depth is obtained from this volume as shown in Equation (3.16). 

 
1  

 3600  
(3.15)

 
1  

4
1

2
 

(3.16)
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where 1  is the volume (ft3) of water in the cell at the next time step;  is the 

volume (ft3) of water in the cell at the current time step;  is the bottom width (ft) of the 

channel;  is the side slope of the channel (horizontal distance/vertical distance). 

 

3.3  Model Inputs and Preprocessing 

In order to run simulations using the RHHMS hydrologic model, numerous 

datasets must be assembled as well as several input parameter values. The model is 

driven by gaged precipitation and soil moisture data gathered from instruments in the 

field. The hydrologic and topographic information used in the model can been extracted 

from GIS digital spatial data and digital elevation models. All of the datasets described 

herein can be created using a GIS and must be converted into an ASCII map. Table 3.1 

lists the basic inputs and Table 3.2 lists the necessary datasets that are required. 

 
 
Table 3.1. Model Required Inputs 
 
Input Type Units Description 
dx Double ft Grid cell size. 
Wr Integer - Total number of rows in the grid. 
Wc Integer - Total number of columns in the grid 
NT Integer - Total number of overall model time steps. 
NF Integer - Total number of flow routing time steps. 
dt Double hr Length of overall model time step. 
df Double hr Length of flow routing time step. 
Ngages Integer - Total number of raingages. 
EndData Integer - Total number of rows of raingage data. 
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Table 3.2. Model Required Datasets 
 
Dataset Name Type Units Description 

Elevation Double ft 
ASCII map containing the elevation of each grid cell. Must be adjusted if any 
imperfections exist in the DEM. 

Watershed Boundary Boolean - 
ASCII map containing the watershed status of each grid cell. Cells inside the watershed 
are assigned a value of 1. Cells outside of the watershed are assigned a value of 0. 

Gage Locations Integer - 
ASCII map containing the location of each raingage as well as the outlet cell location. 
Cells containing a raingage are assigned a value of 2. Outlet cell assigned a value of 3. 

Gage Data N/A in. 
Spreadsheet containing precipitation inputs from each gage. Must include gage number, 
start time, duration, and precipitiation depth. 

Flow Direction Integer - ASCII map containing the initial flow direction of each grid cell.  
Saturated 
Conductivity 

Double in./hr ASCII map containing the value of the saturated hydraulic conductivity of each grid cell. 

Wetting Front 
Suction Head 

Double in. 
ASCII map containing the value of the Green-Ampt wetting front suction head of each 
grid cell. 

Porosity Double decimal ASCII map containing the value of the soil porosity of each grid cell. 
Initial Soil Moisture Double decimal ASCII map containing the value of the initial soil moisture content of each grid cell. 
Manning's n Double - ASCII map containing the value of the Manning roughness coefficient of each grid cell. 

Stream Network Boolean - 
ASCII map containing the stream network location. Cells that are part of the stream 
network are assigned a value of 1. All other cells assigned a value of 0. 

Bottom Width Double ft 
ASCII map containing the value of the channel bottom width of each grid cell located in 
the stream network. 

Z Double - 
ASCII map containing the value of the average channel side slope (horizontal:vertical) of 
each grid cell located in the stream network. 

Storage Capacity Double in. ASCII map containing the value of Gray's interception storage capacity of each grid cell. 

Interception 
Coefficient 

Double - ASCII map containing the value of Gray's interception coefficient of each grid cell. 
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The precipitation data used in the model can be gathered from gages located both 

within and surrounding the watershed of interest. While the fully operational RHHMS 

will have the use of a network of recording raingages, gaged precipitation data can be 

accessed from the National Oceanic and Atmospheric Administration (NOAA) National 

Climatic Data Center (NOAA, 2012). A gage location map must be created which 

defines the location of each raingage in the watershed, as well as the outlet cell. In this 

map, each cell that contains a raingage is assigned a value of 2 and the outlet cell is 

assigned a value of 3, all other cells being assigned a no-data value or a value of 0. An 

example of the gage location map is shown in Figure 3.1. The model also requires the 

initial soil moisture content for each grid cell. Values for initial soil moisture must be 

established from gaged data if available or estimated if not. The total number of 

raingages that are utilized also needs to be specified upfront. 

 

 

Fig. 3.1. Example of Gage Location Map 
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Prior to creating required input grids, the user must first select a grid cell size. 

This will depend on the size of the watershed as well as the resolution of the available 

parameter data. For example, if a 30 meter DEM is used as the elevation input data, 

obviously a grid cell size of 30 meters or larger should be selected. Also, if the 

watershed of interest is, for example, an entire river basin, the grid cell size will have to 

be quite large in order to have a reasonable computation time. The grid cell sizes used in 

the GSSHA model normally range from 10 to 250 m (Downer and Ogden, 2006). 

Another very important parameter that must be determined before running model 

simulations is the length of the model time step as well as the length of the flow routing 

time step. The overall model time step length will typically be set according to the 

quality of the precipitation data that is used.   

Elevation data used in the model is available nationwide from the USGS 

National Elevation Dataset (NED) Program (USGS, 2011a). This data typically contains 

errors that must be accounted for before it can be used for modeling. Errors in spatial 

data often cannot be avoided, and can be due to the age of the data, an incomplete 

sampling density, processing errors in the computer, as well as measurement errors 

including positional imprecision or data entry errors (Wechsler, 2007). DEMs may also 

contain natural depressions known as “sinks” or “pits” that must be filled before 

overland flow routing can be calculated. Once corrected, DEMs contain useful 

information that can lead to the creation of other datasets including flow direction maps, 

stream locations, and watershed boundary maps using tools available in GIS software 
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such as ArcGIS (Environmental Systems Research Institute (ESRI), Redlands, 

California).  

The flow direction map is used to route flow for the initial time period in which 

there is no surface water accumulation, and consists of a grid in which each cell is 

assigned a number corresponding to the direction of one of its eight adjacent “neighbor” 

cells. Figure 3.2 defines the values corresponding to the eight possible flow directions.  

 

 

Fig. 3.2. Flow Direction Values 
 
 

The flow direction of each cell is first determined using only the elevation data, 

in which the flow moves from the current cell to the cell that results in the steepest slope. 

As surface water begins accumulating, these initial flow direction values are subject to 

change and the flow direction is then determined based on the drop in total head. The 

watershed boundary map is a Boolean map in which each grid cell located within the 

watershed is assigned a value of 1, and all other cells in the grid are assigned a value of 

0. Figure 3.3 demonstrates an example of the watershed boundary map. 
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Fig. 3.3. Example Watershed Boundary Map 
 

 

Soils data required for model can be downloaded from the USDA National 

Resources Conservation Service (NRCS) website (USDA, 2011). These data can be used 

to estimate initial values for the watershed infiltration parameters including saturated 

hydraulic conductivity, porosity, and wetting front suction head. 

Land cover data required for the model can be downloaded from the National 

Land Cover Database (MRLC, 2011). These data can be used to estimate initial values 

for the Manning roughness coefficient, interception storage capacity, and interception 

coefficient. 

Data describing surface water features such as rivers and streams can be 

downloaded from the National Hydrography Dataset (USGS, 2011b). This data can be 

used to define the stream network in the watershed. There are several methods of 

defining the stream network and creating a stream network map. One method is to 
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overlay the stream map from the hydrography data and simply convert the data from its 

vector form to a raster map. Another method is to create a flow accumulation map for 

the watershed and define the number of cells that must be accumulated for a cell to be 

considered a stream cell. Once the stream network is defined, a Boolean map must be 

created in which a stream cell is assigned a value of 1 and all other cells a value of 0. 

Figure 3.4 shows an example of the stream network map.  

 

 

Fig. 3.4. Example Stream Network Map 
 
 
 
Perhaps the most important input data that are required to achieve accurate model 

simulations are the channel cross-sectional data. These are also usually the hardest data 

to locate. Typically, a survey of the watershed is required to gather this data, however, if 

adequate LIDAR elevation data exists, this information can be obtained through data 
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processing programs such as HEC-GeoRAS (Hydrologic Engineering Center (HEC), 

Vicksburg, Mississippi). 

 

3.4  Model Calibration and Validation 

  The RHHMS hydrologic model was calibrated manually using 5 recorded storm 

events at the WG-11 sub-watershed of WGEW. Information on each of the storm events 

is shown in Table 3.3.  

 
 
Table 3.3. Calibration and Validation Storm Events 
 

Event 
No. 

Event 
Date 

Storm 
Start 
Time  

Flow 
Start 
Time 

Flow 
Duration 

(min) 

Peak 
Flow 
Rate 
(ft3/s)

Total 
Flow 

Volume 
(ft3) 

Average 
Rainfall 
Depth 
(in.) 

Gage 
Standard 
Deviation

C1 7/20/2007 18:26 18:58 203 674 1,129,000 1.93 0.355 
C2 7/19/2008 20:50 21:42 90 96 149,500 1.20 0.344 
C3 8/25/2003 11:58 12:16 156 40 106,100 0.43 0.423 
C4 8/16/2010 17:04 17:11 139 291 627,600 0.86 0.437 
C5 8/28/2010 14:19 14:34 199 225 640,900 0.85 0.242 
V1 8/23/2009 13:28 14:00 158 152 296,900 0.97 0.197 
V2 8/4/2002 12:12 12:32 165 310 550,200 0.97 0.428 
V3 7/31/2007 14:54 15:17 119 234 434,300 0.80 0.784 
V4 8/6/2007 17:02 17:09 296 122 535,500 0.93 0.560 
V5 8/28/2008 12:50 13:07 303 132 560,900 1.01 0.592 

 
 

The WG-11 sub-watershed encompasses approximately 7.8 km² and contains a 

total of 9 digital raingages within the watershed boundary, as well as a flume at the 

outlet. Nine digital raingages outside of the watershed, but in close proximity, were also 

used to provide data to the model, combining for a total of 18 raingages. A portion of the 
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watershed was not used in the modeling calculations as it is a stock pond watershed that 

has been determined to not significantly contribute to runoff at the outlet in the majority 

of previous studies that have utilized this site. A map of the WG-11 sub-watershed, as 

well as the entire model grid can be seen in Figure 3.5 below. A soils map of WG-11 is 

depicted in Figure 3.6, along with each soil name listed in Table 3.4. 

 

 

Fig. 3.5. Sub-watershed WG-11 Site Map 
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Fig. 3.6. WG-11 Soils Map 
 
 
 
Table 3.4. WG-11 Soil Types 
 

Map Unit Symbol USDA Soil Map Unit Name 
5 Baboquivari-Combate complex, 0 to 3 percent slopes 

58 Elgin-Stronghold complex, 3 to 20 percent slopes 
108 McAllister-Stronghold complex, 3 to 20 percent slopes 
134 Stronghold-Bernardino complex, 10 to 30 percent slopes 
142 Tombstone very gravelly fine sandy loam, 8 to 15 percent slopes 
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The digital spatial data that was used in the calibration and validation processes, 

including elevation, soils, land cover, hydrography, and gage location data, were 

downloaded from the SWRC online data catalog (USDA-ARS, 2012). While channel 

cross-sectional data for the sub-watershed were not accessible online, KINEROS cross-

sectional input files that included the channel bottom width and channel side slopes were 

provided by Dr. David Goodrich of the SWRC, from work completed on an earlier 

project (2012, USDA-SWRC, personal communication).  

A grid cell size of 50 m was selected for both the calibration and validation 

processes in order to fully define the geometry of the channel network. As precipitation 

data was available in one-minute intervals for almost all of the storms, a relatively small 

model time step of 6 min was selected to model each of the storms. The flow routing 

time step that was selected was very small, at approximately 1.5 sec. Initial soil moisture 

values for the site were determined using data from a soil moisture sensor located near 

the center of the watershed.  

The calibration parameters for each of the five storm events included the 

Manning roughness coefficient, soil saturated hydraulic conductivity, wetting front 

suction head, porosity, interception storage capacity, and interception coefficient. Initial 

values of the calibration parameters were estimated using values from the literature 

(Gray, 1970; Rawls et al., 1983) and are shown in Table 3.5 below. These initial values 

were manually calibrated independently for each storm event by applying a multiplier to 

each parameter until the modeled hydrograph best resembled the actual recorded 

hydrograph. These multipliers were determined for each of the five calibration storm 
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events, and the average value of the calibration parameter multipliers was then applied to 

the parameters for each of the validation set of storms.  

 
 
Table 3.5. Calibration Parameters 
 

Calibration Parameter 
WG-11 Initial 

Parameter 
Value Range 

Units 
Average Calibration 
Parameter Multiplier 

Manning Roughness Coefficient 0.045-0.055 - 0.68 

Saturated Hydraulic Conductivity 0.06-2.18 in./hr 0.79 

Wetting Front Suction Head 8.89-31.63 in. 0.79 

Total Porosity 0.33-0.434 - 0.96 

Interception Storage Capacity 0.005-0.01 in. 1.10 

Interception Coefficient 0.08-0.16 - 1.10 
 
 
 
3.5  Model Limitations and Uncertainty  

 It is important to remember that a model is simply an approximation of reality, 

and can never completely describe the spatial heterogeneity of the watershed or the 

complex nature of the hydrologic processes that present in the system in which it is 

applied with absolute exactitude and certainty. As the RHHMS hydrologic model is 

tailored toward a specific type of storm event in a specific region, this allowed the use of 

many assumptions, thereby resulting in the potential for a high level of uncertainty. If 

not properly applied, there is a large potential for error in this model. 

Once again, the intended goal of this model is to predict the runoff from extreme 

storm events, the likes of which are capable of producing flash floods, in arid and semi-

arid regions. This allows for the assumption that the Hortonian infiltration-excess 
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mechanism is the dominant runoff production mechanism, and that the interaction of 

groundwater to runoff is negligible. These assumptions generate one of the more 

significant sources of uncertainty in the model. The model is not intended to be used on 

storm events with a lower intensity, in which the saturation-excess runoff mechanism is 

dominant, or in areas where groundwater contributes a significant amount to runoff. 

 Other sources of uncertainty in this model include the trapezoidal simplification 

of the channel geometry, as well as the assumption of steady, uniform flow conditions 

implied by the use of Manning’s equation. In reality, the geometry of a channel network 

is highly variable from one cross section to the next, and these natural streams rarely 

exhibit uniform flow. The amount of error from this assumption can be minimized, 

however, with a reduction in grid cell size. As the distance from one cell to the next 

decreases, so too does the change in channel cross section geometry and flow conditions.  

 Finally, the extreme spatial variability of both the parameter data as well as the 

precipitation inputs provides another source of uncertainty in the modeling process. In a 

perfect world, each watershed would be completely instrumented and have accurate 

elevation, soils, and land use data for every square inch of the basin. This of course, is 

usually far from the truth. As mentioned previously, even distributed-parameter models 

are limited by the resolution and quality of the parameter data that is available, therefore 

making them lumped to a certain degree. The use of a relatively large grid cell size, as 

well as the estimations that were made as to the initial parameter values contributes a 

significant amount of uncertainty to the modeling process. Likewise, the spatial 

variability of the storm events themselves and the lack of complete raingage coverage 
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also contribute significantly to the model uncertainty. The calibration and validation 

storm events that were used in this study produced highly dissimilar precipitation depths 

from one gage to the next. While there currently exists no method of completely 

capturing the spatial variability of each storm event, one of the goals of this research is 

to find a way to minimize these potential errors, and provide the best possible input data.  

 

3.6  Results and Analysis 

Three basic hydrograph metrics were used to compare the performance of the 

modeled hydrographs to the actual recorded hydrographs for both the calibration and 

validation storms, including the percent error in peak flow rate, the difference in runoff 

peak timing, and the percent error in the total volume of runoff. A summary of the 

results of the calibration and validation processes can be seen in Table 3.6 below. The 

resulting hydrographs of each of the calibration and validation event simulations can be 

found in Figures 3.7-3.16.  
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Table 3.6. Calibration and Validation Results 

Event 
No. 

Peak Flow 
Error (%) 

Δtp 
(min) 

Total Volume 
Error (%) 

C1 2.3 0 30.8 

C2 -0.4 0 118.0 

C3 0.0 0 48.5 

C4 1.0 6 -23.3 

C5 0.5 6 -3.9 

V1 -31.0 -12 -0.7 

V2 1.5 6 31.4 

V3 1.6 12 31.2 

V4 -54.6 -6 -48.4 

V5 -22.0 -24 -52.3 
 
 

For the five calibration storms, after adjusting the initial input parameter values 

the RHHMS hydrologic model was able to reproduce peak discharge, peak timing, and 

total runoff volume with average errors of 0.8%, 2.4 min, and 44.9%, respectively. 

Errors in peak discharge from the model simulations ranged from a minimum of 0.02% 

to a maximum of 2.3%. Errors in peak timing ranged from a minimum of 0 min to a 

maximum of 6 min. Finally, errors in total volume from the calibration set of storm 

events ranged from a minimum of 3.9% to a maximum of 118%. 

After calibrating each storm event individually by adjusting the model 

parameters until the modeled peak discharge best fit the recorded peak discharge, an 

average of the parameter values used in the five calibration storm events was used to 

model the five validation storm events. For the five validation storm events, it was found 

that the model was able to reproduce peak discharge, peak timing, and total volume with 
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an average error of 22.1%, 12 min, and 32.8%, respectively. Errors in peak discharge 

ranged from a minimum of 1.5% to a maximum of 54.6%. Errors in peak timing ranged 

from a minimum of 6 min to a maximum of 24 min. Finally, errors in total runoff 

volume over the set of validation storm events ranged from a minimum of 0.7% to a 

maximum of 52.3%.  

 Looking at the individual validation storm events, there are several likely 

explanations for the error in the modeled peak discharge. The model underestimated the 

peak discharge of storm V1 by 31%, and calculated a peak timing that occurred 12 min 

sooner than the actual time. This is most likely due to an underestimation in the 

roughness coefficient, which would create an increase in velocity and a lower peak flow 

rate.  

 While the model calculated the peak discharge in storm events V2 and V3 with 

negligible error, it overestimated the total volume of runoff by approximately 31% for 

both storm events. This is most likely due to infiltration parameters or interception 

parameters that were too low, causing an underestimation in abstractions. The modeled 

peak timings for storm events V2 and V3 occurred 6 min and 12 min later than the actual 

time, respectively. This could be explained by a roughness coefficient that was too high, 

creating a slower flood peak that was greater in magnitude.  

 Conversely, the model underestimated the peak discharge of storm events V4 and 

V5 by 54.6% and 22%, respectively. The model also underestimated the total runoff 

volume by 48.4% and 52.3%, respectively. This could be due to infiltration and 

interception parameters that were too high, resulting in an overestimation in abstractions. 
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The modeled peak timing for storm events V4 and V5 occurred 6 min and 24 min sooner 

than the actual time, respectively. This is most likely due to roughness coefficients that 

were too low, which would explain not only the underestimation in peak timing but also 

the underestimation in peak discharge for each of these simulations. 

 Overall, the calibrated model was able to reproduce the peak discharge, peak 

timing, and total runoff volume of the five validation storm events to within an average 

of 22.1%, 12 minutes, and 32.8%, respectively. While these numbers are certainly not 

ideal, the model provides an acceptable starting point for subsequent versions and the 

results can be used to further improve the model and examine possible sources of error 

that exist.  
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Fig. 3.7. Calibration Event C1 Hydrograph 
 
 
 

 
 

Fig. 3.8. Calibration Event C2 Hydrograph 
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Fig. 3.9. Calibration Event C3 Hydrograph 
 
 

 

 
 

Fig. 3.10. Calibration Event C4 Hydrograph 
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Fig. 3.11. Calibration Event C5 Hydrograph 
 
 
 

 
 

Fig. 3.12. Validation Event V1 Hydrograph 
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Fig. 3.13. Validation Event V2 Hydrograph 
 
 
 

 
 

Fig. 3.14. Validation Event V3 Hydrograph 
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Fig. 3.15. Validation Event V4 Hydrograph 
 
 
 

 
 

Fig. 3.16. Validation Event V5 Hydrograph 
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4. GAGE DENSITY REDUCTION: COMPARISON WITH MODEL 

ACCURACY 

 

4.1  Summary 

As stated previously, one of the main objectives of this project is to identify a 

methodology for determining both the placement location, as well as the minimum 

density of raingages to deploy, while still remaining capable of providing adequate 

inputs to the hydrologic model, and yielding runoff predictions with an acceptable level 

of accuracy. Raingages are not inexpensive, both in regard to the initial cost of the 

instruments as well as the cost of maintaining the instruments and keeping the system 

functioning properly. While an enormous network of sensors containing a raingage in 

each model grid cell would be ideal, the cost as well as the man hours spent assembling 

and maintaining the network would be tremendous. Furthermore, Osborn et al. (1972) 

points out that the trails required to access the gages could significantly alter the terrain, 

thereby changing the drainage of a watershed. At the other extreme, having just one or 

very few gages in a relatively large watershed would involve a low cost, but would most 

likely be unable to accurately convey the high spatial variability of most storms, 

especially the convective thunderstorms that the arid and semi-arid western U.S. is 

known for. As such, a methodology is needed to determine the minimum number of 

gages must be used, as well as where these gages should be located in order to best 

capture the spatial variability of the storm events.  



 

47 
 
 

Osborn et al. (1972) used data from summertime convective thunderstorms at 

WGEW to determine the optimum rain gage density needed to accurately correlate 

rainfall and runoff. Researchers ultimately found that in order to accurately predict 

runoff, the follow gage networks are required: 

 small watersheds with an area no larger than 120 acres require one centrally 

located gage,  

 a watershed with an area of 1 mi2 and a length-width ratio of 4 requires a 

network of three evenly spaced gages, and 

 large watersheds with an area of over 10 mi2 require a network of evenly spaced 

gages at 1.5 mile intervals. 

 

4.2  Methodology 
 
  The vast network of raingages at the WGEW proved to be an ideal testing site to 

develop the gage network reduction procedure. A data censoring study was performed 

using the same site in which the calibration and validation processes were carried out. 

Initially, all of the available rain gages in the test watershed were used to provide inputs 

to the hydrologic model, serving as the control case in this experiment. Later, the 

number of gages that were utilized was reduced, and the resulting model performance 

was analyzed. The goal in this effort is determine a way to find not only the minimum 

number of gages to deploy, but also determine where these gages should be located in 

order to accurately capture the spatial heterogeneity of the convective thunderstorms of 

the region. This will also give some clue as to the tradeoff between the cost and scope of 
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a sensor network, versus its prediction accuracy, and help to determine the ideal gage 

placement density when it comes time to implement the fully operational RHHMS in the 

field.  

  The WG-11 sub-watershed of WGEW was again used in the data censoring 

study. Two storm events, V2 and V3, were selected to drive the simulations. These 

storm events were selected due to their high spatial variability and also because they best 

reproduced the actual peak discharges out of all of the validation storm event 

simulations. For each of the two storm events, 5 different cases were simulated. Case 1 

was the control case, in which the model was run using inputs from all of the 18 

raingages that were used in the calibration and validation of the model. For Case 2, a 

“medium” number of gages were utilized, and the number of raingages providing inputs 

to the model was reduced by 50%, resulting in a total of 9 raingages. These gages were 

selected on a random basis for each of 15 samples. Case 3 again used the medium 

number of 9 raingages, which were this time selected based on a minimization of 

correlation method described below.  

  For each of the 18 raingages, the total precipitation depths recorded for each of 

the 10 calibration and validation storms were calculated and placed into an array as 

shown in Table 4.1. Next, the sample correlation coefficient for each pair of gages was 

determined using Equation (4.1) below (Devore, 2009): 

 X, Y
∑

∑ ∑
 (4.1)
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where X, Y  is the sample correlation coefficient; X is the array of precipitation 

depths recorded for each storm event at the first gage; Y is the array of precipitation 

depths recorded for each storm event at the second gage;  is the total number of storm 

events used;  is the precipitation depth recorded at the first gage during the th storm;  

is the precipitation depth recorded at the second gage during the th storm;  is the mean 

precipitation depth recorded at the first gage;  is the mean precipitation depth recorded 

at the second gage. 

 

Table 4.1. Precipitation Depths at Individual Raingages 

Gage 
No. 

Precipitation Depth (in.) for Selected Storm Event 

C1 C2 C3 C4 C5 V1 V2 V3 V4 V5 

38 1.385 1.160 0.715 0.085 0.825 0.715 1.860 2.310 0.165 0.365 
43 1.615 0.990 0.165 0.690 0.515 0.955 1.235 2.095 0.265 0.300 
44 1.485 1.680 0.910 0.500 0.880 0.720 1.480 1.210 1.465 0.835 
50 2.050 1.065 0.120 0.895 0.540 1.105 1.155 1.535 0.260 0.350 
51 1.430 1.165 1.290 1.145 0.725 0.695 1.365 1.975 0.510 0.730 
52 1.805 1.355 0.820 1.515 1.255 0.865 1.110 0.745 1.340 1.215 
54 2.350 0.845 0.320 0.740 0.970 1.215 1.100 0.345 0.520 1.055 
55 1.995 0.895 0.015 0.240 0.750 1.135 0.885 0.010 1.115 1.145 
56 2.570 1.560 0.335 1.375 1.145 1.235 0.540 0.395 1.630 1.925 
57 1.755 1.685 0.315 0.740 0.990 0.825 0.640 0.825 2.110 0.670 
60 2.155 0.910 0.000 0.445 0.755 0.900 0.825 0.020 1.065 2.135 
61 2.340 1.335 0.010 0.850 0.730 1.040 0.385 0.020 0.810 1.420 
64 1.690 0.700 0.000 0.515 0.425 1.140 0.260 0.000 1.125 0.125 
72 2.335 2.005 0.090 1.510 0.955 0.760 0.260 0.100 1.640 1.345 
88 2.085 1.020 0.845 0.935 1.180 1.100 0.915 0.485 0.685 1.045 
89 1.840 1.135 0.390 1.275 0.605 0.970 1.180 1.455 0.390 0.505 
90 1.670 1.070 1.170 1.425 1.035 0.780 1.165 0.855 0.530 1.015 
91 2.255 0.955 0.155 0.575 1.085 1.310 1.025 0.075 1.180 1.955 
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 If a pair of raingages has a high positive correlation coefficient (close to 1), there 

is a strong positive relationship between the gages. Conversely, if the pair of gages has a 

high negative correlation coefficient (close to -1), there is a strong negative relationship 

between the gages. In this work, an attempt was made to select the gages that had the 

lowest absolute value of correlation coefficients (closest to zero) and select gages that 

had no apparent relationship to one another, consequently resulting in the gages that 

most accurately captured the spatial variability of the storms.  

  Case 4 used a “small” set of 3 raingages. Stemming from the work of Osborn et 

al. (1972), this sample size represented the minimum number of gages that should be 

used in order to accurately predict runoff. These gages were again selected on a random 

basis for each of 15 samples.  

  The final case, Case 5, used data from the small set of 3 raingages which were 

selected using the same minimization of correlation technique that was used to selected 

the gages in Case 3. The specific gages that were selected for Case 3 and Case 5 using 

the minimization of correlation procedure are shown in Table 4.2 below. 

 

Table 4.2. Gages Selected Using Minimization of Correlation Procedure 

Case No. Sample Size Gages with Minimum Correlation  

3 3 38, 88, 57 

5 9 38, 88, 57, 90, 44, 43, 60, 64, 51 
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4.3  Results and Analysis 

 The results of the simulations of the 5 different gage networks for each of the 2 

storm events are summarized in Table 4.3. For each simulation, the modeled hydrograph 

was compared to the actual recorded hydrograph using the same metrics as discussed in 

the calibration and validation processes including percent error in peak discharge, peak 

timing error, and percent error in total runoff volume. 

For the first storm event, storm V2, the control case produced peak discharge, 

peak timing, and total volume errors of 1.5%, 6 min, and 31.4% respectively. Case 2 

produced average peak discharge, peak timing, and total volume errors of 31.4%, 6.8 

min, and 29.4% respectively. Case 3 produced a peak discharge, peak timing, and total 

volume error of 13.8%, 12 min, and 36.5% respectively. Case 4 produced average peak 

discharge, peak timing, and total volume errors of 55.9%, 12 min, and 59.6% 

respectively. Case 5 produced a peak discharge, timing, and total volume error of 26.9%, 

12 min, and 22.4% respectively. 

With regard to peak discharge, the control case produced better results than the 

all of the other four cases. The next case which also closely fit the actual peak discharge 

of the storm event was Case 3, the medium number of gages that was selected using the 

minimization of correlation technique. It should also be noted that both of the gage 

samples selected using the minimization of correlation technique produced more 

accurate results than the randomly selected samples, and the randomly selected medium 

number of gages produced simulation results with an average of approximately 25% less 

error than that of the randomly selected small number of gages.
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Table 4.3. Gage Reduction Results 

Case 
No. 

Absolute Peak Flow Error (%) Absolute ΔPeak Timing (min) Absolute Total Volume Error (%) 

Mean Max Min 
Std. 
Dev 

Mean Max Min 
Std. 
Dev 

Mean Max Min 
Std. 
Dev 

Storm Event No. V2 - 8/04/2002 

1 1.5 - - - 6.0 - - - 31.4 - - - 
2 31.4 49.2 -74.4 33.6 6.8 12.0 -24.0 10.0 29.4 75.5 -54.2 30.7 
3 13.8 - - - 12.0 - - - 36.5 - - - 
4 55.9 158.1 -90.8 70.0 12.0 30.0 -30.0 15.7 59.6 184.1 -83.3 71.8 
5 26.9 - - - 12.0 - - - 22.4 - - - 

Storm Event No. V3 - 7/31/2007 

1 1.6 - - - 12.0 - - - 31.2 - - - 
2 51.6 108.0 -35.8 56.6 6.8 18.0 -6.0 6.8 54.2 136.5 -18.0 58.1 
3 23.7 - - - 6.0 - - - 50.9 - - - 
4 70.6 165.3 -100.0 75.9 6.0 24.0 -6.0 8.6 72.6 145.5 -100.0 78.5 
5 16.6 - - - 12.0 - - - 29.0 - - - 
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 Regarding peak timing for storm event V2, the control case again performed 

better than the other four samples, resulting in the lowest error. The simulations using 

the randomly selected medium number of gages resulted in a slight increase in error, but 

performed better than each of the remaining three samples, which all had the same error 

in peak timing. 

 With regard to total runoff volume for storm event V2, Case 5, the small number 

of gages selected using the minimization of correlation procedure, resulted in the lowest 

error. The control case and the randomly selected medium number of gages had slightly 

more error than Case 5, but had no significant difference among them. When comparing 

the two cases with randomly selected gages, the medium number of gages resulted in a 

30% decrease in error over that of the small number of gages, as can be expected from 

increasing the number of gages used to provide inputs to the model. 

 Moving on to the second storm event, storm V3, the control case produced peak 

discharge, peak timing, and total volume errors of 1.6%, 12 min, and 31.2% 

respectively. Case 2 produced average peak discharge, peak timing, and total volume 

errors of 51.6%, 6.8 min, and 54.2% respectively. Case 3 produced peak discharge, 

timing, and total volume errors of 23.7%, 6 min, and 50.9% respectively. Case 4 

produced average peak discharge, peak timing, and total volume errors of 70.6%, 6 min, 

and 72.6% respectively. Case 5 produced peak discharge, peak timing, and total volume 

errors of 16.6%, 12 min, and 29% respectively. 

 With regard to peak discharge for storm event V3, the control case using all of 

the 18 gages again resulted in the least amount of error. Overall, the samples selected 
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using the minimization of correlation method produced simulation results with a lower 

error than each of the randomly selected samples, and the randomly selected medium 

number of gages resulted in a 19% decrease in error from that of the randomly selected 

small number of gages.  

 Regarding peak timing for storm event V3, the medium number of gages selected 

using the minimization of correlation technique and the randomly selected small number 

of gages produced simulation results with the least amount of error. The randomly 

sampled medium number of gages produced simulation results with a slightly larger 

amount of error than these two cases, but was not a significant change. The control case 

and the small number of gages selected using the minimization of correlation approach 

resulted in the highest amount of error in peak timing among the five cases. 

 Regarding total runoff volume for the second storm event, the small number of 

gages selected using the minimization of correlation technique resulted in the least 

amount of error. The control case resulted in a slight increase in error from this case, but 

was not a significant change. Both of the samples selected using the minimization of 

correlation procedure resulted in a lower amount of error than their counterparts selected 

on a random basis. Also, the medium number of gages selected randomly resulted in an 

18% decrease in error from that of the small number of gages selected randomly. 

 Overall, the control cases best simulated the peak discharge of the two storm 

events, which is what can be expected from using all of the available 18 raingages to 

provide information to the model. While this minimal amount of error might at first 

seem very appealing, when only half of these gages are used and are selected using the 
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minimization of correlation technique, the result is an average increase in error of only 

17%. Furthermore, when looking at the error in peak discharge produced using the small 

number of three gages selected by the minimization of correlation technique, this error 

only increases by an additional 3%. This is small price to pay to be able to reduce the 

required gages by such a substantial amount. 

 It was found that the randomly selected medium number of gages produced 

better results in all categories (with the exception of peak timing for the second storm 

event) than those of the randomly selected small number of gages. Specifically, the error 

in peak discharge decreased by an average of 22%, and the total volume error decreased 

by an average of 25%. This also conformed to the initial expectations that by adding 

additional information to the system, there would be an increase in accuracy. 

In general, the simulations using inputs from the raingages selected by the 

minimization of correlation technique produced results with less error than those using 

the randomly selected gages. This indicates that the minimization of correlation 

technique that was outlined in the previous section is a viable method for identifying 

gages that can be removed from a gage network. For the most part, when the number of 

gages providing inputs to the model was increased, the results got better. However, in 

some cases, the smallest number of gages produced results with the least amount of 

error. This indicates that sometimes a large gage network is not only undesirable because 

of its high cost, but that it also might be adding insignificant data to the system and can 

actually reduce a model’s accuracy.   
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5. CONCLUSIONS AND FUTURE WORK 

 

 The timely and accurate forecasting of flash floods is a field of great importance, 

particularly to railroads in the western United States. These extreme hydrologic events 

cause millions of dollars in damages to railway infrastructure each year and can even 

lead to casualties among railroad personnel. The unique challenges that exist in the 

remote arid and semi-arid western U.S. require creative and innovative solutions to deal 

with this problem. Previous work suggests that to achieve reliable flash flood 

forecasting, one of the best options is to combine a physically-based, distributed-

parameter hydrologic model with either radar estimates (if adequate coverage is 

available) or real-time raingage sensor measurements. To further add to the usefulness of 

the system, the resulting model predictions should be incorporated into a real-time 

decision support system that provides understandable estimates of flash flood potential 

to all users, even those who are not skilled in hydrology. When real-time sensor 

measurements are utilized, the selection of an appropriate gage density and the 

placement locations of these gages must take into consideration both the spatial 

variability of the storms as well as the economic limitations that exist.  

 In this work, a hydrologic model was developed that is capable of effectively 

describing the rainfall-runoff relationship of extreme, high intensity thunderstorms in 

arid and semi-arid regions. This model was calibrated and validated using precipitation 

and runoff data from ten summertime convective thunderstorms at the semi-arid Walnut 

Gulch Experimental Watershed located in southeastern Arizona. Also, a methodology is 
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proposed for reducing the amount of raingages required to provide acceptable inputs to 

the hydrologic model, and determining the most appropriate placement location for these 

gages. For two highly variable storm events used in the validation process, a control case 

in which a network of 18 raingages was used was compared to 4 scenarios that used a 

medium number of 9 gages and a small number of 3 gages, with gage locations being 

selected both randomly and using a minimization of correlation technique. 

 The results of the validation process show that the RHHMS hydrologic model is 

capable of reproducing peak discharge, peak timing, and total runoff volume to within an 

average of 22.1%, 12 min, and 32.8% respectively. Several improvements could be 

made that might have enhanced the performance of the model. One consideration is the 

use of a smaller grid cell size. Another potential improvement would be the 

incorporation of surveyed cross-sectional data. This would eliminate the need for the 

trapezoidal simplification of the channel geometry and in all likelihood lead to an 

increase in model accuracy. 

 The results of the gage reduction procedure show that a decrease in the amount 

of raingages used to drive a hydrologic model in this environment results in a 

disproportionally smaller decrease in model accuracy. Likewise, it was found that a 

reduction in gages will not always result in a decline in model accuracy. The results also 

indicate that choosing gages based on a minimization of correlation approach that seeks 

to select gages that with the lowest correlation of rainfall depths among storms (i.e. 

highest spatial variability) is a viable option over simply selecting these gages on a 

random basis.  
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There is ample potential for extending this research and furthering the 

development of a fully operational Railway Hydraulic Hazard Monitoring System. Like 

any model, there is always room for improvement, but the results acquired from the 

model as well as the lessons learned in its development will serve as a suitable starting 

point for additional investigation. One possible extension of the project would be to 

further test the model at another experimental watershed. Another extension of this 

project is the possibility of extending the modeling efforts of RHHMS to the more 

humid, eastern U.S. While this would surely change many of the key model components, 

including requiring the addition of a saturation-excess runoff mechanism and taking 

groundwater interaction into account, it would also allow for the utilization of 

precipitation data from radar estimates and possibly increase the warning time of the 

resulting model predictions, while decreasing the amount of gages that would be 

required to operate the model. Finally, the ultimate test of the model and an assessment 

as to the feasibility of RHHMS would involve a prototype of the system, implemented at 

a test watershed instrumented with real-time raingage and soil moisture sensors, and 

containing a railroad bridge or culvert crossing.  
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