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ABSTRACT 

Infrastructure systems are critical to a country’s prosperity.  It is extremely important to 

manage the infrastructure systems efficiently in order to avoid wastage and to maximize 

benefits.  Deterioration of infrastructure systems is one of the primary issues in civil 

engineering today.  This problem has been widely acknowledged by engineering 

community in numerous studies.  We need to evolve efficient strategies to tackle the 

problem of infrastructure deterioration and to efficiently operate infrastructure.   

In this research, we propose stochastic models to predict the process of 

deterioration in engineering systems and to perform life-cycle analysis (LCA) of deterio-

rating engineering systems.  LCA has been recognized, over the years, as a highly in-

formative tool for helping the decision making process in infrastructure management.  In 

this research, we propose a stochastic model, SSA, to accurately predict the effect of de-

terioration processes in engineering systems.  The SSA model addresses some of the 

important and ignored areas in the existing models such as the effect of deterioration on 

both capacity and demands of systems and accounting for different types of failures in 

assessing the life-span of a deteriorating system.  Furthermore, this research proposes 

RTLCA, a renewal theory based LCA model, to predict the life-cycle performance of 

deteriorating systems taking into account not only the life-time reliability but also the 

costs associated with operating a system.  In addition, this research investigates the ef-

fect of seismic degradation on the reliability of reinforced concrete (RC) bridges.  For 

this purpose, we model the seismic degradation process in the RC bridge columns which 

are the primary lateral load resisting system in a bridge.  Thereafter, the RTLCA model 
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along with SSA model is used to study the life-cycle of an example RC bridge located in 

seismic regions accounting for seismic degradation.  It is expected that the models pro-

posed in this research will be helpful in better managing our infrastructure systems.      
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1. INTRODUCTION 

1.1 Background 

Governments invest immensely in building infrastructure systems because they are criti-

cal to the socio-economic prosperity in any country.  While building new infrastructure 

is essential, it is equally important to efficiently operate the built infrastructure to max-

imize the benefits.  Lack of planning and shortsighted objectives in handling infrastruc-

ture systems may lead to massive wastage of resources and can often lead to mass in-

convenience and social distress.   

Deterioration of infrastructure systems is a pressing issue in civil engineering to-

day.  In a recent study, the American Society of Civil Engineers (ASCE) gave an overall 

poor rating (grade D) to the state of infrastructure in USA (ASCE 2011) and estimated 

that the average age of bridges in USA is 43 years and 12.1% of the nation’s bridges are 

structurally deficient.  The collapse of Minneapolis Bridge on August 1
st
, 2007, that 

killed 13 and injured 145 others, served a reminder of the risk that deteriorating 

infrastructure poses to the society.  One of the factors contributing to this collapse was 

indeed found to be the corrosion of the gusset plates in the bridge truss (NTSB 2008).  

While the existing infrastructure has to be upgraded, it must be precisely planned keep-

ing in mind the overall long-term safety and economy.   

Deterioration in infrastructure systems, similar to any engineering system, is 

caused by the service loads imposed on the system during the routine use, the unex-

pected events of extreme loads and the unfavorable chemicals present in the environ-

ment or in the construction materials.  The corrosion of steel reinforcement in reinforced 
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concrete (RC) structures caused by the chlorides present in the atmosphere is a common 

example of deterioration caused by the environment (Ahmad 2003).  In seismically ac-

tive regions, structures are subject to multiple earthquakes in their life-span which causes 

accumulation of seismic damage in the structures that may eventually lead to failure 

(Park and Ang 1985).   

Research has progressed in various directions to find the solution for the problem 

of infrastructure deterioration or general structural deterioration.  Some of the prominent 

research areas are: retrofit of structures (Saadatmanesh et al. 1997), development of 

damage detection and health monitoring of systems (Pines and Aktan 2002), improve-

ment of the durability of construction materials (Mehta 1994), development of new 

design philosophies with emphasis on durability and long-term performance objectives 

(Flint and Billington 2011) and analysis of life-cycle cost and life-cycle reliability of 

systems (Kong and Frangopol 2003).   

In recent years, life-cycle analysis (LCA) has been recognized as a valuable tool 

for efficient infrastructure management.  In this dissertation, by LCA, we mean the 

method or methods for analyzing the life-time performance of systems.  In general, a 

LCA study involves the prediction of the time-dependent reliability of systems, consid-

ering deterioration if necessary, and is often extended to estimate the life-cycle cost con-

sidering the cost of construction and occasional repairs.  Usually, the LCA of an 

engineering system operating under an unregulated and uncertain environment, as typi-

cally is the case with infrastructure systems, is a highly complex problem.  A LCA study 
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requires extensive modeling of uncertainty associated with the loads, harsh 

environmental conditions and deterioration processes.    

1.2 Research objectives 

The overall objective of this research is to develop a novel LCA model for deteriorating 

engineering systems that can address some of the existing short comings in the models 

available in existing literature.  Furthermore, this research aims to perform LCA of 

reinforced concrete (RC) bridges subject to deterioration caused by earthquakes occur-

ring during its life span.  Additionally, this research aims to develop closed-form solu-

tions that can enable quick assessment of failure probability of infrastructure systems 

subject to natural hazards.  The specific objectives of this research, in the order they are 

presented in this dissertation, are as follows: 

1. To assess the effect of seismic degradation on the reliability of RC bridges.   

2. To develop a general stochastic model that can be used to model the deterioration 

process in engineering systems.   

3. To develop a general stochastic LCA model to assess the life-time reliability and 

costs associated to operating a deteriorating engineering system and to conduct the 

LCA of an example RC bridge subject to seismic degradation.      

4. To develop a closed-form approach for quick and reasonably accurate estimation of 

the failure probability of infrastructure systems subject to natural hazards. 

1.3 Methodology 

The adopted methodology specific to each objective is described in the following: 
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1. To assess the effect of seismic degradation on the reliability of RC bridges. To meet 

this objective, we focus on; (i) the low-cycle fatigue of longitudinal reinforcement in 

the bridge columns and (ii) the seismic degradation of static pushover properties of 

the columns caused by earthquakes.  Low-cycle fatigue of the longitudinal steel has 

been reported as one of the potential causes of failure of bridge columns during 

earthquakes (Mander et al. 1994; Brown and Kunnath 2004).  Similarly, the static 

pushover properties of RC bridge columns undergo unfavorable changes due to cy-

clic degradation of concrete and consequently the reliability of the bridge decreases.  

In order to capture the effect of the above mentioned degradation phenomena, 

we develop probabilistic models to predict the deterioration processes.  The proposed 

probabilistic models are developed through statistical regression methods.  The data 

required to develop the proposed models is generated by conducting virtual 

experiments, wherein quasi-static cyclic lateral load tests and nonlinear time-history 

analysis (NTHA) are conducted in finite element (FE) software OpenSees (McKenna 

et al. 2008).  The Bayesian approach (Box and Tiao 1992) is used to compute the 

model parameters in the probabilistic models.   

2. To develop a general stochastic model that can be used to model the deterioration 

process in engineering systems.  To meet this objective, we propose a novel 

stochastic deterioration model named SSA that provides semi-analytical solutions to 

predict the life-time and the level of deterioration of a general deteriorating engineer-

ing system.  The SSA model addresses some of the short comings in the existing sto-

chastic deterioration models in the literature.  The proposed stochastic model ac-
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counts for the effect of deterioration processes on both demand and capacity of the 

system and considers deterioration process as a combination of shock deterioration, 

generally caused by extreme events,  and gradual deterioration, generally caused by 

chemicals present in the environment and construction materials.   

3. To develop a LCA model for deteriorating engineering systems and conduct the LCA 

of a RC bridge subject to seismic degradation.  To meet this objective, we propose a 

novel LCA model named RTLCA applicable to a wide variety of engineering sys-

tems  and operation strategies.  The model is based on renewal theory (Grimmett and 

Stirzaker 2001).  Based on the RTLCA model, we develop computationally efficient 

solutions to compute important quantities that describe the life-cycle of a system.  

The proposed model is applied to perform LCA of an example RC bridge located in 

a seismic region.  The proposed probabilistic models are used to account for seismic 

degradation in the LCA of the bridge.  

4. To develop a closed-form solution to estimate the failure probability of infrastructure 

systems subject to natural hazards. To meet this objective we propose a improved 

mathematical form for hazard curves which satisfactorily fits the data points for 

hazard curve values and also enables a closed form solution to compute the annual 

failure probabilities for systems.  The proposed closed-form is not only 

computationally efficient but also provides valuable insight regarding the design of 

systems.   
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1.4 Organization of the dissertation 

This dissertation adopts the Sections method to present the work.  After this 

introduction, the rest of the dissertation consists of five sections (Section 2 to Section 6) 

that present the research work and a section (Section 7) that presents the overall sum-

mary and conclusions from the work.  In addition to the introduction and conclusions, 

presented in Section1 and Section 7 respectively, sections 2 to 6 provide their individual 

introductions and conclusions.   

Section 2 proposes the probabilistic model to predict the effect of low-cycle 

fatigue damage in longitudinal reinforcing steel on the reliability of bridges.  Section 3 

proposes the probabilistic models for seismic degradation of static pushover properties 

of RC columns.  Section 4 presents the stochastic formulation to model a general 

deterioration process.  Section 5 presents the RTLCA formulation for conducting LCA 

of deteriorating engineering systems and presents the LCA of RC bridges accounting for 

seismic degradation.  Section 6 presents the closed-form approach to compute the 

probability of failure of systems subject to natural hazards.  Section 7 summarizes the 

dissertation and presents the conclusions from this research.   
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2. SEISMIC DEGRADATION OF RC BRIDGE COLUMNS DUE 

TO LOW-CYCLE FATIGUE
∗∗∗∗ 

2.1 Introduction 

Bridges are one of the most critical and vulnerable systems in a transportation network.  

Their failures typically result in fatalities, inconveniences to the users, and expensive 

and time consuming repairs.  Therefore, they have to be designed with utmost care to 

provide sufficient safety and preferably uninterrupted service to the users.  In particular, 

in seismic regions, earthquakes are a major concern for the safety of bridges and they 

have attracted major attention and resources from the departments of transportations and 

transportation research agencies. 

Several studies have focused on the seismic vulnerability of reinforced concrete 

(RC) bridges in as-built condition (e.g., Basöz and Kiremidjian 1996; Basöz and Mander 

1999; Shinozuka et al. 2000; Gardoni et al. 2002, 2003; Choe et al. 2007; Zhong et al. 

2008, 2009; Huang et al. 2010).  Also, there exists substantial research on the 

performance of RC bridges with post-earthquake repairs (Saadatmanesh et al. 1997; 

Xiao and Ma 1997; Li and Sung 2003 and Schoettler et al. 2005).  However, we often 

need to assess the seismic vulnerability of the structures that are in a degraded state due 

to past events.  Val and Stewart (2005), Choe et al. (2008, 2009), Zhong et al. (2009), 

Ghosh and Padgett (2010), and Gardoni and Rosowsky (2011) evaluate the seismic 

vulnerability of RC bridges subject to corrosion of the longitudinal reinforcement.  

                                                

∗
 Reprinted with permission from “Modeling structural degradation of RC bridge columns subjected to 

earthquakes and their fragility estimates” by Kumar and Gardoni, 2012. Journal of Structural Engineering, 

137, 42-51, Copyright [2012] by American Society of Civil Engineers. 
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While evaluating the vulnerability of structurally degraded bridges, researchers have 

typically ignored the effect of seismic damage accumulated in the past earthquakes.  

Cumulative seismic damage is an important phenomenon to consider because in 

seismically active regions typically multiple damaging earthquakes are experienced by a 

structure in its service life.  The importance of assessing the vulnerability of structures 

with seismic damage can be realized from the recent seismic events witnessed in New 

Zealand (2011) and in Northern Italy (2012), where multiple damaging earthquakes 

occurred within a span of six months allowing limited time for repairs.  Particularly in 

New Zealand earthquakes, buildings performed well in the first earthquake but collapsed 

immediately after the second earthquake. 

There can be various forms of seismic damage and depending on the structural 

system or component a particular type of seismic damage may be important.  Park and 

Ang (1985) proposed a general model based on the combination of energy dissipation 

and ductility to compute the cumulative seismic damage for any structure.  By 

appropriate calibration, this model can be used with some accuracy for a variety of 

structural components.  Mander and Cheng (1995) and El-Bahy et al. (1999a, 1999b) 

found that low-cycle fatigue is a potential cause of failures of RC bridge columns during 

earthquakes.  This type of damage is caused due to several strain cycles in longitudinal 

steel caused during the earthquakes.  Excessive low-cycle fatigue damage typically 

causes a sudden rupture of longitudinal steel resulting in the flexural failure of the RC 

column.  The research on seismic damage of RC bridge columns is so far limited to the 
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quantification of the seismic damage and has not been extended to evaluate the 

vulnerability of the damaged structures. 

The objective of this section is to illustrate the vulnerability of RC bridge 

columns that have accumulated low-cycle fatigue damage in longitudinal steel during 

past earthquakes.  For this purpose, first we estimate the probability of observing 

multiple damaging earthquakes in a bridge’s service life so as to emphasize on the need 

of evaluating the vulnerability of RC bridges with cumulative seismic damage.  Then, 

this section develops a probabilistic model to estimate the degraded deformation 

capacity of an RC bridge column that has accumulated low-cycle fatigue damage.  For 

this purpose, first we use an existing low-cycle fatigue model for reinforcing steel to 

develop a probabilistic model for computing degradation in curvature capacity of RC 

sections.  This model is then incorporated in the model developed by Choe et al. (2007) 

that computes the deformation capacity of RC bridge columns based on the curvature 

capacity of the plastic hinge region.  The proposed probabilistic model is developed 

using the data from virtual experiments wherein quasi-static cyclic load tests of RC 

columns are conducted using the finite element (FE) method.  Finally, the proposed 

model is used to assess the fragilities of three example RC columns for given values of 

deformation demands and low-cycle fatigue damage. 

This section is organized into seven major sub-sections.  The second subsection 

computes the probabilities of multiple damaging earthquakes in a bridge’s service life.  

The third subsection discusses the phenomenon of low-cycle fatigue damage in 

reinforcing steel and its effect on the curvature capacity of RC column sections.  
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Thereafter the fourth subsection discusses the procedure followed to conduct the virtual 

experiments for generating the required data.  The fifth subsection proposes the 

probabilistic model for degradation in curvature capacity.  The sixth subsection 

computes the degradation in deformation capacity based on the proposed model for 

deterioration in curvature capacity and presents the fragility estimates for three example 

RC columns.  Finally, the seventh subsection presents the conclusions from this section. 

2.2 Probability of occurrence of damaging earthquakes 

This subsection computes the probabilities of observing multiple damaging earthquakes 

in San Francisco, CA considering two cases.  Case 1 considers that no prior information 

is available about the occurrence of past earthquakes in the service life of the bridge.  

Case 2 considers that one damaging earthquake has already occurred in the past service 

life of the bridge.  Case 1 is relevant to the bridges that are newly built or will be built in 

the future.  Case 2 is relevant to the bridges that have withstood a damaging earthquake 

in the past (e.g., bridges that have already experienced the 1994 Northridge Earthquake 

and still face the probability of experiencing another earthquake in the remaining service 

life).  The probabilities for both Case 1 and Case 2 are computed in two ways: (a) 

considering main shocks only, and (b) considering both main shocks and aftershocks. 

2.2.1 Damaging earthquakes 

This study considers a damaging earthquake as the earthquake that can cause a moderate 

or greater level of damage to RC bridges.  These earthquakes can be both main shocks 

and aftershocks.  Since damage cannot be determined deterministically from the 

intensity of an earthquake, we define a damaging main shock as the one with peak 
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ground acceleration (PGA) corresponding to 0.5 probability of exceeding the moderate 

level of the damage.  For identifying damaging earthquakes, we use the empirical 

seismic fragility curves developed for RC bridges by Basöz and Kiremidjian (1996).  

These fragility curves were developed based on the damage to bridges observed in 1994 

Northridge Earthquake.  We define a damaging aftershock as the one that has Richter 

magnitude 
a

M  greater than or equal to 1
m

M − , where 
m

M  is the magnitude of the main 

shock.  Richter magnitude instead of PGA is chosen to identify damaging aftershocks 

because currently in the literature the probability of aftershocks is computed based on 

Omori’s law (Utsu 1961) that uses Richter magnitude.  However, it must be noted that 

seismic damage to structures may not always demonstrate a strong correlation with the 

Richter magnitude.  The idea behind choosing 1
m

M −  as the threshold for identifying 

damaging aftershocks is that following a main shock of magnitude 
m

M  aftershocks of 

magnitude 1
m

M −  might also be damaging even though of smaller magnitude.   

2.2.2 Case 1(a): No prior information, main shocks only 

We compute the probability, ( , )
m S

P i T , of observing i  main shocks in a time span 
S

T  

using a time-independent Poisson process (Ang and Tang 2007), where the rate of 

arrival of main shocks 
m

λ  corresponding to a PGA is obtained from the probabilities 

provided by USGS (2002).  The value of ( , )
m S

P i T  is given as follows:  

 ( )
( )

,
!

m S
i T

m S

m S

T e
P i T

i

λλ −

=  (2-1) 

We can compute 
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 ( ) ( )1, m ST

m S m S
P i T T e

λλ −= =  (2-2) 

 ( ) ( )2, 1 m S m ST T

m S m S
P i T e T e

λ λλ− −≥ = − −  (2-3) 

2.2.3 Case1(b): No prior information, main shocks and aftershocks 

The rate of arrival of aftershocks of a magnitude 
a

M  greater than or equal to M , 

following a main shock of magnitude 
m

M  is given by Reasenberg and Jones (1989) as 

follows: 

 ( ) ( ) ( )1 2, 10 m
pB B M M

a
t M t cλ

−+ −
= +  (2-4) 

where ( , )
a

t Mλ = the time-dependent rate, t = time elapsed since the main shock, and 1
B , 

2
B , c  and p  are regional seismicity parameters.  The probability, ( )

a
P ⋅ , of one or more 

aftershocks of magnitude 
1 2a

M M M≤ <  in the time range, 
1 2

tτ τ≤ < , given that the 

main shock of magnitude 
m

M  occurred at 0t = , can be written as (Reasenberg and 

Jones 1989) 

 ( ) ( )
2 2

1 1

1 2 1 2
, , , 1 exp ,

M

a a

M

P M M t M dtdM

τ

τ

τ τ λ
 

= − − 
  
∫ ∫  (2-5) 

From Eq (2-5), the probability, ( )
a

P t′ , of observing no aftershocks of magnitude 

1
a m

M M≥ −  within a time span, t , after a main shock of magnitude 
m

M  can be written 

as 

 ( ) ( )
( )1 2

11

2

10
1 1, ,0, exp

ln10 1

ppB B

a a m

c t c
P t P M t

B p

−−+  − + ′ = − − ∞ =   
−    

 (2-6) 
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Considering both main shocks and aftershocks ( 1
a m

M M≥ − ), the probabilities; 

( )1,
S

P k t T= =  of exactly one earthquake in time-span 
S

T  and ( )2,
S

P k t T≥ =  of two 

or more earthquakes in time-span 
S

T  are given by Eqs. (2-7) through (2-9). 

 ( ) ( ) ( ) ( )
0

1, 1,
ST

S m S a S mP k t T P i t T P T h dτ τ τ ′= = = = = −
  ∫  (2-7) 

where
 

( )
m

h τ = the probability density function of the time τ  of observing a main shock 

such that one main shock was observed in the time-span 
S

T  and 0
S

Tτ≤ ≤ .  The 

probability distribution of the time of occurrence of a main shock is a uniform 

distribution, ( ) 1/
m S

h Tτ = .  Substituting the value of ( )
m

h τ  in Eq (2-7) gives 

 ( ) ( ) ( )
0

1
1, 1,

ST

S m S a S

S

P k t T P i t T P T d
T

τ τ
 

′= = = = = − 
 
∫  (2-8) 

 ( ) ( ) ( )2, 1 0, 1,
S m S S

P k t T P k t T P k t T≥ = = − = = − = =  (2-9) 

2.2.4 Case 2(a): One main shock has already occurred; main shocks only 

The probabilities of observing exactly one main shock, 1k = , or two or more main 

shocks, 2k ≥ , in the time-span 
S

T  given that a main shock has already occurred at 

1 L
t T≤  are given as follows:   

 ( ) ( ) 1( )

1 1
1, 0, m ST t

m S S m S
P k t T t T P k T t e

λ− −= = ≤ = = − =  (2-10) 

 ( ) ( )1 12, 1 0,
m S S m S

P k t T t T P k T t≥ = ≤ = − = −  (2-11) 

2.2.5 Case2(b): One main shock has already occurred; main shocks and aftershocks 

Now including both main shocks and aftershocks, the probabilities of observing exactly 

one earthquake 
1

( 1, | )
S S

P k t T t T= = ≤  and two or more earthquakes 
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1
( 2, | )

S S
P k t T t T≥ = ≤  in the time-span 

S
T  conditioned on the event that a main shock 

already occurred at 
1 S
t T≤  can be written as follows: 

 ( ) ( ) ( ){ }1 1 11, 0,
S S a S m S

P k t T t T P T t P k T t′= = ≤ = − = −  (2-12) 

 ( ) ( )1 12, 1 1,
S S S S

P k t T t T P k t T t T≥ = ≤ = − = = ≤  (2-13) 

2.2.6 Numerical example for San Francisco, CA  

The values of the seismic constants as reported by Reasenberg and Jones (1989) for 

California are 1
B = −1.67, 2

B =0.91, c = 0.05 and p =1.08.  The value of PGA for 

damaging main shock is found to be 1.0g  ( 9.812g = m/s
2
) and 

m
λ  corresponding to 

1.0g  is found to be 2.67E−04 year
−1

.  The probabilities are computed for 
S

T = 75, 150 

and 200 years and an example analysis for 1t = 4 years is performed.   

Table 2-1 shows that the probability of observing two or more damaging 

earthquakes is smaller compared to that of observing only one such earthquake within 

the service life of a bridge if only main shocks are considered.  However, if damaging 

aftershocks are considered then the probability of observing more than one damaging 

earthquake is nearly equal to that of observing only one damaging earthquake in a 

bridge’s service life.  From Table 2-2, it is seen that the bridges that experience an 

earthquake early in their service lives, still stand a considerable chance to experience 

another damaging earthquake in their remaining service life.  The values of probabilities 

in Table 2-2 are larger than the corresponding values in Table 2-1 because one main 

shock has been observed already in the fourth year.  In Table 2-2, the probabilities of 

observing just one damaging earthquake decreases with increase in 
S

T  which indicates 
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that it is more likely to have multiple damaging earthquakes than one damaging as 
S

T  

increases.  Moreover, it can be seen that in all the cases, the probability of observing 

more than one damaging earthquake becomes more important as we increase the service 

life of the bridge.  From the observations in Table 2-1 and Table 2-2, it can be concluded 

that the research on structural degradation of bridges caused by multiple earthquakes is 

important for a far-sighted seismic design. 

 

 
 

Table 2-1. Probability of occurrence of damaging earthquakes in San Francisco 

 
Main shocks only Main and Aftershocks 

No. of earthquakes 1 ≥ 2 1 ≥ 2 

TS (years) Probability 

75 19.7E−03 0.198E−03 11.7E−03 8.1E−03 

100 26.1E−03 0.352E−03 15.2E−03 11.2E−03 

200 50.7E−03 1.40E−03 28.5E−03 23.6E−03 

 
 

 
Table 2-2.  Probability of occurrence of damaging earthquakes in San Francisco 

given that one such earthquake has occurred in the fourth year of the service life 

 
Main shocks only Main and Aftershocks 

No. of earthquakes 1 ≥ 2 1 ≥ 2 

TS (years) Probability 

75 981.0E−03 18.8E−03 549.0E−03 451.0E−03 

100 975.0E−03 25.4E−03 536.0E−03 464.0E−03 

200 949.0E−03 51.1E−03 501.0E−03 499.0E−03 

 
 

 



 

16 

 

2.3 Low-cycle fatigue of reinforcing steel and degradation in curvature capacity 

of RC sections 

In general, any material can withstand only a certain maximum number of load cycles at 

a given strain amplitude.  This maximum number of cycles is defined as the fatigue life 

for the material.  The plots depicting the relationship between strain amplitudes and the 

corresponding number of cycles are commonly called S-N curves.  A typical relation for 

S-N curves is shown in Eq. (2-14). 

 ( ) 2

1
2

c

a f
c Nε =  (2-14) 

where 
aε = the failure strain, 2 fN = the number of half-cycles to failure and, 1c  and 2c  

are empirical constants.  There are two different approaches for writing Eq. (2-14).  In 

one approach, 
aε  is equal to the total strain (Koh and Stephens 1991), and in another ap-

proach, 
aε  is equal to the plastic strain (e.g., Coffin 1954; Manson 1953 and Mander et 

al. 1994).  Based on the strain amplitude, the fatigue can be high-cycle or low-cycle.  In 

high-cycle fatigue, the strain amplitudes are within the elastic limit and the number of 

cycles to failure is high (e.g., for steel, high-cycle fatigue may need millions of cycles 

for failure).  In low-cycle fatigue the strains are larger than the elastic limit and the num-

ber of cycles to failure is relatively less (e.g., reinforcing steel may need less than 100 

cycles at 2% strain and less than five at 6% strain).  Strain amplitudes are seldom con-

stant in real life loads and more so for seismic loads.  Based on Miner’s rule (Miner 

1945), the following linear damage accumulation model is commonly used to predict the 

fatigue failure: 
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( )1

1

2

n

i fi ai

DI
N ε=

=∑  (2-15) 

where DI = damage index, 2 fiN = the number of half-cycles to failure at the strain 

amplitude 
ai

ε  of the 
thi  half-cycle, and n = the number of half-cycles at which DI  is 

computed.  The value of DI  indicates the fatigue damage in the material and for a 

perfect damage model the material should fail if 1.0DI ≥ .  This formulation is 

applicable for both constant and variable strain amplitude. 

The curvature capacity of an RC section is defined as the curvature at which 

either the reinforcing steel or the concrete reaches its failure strain.  A typical well 

designed RC column in as-built condition is most likely to fail due to excessive 

compressive strain in the confined concrete caused by bending of the column.  However, 

with the accumulation of low-cycle fatigue damage, the rupture of the longitudinal steel 

may govern the failure of the RC section.  The degradation in curvature capacity of RC 

sections due to low-cycle fatigue of the longitudinal steel is expected to follow the curve 

shown in Figure 2-1.  In the figure, 
u

φ  and 
u

φ ′  are the ultimate curvature capacities of the 

undamaged and the damaged section, respectively and DI  is the low-cycle fatigue 

damage in the longitudinal steel.  The parameter 
tr

DI  is the threshold value of DI  such 

that for 
tr

DI DI≤ , the failure of the RC section is due to the compressive failure of the 

concrete and for 
tr

DI DI> , the failure of the section is due to the rupture of the 

longitudinal steel.  The variable 
tr

DI  is a characteristic of the column section and does 

not depend on the drift histories. 
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Figure 2-1.  Deterioration in curvature capacity 

 

 
 

Using Eqs (2-14) and (2-15), the failure strain for a material with DI > 0.0 is 

derived next.  The idea behind the derivation is to compute 
fε  as the strain amplitude 

that causes an incremental damage equal to the remaining damage (1 )DI−  in one 

quarter of a cycle (i.e., equivalent to a single pushover).  Thus, 
fε  is just enough to 

make DI  equal to 1.0 in a single pushover.  For a given DI , an expression is derived 

for the strain amplitude 
fε  that causes failure (i.e., it causes damage equal to 1 DI− ) in 

a quarter cycle.  It can be written from Eq. (2-15) that 

 ( )
0.5

1
2 f

DI
N

− =  (2-16) 

where the value 0.5 is used in the fraction 0.5 / 2 fN  because it is assumed that the 

failure is caused by the loading part of the cycle (or one quarter cycle).  This assumption 

is made to be consistent with the definition of deformation capacity of RC columns 

Concrete 

failure 
Steel 

failure 

DI 
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(Gardoni et al. 2002), where the failure is assumed to occur in a single pushover.  If the 

failure is assumed to take place in one half-cycle (i.e., considering both loading and 

unloading) then the fraction in Eq. (2-16) should be equal to 1 / 2 fN .  Substituting the 

expression for 2 fN  from Eq. (2-16) in Eq. (2-14) the following is obtained:   

 
2

1

0.5

1

c

f c
DI

ε
 

=  
− 

 (2-17) 

It can be verified that by using either 1.0 or 0.5 in Eq (2-16) that the value of 
f

ε  changes 

only by a factor of 1.28.  This implies that the assumption of whether the failure occurs 

in a quarter cycle or a half cycle is not expected to have significant effects.  

The values of 1c  and 2c  used in this study are 0.07 and −0.31, respectively, as 

found by Brown and Kunnath (2004) for bars with diameter of 28.5 mm (#9 bars).  The 

values of 1c  and 2c  are currently available in the literature (Mander et al. 1994; Brown 

and Kunnath 2004) only for bars with diameter 15.9 mm - 28.5 mm (#5 - #9 bars).  Since 

larger bar sizes are more appropriate for typical Caltrans designs (Caltrans 2006), we use 

the values of 1c  and 2c  for #9 bars.  These values are practically the same as those for #8 

bars but different from those for smaller bar sizes.  Therefore, the proposed model is 

applicable to columns with #8 and #9 bars.  Further research is needed to verify the 

values of 1c  and 2c  for larger bar sizes more representative of Caltrans design 

specifications and design practice. 

2.4 Virtual experiments 

A database of sample RC columns is created to represent the material and geometric 

properties of current seismic design specifications.  Table 2-3 shows the range of the 10 
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basic column properties that are sufficient to characterize an RC bridge column.  The 

ranges of the column properties are chosen based on parameters for Caltrans single-bent 

overpass bridges provided by Mackie and Stojadinović (2005).  To maximize the 

information content of the database and minimize the required number of columns, 

combinations of values of the column properties are selected using the D-optimal 

experimental design method (Atkinson and Donev 1992).  The goal of the D-optimal 

design method is to minimize the determinant of the sample covariance matrix of the 

design parameters (here the column properties).  As a rule of thumb, the size of a sample 

needs to be at least 5 times the number of the design parameters.  Therefore in this 

experimental design uses a sample size of 60 RC columns.   

 

 

 
Table 2-3. Ranges of the column properties in the experimental design 

Parameter Symbol Range Units 

Height cH  3.988-10.008 M 

Diameter cD  0.44-2.50 M 

Longitudinal reinforcement ratio slρ  1.0-4.2 % 

Transverse reinforcement ratio svρ  0.278-1.170 % 

Compressive strength of concrete cf ′  20.00-55.02 MPa 

Yield strength of steel yf  275.10-519.87 MPa 

Ultimate strength of steel uf  482.63-689.48 MPa 

Clear cover cover 35.0-100.0 Mm 

Axial load ratioa rP  0.03-0.15 - 

Aspect ratio /c cH D  4.0-9.0 - 

a 24 / ( )
r u c c

P P f Dπ= ′ , where
u

P  is the axial load on the column. 
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2.4.1 Finite element model of RC bridge columns 

Several cyclic load tests on a variety of RC columns have been conducted in the past 

research and the test data can be found in the database compiled by Taylor et al. (2003).  

However, the database does not report all the information (e.g., number of cycles to 

failure) that is needed to develop a model for the degradation of the deformation 

capacity of RC columns.  Therefore, virtual experiments are performed using FE model 

of RC columns in OpenSees (McKenna et al. 2008).   

Various material models are available in OpenSees to model the cyclic behavior 

of RC components.  We use the force-based nonlinearBeamColumn element to model 

the columns.  Based on a sensitivity study it is found that two elements, each of about 

half the total length of the column, provide a good accuracy of the model while being 

computationally inexpensive.  The sensitivity study is conducted by comparing the 

laboratory hysteresis data of RC columns with the results from the FE analysis.  The 

cross section of each column is divided into 20-40 radial slices depending on its size and 

the number of bars.  The column is modeled as a vertical cantilever with fixed base.  The 

material models for the reinforcing steel and the concrete are chosen to account for the 

relevant phenomena that contribute to the structural degradation.  The unconfined cover 

concrete and the confined core concrete are modeled separately by incorporating a 

uniaxial concrete model developed by Hoshikuma et al. (1997) in the concrete model 

Concrete02 available in OpenSees.  The deterioration in stiffness of concrete is captured 

by the hysteretic behavior of Concrete02.  A trilinear uniaxial material model called 

Hysteretic capable of simulating strength deterioration, stiffness deterioration and 
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pinching is used to model the reinforcing steel.  The strength and stiffness deterioration 

in the reinforcing steel is captured by two material parameters, namely Damage1 and 

Damage2, in Hysteretic.  Damage1 captures the degradation due to ductility based 

damage and Damage2 captures degradation due to energy dissipation.  The effect of 

these parameters on the strength and stiffness degradation is described in the OpenSees 

user’s manual (OpenSees 2009).  The degradation parameters of the material Hysteretic 

are calibrated by minimizing the residual sum of the squares to mimic the hysteresis data 

in seven selected columns tested by El-Bahy et al. (1999a,b) that were designed 

following the current Caltrans design specifications and hence comply with current 

seismic practices.  The uniaxial fatigue material model, Fatigue (Patxi 2005), is used to 

monitor the fatigue damage in the steel.  The material Fatigue can be used along with 

any other material to record fatigue damage in that material.  The value of DI  is 

recorded using the function damage recorder.  Fatigue computes the value of DI  for a 

given strain history by using a linear damage accumulation model shown in Eqs (2-14) 

and (2-15).  The required values of 1c  and 2c  are provided by the user and are discussed 

in the next section. 

2.4.2 Cyclic load tests of RC columns 

In order to generate the data for the degradation in the curvature capacity of RC column 

sections, the columns are subjected to cyclic loading.  The columns are subjected to 

cycles of constant amplitude equal to 2-4 times the yield displacement for the columns.  

The use of constant amplitude cycles does not limit the applicability of the model 

developed hereafter.  This is because the degraded curvature and deformation capacity 
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does not depend on the past deformation histories if the current value of damage DI  is 

known.   

In the conducted virtual experiments, the value of DI  is recorded after a 

specified number of cycles and then a static pushover is performed until the curvature in 

the bottom most section reaches 
u

φ ′ .  A total of 800 such virtual experiments are 

conducted to generate the pairs of values of the reduced curvature capacity 
u

φ ′  and the 

corresponding DI  in the longitudinal steel.  Figure 2-2 is obtained by plotting the data 

such that the vertical axis represents the ratio 
u u

φ φ′  and the horizontal axis represents 

DI .  In the range 
tr

DI DI≤  (the initial horizontal part) 
u u

φ φ′  is found to vary between 

0.85 and 1.05.  It is also found that at the end point of the curve (i.e., at DI =1.0) 

u u
φ φ′ varies between 0.0 and 0.1.  This observation is a deviation from the expected 

behavior shown in Figure 2-1.  It is found that this deviation happens because of the 

existence of strains in the longitudinal steel at the beginning of the pushover (i.e., at 

column displacement = 0).  Therefore, in the presence of these strains in the steel, 
fε  

does not exactly correspond to the strain amplitude that causes failure.  This effect of 

strain in the longitudinal steel at  
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Figure 2-2.  FE data for degradation in curva-

ture capacity of RC column sections due to 

low-cycle fatigue of longitudinal steel 

 

 

 

the beginning of pushover is considered to be insignificant in the calibration of the 

proposed model introduced in the next section.  Furthermore, neglecting this effect 

allows keeping the model simple while maintaining a good accuracy. The model 

developed hereafter is a function of DI , therefore, its applicability is not limited by the 

drift histories used to induce the damage. 

2.5 Proposed probabilistic model for deterioration in curvature capacity 

Several mathematical functions can capture the behavior shown in Figure 2-2.  However, 

a good mathematical model must be based on the underlying physical phenomena.  The 

model form shown below is selected because it follows the fatigue formulation in 

Eq.(2-17) and thus can be justified based on the underlying fatigue phenomenon causing 

the deterioration.  

DI 
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 ( )
( )

1.0                                         0.0  <

, 1
+        1.0

1 ,

tr

u u

tr

tr

DI DI

DI
DI DI

DI

η

φ

φ φ

φ

φ φ
σ ε

≤
 ′ ′ = × −
  ≤ ≤

−  

x Θ

x θ

 (2-18) 

and 

 ( ) ( )
1

,
n

tr i i

i

DI hφ φ φθ
=

=∑x θ x  (2-19) 

where ( , , )φ φ φη σ=Θ θ  is a vector of unknown model parameters, 
1 2( , ,..., )nφ φ φ φθ θ θ=θ , 

=x a vector of structural properties of the undamaged RC column, ′ =x represents the 

damaged RC column, ( )ihφ =x explanatory functions used to capture the dependency of 

tr
DI  on x , n =number of explanatory functions and φ φσ ε = the model error, where 

φσ = the standard deviation of the model error which is assumed not to depend on x  

(homoskedasticity assumption) and φε = a random variable with the standard normal 

distribution (normality assumption).  Diagnostic plots of the data versus the individual 

regressors (Rao and Toutenburg 1997) are used to verify these two assumptions within 

the range of the data.  The model in Eq. (2-18) shows that an RC column with lower 

values of 
tr

DI  is more vulnerable to degradation by low-cycle fatigue than columns with 

higher values of 
tr

DI .   

In order to develop the proposed model, the expression for ( , )trDI φx θ  in Eq. 

(2-19) is constructed starting from a complete second-order polynomial using the 

combinations of six functions: 
cu

ε = compressive strain at failure for concrete (negative 

in compression, e.g., − 0.03), cµ = the ductility ratio, /
c c

H D = the aspect ratio, 
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(%)
sl

ρ = the longitudinal reinforcement ratio, /y cf f ′  and /u yφ φ , where 
yφ = curvature at 

yield of the longitudinal steel.  All the functions are dimensionless so that the model can 

be used in any system of units.   

We begin a model selection process to retain the minimum number of ( )ihφ x  in 

Eq. (2-19) for an accurate, unbiased and parsimonious model.  For this purpose, after a 

preliminary selection of terms using engineering judgment, a step-wise deletion process 

following Gardoni et al. (2002) is conducted to reduce the number of elements.  In this 

method, the Bayesian updating rule (Box and Tiao 1992) is used to estimate φΘ  in the 

model described by Eqs. (2-18) and (2-19) for a chosen set of ( )ihφ x .  Extensive 

description of Bayesian updating method to develop probabilistic models can be found 

in Gardoni et al. (2002).  Bayesian updating is a highly effective tool for statistical 

regression equally applicable to linear and nonlinear models without any significant 

difference in the formulation.  It can also be used to update an existing model using 

newly available data (Choe et al. 2007).   

In the stepwise deletion process, in each step φΘ  is estimated for a given set of 

( )ihφ x  and an element from the set is deleted such that φσ  does not show a sudden 

increase.  As the elements are deleted, φσ  increases indicating that the model accuracy is 

decreasing.  The deletion process is stopped when φσ  is unacceptable.  The functions 

retained in the model are the constant 1.0, 
cu

ε , 
sl

ρ , and ( / )( / )u y y cf fφ φ ′ .  Therefore, the 

final expression for 
tr

DI  is 
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 ( ) 1 2 3 4,
yu

tr cu sl

y c

f
DI

f
φ φ φ φ φ φ

φ
θ θ ε θ ρ θ

φ

  
= + + +     ′  

x θ  (2-20) 

Table 2-4 shows the posterior statistics of φΘ  estimated using importance sampling and 

non-informative prior distribution (Gardoni et al. 2002).  It can be seen from Eq. (2-20) 

that an increase in | |
cu

ε  (that also leads to an increase in 
u

φ ) decreases the value of 
tr

DI  

and a decrease in 
sl

ρ  decreases the value of 
tr

DI .  These observations are supported by 

the fact that ductile RC columns, which are well confined (i.e., high | |
cu

ε ) and under-

reinforced (i.e., small 
sl

ρ ), like seismically designed bridge columns, are vulnerable to 

low-cycle fatigue.   

Figure 2-3 shows the comparison between the mean predictions from the 

probabilistic model and the observations in the virtual experiments.  For a perfect model, 

the black dots (�) would line up along the dashed 1:1 line.  However, all the black dots 

do not lie on the dashed 1:1 line indicating the presence of modeling error captured by 

φ φσ ε .  The error for a given predicted value is the vertical distance between the 

corresponding black dot and the 1:1 line.  The dotted lines on both sides of the 1:1 line 

represent the prediction bounds and are drawn at a vertical distance φσ±  from the 1:1 

line. 
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Table 2-4. Posterior means and standard deviations of the unknown 

parameters in the probabilistic curvature capacity degradation model 

Parameters 1φθ  2φθ  3φθ  4φθ  η  φσ  

Mean 0.690 −30.176 0.031 −0.002 0.266 0.168 

Standard 

Deviation 
0.0143 3.277 0.007 0.0002 0.0210 0.010 

Correlation Coefficient 

1φθ  1.00      

2φθ  −0.65 1.00     

3φθ  −0.71 0.81 1.00    

4φθ  −0.71 0.82 0.85 1.00   

η  0.10 −0.10 0.68 −0.11 1.00  

φσ  −0.46 0.26 0.10 0.26 −0.20 1.00 
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Figure 2-3.  Predictions of the probabilistic 

model for degradation of curvature capacity 
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2.6 Degradation in the deformation capacity of RC columns and fragility 

estimates 

The deformation capacity of an RC column is defined as the drift of the column at which 

either the concrete or the steel reaches its ultimate strain.  This study proposes a 

deformation capacity model for degrading RC columns as a function of DI  by 

incorporating the proposed model for 
u

φ ′  into the deformation capacity model of 

undamaged RC columns originally developed by Gardoni et al. (2002) and updated for 

additional data by Choe et al. (2007).  Then, the proposed degraded deformation 

capacity model is used to assess the fragility of three example RC columns for given 

deformation demands. 

2.6.1 Deformation capacity model 

The probabilistic deformation capacity model for an undamaged RC columns as 

developed by Gardoni et al. (2002) and Choe et al. (2007) is as follows: 

 ( ) ( ) ( )ˆ, ln ,c c c c c cCδ δ γ σ ε = + + x Θ x x θ  (2-21) 

where ( , )
c

Cδ x Θ  is the natural logarithm of deformation capacity, ( , )
c c c

σ=Θ θ  is a 

vector of model parameters calibrated using experimental data, and 

,1 ,2 ,( , ,..., )c c c c jθ θ θ=θ .  The model consists of a deterministic model ˆ ( )
c

δ x , bias 

correction term ( , )
c c

γ x θ , and model error 
c c

σ ε .  The deterministic model is given as 

 
ˆ

ˆ
c

H
δ

∆
=  (2-22) 

 ˆ ˆ ˆ
f s sl

∆ = ∆ + ∆ + ∆  (2-23) 
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where ∆̂ = the displacement capacity, ˆ
f

∆ , ˆ
s

∆  and ˆ
sl

∆ = the flexural, shear and slip 

components in the displacement capacity, where 

 ˆ ˆ ˆ
f y p

∆ = ∆ + ∆  (2-24) 

 21ˆ
3

y y eff
Lφ∆ =  (2-25) 

 ( )ˆ
p u y p

L Lφ φ∆ = −  (2-26) 

0.022eff c y bL H f d= + , 
b

d =diameter of the longitudinal bar, 
pL = the length of plastic 

hinge, and L = ( )c pH L− .  In this study, the degradation in 
s

∆  and 
sl

∆  due to cyclic 

loading is not modeled.  This is because the degradation model is developed for flexural 

RC columns which are most susceptible to low cycle fatigue.  In flexure dominated 

columns, 
s

∆  and 
sl

∆  are insignificant compared to 
f∆ .  It is also noted that the effects 

of cyclic loading and low-cycle fatigue on 
s

∆  and 
sl

∆  is still not well understood.   

The bias correction part ( , )
c c

γ x θ  is written as  

 ( )
( )

1 2 3 42

24
,

s yh c

c c c c c c cu

t c c

f D coverV

D f f D

ρ
γ θ θ θ θ ε

π

−
= + + +

′ ′
x θ  (2-27) 

where V = the shear force at yield of the column and 
t

f ′= the rupture modulus of 

concrete given by 0.5
c

f ′  in MPa units.  The statistics of the model parameters δΘ  can 

be found in Choe et al. (2007).  It can be seen that the capacity depends on the values of 

u
φ  and 

yφ  Eq. (2-26) of the plastic hinge zone that develops at the base for a single bent 

bridge column.  Writing ( , )c cφ′ =Θ Θ Θ , the degraded deformation capacity ( , )
c

Cδ
′ ′x Θ  is 
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obtained by replacing 
u

φ  by ( , )u φφ ′ ′x Θ  (computed using Eq.(2-18)) in the formulation 

for ( , )
c

Cδ x Θ .  The effect of degradation on 
yφ  is not considered in the model as it is 

found that the contribution of 
yφ  is insignificant compared to that of 

u
φ .  Therefore the 

original value of 
yφ  is retained in the model.   

2.6.2 Fragility estimates 

Fragility is defined as the conditional probability of attaining or exceeding a specified 

limit state for a given set of boundary conditions.  Following Gardoni et al. (2002), the 

predictive fragility of an RC column conditioned on the deformation demand Dδ  is 

computed as 

 ( ) ( ) ( )ˆ , , , 0 , ,
c c c c

F DI D P g DI DI D f dδ δ
′ ′ ′ ′ ′=  ≤  ∫ x Θ Θ Θ Θ  (2-28) 

where 

 ( ) ( ), , ,
c c

g DI C Dδ δ
′ ′ ′ ′= −x Θ x Θ  (2-29) 

The fragility ˆ ( , )F DI Dδ  captures the uncertainty in the random variables x  and the 

model parameters 
c
′Θ .  The values of the fragilities are computed using software 

FERUM (Haukaas et al. 2003) using the First Order Reliability Method (FORM) 

(Ditlevsen and Madsen 1996).   

The fragilities are computed for 3 different example columns (A, B, and C) with 

basic and derived properties described in Table 2-5 and Table 2-6.  This example studies 

the effects of ductility of seismically designed RC bridge columns.  For this purpose all 

the basic structural properties, except 
sv

ρ , are kept same in all the three columns.  As 
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shown in Table 2-6, the value of | |
cu

ε  for Column A is four times larger than the values 

of | |
cu

ε  for Columns C and twice as that of Column B due to the proportionally higher 

value of 
sv

ρ .  The value of /u yφ φ  for Column A is about four times the value for 

Column C and about three times that of Column B.  This is a direct consequence of the 

differences in the values of | |
cu

ε .  Finally, based on Eq. (2-20) the values of 
tr

DI  for 

Columns A, B and C are found to be 0.50, 0.80, and 0.90 respectively.   

 
 

 
Table 2-5. Basic properties of the example columns for the fragility analysis 

Parameter Symbol Column A Column B Column C Units 

Height cH  3.988 3.988 3.988 m 

Diameter cD  0.443 0.443 0.443 m 

Longitudinal reinforcement ratio slρ  2.0 2.0 2.0 % 

Transverse reinforcement volumetric ratio svρ  1.0 0.6 0.3 % 

Compressive strength of concrete cf ′  20.00 20.00 20.00 MPa 

Yield strength of steel yf  517.11 517.11 517.11 MPa 

Ultimate strength of steel uf  689.47 689.47 689.47 MPa 

Clear cover cover 0.025 0.025 0.025 m 

Axial load ratio rP  0.07 0.07 0.07 - 

 

 
 

Table 2-6. Derived properties of the example columns for the fragility analysis 

Parameter Symbol Column A Column B Column C 

Ultimate concrete strain cu
ε  −0.033 −0.018 −0.009 

Ratio of ultimate to yield curvature u yφ φ  12.17 4.62 3.40 

Ratio of yield s
y

V trength of steel to  

compressive strength of concrete 
y cf f ′  26.00 26.00 26.00 

Transition point tr
DI  0.50 0.80 0.90 
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For each column the fragilities are computed for different damage levels to show 

the effect of deterioration on the failure probability.  The uncertainty in x  is modeled by 

assuming that 
c

f ′ , 
yf  and 

r
P  are lognormally distributed random variables with means 

as shown in Table 2-5 and coefficient of variation (COV) equal to 10%, 5% and 25%.              

Figure 2-5 shows the fragility results for the three example columns.  It can be seen that 

the fragilities do not change for DI values less than 
tr

DI .  This is because for 
tr

DI DI≤ , 

concrete governs the deformation capacity (i.e., 
u u

φ φ′ = ).  It is also found that once DI  

exceeds 
tr

DI  the fragilities increase significantly with DI .  Therefore, high values of 

tr
DI  can help preserve the original fragility of the columns. 

2.7 Conclusions 

This section emphasizes the importance of considering the occurrence of more than one 

damaging earthquake in seismic design.  We compute the probability of observing more 

than one damaging earthquake in a bridge’s service life considering both main and after-

shocks.  We use a time-independent Poisson process to model the occurrence of the main 

shocks and a time-dependent Poisson process for the aftershocks.  Furthermore, we 

develop probabilistic models for computing degraded curvature capacity of reinforced 

concrete (RC) sections and the deformation capacity for RC bridge columns as a 

function of cumulative low-cycle fatigue damage.  These degradation models are 

developed based on cyclic load tests conducted using finite element (FE) models of RC 

columns.   
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It is found that the probability of observing more than one damaging earthquake 

in a bridge’s life time is nearly equal to the probability of observing exactly one 

damaging earthquake.  It is also noted that the probability of observing more than one 

damaging earthquake increases with the service life of a bridge.  As sustainability con-

tinues to become central to the design of infrastructure systems due to the limited 

resources and the growing environmental concerns and the design life is expected to 

lengthen, design criteria for infrastructure systems based on performance objectives 

spanning more than one seismic event are needed.  Furthermore, it is found that ductile 

bridge columns are vulnerable to low-cycle fatigue degradation.  This is because it is 

found that the structural parameters that enhance ductility, in particular compressive 

strain at failure for concrete and the ratio between the ultimate curvature capacity and 

the curvature at yielding of the longitudinal steel, make the RC columns more vulnerable 

to degradation due to low-cycle fatigue. 
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(a) Column A, 
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Figure 2-4. Predictive degrading fragilities of three example RC columns 
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           (c) Column C, 

tr
DI  = 0.90 

 

            Figure 2-4, continued. 

 

 
 

The proposed model for degradation in deformation capacity is used to assess the 

fragility of three example RC columns that are affected by low-cycle fatigue damage 

conditioning on the value of damage and deformation demand.  It is found that, the 

fragilities of RC columns for given deformation demand increases significantly with the 

increase in the value of fatigue damage (here captured through a damage index).  It is 

also seen that fragilities of ductile RC columns increase faster than the non-ductile 

columns.  The proposed model computes the degraded deformation capacity as a 

function of Damage Index (DI) and the fragilities are conditioned on the values of DI 

and deformation demand.  Therefore, further research must be conducted to estimate DI 

for a given earthquake.   

           DI ≤ 0.90 
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3. SEISMIC DEGRADATION OF STATIC PUSHOVER 

PROPERTIES OF RC BRIDGE COLUMNS AND ITS EFFECT ON 

THE VULNERABILITY OF RC BRIDGES 

3.1 Introduction 

The previous section showed that it is important to assess the seismic vulnerability of 

seismically degraded structures because there is a considerable probability of multiple 

damaging earthquakes in a structure’s service life.  The section computed the increase in 

fragility of RC bridge columns due to low-cycle fatigue damage DI  to longitudinal 

reinforcing steel.  Low-cycle fatigue primarily affects the longitudinal steel and results in 

the degradation of deformation capacity of RC columns.  However, cyclic seismic loads 

are also expected to affect the future seismic deformation demand which is not captured 

by the low-cycle fatigue model.  Moreover the pervious section did not compute the 

value of DI  resulting from an earthquake.   

This section proposes the probabilistic models to predict the seismic degradation 

in RC bridge columns.  The first model predicts the degradation in the static pushover 

properties of a column; in terms of the degradation in the lateral stiffness K  and the 

shift in the yield point (
y

∆ ,
y

V ), where 
y

∆  is the displacement at yield, 
y

V  is the shear 

force at yield and 
y y

V K= ∆ .  The prediction of static pushover properties of bridge 

columns is important because the change in seismic response of an RC bridge can be 

predicted by modeling the change in static pushover curve of the RC columns.  The 

degradation of the static pushover curve is primarily due to the degradation in the 
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stiffness and the strength of concrete caused by its internal cracking.  The second model 

predicts the value of DI  in the longitudinal reinforcing steel resulting from an 

earthquake which is required to compute the degradation in deformation capacity of RC 

bridge columns.   

The data required to develop the proposed models is generated by conducting 

virtual experiments, where nonlinear time-history analysis (NTHA) are conducted.  In 

the NTHA, dynamic analyses of RC highway bridges are performed using a selected set 

of ground motion records in OpenSees (Mackenna and Fenves 2000).  The generated 

data is then used in statistical regression using Bayesian updating method.   

This section is organized into six major subsections including this introduction.  

The second subsection presents the design of virtual experiments.  Here, we discuss the 

FE modeling of RC bridges, the procedure of selecting bridge parameters and the ground 

motion records and generation of degradation data using static pushover analysis and 

NTHA.  The third subsection describes the development of the probabilistic models 

using Bayesian updating.  Thereafter, the fourth subsection presents the formulation to 

estimate the seismic fragility of structures that have experienced degradation during past 

earthquakes.  The fifth subsection presents an example estimation of the seismic fragility 

of an RC highway bridge that has experienced one earthquake in the past accounting for 

low-cycle fatigue damage and degradation of static pushover properties of the bridge 

column.  Finally, the sixth subsection presents conclusions from this section. 
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3.2 Virtual experiments 

To generate the degradation data, we conduct 1200 virtual experiments in which we per-

form NTHA of representative RC bridges for selected ground motions and static pusho-

ver analyses of the RC bridges before and after the NTHA.  The analyses are conducted 

using the FE software OpenSees (Mackenna and Fenves 2000).  The representative 

bridges and ground motions capture the variability in the structural properties, site prop-

erties and ground motion parameters.  We use the experimental design in Table 3-1 de-

veloped by Huang et al. (2010) that represents RC bridges with one single-column bent 

designed as per Caltrans seismic design specifications (Caltrans 2006).  This experi-

mental design was originally created for developing the probabilistic seismic demand 

model for RC bridges with one single-column bent.  The experimental design consists of 

60 RC bridges with one single-column bent characterized by 12 independent parameters 

and 200 ground motions that are characterized by; site-to-source distance, magnitude of 

earthquake, type of soil and scaling of ground accelerations.  The ground motions are 

assigned randomly to the bridges without reassigning the ground motions.  The details 

regarding the ground motion records can be found in Huang et al. (2010).   
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Table 3-1. Range of bridge design parameters used in virtual experiments 

Parameter Symbol/ 

Formula 
Range 

Units 

Skew angle sα  0 – 30 degrees 

Shorter Span 
1

L  18.0 – 55.0 m 

Span ratio 
2 1

/L L  1.0 – 1.5 - 

Column height 
c

H  5.0 – 11.0 m 

Ratio of column diameter to super 

structure depth 
/

c s
D D  0.67 – 1.33 

- 

Yield strength of longitudinal steel 
y

f  276 - 655  MPa 

Compressive strength of concrete 
c

f ′  20.0 – 55.0  MPa 

Longitudinal reinforcement ratio 
sl

ρ  1.0 – 4.0 % 

Volumetric ratio of transverse steel 
sv

ρ  0.4 – 1.1 % 

Additional bridge deadload 
wt  

10 – 75 %  

of self weight 

- 

Soil type† Soil A,B,C,D (USGS)  - 

Abutment model Abutment
 

A, B, C, D,E, F, G  - 
† Refer to Huang et al. (2010) for soil classification 

 

 
 

3.2.1 Finite element model of RC bridges with one single-column bent 

Figure 3-1 shows the FE model of RC bridges considered in the virtual experiments.  

The figure shows an RC bridge consisting of 4 major parts: one single-column bent, one 

two-span deck, two abutments and one pile foundation.  The column has height 
c

H  and 

a circular cross-section of diameter c
D .  The cross-section of the column is modeled 

using an uniaxial fiber-section model available in OpenSees to model RC sections.  The 

cross-section is divided into an inner core and an outer concentric circular strip 

representing the cover region.  Both the core and the cover region are divided into 20-40 

radial segments based on the convergence of pushover results.  The strain-displacement 

relations for the column are modeled using the element nonlinearBeamColumn which is 

based on Euler-Bernoulli beam theory.  The shear and torsional behavior of the RC 
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column is modeled by coupling elastic shear and torsion with nonlinearBeamColumn 

using the object section Aggregator.  The concrete in the core of the RC column is 

modeled using material model concrete02.  The stress-strain values corresponding to 

yield and ultimate state for confined core concrete are computed using the constitutive 

model developed by Hoshikuma et al. (1997).  The reinforcing steel is modeled using the 

bilinear model Steel01.  The deck consists of two spans with 1L  and 2L  being the 

lengths of the shorter and the longer span.  The deck is modeled as an elastic beam using 

nonlinearBeamColumn element and an elastic uniaxial material.  The structural 

properties pertaining to torsion and shear of the deck are computed using the area of 

deck, the modulus of elasticity and the shear modulus of concrete.  Seven different types 

of abutments are modeled using seven different abutment models following Huang et al. 

(2010).  The abutment models are: a simple roller support model (Type A); Caltrans 

(2000) model (Type B), two models by Maroney et al (1994) with mass participation 

(Type C) and without mass participation (Type F), Wilson and Tan (1990) model (Type 

D), and two models by Zhang and Makris (2001) with mass participation (Type E) and 

without mass participation (Type G).  The pile is modeled as an extension of the column 

into the soil strata.  The materials, fiber section and the elements used for the column are 

also used for the pile.  The soil around the pile is modeled using elastic-perfectly plastic 

springs.  The soil stiffness used for springs can be found in Huang (2010).  The topmost 

point of the column is considered as fixed to the deck and the lowermost point is fixed to 

the top of the pile.  The lowermost point of the pile is connected to a pinned support. 
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Figure 3-1. FE model of RC bridge with one single-column bent 

 
 

 

3.2.2 Degradation data for static pushover properties and low-cycle fatigue 

The developed FE models for RC bridges are subject to NTHA for the selected set of 

ground motions to induce seismic degradation.  To obtain the degradation data for the 

static pushover properties, we conduct one static pushover analysis before and another 

immediately after the NTHA.  From the results of two pushover analyses, the values of 

the ratios /K K′ , /y yV V′ and /y y
′∆ ∆  are obtained, where the prime sign in K ′ , yV ′  and 

y
′∆  indicates the post-earthquake state.  The values of K , yV , y∆ , K ′ , yV ′  and y

′∆  are 

obtained by fitting an elastic-perfectly-plastic curve to the static pushover curves using 

the method of least squares.  Figure 3-2, Figure 3-3 and Figure 3-4 show the  

 

L1 L2 

Hc 

Soil springs 

Abutment springs 

Column Section 

Longitudinal steel 

Dc 

nodes 

Ground level 

Deck 

Column 

Pile 



 

42 

 

 
0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

Figure 3-2.  Data showing the value of  

/K K′  with respect to /
D y

δ δ   

 
 

 

values of /K K′ , /y yV V′  and /y y
′∆ ∆

 
 (the reciprocal of /y y

′∆ ∆ ) with respect to the 

seismic ductility demand /D yδ δ , where 
D

δ  is the maximum drift (displacement to 

height ratio) during an earthquake and /y y Hδ = ∆ .  Figure 3-2 and Figure 3-3 show that 

the values of /K K′  and /y yV V′  decrease with the increase in /D yδ δ .  These phenome-

na are often termed as stiffness and strength degradation, respectively.  Figure 3-4 shows 

that /y y
′∆ ∆  also decreases when /D yδ δ  increases.  This is a direct consequence of the 

well known relation 
y yV K= ∆  and 

y yV K′ ′ ′= ∆ , and the fact that /
y y

V V′  decreases less 

than /K K′  as a function of /
D y

δ δ  and remains close to 1.0, as shown in Figure 3-3.  It 

can be seen in Figure 3-5 that the values of /K K′  and /y y
′∆ ∆  are highly positively 

correlated.  This is because /y yV V′  remains close to 1.0.  Note that the data are shown 

K
' /

K
 

δD/δy 
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only for / 1
D y

δ δ >
 
and we do not use the data corresponding to / 1D yδ δ ≤  to calibrate 

the degradation models.  This is because in this range the column is theoretically in the 

elastic range but the measured values of /K K′ , /y y
′∆ ∆

 
and /y yV V′  show small random 

deviations from 1.0 resulting from the process of obtaining the least squares fit.   
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Figure 3-3.  Data showing the value of  
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Figure 3-4.  Data showing the change in 

/
y y

′∆ ∆  with respect to /
D y

δ δ  

 

 
 

 

Figure 3-5.  Data showing the relation be-

tween /
y y

′∆ ∆  and /K K′  
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Next, we compute the value of DI  from the structural response obtained from 

NTHA (Figure 3-6).  To compute DI , we first obtain the number and amplitude of 

strain cycles in the longitudinal reinforcing steel using Rainflow Counting method 

(Downing and Socie 1982).  Then, we use Eqs (2-14) and (2-15) to compute DI .   

3.3 Probabilistic seismic degradation models 

In this subsection, the generated data is used to develop the probabilistic models to 

predict the values of /K K′ , /
y y

V V′ , /
y y

′∆ ∆  and DI  based on the value of /
D y

δ δ .  

The models are developed using the Bayesian updating rule (Box and Tiao 1992).  In 

this section, we estimate the model parameters using Markov-Chain Monte-Carlo or 

MCMC method () instead of importance sampling followed in Section 2.  MCMC is an 

efficient method of sampling from complex multivariate distributions (Smith and 

Roberts 1993).  In Bayesian updating, MCMC is particularly used because the posterior 

distribution is known only to a constant factor.   
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Figure 3-6.  Low-cycle fatigue damage in 

longitudinal reinforcing steel due to an 

earthquake. 

 
 

 

3.3.1 Probabilistic models for degradation of static pushover properties 

To model the degradation in static pushover properties, it is sufficient to model any two 

of the quantities; /K K′ , /y y
′∆ ∆  and /y yV V′ . This is because the standard relation 

/y yK V= ∆  must hold also for the deteriorated state i.e., /y yK V′ ′ ′= ∆ .  Based on the 

obtained data, we propose the following linear probabilistic models model forms for 

predicting /K K′  and /y y
′∆ ∆ : 

 ( ) ( ) ( ), ,

1

ln / ln 1
n

K i K i D y K K D y

i

K K hθ δ δ σ ε δ δ
=

 
′ = + ≥ 

 
∑ x  (3-1) 

 ( ) ( ),1ln ln 1
y y D y

K Kθ σ ε δ δ∆ ∆ ∆
′ ′∆ ∆ = + ≥  (3-2) 

δD/δy 

D
I 
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where 
,1 ,2 ,{ , , , }K K K K jθ θ θ=θ … , ,1θ∆ , 

K
σ  and σ ∆  are unknown model parameters, 

, ( )K ih x  are explanatory terms, and 
K

ε  and ε∆  are correlated random variables having a 

bivariate normal distribution (normality assumption) with correlation coefficient 
,K

ρ ∆ .   

 The proposed model forms for /K K′  and /
y y
′∆ ∆  are selected for three reasons.  

First, the model form for /K K′  is based on the observed data that suggests a power-law 

relation / ( / )
D y

K K
ζδ δ′ = , where ζ  may depend on the properties of the column.  

Using the logarithmic model form, ζ  can be assessed in the proposed linear regression 

model.  Second, since /
y y

V V′  remains nearly constant, there is a high correlation 

between /K K′  and /
y y
′∆ ∆ , which justifies the exclusion of explanatory terms other 

than /K K′  in Eq. (3-2).  Third, the logarithmic form is used to satisfy the 

homoscedasticity  and normality assumptions.  The homoscedasticity and normality 

assumptions can be verified using appropriate diagnostic plots (Rao and Toutenburg, 

1997).   

We choose 
, ( )K ih x  by developing functions that represent the global behavior of 

RC columns.  First, we select a number of possible candidate functions.  Then, we use a 

step-wise deletion process developed by Gardoni et al. (2002) to remove the functions 

that are unimportant developing the most parsimonious model.  The selected candidate 

terms are: constant 1.0 , / ( )u c gP f A′ , where 
u

P  is the axial load on the column due to the 

weight of the super structure and the column, 
c

f ′  is the compressive strength of concrete 

and 
gA  is the gross cross-sectional area of the column.  The next term is 
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2 /
n u

T P Kgπ=  that is an approximation of the natural period of the first mode of 

vibration of the bridge (
n

T
 
is not exactly equal to the natural period of the bridge 

because the stiffness contribution from abutments is not included in K ).  The other 

terms are slenderness ratio /
c c

H D , drift at yield /y y cHδ = ∆  and the normalized shear 

force at yield / ( )y g cV A f ′ .   

To develop a parsimonious model, first the model in Eq. (3-1) is assessed using 

all the candidate explanatory functions.  We assess the unknown model parameters using 

Bayesian updating rule with non-informative priors (Gardoni et al. 2002) for the model 

parameters.  The joint posterior distribution is computed using Markov-Chain Monte-

Carlo (MCMC) simulations.  After assessing the model parameters, the function that is 

multiplied by the model parameter with the highest coefficient of variation (c.o.v) is 

removed.  The reduced model is then reassessed and a second explanatory function is 

removed.  The deletion process is repeated until removing one explanatory function has 

a significant influence on the accuracy of the model as captured by the value of 
K

σ  

(Gardoni et al. 2002).  Following this method, the terms ,1( ) 1Kh =x , 
,2

( ) / ( )
K u c g

h P f A′=x  

and ,3( )K nh T=x  are retained in the model.  Table 3-2 shows the posterior statistics of 

K
θ , ,1θ∆ , 

K
σ , σ∆  

and
 ,K
ρ ∆ .  The comparison of the model predictions and the measured 

values is shown in Figure 3-7 through Figure 3-11.  In the figures, the measured values 

are represented by horizontal axis and the predicted values are represented by the 

vertical axis.  The dashed lines or bounds are drawn at a distance equal to ±1 standard 

deviation of the model error (i.e., measured − predicted) from the 1:1 line.  Figure 3-7 
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and Figure 3-8 show the predictions of the model for /K K′  in logarithmic and original 

spaces respectively.  Figure 3-9 and Figure 3-10 show the model predictions for /y y
′∆ ∆  

in the logarithmic and the original spaces.   

 

 

 
Table 3-2. Posterior statistics of the parameters in the probabilistic degradation models 

Parameters 
,1K

θ  
,2K

θ  
,3K

θ  
,1

θ∆  σ ∆  
K

σ  ,K
ρ ∆  

Mean −0.735 0.347 0.124 −0.967 0.050 0.120 −0.070 

Std. dev 0.018 0.25 0.033 0.0029 0.005 0.0053 0.066 

Correlation 

,1K
θ  1.00 −0.45 −0.37 0.28 −0.032 0.16 −0.09 

,2K
θ  −0.45 1.00 −0.61 −0.063 −0.016 −0.0085 −0.13 

,3K
θ  −0.37 −0.61 1.00 −0.14 0.062 −0.15 0.21 

,1
θ∆  0.28 −0.06 −0.14 1.00 0.20 0.014 −0.167 

σ ∆  −0.03 −0.016 0.062 0.20 1.00 0.088 −0.028 

K
σ  0.16 −0.0085 −0.15 0.01 0.089 1.00 −0.147 

,K
ρ ∆  

−0.09 −0.1349 0.21 −0.17 −0.028 −0.147 1.00 
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Figure 3-8.  Predicted versus measured 

values of /K K′  
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Figure 3-10.  Predicted versus measured 

values of /
y y
′∆ ∆  

 

 

 

3.3.2 Probabilistic model of low-cycle fatigue damage DI 

Based on the mathematical formulation of low-cycle fatigue damage the valid theoretical 

range for DI  is 0  to ∞ , where 1.0DI ≥  indicates the failure of a reinforcing bar.  To 

model DI , we develop a linear regression model of ln( )DI .   

 ( ) ( ), ,

1

ln
n

DI i DI i DI DI

i

DI hθ σ ε
=

= +∑ x  (3-3) 

where ,1 ,( , , )
DI DI DI n

θ θ=θ …  are the model parameters, and 
DI DI

σ ε  is the model error, in 

which 
DI

ε  is a standard normal random variable (normality assumption) and 
DI

σ  is the 

standard deviation of the model error assumed to be constant (homoscedasticity 

assumption.) The logarithmic transformation is used to satisfy the homoscedasticity and 

normality assumption of the model error and so that a linear regression model can be 

developed since ln( )DI  now ranges from −∞  to ∞ .  The candidate explanatory 
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functions considered, , ( )
DI i

h x , are: the pseudo-spectral acceleration corresponding to 
n

T  

and 5% viscous damping, 
a

S ; the ratio of peak ground velocity maxv  to peak ground 

acceleration maxa , max max/v a ; the normalized energy / ( )
H y y

E V ∆ , where 

2[ ( / ) ] / 2
H a n

E m S ω= , 2 /
n n

Tω π=  and /
u

m P g=  (in which 
H

E  is the maximum 

energy of an elastic system with natural period 
n

T  and mass m  and does not equal the 

hysteretic energy dissipated by the inelastic system); and the equivalent number of 

cycles 
e

N  at the maximum displacement D cHδ  given by 
2

1
[ / ( )]

cN

i D ci
Hδ

=
∆∑ , where 

i
∆  

is the displacement in the th
i  half-cycle and 

c
N  is the total number of cycles in an 

earthquake.  The most parsimonious model obtained using the previously described 

stepwise deletion method is  

 ( ) ( ) ( ),1 ,2 ,3ln ln ln
DI DI D y DI n DI DI

DI Tθ θ δ δ θ σ ε= + + +  (3-4) 

Table 3-3 shows the estimates for 
DI
θ  and 

DI
σ .  Figure 3-11 and Figure 3-12 show the 

model predictions for DI  in the logarithmic and original space.   

 
 

 
Table 3-3. Parameters for low-cycle fatigue damage accumulation  

model 

Parameters 
,1DI

θ  
,2DI

θ  
,3DI

θ  
DI

σ
 

Mean 5.816 2.395 −2.074 1.44 

Std.dev 0.271 0.080 0.111 0.076 

Correlation 

,1DI
θ  1.00 0.930 −0.22 0.013 

,2DI
θ  0.930 1.00 −0.52 0.017 

,3DI
θ  −0.22 −0.52 1.00 −0.012 

DI
σ

 
0.013 0.017 −0.012 1.00 
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This model can be used to predict the degradation in curvature capacity of an RC 

section due to an earthquake using the curvature capacity model conditioned on the 

value of DI  developed in the previous section.  The curvature capacity can be used to 

compute the degraded deformation capacity of an RC column.   
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Figure 3-11.  Predicted versus measured 

values of ln( )DI  
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Figure 3-12.  Predicted versus measured 

values of DI  

 
 

 

3.4 Seismic fragility of seismically degraded structures  

Seismic fragility is defined as the conditional probability of exceeding a specified 

performance level during an earthquake conditioned on the values of selected seismic 

intensity measures (Gardoni et al. 2003).  In general, the seismic fragility of a structure, 

that has experienced m  earthquakes in the past, can be written as follows conditioning 

on the pseudo-spectral acceleration of the past and future earthquakes: 

    ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1( ) ( ) ( ), , 0 ,
m m m m mm m m

a j j a a

j

F S P C D S S
+ + +       = − ≤        

a a a a
S x S x S Sɶ ∪ (3-5) 

where ( ) (1) (2) ( ){ , , , }m m

a a a
S S S=

a
S …  is the vector of pseudo-spectral accelerations of the past 

m  earthquakes, ( 1)m

a
S +  is the pseudo-spectral acceleration of the future earthquake, 

( ) ( 1)
[ , ]

m m

aF S
+

aSɶ  is the predictive seismic fragility (Gardoni et al. 2002) considering all the 

failure modes, [ | ]P A B  is the conditional probability of event A  given B , 
( ) ( )m

a
x S  are 
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the properties that describe the current state of the bridge after experiencing m  past 

earthquakes, ( )[ ( )]m

jC ax S  and ( ) ( 1)[ ( ), ]m m

j aD S
+

ax S  are the capacity of the existing 

structure and the seismic demand, respectively, corresponding to mode j  due to the 

future earthquake.  For the as-built state, i.e., 0m = , we write (0) {}=
a

S  (an empty set), 

(0) ( ) =
a

x S x
 
(properties of the as-built state) and 

( ) ( 1) (1)
[ , ] [{}, ]

m m

a aF S F S
+ =aSɶ ɶ .  Predictive 

fragilities are computed accounting for the uncertainty in the structural properties, and 

the model parameters and the model errors in the models used to estimate ( ) ( )[ ( )]
m m

j
C

a
x S  

and ( ) ( ) ( 1)[ ( ), ]m m m

j a
D S

+

a
x S .   

The effect of seismic degradation on seismic fragility is explained in Figure 3-13.  

The seismic fragility of a structure degrades with each passing earthquake (i.e., 

1, 2,...m = ) as shown in thick dotted lines with the seismic fragility of the structure in 

the as-built state (i.e., 0m =  shown in thick solid line).  The horizontal axis represents 

( 1)m

a
S

+  and the vertical axis represents 
( ) ( 1)

[ , ]
m m

aF S
+

aSɶ .  The 
( ) ( 1)

[ , ]
m m

aF S
+

aSɶ
 
plots are 

shown for 0,1, 2,...m =  and an example sequence ( ) [0.1 ,0.3 ,0.2 , 0.1 ]m
g g g g=

a
S …  is 

considered.  It is shown that 
( ) ( 1)

[ , ]
m m

aF S
+

aSɶ  increases monotonically for a given value of  
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( 1)m

a
S

+  for increasing values of m .  It is expected in general owing to expected decrease 

in capacity and increase in demand.  However, this necessarily may not be the case 

always because the change in seismic demand due to degradation depends on the value 

of 
n

T , the change in 
n

T  due to degradation and the shape of the response spectrum of 

ground motions.  The figure also compares the values of seismic fragilities for different 

values of m  but for a given ground motion GM (not necessarily included in ( )m

a
S ).  A 

ground motion is a more concrete basis than just the pseudo-spectral acceleration to 

compare seismic fragilities of different degraded states of a structure because pseudo-

spectral acceleration depends on 
n

T  which changes with degradation.  For this purpose, 

we need to compute 
( ) ( )

{ , [ , ]}
m m

a nF S GM T′
aSɶ , where ( )[ , ]m

a n
S GM T′  is the pseudo-spectral 

acceleration for GM  corresponding to period ( )m

n
T  that corresponds to the structure that 

has experienced ( )m

a
S  in the past.  The figure shows the differences in seismic fragilities 

for 0m =  (as-built) and for 1m = , where 1F∆ ɶ  corresponds to the difference for a given 

pseudo-spectral acceleration ( , )
a n

S T GM′  and 2F∆ ɶ  corresponds to the difference 

considering a given ground motion GM . 
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Figure 3-13.  Increment in fragility due to multiple past earthquakes 

 

 

 

3.5 Seismic fragility of an example RC bridge subjected to one earthquake in the 

past 

In this section, we compute the seismic fragility of an example RC bridge that has 

experienced one earthquake in the past.  The bridge is a typical bridge representative of 

California’s current design specifications.  It has one single-column bent with natural 

period 0.84
n

T =  s.  With reference to Figure 3-1, Table 3-4 shows the values of the 

design parameters of the example bridge.  We consider the failure modes; shear ( j v= ) 

and deformation ( j δ= ) of the bridge column in the fragility estimation.  The seismic 

fragility are conditioned on the values pseudo-spectral acceleration of the past and future 

earthquakes. 

 

( , )
a n

S T GM′  

(1)
[ , ]

a n
S T GM′  

1
F∆ ɶ  

2
F∆ ɶ  



 

58 

 

 
Table 3-4. Structural properties of the example bridge 

Parameter Value/Mean Distribution c.o.v (%) 

sα  30° constant - 

1
L  29.45 m Lognormal 1.0 

2 1
/L L  1.36 constant - 

c
H  8.5 m Lognormal 1.0 

c
D  1.5 m Lognormal 2.0 

cover 0.040 m Lognormal 10.0 

y
f  642.15 MPa Lognormal 5.0 

yh
f  642.15 MPa Lognormal 5.0 

c
f ′  40.55 MPa Lognormal 10.0 

sl
ρ  0.022 constant - 

sv
ρ  0.009 constant - 

t
w  0.60 Normal 25.0 

Soil Type D†  constant - 

Abutment
 

Type C constant - 
† Refer to Huang et al. (2010) for soil classification 

 

 

 

For one past earthquake, Eq. (3-5) is written as follows:   

 
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ){ }1 2 1 1 1 1 2 1 2

, , 0 ,
a a j a j a a a a

j

F S S P C S D S S S S
       = − <        

x xɶ ∪  (3-6) 

where (1)

a
S  is the pseudo-spectral acceleration of the past earthquake, (2)

a
S  is the 

pseudo-spectral acceleration of the future earthquake.  The predictive seismic fragility in 

Eq. (3-6) can be computed using either Monte-Carlo simulations for more than one 

mode of failure or reliability methods such as First Order Reliability Method (FORM) 

and Second Order Reliability Method (SORM) for single mode of failure (Ditlevsen and 

Madsen 1996; Haldar and Mahadevan 2000).   

Figure 3-14 shows an example comparison of (1) (2)[ , ]
a a

F S Sɶ  with the as-built 

seismic fragility.  The figure shows a monotonous increase in fragility values with 
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increase in (1)

a
S  for a given value of (2)

a
S .  However, this necessarily may not be the case 

as explained earlier.  The figure also shows a comparison of the seismic fragilities for 

two different states of structure but for a given ground motion GM .   

 

 

 

 
 

Figure 3-14.  Fragility increments with respect to intensi-

ty of past earthquake 

 

 

 

3.5.1 Residual capacity and demand of the degraded RC bridge columns 

To completely define the terms in Eq. (3-6) we need to compute (1) (1){ [ ]}
j a

C Sx  and 

(1) (1) (2){ [ ], }
j a a

D S Sx  for given values of (1)

a
S  and (2)

a
S  considering the deformation mode 

( j δ= ) and shear mode ( j v= ).  In following, we describe the methodology used in this 

paper to compute (1) (1){ [ ]}
j a

C Sx  and (1) (1) (2){ [ ], }
j a a

D S Sx .   

(1)
[ , ]

a n
S T GM′  

( , )
a n

S T GM′  

2
F∆ ɶ  

1
F∆ ɶ  
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1. Computation of degraded deformation and shear capacity.  Section 2 proposed 

the degraded curvature capacity ( , , )
u

DIφφ′ x Θ .  We obtain (1) (1){ [ ]}
a

C Sδ x  and 

(1) (1){ [ ]}
a

C Sν x  by substituting the degraded structural properties ( , , )
u

DIφφ′ x Θ  for ( )
u

φ x  

and ( , , )
y y

K V′ ′ ′∆  for ( , , )
y y

K V∆  in the deformation and shear capacity models developed 

by Choe et al. (2007).  These degraded structural properties are obtained using Eqs. 

(2-18) to (2-20) and Eqs. (3-1) to Eqs. (3-4).   

2.  Computation of seismic demands on degraded RC column.  The seismic demands 

(1) (1) (2){ [ ], }
a a

D S Sδ x  and (1) (1) (2){ [ ], }
a a

D S Sν x  can be obtained using the probabilistic demand 

models proposed by Gardoni et al. (2003).  These demands are primarily governed by 

the static pushover curve characterized by static pushover properties ( , , )
y y

K V∆ .  We 

compute the seismic demands for the future earthquakes by using the properties 

( , , )
y y

K V′ ′ ′∆  in models proposed by Gardoni et al. (2003).   

3.5.2 Results and discussions 

Figure 3-15 shows the contours plot for (1) (2)[ , ]
a a

F S Sɶ for failure modes δ and ν .  In the 

figure, the horizontal axis represents (2)

a
S  and the vertical axis represents (1)

a
S .  The 

dashed contour lines represent the (1) (2)[ , ]
a a

F S Sɶ  values corresponding to the deformation 

mode only and the solid contour lines represent the fragilities for failure in either shear 

or deformation mode.  The fragility contours indicate that the contribution of the shear 

mode to the seismic fragility is small compared to that of the deformation mode.  This is 

typical of RC columns designed per Caltrans’ specifications (Caltrans 2006).  As 
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expected, it is found that (1) (2)[ , ]
a a

F S Sɶ  increases with increase in the values of (1)

a
S  and 

(2)

a
S .  The values of (1) (2)[ , ]

a a
F S Sɶ  are found to remain approximately constant for 

(1) 0.2
a

S g≤  and increase at a faster rate as (1)

a
S  increases beyond 0.2g .  This is because 

the RC column is in elastic range for approximately (1)0 0.2
a

S g< ≤  and hence does not 

experience degradation within that range.  It is found that the values of seismic fragility 

of a bridge that has degraded due to a past earthquake is significantly greater than that of 

the bridge in its as-built condition.   

 

 

 

 

Figure 3-15.  Fragility contours showing the effect of 

past earthquake on the seismic fragility of an RC 

bridge 
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In addition to the seismic fragility with respect to the second earthquake of the 

degraded bridge, we also compute the probability of failure in a sequence of two 

earthquakes conditioning on the values of their pseudo-spectral acceleration.  These 

values are computed as follows: 

 { }(1) (2) (1) (1) (1) (2), 0, 1 0, ,
f a a a a a a

P S S F S F S F S S       = + −       
ɶ ɶ ɶ  (3-7) 

Figure 3-16 shows the contour plot for 
(1) (2)

[ , ]f a aP S S  (dotted lines) as compared to 

(1) (2)[ , ]
a a

F S Sɶ  (solid lines).  The abscissa represents (2)

a
S  and the ordinate represents (1)

a
S .  

The figure shows, as expected that 
(1) (2)

[ , ]f a aP S S  increases with increase in the values of 

(1)

a
S  and (2)

a
S .  This is because of increase in failure probability in each earthquake due 

greater pseudo-spectral accelerations and the increase in failure probability in second 

earthquake due to higher degradation in the first earthquake.  In addition, it is observed 

that (1) (2) (2)[ ,0] [0, ] [0, }]
f a f a a

P S P S F S= = ɶ  for 
(1) (2)

a aS S= .  This is because the cases with 

either (1)

a
S  or (2)

a
S  equal to 0 is equivalent to the case with just one earthquake. 
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Figure 3-16. Contour plot for probability of failure in 

two consecutive earthquakes.   

 

 

 

3.6 Conclusions 

In seismic regions, structures are likely to experience multiple seismic events during 

their service lives.  With each passing earthquake, the performance of structures may 

degrade due to seismic degradation.  In order to develop optimal design and repair 

strategies it is important to consider the effect of seismic degradation on the structural 

performance.   

This work investigates the seismic degradation of RC bridge columns and the 

effect of such degradation on the seismic fragility of reinforced concrete (RC) highway 

bridges.  The seismic response and performance of RC bridges is affected by the 

properties of the bridge columns and their steel reinforcement.  For this reason, we 

develop models to predict the degradation of the static pushover properties and the low-
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cycle fatigue damage in the longitudinal reinforcing steel of the RC columns.  The 

developed degradation models are used to assess the reliability of RC bridges subject to 

multiple earthquakes.  As an example, the proposed method is applied to an example RC 

highway bridge.  The results show that seismic degradation causes significant increase in 

seismic fragilities of the bridge.  The developed fragility curves and more generally the 

proposed method can be used either to design more durable structures to reduce repair 

costs or to make decisions regarding post-earthquake repairs. 
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4. STOCHASTIC SEMI-ANALYTICAL APPROACH OF 

MODELING OF DETERIORATION IN ENGINEERING SYSTEMS 

4.1 Introduction 

Engineering systems deteriorate while in service due to exposure to extreme conditions 

(e.g., excessive loading and harsh environment) and routine use.  Deterioration is a 

serious concern because it can considerably reduce the service life and reliability of 

systems.  Moreover, the process of deterioration is highly unpredictable and often 

invisible.  Therefore, systems must be designed accounting for deterioration processes 

and the various associated uncertainties. 

A deterioration process can be of two distinguishable types; shocks and gradual 

deterioration.  A shock is an instantaneous change in a system’s properties due to the 

action of external loads (e.g., sudden deterioration of a bridge due to an earthquake).  

Gradual deterioration is associated to the wear and decay of the system due to prolonged 

use (e.g., fatigue in machine parts during regular operation), aging, and exposure to 

unfavorable environment (e.g., corrosion of steel reinforcement bars in RC structures 

due to exposure to chlorides). 

Researchers have conducted various studies on the reliability of deteriorating 

systems.  These studies can be broadly classified into two categories.  The first category 

includes time-dependent reliability analyses.  This type of research is primarily aimed at 

computing the change in the reliability of a deteriorating system with respect to time 

(Stewart 2001; Val 2005; Melchers 2005; Choe et al. 2009; Pillai et al. 2010) obtained 

by performing a reliability analysis of the deteriorating system at different points in time 
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using standard methods like the First Order Reliability Method (FORM), the Second 

Order Reliability Method (SORM), and Monte Carlo simulations.  Such studies often 

use experimental data and sophisticated computational tools (e.g., Finite Element 

Method) to model the behavior of the deteriorated system.  However, these analyses 

cannot be extended to estimate critical life-cycle quantities such as time to failure or to 

compute survival and hazard functions.   

The second category of studies includes stochastic modeling of deterioration 

processes.  This type of research is primarily focused at developing a general framework 

to perform life-cycle analysis of deteriorating systems (e.g., Klutke and Yang 2002; 

Noortwijk et al. 2005; Sanchez-Silva 2011; Mori and Ellingwood 1994; Esary and 

Marshall 1994; Wortman et al. 2006).  Depending on the objective, a life-cycle analysis 

may involve computation of life-time distributions, hazard and survival functions, life-

cycle costs and, repair and maintenance strategy.  In this type of research, stochastic 

processes are used because they can model the random nature of deterioration processes 

and random occurrences of loading and failure events.  A general framework is helpful 

for systematically understanding and studying deteriorating systems in the terms of 

important variables that determine their life-cycles.   

In the existing literature on stochastic frameworks, there are two distinct 

approaches depending on the type of failure.  System failures can be of two types: 1) 

Excessive demand and 2) Excessive deterioration.  Failure due to excessive demand 

takes place during the occurrence of a load when the imposed demand exceeds the 

capacity of the system (Mori and Ellingwood 1994; Ellingwood and Mori 1993; Stewart 
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2001; Val 2005).  Failure due to excessive deterioration occurs when the total 

deterioration in a system, not necessarily during the occurrence of a load, exceeds a 

maximum allowable value (Esary et al 1973; Klutke and Yang 2002; Wortman et al. 

2006; Sanchez-Silva et al. 2011).  For example, a bridge column might fail during an 

earthquake due to excessive deformation demand. It may also be considered unusable 

due to excessive deterioration in deformation capacity caused by corrosion.  In reality, 

many systems exhibit both the failure types.  Ignoring either of the failure types may 

cause inaccuracy in the prediction of failure probabilities and the life-span of a system.  

Therefore, a general framework must be able to account for both types of failures.  

Often, however, either only one failure type is considered or simplifications are made in 

order to account for both failure types.  This section proposes a stochastic model for 

deterioration named SSA that addresses the following important issues, one or more of 

which are not addressed in the existing literature: 

1. Modeling the effect of deterioration on capacity 

2. Modeling the dependence between the deterioration process and demand 

3. Modeling the combination of shock and gradual deterioration process 

4. Accounting for failures due to excessive demand and excessive deterioration 

5. Proposing accurate, time-efficient and convenient solution strategies. 

This section is organized into six subsections including this introduction.  The 

second subsection describes a general deterioration process and discusses issues related 

to the stochastic modeling of deterioration processes.  The third subsection proposes the 

SSA model for deterioration in engineering systems along with two possible solutions 
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strategies.  The fourth subsection presents two numerical examples to illustrate the 

proposed stochastic model.  Thereafter, the fifth subsection presents a case study to 

analyze different deterioration scenarios.  Finally, the sixth subsection presents the 

conclusions from this section.   

4.2 The deterioration process 

Figure 4-1 illustrates a general deterioration process and the failure of a deteriorating 

system.  During the service life, a system is subject to a sequence of loads { }
nt

S  at times 

{ }
n

t , where 1,2,...n = .  At time 
n

t t= , the external load 
nt

S  imposes a demand 

( , )
n n nt t tD D S= x  on the system, where 

nt
x  represents the properties of the system at time 

n
t  and ( , )

n nt tD Sx  is a function of 
nt

x  and 
nt

S .  It is shown that the system experiences a 

shock deterioration at 
1n

t t −=  and 
n

t , and gradual deterioration in the interval 
1( , )

n n
t t−

 

and for 
n

t t> .  The capacity 
t

C  gradually changes from 
1nt

C +
−

 to 
nt

C −  and 

instantaneously changes from 
1nt

C −
−

 to 
1nt

C +
−

 and 
nt

C −  to 
nt

C +  (where it
−
 and it

+
 are the 

time instants immediately before and after 
i

t .).   

As previously discussed, the failure of a system can be of two types: 1) excessive 

demand 2) excessive deterioration.  The failure due to excessive demand can be written 

as the event ( ) 0
nn

tt
C D− − < , and the failure due to excessive deterioration can be written 

as the event where the total deterioration 
t

W  at time t  exceeds a specified threshold 
a

w , 

that is 
t a

W w> .   
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Figure 4-1. The effect of deterioration 

process on capacity 

 

 

 

This section discusses the following important issues in modeling a deterioration 

process and subsequently proposes a model that addresses these issues.   

1. Modeling the effect of deterioration on capacity.  Reduction in capacity due to 

deterioration is the most widely acknowledged and addressed issue in the model-

ing of deteriorating systems.  The reduction in capacity has been modeled in the 

past using random and deterministic functions of time (Ellingwood and Mori 

1993; Klutke and Yang 2002; Sanchez-Silva et al. 2011).  

2. Modeling the dependence between the deterioration process and demands.  This 

issue consists of two parts.  First, shock deterioration is dependent on the process 

{ }
nt

D  because shock deterioration process and { }
nt

D
 
 are generated due the same 

loading events.  Second, the process { }
nt

D  is not necessarily a stationary process 

1n
t −  

n
t  

1nt
C +

−

 

nt
C −  

nt
C +  

1nt
C −

−

 

t
C  

1nt
D

−
 

nt
D  
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for deteriorating systems.  This is because the deterioration process may change 

x  such that the same load can impose different demands on the system during 

two different events.  Consequently, significant errors can be introduced in the 

estimates by ignoring the inter-dependence between deterioration process and 

{ }
nt

D .  Here, it is important to note that some studies relate deterioration process 

to change in capacity only (Klutke and Yang 2002), or both capacity and demand 

but only of gradual deterioration (Gardoni and Rosowsky 2011).  However, in 

most systems the effect of deterioration is observed in both capacity and demand 

(e.g., change in deformation demand due to change in natural period of vibration 

of bridges due to deterioration).  The inter-dependence between deterioration 

process and { }
nt

D  has not been addressed adequately in literature.   

3. Modeling the combination of shock and gradual deterioration process.  The 

problem of combined effect of shock and gradual deterioration is important be-

cause most engineering systems experience both types of deterioration.  This is-

sue has been addressed in some of the past works using a Gamma process 

(Noortwijk et al. 2005) and combinations of compound Poisson processes and 

deterministic functions of time (Esary et al. 1973; Klutke and Yang 2002; 

Sanchez-Silva 2011).   

4. Accounting for different failure types.  In the existing literature, generally only 

one failure type, either excessive demand or excessive deterioration, is consid-

ered.  However, in general a system can experience either type of failure in its 

life time.  In some studies (Noortwijk et al. 2005), simplifying assumptions like 
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mutual independence between the deterioration process and { }
nt

D  are used to 

manage the different failure types. 

5. Proposing accurate, time-efficient and convenient solution strategies. Some stud-

ies (Kumar et al. 2009) account for some of the above-mentioned issues but the 

modeling process is not general but specific to one hazard and system type.  

Moreover, the failure probabilities are computed by simulating scenarios of fail-

ure and no failure.  This is a purely simulation approach and is not suitable for 

computing failure probability of engineering systems with very low failure prob-

abilities.   

4.3 Proposed SSA model for deterioration processes 

In this subsection, we propose a general stochastic model named SSA that addresses the 

critical issues associated to modeling of deterioration processes and provides computa-

tionally efficient semi-analytical solutions to compute the time to failure.  In order to 

develop the proposed SSA model, we make the following assumptions: 

1. The total effect of shock and gradual deterioration process on the capacity and de-

mand of a system is the sum of the effects of the individual deterioration processes.   

2. The shock and the gradual deterioration process are independent of each other. 

3.  The shock deterioration process is composed of statistically independent and identi-

cally distributed (SIID) shocks but each shock is dependent on the corresponding 

demand on the system.   
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4.3.1 Capacity of a deteriorating system 

Assuming that shock and gradual deterioration processes are mutually independent, the 

time-dependent capacity of a system can be written in the following additive form: 

 

( )
( )0

1
i

N t

s

t t C

i

C C C R t

−

=

= + ∆ +∑  (4-1) 

where 
0

C  is the initial capacity, ( ) max{ : }
n

N t n t t= ≤  is the number of  occurrences of 

loads or shocks in time t  and 
i i i

s

t t t
C C C+ −∆ = −  is the value of shock deterioration in ca-

pacity at time 
i

t  and 
0

( ) [( / ) ]
i

t

C t t t
R t dC dt dt≠= ∫ is the gradual capacity deterioration 

process.   

4.3.2 Demands on a deteriorating system 

The distribution of 
nt

D  depends on the deterioration process and it is a function of both 

nt
x  and 

nt
S .  Therefore, the process { }

nt
D  cannot be modeled as a SIID sequence for 

deteriorating systems.  The following model is proposed to capture the effect of 

deterioration on demands: 

 
n n nt t tD Y α= +  (4-2) 

where { }
nt

Y  is a SIID sequence independent of the deterioration process and ( )t tα α= x  

captures the effect of deterioration on { }
nt

D .  Adopting an additive form, the changes in 

t
α  due to deterioration can be written as follows: 

 

( )
( )0

1
i

N t

s

t t

i

R tαα α α

−

=

= + ∆ +∑  (4-3) 



 

73 

 

where 
i i i

s

t t t
α α α+ −∆ = −  is the value of shock and 

0

( ) [( / ) ]
i

t

t t tR t d dt dtα α ≠= ∫  is the 

gradual deterioration process.  Accounting for the deterioration effects, 
nt

D  is written as 

follows using Eqs. (4-2) and (4-3): 

 

( )
( )0

1
n n i

N t

s

t t t n

i

D Y R tαα α

−

=

= + + ∆ +∑  (4-4) 

Figure 4-2 illustrates the effect of deterioration on demand as expressed in Eq. (4-4). 

 

 

 

 
Figure 4-2. Effect of deterioration on demand 

 

 

 

4.3.3 Failure of the system 
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( ) ( )
( )

( ) ( )0 0

1
n n i in

N t

s s

t t t t C n nt
i

C D C Y C R t R tαα α

−

−

=

− = − − + ∆ − ∆ + −  ∑  (4-5) 

Normalizing Eq. (4-5) with 
0 0 0

( )u C α= −  and by writing 0
ˆ /

n nt tY Y u=  

 

 

( )( ) ( ) ( )
10 0 0

ˆ1
i in n

n

s sN t

t tt t C n n

t

i

CC D R t R t
Y

u u u

α
α

−

=

∆ − ∆− − 
= − + +  

 
∑  (4-6) 

Writing the changes in the system during the 
thi  shock as 

it
Z  and due to gradual 

deterioration in time [0, ]t  as ( )R t , the following is obtained 

 

( )

10

ˆ1 ( )n n

n i

N t

t t

t t n

i

C D
Y Z R t

u

−

=

−
= − + +∑  (4-7) 

Now defining 
nt

g  as follows: 

 

( )

1

ˆ ( )
n n i

N t

t t t n

i

g Y Z R t

−

=

= + +∑  (4-8) 

the number of shocks until failure is given by min{ : 1}
nF tn n g= >  and the time until 

failure 
FF nt t=  assuming failure due to excessive demand only.   

2. Failure due to excessive deterioration.  The total deterioration in the system at 

time t  is given as follows: 

 

( )

1

( )
i

N t

t t

i

W Z R t

−

=

= +∑  (4-9) 

The total deterioration 
t

W  is an important indicator of the state of the system.  The 

important properties of 
t

W  are as follows: 

(i) 
t

W  captures all the changes in a system that determine its failure.  
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(ii) Increase in 
t

W  reduces the life of a system.   

(iii) If 
t a

W w≥  then at ( ) 1i N t= +  any demand having 1
it aY w> −  causes failure of 

the type excessive demand.  The value of 
a

w  can computed such that an insignif-

icantly small 
it

Y  results in failure of the type excessive demand.  The time until 

failure considering both excessive demand and excessive deterioration is given 

by min{ ,min{ : }}
FF n t at t t W w= ≥ .   

It can be seen that instead of the additive form used in Eqs. (4-1) to (4-4), a 

multiplicative form can be also be used as following to express the changes due to dete-

rioration:   

 
, 0 ,

0
n n nC t D t t
C YΓ − Γ ≤  (4-10) 

, nC tΓ  is the change in the capacity in time t  and , nD tΓ  accounts for the effect of 

deterioration on demands.  By rearrangement of terms in the multiplicative form in Eq. 

(4-10), we have ˆmin{ : 1}
n n nF t t tn n g Y W= = + > , where 0

ˆ /
n nt tY Y C= , 

, ,
[1 / ]

t C t D t
W = − Γ Γ .  

The multiplicative form is more or less similar to the additive form but can be more suit-

able than additive form for some cases.  The stochastic process 
t

W  for both additive and 

multiplicative form can be modeled as a combination of shock and gradual process as 

shown in Eq. (4-9).   

4.3.4 Semi-analytical estimation of 
F

n  and 
F

t  

As discussed earlier, the process 
t

W  consists of shocks { }
nt

Z  and a gradual process ( )R t .  

The magnitudes of 
nt

Z  and ˆ
nt

Y  are correlated because both are caused during the same 
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loading events 
nt

S .  A purely analytical solution to compute 
F

n  and 
F

t  is not available 

owing to the dependence between 
nt

Z  and ˆ
nt

Y .  Therefore, a novel simulation-based 

approach is proposed to estimate 
F

n  and 
F

t .  The traditional method of simulating 

scenarios of failure and no failure is unsuitable for computing small failure probabilities 

(as is commonly observed for well-designed engineering systems).  This is because such 

a method computes failure probability by estimating the expectation of a Bernoulli 

random variable (i.e., 1 for failure and 0 for no failure) which requires a large number of 

simulations as compared to the estimation for a continuous random variable.  Therefore, 

a semi-analytical approach is proposed that estimates the expectation of a continuous 

random variable chosen such that its expectation is equal to the failure probability of the 

system. 

The proposed semi-analytical solution is based on the dependence between 
nt

Z  

and ˆ
nt

Y .  The dependence can be modeled in several ways, e.g., by developing the joint 

probability density function (PDF) ˆ ( , )
ZY

f z y  for 
nt

Z  and ˆ
nt

Y  or the conditional PDF 

ˆ
ˆ( )

ntZ Y
f z Y  of 

nt
Z  given the value of ˆ

nt
Y .  The proposed framework has the flexibility to 

incorporate any kind of dependence between 
nt

Z  and ˆ
nt

Y  as long as 
ˆ

( )
ntY Z

F y Z
 
the CDF 

of ˆ
nt

Y  given the value of 
nt

Z can be computed.  The proposed semi-analytical solution to 

estimate 
F

n  and 
F

t  is explained in the following: 
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1. Number of shocks to failure, 
F

n .  The probability that failure has not occurred in 

[0, ]
n

t  is 

 ( ) ( )
1

ˆ 1
i i

n

F t t

i

P n n P W Y
=

 
> = + ≤ 

 
∩  (4-11) 

By conditioning on the value of { }
it

Z  and { }
i

t  for 1i ≥ , the failures due to each 
it

S  can 

be treated as independent events.  Therefore, 

 { } { }( ) { } { }
1 11 1

1

ˆ, 1 ,
i i i i

n

F t i t t t ii ii i
i

P n n Z t P Y W Z t
≥ ≥≥ ≥

=

 > = ≤ −
 ∏  (4-12) 

Now taking the expectation of the expression in Eq. (4-12) over the distributions of { }
it

Z  

and { }
i

t , we get 

 ( ) { } { }
11

1

ˆ 1 ,
i i i

n

F t t t i ii
i

P n n E P Y W Z t
≥≥

=

  > = ≤ −   
∏  (4-13) 

where [ ]E ⋅  is the expected value.  Now, since ˆ
it

Y  depends only on 
it

Z , we have 

 { } { }( ) ( )ˆ11

ˆ 1 , 1
i i i i it t t i t ti Y Zi

P Y W Z t F W Z
≥≥

≤ − = −  (4-14) 

If ( )N t  is a Poisson process with rate ν , then 
i

t  has gamma distribution with parame-

ters ν  and i , where the mean is /i ν .   

2. The time to failure, 
F

t .  Assuming only failures due to excessive demand, the 

probability that failure has not occurred by time t  is 

 ( ) ( )
( )

1

ˆ 1
i i i

N t

F t t t

i

P t t E P Y W Z
=

 
> = ≤ − 

 
∏  (4-15) 

Using Eq.(4-14), we have 
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 ( ) { }( )
( )

ˆ 1
1

1 ,
i i

N t

F t t i iY Z
i

P t t E F W Z t
≥

=

 
> = − 

 
∏  (4-16) 

If ( )N t  is a Poisson process with rate ν , then 

 ( )
( )

{ }( ),ˆ 1
0 1

1 ,
! i i

n t n

F t t n iY Z i n
n i

t e
P t t E F W Z

n

νν
τ

−∞

≤ ≤
= =

 
> = − 

 
∑ ∏  (4-17) 

 

where , ,{ } { }
n i n i

tUτ =  and ,1 ,2 ,......
n n n n

U U U< < <  are the order statistics of random 

uniform [0,1]  sample of size n .  Considering both failures due to excessive demand and 

excessive deterioration, we have 

( ) ( ){ } { } { }( )
( )

ˆ 1
1

1 1 ,
t a i i

N t

F F t a W w t t i iY Z
i

P t t P n N t W w E F W Z t≤ ≥
=

 
 > = > < = −  

 
∏∩  (4-18) 

and if ( )N t  is a Poisson process, then 

 ( )
( )

{ }( ),ˆ 1
0 1

1 1 ,
! t a i i

n t n

F W w t t n iY Z i n
n i

t e
P t t E F W Z

n

νν
τ

−∞

≤ ≤ ≤
= =

 
> = − 

 
∑ ∏  (4-19) 

where 1 1Χ =  if X  is true and 0 otherwise.  Using Eq. (4-18), we can also compute the 

probability distribution for 
t

W  conditioned at any given time during the service life of 

the systems.  This is given by 

[ | ] [ ( )] / [ ( )]
t F t F t a F

P W w t t P W w n N t P W w n N t< > = < > < >∩ ∩  for 
a

w w< .  As Eqs.  

(4-13) through (4-19) require the computation of expectations using simulations, errors 

arising out of these simulations must be reported.  For computing simulation errors the 

variance of the quantity estimated through simulations can be computed.  This variance 

can be used to compute upper and lower bounds on the estimate.  We use 2
X

X σ±  as 
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upper and lower bounds, where X  is the sample mean for the simulation, 2 2ˆ /
X simX

Nσ σ=  

is the variance of X , 2ˆ
X

σ  is the sample variance of X  and 
sim

N  is the number of 

simulations.   

4.3.5 Approximate estimation of 
F

t  

Now, we develop an approximate solution for estimating 
F

t  considering only the failure 

due to excessive demand.  The solution is based on the assumption that 
t

W  is 

independent of ( )N t .  This approach can also yield closed-form solutions in some cases 

where closed-forms for required convolutions and integrations are possible.  

The conditional probability ( )
f

P t  of observing a failure at t  conditioning on the 

occurrence of a load is given by  

 ( ) ˆ ˆ1 1
i if t t t tP t P W Y P Y W   = + > = > −     (4-20) 

Defining, 

( )

ˆ{ 1}
1

( ) 1
t ti i

N t

Y W
i

N t
+ >

=

′ =∑ , (i.e., ( )N t′  is the number of times the event ˆ( 1)
i it tY W+ >  

is observed in the interval [0, ]t ) we have 

 ( ) ( ) 0
F

P t t P N t′> = =    (4-21) 

Assuming, 
t

W  and ( )N t  are mutually independent, if ( )N t  is a Poisson process then we 

have 

 ( ) ( )
0

0

t

fP N t exp P s dsν
 

′ = = −    
 
∫  (4-22) 

The probability ( )fP t  can be found analytically as follows:   
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 ( ) ( )ˆ

0

ˆ 1 1 1 ,
it t WtY

P Y W F w f w t dw

∞

   > − = − −   ∫  (4-23) 

where ( , )
Wt

f w t  is the PDF of t
W .  The CDF ( , )

Wt
F w t  of t

W  is found as follows: 

 ( )
( )

( )
0 !

n t

n

t Z

n

t e
P W w F w R t

n

νν −∞

=

< = −  ∑  (4-24) 

where ( )
n

ZF z  is the CDF of 
1 2

( )
n

Z Z Z+ + +… .  If an analytical solution is not availa-

ble then simulations can be used to compute ( )fP t .  It is expected that the estimate for 

( )
F

P t t>  using the approximate solution is a lower bound to that estimated using the 

semi-analytical solution.  This is because of the assumption of independence between 
t

W  

and ( )N t  which implies that for a given value of ( )N t , 
1 2

( ) ...
t n

W R t Z Z Z= + + + + , 

where n  can be large with a positive probability resulting in the overestimation of 

( )fP t .  This approximate solution can be used to only to estimate ( )
F

P t t>  for failures 

due to excessive demand.   

4.4 Numerical examples 

In this section, we illustrate the proposed model with two examples.  The objective of 

the first example is to illustrate the steps in the computation of 
F

n  and 
F

t .  For this 

example, we choose distributions such that the computation process is simplified.  The 

second example illustrates the application of the model to a more realistic case.   



 

81 

 

4.4.1 Example 1 

We assume that ˆ
nt

Y  has a Pareto distribution and ˆ
n n nt t tZ Yξ= , where 

nt
ξ  is uniformly dis-

tributed over the interval [0,1] .  The probability distributions required to implement the 

semi-analytical solution are 

 ( ) ( )
m

ˆ ˆm
ˆ1 1

k

Y y Y
F y Y y

>

 = −
  

 (4-25) 

and 

 ( )ˆ
ˆ 1 0

ntZ Y
F z Y y y z y= = < ≤  (4-26) 

where ˆ ( )
Y

F y  is the CDF for ˆ
nt

Y , ˆ
mY  is the minimum value of ˆ

nt
Y  and k  is a distribution 

parameter.  Equations (4-25) and (4-26) are used to derive the following expression: 

 ( ) ( )
m

1

ˆmˆ max( , )

ˆ1 1
n

k

t y Y zY Z
F y Z z Y y

+

>

 = = −
  

 (4-27) 

 
Table 4-1. Description of different variables in the process for Example 1 

Variable/ 

Function 

Value/ 

Description 
Distribution 

Distribution Parameters 

Symbol Value 

ˆ
nt

Y  - Pareto ˆ
mY , k  0.05, 1.33 

( )R t  2min{( / 75) ,1}t  

( )N t
 

Poisson process
 ν  0.20/year 
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Figure 4-3.  Probability distribution for 
F

n  

 

 

 

Table 4-1 provides the description for the different processes and variables 

involved.  Figure 4-3 shows the plots for ( )
F

P n n>  using the semi-analytical solution 

for two cases; considering both shocks and gradual deterioration (labeled as S, G) and 

considering shocks only (labeled as S).  The figure also shows the bounds on the 

estimate of ( )
F

P n n> .  As expected, the figure shows that the system is expected to 

reach failure in less number of shocks in the case (S,G) as compared to the case (S).  

Figure 4-4 shows the plots for ( )
F

P t t>  for three cases; shocks and gradual 

deterioration assuming failures due to both excessive demand and excessive 

deterioration (labeled as S, G, Fdmd, Fdet), shocks and gradual deterioration assuming 

failure due to excessive demand only (labeled as S, G, Fdmd), and shocks only also 

assuming failure due to excessive demand only (labeled as S, Fdmd).  The figure shows 

that the system is expected to fail earlier in the case (S, G, Fdmd, Fdet) compared to the 

P
 (

n
F

 >
 n

) 

o  S, G  
x  S 

--  bounds 
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other two cases.  This figure does not show the bounds on the estimates because the 

bounds are found to be indistinguishable from the actual estimate which implies that the 

simulations errors are insignificantly small.   
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Figure 4-4.  Probability distribution for tF 

 

 

 

Figure 4-5 compares the estimates for ( )
F

P t t>  obtained using the semi-

analytical solution and the approximate solution.  As explained earlier, the estimates of 

the approximate solution are a lower bound to the estimates of semi-analytical solution 

due to the assumption of independence between 
t

W  and ( )N t .  This assumption implies 

that there is a positive probability of having more than ( )N t  number of shocks in 
t

W  

resulting in the underestimation of ( )
F

P t t> .  However, it is found that the approximate 

solution yields accurate results for early part of the life time (i.e., 20t years< ).  This is 

P
 (

t F
 >

t 
) 

  S, G, Fdmd, Fdet 

 ⋅    S, G, Fdmd 

      S, Fdmd 

t (years) 
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because the probability of observing a large number of shocks within the early part of 

life time is small for 0.2 / yearν = .   
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Figure 4-5.  Comparision of estimates using 

semi-analytical and approximate solution 

for Example 1 
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Figure 4-6.  Plots for  P[Wt ≤ wa|tF > t] 

 

 

 

Figure 4-6 shows the plot for [{ } { ( )}]
t a F

P W w n N t< >∩  the probability of 

damage being less than a
w  for a

w = 0.25, 0.50 and 0.75.  As expected, at any given time, 

the probability of being less than a
w  is higher for higher values of a

w .  Also it is seen 

that the probability of being less than a
w  decreases with increase in time.  The results in 

Figure 4-6 can also be used to compute [{ }{ ( )}]
t a F

P W w n N t< >  by dividng 

[{ } { ( )}]
t a F

P W w n N t< >∩  with [ ( )]
F

P n N t> = [ ]
F

P t t>  assuming failure due to 

excessive demand only.   

4.4.2 Example 2 

In this example we apply the framework to model a deteriorating system with a more 

realistic damage mechanism as compared to Example 1.  It is commonly observed in 

engineering systems that there is no damage for 
nt

D  less than a certain threshold value 

l .  We model this damage process by assuming that the damage is a random linear 

  wa  = 0.75 

      wa  = 0.50 

………  wa  = 0.25 

t (years) 

P
[W

t ≤
 w

a
|t

F
 >

 t
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function of 
nt

D .  However, for simplicity we assume that 0
nt

α α− ≈  in the expression for 

nt
Z .  The damage process is then written as 

 
( )

( )ˆn

n n n n

t

t t t t

D l
Z Y h

u
ξ ξ+

+

−
= ≈ −  (4-28) 

where ( )
nt

D l +−  is the positive part of ( )
nt

D l− , 
0

( ) /h l uα= −  and 
nt

ξ  are SIID random 

variables independent of { }
nt

D .  The conditional CDF ˆ|
( | )

ntY Z
F y Z z=  for this case is 

given as follows: 

( ) ( )
( )
( )

( )
( )

ˆ ˆ ˆ

ˆ ˆ

0

, 0,

1 1 ˆ

0,

n

Y

tY Z Y Y c
Y

y

nY Y h

cZ Z

F uy
F y Z z F y z y h

F uh

z
f f y Y h dy

f z y h y h

z y h

ξ

≤

>
≠

= = = = ≤

   
= >   

+ +   

≠ >

∫  (4-29) 

where ( )
Y

F y  is the CDF of 
nt

Y , ˆ ˆ|
ˆ( | ) [ ( )] / [1 ( )]

Y YY Y h
f y Y h u f uy F uh

>
> = −  and, 

 ( )ˆ ˆ0

1 ˆ( )
Z Z Y Y h

h

z
f z f f y Y h dy

y h y h
ξ

∞

≠ >

   
= >   

− −   
∫  (4-30) 

The different variables of the system are described in Table 4-2.  To implement the 

semi-analytical solution we first obtain the conditional CDF ˆ|
( | )

ntY Z
F y Z z= .  The CDF 

has a closed-form expression for 0z = .  For 0z ≠ , we obtain the CDF by numerically 

performing the integrations in Eqs. (4-29) and (4-30).  Figure 4-7 shows the conditional 

CDF ˆ|
( | )

ntY Z
F y Z z=  for 0z ≠ .   
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Table 4-2. Description of different variables in the process 

Variable/ 

Function 

Value/ 

Description 
Distribution Distribution Parameters 

0C  1.00 - - 

0α  0.00 - - 

l  0.05 - - 

nt
Y  - Exponential 0.2         (mean) 

nt
ξ  - Beta 3.0, 6.0  (shape) 

( )R t  2min{( / 75) ,1}t  

( )N t
 

Poisson process
 

0.2/year  (rate) 
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Figure 4-7. Plot for FŶ|Z(y|Z) for 0z ≠ obtained numerically 

 

 

 

Figure 4-8 shows the plots for ( )
F

P n n>  for the cases (S,G) and (S).  The figure 

also shows the bounds on the estimates of ( )
F

P n n> .  The probability ( )
F

P n n>  is 

found to be greater for the case (S) than for case (S,G).  This result is expected because 

in the second case the deterioration process is faster.  Figure 4-9 compares the estimates 

obtained using semi-analytical and approximate solution.   
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Figure 4-8. Plots of probability distribu-

tion for nF 
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Figure 4-9. Comparision of estimates using 

semi-analytical and approximate solution for 

Example 2 
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   S,Fdmd           semi-analytical solution 

---------   S,G,Fdmd       semi-analytical solution 
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 ⋅     S,G,Fdmd        approximate solution 

 

P
(t

F
 >

 t
) 

t (years) 



 

89 

 

As already explained in Example 1, the estimates of approximate solution are a 

lower bound to the estimates of semi-analytical solution. Figure 4-10 shows the plots for 

( )
F

P t t>  that are obtained for cases with shocks only and with both shocks and gradual 

process.  As expected and already seen in Example 1, the figure shows that the system is 

expected to fail earlier in the case (S, G, Fdmd, Fdet) as compared to the other two cases.  

Figure 4-11 shows the probability of damage being less than 
a

w = 0.25, 0.50, 0.75 at 

various points of time in the service life of the system.  The results are similar to those 

obtained in Example 1.  Figure 4-10 and Figure 4-11 do not show the bounds because 

the simulation errors are found to be insignificantly small.   
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Figure 4-10. Plots of probability distribution for tF 
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Figure 4-11. Plots for P[Wt ≤ w| tF > t] 

 

 

 

4.5 Case study 

In this section we use the system in Example 2 to study the effect of various deteriora-

tion scenarios.  We develop four cases as described in Table 4-3 and Table 4-4.  The 

cases are developed by combining different rates of shock and gradual deterioration pro-

cess.  The rate of shock deterioration is governed by several variables (e.g., ˆ[ ]
nt

E Y , ν  

and [ ]
nt

E ξ ).  We choose to vary the distribution parameters of 
nt

ξ  to develop the cases.  

The rate of gradual deterioration is varied by changing the coefficient of 
2

t  in ( )R t .  

 

 

 
Table 4-3. Deterioration scenarios for case study 

Gradual 

deterioration 

Shock deterioration 

Slow Fast 

Slow Case I Case II 

Fast Case III Case IV 

 

   wa = 0.75 

       wa = 0.50 

---------   wa = 0.25 
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Table 4-4. Rates of deterioration process for case study 

Deterioration 

process 

Variable Slow Fast 

Shock 
nt

ξ  Beta(3,6) Beta(3,3) 

Gradual ( )R t  min(0.01t
2,1) min(0.02t

2,1) 

 

 

 

The results from the case study are shown in Figure 4-12.  The figure shows that 

in this case study, the deterioration process in the four cases is ordered in terms of in-

creasing rate as I, III, II and IV.  Cases I and III have slow shock deterioration process 

and cases II and IV have fast shock deterioration process.  This implies that for this case 

study, shock deterioration process has more influence on the total deterioration rate than 

the gradual deterioration process.  It is seen that even though one type of deterioration 

process is more influential than other, the combined effect of the two processes cannot 

be underestimated.  Using this framework, similar case studies can be built to study the 

influence of various factors in the deterioration process.   
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Figure 4-12.  Plots showing effect of 

different deterioration scenarios 

 

 

 

4.6 Conclusions 

Deterioration is a serious concern in engineering because it can considerably reduce the 

service life and reliability of systems.  In this paper we developed a novel stochastic 

framework to model deteriorating systems, consisting of shocks and a gradual deteriora-

tion process.  We model the shock deterioration process accounting for the dependence 

between the shocks and the demands imposed by loading events. We use a deterministic 

function of time to model the gradual deterioration process.  The developed framework 

addresses the following important issues in modeling deteriorating systems: 

1. Modeling the effect of deterioration on both capacity; 

2. Modeling the dependence between the deterioration process and demands; 

3. Modeling the combination of shock and gradual deterioration process; 

4. Accounting for different failure types; and 

---------   Case I 

       Case II 

 ⋅     Case III 

   Case IV 
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5. Proposing accurate, time-efficient and convenient solution strategies. 

The proposed framework provides the flexibility for incorporating different types 

of damage mechanisms.  Furthermore, we derived estimates of important quantities such 

as time to failure, number of shocks to failure, and accumulated damage that are essen-

tial for life-cycle analysis of systems.  The proposed framework can be used in future 

research for conducting comprehensive life-cycle cost analysis accounting for various 

types of performance criteria. 
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5. RENEWAL THEORY BASED LIFE-CYCLE ANALYSIS OF 

DETERIORATING ENGINEERING SYSTEMS 

5.1 Introduction 

Deteriorating engineering systems have to be operated in a strategic manner in order to 

maximize the safety of, and the benefits to the users and owner.  Such operation strate-

gies can be effectively devised only by conducting a life-cycle analysis (LCA) of the de-

teriorating system.  In general, a LCA study includes the prediction of the reliability of a 

system over its entire life-span and the costs and benefits associated to the operation of 

the system (Rackwitz 2000).  LCA must factor in the uncertainties in the operating con-

ditions (e.g., environmental conditions, intensity and time of occurrence of loads) and 

the process of deterioration of the system.  Furthermore, LCA should be able to account 

for the influence of occasional repairs and maintenances on the reliability of the deterio-

rating system and costs associated to its operation.  The LCA of most deteriorating engi-

neering systems is a complex problem owing to the number of involved variables, the 

associated uncertainties and the propagation of uncertainties in time.   

Research in the field of LCA has advanced over past few years and has found 

applications in various fields of engineering.  Several types of LCA studies have been 

conducted based on the engineering system under consideration and the objective of the 

study.  Wen and Kang (2001a,b) computed the losses due to building failures in a multi-

ple hazard scenario but without considering the deterioration of the buildings over time.  

Yang (1976) computed the expected cost of inspecting and repairing service cracks in 

aircrafts considering the growth of cracks with time.  While this formulation considers 
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the time-dependent condition of the system, it only includes serviceability failures.  A 

serviceability failure is the failure of a system to meet a pre-collapse or pre-breakdown 

performance level related to safety and damage/repair costs (e.g., maximum acceptable 

crack size).  However, a LCA study should also include the analysis of ultimate failures, 

where a system fails because of an extreme event resulting in a complete collapse or 

breakdown of the system.  Ultimate failures are generally rare but they should be includ-

ed in LCA because the corresponding losses are high.  Typically a serviceability failure 

is an excessive deterioration type failure and ultimate failure is an excessive demand 

type failure as described in Section 4.  Oswald and Schullër (1984) and Mori and El-

lingwood (1993) estimated the reliability and the time to failure of an infrastructure sys-

tem with time-dependent capacity deterioration.  The methodology can be applied to 

serviceability or ultimate failures but only one type of failure can be considered at a time 

in the analysis.  Moreover, the study does not consider repairs and replacements follow-

ing failures and also does not include life-cycle cost analysis.  Rackwitz (2000) estimat-

ed the life-cycle cost of deteriorating systems considering only the immediate replace-

ment of the system after failures.  The methodology is again applicable only to one type 

of failure (serviceability or ultimate).  Also, repairs for intermediate levels of deteriora-

tion not requiring complete replacement are not considered.  Noortwijk and Frangopol 

(2004), Neves and Frangopol (2005) and Kim et al. (2011) used deterministic functions 

of time representing the reliability of a deteriorating system in order to compute the 

maintenance and failure costs.  The adopted methodologies consider both serviceability 

and ultimate failures.  However, the method of using the deterministic time-dependent 
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reliability functions for LCA, typically considers only the gradual time–continuous dete-

rioration processes and ignores the discrete shock type deterioration in a system caused 

by loads.  Sanchez-Silva et al. (2011) computed the number of repairs/replacements per 

year required to maintain a system above the target safety level.  The study considers 

both gradual and shock type deterioration and can be used for both serviceability and 

ultimate failures.  However, the study the study did not include life-cycle cost analysis 

and is limited only to a specific criterion for conducting repairs and hence cannot be 

used to study the influence other types of operation strategies.  A LCA formulation 

should be applicable to a wide variety of operation strategies in order to arrive at an op-

timum solution.   

This section proposes a novel probabilistic formulation for LCA of deteriorating 

systems named Renewal Theory-based Life-cycle Analysis (RTLCA).  As the name 

suggests, the formulation is based on renewal theory (Grimmett and Stirzaker 2001).  

The proposed formulation develops analytical equations to estimate the life-cycle varia-

bles such as the time lost in repairs, the age and reliability of the system and cost of op-

eration and failures.  Both serviceability and ultimate failures can be considered simulta-

neously in the formulation and it is applicable for a wide variety of repair and mainte-

nance strategies.  Furthermore, RTLCA formulation is not dependent on any particular 

deterioration model which increases makes it easily transferable to analyses having dif-

ferent levels of complexities.  As an example, the proposed RTLCA formulation is used 

to analyze a reinforced concrete (RC) bridge accounting for the possible deterioration 

caused by earthquakes during its service life.  The flexibility of the proposed RTLCA 
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formulation, allows the use of time-dependent stochastic models for earthquake occur-

rences accounting for both main shocks and aftershocks.  Furthermore, the example ac-

counts for the delays in repair after earthquakes and considers any damage accumulated 

during this delay due to aftershocks.   

This section is organized into six subsections including this introduction.  The 

second subsection describes the events typically observed in the life-cycle of an 

engineering system and introduces a few definitions used in the section.  The third sub-

section describes the financial aspects of an engineering project and introduces the vari-

ous costs associated to the operation of an engineering system.  The fourth subsection 

proposes the RTLCA formulation and develops the equations for computing various 

LCA variables.  The fifth subsection briefly describes an application of the SSA deterio-

ration model proposed in Section 4 to compute the probabilities and probability distribu-

tions required to implement the RTLCA model.  The sixth subsection uses the proposed 

RTLCA formulation to analyze the life-cycle of an example RC bridge.  Finally, the 

seventh section presents the conclusions derived from this work.   

5.2 Life-cycle of an engineering system 

Figure 5-1 shows the various events in the life-cycle of an engineering system that is ex-

periencing deterioration.  The state of the system at a given time t  is described in terms 

of the probability of ultimate failure ( )
f

P t  of the system given that a load acts on the 

system at time t .  Changes in ( )
f

P t  occur in the form of discrete or continuous incre-

ments.  Discrete increments are due to shocks that cause sudden changes in the system 

properties. Loads and deterioration mechanisms that are active for a short duration of 
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time (e.g., impact loads, seismic loads, and fires) are example of such shocks.  Continu-

ous increments in ( )
f

P t  are due to a gradual deterioration of the system properties due 

to phenomena like corrosion of steel, alkali-silica reactions (ASR), delayed ettringite 

formation (DEF), creep, etc.   

 

 

 

 
Figure 5-1.  Life-cycle of an engineering system 

 

 

 

Figure 5-1 shows that an engineering system experiences alternating phases of 

being in use and in down-time.  A system is said to be in use at time t  if the system is 

functioning at that time.  On the other hand, a system is said to be down or experiencing 

down-time if the system is either abandoned or removed from the service for repairs or 

replacement.  In this paper, we call the start of a down-time as an intervention ( I ).  The 

down-time of a system ends when the repair or replacement is complete and the system 

starts functioning again.  In this paper, we call this event renewal ( L ).  Interventions can 
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be preventive if the system is removed from service in order to conduct repairs or 

maintenance work.  On the other hand, an intervention is essential if it is initiated be-

cause of the occurrence of an ultimate failure.  Preventive interventions are typically 

made when a pre-determined intervention criterion is met.  Some examples of interven-

tion criteria are: the exceedance of a threshold intensity of the applied load, a servicea-

bility type failure such as exceedance of a threshold level for damage or ( )
f

P t , and 

reaching a pre-planned time interval between two interventions (like in the case of a 

scheduled maintenance).  Figure 5-1 shows that the th
i  intervention i

I  that occurs at 

time 
iI

t  is preventive and is conducted because ( )f aP t p≥ .  The figure also shows that 

1i
I +  is an essential intervention and occurs because the system experiences an ultimate 

failure at time 
1iI

t
+

 because of which ( )fP t  jumps to 1.0.  The corresponding renewal 

events 
i

L  and 1i
L +  occur at time 

iL
t  and 

1iL
t

+
, respectively.  In the figure, 

iI
T  is the time 

interval between 
1i

L −  and 
i

I  and 
iD

T  is the down-time following i
I .   

For some systems, deterioration does not progress during the down-time because 

the system is removed from service and it is immediately repaired.  However, in some 

cases (as shown in the figure) the actual repair work may not begin immediately at 
iI

t  

and a lag period (
il

T  following 
i

I  and 
1il

T
+

 following 
1i

I + ) may exist during which the 

deterioration process may continue.  Generally, this is the time required for the 

mobilization of the required resources.  For example, an infrastructure that has been 

closed due to damage from an earthquake is still exposed to aftershocks before the 
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repairs or replacement might take place.  In such cases, the lag period may significantly 

affect the LCA and hence must be considered. 

5.3 Financial considerations for a system 

In addition to the initial cost of construction or manufacturing of a system 
C

C , we group 

the remaining costs incurred during the life-cycle of the system into cost of operation 

( )
Op

C t  and failure losses ( )
L

C t .  The cost ( )
Op

C t  is the total cost of repairs and 

replacement of the system following the serviceability and ultimate failures in order to 

operate the system up to time t .  The cost of operation is written as 

1 { ( )}( ) [ 1 ]Li

i L

t

Op i Op i N tC t c e
γ−∞

= ≤=∑ , where 
iOpc  is the cost of repair or replacement 

corresponding to 
i

I , γ  is the discount rate to compute the net present value (NPV) of the 

cost, ( )
L

N t  is the number of renewals in time t  and 1
X

 is the indicator function which is 

equal to 1 if X  is true and 0 otherwise.  The failure loss ( )
L

C t  is the sum of losses 

arising from injuries, deaths or damage to user’s property until time t .  Such losses are 

observed only during ultimate failures.  The loss ( )
L

C t  does not include the cost of 

replacing the system.  Therefore, 1 { ( )}( ) [ 1 ]Ii

i I

t

L i L i N tC t c e
γ−∞

= ≤=∑ , where 
iLc  is the loss 

corresponding to 
i

I  and ( )
I

N t  is the number of interventions in time t .  The value of 
iLc  

is 0 if 
i

I  is not due to an ultimate failure and it is positive otherwise.  The costs ( )
Op

C t  

and ( )
L

C t  are often called direct and indirect costs, respectively.  The distinction 

between ( )
Op

C t  and ( )
L

C t  is important because the owner of the system may choose not 

to repair or replace the system at 
iI

t  to avoid 
iOpc  but 

iLc  is inevitable.  Also, this 
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distinction is important because often the liability for ( )
Op

C t  and ( )
L

C t  belong to 

different agencies and their values affect the decisions.  In addition to the described 

costs, another important financial factor is benefit ( )Q t .  The benefit ( )Q t  is the direct 

or indirect benefit derived from operating a system for time t  (e.g., price of automobile 

fuel saved by commuters using a bridge).  The operation of a system for time t  is 

considered financially justified if 

 ( ) ( ) ( ) ( ) 0net Op L CQ t Q t C t C t C= − − − >  (5-1) 

5.4 Proposed formulation for LCA 

In this study, we propose the RTLCA formulation which is based on renewal theory 

(Grimmett and Stirzaker 2001).  In renewal theory, a renewal process ( )
E

N t  is the num-

ber of occurrences in time t  of an event E , called the renewal event.  The time intervals 

between consecutive occurrences of E , also called the renewal times, are considered 

statistically independent and identically distributed (SIID).  Therefore mathematically, 

( ) max{ : }
nE EN t n t t= ≤ , where max{}⋅  is the maximum value function, n

E  is the 
th

n  

occurrence of E  and 
nEt  is the time of occurrence of 

n
E .  Now if 

iE
T  are the renewal 

times, then 
1n i

n

E i E
t T== ∑ .  As mentioned earlier, { }

iET  is assumed to be a SIID sequence 

in renewal theory and based on this property, the renewal theory offers analytical solu-

tions in the form of integral equations to compute several quantities that describe the re-

newal processes.   
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In the RTLCA formulation, we propose to model the occurrences of 
i

L  as a re-

newal process assuming, as required in renewal theory, that the renewal times { }
iLT  giv-

en by { }
i iI DT T+ is SIID.  This assumption requires that the events in the time interval 

1
( , ]

i iL Lt t
+

 are independent of the events in all other such intervals.  This implies that the 

decisions associated to 
i

L  must be based only on the events occurring within the time 

interval 
1

( , ]
i iL Lt t
−

.  It also implies that the loading and deterioration process in the interval 

1
( , ]

i iL Lt t
+

 should be independent of the loading and deterioration process in other such 

intervals.  Furthermore, we need to assume that the system is completely renewed after 

i
L  and its properties at 

iLt are identical to the original properties at 0t = .  This simplifi-

cation along with the above mentioned assumptions are required to ensure that { }
iLT  is a 

SIID sequence.   

Furthermore, in the RTLCA formulation, 
i

L  can be of type 
R

L  or 
F

L , hereafter 

written as events i F
L L≡  and i R

L L≡  respectively.  For any 
i

L ,
 
the events i F

L L≡  and 

i R
L L≡

 
occur with probabilities ( ) ( )

R i R
P L P L L= ≡

 
and ( ) ( )

F i F
P L P L L= ≡ , inde-

pendently of i .  The type of renewal does not depend on the events that have occurred 

after 
iI

t .  For example, i R
L L≡ , even if there is a failure of the system in the lag period 

following 
i

I .  It follows that ( ) ( ) 1
R F

P L P L+ =  and  

 ( ) ( ) ( )( ) ( )
L L F L RT F F R RT L T L

f f L P L f L P Lτ τ τ= +  (5-2) 
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where ( )
LT

f τ  is the probability density function (PDF) of 
iL

T , 
|

( | )
L RT L R

f Lτ  is the PDF of 

iL
T  given that i R

L L≡
 
and 

|
( | )

L FT L F
f Lτ  is the PDF of 

iL
T  given that i F

L L≡ .  Similarly,  

 ( ) ( ) ( )( ) ( )
I I F I RT F F R RT L T L

f f L P L f L P Lτ τ τ= +  (5-3) 

where ( )
IT

f τ  is the PDF of 
iI

T , 
|

( | )
I RT L R

f Lτ  is the PDF of 
iI

T  given that i R
L L≡  and 

|
( | )

I FT L F
f Lτ  is the PDF of 

iI
T  given that i F

L L≡ .  In the following, we propose novel 

integral equations using renewal theory to estimate some important LCA variables based 

on the proposed RTLCA formulation. In order to implement the model, certain probabil-

ities and probability distributions have to be computed that may require simulation of the 

actual events of any one renewal (because all renewal are SIID).  However, since only 

one renewal needs to be simulated, this method is computationally more efficient than 

conducting Monte Carlo simulations of the entire life-cycle.   

5.4.1 Computing the availability 

It is useful to estimate the time for which a system is available for use in its life-span.  

This is because down-times cause inconvenience to the users and loss of income to the 

owner.  In literature, availability of a system has been defined as the fraction of the time 

for which the system is available in a particular time-span.  Following the same idea, we 

define availability of a system for the time interval [0, ]t  as ( ) [ ( )] /
A

A t T t t= , where 

0 {inuse at }( ) 1t

AT t dτ τ= ∫ .  In order to estimate ( )A t , we first compute ( )
S

P t  which is the 

probability that the system is in use at time t .  This implies that the expectation of ( )A t , 

0
[ ( )] ( )

t

S
E A t P t dt= ∫ .  In the following, we propose an integral equation to compute ( )

S
P t  
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for the RTLCA formulation.  Based on first intervention and Total Probability Rule 

(Ang and Tang 2007) 
1

I , we have 

 ( ) ( ) ( )
1 1

in use at , in use at ,
S I I

P t P t T t P t T t= > + ≤  (5-4) 

Noting that the system is in use if 
1I

t T< , we have  

 
1 1

(in use at , ) ( )I IP t T t P T t> = >  (5-5) 

It follows that 

 ( ) ( ) ( )
1 1 1

0

in use at , in use at ,
LI I L T

P t T t P t T t T f dτ τ τ
∞

≤ = ≤ =∫  (5-6) 

Since, the system is not in use in the interval 
1 1

( , )I Lt t  and given the assumption that sys-

tem is completely renewed at 
iLt , we have  

 
( )

( ) ( )

1 1

1

in use at , 0

in use at

I L

L S

P t T t T t

P t T P t t

τ τ

τ τ τ

≤ = = <

= = = − ≥
 (5-7) 

As a result, we have 

 ( ) ( ) ( )
0

( ) 1
I L

t

S T S T
P t F t P t f dτ τ τ = − + −  ∫  (5-8) 

where ( )
ITF t  is the cumulative distribution function (CDF) of 

iIT .  This integral equation 

can be solved numerically for all t , by first discretizing t  as 0, ,2 ,t t∆ ∆ … and re-writing 

Eq. (5-8) using a summation in the place of the integral.   Then, after some rearrange-
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ment of terms, Eq. (5-8) yields an algebraic equation to solve for ( )
S

P k t∆  in terms of 

[( 1) ], [( 2) ], , (0)
S S S

P k t P k t P− ∆ − ∆ … .  Using (0) 1
S

P = , ( )
S

P k t∆  for all k  can be com-

puted starting from 1k =  and moving forward. 

5.4.2 Computing the age 

In order to determine the level of deterioration in a system at time t , it is important to 

determine the age of the system or the time for which the system has been operating 

without any repairs.  In renewal theory, age is defined as the time elapsed since the last 

renewal event (Grimmett and Stirzaker 2001).  In RTLCA, we define age at time t  as 

the time elapsed since the last renewal given that the system is in use at t  and the age is 

zero if the system is down at t .  Mathematically, age 
{in use at }

( ) ( )1
iL t

t t tΛ = − , where 

( )
L

i N t= .  In the following, we propose an integral equation for computing the expecta-

tion [ ( )]E tΛ .  Conditioning on the first renewal, we have 

 ( ) ( ) ( )
1 1

0 0

, ,
L

I LI I L L T T I L I LE t E t T T f d d

τ

τ τ τ τ τ τ
∞

 Λ = Λ = =    ∫ ∫  (5-9) 

where ( , )
I LT T I Lf τ τ  is the joint PDF for 

1I
T  and 

1LT .   

 

( )

( )

1 1
,

0

I I L L I

I L

L L

E t T T t t

t

E t t

τ τ τ

τ τ

τ τ

 Λ = = = < 

= ≤ <

= Λ − ≥  

 (5-10) 

Therefore, we have  
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 ( ) ( ) ( ) ( )
0

1
I L

t

T L T L L
E t t F t E t f dτ τ τ Λ = − + Λ −        ∫  (5-11) 

Equation (5-11) is an integral equation that can be solved as explained earlier with re-

spect to Eq. (5-8).  The function [ ( )]E tΛ  can be used to predict the state of deterioration 

in the system at time t .  For example, it can shown for the RTLCA formulation that the 

instantaneous rate of ultimate failure ( )
F

tν  can be approximated as  

 ( )
( ){ } ( )

( ){ }1

I F

I

F FT L

F

T

f E t L P L
t

F E t
ν

 Λ 
≈

− Λ  
 (5-12) 

Furthermore, if ( )tx  represents the properties of the system at time t  and 

1
( ) [ ( ) | ]

I
t E t T t= >x x , then [ ( )] { [ ( )]}E t E t≈ Λx x .  This is a useful because [ ( )]E tx  for 

the entire life-span of a system can be estimated by simulating the events occurring up to 

only the first intervention. 

5.4.3 Computing the cost of operation 

The expected value of ( )OpC t  can be estimated as follows: 

 ( ) ( ) ( )
1

0

LOp Op L T
E C t E C t T f dτ τ τ

∞

   = =   ∫  (5-13) 

Based on the definition of ( )
Op

C t  and assuming complete renewal of the system at 
iLt , 

we have 
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( )

( )

1

1

1 1

0

L

Op L

T

Op L Op

E C t T t

E c e T E C t e t
γ γτ

τ τ

τ τ τ
− −

 = = < 

   = = + − ≥  

 (5-14) 

Now writing 1

1 1
( ) [ | ]LT

Op Op Lc E c e T
γ

τ τ
−

= = , we have   

 ( ) ( ){ } ( )
0

( )
L

t

Op Op Op T
E C t c E C t e f dγττ τ τ τ−   = + −   ∫  (5-15) 

The computation of the function ( )Opc τ  is essential to compute [ ( )]OpE C t .  In some 

special cases ( )Opc τ  can be easily obtained.  For example if 
1Opc  is independent of 

1LT , 

then 
1

( ) [ ]
Op Op

c E c e γττ −= .  For other cases, simulation of the events in the first renewal 

may be required.   

5.4.4 Computing the failure losses 

In the following, we propose the integral equation to compute [ ( )]
L

E C t  for the RTLCA 

formulation: 

 ( ) ( ) ( )1 1
( ) ( )

L L R R L F F
E C t E C t L L P L E C t L L P L   = ≡ + ≡        (5-16) 

where 

 ( ) ( ) ( )
11 1

0

,
L R

L R L R L RT L
E C t L L E C t L L T f L dτ τ τ

∞

   ≡ = ≡ =   ∫  (5-17) 

and 

 
( )

( )
11 , 0L R L

L

E C t L L T t

E C t e t
γτ

τ τ

τ τ−

 ≡ = = < 

= − ≥  

 (5-18) 
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Therefore, 

 ( ) ( ) ( )1

0
L R

t

L R L RT L
E C t L L E C t e f L dγττ τ τ− ≡ = −    ∫  (5-19) 

Similarly, 

 ( ) ( ) ( )
11 1

0

,
L F

L F L F L FT L
E C t L L E C t L L T f L dτ τ τ

∞

   ≡ = ≡ =   ∫  (5-20) 

where writing 
DF

T  as the down-time after an ultimate failure, we have 

 

( )

( )

( ) ( )

11
,

0

DF

DF

L F L

DF

T

L DF

T

L L

E C t L L T

t T

c e T t

c e E C t e t

γ τ

γ τ γτ

τ

τ

τ τ

τ τ

− −

− − −

 ≡ = 

= < −

= − ≤ ≤

= + − ≤  

 (5-21)

  

It follows that 

 

( ) ( )

( ) ( )

1

0

0

DF

DF

L F

L F

t T

T

L F L FT L

t

F FT L

E C t L L c e e f L d

E C t e f L d

γ γτ

γτ

τ τ

τ τ τ

+

−

−

 ≡ = 

+ −  

∫

∫

 (5-22) 

Combining Eqs.(5-16), (5-19) and (5-22), and using ( ) ( ) 1
R F

P L P L+ = , we have we 

have 
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( ) ( )

( ) ( )

1

0

0

( )
DF

D

L F

L F

t T

T

L F L FT L

t

L FT L

E C t P L c e e f L d

E C t e f L d

γ γτ

γτ

τ τ

τ τ τ

+

−

−

=  

+ −  

∫

∫

 (5-23) 

5.4.5 Computing the benefit 

The benefit Q (t) accounting for the discount rate is as follows: 

 ( ) ( )
0

t

S
Q t q P e dγττ τ−= ∫  (5-24) 

where q  is the benefit derived from having the system in use for a unit time.   

5.5 The deterioration process 

In order to implement the proposed LCA model we need the conditional PDFs 

|
( | )

I RT L R
f Lτ , 

|
( | )

I FT L F
f Lτ , 

|
( | )

L RT L R
f t L , 

|
( | )

L FT L F
f t L  and the probability ( )

F
P L .  These 

quantities depend on the process of deterioration, the process of loads (magnitude and 

time of occurrence) and the intervention criteria.  In this subsection, we briefly describe 

the multiplicative form of Stochastic Semi-Analytical (SSA) model proposed in Section 

4 for modeling deterioration processes.  This formulation is used in the following sub-

section to compute the mentioned distributions and probabilities based on a given 

intervention criteria.   

The capacity of a deteriorating system at time t , [ ( )]
t

C C t= x  is a stochastic 

process, where ( )tx  represents the properties of system at t . 
 
Similarly, the demand 

[ ( ), ]
n nt n tD D t S= x  is a stochastic process, where 

nt
S  is the thn  load since 0t =  and 

n
t  is 
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the time of occurrence of the 
thn  load.  The number of loads to failure 

F
n  is given by 

min{ : 0}
nF t

n n g= ≤ , where 
n nn

t tt
g C D−= −  and t−  is the time instant immediately before 

t .  Accounting for the deterioration process, we have 

 
0 , ,n n n nt C t t D t

g C Y= Γ + Γ  (5-25) 

where n
t  is the time  of occurrence of the thn  load, [ (0), ]

n nt t
Y D S= x  are SIID and ,C tΓ  

and ,D tΓ
 
represent the total effect of deterioration on capacity and demand at time t  con-

sidering the events in time-span [0, ]t .  By suitable rearrangement of terms, 

ˆmin{ : 1}
n nF t tn n Y W= + ≥ , where ˆ [ (0), ] / [ (0)]

n nt tY D S C= x x  is the normalized demand 

with respect to the capacity of the un-deteriorated system, and t
W =

, ,
[1 / ]

C t D t
− Γ Γ .  As a 

result of these definitions, ˆ
nt

Y  are SIID random variables and t
W  is a stochastic process 

that captures the effect of deterioration on the system.  The process 
t

W  may consist of 

both shock and gradual deterioration process.  Assuming that the process of gradual de-

terioration and shocks are mutually independent, 
t

W  can be written as 

 ( )
( )

1
n

N t

t t

i

W Z R t

−

=

= +∑  (5-26) 

where ( )N t  is the number of loads or shocks in the time interval [0, ]t , 
nt

Z  is the shock 

at n
t  and ( )R t  is the state of the gradual process at t . 

In the proposed RTLCA formulation, the SSA model can be used for computing 

ˆ
ˆ( ) [ 1 ] 1 (1 )

nf t t tY
P t P Y W F W= > − = − − , where ˆ ( )

Y
F y  is the CDF of ˆ

nt
Y  which as discussed 
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earlier is SIID independent of 
n

t .  In addition to ˆ ( )
Y

F y , to construct the stochastic 

process 
t

W  as per Eq. (5-26), we need a model for stochastic process { }
n

t  and the 

conditional distribution ˆ|
ˆ( | )

ntZ Y
F z Y  which captures the dependence of the shock 

nt
Z  on 

ˆ
nt

Y .  The process { }
n

t can be obtained by modeling the time of occurrence of loads and 

ˆ ( )
Y

F y  and ˆ|
ˆ( | )

ntZ Y
F z Y  can be obtained by modeling the distribution of the magnitude of 

loads and the response of the system to loads. 

5.6  LCA of an example RC bridge located in a seismic region 

In this subsection, we apply the proposed RTLCA model to the example highway RC 

bridge with one single-column bent shown in Table 3-4.  The bridge is assumed to be 

located in Los Angeles, CA.  We primarily focus on the deterioration and failure of the 

bridge due to earthquakes occurring during its service life.  Furthermore, we consider the 

failure of the bridge caused by excessive lateral deformation of the bridge column.  This 

is generally the most important failure mode for seismically designed bridges.   

The application of the RTLCA for this example system required two steps.  The 

first step consists of constructing the stochastic process { }
n

t  (i.e., the time of occurrences 

of earthquakes) and developing the CDF ˆ ( )
Y

F y  for ˆ
nt

Y  specific to the seismicity of Los 

Angeles and the properties of the example bridge.  Also in this step the model for seis-

mic deterioration ˆ( )
n nt tZ Z Y=  needs to be developed to completely characterize the pro-

cess ˆ{ }
n nt tY W+ .  In the second step, we simulate the process ˆ{ }

n nt tY W+  to compute the 

distributions of 
iIT  and 

iLT , and the values of the conditional probabilities ( )
R

P L  and 
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( )
F

P L .  For this purpose, we need to define an intervention criterion.  Then, we numeri-

cally solve the previously derived integral equations. 

5.6.1 Stochastic model for { }
n

t  and ˆ{ }
nt

Y  

A FE model of the bridge is developed in OpenSees (Mackenna and Fenves 2000) in 

order to assess it dynamic properties.  The details regarding the FE model is described in 

Section 3.  This FE model is used to compute ˆ|
( | )

a
aY S

F y S , the CDF of ˆ
nt

Y  conditioned 

that the value of PSA.  This conditional CDF can be computed using the probabilistic 

deformation demand and capacity models developed by Gardoni et al. (2003) and Choe 

et al. (2007) respectively.  Now in order to compute ( )
aS

f s  the PDF for PSA, we obtain 

the regional seismic hazard curve for Los Angeles corresponding to the natural period of 

the bridge.  The seismic hazard curve is obtained using OpenSHA (Field et al. 2003).  

The CDF ˆ ( )
Y

F y  is now computed by performing the integration ˆ|
( | ) ( )

aa
a SY S

F y S f s ds∫ .  

It is found that ˆ ( )
Y

F y  closely matches the CDF of Gamma distribution with parameters 

(0.678, 0.16).  Using ˆ ( )
Y

F y , we the probability of failure of the system in as-built state 

is given by ˆ(0) 1 (1) 7.6716 04f Y
P F E= − = − .  0 

Following Reasenberg and Jones (1989), the occurrence of main shocks can be 

modeled as a homogeneous Poisson process, where the rate ( )
m

Mλ  of main shocks 

with magnitude 
m

M  greater than or equal to M  is given as follows: 

 ( ) 1 210B B M

m Mλ −=  (5-27) 
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where 1B  and 2B  are regional constants.  It can be seen in eq. (5-27) that the rate of all 

main shocks (i.e., 0
m

M > ) is given by 1(0) 10
B

mλ = .  It can be derived from Eq. (5-27) 

that 2( ) 10
B M

mP M M
−> = .  The instantaneous rate ( , )

a
Mλ τ for aftershocks of magni-

tude 
a

M M≥  following a main shock of magnitude 
m

M  is given by the modified Omo-

ri’s Law (Utsu 1961) as follows: 

 ( )
( )

( )

1 210
,

mB B M M

a p
M

c
λ τ

τ

+ −

=
+

 (5-28) 

where τ  is the time elapsed since the main shock, and c  and p  are regional constants.  

Rearranging the terms, the rate of all aftershocks given that 
m

M M=   

 ( )
( )

( ) ( )

0 1
,0

1
m

m

a p

MF M c

λ
λ τ

τ

 
=  
 − +   

 (5-29) 

where ( )
mMF M  is the CDF for 

m
M .  It is also found in past research that the probability 

distribution of the magnitude of aftershocks is independent of the magnitude of main 

shocks and is indeed the same as that of main shocks.  As a simplification, we assume 

that all earthquakes (main and aftershocks) at the bridge sites originate from a single 

point source.  Now since the distribution of earthquake magnitudes is same for both 

main shocks and aftershocks, the distribution of ˆ
nt

Y  remains the same for main shocks 

and aftershocks.  Now based on Eq. (5-29), we assume that the time-dependent rate of 

aftershocks ( )a
λ τ′  following a main shock with ˆ

nt
Y y=  is given as follows: 
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 ( )
( )

( ) ( )ˆ

0 1

1

m

a p

Y
F y c

λ
λ τ

τ

 
′ =  

 − +    
 (5-30) 

Equation (5-30) is exact if there exists an one-to-one mapping between earthquake 

magnitude and ˆ
nt

Y  and only one earthquake source contributes to the seismic hazard at 

the bridge site.   

5.6.2 Modeling the shock process { }
nt

Z  due to seismic degradation 

The failure of the bridge here is considered as the event where the deformation demand 

on the bridge column during an earthquake exceeds the available deformation capacity 

of the column.  Both the deformation demand and the capacity may be affected by struc-

tural deterioration caused by earthquakes to the columns.  In this example, we consider 

two distinct seismic degradation phenomena in RC columns that affect the probability of 

failure of the columns.  Firstly, we consider the degradation in deformation capacity of 

RC columns due to low-cycle fatigue of longitudinal reinforcement using the seismic 

degradation model developed in Section 2.  Secondly, we consider the effect of seismic 

degradation on static pushover properties of an RC column as modeled in Section 3.  

Based on these degradation models we generate data to develop ˆ|
ˆ( | )

ntZ Y
F z Y , the CDF of 

nt
Z  conditioned on the value of ˆ

nt
Y .  This conditional CDF will be used later to model 

the shock deterioration process caused by earthquakes.  Since, we do not consider gradu-

al deterioration in this analysis, we compute , ,[1 / ]
n n nt C t D tZ = − Γ Γ .  Following method-

ology is used generate the required data: 
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(i) Obtain the elastic response spectrums for 
a

S  for the region of interest.  These 

response spectrums can be obtained from PEER strong motion database.   

(ii) Start with the as-built state of the bridge properties x .  Draw a response spec-

trum from the database and obtain the 
a

S  for 0.84
n

T = s (natural period of the 

bridge)   

(iii) Simulate ˆ
nt

Y  for 
a

S  using the deformation demand model and deformation 

capacity model for RC bridge columns by Gardoni et al. (2003) and Choe et al. 

(2007) respectively. 

(iv) Now simulate the values of K ′ , y
′∆  and DI  using Eqs. (3-1), (3-2), and (3-4). 

(v) Then simulate the degraded deformation capacity and compute , nC t
Γ .   

(vi) Now we need to estimate the effect of seismic degradation on future seismic de-

formation demand caused by the past earthquake having 
a

S  simulated in step (i).  

For this purpose we use the response spectrum used in step (ii) for generating the 

a
S  corresponding to the period of the degraded system.  Then, we estimate the 

change in demand to compute , nD t
Γ .  This step completes the computations for 

one data point ˆ( , )
n nt tY Z .  Several such data points need to computed to estimate 

ˆ|
ˆ( | )

ntZ Y
F z Y .   

Figure 5-2 shows the obtained data obtained using the described steps.  The 

range of obtained 
nt

Z  is [0,1]  because it is found that , 1
nC t

Γ ≤  due to capacity 

degradation and , 1
nD t

Γ ≥  because demand is amplified caused by stiffness degradation.  
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Now, we propose ˆ|
ˆ( | ) ( , )

nt z zZ Y
F z Y Beta A B∼ , where the mean of the distribution given 

by 1 2
ˆ/ ( ) exp( / )

nz z z z z tA A B k k Y+ = − .  This model satisfies the condition that 0 1
nt

Z≤ ≤  

(because ( , )
nt z zZ Beta A B∼ ) and the mean of the distribution follows the trend of the 

data points.  The parameters 1z
k  and 2z

k  can be computed by maximizing the following 

likelihood function: 

 ( ) ( )ˆ1 2 , , , ,
ˆ ˆ ˆ, { , }

n n n nz z t i t i t i t iZ Y
i

L k k Z Y f Z Y= ∏  (5-31) 

where , ,
ˆ{ , }

n nt i t iZ Y  are the data points and ˆ|
ˆ( | )

n nt tZ Y
f Z Y  is the conditional PDF 

corresponding to ˆ|
ˆ( | )

ntZ Y
F z Y .  It is often more convenient to maximize the natural 

logarithm of liklihood function or log-liklihood instead of the liklihood function itself.  

By maximizing the log-liklihood function, it is found that 1 0.546
z

k =  and 2 0.5
z

k = .  

Figure 5-2 shows the fit obtained using the proposed Beta distribution.  We also show 

the 0.95 probability interval centered on the mean.  
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Figure 5-2.  Modeling of shock deterioration pro-

cess accounting seismic damage  

 

 

 

5.6.3 Intervention criteria, renewal time and cost of renewals 

As discussed earlier, there can be several criteria for interventions.  In this example, we 

assume that a bridge is repaired after the 
th

i  earthquake if the value of ( )
f i a

P t p+ ≥ , 

where a
p  is pre-determined acceptable probability of failure.  As an example, we con-

duct the analysis for a
p = 0.001, 0.005, 0.01, 0.05, 0.10.  Generally, in the case of civil 

infrastructure systems, there is a time lag before repairs can be initiated.  It is important 

to consider this time lag because earthquakes are usually followed by aftershocks which 

may cause further damage before the repairs.  We assume, for this example, that the time 

lag is 3 months (0.25 years) to initiate repairs.  We assume that the time to replace a 

bridge is 2 years and the time to repair a damaged bridge is given by a fraction of the 2 

ˆ
nt

Y  

nt
Z

        Mean 

          0.95 Probability interval 
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years proportional to the probability of failure at the time at which the repairs begins, 

i.e., ( 0.25) 2
if IP t + ×  years (where ( 0.25)

iI
t + =  the time at which repairs begin account-

ing for the time lag.)  We also assume the same proportionality also for 
iOpc , i.e., 

( 0.25)
i iOp f I Cc P t C= + × .  In addition, the following values are considered for 

iF
c , γ  

and q : 2.0
iF C

c C= , 0.04γ =  year
-1

 and 0.1
C

q C=  year
-1

.  Table 1 shows the functions 

( )
Op

c t  for all considered values of a
p .  Since 1

1 1
( ) [ | ]LT

Op Op Lc E c e T
γ

τ τ
−

= =  is an expecta-

tion conditioned the value of 
iLT , it can be obtained by performing a statistical regression 

using the 1

1

LT

Opc e
γ−

 versus 
iLT  data .  We obtain this data by simulating the events in the 

first renewal 1L  and perform the regression in the logarithmic space.  It is found that 

( )
Op

c t  increases with the increase in a
p .  The functions ( )

Op
c t  for different values of  

a
p  in Table 1 show that the expected cost of repairs and replacement increases by in-

creasing a
p .  This is because the value of ( )

F
P L  increases by increasing a

p  which re-

sults in greater losses due to failures. 

5.6.4 Results and discussions 

 

Table 5-1 and Table 5-2 show the values of ( )RP L  and the parameters of Gamma distri-

butions used to fit the distributions ( )
IT

f τ , ( )
LT

f τ , | ( | )
I FT L F

f Lτ , | ( | )
L FT L F

f t L  It is ob-

served that ( )RP L  increases when a
p  decreases.  This implies that the system is more 

likely to have preventive interventions than essential interventions by decreasing the 
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value of a
p .  We also observe that expectations of 

iIT  and 
iLT  decrease when a

p  de-

creases.  This implies that the frequency of intervention and renewal events increases by 

decreasing a
p .  Table 5-2 shows that ( | )

iL FE T L  and ( | )
iI FE T L  increase when a

p  in-

creases. 

 

 
 

Table 5-1.  Probabilities and PDFs for the renewal model 

a
p  ( )RP L  ( )

LT
f t  ( )

IT
f t  ( )

P
c t  

0.0010 0.998 (1.840, 15.613) (1.817, 15.613) ( )exp 0.0343 4.626τ− −  

0.0050 0.991 (2.452, 16.185) (2.386, 16.407) ( )exp 0.0364 2.970τ− −  

0.0100 0.983 (2.758, 16.014) (2.674, 16.272) ( )exp 0.0380 2.339τ− −  

0.0500 0.921 (3.458, 15.780) (3.304, 16.160) ( )exp 0.0387 1.059τ− −  

0.1000 0.840 (3.713, 15.866) (3.524, 16.304) ( )exp 0.0391 0.622τ− −  

 

 

 
Table 5-2.  Conditional PDFs for the renewal model 

ap  
| ( | )

L FT L F
f t L  | ( | )

I FT L F
f Lτ  

0.0010 (2.235, 12.350) (1.867, 13.693) 

0.0050 (2.683, 14.387) (2.341, 15.607) 

0.0100 (2.976, 15.033) (2.679, 15.905) 
0.0500 (3.400, 16.045) (3.111, 16.836) 

0.1000 (3.676, 16.011) (3.390, 16.735) 

 

 

 

Figure 5-3 shows that the values of ( )
s

P t  converge around 100t =  years.  It is 

found that initially (i.e., for 25t < years) ( )
s

P t  is higher for higher values of a
p  but the 

converged values are higher for smaller values of a
p .  This implies that for smaller 

values of a
p  the bridge is more likely to be in use in the long run than for higher values 

of a
p .  This trend is reversed in the early part of the service life.  This is because smaller 
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values of a
p  necessitate more frequent interventions initially than the higher values of 

a
p .  However, in the long-run with smaller a

p , bridges are less likely to fail resulting in 

higher probability of being in use at a given time.   

Figure 5-4 shows the plots for ( )A t for a
p  values 0.001, 0.005, 0.010, 0.050, 

0.100.  In the figure, the vertical axis represents ( )A t  and the horizontal axis represents 

t .  The plots show the same trends as in Figure 3 except that no convergence is observed 

for 150t ≤  years.  The plots imply that smaller values of a
p  is beneficial in long-run 

because ultimate failures are avoided to a greater extent. 

Figure 5-5 and Figure 5-6 show two measures that indicate the state of the 

bridge.  Figure 5-5 shows [ ( )]E tΛ  versus t  and Figure 5-6 shows ( )
F

tν  versus t  for the 

values of 
a

p  considered earlier.  Figure 5-5 and Figure 5-6 show that the example bridge 

is expected to deteriorate for the initial 50 years and then both [ ( )]E tΛ  and ( )
F

tν  remain 

approximately constant.  It is also observed that the higher values of a
p  result in greater 

deterioration of the bridge.  However, there is a significant difference in the condition of 

a bridge as captured by [ ( )]E tΛ  and ( )
F

tν .  The values of ( )
F

tν  are more accurate indi-

cator of the condition of the bridge because they indicate the amount of deterioration ex-

perienced since the last renewal while [ ( )]E tΛ  indicates only the time elapsed since last 

renewal.   

Figure 5-7 shows the relation between the expectation of the cost 

( ) ( ) ( )
Total Op L

C t C t C t= +  and a
p .  It is found that [ ( )]

Total
E C t  increases by increasing a

p .  
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The rate of increase of [ ( )]
Total

E C t  decreases with time and [ ( )]
Total

E C t  is expected to 

eventually become constant.  This is because the NPV of costs incurred after a suffi-

ciently long time is small.  This implies that for a given intervention criteria, the costs 

incurred after a sufficiently long period of time ( 150t >  years in this example) are irrel-

evant.   

Figure 5-8 shows the value of [ ( )] /
net C

E Q t C  with respect to t .  At 0t = , 

[ ( )] / 1
net C

E Q t C = −  because the only cost incurred at 0t =  is the construction cost and 

there is no accumulated benefit.  Gradually benefit accumulates and a breakeven (i.e., 

( ) 0
net

Q t = ) is achieved around 12 years.  Based on Figure 5-8, it is found that it is eco-

nomically advisable to lower the values of a
p .  However, the figure does not imply that 

the benefits can be increased indefinitely by increasing the rate of interventions.  This 

conclusion is correct only if interventions are conducted after an earthquake and hence 

the maximum rate of interventions can only be equal to the rate of earthquakes (i.e., re-

pair after every earthquake.) 
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Figure 5-3. Effect of pa on the values of Ps(t) 

 

 

 

 
 

Figure 5-4.  Effect of pa on the availability of the system 
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Figure 5-5 Effect of pa on the age of the system 

 

 
 

Figure 5-6. Effect of pa on the failure rate of the 

system 
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Figure 5-7. Effect of pa on the total expected 

cost of operation and failures 

 

 

 

 
 

Figure 5-8.  Effect of pa on Qnet(t) 
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5.7 Conclusions 

Life-cycle analysis (LCA) provides comprehensive information regarding the 

performance of an engineering system.  In particular, LCA is extremely important for 

making decisions regarding systems that are susceptible to deterioration process.   

In this research, we propose a LCA model based on renewal theory named 

RTLCA.  The proposed model predicts the expected values of time-dependent 

performance indicators such as cost of operation and failures, failure rate and probability 

of being in use or being out of service.  The merits of the proposed RTLCA model are 

that it is not dependent on a particular deterioration model or an operation strategy which 

are the shortcomings of the existing models.  Furthermore, we apply the proposed 

RTLCA model to analyze the life-cycle of a typical reinforced concrete (RC) bridge in a 

seismic region accounting for seismic damage during its life-cycle.  An example 

operation strategy is analyzed, where the bridge is repaired after an earthquake in case 

the instantaneous probability of failure conditioned on the occurrence of an earthquake 

exceeds an allowable limit.  The results show that it is economically more beneficial to 

reduce the acceptable limit which implies frequent interventions.  However, this does not 

imply that interventions can be increased indefinitely to maximize the benefits.  The 

results only conclude that it may be most beneficial to repair after every significant 

earthquake.  These results cannot be extended to other systems or for different loading 

scenarios.     
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6. SECOND ORDER LOGARITHMIC FORMULATION FOR 

HAZARD CURVES AND CLOSED-FORM APPROXIMATION TO 

ANNUAL FAILURE PROBABILITY 

6.1 Introduction 

Closed-form solutions to compute failure probabilities are helpful in engineering for lay-

ing out design options and for estimating initial design parameters.  With the growing 

interest in performance-based engineering, wherein design is essentially based on failure 

probabilities and expected losses, closed-form solutions to compute annual failure prob-

abilities can be crucial for making engineering decisions.  Closed-form solutions are 

generally expected to yield approximate results but wherever possible, accuracy must be 

pursued in order to improve the design process. 

Typically, annual failure probabilities are used as performance measures while mak-

ing recommendations for new designs, repairs and maintenances (Stewart and Dimitri 2003; 

Kong and Frangopol 2003).  In the context of performance-based seismic design, Cornell et 

al. (2002) developed a closed-form solution to estimate annual failure probabilities.  This 

solution relies on a linear logarithmic approximation of hazard curves (linear in the loga-

rithmic scale).  A hazard curve is a plot of the annual probability of exceedance of a hazard 

intensity versus the hazard intensity.  This approximation has been widely used in the exist-

ing literature because it leads to a convenient closed-form solution for the annual failure 

probability.  However, it is well known that hazard curves significantly deviate from a linear 

logarithmic form (Bradley et al. 2007). 
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This section proposes a novel and more accurate formulation to model hazard curves 

named Second Order Logarithmic Form (SOLF), and derives a new closed-form solution for 

annual failure probabilities based on the proposed SOLF.  For illustration, we apply the pro-

posed formulation to an example reinforced concrete (RC) bridge subject to seismic hazard.  

The structural properties of the bridge are selected so as to represent RC bridges designed as 

per Caltrans’ specifications (Caltrans 2006).  We compare the results obtained using SOLF 

with those obtained following the linear logarithmic formulation and an independent numer-

ical integration procedure that uses the actual hazard data.   

This section is organized into seven subsections.  The first subsection presents the 

general formulation for computing annual failure probability and discusses the shortcomings 

of the existing linear logarithmic formulation for hazard curves.  The second subsection pre-

sents the proposed SOLF for hazard curves.  The third subsection provides brief discussions 

on probabilistic formulations for demand, capacity, and fragility functions.  The fourth sub-

section develops the closed-form solution for annual failure probability based on the pro-

posed SOLF.  Then, the fifth subsection presents an application of SOLF and the associated 

closed-form solution for the annual failure probability to an RC bridge subject to seismic 

hazard.  Finally, the sixth subsection presents the conclusions from this section. 

6.2 Annual failure probability 

The annual failure probability, 
fAP , of a system corresponding to a specified performance 

level due to a certain hazard is given as follows: 

 ( ) ( ), 0fA AP P C D S= − <  x x  (6-1) 
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where, [ ]
A

P ⋅  is the annual probability, ( )C x  is the capacity of the system corresponding to 

the specified performance level, ( , )D Sx  is the demand on the system, x  is the vector of 

system properties and S  is the intensity of the hazard.  The Total Probability Rule (Ang and 

Tang 2007) can be used to compute 
fAP  as follows: 

 ( ) ( )fA S

S

P F s f s ds= ∫ ɶ  (6-2) 

where ( )F s  is the fragility function defined as the probability of failure conditioned on the 

value of S , and ( )Sf sɶ  is the annual probability density function (PDF) of the mixed random 

variable S .   

Typically, there is a positive probability of no occurrence of a hazardous event within a 

time-span of one year i.e., [ 0] 0
A

P S = > .  Therefore, there is a probability mass [ 0]
A

P S =  

in ( )Sf sɶ  at 0S = .  In addition to the probability mass, [ 0]
A

P S = , ( )Sf sɶ  consists of a con-

tinuous part, ( )
S

f s , as shown in the following equation: 

 ( ) ( ) [ ] ( )0S S Af s f s P S sδ= + =ɶ  (6-3) 

where ( )sδ  is the Dirac delta function defined as 

 
( ) , 0

0, 0

s s

s

δ = ∞ =

= ≠
 (6-4) 

 ( ) 1s ds

τ

τ

δ
−

=∫   (6-5) 

where 0τ >  is an arbitrarily small value.  Figure 6-1 shows the plot of ( )Sf sɶ .   
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Figure 6-1. Annual PDF for S 

 

 

 

The function ( )
S

f s  can be obtained as the derivative of the function [ ( )]
A

P S s− >  

with respect to s  where ( )
A

P S s>  is the hazard curve.  In engineering, the hazard curve for 

S  is commonly approximated as follows (Cornell et al. 2002; Kennedy 1999): 

 ( ) 1
0

k

A
P S s k s

−
> =  (6-6) 

where 0 0k >  and 1 0k >  are regional empirical constants.  However, Eq. (6-6) has a linear 

form in logarithmic scale and does not provide an accurate fit to hazard curves that do not 

follow a linear logarithmic form (Bradley et al. 2007).  

6.3 Second order logarithmic form 

This study proposes a Second Order Logarithmic Form (SOLF) to model the hazard curves.  

This formulation provides a significantly improved fit to hazard curves with respect to the 

fS(s) 

PA[S=0] 

f S̃
(s

) 
 

s 
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existing linear logarithmic form and still enables a closed-form expression for 
fAP .  The 

SOLF is written as 

 [ ]{ }
2

1 2 min

min

ln lnA

s
P S s a a s S

S

  
> = + ≥  

  
 (6-7) 

where ln( )⋅  is the natural logarithm.  The expression in Eq. (6-7) is a concave parabola in 

the log-log plot with the vertex at min 1[ln( ), ]S a
 
for 2 0a < .  As seen in Eq. (6-7), we use 

only the part of parabola where mins S≥  (i.e., the right portion) to satisfy the condition 

that a hazard curve is a monotonically decreasing function.   

Figure 6-2 shows the seismic hazard curve for San Francisco, CA given in 

Leyendecker et al. (2000) and shows the fit obtained by SOLF and the linear logarithmic 

form.  The values of 1a , 2a  and minS  are found to be −2.85, −0.76 and 0.17, respectively, 

and 1k  and 2k  are found to be −2.14 and 0.0019.  It is seen that the linear logarithmic form 

significantly overestimates ( )
A

P S s>  at small and high values of s  and underestimates the 

same at intermediate values of s , which can lead to inaccurate estimates of 
fAP .  SOLF 

provides a significant improvement in the fit with respect to the linear logarithmic form over 

a wider range of s .  It is also noted that, while SOLF does not provide values of the hazard 

curve for mins S< , this is not expected to affect the estimation of 
fAP  because, with 

reference to Eq. (6-2), ( ) 0F s ≈  for mins S< .  Therefore, 
fAP  based on the SOLF 

formulation can be computed as follows: 

 ( ) ( )
min

fA S

S

P F s f s ds

∞

= ∫  (6-8) 
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where ( )
S

f s  is the derivative of the function [ ( )]
A

P S s− >  with respect to s .  The following 

section briefly discusses the probabilistic formulation for demand, capacity, and fragility 

function.   
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Figure 6-2.  Comparison of SOLF and 

linear logarithmic form for hazard 

curves 

 

 

 

6.4 Probabilistic demand, capacity, and fragility function 

Probabilistic models for demand and capacity are generally written in a transformed space 

(e.g., taking the natural logarithm of the quantities of interest).  This is done so that the 

standard deviation of the modeling error in the transformed space is approximately constant 

(homoskedasticity assumption) and the error follows a normal distribution (normality as-

s 

P
(S

 >
 s

) 

Smin 

          O     Data points 
        ──   SOLF 

        ─  ─  Linear logarithmic  form  
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sumption) (Gardoni et al.2002, 2003; Ramamoorthy et al.2006; Choe et al. 2007; Huang et 

al. 2010; Zhong et al. 2009).  The general probabilistic demand model can be written as 

 ( ) ( ) ( )ˆ, , , , ,d d d d dD S d S Sγ σ ε= + +x Θ x x θ  (6-9) 

where ( , )
d d d

σ=Θ θ  is a vector of unknown model parameters modeled as random vari-

ables, ˆ( , )d Sx  is a deterministic capacity model, ( , , )
d d

Sγ x θ  is a collection of bias cor-

rection terms, 
d

ε  is a standard normal random variable, and 
d d

σ ε  is the model error.  

Similarly, a probabilistic capacity model can be written as 

 ( ) ( ) ( )ˆ, ,c c c c cC c γ σ ε= + +x Θ x x θ  (6-10) 

where ( , )
c c c

σ=Θ θ  is a vector of unknown model parameters modeled as random vari-

ables, ˆ( )c x  is a deterministic model, ( , )
c c

γ x θ  is a collection of bias correction terms, 
c

ε  

is a standard normal random variable, and 
c c

σ ε  is the model error. 

Choe et al. (2007) and Huang et al. (2010) reported that 
c

ε  and 
d

ε  are typically the 

most important random variables in the probabilistic capacity and demand models.  

Therefore, in order to write the fragility function we can ignore the randomness in 
d

Θ , 

c
Θ  and x  and consider them as deterministic values.  This implies that the distribution 

for D  conditioned on the value of S  can be assumed to be normal with expected value 

ˆ[ | ] ( , ) ( , , )d dE D S d S Sγ= +x x θ  and variance 2

dσ .  Similarly, C  can be assumed to be 

normally distributed with expected value ˆ[ ] ( ) ( , )
c c

E C c γ= +x x θ  and variance 2

cσ .  

Based on this observation, the fragility function can be written as:   
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 ( )
[ ]

2 2
,

d c

E D S E C
F S

σ σ

   −  = Φ  
+  

x  (6-11) 

where, {}Φ ⋅  is the standard normal cumulative distribution function (CDF).  The following 

section develops the proposed closed-form expression for 
fAP  using Eqs. (6-8) and (6-11). 

6.5 Proposed solution for annual failure probability 

In order to obtain a closed-form solution of the integral in Eq. (6-8), we assume [ | ]E D S  

can be written as follows: 

 ( ) ( ) ( )1 2lnE D S b S b  = +  x x  (6-12) 

where, 1
( )b x  and 2

( )b x  are in general functions of x .  This assumption results in some loss 

of generality.  However, this form was found to be fairly accurate in some structural and ge-

otechnical applications for approximating the relationship between an intensity measure and 

the demand variable (Cornell et al. 2002; Ramamoorthy et al. 2006; Bazzurro and Cornell 

2004).  Based on this assumption, a closed-form solution to the integral in Eq. (6-8) can be 

obtained through a change of variables.  The integral in Eq. (6-8) is now written as follows: 

 
( ) [ ]

( )
min

1 2

2 2

ln
fA S

S d c

b s b E C
P f s ds

σ σ

∞  + − 
= Φ 

+  
∫  (6-13) 

Now writing minln( / )R S S= , we obtain the annual CDF ( )
R

F r  for R  as follows: 

 ( ) [ ]1
R A

F r P R r= − >  (6-14) 

 [ ] ( ) ( )2

min 1 21 1 exp 1 exp 0A AP R r P S S r a a r r− > = − > = − + >    (6-15) 

Therefore, 
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 ( )1

0

fA R

b r C
P f r dr

σ

∞  −
= Φ 

 
∫

ɶ
 (6-16) 

where, 2 1 min[ ] ln( )C E C b b S= − −ɶ , 2 2

d c
σ σ σ= +  and ( )

R
f r  is the annual PDF for R .  

Integrating by parts we obtain 

 ( ) ( )2 21 1 1
1 2 1 2

00

exp expfA

b r C b b r C
P a a r a a r drφ

σ σ σ

∞
∞   − −

= − + Φ + +   
   

∫
ɶ ɶ

 (6-17) 

where {}φ ⋅ is the standard normal PDF.  By rearranging the terms in {}φ ⋅  and exp( )⋅ , and by 

carrying out the integral we obtain the following result: 

 ( )
( ) 2

1 1 2 1
1 2 22 2 2 2

1 21 2 1 2

exp
exp exp

22 2
f

b a a C bCC
P a

b ab a b aσ σσ σ σ

   
 = Φ − + Φ  

−  − −     

ɶ ɶɶ
 (6-18) 

Eq. (6-18) is a general expression for 
fAP  based on the proposed SOLF of the haz-

ard curve.  In case the probabilistic model for C  is developed using a logarithmic trans-

formation, Eq. (6-18) can be further simplified.  In this case, the term Cɶ  is the natural loga-

rithm of the ratio 1 min 2exp{ [ ]} / exp{ ln( ) }E C b S b+ , where exp{ [ ]}E C  is the median of the 

capacity in the original space and 1 min 2exp{ ln( ) }b S b+  is the median of the demand condi-

tioned on min
S S= .  Now writing 1 min 2exp{ [ ]} / exp{ ln( ) }E C b S bψ = + , we obtain 

 ( )
( ) ( ) ( ) ( )

2

21 1 1

1 2 22 2 2 2
1 21 2 1 2

lnln exp ln
exp exp

22 2
f

ab a b
P a

b ab a b a

ψψ ψ

σ σσ σ σ

          = Φ − + Φ  
−  − −      

(6-19) 

It is found that the expression in Eq. (6-19) can be further simplified for most 

conditions of practical significance.  The term 3[ ln( ) / ] 10ψ σ −Φ − <  for ln( ) / 3.0ψ σ > .  
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Generally it is observed 5.0ψ >  and 0.5σ <  (which implies that ln( ) / 3.0ψ σ > ) in the 

cases of practical significance.  This is because 5.0ψ ≤  corresponds to a value of the 

median capacity that is less than five times the median demand corresponding to minS .  

Also, 0.5σ ≥  indicates a large model error in the demand and capacity models, which is 

typically not observed for engineering systems in particular due to the use of appropriate 

variance stabilizing transformations.  Now, noting that [ ln( ) / ]ψ σΦ −  decreases with 

increase in ψ  and 1 minexp( ) [ ] 1a P S S= > < , we can ignore the term [ ln( ) / ]ψ σΦ − .  Al-

so, noting that [ln( ) / ] 1 [ ln( ) / ]ψ σ ψ σΦ = − Φ −  and 2 2

1 1 2/ 2 1b b a σ− >  we can assume 

that 2 2

1 1 2[ ln( ) / 2 ] 1.0b b aψ σ σΦ − ≈ .  Therefore, using Eq. (6-19), we can write 

 
( ) ( )

2

21 1

2 22 2
1 21 2

lnexp
exp

22
fA

ab a
P

b ab a

ψ

σσ

    ≈
− −  

 (6-20) 

Now by introducing the term 0 0( )
A

P P S s= > , where 0s  is the intensity of the de-

sign event, we can rearrange Eq. (6-20) into the following useful form:   

 ( )1 1

0

a a

fAP e P e
ξ

ξ −≈  (6-21) 

where, 2 2 2

1 1 2/ ( 2 )b b aξ σ= − .  The expression in Eq. (6-21) enables the computation of the 

probability 0P  at the intensity level 0s  of the design event from a target value for 
fAP .  

Therefore, Eq. (6-21) can be useful in design.   

6.6 Application to an RC bridge subject to seismic hazard 

Here, we apply the proposed SOLF to compute 
fAP  for an example RC bridge with 

respect to seismic hazards of San Francisco, CA and Memphis, TN.  These locations are 
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chosen to demonstrate the application for two different hazard levels.  The structural 

properties of the bridge are chosen so as to represent the behavior of a typical single-

column RC over-pass bridge designed as per Caltrans specifications.  In this application, 

we choose to compute 
fAP  for lateral deformation failure of the bridge column.  This is 

because under seismic loading, the lateral deformation failure of columns is the most 

critical mode of failure for RC bridges designed as per Caltrans specifications.  We 

compute the 
fAP  values conditioning on the median ductility capacity µ  of the RC 

column, which is defined as the ratio between the deformation capacity and the 

deformation at yield.  We compare the values of 
fAP  obtained using SOLF and those 

obtained following the linear logarithmic form and by numerically integrating Eq. (6-2). 

6.6.1 Seismic deformation demand and deformation capacity 

Various probabilistic seismic deformation demand models for RC bridges are available 

(Gardoni et al. 2003; Zhong et al. (2009) and Huang et al. 2010.)  These models are devel-

oped using a logarithmic transformation and include  ˆ( , )d Sx , ( , , )
d d

Sγ x θ  and 
d d

σ ε .  In 

this application, we use the demand model by Gardoni et al. (2003).  The probabilistic de-

formation demand model used is as follows: 

 ( ) ( )2 2
ˆ0.61 3.90 1 ,d d a d dD d Sδ θ θ σ ε= + + + +x  (6-22) 

 

( )ˆ , ln

1 1
ln 1

a y

a a y

y

c

ya
a y

y

S
d S S A

A H

S
S A

c c A H

 ∆
= ≤  

 

    ∆   = − + >           

x

 (6-23) 
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where D  is the natural logarithm of the deformation demand, 
a

S  is the PSA 

(normalized with g = 9.812 m/sec2) computed from elastic response spectrum for given 

natural period 
n

T , 2d
θ  is a normal random variable with mean −0.153 and standard 

deviation 0.028, 
d

σ  is a lognormal random variable with mean 0.216 and standard 

deviation 0.022, 
y∆  is the displacement at yield, H  is the height of the structure, 

/y yA V w= , 
yV  is the shear force at yield, w  is the weight of the structure, and 

/ (1 ) 0.42 /
n n n

c T T T= + +  computed assuming an elasto-plastic behavior.  In this work, 

we compute 
fAP  as a function of [ ]E C .  As per Choe et al. (2007), C  corresponding to 

collapse has 0.383
c

σ = .  In the following example we assume that 0.383
c

σ =  for all 

performance levels.   

6.6.2 Numerical example 

Table 6-1 shows the structural properties of the example RC bridge.  The hazard curves 

for 
a

S  corresponding to 
n

T  of the structure for San Francisco and Memphis are 

illustrated in Figure 6-3.  The figure shows the data points for hazard curve for 
a

S  

corresponding to 0.2
n

T s=  obtained from Leyendecker et al.(2000).  The figure also 

shows the fit obtained using the available linear logarithmic form and the proposed 

SOLF.  The values obtained for 0k  and 1k  in Eq. (6-6) are (−2.14, 0.0019) and (−1.04, 

3.882E−04) for San Francisco and Memphis respectively.  It is seen that the SOLF 

provides a significant improvement in the fit for both the locations.  The values obtained 

for 1a , 2a  and minS  in Eq. (7) are (−2.85, −0.76, 0.17) and (−3.31, −0.14, 0.0035) for San 
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Francisco and Memphis, respectively.  To compute the values of 1b  and 2b  in Eq. (6-12), 

a linear fit is obtained to the relation shown in Eq. (6-23).  This fit is obtained (see 

Figure 6-4) for 0 10.0
a

S< < , where 
a

S  has a significant probability.  The values of 1b  

and 2b  are found to be 0.89 and −5.26, respectively.   

 

 
 

Table 6-1. Structural properties of example RC 

bridge 

Parameters Symbols Value Units 

Natural period     
n

T  0.20 s 

Mass    m  3.0E05 kg 

Drift at yield ˆ /
y

H∆  0.01  

Height   H  5.0 m 
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Figure 6-3.  Hazard data for San 

Francisco and Memphis and the fits 

obtained using SOLF and linear 

logarithmic form 
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Figure 6-4.  Fit to obtain the values 

1 0.89b =  and 2 5.26b = −  

 
 

 
We compare the solution of the SOLF formulation with the solution proposed by 

Cornell et al. (2002) and by numerically integrating ( , )F sx  with ( )
S

f s .  In order to 

perform the numerical integration, we first obtain the best possible fit for the hazard data 

in logarithmic using higher order polynomial.  We choose polynomials to obtain the fit 

because it is convenient to differentiate polynomials so as it to obtain ( )
S

f s .  It is found 

that third order polynomial is sufficient for an accurate fit (see Figure 6-5).  We perform 

the numerical integration beyond the maximum value of s  for which hazard data is 

available.  This is done to achieve convergence for the integral because higher values of 

s  significantly contribute to 
fAP . 

 

ex
p
(

 )
 

Sa (g) 

────     Actual response 

─  ─  ─    Linear fit 
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Figure 6-5.  Third order polynomial fit for 

hazard curves used in numerical integration 

 
 

 

We compute the values of 
fAP  conditioning on the value of median ductility 

capacity given by exp{ [ ]} /c yE Cµ = ∆ .  Figure 6-6 and Figure 6-7 show the estimates of 

fAP  based on the three methods.  It is seen that the estimates of 
fAP  obtained using the 

SOLF formulation closely match those obtained by numerical integration.  On the 

contrary, the available solution proposed by Cornell et al. (2002) for the linear 

logarithmic form, significantly deviates from the numerical integration for both the 

locations.  In particular, the linear logarithmic form overestimates 
fAP  for 0.2 2.7

c
µ> >  

and underestimates 
fAP  for 0.2 2.7

c
µ< <  for San Francisco. 

 
 

s 

P
A
(S

a
 >

 s
) 

  ×        Data for Memphis 
  °        Data for San Francisco 

 ───   SOLF 
 ─  ─   Third Order Polynomial 
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Figure 6-6. PfA  values for San Francisco 
conditioning on the value of µc 

 

 
 

Similarly, linear logarithmic form overestimates fAP  for 0.02 0.6µ> >  and 

underestimates fAP  for 0.02 0.6
c

µ< <  for San Francisco.  These deviations reflect the 

deviation of the linear logarithmic form the actual hazard data.  Moreover, the solution 

provided by Cornell et al. (2002) form the linear logarithmic form has a mathematical 

discrepancy, i.e., the value of fAP → ∞  as 0
c

µ →  whereas in theory [ 0]fA A aP P S→ >  

as seen in SOLF and numerical integration.  It is also found that the upper limit of s  

used in numerical integration should not be limited to the maximum value of available 

data because the tail of the density function of 
a

S  makes a significant contribution to the 

estimates of 
fAP .  Therefore, a reasonable extrapolation is necessary to correctly estimate 

the integral.   

────  SOLF 

─  ─ ─  Linear logarithmic form 

─ · ─ ·  Numerical Integration 

µc 

P
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Figure 6-7. PfA  values for Memphis con-

ditioning on the value of µc 

 
 

 

Figure 6-8 compares the 
fAP  versus 0P  plots for San Francisco and Memphis.  It 

is observed that 
fAP  increases with increase in 0P .  This is because higher 

o
P  means that 

the structure is designed for a smaller seismic event and therefore the structure has a 

smaller capacity.  It is also seen that by designing for seismic events with same hazard 

values, different values of 
fAP  are obtained.  This is expected due to the difference in the 

levels of seismicity.  Such estimates are helpful for developing design and retrofit 

guidelines to achieve uniform performance of structures built across regions of varying 

seismic hazards.  A detailed analysis of performance of structures under varying hazard 

levels and the importance of such analysis in the design process is discussed in Williams 

et al. (2009).   
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Figure 6-8. Plot of PfA versus P0 for San 

Francisco and Memphis 

 
 

 

6.7 Conclusions 

Closed-form solutions play an important role in engineering design and decision making.  

In particular, with the advent of performance-based engineering, closed-form solutions 

to compute the annual failure probability 
fAP  are needed.  However, the existing closed-

form solution relies on a convenient linear logarithmic form to model the hazard curve, 

which is an inadequate approximation.   

In this section, we propose a novel second order logarithmic form (SOLF) to 

accurately represent hazard curves.  Furthermore we derive a closed-form solution to 

compute 
fAP  using SOLF.  We apply the proposed formulation to an example RC bridge 

P0 

P
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─  ─  ─  Memphis 
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subject to the seismic hazard of two locations San Francisco, CA and Memphis, TN and 

compare the estimates with those of the existing linear logarithmic form and an 

independent numerical integration procedure.  It is found that estimates based on the 

proposed SOLF match closely those obtained from numerical integration.  It is found 

that the approach based on linear logarithmic formulation significantly overestimates 
fAP  

for small and large values of capacity and underestimates the same for intermediate 

capacity values.  This is because the linear logarithmic form for hazard curve intersects 

the actual hazard curve at two points.  This linear form underestimates the hazard values 

between the two points of intersection and overestimates the same outside the two 

points.  Using the SOLF formulation we derive a relationship between 
fAP  and the 

probability of exceedance 0P  corresponding to a selected design intensity.  It is found 

that for a same value of 0P , San Francisco has higher 
fAP  than Memphis.  This is 

expected due to the higher seismicity of San Francisco.  Such analysis can be used to 

develop design guidelines to achieve uniform seismic performance of structures built 

across regions of varying seismicity.  The developed SOLF formulation is general and 

can be applied to various other hazards (e.g., hurricanes and floods).   
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7. CONCLUSIONS 

7.1 Summary 

Infrastructure systems are critical to the socio-economic prosperity of any country.  

While building new infrastructure is essential, it is equally important to efficiently opera-

tion the built infrastructure to maximize the benefits.  Any lack of planning or short-

sighted objectives in handling infrastructure systems may lead to massive wastage of 

resources and social distress as witnessed in the past.     

Today, the deterioration of public infrastructure systems such as roads, bridges 

and tunnels is one of the major issues in civil engineering.  Deterioration reduces the 

reliability of systems and often results in the collapse and breakdown of the systems.  In 

this research, we propose novel stochastic models to perform life-cycle analysis (LCA) 

of deteriorating engineering systems.  The models are helpful in optimizing the 

reliability of systems and the costs associated with operating a system.  Furthermore, we 

specifically study the process of seismic degradation of reinforced concrete (RC) bridge 

columns and perform LCA of RC bridges in a seismically active region accounting for 

the seismic degradation.   

7.2 Significant contributions 

The primary contributions of this research are as follows: 

1. Evaluation of the seismic vulnerability of RC bridges degraded due to past 

earthquakes: Sections 2 and 3 are dedicated to model seismic degradation of RC 

bridge columns.  In these sections, the effect of earthquakes on the capacity and 

future seismic demands are evaluated and future seismic vulnerability of degraded 
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RC bridges are assessed.  It is shown that there is considerable probability of 

observing multiple damaging earthquakes in a bridge’s life-span and that seismic 

degradation significantly effects the vulnerability of RC bridges with respect to 

future earthquakes.  This contribution is important given that currently seismic 

design practices typically focus only on one-time seismic performance of a 

structure.   

2. Modeling of deterioration processes: Section 4 proposes a novel stochastic model, 

SSA, to model a general process of deterioration in engineering systems.  This 

model accounts for the effect of deterioration on both capacity and future demands 

on the system.  The SSA model proposes a computationally efficient semi-

analytical solution to compute the time to failure and level of deterioration in a sys-

tem.  The SSA model is an important contribution because it addresses some of the 

important issues in the available models in literature and hence is expected to im-

prove the reliability analysis of deteriorating systems.   

3. Life-cycle Analysis (LCA) of deteriorating engineering systems:  Section 5 proposes 

a novel LCA model named RTLCA.  The RTLCA model is applicable to a wide 

variety of engineering systems, deterioration processes and operation strategies.  

The proposed model will be helpful in efficient management of infrastructure sys-

tems and hence will help in maximizing the benefits from infrastructure systems.   

4. Improved Hazard Analysis and Closed-form solutions: Section 6 proposes a novel 

mathematical model for hazard curves named SOLF.  The SOLF formulation reduc-

es the error in the estimation of annual failure probability of structures subject to 
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natural hazards compared to an existing closed-form method that is often used in 

hazard analysis.   

7.3 Future work 

Future research is required in developing frameworks to update the LCA estimates from 

theoretical predictive models such as RTLCA using the data obtained from the field tests 

(such as NDT) conducted on infrastructure systems.  This is important because the data 

from field tests conducted from time to time can help in eliminating some uncertainties 

in the model predictions that are based on initial state of the system.  Furthermore, the 

proposed stochastic LCA and deterioration models should be generalized to account for 

multiple modes of failure in a infrastructure.  This is important because often large infra-

structure systems possess several important modes of failure which govern their reliabil-

ity. 
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