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ABSTRACT 

 

The current state of shale gas reservoir dynamics demands understanding long-

term production, and existing models that address important parameters like fracture 

half-length, permeability, and stimulated shale volume assume constant permeability. 

Petroleum geologists suggest that observed steep declining rates may involve pressure-

dependent permeability (PDP).  

This study accounts for PDP in three potential shale media: the shale matrix, the 

existing natural fractures, and the created hydraulic fractures. Sensitivity studies 

comparing expected long-term rate and pressure production behavior with and without 

PDP show that these two are distinct when presented as a sequence of coupled build-up 

rate-normalized pressure (BU-RNP) and its logarithmic derivative, making PDP a 

recognizable trend. 

Pressure and rate field data demonstrate evidence of PDP only in Horn River and 

Haynesville but not in Fayetteville shale. While the presence of PDP did not seem to 

impact the long term recovery forecast, it is possible to determine whether the observed 

behavior relates to change in hydraulic fracture conductivity or to change in fracture 

network permeability. As well, it provides insight on whether apparent fracture networks 

relate to an existing natural fracture network in the shale or to a fracture network induced 

during hydraulic fracturing. 
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NOMENCLATURE 

A  =  Area, acre  

b  =  Fracture width, ft  

cf  =  Initial rock compressibility, 1/psi  

cg  =  Initial gas compressibility, 1/psi  

ct  =  Initial total compressibility, 1/psi  

cw  =  Initial water compressibility, 1/psi  

CfD  =  Dimensionless hydraulic fracture conductivity  

h  =  Formation thickness, ft  

k  =  Formation permeability, md  

kfw  =  Fracture conductivity, md-ft  

Lw  =  Horizontal well length, ft  

m(p)  =  Real gas pseudopressure, psi2/cp  

nF  =  Number of hydraulic fractures  

pi  =  Initial pressure at formation depth, psi  

pwD = Dimensionless bottomhole flowing pressure 

pwf  =  Bottomhole flowing pressure, psi  

Q  =  Cumulative production, scf  

q  =  Gas production rate, Mscf/d  

rw  =  wellbore radius  

sg  =  Gas saturation, fraction  

T =  Time, hr  

T  =  Formation temperature, °F  
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tDxF  =  Dimensionless time respect to fracture half-length  

te  =  Material balance time, hr  

te, elf = End of linear flow material balance time, hr 

telf = End of linear flow actual time, hr 

V   =  Volume, ft3  

Vp  =  Pore Volume, ft3  

xF  =  Hydraulic fracture half-length, ft  

xs  =  Hydraulic fractures spacing, ft  

zw  =  Vertical distance to lower boundary, ft  

 Greek Variables 

ϕ  =  Porosity, fraction  
 

μ =  Gas viscosity, cp  
 

𝜕p = Derivate with respect to 
pressure 
 

 = Diffusivity 
   

 = Exponential decay factor 
   
Subscripts 

D  =  Dimensionless  
 

e =  Material balance time  
 

elf =  End of linear flow 
   
i = Initial 
   
p = Constant pressure 
   
R = Constant rate 
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CHAPTER I 

INTRODUCTION 

 

Shale gas reservoir systems and their characterization have been shaping industry 

trends on petroleum engineering and current works are trying to understand how these 

systems behave during production life. The big challenge of shale reservoirs systems is 

they do keep a dynamic behavior and their modeling becomes complex through their 

long-term production performance. 

1.1 Problem Descriptions 

Engineering professionals have reported that most of slip decay in production in 

some shale reservoirs is because of a phenomenon called pressure dependent 

permeability. The big discrepancy is in which part of the shale reservoir system, the 

matrix, the existing natural fractures of the hydraulic fractures, the phenomenon takes 

place in. 

A possible modeling solution is a dynamic characterization of the hydraulic 

fractures and its finite conductivity that may experience decay because of overpressure 

stress regimes affecting the reservoir. The role of hydraulic fractures to transmit the fluid 

from a tight rock is elemental for an economic production in these shale systems. 

Another possible answer is the variable value of natural fracture permeability 

from the shale system. As the matrix shows extreme low values, is the network of 

existing fractures that provide most of the feed for production and suffer most of the 

PDP through the production life. 
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The solution of this complex scenario is whether we can report absolute evidence 

of pressure dependent permeability in shale gas reservoir performance. Either by 

analyzing flow regimes showing unit slope, linear or bilinear in pressure transient 

analysis or production analysis, unique characterization solution becomes challenging 

when only one or likely two of those flow regimes are present in the performance of 

such hydraulic fractured wells. 

To solve such engineering doubts, confident and proven dynamic methods are 

used to diminish the uncertainty of characterizing flow regimes. Furthermore, complete 

understanding of such flow regimes is required for an unbiased diagnosis. 

1.2 Objectives 

The first objective of this work is to investigate the influence of pressure 

dependent permeability in the stimulated reservoir volume characterization and its effect 

in the estimated ultimate recovery when constant parametric models are contrasted with 

variable models. 

The second objective is to show the causes of PDP and how to recognize them 

for a better surveillance of long-term reservoir performance. 

1.3 Methodology 

This investigation specifies its scope on homogeneous and dual porosity models 

for multi-traverse fractures shale gas wells with constant and variable permeability 

parameters. Early time flow regime analysis is presented in both pressure and production 

transient analysis by first showing sensitivity analysis with common shale gas properties 



 

3 

 

and later applied on actual reservoir performance, including shale formations from 

Fayeteville, Haynesville and Horn River.  

In the end, conclusions are presented either capturing or not the pressure 

dependent permeability in the dynamic behavior of hydraulic fractured shale gas wells in 

each analyzed formation. 

1.4 Organization of this Thesis 

Chapter I: Introduction – it describes the current problem to be solved and the 

objective of study, giving insights of the objectives, methodologies and key features of 

the thesis. 

Chapter II: Literature analysis – providing with analysis of current and previous 

engineering works on the field. Most of investigation on pressure dependent 

permeability has been focused on sandstone and matrix only, some of them in hydraulic 

fractures and their aperture and effective length. The model available in the selected 

commercial software is also reviewed and the phenomenon of pressure dependent 

permeability is discussed.  

Chapter III: Sensitivity studies on Pressure-Dependent-Permeability – these 

chapters focus on the phenomenon using production data analysis and pressure transient 

analysis to investigate its behavior in shale reservoirs Expected flow regimes explanation 

and Pressure dependent permeability is discussed. 

Chapter IV: Field studies on Pressure-Dependent-Permeability – these chapters 

focus on the Fayetteville, Haynesville and Horn River shales by addressing important 

parameters using homogeneous and pressure dependent models. Expected flow regimes 
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are explained and model matches are suggested. The Pressure dependent permeability is 

discussed. 

Chapter V: Conclusions and recommendations: the purpose of this chapter is to 

compile the ideas developed in this thesis by contrasting similarities and discussing the 

most likely origins of pressure-dependent-permeability. Observations and 

recommendations towards improved reservoir characterization are introduced. 
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CHAPTER II 

LITERATURE REVIEW 

 

The objective of this chapter is to provide background on studies and analytical 

flow models that can be employed to identify evidence of pressure-dependent-

permeability (PDP) in pressure and production transient data. In the following sections, 

matrix, hydraulic fracture and natural fracture PDP will be addressed. A final section 

explains techniques that have been used to detect the presence of PDP in transient data.  

2.1 Matrix-PDP 

Varoigs and Rhoades (1973) simulated buildup behavior for conventional gas 

sandstone reservoirs to investigate PDP behavior. Their model indicated that 

conventional Horner analysis would indicate a flow capacity (kh) value 10% lower than 

true initial values and apparent skin values not caused by physical damage but only by 

permeability reduction around the wellbore. Figure 2.1 shows two simulated buildup 

cases at different drawdown times where damage is present, one with skin factor of 1 

and other of -3 at and its results indicates skin factors because of permeability reduction 

alone are not strictly additive. Such mechanical obstruction generates an additional 

decrease in permeability at early time that decreases at later times. They also showed 

that effects of stimulation seem to override stress-sensitivity effects. In both cases, (kh) 

determination will be nearly correct at early time and decrease with time. 
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Figure 2.1: Horner plots at different drawdown times. 
 

Later, Samaniego et al. (1977) investigated PDP using Eq. 1 to describe flow in 

the reservoir where diffusivity is pressure-dependent.  

 ………………………………………………………….(1) 

where   

……………………………………………………….…….(2) 

They also determined that for buildup dimensionless solutions, constant property 

and pressure-dependent equations were the same for practical purposes, making appear 

that principle of superposition was valid also for pressure-dependent flow. The kh 

estimation was close to kh at average pressure rather than initial pressure when buildup 

solutions were analyzed in terms of pressure than pseudopressure with an error of 7%. 



 

7 

 

Evers and Soeiinah (1977) used the model by Varoigs and Rhoades (1973) to 

investigate the effect on transient test analysis and long term performance of 

permeability changes due to stress variation over the producing life of a reservoir. They 

determined that stress-sensitive behavior during transient testing can be confused with or 

masked by the presence of turbulence and viscosity changes and buildup tests during the 

first few years of production definitively confirm its presence or absence. Walsh (1981) 

confirmed by numerical and field experiments that the effect on flow rate of independent 

changes in pore and confining pressure can be summed as in Figure 2.2.  

 

 

 
 
Figure 2.2: Effective external stress acting on a reservoir. 

 

Later, numerical studies by Kikani and Pedrosa (1991) gave solutions into  

pressure transient behavior by defining a permeability modulus shown on  Eq. 3 that 

accounts for changes in the pressure and captures the exponential decay behavior that 

has been recorded on several core experiments. 

……………………………………………………………………….(3) 
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Studies by Franquet and Rodriguez (2004; 2004) developed tight gas solutions 

that indicated that under PDP conditions calculations for original gas in place (OGIP) 

were under-estimated, and the productivity index at the end of the transient period is 

reduced.  

2.2 Hydraulic Fracture-PDP 

It is very well known and understood that weak proppant materials can be 

crushed under increasing stress as the pore pressure declines (Economides et al. 

2002).To avoid loss of hydraulic fracture conductivity over time, they explain the 

importance of considering strength in proppant selection whenever the fracture is 

expected to undergo increasing effective stress overthe life of the well. Figure 2.3 shows 

data measured by Miller, Conway and Salter (2010) quantifying propped fracture 

conductivity as a function of stress for three types of proppant.  

 

 

 
Figure 2.3: Propped fracture conductivity as a function of stress 
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Similarly, Abass et al. 2007 indicated that waterfracs using low proppant concentration 

are used in shale wells because fines generated from proppant crushed under stress may 

reduce the conductivity of the hydraulic fractures.  

Laboratory studies by Weaver, Richman and Luo (2010) show that geochemical 

proppant degradation is not trivial but occurs as a function of closure stress on the 

proppant and the temperature to which the proppant is exposed. The degree to which 

subsequent remineralization in the proppant pack leads directly to the loss of hydraulic 

fracture permeability depends on the composition of both the proppant material and the 

formation material.  Under some conditions this may account for as much as 90% of 

observed productivity loss, as seen in Figure 2.4. 

 

 

 
Figure 2.4: Effect of conductivity on long-term production 
 

 



 

10 

 

2.3 Natural Fracture-PDP 

Ostensen (1986) discussed a pressure-dependent-permeability (PDP) 

phenomenon by experimental core analysis and numerical modeling, in which initial 

steady-state deliverability was reduced as much as 30% as the average reservoir pressure 

dropped, and the steady-state productivity was controlled by the average of the stress-

dependent permeability over the pseudo-pressure drawdown. Figure 2.5 is a graph of the 

relative gas production rate given by the ratio of the simulated gas rate to the initial rate 

versus the intercept stress shows that the effect was increased at greater depth in 

response to increasing vertical stress. Intercept stress Figure 3 axes means the physical 

property of the rock that depends on the smoothness of the crack faces where smoother 

faces leads to lower intercept stress, which causes larger stress sensitivity. 

 

 

Figure 2.5: Reduction of initial gas production rate because of PDP presence  
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Gale et al. (2007) reported the presence of natural fractures in shale formations, 

specifically in the Barnet Shale. Their study indicated that natural and regionally 

developed, opening-mode fractures may be reopened during hydraulic fracture 

treatments, providing a larger rock volume in contact with the wellbore as shown in 

Figure 2.6. Although most natural fractures observed in the Barnett formation samples 

are sealed, cements in the fractures that are not generally template onto grains in the wall 

rock may allow the fractures to act as planes of weakness that can reactivate.  

 

 

 

 
Figure 2.6: Importance of natural fracture system for optimal stimulation 
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 In fractured reservoirs, there are pre-existing fractures and faults at variable 

orientations. Zoback et al. (2012) states that slow slip on pre-existing fractures is likely 

to be a fundamental component of hydraulic stimulation and may induce slip on mis-

oriented faults only as rapidly as pore pressure propagates along it. As time goes on and 

injection pressure spreads out along fractures the slip velocity may increase as well as 

the amount of displacement, in turn affecting the stress of the reservoir. In-situ stress has 

to be a factor to measure because its variation leads to different interactions on 

permeability changes making the fractures to dilate during injection and close during 

drawdown, especially in tight, overpressured reservoirs (Lorenz 1999).  

To account for stress sensitivities, Tao et al (2009) developed a fully coupled 

poroelastic displacement discontinuity model showing that permeability of a natural 

fracture system can be sensitive to stress changes during production. In an isotropic 

stress condition, fracture deformation is dominated by compression and the shear 

deformation and dilation can be neglected. In this case, the fracture permeability will be 

reduced according to the cubic law of production shown on Eq. 4. 

……………………………………………………………………………….(4) 

where  is the fracture frequency defined as fractures per unit length. This study 

showed that natural fracture permeability decline with production is evident in buildup 

tests as Figure 2.7 illustrates. 
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Figure 2.7: Log-log plot showing decrease of the natural fracture permeability 

 

Tao et al. (2009) further indicates that when anisotropic stress conditions are 

present, shear fracture deformation is approximately linear before yielding, and shear 

stiffness is abruptly reduced to zero after yielding. There are some reservoirs that are 

already at the critical stress conditions and the fractures are already yielded, indicating 

very week fractures for which a disturbance of shear stress can result in large shear 

deformation that induces normal deformation by dilation. This scenario may enhance the 

fracture conductivity and make the permeability of the natural fracture to increase as 

shown in Figure 2.8. If stress contrast between the maximum and minimum principal 

stress is not high enough to make the fractures yielding, then production will reduce the 

overall fracture permeability. 
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Figure 2.8: Increment of fracture permeability from initial conditions. 
 

 This physical behavior was reported by Warpinski (1991) on two scenarios 

where the natural fractures are normal to the maximum stress or are subparallel to the 

maximum stress. The resultant permeability is given as a function of the net stress on the 

natural fractures and for hydraulic fracturing purposes, increased permeability occurs 

when the net stress decreases, hence increasing the leakoff coefficient. 

2.4 Detecting the Presence of PDP in Transient Pressure and Production Data 

Application of pressure transient data is fairly known to detect reservoir changes, 

especially in offshore reservoirs. Petro et al. (1997) used successive pressure buildups to 

identify, characterize and quantify the loss of formation flow capacity in turbidite sands 

of the Gulf of Mexico. In such work, reservoir compaction leaded to fines generation 

which resulted in near wellbore damage and well deliverabilities were reduced up to 
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70%. Later, Guenther et al (2005) used successive buildups to quantify the reduction in 

flow capacity of a gas condensate field in a 1.8 year period. Recently, Pan et al. (2011) 

used successive buildups acquired through the production time of the well to show 

evidence of subsidence in a medium oil brazilian offshore reservoir. To date no evidence 

in literature suggests application of the successive buildup analysis technique in shale 

reservoirs. 

The use of material balance time (te) and pressure normalized rate (PNR) defined 

as instantaneous productivity index allows the long-term production data to be seen as a 

single virtual rate decline at constant pressure Palacio and Blasingame (1993). In this 

study, rate normalized pressure (RNP), which is defined as reciprocal of the 

instantaneous productivity index, will be used to analyzes long-term production data as a 

virtual pressure drawdown at constant rate when graphed versus the material balance 

time. Note that the constant rate condition is more favorable for flow regime 

investigation because it shows characteristic slopes when viewed as the derivative of the 

pressure change with respect to the natural log of time. Therefore, RNP and RNP 

derivative (RNP’) will be used to investigate the flow regimes. Eq. 5 and Eq. 6 show the 

definitions for RNP and RNP’ when pseudopressure function, m(p), is used. 

………………………………………..…………………………..(5) 

……………………………………………….……..(6) 

The single porosity model represents flow behaviors of MTFHW producing from 

homogeneous or single porosity reservoir without any opened, reopened, or natural 

fractures. Song and Ehlig-Economides (2011) presented a sequence of flow regimes for 
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the MTFHW production on log-log rate normalized pressure (RNP) and its derivative 

(RNP’) versus material balance time (te). Five flow regimes are shown in Figure 2.9 

including pseudolinear flow (PL) normal to hydraulic fractures, pseudo pseudosteady 

state flow (PPSS) indicating interference boundary between two fractures, compound 

linear flow with production from beyond fracture tips, pseudoradial flow, and drainage 

boundary behavior induced by the well spacing. They also show the field examples from 

Fayetteville, Haynesville, and New Albany shale with the Haynesville shale example 

show only PPSS and the New Albany shale example show only PL while the 

Fayetteville shale example shows both PL and PPSS flow regimes.  

 

 

 

Figure 2.9: Sequence of flow regimes in a rate-normalized pressure log-log plot. 
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This study provided an equation to calculate the parameters when PL regime is 

observed. Eq. 7 and Eq. 8 can be used for gas when pseudopressure function, m(p), is 

used. 

…………………………………………………..…………..(7) 

…………………………………………………………..(8) 

Eq. 7 and 8 also indicate that MTFHW will exhibit a 1/2 slope straight line for 

both RNP and RNP’ on log-log plots versus material balance time during the formation 

pseudolinear flow regime. Also, it emphasizes that the RNP and RNP’ will be separated 

by a factor of two (2) when fracture skin is negligible.  

A coupled BU-RNP introduced by Ehlig-Economides et al. (2009) will allow for 

a chronological sequence of flow regimes and changing reservoir conditions during its 

performance. This is achieved by multiplying the RNP and RNP’ response by the flow 

rate just before the selected buildup. In consequence, the long response from the 

production analysis is bonded with the early time response of the buildup and connecting 

the flow regimes of the reservoir for their respective quantification. This unified 

approach allows continuous monitoring of production and pressure from individual wells 

and as it relies on drawdown trends, it is more amenable to automated model selection 

and it will be used to identify, characterize and quantify the dynamics of shale reservoirs 

in this study. 
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2.5 Objectives 

This work focuses on identifying whether the presence of pressure dependent 

permeability is evident in shale reservoirs, characterizing the pressure and production 

transient response, and quantifying the permeability or conductivity variation in the 

shale formation and its impact on reservoir performance. 

2.6 Methodology 

Fracture conductivity loss or effective permeability change is evident only after 

sufficient pressure change has occurred to cause a detectable change. In the immediate 

vicinity of the well high pressure gradients in tight formations may induce fracture 

conductivity and/or permeability variations in long term production transient behavior 

that might be detectable in PNR or RNP data presentations.  Hence, this work will 

include sensitivity analysis using available models to evaluate what might be seen in 

transient production data.  

In addition, this study will use the strategy of analyzing sequential rate-

normalized buildup transients as indicated by Pan et al. (2011). Sequential rate-

normalized buildup analysis has not been reported to calculate dynamics on the 

stimulated reservoir volume (SRV). Analysis of synthetic data will demonstrate the 

approach that will then be illustrated using field data.  

2.7 Organization of this Thesis 

Six chapters are planned for this thesis. The details of each chapter are as 

follows: 
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Chapter I: Introduction - this chapter will give information about problem 

description, general idea to the problem, objectives, methodology, and organization of 

the thesis. 

Chapter II: Literature survey - this chapter will provide a brief review of the 

pressure dependent permeability and its effect on the matrix, hydraulic fractures and 

natural fracture network. Description of current and novel methodology to acquire, 

analyze and characterize this phenomena and its influence on the well fracture 

performance on homogeneous reservoirs 

Chapter III: Sensitivity Studies on Pressure-Dependent-Permeability – this 

chapter will use existing models to show that evidence of PDP can be detected in 

transient pressure data in the form of successive pressure buildups and in production data 

as distinctive trends in the RNP derivative.  

Chapter IV: Field Studies on Pressure-Dependent-Permeability – this chapter will 

show presence or absence of PDP in Fayetteville, Haynesville and Horn River shales. 

Observed flow regimes are explained, model matches with data are shown, and PDP is 

discussed. 

Chapter V: Conclusions and recommendations - this chapter will conclude all the 

findings and ideas developed throughout the thesis. Observation and recommendation of 

how this work can improved future reservoir characterization efforts is included. 
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CHAPTER III 

SENSITIVITY STUDIES ON PRESSURE-DEPENDENT-PERMEABILITY 

 

Chapter II provided a literature review on PDP in shale reservoirs. This chapter 

illustrates how this phenomenon manifests in pressure transient analysis (PTA) and 

production data analysis (PDA). Sensitivity studies using exponential decline also 

demonstrate similarities and key differences when fracture permeability, matrix 

permeability are under the influence of PDP in long term production and early transient 

time. 

This chapter also shows how PDP impacts future production and implications on 

30 diagnoses. 

The sensitivity analyses in this study are based on a multistage transverse 

hydraulic fractured well (MTHFW) 4000 feet in length with 41 fractures spaced 100 ft 

apart. Matrix permeability, hydraulic fracture conductivity, and natural fracture network 

permeability sensitivities illustrate are investigated in the following sections. Table 3.1 

shows essential input values for flowing gas sensitivity analyses considering exponential 

decay function in permeability. 

It is necessary to highlight that only permeability from matrix and hydraulic 

fractures are object of this study. Sensitivities about viscosity or porosity dependent on 

permeability are not part of this discussion. 
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Table 3.1: Well parameters of synthetic model 
 

Well Parameters 

L
w
 4000 ft 

h 300 ft 

z
w
 150 ft 

n
f
 41 

 

p
i
 5000 psia 

x
f
 300 ft 

k 100 nd 

ф 0.1  

μ 0.0027 cp 

Area 101.01 acre 

Vp 3.3•108 ft3 

 

3.1 Long Term Production Sensitivity Analysis 

The rate-normalized pressure (RNP) derivative described in Chapter II is used to 

visualize the flow regime behavior for different parameter value combinations in the 

long term production analysis. Infinite and Finite conductivity will consider different 

analysis in this section for both matrix PDP (M-PDP) and hydraulic facture PDP (HF-

PDP).  
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3.1.1 Matrix-PDP Cases 

Chapter II describes exponential permeability decline as one way to model 

matrix PDP (M-PDP). Only changes in the effective permeability using exponential 

values are considered in the following pages. Interestingly, flow regimes will show 

similar behaviors as those with constant permeability values but as exponent values 

changes, early appearance of unit slope will manifest as higher values enters the 

sensitivity. 

3.1.1.1 M-PDP Finite Conductive Fracture Case 

Figure 3.1 shows the impact of the exponent in the PDP model for finite 

conductivity hydraulic fractures with dimensionless conductivity 10.  

Increasing decline exponent corresponds to greater permeability decrease, and 

increasingly higher derivative level. For the same initial permeability, the spread 

between the derivative curves increases over time. The transition from bilinear flow seen 

as ¼ slope to linear flow seen as ½ slope occurs earlier for greater permeability decline 

exponent because over time the fracture dimensionless conductivity increases as the 

matrix permeability decreases. The transition to pseudosteady-state behavior with unit 

slope occurs later for increasing permeability decline exponent, but ultimately all curves 

merge together on the same unit slope trend because this trend is directly dependent on 

the volume drained by the well. As an aid, lines with characteristic flow regime slopes 

are included on the graph.   
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Figure 3.1: Increasing M-PDP and finite conductivity (CfD=10) sensitivity 
 

Figure 3.2 shows sensitivity to flowing pressures starting at initial pressure of 

5000 psia and flowing from pressure differences of 1500 to 4500 psia for the same 

exponentially declining permeability with exponent value of 1•10-3. Under PDP, lower 

flowing pressure reflects higher pressure drop from the formation pressure near the well 

and, therefore, lowers it permeability. This picture illustrates that the more the difference 

from initial pressure, the higher the level of the derivative when it is compared with the 

initial case of no PDP in the sensitivity. As before, all derivative curves tend to merge in 

late time to the same unit slope trend.  
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Figure 3.2: M-PDP finite conductive pressure difference sensitivity  
 

These previous illustrations also show impact on well productivity index, which 

is the reciprocal of the RNP. Productivity index decreases until it reaches a final constant 

value at the start of pseudosteady state. Therefore, the greater the RNP value at the start 

of pseudosteady-state flow, the lower is the well productivity. Since well productivity is 

directly proportional to permeability, as the permeability declines, so will the well 

productivity index. Figure 3.3 illustrates this behavior translated on cumulative 

production over 30 years. 
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Figure 3.3: 30 year M-PDP finite conductivity production forecast 
   

3.1.1.2 M-PDP Infinite Conductive Fracture Case 

Figure 3.4 shows the same sensitivity as in Figure 3.1 but for hydraulic fracture 

dimensionless conductivity of 100.   



 

26 

 

 

Figure 3.4: Increasing M-PDP and infinite conductivity (CfD=100) sensitivity 
 

The more the exponent decay factor increases in this case, the earlier the 

transition from bilinear to linear slope appears on the log-log plot. Figure 3.5 shows 

same sensitivity to flowing pressure as Figure 3.2. The transition between bilinear and 

linear flows remains the same but takes the linear flow longer to achieve unit slope as 

the derivative levels up with the difference of flowing pressure. 
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Figure 3.5: M-PDP infinite conductivity pressure difference sensitivity 
 

Even more interesting is Figure 3.6 where production forecast includes these 

factors. Two scenarios show how the cumulative production displays different trends at 

30 year forecast where the more the decrease, the lower the cumulative of production, in 

particular when higher exponents influences the decay in permeability. Curiously, the 

difference between each scenario is evenly away from each other but similar when the 

factors are as high as greater than 5•10-3. 
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Figure 3.6: 30 year M-PDP finite conductivity production forecast 

 

3.1.2 Hydraulic Fracture-PDP Sensitivity Cases 

In this part of Chapter III, sensitivity studies considering hydraulic fracture-PDP 

(HF-PDP) with infinite conductive fractures and finite conductive fractures will reveal 

different behavior from those showed on previous figures considering M-PDP. 

Interesting to analyze is the reduction on production, made by HF-PDP, over time are 

comparable with the same reductions experienced on M-PDP but different flow behavior 

on log-log plots visualized with RNP. 

3.1.2.1 HF-PDP with Infinite Conductive Fractures 

In this section fracture conductivity is analyzed using the same parameters on 

table 3.1. Because the well is produced at constant pressure, the main effect is immediate 

conductivity lowering in the fractures to correspond to the permeability for the flowing 

pressure. However, the pressure gradient in each fracture is exaggerated by the 

permeability loss, making the apparent fracture conductivity even lower. Interestingly in 
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Figure 3.7, at higher exponent factor above 5•10-3 a valley manifests in the RNP 

derivative with a similar shape of a pseudo steady dual porosity which may represent the 

presence of an outside reservoir dominating the flow from the shale at longer times. 

 

 

 

Figure 3.7: Increasing HF-PDP and infinite conductivity (CfD=100) sensitivity 
 

As the same case with matrix sensitivity, hydraulic fracture permeability also 

experiences a rise in its pressure derivative depending on the magnitude of drop between 

the initial and flowing pressures represented in Figure 3.8. As before, the more the 

difference from initial pressure, the higher the level of the derivative when it is 

compared with the base case of constant permeability.  This graphic in particular shows 
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all flow regimes begin with a bilinear flow which converges towards unit, the higher the 

drop in flowing pressure, the later its unit slope manifests and also shows that at very 

small conductivities, the linear flow represent with a ½ slope can be skipped from the 

derivative.  

 

 

Figure 3.8: HF-PDP infinite conductivity pressure difference sensitivity 
 

Figure 3.9 shows the cumulative production when HF-PDP is into the reservoir 

with with Infinite Conductive Fracture. In such plots, the higher the exponential decay 

for permeability in the hydraulic fracture, the lesser the cumulative production of the 

reservoir, especially the higher the exponent decay in the hydraulic permeability, the 

higher the decay especially going up from the factor 2.5•10-3 represented on light grey.  
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Figure 3.9: 30 year HF-PDP infinite conductivity production forecast 
 

3.1.2.2 HF-PDP with Finite Conductive Fractures 

This section focuses on the same case of the previous section, in this case 

considering finite fracture conductivity and using again the same parameters on table 

3.1. Figure shows an immediate finite conductive flow regime as quarter slope in early 

time that manifests longer as higher exponent of permeability decay influences the 

production at constant pressure. Because the well is produced at constant pressure, the 

main effect is immediate conductivity lowering in the fractures to correspond to the 

permeability for the flowing pressure. In Figure 3.10, the transition from bilinear flow 

seen as ¼ slope to linear flow seen as ½ slope shortens as greater permeability decline 

exponent is introduced. Over time the fracture dimensionless conductivity losses 

influence as a result of loss in hydraulic fracture permeability as well as linear flow from 

the matrix dominates the flow of gas from the reservoir. Also, as figure previously 

showed, higher exponent factor above 5•10-3 makes the RNP derivative to manifest a 
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valley of similar shape of a pseudo steady dual porosity which may represent the 

presence of an outside reservoir dominating the flow from the shale at longer times. 

 

 

 
 
Figure 3.10: Increasing HF-PDP and finite conductivity (CfD=10) sensitivity 

 

As with Figure 3.7, HF-PDP with Finite Conductive Fracture is considered for 

sensitivity with the difference in flowing pressure at a fixed exponential factor of 1•10-3. 

Figure 3.11 is different from other sensitive curves on difference in flowing pressure is 

the transition time. In this case the higher the pressure drops, the earlier the transition 

from bilinear to linear. One thing in common is the convergence towards unit slope  
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Figure 3.11: HF-PDP finite conductivity pressure difference sensitivity 
 

Furthermore, well productivity index also decreases with permeability as the 

previous case of infinite conductive HF-PDP. The higher the exponent decay in the 

hydraulic permeability, the higher the decay, especially going up from the factor 2.5•10-3 

represented on light grey. Dramatic decay from factors of 1•10-4 shows how big the 

difference between well performance is when finite conductive fractures influences 

production. Figure 3.12 shows this HF-PDP sensitivity of the production forecast. 
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Figure 3.12: 30 year HF-PDP finite conductivity production forecast 
  

3.2 Pressure Transient Sensitivity Analysis 

Analyzing Pressure Transient data was not necessary because of the different 

behaviors each RNP showed on early time from matrix to hydraulic fracture pressure 

dependent permeability.  

3.3 Reduced versus Exponential Declining Permeability 

As previously investigated on later times, a final porous volume estimate can 

remain constant whether PDP is present or not in the matrix but a lower exponential 

decay values. For bigger values, unit slope that limits the volume takes longer to appear. 

It is evident that for bigger flowing pressures, the sooner an exponential decay achieves 

a constant permeability pore volume. It results interesting to see how close a constant 

reduced permeability can represent such phenomena when it is contrasted with the 

exponential permeability decay and as Figure 3.17 suggest, a reduction of 61% is 

experienced from a constant permeability behavior to an exponential one. 



 

35 

 

 

 
Figure 3.13: RNP at 2500 psia (left) and quantified reduction (right). 
 

Contrasted with the exponential decay when forecast is set to 30 years, an error 

of 6% between the constant permeability case shown in brown and the exponential decay 

case, shown in green. Even with the case of a constant reduced permeability, the error is 

still not bigger than 6% as shown with the blue line. A curiosity we like to share on the 

right side of Figure 3.18 there is a big production separation at first five years. Between 

a constant reduced and an exponential decay case, the error is not bigger than 3% but 

when either case is compared with a constant permeability case, the error is more than 

22%, making a constant permeability assumption so detrimental and sensitivity to our 

cumulative field production. It may work as explanation for why some reason some 

operators do not keep production of certain shales after 18 or 20 months, explaining 

further development and also may explain why additional fracture stimulation can 

provide deliverable production. 
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Figure 3.14: Production forecast comparison for 30 year and 5 year. 

 

3.4 Chapter Summary 

Sensitivity analysis on shale gas MTFHW shows different flow regime 

manifestations when they appear on log-log plots. Changes in matrix, hydraulic fracture 

and natural fracture permeability show difference response in production and pressure 

transient analysis. 

In the analysis of Long Term Production Data, Matrix PDP usually shows 

changes in level of the pressure derivative as permeability increases or decreases. The 

lower the permeability makes also the sooner to appear the unit slope which declares the 

size of producing volume. When finite conductivity is present, sequential flow regime 

from bilinear-linear-unit is present and the previous signatures appear also on log-log 

plot. 

Hydraulic Fracture PDP shows in the conductivity. The lesser the exponent 

decay on the fracture permeability, the lesser the conductivity and the higher the 

elevation of the derivative is raised but keeping the same unit slope level. It suggests the 

effect to transition towards PSS flow goes from linear flow towards bilinear as higher 
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factors of exponent decay enter in consideration. Also the more the decay in 

permeability in the hydraulic fracture, the longer the bilinear flow regime appears on 

time shortening the linear flow on the plot to the point that can hide from the pressure 

derivative of the RNP. 

Having seen the production data analysis in the form of RNP, synthetic cases for 

build ups on these scenarios were not considered. 
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CHAPTER IV 

FIELD CASES OF PRESSURE DEPENDENT PERMEABILITY 

 

Chapter II briefly described pressure dependent permeability (PDP) in the matrix, 

and in hydraulic fractures. Chapter III showed sensitivity studies of PDP in shale 

reservoirs and showed that behavior of PDP matrix permeability is easily distinguished 

from DPD hydraulic fracture permeability on log-log diagnostic plots of RNP and its 

logarithmic derivative.  

This chapter will show field cases of PDP from Fayetteville, Haynesville, and 

Horn River shale formations found in North America. For each hale, background 

information will be provided before showing field data illustrating distinct transient 

behavior. In particular, while the Fayetteville shale does not show apparent PDP 

behavior, Haynesville shale shows evidence of strong exponential permeability decline 

with increasing pressure difference, and Horn River shale shows slight increase in 

permeability with increasing pressure difference. The possibility of existing or created 

natural fractures in the formations is also considered. 

4.1 Fayetteville Shale Case 

Figure 4.1 illustrates that the Fayetteville shale is located at the state of Arkansas, 

near the Ouachita thrust front. Fayetteville shale gas wells produce ethane, propane and 

butane with a vitrinite reflectance of more than 1.5% (Zumberge et al. 2012). 
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Figure 4.1: Location of Fayetteville shale 

 

The size of the Fayetteville Shale is approximately 9000 square miles, and occurs at 

depths from 1000 to 7000 feet. The thickness of the Fayetteville Shale is from 20-200 feet. 

The shale is Mississippian age. Zumberge et al (2012)  report that the average porosity is 

0.08 and the effective shale matrix permeability is in the nanodarcies range.  
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.  

Figure 4.2: Stratigraphy of Fayetteville shale. 
 

The well selected in this study has an approximate reservoir thickness of 322 ft. 

With a reservoir temperature of 125 oF and TD at around 2,300 ft.MD and a with an 

initial reservoir pressure of 1050 psi.  

On average, the wells were hydraulically fractured with a total of 43 perforation 

clusters along a 3400 ft average horizontal section length giving the average cluster 

spacing of about 80 ft. The wells are produced through 2-7/8” production tubing. 
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Available production data for the Fayetteville shale covers a period of almost two 

years. The data include surface casing and tubing pressure, and surface production rate 

(gas and water). The pressure and production data are collected on an approximately 

daily basis. Casing pressure is used to represent flowing bottomhole pressure by adding 

gas column static pressure to the measured surface casing pressure. Production and 

pressure history plots of a representative Fayetteville well appears in Figure 4.3. 

 

Figure 4.3: Fayetteville shale production and pressure history example 
 

While it is not possible to estimate unique values for the shale permeability and 

fracture half-length, using the technique shown by Song and Ehlig-Economides (2011) a 

maximum value of 220 nd can be estimated for the shale permeability, which, in turn, 

gives a minimum value of 272 ft for the fracture half-length. Figure 4.4 shows RNP and 

derivative computed for the data in Figure 4.3 the late-time RNP behavior shows the ½ 

slope trend characteristic of linear flow.  
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Figure 4.4: Fayetteville shale RNP match. 

 

The data in Figure 4.3 include 2 buildup transients that are shown in Figure. 4.5. 

Both show a ¼ slope trend suggesting finite conductivity hydraulic fractures.  

 

Figure 4.5: Fayetteville shale sequential build up  
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Table 4.1 shows calculations for fracture conductivity from Fig. 4.5 at each build 

up using the maximum permeability value previously used to estimate the fracture half-

length. The buildup trends are nearly the same and provide an average conductivity of 

3.7. Although the early behavior shows finite conductivity, the dimensionless 

conductivity is actually more than 200.  

 

 

Table 4.1: Fayetteville conductivity values for each build up slope 
 

 Time 

(hr) 

kfw 

(md-ft) 

CfD 

BU 1 3000 3.83 217.12 

BU 2 4500 3.69 209.46 

 

 

Figure 4.6 shows a coupled BU-RNP to analyze different time frames of the 

reservoir behavior. BU pressure change and derivative have to be at same reference rate, 

qref, as used for the RNP. This is achieved by multiplying BU pressure change and 

derivative by qlast/qref. The model match shown in Fig.4.7 represents a Cartesian axes 

match. If and when longer term production data show evidence of unit slope trend in late 

time, the permeability and fracture half-length and conductivity data can be revised. This 

case shows the behavior when PDP behavior is lacking.  
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Figure 4.6: BU-RNP plot coupling last buildup and RNP response. 
 

 

Figure 4.7: Cartesian match for Fayeteville shale 
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4.2 Haynesville Shale Case 

The Haynesville shale, in East Texas and West Louisiana, below the Bossier 

formation,  has evolved into one of the most prolific shale gas plays in North America, 

influenced by basement structures, local carbonate platforms and salt movement related 

to the opening of the Gulf of Mexico as represented on Fig. 4.8. One of the unique 

characteristics of the Haynesville Shale is that it is highly geopressured. The high 

pressure gradient tends to enhance porosity, gas content and apparent brittleness of shale 

gas reservoirs. It increases gas content through the increases in porosity and gas density. 

Although, intrinsically, the Haynesville Shale is not as brittle as the Barnett Shale of Fort 

Worth Basin, Texas, the near-fracture-gradient formation pressure makes the effective 

stress (lithostatic pressure minus pore pressure) of the Haynesville Shale very low and, 

thus, makes the formation easy to fracture. 
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Figure 4.8: Haynesville shale location (above) and stratigraphy (below) 

  

Hammes and Frébourg (2012) indicate that the Haynesville shale has high total 

organic content (TOC), good porosity, high gas saturation, low clay content and 

nanoDarcy permeability. Spatially, the Haynesville shale thins over pre-existing 

basement topography. There are three distinct types of natural fractures associated with 
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over-pressures or tectonics, namely pre-compaction, early digenetic and post-

consolidation fractures.  

Because of the extremely low permeability, static bottomhole pressures are 

difficult to determine, and shut-in tubing, shut-in casing or flowing casing pressures are 

normally reported in well tests. Bottomhole pressures of Haynesville Shale wells along 

with those of high-pressure wells of the Haynesville limestone and Bossier sand/shale 

were estimated from test data. Figure 4.9 represents pressure increases from 7,000 psi in 

Harrison County, Texas, to over 10,000 psi in San Augustine and Nacogdoches 

Counties, Texas, and Red River Parish, Louisiana. They are equivalent to pressure 

gradients from 0.6 psi to more than 0.95 psi/ft, with an average of 0.8 psi/ft (Wang and 

Hammes 2010) 
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Figure 4.9: Pressure contours in the Haynesville shale 
 

Younes et al. (2010) shows that the majority of fractures present in cores from 

this formation are carbonate filled and are not likely to contribute to production unless 

reopened during stimulation. Fig. 4.10 shows reactivated fractures that are typically 

limited to the vicinity of the stimulated fractures and do not extend far and the 

mechanically layered nature of the system poses its own challenge to play development 

because the less fractured layers are organic rich whereas the highly fractured layers are 

lean.  
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Figure 4.10: Geological representation of Haynesville 
 

Our available data set of several wells located on Haynesville indicates an 

approximate TD around 12000 MD (15000 TVD) with approximate 17 stages of 

hydraulic fracturing stimulation that includes a total of 35 perforation clusters. Its 

fracture spacing ranges from 50 to 75 ft with an average value of 60 ft and hydraulic 

conductivity has been reported to range less than 10 md-ft in the case of chocked and 

crushed fracture.  

Representative pressure and production rate data from Haynesville shale are 

shown in Fig. 4.11. The gauge data included permanent downhole gauge recording every 

15 minutes, and gas production rate every hour. In this case there is no need to add the 

gas column static pressure because pressures are measured at bottom hole.  
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Figure 4.11:  Haynesville shale production and pressure history example 

 

Figure 4.12 shows the RNP and derivative response for this well. Early time 

shows a ¼ slope trend characteristic of bilinear flow, and late time behavior shows a unit 

slope. As shown by Song and Ehlig-Economides (2011), the unit slope defines the pore 

volume drained by the well. Assuming its extent is approximately defined by the extent 

of the fracture planes, the fracture area is estimated as 3125 ft2. 

 

 
 
Figure 4.12: Haynesville RNP and derivative. 
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In turn, for a thickness of 150 ft, this corresponds to average fracture half-length 

of 115 ft. The end of linear flow behavior provides an estimate for the maximum 

possible permeability at the latest possible before the start of the pseudo-pseudo steady 

state of 257 nd and a minimum possible fracture conductivity value of 16 md-ft. The 

model match shown in the figure uses these parameter values. In overall, there is proper 

pressure measurement recognize several shut-in periods. First, a homogeneous model 

using the RNP shows a match with the infinite conductivity to the behavior of 

production. Figure 4.13 shows a fracture half-length of 115 ft and a boundary slope 

containing a SRV of 3.5 Tcf. 

 

 

 

 
Figure 4.13: Haynesville RNP and cartesian match 

 

Clarkson et al. (2011) suggested that successive build ups offer considerable 

insight about reservoir performance. This well offers several shut-ins for consideration 

and Figure 4.14 shows a log-log pressure and pressure derivative comparative diagnostic 

plot of three buildup (BU) transients from this well. Each buildup shows the ¼ slope 
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trend characteristic of finite conductive fractures, but each successive buildup is at a 

higher level, even after rate normalization. This means that either the shale effective 

permeability or that of the hydraulic fractures is decreasing in time. 

 

 

Figure 4.14: Haynesville sequential buildup. 
 

Table 4.2 shows the calculations from Fig. 4.14 for each build up assuming the 

permeability value used for the match in Fig. 4.13.  Figure 4.15 shows that the trend in 

fracture conductivity as a function of the decline in the model pressure can be modeled 

with an exponential function, which can be modeled as PDP for the hydraulic fracture 

permeability assuming a constant fracture width.  
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Table 4.2: Haynesville conductivity values for each build up slope 

 

 Time 
(hr) 

kfw 
(md-ft) CfD 

BU 1 1436 21.75 162 

BU 2 3260 1.93 14.7 

BU 3 6500 0.3 2.77 

 

 

Figure 4.15: Haynesville conductivity exponential reduction. 
 

  
Alternatively, the successive buildups can be interpreted with constant fracture 

conductivity and variable shale permeability. Table 4.3 shows permeability computed 

from each buildup assuming the fracture conductivity used for the match in Figure. 4.16. 
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Figure 4.20 shows an exponential function for the permeability behavior as a function of 

increasing pressure difference.  

 
 
Figure 4.16: Haynesville permeability reduction. 
 

 This example shows two plausible scenarios, a reduction in conductivity and a 

reduction in permeability. Those changes can be captured by a changing well behavior 

modeling on Fig. 4.17, where either value of permeability or conductivity remains 

constant whereas the other experiments reduction. 
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Figure 4.17: Haynesville changing well models.  
 

Figure 4.18 combines the three buildups with the RNP and derivative graph. 

Each buildup is normalized by the ratio of qlast/qref as described previously. While a 

model match can be found for each BU-RNP combination, the important result is a 

match for the entire history that accounts for PDP in matrix or hydraulic fractures, or 

both. From sensitivity studies on early time performed on Chapter III, these sequential 

buildups shows a quarter slope that represents Figure 3.14, which is the case of a matrix 
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with pressure-dependent-permeability and strongly suggests the application of an 

exponential decay for permeability. 

 

 

 

 
Figure 4.18: Haynesville normalized sequential BU-RNP  

 

The Haynesville shale RNP response is unusual because it is dominated so early 

in time by unit slope, and hence behavior defining the drainage pore volume, so early in 

the production data. In many shale wells, unit slope behavior is not seen for years, but in 

Haynesville shale wells this behavior starts before one month on production.  

Also on Figure 4.18, the bilinear flow regime shown on the BU overlain with the 

bilinear of the RNP confirming that they belong to the same flow regime in both 

analyses. That also means that any reduction of its flowing permeability does not come 
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from a pre-existing natural fracture but from a natural fracture network induced or 

reactivated during hydraulic fracturing.  

Chapter III showed that orders of magnitude higher PDP exponents can induce 

behavior showing much lower apparent drainage pore volume. Figure 4.19 and 4.20 

show a match for the observed behavior with a PDP exponent of 5•10-4 and a fracture 

half-length of 175 ft in both RNP and production history, respectively.  

 

 

 
Figure 4.19: Haynesville Exponential decay permeability match. 
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Figure 4.20: Haynesville History matching with exponential decay permeability  

 

Once a production match satisfies the data, forecast should show how much this 

example can differ from homogeneous to M-PDP case. In Figure 4.21 the difference 

between these two models is more significant in the short term, translated in an error of 

12% in the first 5 years and only 1.1% in the 30 year projection. 

 

 
Figure 4.21: Production forecast with and without M-PDP.  
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4.3 Horn River Shale Case 

The Horn River shale covers 3 million acres as the biggest resource of natural 

gas in a remote and difficult area located along the border between British Columbia and 

the North West territories, approximately 750 miles northwest of Edmonton, Alberta as 

Figure 4.22 illustrates. 

 

 
Figure 4.22: Leased acreage on Horn River. 

 

This is of Upper Devonian age and comparable to the Barnett shale in aspects of 

depth, porosities, productivity, and shale qualities. However, it contains multiple potentially 

productive high temperature and over-pressured shale formations including the 

Carboniferous- Devonian Muskwa, Otter Park, Klua and Evie formations with an average 

temperature of 350°F and an initial pressure ranging from 5500 to 7250 psi for an 
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equivalent formation pressure gradient of 0.6-0.8 psi/ft. The average porosity in the 

Muskwa/Otterpark formation, shown in Figure 4.23, is 0.052 and the reported effective 

shale matrix permeability is in the nanodarcy range (Reynolds and Munn 2010).  

 

Figure 4.23: Geology of Horn River. 
 

The well selected in this study is one of sixteen wells drilled from the same pad 

with average well spacing between adjacent wells of 880 ft. The well depths average 

about 9,000 ft TVD. Figure 4.24 shows the sixteen wells drilled from the same pad. The 

wells were put on production within a 3-month time span. 
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Figure 4.24: Well pad development for Horn River shale. 

 

All the wells have at least one long shut-in period for 2-4 weeks started at the 

same time after around 5-6 months of production. On average, the wells were 

hydraulically fractured in 17 to 21 stages (18 on average) with a total of 25 to 45 

perforation clusters (36 on average) along the 6380 ft average horizontal section length 

giving an average cluster spacing of about 165 ft. The wells are produced through 2-7/8” 

production tubing. 

Available data for the Horn River shale covers a period of almost two years. The 

production data include surface casing and tubing pressure, and surface production rate 

(gas and water). The pressure and production data are collected on an approximately 
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daily basis. Casing pressure is used to represent flowing bottomhole pressure by adding 

gas column static pressure to the measured surface casing pressure. Production and 

pressure history plots of a representative Horn River well are shown in Figure 4.25. 

 

 

 
Figure 4.25: Horn River shale production and pressure history. 

 

In this case, pressure measurement does not come from permanent downhole 

gauges but from wellhead casing and tubing records. Few buildups are found in the 

pressure history. Figure 4.26 shows the RNP and derivative diagnostic plot for a typical 

well. For these data the RNP derivative data tends to be quite scattered, and more 

emphasis must be put on use of the RNP data directly. The RNP trend is approximately 

¼ slope behavior, and there is no indication of a turn toward a unit slope trend that could 

be used to quantify the well drainage pore volume. Knowing that the maximum effective 

fracture length is ½ the well spacing, the minimum permeability is estimated as 330 nd. 

In turn, a maximum estimate for the fracture conductivity based on the approximate ¼ 

slope is 1.8 md-ft. These values provide a reasonable model match for the RNP and 

Cartesian data shown in Figure 4.26.  
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Figure 4.26: RNP and cartesian finite modeling match. 

 

Sequential rate-normalized buildups (BU) in Figure 4.27 demonstrate once again 

a ¼ slope trend, but in this case the level drops in time, suggesting increasing 

permeability or fracture conductivity.  

 

 

 
Figure 4.27: Horn River shale sequential buildup. 
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Table 4.3 and Figure 4.28 shows the fracture conductivity values calculated from 

Figure 4.27 at each build up using the permeability in the match shown in Figure. 4.26. 

From sensitivity studies on early time performed on Chapter III, these sequential 

buildups shows a quarter slope that represents Figure 4.30, which is the case of a matrix 

with pressure-dependent permeability but in this particular example, is an increase in the 

effective flowing permeability that can be modeled as a changing well model to capture 

it.  

 
Table 4.3: Horn River conductivity values for each build up slope 
 

 Time 

(hr) 

kfw 

(md-ft) 
CfD 

BU 1 5000 0.5 32 

BU 2 11000 1.8 117 

 

 
 
Figure 4.28: Horn River conductivity increase. 



 

65 

 

A different scenario is possible by matching the buildups to a specific 

permeability. Fig. 4.32 shows exponential fit for calculated values of permeability by 

keeping the same conductivity, inferring also a better match between the values and the 

behavior of this property in this particular reservoir.  

 

 
 
Figure 4.29: Horn River permeability increase. 

 

This example shows two plausible scenarios, increasing conductivity or 

increasing permeability. Increasing permeability suggests the permeability used to match 

the data is an effective permeability of a natural fracture system with permeability 

increasing due to shear dilation as modeled by Tao, et al 2009 or alternatively this might 

be explained by increasing porosity and permeability as gas  desorbed in the pore space  

(Shabro et al. 2012). Those changes are captured by changing well models shown in Fig. 

4.30 where either value of permeability or conductivity remains constant while the other 

experiences reduction. 
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Figure 4.30: Horn River changing well models  

 

As for the Haynesville example, the combined BU-RNP allows visualization of 

the dynamic behavior. Appiwathanasorn and Ehlig-Economides (2012) showed a dual 

porosity model matches for this well.  Figure 4.31 includes the earlier buildup with high 

acquisition rate data, showing early time information for pressure transient analysis, and 

the second buildup shown previously. , along with dashed curves showing model 

matches for each buildup continuing through the long term production data shown in the 

RNP. The second buildup shown in red has considerably more apparent skin of 0.002 
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than the first buildup, and the RNP shows still higher apparent skin as previously 

mentioned.  Also on Figure 4.31, the bilinear flow regime shown on the BU does not 

overlay the bilinear of the RNP strongly suggesting they don't belong to the same flow 

regime and the presence of a pre-existing natural fracture. That also means that any 

slight increase of its flowing permeability would correspond to an increase of the 

effective permeability of such pre-existing natural fracture network.  

 
 

 

Figure 4.31: Horn River BU-RNP plot. 
 

Once a production match satisfies the data, forecast should show how much this 

example can differ from the description that each build up offers in isolation. In Figure 

4.32 the difference between these two models is more significant in the short term, 

translated in an error of 16% in the first 5 years and only 11% in the 30 year projection. 
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Figure 4.32: Horn River cumulative production forecast. 

 

4.4 Chapter Summary 

 This chapter illustrated PDP behavior using data from Fayetteville, Haynesville 

and Fayetteville and Horn River shale wells. Possible interpretations include constant 

permeability for Fayetteville shale, exponential matrix permeability decay in 

Haynesville shale, and matrix permeability increase in Horn River shale.  

While data may not fully confirm the evidence of pressure-dependent-permeability in all 

field cases, two scenarios with changing permeability or conductivity can match the 

data. Based on expected trends that synthetic data generates, all cases showed quarter 

slope in the pressure derivative response, suggesting a change in effective permeability 

with finite conductive fractures.  

In the case of Fayetteville, most of the derivative responses were stable and kept 

the same level, inferring no change at all. This example showed a quarter slope in early 

time from the buildups that did not change on level at different drawdown times, 

strongly inferring that any substantial change in permeability is lacking.  
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Haynesville shale offered much better quality data for the analysis. The 

derivative levels rose with time indicating decay in the permeability. Two scenarios were 

modeled assuming the volume implied from late time boundary dominated flow was 

defined by the fracture half-length, and both provide a plausible result, each with a small 

permeability decline exponent. When more realistic fracture half-lengths are used the 

most likely answer is reduction in effective permeability, which may be related to a 

natural fracture induced during the hydraulic fracturing.  

 Horn River gave a different scenario. Producing wells are not isolated but 

gathered on a pad, with horizontal well spacing of 880 ft thus limiting the fracture half-

length to a maximum of 440 ft. While they did not use a permanent downhole gauge, 

whenacquisition from wellhead data were acquired with a high data rate, this also 

enabled analysis of earlier time response trends. Pressure derivative showed quarter 

slope with a decreasing leveling over time, suggesting a rise in permeability or fracture 

conductivity. Modeling with increasing permeability matches satisfactory pressure 

response over production time. This insight suggests that existing effective permeability 

is enhanced by created natural fractures during production because of slow-slippage of 

the rock. Or, alternatively this might be explained by increasing porosity and 

permeability as gas is desorbed in the pore space 
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CHAPTER V  

CONCLUSIONS AND RECOMMENDATIONS 

 

The objective of this study was to confirm and quantify the evidence of pressure 

dependent permeability using pressure transient and production data analysis from shale 

formations like Haynesville, Fayetteville and Horn River. 

This study focuses on sequential build up analysis at different drawdown times 

and the use of rate-normalized pressure (RNP). Derivative curves of both the buildup 

and RNP allow diagnosing the flow regimes and characterizing the behavior of the shale 

reservoir in the production life. 

Sensitivity analysis on shale gas MTFHW shows different flow regime behavior 

on log-log plots, especially when changes in matrix or hydraulic fracture permeability 

are present.  

This study shows the behavior between Haynesville, Fayetteville and Horn River 

are different from each other. While they all exhibit ¼ slope in early time, they differ 

from increasing, decreasing or stabilized levels of their pressure derivative responses at 

different drawdown times suggesting changes in effective permeability with finite 

conductivity fractures.  

From the sequential analysis observed in Fayetteville, most of the derivative 

responses were stable and kept the same level, inferring no change at all. This example 

showed a ½ slope in RNP response and ¼ slope in early time from the buildups that did 
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not change on level at different drawdown times, strongly inferring that any substantial 

change in permeability is lacking.   

Because permanent downhole gauges were used for pressure transient data 

generation, Haynesville shale offered much better quality data for the analysis. The 

derivative levels rose with time indicating decay in the permeability. Two scenarios were 

modeled assuming the volume implied from late time boundary dominated flow was 

defined by the fracture half-length, and both provide a plausible result, each with a small 

permeability decline exponent. When more realistic fracture half-lengths are used the 

most likely answer is reduction in effective permeability, which may be related to a 

natural fracture induced during the hydraulic fracturing. Horn River gave a different 

scenario. Producing wells are not isolated but gathered on a pad, with horizontal well 

spacing of 880 ft thus limiting the fracture half-length to a maximum of 440 ft. While 

they did not use a permanent downhole gauge, when acquisition from wellhead data 

were acquired with a high data rate, this also enabled analysis of earlier time response 

trends. Pressure derivative showed quarter slope with a decreasing leveling over time, 

suggesting a rise in permeability or fracture conductivity. Modeling with increasing 

permeability matches satisfactory pressure response over production time. This insight 

suggests that existing effective permeability is enhanced by created natural fractures 

during production because of slow-slippage of the rock. Or, alternatively this might be 

explained by increasing porosity and permeability as gas is desorbed in the pore space.  
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APPENDIX A 

SINGLE POROSITY (HOMOGENEOUS) MODEL BEHAVIOR 

 

The complete flow regimes for the single porosity model are shown in Song et al. 

(2011). However, only pseudolinear flow and pseudo pseudosteady state flow regime are 

likely to be seen in the shale gas field data since the shale matrix generally has very low 

permeability and the time required to reach compound linear flow regime or beyond is 

longer than the expected well life. Also, Song et al. (2011) generated the flow regimes 

using effectively infinite hydraulic fracture dimensionless conductivity (CfD). In our 

work, however, the case with finite hydraulic fracture conductivity will also considered 

to capture the bilinear flow regime which can also be observed in field data. Cinco-Ley 

et al., 1978, indicated that the fracture conductivity is effectively finite when CfD is less 

than 300. This section will begin with the formation pseudolinear flow regime and later 

the formation to hydraulic fracture bilinear flow regime will be shown.  

 

A.1.Formation Pseudolinear flow  

The formation pseudolinear flow represents the flow from formation into hydraulic 

fracture plane before the boundary effect is sensed. During this period, each hydraulic 

fracture cluster is producing independently. The formation linear flow regime equation 

for shale gas flow from MTFHW is given by Eq. A.1 and A.2 in term of RNP and RNP’, 

respectively.  

………………………………………………………….………..(a.1) 
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………………………………………………………..…..(a.2) 

Eq. a.1 and a.2 indicate that the formation pseudolinear flow regime will exhibit a 1/2 

slope straight line for both RNP and RNP’ on log-log plots versus material balance time. 

Also, it emphasizes that the RNP and RNP’ always separate by factor of two (2).  

The products of formation permeability and fracture half-length can be found from the 

log-log plots using Eq. a.1 or a.2. However, a.in general RNP’ is more reliable because 

the RNP behavior may be affected by a fracture skin factor that alters the value of RNP. 

Figure A.2shows that the RNP’ is independent of skin effect. Note that independent 

values for formation permeability and fracture half-length cannot be found because the 

linear flow relationship provides only one equation for these 2 unknowns. 

A.2 Hydraulic Fractures - Matrix Bilinear flow  

When hydraulic fractures have finite conductivity, the pressure drop along the fracture 

length cannot be neglected. In this case, bilinear flow will be observed in production and 

pressure data as a result of simultaneous linear flow in two perpendicular directions, i.e. 

flow inside hydraulic fracture and flow from the formation to the fracture plane. Cinco-

Ley et al. (1978) demonstrated that infinite conductivity assumption is valid only when 

dimensionless fracture conductivity, , is less than 300. Otherwise the 

finite conductivity fracture model must be used.  

Constant rate dimensionless solution for bilinear flow as presented by Cinco-Ley 

and Samaniego (1981) is shown in Eq. (a.3) while constant pressure dimensionless 

solutions as provided by Guppy et al. (1981) is shown in Eq. (a.4). Constant rate  
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. ……………………………….……….………...……….. (a.3)  

Constant pressure  

……………………………………………….…………..……...(a.4)  

Where dimensionless variables for gas are defined by  

. …………………………………………………..…………(a.5)  

. ……………………………………….…………….………....(a.6)  

 . ………………………………………………………………….....(a.7) 

By comparing Eq. (a.3) with (a.4), it can be observed that the solutions for 

constant rate and constant pressure differ by factor of  or 1.11 which indicates 

that the well producing at constant rate condition will encounter 1.1 times more pressure 

drop than when producing at constant pressure during bilinear flow. In section A.1 we 

saw that for linear flow the two solutions are separated by factor of  or 1.57 times.  

Substituting Eq. (a. 3) and (a.4) with definition of dimensionless variables 

defined by Eq. (a.5) thru (a.7), with modification by adding number of hydraulic 

fractures (nF) into the equation as to apply for multi-traverse fractured horizontal well, 

gives the dimensional equations for both constant rate and constant pressure condition as 

follows.  
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Constant rate  

 ……………………………………….…………...(a.8)  

Constant pressure  

………………………………………………………....(a.9)  

Next, differentiating Eq. (3.28) and (3.29) with respect to natural log of time to 

obtain pressure derivative solutions as follows:  

Constant rate  

.………………………………………………..(a.10)  

Constant pressure 

…………………………………………………(a.11) 

Comparing Eq. (a.8) and (a.9) with (a.10) and (a.11) respectively indicates that 

pressure different and pressure derivative always separate by factor of four (4) during the 

bilinear flow period. Again, note that constant rate and constant pressure solutions for 

bilinear flow case s are separated by factor of 1.11.  

Now, taking logarithmic both sides of Eq. (a.8) thru (a.11) gives bilinear flow solutions 

in log-log coordinate as follows:  

Constant rate  

. …………………….………..(a.12)  

and  
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.. ……………………….…..(a.13)  

Constant pressure  

.. ……… ……… ……… ……..… (a.14)  

and  

.. ………………….………...(a.15)  

Again, these log-log form solutions emphasize that both pressure difference and 

pressure derivative will exhibit a quarter slope straight line on log-log pressure 

difference or pressure derivative versus time plot. Moreover, this confirms that the value 

of the pressure difference will always be higher than of pressure derivative by 4 times 

during bilinear flow regardless of at which condition the well is producing, provided 

there is no fracture skin. As for linear flow, when there is fracture skin, the derivative 

response will show ¼ slope even if the pressure difference does not.  

Though the condition is not likely, the single porosity model may be used to 

represent a dual porosity formation characterized with primary porosity of the shale 

matrix and secondary porosity as a fracture network if the difference in conductivity 

between the media is small. In this case, the flow from the matrix may not only flow into 

the reopened fracture network, but will also enter directly into the hydraulic fractures. 

This condition could be considered as simultaneous flows from multiple layers with 

different permeabilities into the well, and the single porosity model might work fine but 
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the “average” or “effective” permeability must be used instead of the absolute matrix 

permeability to represent the average properties of the formations and fracture network.  

Also, the single porosity model may be adjusted to represent the flow from the 

shale matrix into the fracture network by considering that parameters previously related 

to hydraulic fracture as applying instead to the fracture network. 
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APPENDIX B 

DIAGNOSIS USING RNP AND ITS DERIVATIVE 

 

The actual production data is never limited to just constant rate, or constant pressure 

behavior, it is useful to be able to use only one model to characterize both behaviors. The 

concept of using superposition time function instead of the actual time has been introduced. 

The material balance time (te) is one of superposition time functions which is defined as 

cumulative production divided by instantaneous rate, or  

................................................................................................................................(b.1) 

Blasingame et al. (1991) and Agarwal et al. (1998) have shown that when the material 

balance time can be used instead of actual time rate-normalized pressure (RNP) behaves like 

the drawdown pressure resulting from constant rate production. They showed that the 

concept accurately represents the boundary dominated flow regime. However, for this study 

we need to evaluate whether the RNP processing of rate decline during constant pressure 

production produces the same behavior as would occur by modeling drawdown under 

constant rate production for the linear and bilinear flow regimes.  

B.1 Bilinear flow  

First, the constant rate and constant pressure equations are shown in equations (b.1) and 

(b.2), respectively.   
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. …………………………………………………….……….(b.2)  

…………………………………………….…………………...(b.3) 

Where and are the dimensionless time function for constant rate and constant pressure 

conditions, respectively.  

First, equating Eq. (b.2) and (b.3) to find the relation between two time functions when PwD 

= 1/qD:  

 ………………………………………………….(b.4)  

Cancelling terms in Eq. (b.4) to have:  

  ………………………………………………………………….(b.5)  

Adjusting the form and solve for in terms of :  

 …………………………………………………….…………(b.6)  

Since =0.9064 and =1.2254 . Therefore, Eq. (d.6) can be rewritten as:  

 ………………………………………………………….……………(b.7)  

Equation (b.7) indicates that constant rate time function will be larger than constant pressure 

function by 1.52 times during bilinear flow regime.  

Now, let’s find material balance time function for bilinear flow regime that converts 

constant pressure to virtual constant rate:  

Rearranging Eq. (b.3) for flow rate, we have  
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 ………………………………………………………………...…………(b.8)  

Integrating Eq. (b.8) respect to time to get cumulative production equation:  

 ………………………………………...……….(b.9)  

Dividing Eq. (b.9) with Eq. (b.8) to get a material balance time function, in terms of :  

 ………………………………………………………..…………(b.10)  

Equation (b.10) indicates that the RNP and RNP’ diagnostic plots using material 

balance time function will shift the plots the right (later) by factor of (4/3) or 1.33 times 

during bilinear flow regime.  

Rearranging Eq. (b.10), we know that  

 ………………………………………………………………...………(b.11)  

Substituting Eq. (b.11) into (b.7) to get  

 ………………………………………………………..………(b.12)  

Finalize Eq. (b.12), we have  

  …………………………………………………………….………(b.13)  

Therefore, the constant rate time function will be larger than the material balance time 

function by a factor of 1.14 during bilinear flow regime.  

Comparing Eq. (b.13) with (b.7), it appears that material balance time function will shift 

constant pressure plots to be closer to constant rate plots, but still not identical. This 

implies that when plotting RNP and RNP derivative by using material balance time 
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function, a multiplier correction factor of 1.14 is required to convert completely the 

constant pressure plots to the constant rate plots. 

D.2 Linear flow  

The observations for linear flow have been presented by Anderson and Mattar 

(2003). The same methodology as shown for the bilinear flow is used. The results are 

recapped here for completeness.  

First, the constant rate and constant pressure equations for linear flow regime are shown 

in Eq. (b.14) and (b.15), respectively.  

 …………………………………………………………………………(b.14)  

 ………………………………………………………………………… (b.15)  

Where and are the dimensionless time function for constant rate and constant pressure 

conditions, respectively.  

Now, equating Eq. (b.14) and (b.15) to find the relation between two time functions 

when PwD = 1/qD, we have:  

… ………………………………………………………….………(b.16)  

Cancelling terms in Eq. (d.16) to have:  

  ……………………………………………………………….………(b.17)  

Adjusting the form and solve for in terms of:  

… …………………………………………………….…… (b.18)  

Equation (b.18) indicates that constant rate time function will be larger than 

constant pressure function by 2.46 times during linear flow regime.  
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Now, let’s find material balance time function for linear flow regime that 

converts constant pressure to virtual constant rate. 

Rearranging Eq. (b.15) for flow rate, we have  

  ……………………………………………………………………..……(b.19)  

Integrating Eq. (b.19) respect to time to get cumulative production equation:  

  ……………………………………………...………(b.20)  

Dividing Eq. (b.20) with Eq. (b.19) to get a material balance time function, 

in terms of :  

 …………………………………………………………………...………(b.21)  

Equation (b.21) indicates that the RNP and RNP’ diagnostic plots using material 

balance time function will shift the plots the right (later) by factor of 2 during linear flow 

regime.  

Rearranging Eq. (b.21), we know that  

 ……………………………………………………………………..……(b.22)  

Substituting Eq. (b.22) into (b.18) to get  

 …………………………………………….………(b.23)  

Hence, the constant rate time function will be larger than the material balance 

time function by a factor of 1.23 during linear flow regime.  

Comparing Eq. (b.23) with (b.18), it indicates that material balance time function 

will shift constant pressure response to be closer to constant rate response, but still do 

not overlay completely. This implies that when plotting RNP and RNP derivative by 
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using material balance time function, a multiplier correction factor of 1.23 is required to 

convert completely the constant pressure plots to the constant rate plots. 

To summarize, during linear flow period, using material balance time will shift 

constant pressure time function to the right by a factor of 2. However, it will not convert the 

constant pressure to constant rate perfectly because the constant rate time function is larger 

than constant pressure time function by a factor of 2.46. This indicates that the constant rate 

time function will still larger than the material balance time function by a factor of 2.46 / 2 = 

1.23.  

B.3 Distance of investigation  

Now, let’s consider a distance of investigation equation for linear flow in constant pressure 

condition shown in Eq. (b.24).  

  …………………………………………………………..…………(b.24)  

Where telf is the actual time in days at the end of linear flow seen as a deviation from 

a 1/2 slope trend on log-log plots.  

Note that the relations among the dimensionless time functions derived earlier are also 

applicable with dimensional time function. Eq. (b.25) shows dimensional form of Eq. (b.22).  

Linear flow  

… … ……………………………………………………………………………(b.25)  

Where t is a constant rate time function, and te is a material balance time function 

used to convert constant pressure response to virtual constant rate response.  

Substituting t and te in Eq. (b.25) with telf and te with te,elf respectively to have  

…………………………………… ………………………………… …...(b.26)  
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Where te,elf is material balance time in days at the end of 1/2 slope linear flow as 

seen on log-log RNP and RNP’ versus material balance time plots.  

Substituting Eq. (b.26) into Eq. (b.24) we have  

 ……………………………………………………………………(b.27)  

Finalize Eq. (b.27) to get   

………………………… ……………………… ………...………(b.28)  

Eq. (b.28) must be used to calculate distance of investigation instead of Eq. (b.24) 

when material balance time directly read from the log-log RNP plots is used instead of the 

actual time.  

B.4 Observations  

First, let’s recap the dimensionless time function used to derive the distance of investigation 

equation shown below (Wattenbarger et al., 1998).  

 ………………………………………………………………...………(b.29)  

where x is the distance from fracture.  
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Figure B. 1: tDye assumption for distance to boundary equation 
 

From Figure B.1, the time corresponding to the distance to boundary are assumed at 

tDye = 0.50 for constant rate, and tDye = 0.25 for constant pressure. Note that these values are 

defined as the departure time that can visually see on log-log plots, and not the first points 

that deviated from the 1/2 slope straight line.  

The distance to boundary equations are then derived by substituting these values into Eq. 

(b.29) and solve for ye. Eq.(b.30) and (b.31) show the equations for constant rate and 

constant pressure cases, respectively.  

……………………………………………………………………(b.30)  

……………………………………………………………………(b.31)  

Here, it should be noted that the assumed tDye for constant pressure and constant rate 

cases are separated by a factor of 2. However, we’ve shown earlier that the constant rate and 

constant pressure time function are separated by the factor of 2.46, not 2 as assumed.  




