COMPARISON OF TWO DIET AND EXERCISE APPROACHES ON WEIGHT LOSS AND HEALTH OUTCOMES IN WOMEN

A Dissertation

by

MICHELLE ANNE MardoCk

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Richard B. Kreider
Committee Members, Steven E. Riechman, Peter S. Murano, John T. Lightfoot
Head of Department, Richard B. Kreider

December 2012

Major Subject: Kinesiology

Copyright 2012 Michelle Anne Mardock
The purpose of this study was to determine the effects of following either the Curves® Fitness and Weight Management Plan or the Weight Watchers® Momentum™ Plan on body composition and markers of health and fitness in previously sedentary obese women. Fifty-one women (age 35±8 yrs; height 163±7 cm; weight 90±1 kg; BMI 34±5 kg/m²; 47±7% body fat) were randomized to participate in the Curves® (C) or Weight Watchers® (W) weight loss programs for 16-wks. Participants in the C group (n=24) followed a 1,200 kcal/d diet for 1-wk; 1,500 kcal/d diet for 3 wks (~30%:45% CHO:PRO); and 2,000 kcals/d for 2-wks (45:30) and repeated this diet while participating in a supervised Curves® with Zumba program 3-d-wk. Remaining subjects (n=27) followed the W point-based diet program, received weekly group counseling, and were encouraged to exercise. Body composition, anthropometrics, resting energy expenditure (REE), lipid biomarkers, and hormone concentrations were assessed at 0, 4, 10, and 16 weeks. Maximal cardiopulmonary exercise capacity and upper and lower body isotonic strength and endurance were assessed at 0 and 16 weeks. Data were analyzed using multivariate analysis of variance for repeated measures.

MANOVA analysis of body composition data revealed overall time (Wilks’ Lamda p=0.001) and time by diet effects (Wilks’ Lamda p=0.003). Subjects in both groups lost a similar amount of total mass (C -2.4±2.0, -4.1±3.4, -5.1±3.9; W -2.3±2.3, -4.5±3.0, -5.5±4.6 kg, p=0.78). However, subjects in the C group tended to have a greater reduction in percent body fat (C -3.3±5.2, -3.2±4.6, -4.7±5.4; W 0.6±6.7, -
0.6±8.3, -1.4±8.1%, p=0.10) and body fat mass (C -3.9±5.5, -4.6±5.3, -6.4±5.9; W -0.4±5.7, -2.1±6.7, -2.9±7.8 kg, p=0.09), while maintaining FFM (C 1.5±4.3, 0.52±3.7, 1.3±4.0; W -1.8±5.4, -2.4±5.8, -2.5±5.1, p=0.01). While both groups had increases cardiovascular fitness, the C group experienced improvements in upper body muscular endurance (C 1.4±3.9; W -1.2±2.4 repetitions, p=0.006). Both groups experienced improvements in lipid biomarkers; however, only the C group experienced a moderate increase in HDL-c. Results indicate that participants following the C program experienced more favorable changes in body composition and markers of fitness and health than participants in the W program.
DEDICATION

To my parents John and Edna Mardock, who demonstrated the importance of scholarly pursuits and the benefits of hard work; to my Husband Karl, who’s encouragement and patience were instrumental in my successful completion of this challenge; and to my sister Marsha, whom I both admire and adore.
ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Richard B. Kreider, for the opportunity to take on this excellent research project. I would also like to thank my dissertation committee: Dr. Timothy Lightfoot, Dr. Steven Riechman and Dr. Peter Murano for their guidance and support throughout the course of this research. Thanks also to my friends and colleagues in the ESNL lab: Brittanie Lockard, Julie Kresta, Mike Byrd, Sunday Simbo, Claire Baetge, Peter Jung, Majid Koozehchian, Deepesh Khanna, and Christopher Rasmussen for their invaluable support of this project.

I would like to thank Jonathan Oliver for your steadfast support throughout these 4 years. I am thankful I made such a good friend. I would also like to thank Andrew and Vanessa Jagim both for your support of my project and for joining me in celebrating downtime.

Finally, I would also like to express thanks and gratitude to the wonderful women who participated in this study. It was such a joy to watch you successfully lose weight and reap the benefits of a healthier lifestyle. I will remember you always.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER I INTRODUCTION AND RATIONALE</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Statement of the Problem</td>
<td>6</td>
</tr>
<tr>
<td>Purpose</td>
<td>6</td>
</tr>
<tr>
<td>General Study Overview</td>
<td>6</td>
</tr>
<tr>
<td>Hypotheses</td>
<td>7</td>
</tr>
<tr>
<td>Null Hypotheses</td>
<td>7</td>
</tr>
<tr>
<td>Delimitations</td>
<td>8</td>
</tr>
<tr>
<td>Limitations</td>
<td>9</td>
</tr>
<tr>
<td>Assumptions</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER II REVIEW OF THE LITERATURE</td>
<td>11</td>
</tr>
<tr>
<td>Obesity Defined</td>
<td>11</td>
</tr>
<tr>
<td>Etiology of Obesity</td>
<td>12</td>
</tr>
<tr>
<td>Common Consequences of Obesity</td>
<td>17</td>
</tr>
<tr>
<td>Non-pharmacological Treatment of Obesity</td>
<td>19</td>
</tr>
<tr>
<td>CHAPTER III METHODS</td>
<td>30</td>
</tr>
<tr>
<td>Participants</td>
<td>30</td>
</tr>
<tr>
<td>Study Site</td>
<td>31</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>31</td>
</tr>
<tr>
<td>Familiarization Session</td>
<td>31</td>
</tr>
<tr>
<td>Curves Fitness and Weight Management Plan</td>
<td>33</td>
</tr>
<tr>
<td>Weight Watchers Momentum Program</td>
<td>35</td>
</tr>
<tr>
<td>Medical Monitoring</td>
<td>36</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Testing Sessions</td>
<td>37</td>
</tr>
<tr>
<td>Methods and Procedures</td>
<td>38</td>
</tr>
<tr>
<td>Statistical Methods</td>
<td>46</td>
</tr>
<tr>
<td>CHAPTER IV RESULTS</td>
<td>48</td>
</tr>
<tr>
<td>Methods</td>
<td>48</td>
</tr>
<tr>
<td>Participants</td>
<td>48</td>
</tr>
<tr>
<td>Testing Sessions</td>
<td>50</td>
</tr>
<tr>
<td>Program Intervention</td>
<td>51</td>
</tr>
<tr>
<td>Methods and Procedures</td>
<td>53</td>
</tr>
<tr>
<td>Statistical Methods</td>
<td>59</td>
</tr>
<tr>
<td>Results</td>
<td>60</td>
</tr>
<tr>
<td>CHAPTER V SUMMARY</td>
<td>76</td>
</tr>
<tr>
<td>Conclusion</td>
<td>83</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>86</td>
</tr>
<tr>
<td>APPENDIX A CONSENT FORM</td>
<td>117</td>
</tr>
<tr>
<td>APPENDIX B INFORMATION SHEET</td>
<td>122</td>
</tr>
<tr>
<td>APPENDIX C MEDICAL HISTORY QUESTIONNAIRE</td>
<td>124</td>
</tr>
<tr>
<td>APPENDIX D PERSONAL INFORMATION WORKSHEET</td>
<td>126</td>
</tr>
<tr>
<td>APPENDIX E DATA COLLECTION FORM</td>
<td>128</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Overview of Research Design and Testing Schedule…………………………32

Table 2. Curves Fitness and Weight Management Dietary Plan…………………………..34

Table 3. Bruce Protocol…………………………………………………………………44

Table 4. Baseline demographics for the Curves (C) and Weight Watchers (W) groups………………………………………………………………….60

Table 5. Changes in nutritional intake obtained at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) group………………………………………………………………..61

Table 6. Changes in physical activity patterns values observed at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groups……………………………………………………………….63

Table 7. Changes in body composition, resting energy expenditure, and fitness related data values observed at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groups…………………………………….65

Table 8. Changes in general health and fitness values obtained at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groups……………………………………………………………….68

Table 9. Fasting blood lipid values obtained at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watcher (W) groups…..70

Table 10. Fasting glucose, insulin and leptin values obtained at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groups……………………………………………………………….71

Table 11. Changes in SF36 Quality of Life Inventory values observed at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groups………………………………………………………73

Table 12. Changes in eating satisfaction values observed at 0, 4, 10 and 16 weeks of program participation for Curves (C) and Weight Watchers (W) groups…75
CHAPTER I
INTRODUCTION AND RATIONALE

Background

Energy-dense diets and physical inactivity have led to a worldwide epidemic of obesity. The World Health Organization estimates that globally, 1.6 billion adults are overweight and at least 400 million adults are obese\(^1\). In the United States, current estimates are that 68% of US adults are overweight with 35.5% of women and 32.2% of men being characterized as obese\(^2\). Obesity is a multi-factorial disorder that is strongly associated with comorbidities including dyslipidemia, hypertension, cardiovascular disease, stroke, pulmonary diseases, type II diabetes and cancer\(^3-11\). Obesity is also associated with diminished health related quality of life, altered psychological status and reduced sleep quality\(^12-14\). The medical cost of obesity in the United States may be as high as $147 billion annually\(^15\).

Obesity manifests as a result of a multitude of factors. In addition to over nutrition and physical inactivity, genetics, physiological factors and behavioral factors can all contribute to its manifestation. The physical and functional detriments caused by obesity, along with the direct and indirect costs of the disease, have caused much emphasis to be placed on elucidating ways to treat obesity and obesity related comorbidities. Some of the most studied non-pharmacological treatment strategies include: hypocaloric diets with a variety of macronutrient combinations, exercise, and behavioral interventions.
Hypocaloric diets of varying macronutrient distribution have been shown to affect changes in metabolism and body composition and result in improved cardiometabolic risk factors such as blood glucose levels, insulin concentrations, blood lipids indices and blood pressure 16-19. A great deal of research has been conducted in order to ascertain the macronutrient nutrient composition that elicits optimal weight reduction and superior improvements in cardiometabolic health factors. Diets composed of elevated protein combined with moderate amounts of carbohydrate and fat have been extensively studied and are often compared to diets high in carbohydrate in association with moderate intake of protein and fat.

Hypoenergenic diets in combination with elevated protein intake have been shown to result in increased satiety and increased thermogenesis 11,20-22. Furthermore, in several trials, a higher proportion of protein in combination with a reduction in total energy intake improved body composition, facilitated fat loss and improved body weight maintenance following weight loss when compared a high carbohydrate intake 23-25. However, other studies have failed to show a superior effect of elevated protein ingestion 26-28. Investigations of whether elevated protein intake affects greater changes in markers of metabolic syndrome and cardiovascular risk factors have also had mixed results. Some investigations have shown a superior affect of elevated protein ingestion for the reduction of triacylglycerols and improved glucose homeostasis 23, 25, 29, while other have found no significant advantage 24, 27.

Exercise and exercise combined with caloric restriction have been shown to enhance weight loss, increase loss of body fat, and preserve lean body mass.
Additionally, exercise has been shown to improve cardiometabolic risk factors by affecting positive changes in serum lipids, blood pressure, and fasting plasma glucose30. Moreover, exercise induced weight loss has also been associated with biopsychological changes including an improved satiety response to meals and improved appetite control31, 32.

Several investigations have explored the differential effects of combining exercise with hypocaloric diets high in protein or high in carbohydrate. Exercise in conjunction with hypocaloric high protein diets may lead to greater reductions in fat mass33, 34, although not all studies have found a significant affect of elevated protein in comparison to high carbohydrate intake35. Exercise combined with higher protein diets may lead to reductions in triacylglycerols33, 34, whereas change in HDL-C, total cholesterol, and LDL-C have been equivocal when comparing the two diet types33-35.

In addition to hypocaloric diets and exercise interventions, behavioral and cognitive behavior therapies have been shown to facilitate weight loss36, 37. Behavior modification is directed at changing behaviors that impede weight loss and derail weight maintenance. Behavioral modification techniques include stimulus control, goal setting and self-monitoring38. Cognitive therapy strategies aim at identifying and modifying aversive thinking patterns39. Cognitive-behavioral therapy can occur individually or in a group setting where treatment incorporates social support with information dissemination40.

The alarming rise in the prevalence of obesity calls for the identification of weight loss programs that utilize proven weight loss strategies to affect change.
Watchers International, Inc. and Curves International, Inc. are two widely recognized commercial companies that provide weight management services that are based on scientifically validated principles. Weight Watchers International, Inc. is a leading weight-management company with operations in more than 25 countries. Consumers bought $4 billion of Weight Watchers-branded products in 2008, and every week approximately 1.4 million people attend Weight Watchers meetings worldwide. In the Weight Watchers Momentum program, participants attend a weekly meeting conducted by leaders, who are Weight Watchers program graduates. Meetings consist of group discussions and some individual interaction as members weigh in. Group discussions cover a variety of topics including physical activity, recipes, and behavior modification strategies.

In the Weight Watchers Momentum Program, participants are provided a diet plan based on the POINTs system. The POINTS system assigns values to foods based on portion size, calories, fat and fiber content of foods. The majority of research investigating the efficacy of the Weight Watchers POINTS method has utilized the Pure POINTS system. In a study conducted by Truby and colleagues, the Pure POINTS diet plan was shown to provide adequate macro- and micronutrient content with an estimated macronutrient breakdown of 19% Protein, 47% Carbohydrate, and 29% fat. Several investigations have shown the efficacy of the Pure POINTS program for the reduction of body weight and improvement in cardiometabolic health markers.

Curves International is currently the largest fitness franchise in the world with nearly 10,000 locations in over 70 countries. Participants in the Curves program...
perform bi-directional, hydraulic resistance-training exercises interspersed with a low-impact calisthenics exercise for 30-minutes, three times per week. In conjunction with the exercise program, the Curves Fitness and Weight Management plan offers a higher protein (45% Protein, 30% Carbohydrate, 25% fat) or a higher carbohydrate (45% Carbohydrate, 30% Protein, 25% fat) dietary plan, which is followed in phases. Phases include a 1,200 kcalorie phase (1 week) followed by a 1,500 phase (3 weeks) followed by a 2,000-2,500 calorie maintenance phase (2-4 weeks) \(^49\). The Curves Fitness and Weight Management Program is designed to promote and sustain weight loss in women while preserving fat free mass and resting energy expenditure.

Recent research has shown that the Curves exercise program, combined with cyclic weight reduction diets of variable macronutrient composition and caloric phase, is effective in reducing waist circumference, body mass, percent body fat, and waist and hip circumferences without associated reductions in resting energy expenditure \(^35, 50\). The program has also been shown to impart improvements in cardiovascular and muscular fitness \(^35, 50, 51\). Furthermore, plasma leptin levels have been shown to be significantly decreased after 14 weeks of program participation \(^35\). Interestingly, while one study found favorable but non-significant reductions in lipid panel indices after 14 weeks, another revealed a reduction in serum triglycerides following 6 months of program participation \(^52\). Finally, participation in the curves program has been shown to improve quality of life and body image \(^35, 53\). Theoretically, participation in a structured diet and exercise program that includes resistance exercise may preserve FFM loss
during a weight loss program and thereby promote more optimal changes in body composition in comparison to a less structured diet and exercise program.

Statement of the Problem

Does the Curves Fitness and Weight Management plan greater improvements in body composition and markers of health and fitness than the Weight Watchers Momentum Plan in overweight and sedentary women aged 18-50 years?

Purpose

The purpose of this study was to determine whether following the Curves Fitness and Weight Management plan for 16 weeks promotes greater reductions in body weight, improvements in body composition and/or improvements in markers of fitness and health than following the Weight Watchers Momentum Plan for the same period.

General Study Overview

This study was a 16 week study comparing two weight reduction protocols in women aged 18-50 years. Participants meeting physician approved criteria were matched for age and BMI and randomly assigned to either the Curves Fitness and Weight Management plan group or the Weight Watchers Momentum Plan group. Body composition, anthropometric measurements, resting energy expenditure (REE), serum clinical chemistry panels, whole blood counts and hormone concentrations, dietary intake and weekly physical activity, and quality of life were assessed at 0, 4, 6, 10, 12, and 16 weeks to determine differences in weight reduction program effects. Maximal cardiopulmonary exercise capacity and upper and lower body isotonic strength were assessed at 0 and 16 weeks to ascertain chronic program effects.
Hypotheses

Based on the aforementioned published research studies, the following hypotheses were evaluated:

H1: Participants in the Curves group (C) will experience significantly less loss in fat free mass than those in the Weight Watchers (W) group.

H2: Participants in the C group will experience statistically less loss in resting energy expenditure than those in the W group.

H3: Participants in the C group will experience statistically higher increases in maximal cardiovascular capacity than those in the W group.

H4: Participants in the C group will experience statistically higher increases in muscular strength and endurance than those in the W group.

Null Hypotheses

Previous research has not demonstrated the nature of the following relationships. It was important to examine these relationships to check manipulations or confirm the lack of relationship. Therefore the null hypotheses were stated in the following cases:

H01: Participants in the C group will not experience statistically greater reductions in fat mass (FM) and percent body fat than those in the W group.

H02: Participants in the C group will not experience significantly greater reductions in resting cardiovascular parameters including resting heart rate and blood pressure than those in the W group.

H03: Participants in the C group will not experience significantly greater changes in lipid variables than those in the W group.
H04: Participants in the C group will not experience statistically greater changes in HDL values than those in the W group.

H05: Participants in the C group will not experience greater reductions in glucose variables (e.g., fasting glucose and insulin) than those in the W group.

H06: Participants in the C group will not experience statistically greater changes in psychosocial status as measure via questionnaires than those in the W group.

Delimitations

The study was conducted within the following parameters:

1. There were 100 sedentary overweight, female participants (BMI > 25) between the ages of 18-50 years recruited to participate in the study.

2. Participants were recruited with flyers posted on campus, emails sent through the Texas A&M web, and through advertisements run in local newspapers and over local radio stations.

3. Familiarizations and testing sessions were conducted in the Exercise and Sport Nutrition Laboratory (ESNL) at Texas A&M University.

4. Participants were matched for age and BMI then randomly assigned to one of two treatment groups.

5. Participants had not consumed any nutritional supplements that may affect muscle mass or metabolism for at least three months prior to the start of the study.

6. Participants had not participated in an aerobic and/or anaerobic training program for three months prior to the start of the study.
Limitations

1. Participants were recruited from the Texas A&M University and the Bryan/College Station community from those who respond to advertisements for the study. Therefore, the selection process was not truly random. This may have affected the conclusions that can be applied to the general population.

2. Participants in the Curves group were required to adhere to the Curves Weight Management Plan throughout the investigation.

3. Participants in the Curves group were required to adhere to the Curves fitness program consisting of one regular circuit workout and two Curves Zumba workouts each week throughout the investigation.

4. Participants in the Weight Watchers group were required to attend one Weight Watchers meeting each week throughout the investigation.

5. Participants in the Weight Watchers group were required to adhere to the Weight Watchers Momentum Program throughout the investigation.

6. Participants were required to follow the Curves Fitness and Weight Management plan or the Weight Watchers Momentum plan within a free-living environment.

7. Participants completed the Eating Satisfaction Survey, which has not been proven valid or reliable.

8. There were innate limitations of the laboratory equipment that were used for data collection and analysis.

9. There were innate limitations in the sensitivity of the technologies and protocols utilized to identify quantifiable changes in the criterion variables.
10. Daily schedules of each participant and inherent circadian rhythms that exist for all humans as a result of slightly different testing times, stresses, etc., may have affected results.

Assumptions

1. Participants accurately answered the entrance criteria screening questions and the health and activity history forms.

3. Participants followed the Curves Fitness and Weight Management plan or the Weight Watchers Momentum Plan as specified.

2. Participants were honest in completing questionnaires.

4. Participants were honest in completing food and activity logs.

5. Participants in the Weight Watchers group were honest regarding meeting attendance.

6. Participants in the Curves group followed intensity guidelines for all workouts.

7. Participants were motivated and willing to maximally exert themselves during strength and maximal cardiopulmonary testing.

8. Participants adhered to verbal and written instructions and refrained from exercise for 48 hours prior to testing.

9. Participants fasted for at least 12 hours prior to lab collection.

10. Participants reported any adverse events to lab staff.

11. All laboratory equipment was calibrated and functioning properly for all testing sessions.

12. The population, which the sample was drawn from, was normally distributed.

13. The variability between the samples was approximately equal.
CHAPTER II
REVIEW OF THE LITERATURE

Obesity Defined

The World Health Organization classifies overweight as between 25-29 kg/m², moderately obese as ≥ 30 kg/m², and morbidly obese as ≥ 40 kg/m². Men and women who have a BMI ≥ 30 are generally at higher risk for adverse health events than are those who are considered overweight or lean. However, BMI does not distinguish between weight associated with muscle and weight associated with fat. Other measures used to assess obesity include waist-to-hip ratio (WHR) and waist circumference (WC). A high WHR (> 1.0 in men and > 0.85 in women) is indicative of abdominal fat accumulation and may be a good predictor of health risk. However, this ratio can remain constant as individuals increase or decrease weight. Waist circumference provides information about body shape and the presence of central adiposity, as it correlates with abdominal fat mass. Men and women who have a waist circumference > 102 cm (> 40 in) or > 88 cm (> 35 in) respectively, may be at increased risk for metabolic disease. In fact, waist circumference may be more useful for health assessment than either BMI or WHR alone or in combination. Interestingly, waist circumference and BMI are highly correlated (r values range form 0.80-0.95). An expert panel, organized by the National heart, Lung, and Blood Institute (NHLBI) has recommended that both BMI and WC be measured in clinical and
epidemiologic research in order to monitor the efficacy of weight-loss interventions and assess health risk in overweight and obese patients.

Etiology of Obesity

Genetics

Obesity represents a chronic imbalance between energy intake and energy expenditure. A number of factors likely contribute to this energy imbalance. Firstly, genetic factors play a role. Investigations continue to elucidate heritable factors and their impact on the regulation of appetite, satiety and energy expenditure. As of 2005, 135 candidate genes have been linked with obesity-related phenotypes. Genetic variations may contribute to individual variations in levels of fat oxidation, metabolic rate, spontaneous physical activity and sympathetic nervous system activity, which may all contribute to disparities in inter-individual weight gain. Furthermore, gene expression has been shown to be differentially regulated during calorie restriction and weight maintenance. Interestingly, research has also shown that BMI is heritable. It has been estimated that genetic factors contribute between 30-70% to the development of obesity.

Excessive Intake

Weight gain may also occur secondary to excessive intake. Factors such as cognition, emotion and reward in addition to ubiquitous sources of highly palatable and relatively inexpensive food may contribute to excessive intake and lead to energy imbalance. Developmental and epigenetic pathways to obesity have also been explored, where it is hypothesized that a nutritionally limited environment early in life
may lead to adaptive responses that increase the risk of developing obesity later on when living in an obesogenic environment 76. Furthermore, there is growing evidence that hormone-mediated behavioral and neuronal activity contribute to appetite stimulation and increased food consumption 85.

Physical Inactivity

Physical inactivity has been shown to contribute to energy imbalance. On a population level, studies have demonstrated that decreased physical activity plays a prominent role in the increasing rates of obesity in increasingly sedentary populations 86-90. A recent literature review examined available evidence for energy expenditure adapting to energy intake and vice versa. In a review of six studies where 54 subjects were overfed with 20-100% of weight maintenance intake for 14-65 days, an increase in energy intake did not result in an increase in energy expenditure through more body movement 91. Furthermore, in a study conducted by Stubbs and colleagues, reductions in physical activity to a more sedentary routine did not induce reductions in energy intake 92.

Hormones and other factors

In addition to genetics, excessive caloric intake, and inactivity, several hormone and secreted factors have been implicated in the etiology of obesity. The gastrointestinal tract secretes hormones that affect appetite. Factors such as cholecystokinin (CCK), Glucagon-like peptide 1 (GLP-1), Oxyntomodulin, and peptide YY all contribute to satiety. One highly investigate orexigenic hormone, ghrelin, is synthesized mainly in the stomach but also exists endogenously in the hypothalamus 85,93. It has been hypothesized
that ghrelin plays an important role in signaling energy insufficiency. Ghrelin has been shown to stimulate appetite, promote food intake, and may facilitate weight gain94-96. Ghrelin has also been implicated in insulin and glucose metabolism97, 98.

Plasma ghrelin concentrations increase before meals and following food deprivation and decrease following feeding99, 100. Interestingly, fasting ghrelin levels are decreased in human obesity101. Additionally, obese individuals may demonstrate a reduced ghrelin post-prandial suppression, which may influence satiety and thus, reinforce obesity102, 103. Diet–induced weight loss is associated with an increase in fasting ghrelin. This increase in plasma ghrelin level with weight loss may be indicative of a long-term role in weight regulation in addition to the short term effects of ghrelin100.

Another highly investigated hormone is leptin. The hormone leptin is produced predominantly in adipose tissue. The concentration of leptin in adipose tissue and plasma parallels the mass of adipose tissue and plasma triglyceride content99, 104. It has been hypothesized that the major function of leptin is to signal CNS tracts regulating energy intake and expenditure that energy stores are below a critical level. This critical threshold may be determined by genetic, developmental, and/or metabolic circumstances99, 105. Leptin may also work at the reward circuitry in the brain85. Obese individuals are typically hyperleptinemic. The failure of elevated leptin levels to suppress feeding and mediate weight loss has led to a suggestion of leptin resistance in obese individuals104. Interestingly, leptin levels decrease with weight loss106. The resulting state of
relative leptin deficiency is characterized by leptin-mediated behavioral and neuronal activity responses that favor energy conservation and increased food consumption85, 105.

Insulin, produced in the beta cell of the pancreas, is also a central player in systemic regulation of energy homeostasis. Insulin is secreted in response to meals and increases the storage of glycogen, fat and protein99. Insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose tissue lipolysis and hepatic production of very-low density lipoproteins (VLDL). Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus107. Insulin, like leptin, also acts at the medial hypothalamus to provide negative feedback for food intake85, 99, 106 and may work on the reward circuitry of the brain85. Insulin resistance leads to the release of free fatty acids from adipose tissue, increased hepatic production of VLDLs, and decreased HDL-c107.

\textit{Relationship of Energy Expenditure to Obesity}

Researchers continue to investigate the relationship between energy expenditure and weight gain. Total energy expenditure (TEE) is the sum of resting energy expenditure (REE: cardiorespiratory work and the work of maintaining transmembrane ion gradients at rest; \textasciitilde 60\% of TEE), the thermic effect of feeding (the work of digestion; \textasciitilde 5-10\%) and non-resting energy expenditure (NREE, energy expended in physical activity above resting; \textasciitilde 30-40\% of TEE)108. On an absolute basis, REE tends to be higher in obese individuals. However, when adjusted for fat-free mass, REE values for
obese and non-obese individuals tend to be analogous and do not predict future weight gain89, 109, 110.

Interestingly, some investigations have found total energy expenditure to be disproportionately reduced following caloric restriction induced weight reduction111, 112. A review article by Rosenbaum et al.108 surmised that maintenance of a 10\% or greater reduction in body weight may be accompanied by a ~20-25\% decline in 24-h energy expenditure. This decrease would be below that predicted solely on alterations in fat and lean mass. Thus, a formerly obese individual would require a ~300 to 400 kcal per day less to maintain the same body weight as an individual of the same body weight and composition who has never been obese. A meta-analysis of 12 studies found that high rates of weight gain in formerly obese individual were related to a 3-5\% lower RMR in comparison to healthy weight controls113. In contrast, other studies have failed to find significant changes in RMR following weight loss114, 115. The variability between study results may be due to factors such as changes in subject fitness, time spent performing physical activity or duration of weight stability before and after weight loss108. Since changes in the thermic effect of feeding are negligible following weight loss111, and potential changes in RMR are relatively modest, the majority of change to total energy expenditure following weight reduction may be secondary to reductions in NREE expenditure. One hypothesis is that disproportionate reductions in energy expenditure following weight loss may be largely due to increased skeletal muscle work efficiency105, 116, 117.

16
Common Consequences of Obesity

Metabolic Syndrome

Metabolic syndrome is a cluster of interrelated risk factors that indicate an increased risk for type 2 diabetes mellitus (DM) and coronary artery disease (CAD)118. Metabolic syndrome is characterized by abdominal obesity, insulin resistance and glucose intolerance, elevated blood pressure, atherogenic dyslipidemia, and a prothrombic as well as proinflammatory state119-121. According to the National Cholesterol Education Program Adult Treatment Panel (NCEP ATP III), a diagnosis of metabolic syndrome is established when 3 of the following 5 criteria present: fasting glucose ≥ 6.1 mmol/l (≥ 110 mg/dl); waist circumference > 102 cm (> 40 in) in men or > 88 cm (> 35 in) in women; triglycerides (TG) > 1.7 mmol/l (> 150 mg/dl); Blood pressure (BP) $> 130/85$ mmHg; high-density lipoprotein cholesterol (HDL-c) < 1.04 mmol/l (< 40 mg/dl in men, < 1.29 mmol/l (< 50mg/dl) in women120. Insulin resistance is a pervasive metabolic complication associated with obesity and metabolic syndrome. Individuals with insulin resistance tend to have impaired fasting plasma glucose levels, which increase the prevalence of more atherogenic, small dense low density lipoprotein (LDL-c) particles and a postprandial accumulation of TG-rich remnant lipoproteins122. Endothelial dysfunction associated with insulin resistance can lead to hypertension107, 123.

The etiology of insulin resistance continues to be elucidated. Insulin resistance may be mediated in part by elevated circulating free fatty acids derived from adipocytes, adipocyte-derived cytokine actions, a reduced capacity of skeletal muscle to oxidize
fatty acids, elevated impairments in mitochondrial function, or inflammation associated with chronic over-nutrition \(^{79, 107, 124, 125}\). Weight loss via caloric restriction is known to attenuate or reverse insulin resistance \(^{126, 127}\). Caloric restriction combined with exercise has also been shown to improve insulin sensitivity \(^{124, 128-131}\). Reduced insulin resistance after weight loss may be primarily mediated by a reduction in fatty acid mobilization \(^{124}\).

As previously mentioned, insulin resistance is associated with an atherogenic lipoprotein profile. The typical dyslipidemic profile of metabolic syndrome is characterized by elevated triglycerides, a low level of HDL-c, and a preponderance of small, dense LDL-c particles. Plasma levels of LCD-c may be normal or modestly elevated \(^{119, 132, 133}\). Atherogenic dyslipidemia has been shown to be associated with an increased risk of cardiovascular disease \(^{134}\). Furthermore, a large meta-analysis of 37 studies (172,573 patients) found that the presence of metabolic syndrome almost doubles the risk of cardiovascular events and death (odds ratio, 1.78; confidence interval 1.58-2.00) \(^{135}\).

Diminished Quality of Life

Obesity is not only characterized by significant clinical repercussions, but is also has negative effects on levels of independence, psychological well-being and overall quality of life \(^{136, 137}\). Disability may be defined as a restriction in ability to perform an activity in any domain of life \(^{138}\). One tool extensively used for the assessment of health related quality of life (HRQL) is the Medical Outcome Survey Short-Form 36 (SF-36). This instrument measures the extent of HRQL in both physical and mental domains. The questionnaire consists of 36 multiple choice questions measuring 8 different
domains; 4 in the area of physical health (physical functioning, role limitation-physical, bodily pain, general health) and 4 in the area of mental health (role limitation-emotional, vitality, mental health, and social functioning)139-141. Increasing BMI is associated with progressively impaired HRQL, with physical status affected more profoundly than mental health 142-144. Furthermore, moderate weight loss is associated with improved health related quality of life 142,145.

Non-pharmacological Treatment of Obesity

Dietary Intervention

A great deal of research has been conducted in order to ascertain the macronutrient nutrient composition that elicits optimal weight reduction and superior improvements in cardiometabolic health factors. Very low carbohydrate (CHO) (< 20-50 g CHO/d) ketogenic diets, diets high in carbohydrate combined with low fat and moderate protein, and diets containing elevated protein combined with moderate amounts of carbohydrate and fat have been extensively investigated146. Several studies have shown that very low-carbohydrate diets can produce significantly greater weight loss than isocaloric low-fat diets and improve markers of metabolic syndrome and cardiovascular risk factors in both healthy persons and in persons with type 2 diabetes146-152. In a systematic review comparing low-carbohydrate/high protein diets (< 20-60 g CHO/d) to low-fat/high-carbohydrate diets (fat ≤ 30% daily intake) in 1,222 adults (BMI > 28 kg/m2), low-carbohydrate/high protein diets were more effective at 6 months and as effective if not more effective in reducing weight and cardiovascular disease risk factors at 1 year. The review also revealed a higher attrition rate for the low fat/high
carbohydrate groups versus the low carbohydrate groups suggesting a participant preference for the later. Though very low carbohydrate diets have been shown to be efficacious for weight reduction, they restrict fruit and vegetable intake. This may lead to vitamin and mineral deficiencies or constipation if the diet if followed for a prolonged period.

Diets with elevated protein content combined with moderate levels of fat and carbohydrate have also been extensively studied. The definition of a high protein diet varies considerably in the literature, with intakes ranging from 27-68% of daily energy intake or 90.5 to 284 g/d in absolute amounts. Most investigations have compared a high protein diet to a diet high in carbohydrate and low in fat. In a study by Noakes et al., 100 women (mean±SD: age 49±9 years; BMI 32±6 kg/m²) followed either a high protein diet (34% protein, 46% CHO, 20% fat) or a high carbohydrate diet (17% protein, 64% CHO, 20% fat) for 12 weeks. There were no significant diet composition effects on fasting LDL-c, HDL-c, glucose, insulin, FFA, and C-reactive protein concentrations. However, triacylglycerol (TAG) concentrations decreased more with the high protein diet. Furthermore, subjects with high serum TAG levels (≥ 1.5 mmol/L) had significantly greater reductions in fat mass and TAG concentrations following the higher protein diet.

In a study conducted by Layman and associates, women (n=24; 45 to 56 years; BMI ≥ 26 kg/m²) were assigned to either a carbohydrate group consuming a isoenergetic diet with a CHO/protein ratio of 3.5 (68 g protein or ~.8 g/kg/d) or a protein group with CHO/protein ratio of 1.5 (125 g protein/d or ~1.6 g/kg/d) for 10 weeks. Both
diets had similar amounts of fat (~ 50 g/d or 30% energy intake). Subjects in the protein group had a significantly higher loss of fat/lean tissue compared to the carbohydrate group. The high protein group had significant reductions in triacylglycerol levels and the ratio of TAG/HDL cholesterol, whereas both groups had significant reductions in total cholesterol levels. In contrast to the protein group, the carbohydrate group had higher insulin responses to meals and postprandial hypoglycemia. Thus, the isocaloric higher protein diet had positive effects on body composition, blood lipids, glucose homeostasis and satiety.

Due and associates \(^{24}\) studied 50 overweight and obese subjects (age 19-55; BMI 26-35 kg/m\(^2\)) who followed either a high protein diet (25% protein, 45% CHO, 30% fat) or a “medium protein” diet (12% protein, 58% CHO, 30% fat) for 6 months followed by a 6-12 month dietary counseling period and a subsequent 24 month follow-up. The high protein group had a significantly greater weight loss and fat mass reduction at 6 months, while at 12 months there was no difference between groups. The high protein group did have a 10% greater reduction in intra-abdominal adipose tissue than the medium protein group at 12 months. Both groups tended to maintain their 12 month weight loss at 24 months, although 50% of subjects were lost to follow-up. There were no differences between groups in serum markers of metabolic syndrome and cardiovascular risk factors.

In an investigation conducted by Skov et al. \(^{25}\), 60 healthy, overweight and obese subjects followed either a high-carbohydrate (12% protein, 58% CHO, 30% fat) or high protein (25% protein, 45% CHO, 30% fat) ad libitum diet for 6 months. There was a
significantly greater reduction in weight, total body fat, and intra-abdominal adipose tissue in the high protein group compared to the high-carbohydrate group, whereas the control group experienced no body composition changes. The greater weight loss (8.9 vv. 5.1 kg) and fat loss (7.6 vs. 4.3 kg) most likely occurred secondary to lower energy intake [5.0 (1,194 kcals) vs. 6.2 Mj/d (1,480 kcals)] in the high protein group. Additionally, more subjects lost > 10 kg in the high protein group. Total cholesterol and HDL-C decreased in both diet intervention groups with no group differences, while no significant changes were observed in the control group. The high protein diet had a significantly greater reduction in fasting plasma TG and free fatty acids than the high carbohydrate group.

Sacks et al. \(^{26}\) assigned 645 subjects [mean±SD; age 52±9 years; BMI 33±4 (kg/m\(^2\))] to either a low-fat, average protein diet (15% protein, 65% CHO, 20% fat) to a low-fat, high protein diet (25% protein, 55% CHO, 20% fat), a high-fat average protein diet (15% protein, 45% CHO, 40% fat) or a high-fat high protein diet (25% protein, 35% CHO, 40% fat). Reductions in body weight, waist circumference, blood pressure, and serum triglyceride levels did not differ significantly between the 4 groups at either 6 or 12 months. All diets except the one with the highest carbohydrate content (low-fat, average protein diet) decreased fasting serum insulin levels. Additionally, at two years, the low-fat diets decreased LDL-C significantly more than the high fat diets. The investigators concluded that macronutrient composition of diets is less important than calories for weight loss over 2 years \(^{26}\).
Few investigations have studied the effects of diets where > 40% of calories are derived from protein. In a 4 week study conducted by Luscombe-Marsh and colleagues \(^\text{27}\), a low-fat, high protein diet (40% protein, 30% CHO, 30% fat) was compared to a high-fat standard protein diet (20% protein, 30% CHO, 50% fat) in adults (n=57; mean BMI 33.8±0.9 kg/m\(^2\)). There were no differences between groups in weight loss, fat loss, REE, or in glucose and insulin response.

Advantages of Diets High in Protein

Proteins have been shown to be the most satiating macronutrient \(^\text{20, 21, 155-159}\). It has been hypothesized that protein-induced satiety is somehow related to relatively high increases in concentrations of anorexigenic hormones such as Glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and Cholecystokinin (CCK), or decreases in orexigenic hormones such as Ghrelin. Some investigations have demonstrated significant changes in hormone concentration after consumption of a high protein meal for GLP-1 \(^\text{160, 161}\), PYY \(^\text{162}\), and CCK \(^\text{161}\), while others have not \(^\text{163}\). Changes in GLP-1 may be dependent on the presence of carbohydrate, which stimulates GLP-1 release \(^\text{21, 164}\). Changes in hormones may also be dependent on the composition of exogenous peptides contained in diets \(^\text{161}\) and the time frame of over which a diet is consumed \(^\text{155}\). Additional investigation is needed as changes in anorexigenic and orexigenic hormones have inconsistent relationships with satiety \(^\text{161, 163}\).

High protein foods have also been shown to have a higher thermogenic effect than foods higher in other macronutrients \(^\text{160, 165-168}\). Protein has a gross energy value of 22-25 kJ · g\(^{-1}\) and a net metabolizable energy of 13 kJ · g\(^{-1}\), which is lower than either
fat or carbohydrate\(^{22, 169}\). Several trials have investigated the effect of diet composition on the thermic effect of food or diet-induced energy expenditure, a component of daily energy expenditure. High protein diets have consistently been shown to induce higher energy expenditure than diets higher in other macronutrients\(^{170-172}\).

While there is a general consensus that protein increases satiety and stimulates dietary–induced thermogenesis above other macronutrients, the effect of elevated protein intake on body composition continues to be investigated. Several studies have shown that higher protein diets may increase total weight loss and increase the percentage of fat loss\(^{23-25}\), while others have not\(^{26-28}\).

Exercise Intervention

Exercise and exercise combined with caloric restriction have been shown to enhance weight loss and improve cardiometabolic risk factors. A Cochrane review examined 43 studies that included a total of 3,476 participants and found that exercise resulted in small weight losses across studies when compared with no exercise. Exercise combined with diet resulted in greater mean weight reduction than diet alone (-1.0 kg, 95% CI -1.3 to -0.7). Furthermore, increasing exercise intensity resulted in an increase in the magnitude of weight loss (-1.5 kg, 95% CI -2.3 to -0.7). Exercise alone resulted in significant reductions in triglycerides (-0.2 mmol/L; 95% CI -0.3 to -0.1), diastolic blood pressure (-2 mmHg; 95% CI -4 to -1), and fasting glucose (-0.2 mmol/L; 95% CI -0.3 to -0.1)\(^{30}\). Exercise induced weight loss has also been associated with physiological and biopsychological changes including an improved satiety response to meals and improved sensitivity to appetite control systems leading to reductions in hunger\(^{31, 32}\).
The International Association for the Study of Obesity (AISO) has published a consensus statement on physical activity recommendations for obesity prevention and weight maintenance. For prevention, moderate intensity activity of approximately 45-60 minutes per day may be required to prevent the transition to overweight or obesity. In order to maintain significant weight loss, 60-90 min of moderate intensity physical activity may be required daily173.

High Protein Diet Combined with Exercise

Investigations combining high protein diets with exercise are surprisingly rare. In a study conducted by Layman and associates33, 48 women (aged 40-56y; BMI \(\geq 26\) kg/m\(^2\)) were assigned to either a high protein diet (30% protein, 40% CHO, 30% fat; carbohydrate/protein ratio < 1.5) with lifestyle activity group (n=12), a high protein diet combined with exercise group (n=12), a high carbohydrate diet (15% protein, 55% CHO, 30% fat; carbohydrate/protein ratio > 3.5) with lifestyle activity group (n=12), or a low high carbohydrate diet combined with exercise group (n=12) for 4 months. The high protein and high carbohydrate diet plus lifestyle activity groups walked for 30 minutes 5 d/wk. The “exercise” groups participated in walking for 30 minutes 5 d/wk combined with resistance training 2 d/wk (30 minutes of stretching and resistance exercise utilizing weight machines). All groups experience significant weight loss, however, weight changes were larger in the groups consuming the higher-protein diet (\(p=0.05\)). Exercise increased loss of body fat and preserved lean mass. Additionally, subjects in the high protein diet groups had greater reductions in triacylglycerol and maintained higher
concentrations of HDL-c, whereas, subjects in the high carbohydrate diet groups had
greater reductions in total cholesterol and LDL-c.

Meckling and colleagues 34 randomized 44 overweight women (aged 20-62
years; BMI 25-30 kg/m²) into a high protein diet group (n=10; protein/CHO ratio 1:1;
30% fat), a high protein combined with exercise group (n=14), a high carbohydrate
group (n=8; protein/CHO ratio 1:3; 30% fat), or a high carbohydrate diet combined with
exercise group (n=11) for 12 weeks. Exercise consisted of a supervised circuit training
program 3 d/week. All groups experienced weight loss: -2.1 kg for the high carbohydrate
group, -4.0 kg for the high carbohydrate combined with exercise group, -4.6 kg for the
high protein group and -7.0 kg for the high protein/exercise group, with significant
differences between all groups (p=0.05). The groups consuming a high protein diet had
greater reductions in fat mass (determined by BIA) than those groups consuming a diet
high in carbohydrate. The high protein group had a significant decrease in HDL-c, the
high protein/exercise group had decreases in triglycerides, and both the high protein and
high carbohydrate/exercise groups had decreases in total cholesterol.

Behavior Modification and Cognitive Therapy

Behavior modification is directed at changing behaviors that impede weight loss
and disrupt weight maintenance. Behavioral modification techniques include stimulus
control, goal setting and self-monitoring 38. Cognitive therapy strategies aim at
identifying and modifying aversive thinking patterns and mood states in order to
facilitate weight loss 39. Cognitive-behavioral therapy can occur individually or in a
group setting where treatment incorporates social support, problem solving, information dissemination, and encouragement to facilitate weight loss.\(^{40}\)

Behavioral and combined cognitive-behavioral therapies have been shown to facilitate weight loss. A Cochrane review of 36 studies and a total of 3,495 participants examined psychological interventions for the treatment of overweight or obese patients. Behavioral therapy resulted in greater weight reductions than placebo when assessed as a stand-alone weight-loss strategy (mean weight loss = -2.5 kg, 95% CI = -1.7 to -3.3). Furthermore, cognitive behavioral therapy combined with diet and exercise increased weight loss by 4.9 kg compared with diet and exercise alone (mean weight loss = -4.5 kg, 95% CI = -7.3 to -2.4).\(^{36}\) A systematic review conducted by Brown and colleagues\(^{37}\) also demonstrated that behavioral therapy techniques combined with diet and/or exercise can enhance weight loss.

Relevant Weight Watchers Research

The majority of Weight Watchers research has been conducted on the Weight Watcher’s Pure POINTs program. In an investigation conducted by Heshka and colleagues\(^{47}\), the Weight Watchers Pure POINTs program was compared to a self-help weight reduction program. Subjects enrolled in the Weight Watchers Pure POINTs program (n=171) had significantly greater reductions in body weight [mean+SD; -4.8±5.6 vs. -1.4±4.7 kg; p=0.001], body mass index (-1.7 ± 1.9 vs. -0.5 ± 1.6 kg · m\(^{-2}\); P=0.001), waist circumference (-4.3 ± 10.5 vs. -0.7±12.7 cm; p=0.05), and fat mass (-3.8 ±7.0 vs. -1.5±7.6 kg; p=0.05) than those in the self-help group (n=168) after 26 weeks of program participation. In a study comparing Weight Watchers to 3 other
commercially available weight loss programs available in the UK, subjects enrolled in the Weight Watchers Pure POINTs program for 6 months (n=16) experienced reductions in plasma LDL cholesterol (-12.2%; p= 0.01), and plasma triacylglycerol levels (-22.6%; p=0.01), in addition to a 9.0±5.6% reduction in body weight 45,46.

Relevant Curves Research

In a study conducted by Kersick and colleagues 35, 161 obese, sedentary, premenstrual women (age 38.5±8.5 years; BMI 34.9±6.3 kg/m²) were assigned to either a no diet control group (CON) (n=7), a no diet exercise group (ND) (n=17), a high energy, high carbohydrate low protein diet group (HED) (n=11; 2,600 kcalories; 15% protein, 55% CHO, 30% fat), a very low carbohydrate, high protein diet group (VLCHP) (n=48; 63% protein; 7% CHO, 30% fat), a low carbohydrate, moderate protein diet group (LCMP) (n=37; 20% protein; 50% CHO, 30% fat), or a high carbohydrate, low protein diet group (HCLP) (n=41; 15% protein; 55% CHO, 30% fat) for 14 weeks. The HED, VLCHP, LCMP and HCLP groups ingested 1,200 kcalories for 2 weeks, 1,600 kcalories for 8 weeks, and 2,600 kcalories for the remaining 4 weeks of the study. All groups except the control group performed circuit training for 30 minutes 3 times weekly. All groups excluding the CON group had significant reductions in waist circumference. The VLCHP, LCHP and LCMP groups had similar significant reductions in body mass (P < 0.05 – 0.001) in comparison to other groups. The VLCHP, LCMP and HCLP groups had significantly greater body fat percentage reductions when compared to the other groups. All exercise groups had analogous gains in muscular fitness (P < 0.05). Favorable but non-significant reductions occurred in lipid panels, glucose and HOMA-
IR levels, whereas, leptin levels significantly decrease in all groups excluding the CON group. The exercise groups also experienced significant improvements in quality of life and body image indices. Finally, resting energy expenditure lowered during the 1,200 kcalorie phase, but returned to baseline levels or above during the 1,600 kcalorie phase and further increased during the 2,600 kcalorie diet phase for the VLCHP, LCMP, and HCLP groups.

In another investigation, 43 overweight sedentary women (age 35±8 yrs; BMI 33±6 kg/m²) were assigned to either a high carbohydrate diet (n=23; 30% protein, 45% CHO, 25% fat) or to a high protein diet (n=20; 45% protein, 30% CHO, 25% fat). Both groups ingested 1,200 kcalories for 1 week, 1,500 kcalories for 3 weeks, and 2,200 kcalories for the remaining 4 weeks. This cycle was repeated for the duration of the study. Both groups performed circuit training for 30 minutes 3 times weekly and walked briskly for 30 minutes 3 days/week. There were no significant differences between the two groups. Overall, training combined with caloric restriction resulted in significant reductions in body mass, fat mass, percent body fat waist and hip circumferences, resting systolic blood pressure, and serum triglyceride levels. Favorable but non-significant reductions occurred in total cholesterol and LDL-c levels. There were no significant changes in glucose or HDL-c levels. Absolute REE values modestly decreased over time, but were not significantly changed when weight loss was accounted for. Training also induced gains in cardiopulmonary fitness and muscular strength. Furthermore, training and dieting improved quality of life ⁵⁰-⁵³.
CHAPTER III

METHODS

Participants

A total of 149 sedentary overweight females (BMI > 25) between the ages of 18 and 50 years were recruited to participate in this study. Of these, 127 met phone interview entrance criteria and were invited to attend familiarizations sessions. Subjects had not been involved in an anaerobic or aerobic exercise training program for at least the last three months and had not taken ergogenic levels of nutritional supplements that could affect muscle mass or anaerobic exercise capacity (i.e. creatine, ergogenic levels of caffeine, HMB, etc.), anabolic/catabolic hormone levels (i.e. androstenedione, DHEA), or weight loss (i.e. ephedra, thermogenics) for at least three months prior to the start of the study. Participants with uncontrolled metabolic disorders, known electrolyte abnormalities, heart disease, arrhythmias, diabetes, or thyroid disease; a history of hypertension, hepatorenal, musculoskeletal, autoimmune, or neurological disease were not allowed to participate in the study. Participants with a controlled medical condition had their physicians complete and sign the physician’s consent form prior to participation in the study. Subjects meeting eligibility criteria were informed of the study requirements and signed an informed consent statement in compliance with the Human Subjects Guidelines of the Texas A&M University and the American College of Sports Medicine.
Study Site

Familiarization and testing in addition to Curves circuit workouts took place in the Exercise and Sport Nutrition Laboratory in the Department of Health and Kinesiology at Texas A&M University in College Station, Texas.

Experimental Design

Table 1 shows the general research design and time course for assessments. The study included a baseline testing session followed by 5 additional testing sessions. Exercise testing occurred at the baseline and final testing session only. During testing sessions 2 through 5, only resting tests were conducted. The independent variable was weight loss program intervention. Dependent variables included: estimated dietary energy intake; estimated weekly physical activity (International Physical Activity Questionnaire – IPAQ); hip and waist anthropometric measurements; resting energy expenditure (REE); body composition; fasting clinical blood profiles (cholesterol, glucose, liver enzymes, red cells, white cells, insulin, leptin); maximal cardiopulmonary exercise capacity (peak VO₂); maximum repetition maximum (1RM) and 80% 1RM Isotonic testing; standardized quality of life (SF-36); and eating satisfaction inventory.

Familiarization Session

Participants who expressed interest in this study were interviewed on the phone to determine whether they qualified to participate. Participants who met the eligibility criteria were invited to attend a familiarization session. During this session, participants received written and verbal explanation of the study protocol and design, testing procedures and equipment, and blood procedures that would occur throughout the study.
A registered dietitian provided instruction on accurate dietary record completion and estimation of portion sizes. Participant height and weight were attained. Participants then signed informed consent statements and completed personal and medical histories. Participants with controlled metabolic disorders were required to obtain medical clearance from their personal physician prior to participating in the study. Participants

<table>
<thead>
<tr>
<th>Table 1. Overview of Research Design and Testing Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familiarization</td>
</tr>
<tr>
<td>Complete Paperwork</td>
</tr>
<tr>
<td>Review Medical history</td>
</tr>
<tr>
<td>Body Weight</td>
</tr>
<tr>
<td>Randomized assignment</td>
</tr>
<tr>
<td>Resting BP* and HR**</td>
</tr>
<tr>
<td>DEXA* Scan</td>
</tr>
<tr>
<td>Maximal Cardiopulmonary Exercise Test</td>
</tr>
</tbody>
</table>

*aInternational Physical Activity Questionnaire
*bBlood Pressure
*cHeat Rate
*dDual Energy X-ray Absorptiometry
*eRepetition Maximum
*fStandardized quality of life (SF-36) and eating satisfaction inventory
were then matched according to body mass index (BMI) and age into either the Curves (C) group or the Weight Watchers (W) group.

Curves Fitness and Weight Management Plan

Participants in the C group followed the Curves Fitness and Weight Management Plan. In concurrence with this plan, subjects followed the Phase 1 higher protein weight loss diet (1,200 kcals/day) for one week and the phase 2 high protein weight loss diet (1,500 kcals/day) for 3 weeks. Phase 3 consisted of a metabolic recovery phase. During phase 3, subjects followed a 2,000-2,500 kcals/d higher protein diet for two weeks. If subjects had a weight increase of 3 pounds during phase 3, they were instructed to return to Phase 1 for 2-3 days until their weight returned back down. The three dietary phases were cycled in this manner over the course of 16 weeks. A registered dietitian reviewed the Curves high protein diet (HPD) and exercise plan with subjects and provided them with the “Curves Fitness and Weight Management Plan” 49, “The Curves Food & Exercise Diary” 174, and “Curves Essentials 2 go” dietary supplements. Participants were encouraged to consume two multivitamins, 800mg of calcium, and 520mg of Omega-3 fatty acids daily. The dietitian also met with subjects weekly throughout the study to discuss any dietary challenges or concerns. The Curves Fitness and Weight Management Plan dietary intervention protocol is delineated in Table 2.

The Curves physical training protocol included one regular curves circuit workout and two Curves Zumba workouts each week for 16 weeks, while maintaining a greater than 80% compliance record. Attendance was recorded at each workout session in order to monitor compliance. The Curves circuit consisted of 13 bi-directional
hydraulic resistance exercise machines that worked all major muscle groups. During the Curves circuit workout, subjects were instructed to complete as many repetitions as

Table 2. Curves Fitness and Weight Management Dietary Plan

<table>
<thead>
<tr>
<th>Dietary Phase</th>
<th>Kcalories</th>
<th>Group</th>
<th>Macronutrient</th>
<th>g/d</th>
<th>Kcals/d</th>
<th>Percentage Daily Diet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 (1 Week)</td>
<td>1,200 kcals/d<sup>a</sup></td>
<td>HPD<sup>b</sup> + Exercise</td>
<td>PRO<sup>c</sup></td>
<td>135</td>
<td>540</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHO<sup>d</sup></td>
<td>90</td>
<td>360</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAT</td>
<td>33</td>
<td>300</td>
<td>25</td>
</tr>
<tr>
<td>Phase 2 (3 Weeks)</td>
<td>1,500 kcals/d</td>
<td>HPD + Exercise</td>
<td>PRO</td>
<td>169</td>
<td>675</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHO</td>
<td>113</td>
<td>450</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAT</td>
<td>42</td>
<td>375</td>
<td>25</td>
</tr>
<tr>
<td>Phase 3 (2 weeks)</td>
<td>2,000-2,500 kcals/d</td>
<td>14 Day Metabolic Recovery</td>
<td>HPD + Exercise</td>
<td>PRO</td>
<td>165</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHO</td>
<td>248</td>
<td>990</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAT</td>
<td>61</td>
<td>550</td>
<td>25</td>
</tr>
</tbody>
</table>

^aKcalories per day
^bHigh protein diet.
^cProtein
^dCarbohydrate
possible during a 30 second time period on each resistance machine. Between machines, subjects performed floor-based aerobic exercises designed to maintain an elevated heart rate. Subjects performed the entire circuit twice during the 26 minute regular circuit workout. During the Curves Zumba workout, subjects performed 1 minute of Zumba dance moves in-between 1 minute of resistance exercise on each machine. All Zumba classes were taught by a certified Zumba instructor and all training sessions were monitored by trained fitness instructors. Subjects were assisted with self-monitoring of heart rate in order to maintain an exercise heart rate between 60-80% of target heart rate using age-predicted maximal heart rate (220-age). Subjects also performed 5 minutes of whole body stretching after all circuit workouts. In addition to circuit training, subjects were encouraged to walk for 30 minutes at a brisk pace [60-80% of heart rate reserve (maximum HR- resting HR)] on most days of the week. The Curves circuit was located in the Exercise and Sports Nutrition Laboratory.

Weight Watchers Momentum Program

Participants assigned to the W group took part in the Weight Watchers Momentum Program and were signed up for a Weight Watchers monthly pass subscription. Subjects were required to attend 1 meeting each week with an 80% compliance record. Subjects emailed the study coordinator each time they attended a meeting. Meetings consisted of group discussions and some individual interaction as members weighed in. The core program material was delivered over ten weeks and included: food plans based on the POINTs system, exercise recommendations, strategies
for dealing with hunger, successful habits, strategies for eating out, tracking intake and activity, eating with others, recipes, workout variation, and plateaus.

The momentum eating plan revolved around the POINTS system. On the POINTS plan, subjects were assigned a daily POINTS target that was based on weight, height, age, and activity level. Subjects were also allowed additional POINTS each week, which could be utilized as needed. The POINTS values assigned to foods were based on portion size, calories, fat and fiber content. POINTS values were also provided for activity, and were based on weight, time, and intensity. Subjects were encouraged to track their intake of foods and beverages. The Weight Watchers Momentum program also encouraged subjects to perform 30 minutes of activity on most days of the week. Study participants were encouraged to purchase the Weight Watchers 2010 Basic Member Kit, which included: “Complete Food Companion POINTS”, “Dining Out Companion POINTS”, “Fast Fixes”, and the Weight Watchers 3 Month Journal. Subjects also had access to web-based Momentum Program information with the monthly pass subscription. All subjects attended meetings at the Weight Watchers site located in Bryan, Texas.

Medical Monitoring

Interested participants filled out medical histories at the familiarization session. Based on review of this information, the study coordinator determined whether the participant had met entry criteria in order to participate in the study. Participants with uncontrolled metabolic disorders, known electrolyte abnormalities, heart disease, arrhythmias, diabetes, or thyroid disease; a history of hypertension, hepatorenal,
musculoskeletal, autoimmune, or neurological disease were not allowed to participate in the study. Participants with a controlled medical condition had their physicians complete and sign the physician’s consent form prior to participation in the study.

In preparation for a medical emergency, the ESNL laboratory was equipped with an automated electronic defibrillator. All ESNL personnel were certified in CPR and first aid and were trained on emergency procedures. No less than two researchers worked with each participant during testing sessions. In the event of any emergency, one researcher would have checked for vital signs and began any necessary interventions while the other researcher would have contacted the Texas A&M emergency services at extension 9-911. Participants were instructed to report any unexpected problems or adverse events they encountered during the course of the study to the study coordinator Michelle Mardock, MS, RD. If clinically significant side effects were reported, the participant would have been referred to their personal physician. No adverse events were reported during the course of the study.

Testing Sessions

Participants were instructed to refrain from exercise for 48 hours and fast for at least 12 hours prior to reporting to the ESNL for testing sessions. Baseline testing sessions and 16 week testing sessions were identical and consisted of dietary inventory review, weekly physical activity assessment [International Physical Activity Questionnaire (IPAQ)], anthropometric assessments (body mass, waist and hip circumference); resting energy expenditure, resting heart rate and blood pressure, body composition analysis (DEXA); blood collection (metabolic panels, blood lipids, white
and red blood cells); cardiorespiratory and muscular endurance and fitness assessments; psychosocial assessments [standardized quality of life (SF-36) and eating satisfaction inventories]. Additional testing sessions occurred during the fourth, tenth, and twelfth weeks and consisted of all baseline measures excluding cardiorespiratory and muscular fitness assessments.

Methods and Procedures

Dietary Inventories

A registered dietitian instructed all subjects on precise documentation of food intake and accurate estimation of food portion size. Participants recorded all food and fluids consumed over a four day period (including one weekend day) prior to each testing session. Dietary inventories were reviewed with participants at each testing session to ensure accuracy, completeness, and legibility. Dietary information was then analyzed to determine the average caloric intake and macronutrient intake using Food Processor Nutrition Analysis Software Version 9.1.0 (ESHA Nutrition Research, Salem, OR). A registered dietitian reviewed all analyzed dietary information.

Weekly Physical Activity Assessment

Physical activity patterns were quantified by assessing responses to the 7 day version of the International Physical Activity Questionnaire (IPAQ) 175-177. This assessment tool evaluated the frequency and intensity of job-related physical activity; transportation physical activity; housework, house maintenance, and caring for family related physical activity; and recreation, sports, and leisure-time physical activity based on established metabolic equivalent (MET) levels for common activities. The IPAQ
defined light physical activity as walking level intensities (3.3 METs), moderate physical activity as activities at a 4.0 MET level, and vigorous physical activity as activities at an 8.0 MET level. The IPAQ has been identified as a valid indicator of general changes in physical activity patterns 175-178.

Anthropometric Measurements

Height was measured using standard anthropometry. Total body weight was measured using a Healthometer (Bridgeview, IL, USA) self-calibrating digital scale with a precision of +/-0.02 kg. Hip and waist measures were performed using a Gulick II tape measure per guidelines established by the American College of Sports Medicine 179.

Resting Energy Expenditure Assessment

Resting energy expenditure assessments were conducted according to standard protocols using the Parvo Medics TrueMax 2400 Metabolic Measurement System (ParvoMedics, Inc, Sandy, UT, USA). This test was conducted in a fasted state with the participants lying supine on an exam table. A clear metabolic canopy was placed over the subject’s head and neck, so that resting oxygen uptake and energy expenditure could be determined. The participants remained motionless without falling asleep for approximately 20 minutes. Metabolic measurements were recorded after the first 10 minutes during a five minute period in which principle variables, such as oxygen uptake, changed less than 5% 180. Mean test-retest reliability studies on 14 participants from a previous study revealed test-retest correlations (r) of collected oxygen uptake range from 0.315 to 0.901 (mean 0.638) and a coefficient of variation range from 8.2% to 12.0% (mean 9.9%) with a mean intraclass coefficient of 0.942; p<0.001 35.
Resting Heart Rate and Blood Pressure

Heart rate was determined by palpitation of the radial artery using standard procedures181. Blood pressure was assessed in the supine position after resting for 5 minutes using a mercurial sphygmomanometer (American Diagnostic Corporation, model #AD-720, Hauppauge, NY, USA) using standard procedures182.

Body Composition

Participants had bone density and body composition (excluding cranium) determined using a Hologic Discovery W QDR series Dual Energy X-ray Absorptiometry (DEXA) system (Hologic Inc, Waltham, MA, USA) equipped with APEX software (APEX Corporation Software, Pittsburgh, PA, USA). Dual-energy X-ray absorptiometry has been validated as an accurate method for body composition assessment183-186. Mean test-retest reliability studies performed on male athletes with this Hologic system have yielded mean coefficients of variation for total bone mineral content and total fat free/soft tissue mass of 0.31\% to 0.45\% with a mean intra-class correlation of 0.985187. Participants were informed of any inherent risks that could present from radiation exposure and completed a radiation exposure questionnaire prior to all scans. Quality control (QC) calibration procedures were performed on a spine phantom (Discovery W-CALIBER Model DPA/QDR-1 anthropometric spine phantom) prior to each testing session. During DEXA testing, participants lay down on their back in a standardized position. A low dose of radiation scanned their entire body for approximately six minutes.

40
The DEXA segments regions of the body (right arm, left arm, trunk, right leg, and left leg) into three compartments for determination of fat, soft tissue (muscle), and bone mass. Radiation exposure from DEXA for the whole body scan is approximately 1.5 mR per scan. This is similar to the amount of natural background radiation a person would receive in one month while living in College Station, Texas. The maximal permissible x-ray dose for non-occupational exposure is 500 mR per year. Total radiation dose was estimated to be less than 9 mR for the entire study.

Blood Collection and Analysis Procedures

Fasted and whole blood and serum samples were collected using standard phlebotomy techniques. Whole blood samples were analyzed for complete blood counts with platelet differentials utilizing an Abbott Cell Dyn 3500 automated hematology analyzer (Abbott Laboratories, Abbott Park, IL, USA). Serum samples were analyzed for a complete metabolic panel by Quest Diagnostics (Quest Diagnostics, 5850 Rogerdale Road, Houston TX, USA 77072) using an Olympus AAU 5400 Chemistry Immuno Analyzer (Olympus America Inc., Center Valley, PA, USA). Serum leptin was determined in duplicate using a commercially available enzyme linked immunoabsorbent assay (ELISA) kit (No. 11-LEPHU-E01, ALPCO, Salem, NH, USA) using a BioTek ELX-808 Ultramicroplate reader (BioTek Instruments Inc, Winooski, VT, USA) at an optical density of 450 nm against a known standard curve utilizing standard procedures using BioTek Gen5 Analysis software (BioTek Instruments Inc, Winooski, VT, USA). Intra-assay coefficient of variation has been shown to range from 3.7% to 5.5%, whereas the inter-assay coefficient of variation of has a ranged from 5.8%
to 6.8% (ALPCO, Salem, NH, USA). Fasting insulin was also assayed in duplicate via a commercially available Enzyme Linked Immunosorbent assay (ELISA) kit (No. 80-INSHU-E10, ALPCO, Salem, NH, USA) using a BioTek ELX-808 Ultramicroplate reader (BioTek Instruments Inc, Winooski, VT, USA) at an optical density of 450 nm against a known standard curve using standard procedures with BioTek Gen5 Analysis software (BioTek Instruments Inc, Winooski, VT, USA). The intra-assay coefficient of variation has been shown to ranged from 2.9% to 6.2%, with an inter-assay coefficient of variation range of 5.4% to 8.6% (ALPCO, Salem, NH, USA). The homeostasis Model Assessment for insulin resistance (HOMA-IR) was calculated as the product of fasting insulin times fasting glucose expressed in standard units divided by 405.

Maximal Cardiopulmonary Exercise Test

Cardiopulmonary exercise tests were performed at baseline and 16 weeks by ESNL exercise physiology graduate students in accordance to standard procedures described by the American College of Sports Medicine’s (ACSM) *Guidelines for Exercise Testing and Prescription*\(^{179}\). The Nasiff Cardio Card electrocardiograph (Nasiff Associates, Inc, Central Square, NY, USA) was used to assess heart function using a standard 12-lead arrangement\(^{179}\). Electrode sites were cleansed with a sterile alcohol wipe using a circular motion. Once the site was dry, electrodes were placed on the right subclavicular fossa (RA), the left subclavicular fossa (LA), the 4th intercostals space at the right sternal border (V1), the 4th intercostal space at the left sternal border (V2), equidistant between V2 and V4 (V3), the 5th intercostal space at the mid-clavicular line (V4), the 5th intercostal space at the anterior axillary line (V5), the 5th
intercostals space at the midaxillary line (V6), and the right abdomen (RL) and left abdomen (LL) line. While the subject was in a supine position, resting blood pressure, heart rate, and a 12-lead ECG were obtained. The 12-lead ECG was reviewed to ensure that no contraindications for exercise testing were present based on the ACSM guidelines. The participant was then asked to stand and step onto the treadmill. A standing blood pressure, heart rate, and a 12-lead ECG was obtained and reviewed. A sterile mouthpiece, attached to a head harness, was then secured on the participant and a nose clip placed on their nose. Expired gases were collected using a ParvoMedics 2400 TrueMax Metabolic Measurement System (ParvoMedics Inc, Sandy, UT, USA). Once the participant was ready to begin the test protocol, the participant was asked to straddle the treadmill with both legs while the treadmill was turned on to a speed of 2.0 mph and at a 0% grade. The participant then carefully stepped onto the belt while still gripping the handrails with both hands. Once comfortable walking on the treadmill, they let go of the handrail and began walking freely. The participant performed the Bruce treadmill protocol following the speeds and grades delineated in Table 3. The mean coefficient of variation for assessing peak Vo2 utilizing the Bruce protocol has been shown to be 6.5% (range, 2.0-14%) Heart rate (HR), ECG tracings, and expired gases were monitored continuously throughout the exercise test. Blood pressure (BP) and ratings of perceived exertion (RPE) were obtained toward the end of each stage. The participant was encouraged to exercise to their maximum unless they experienced clinical signs that required test termination as stated by the ACSM’s Guidelines for Exercise Testing and Prescription. These signs included: a decline in systolic blood pressure > 10 mmHg
from baseline, angina, ataxia, dizziness, syncopy, cyanosis, nausea, dangerous dysrhythmias (ventricular tachycardia, supraventricular tachycardia, new atrial fibrillation, or A-V block, increasing or multi-form premature ventricular contractions), an excessive rise in systolic blood pressure over 250 mmHg or diastolic over 115 mmHg, chronotropic impairment, technical difficulties of the monitoring system, or other signs or symptoms necessitating termination of the test. Once the exercise test was complete, the participant continued an active recovery period for three minutes followed by a three minute seated recovery period.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Speed (MPH)</th>
<th>Grade (%)</th>
<th>Duration (minutes)</th>
<th>METS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-up</td>
<td>2.0</td>
<td>0</td>
<td>2</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>1.7</td>
<td>10</td>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>12</td>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>3.4</td>
<td>14</td>
<td>3</td>
<td>9.7</td>
</tr>
<tr>
<td>4</td>
<td>4.2</td>
<td>16</td>
<td>3</td>
<td>13.5</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>18</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>5.5</td>
<td>20</td>
<td>3</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Isotonic Strength Tests

Participants had their 1RM determined using an isotonic Olympic bench press (Nebula Fitness, Versailles, OH, USA) and a standard hip sled/leg press (Nebula Fitness, Versailles, OH, USA) to determine changes in maximal strength according to standardized procedures. Hand positioning on the bench press and foot and seat position on the hip sled/leg press were standardized between trails. Muscular endurance was assessed by having participants perform as many repetitions as possible at 80% of their
predetermined 1RM on the bench press and leg press using standard lifting techniques and testing criteria. Test-retest reliability of performing these strength tests on resistance-trained subjects in the ESNL have yielded low mean coefficients of variation and high reliability for the bench press (1.9%, intraclass $r = 0.94$) and leg press/hip sled (0.7%, intraclass $r = 0.91$).

All strength/exercise tests were conducted using standard procedures and were supervised by certified lab assistants experienced in conducting strength/anaerobic exercise testing. In order to test for upper body strength and endurance, participants performed a one repetition maximum (1 RM) test on the isotonic bench press and the Nebula Fitness (Versailles, OH, USA) Olympic Power Station (#1005). Participants performed a warm-up (2 sets of 10 repetitions at approximately 50% of anticipated 1RM) followed by progressive lifts starting at about 70% of anticipated 1RM and increasing by 5 – 10 lbs until 1 RM was reached. Once the 1RM was attained, subjects performed as many repetitions as possible with 80% of their 1 RM effort. Participants rested for 10 minutes, then performed a warm up of 8-10 repetitions at approximately 50% of anticipated maximum on the Nebula 45° Leg press. Participants performed successive lifts on the leg press starting at about 70% of anticipated 1RM and increasing by 10 – 25 lbs until 1RM was attained. Once the 1RM was achieved, subjects performed as many repetitions as possible with 80% of their 1 RM effort.

Psychometric Assessments

Participants completed the SF-36 Health-Related Quality of life (QOL) inventory and an appetite/eating satisfaction questionnaire. The SF-36 quality of life
questionnaire has been validated for the measurement of psychosocial dimensions that may be influenced by general improvement in health and/or weight loss. The SF 36 questionnaire assessed a number of physical and mental components including physical functioning (ie, the ability to perform most vigorous physical activities without limitation to health), role physical (ie, ability to work and perform daily activities), bodily pain (ie, limitations due to pain), general health (ie, assessment of personal health), vitality (ie, feeling of having energy), social functioning (ie, ability to perform normal social activities), role emotion (ie, problems with work or other daily activities), and mental health (state of feelings of peacefulness, happiness, and calm). Eating Satisfaction Questionnaires were performed for comparison to previous curves intervention studies. These questionnaires satisfied the requirements of the sponsor of this study and are listed as a limitation of the study as they have not been validated or tested for reliability. Following the final testing session, participants were asked to complete a post-study questionnaire to assess their impressions about the weight loss study.

Statistical Methods

Only subjects who completed the 16 week trial with greater than 80% compliance were included in the analyses. Missing data, if any, were replaced using the last observed value method or by replacing missing values with the group mean method. Baseline demographic data were analyzed by one-way Analysis of Variance (ANOVA). Data were normally distributed. Study data were analyzed by Multivariate Analysis of Variance (MANOVA) with repeated measures (PASW Statistics version 19, 2011, SPSS
Inc, Chicago, IL.). Overall MANOVA effects were examined using Wilks’ Lamda time and group x time p-levels as well as MANOVA univariate ANOVA group effects. Greenhouse-Geisser univariate tests of within-subjects time and group x time effects and between-subjects univariate group effects were reported for each variable analyzed within the MANOVA model. In some instances, repeated measures ANOVA was run on variables not included in a MANOVA design with univariate group, time, and group x time interaction effects reported. Variables with baseline differences determined by ANOVA were analyzed using analysis of covariance (ANCOVA). Delta values or percent difference were calculated and analyzed on select variables by ANOVA for repeated measures to assess changes from baseline values. Delta values were calculated by subtracting the first testing session (T1) from later testing sessions (T6-T1). Percent differences were calculated by subtracting T1 from the later testing session, then performing division by T1 followed by multiplication by 100 \([(T6-T1)/T1 \cdot 100]\). Data were considered statistically significant when the probability of type I error was 0.05 or less and statistical trends were considered when the probability error ranged between >0.05 to p<0.10. If a significant group, treatment and/or interaction alpha level was observed, Tukey’s least significant difference (LSD) post hoc analyses were performed to determine where significance was obtained. Power analysis of previous studies using similar designs and subject populations indicated that a sample size of 30 subjects per group yielded high power (>0.8) for delta values of 0.75 to 1.25 for weight and fat loss. All data are presented as means ± standard deviation.
CHAPTER IV
RESULTS

Methods

Experimental Approach

This study was conducted as a randomized comparative effectiveness trial from June 2009 to June 2011. Participants were matched based on age and body mass index (BMI: calculated as kg/m²) and randomized into one of two weight reduction interventions. Dietary intake and weekly physical activity, anthropometric measurements, resting energy expenditure (REE), resting heart rate (RHR) and systolic and diastolic blood pressure (BP), body composition, serum clinical chemistry panels, whole blood counts and hormone concentrations, and quality of life were assessed at 0, 4, 10, and 16 weeks to determine differences in weight reduction program effects. Maximal cardiopulmonary exercise capacity (Peak VO₂) and upper and lower body isotonic strength and endurance were assessed at 0 and 16 weeks to ascertain chronic program effects.

Participants

This research protocol was reviewed and approved by the university Institutional Review Board before initiation. Participants were recruited through advertisements in local newspapers, campus flyers, radio and Internet advertisements. Interested participants were asked to contact the laboratory for an initial telephone prescreening interview. General entrance criteria included being an apparently healthy woman between ages of 18 and 50 years with a BMI greater than 25 and no recent participation in a diet or
exercise program. Individuals who met initial entrance criteria were invited to attend a familiarization session in which the details of the study were explained, human subject consent forms were signed and personal and medical history information was obtained. Participants were not allowed to participate in the study if the subjects reported the following at baseline: a recent weight change of (±3.2 kg or 7 lb) within 3 months; any uncontrolled metabolic or cardiovascular disorder, including known electrolyte abnormalities, heart disease, arrhythmias, diabetes, or thyroid disease, or a history of hypertension, hepatorenal, musculoskeletal, autoimmune, or neurological disease; taking any weight loss supplements and/or ergogenic levels of nutritional supplements that affect muscle mass, anaerobic exercise capacity, anabolic/catabolic hormone levels, or weight loss within 3 months; a history of pregnancy or lactation within the past 12 months or intentions to become pregnant during the next 12 months; participation in a regular exercise program within the past 3 months; and, any condition that is classified as high risk for cardiovascular disease according to American College of Sports Medicine criteria 194. Information obtained during the familiarization session was reviewed by the research coordinator to determine eligibility to participate in the study. Those meeting eligibility criteria were scheduled to undergo baseline assessments. Participants with a controlled medical condition had their physicians complete and sign the physician’s consent form prior to participation in the baseline assessment.

A total of 149 women responded to advertisements to participate in this study. Of these, 127 met phone interview entrance criteria and were invited to attend familiarizations sessions. One hundred and twenty women showed up for familiarization
sessions and met entrance criteria to participate in the study after evaluation of medical history and obtaining consent. Of these women, 98 women completed baseline testing and were cleared to participate in the study. Fifty one women completed the 16 week study. The primary reasons participants dropped out of the study were due to time constraints, job conflicts, transportation difficulties, and relocation.

Figure 1. Consort diagram for participation.

Testing Sessions

Participants were instructed to refrain from exercise for 48 hours and fast for at least 12 hours prior to reporting to the ESNL for testing sessions. Baseline testing sessions and 16 week testing sessions were identical and consisted of dietary inventory review; weekly physical activity assessment [International Physical Activity Questionnaire
(IPAQ)]; anthropometric assessments (body mass, waist and hip circumference); resting energy expenditure; resting heart rate and systolic and diastolic blood pressure (BP); body composition analysis (DEXA); blood collection (metabolic panels, blood lipids, white and red blood cells); cardiorespiratory and muscular fitness assessments; psychosocial assessments [standardized quality of life (SF-36) and eating satisfaction inventory]. Additional testing sessions occurred during the fourth and tenth weeks and consisted of all baseline measures excluding cardiorespiratory and muscular fitness assessments.

Program Intervention

Participants were randomized into one of two popular weight loss program intervention groups. Participants in the Curves group (C) followed the Curves Fitness and Weight Management Plan (C program). In concurrence with this plan, subjects followed the phase 1 higher protein weight loss diet (1,200 kcals/day) for one week and the phase 2 higher protein weight loss diet (1,500 kcals/day) for 3 weeks. The macronutrient content for both phase 1 and 2 diets was (45% protein, 30% carbohydrate, 25% fat). Phase 3 consisted of a metabolic recovery phase, where subjects followed a 2,000-2,500 kcals/d diet with a macronutrient breakdown of (30% protein, 45% carbohydrate, 25% fat) for two weeks. Subjects experiencing a weight increase of 3 pounds during phase 3 were instructed to return to Phase 1 for 2-3 days until their weight returned back down. The three dietary phases were cycled over the course of 16 weeks. A registered dietitian reviewed the higher protein diet and exercise plan with subjects. Participants were encouraged to consume 2 multivitamins, 800 mg of calcium, and 520 mg of Omega-3
fatty acids daily. The dietitian also met with subjects weekly throughout the study to discuss any dietary challenges or concerns.

The physical training protocol included one regular curves circuit workout and two circuit combined with Zumba workouts each week for 16 weeks, while maintaining a greater than 80% compliance record (38 out of 48 workouts). The circuit utilized the computerized CurvesSmart system (Curves International, Waco, TX, USA) equipped with software designed by MYTRAK (version 4.2.0.0, copyright 2004-2010, MYTRAK Health System, Mississauga, Ontario, Canada). The circuit consisted of 13 bi-directional hydraulic resistance exercise machines that worked all major muscle groups (e.g., elbow flexion/extension, knee flexion/extension, shoulder press/lat pull, hip abductor/adductor, chest press/seated row, horizontal leg press, squat, abdominal crunch/back extension, chest flies, oblique, shoulder shrug/dip, hip extension, and side bends). During the circuit workouts, subjects were instructed to complete as many repetitions as possible during a 30 second time period on each resistance machine. Between machines, subjects performed floor-based aerobic exercises or stepping exercise designed to maintain an elevated heart rate. Subjects performed the entire circuit twice during the 26 minute regular circuit workout. During the circuit combined with Zumba workout, subjects performed 1 minute of Zumba dance moves in between 1 minute of resistance exercise on each machine. All Zumba classes were taught by a certified Zumba instructor. All circuit workouts were supervised by trained fitness instructors who assisted subjects with proper exercise technique and self-monitoring of heart rate in order to maintain an exercise heart rate between 60-80% of target heart rate using age-predicted maximal
heart rate (220-age). Subjects also performed 5 minutes of whole body stretching following circuit workouts. In addition to circuit training, subjects were encouraged to walk for 30 minutes at a brisk pace [60-80% of heart rate reserve (maximum HR-minimum HR)] on most days of the week. The circuit equipment was located in the Exercise and Sports Nutrition Laboratory at Texas A&M University.

Participants assigned to the Weight Watchers Group (W) took part in the Weight Watchers Momentum Program (W program) and were signed up for the monthly pass subscription. Subjects were required to attend 1 meeting each week with an 80% compliance record (13 out of 16 meetings). Subjects emailed the study coordinator each time they attend a meeting. Meetings consisted of group discussions and some individual interaction as members weighed in. The core program material was delivered over ten weeks and included: food plans based on a system of points, exercise recommendations, strategies for dealing with hunger, successful habits, strategies for eating out, tracking intake and activity, eating with others, recipes, workout variation, and plateaus. The program also encouraged subjects to perform 30 minutes of activity on most days of the week. All subjects attended meetings at the Bryan Texas site.

Methods and Procedures

Dietary Inventories

A registered dietitian instructed all subjects on precise documentation of food intake and accurate estimation of food portion size. Participants recorded all food and fluids consumed over a four day period (including one weekend day) prior to each testing session. Dietary inventories were reviewed with participants at each testing session to
ensure accuracy, completeness, and legibility. Dietary information was then analyzed to determine the average caloric intake and macronutrient content using Food Processor Nutrition Analysis Software Version 9.1.0 (ESHA Nutrition Research, Salem, OR, USA). A registered dietitian reviewed all analyzed dietary information.

Weekly Physical Activity Assessment

Physical activity patterns were quantified by assessing responses to the 7 day version of the International Physical Activity Questionnaire (IPAQ)175-177. This assessment tool evaluated the frequency and intensity of job-related physical activity; transportation physical activity; housework, house maintenance, and caring for family related physical activity; and recreation, sports, and leisure-time physical activity based on established metabolic equivalent (MET) levels for common activities. The IPAQ defined light physical activity as walking level intensities (3.3 METs), moderate physical activity as activities at a 4.0 MET level, and vigorous physical activity as activities at an 8.0 MET level. The IPAQ has been identified as a valid indicator of general changes in physical activity patterns175-178.

Anthropometrics and Body Composition

Height and total body weight were determined according to standard procedures using a Healthometer (Bridgeview, IL, USA) self-calibrating digital scale with a precision of +/- 0.02 kg. Hip and waist circumference were measured using a Gulick tension standardized measuring tape per guidelines established by the American College of Sports Medicine181. Bone density and body composition (excluding cranium) was assessed using a Hologic Discovery W QDR series Dual Energy X-ray Absorptiometry.
(DEXA) system (Hologic Inc, Waltham, MA, USA) equipped with APEX software (APEX Corporation Software, Pittsburgh, PA, USA). Mean coefficients of variation for bone mineral content and bone mineral density measurements performed on the spine phantom ranged between 0.41% and 0.55%. Mean test-retest reliability studies performed on male athletes with this Hologic system have yielded mean coefficients of variation for total bone mineral content and total fat free/soft tissue mass of 0.31% to 0.45% with a mean intra-class correlation of 0.985187.

Resting Energy Expenditure

Resting energy expenditure assessments were conducted according to standard protocols using the Parvo Medics TrueMax 2400 Metabolic Measurement System (ParvoMedics, Inc, Sandy, UT, USA). This test was conducted in a fasted state with the participants lying supine on an exam table. A clear metabolic canopy was placed over the subject’s head and neck, so that resting oxygen uptake and energy expenditure could be determined. The participants remained motionless without falling asleep for approximately 20 minutes. Metabolic measurements were recorded after the first 10 minutes during a five minute period in which principle variables, such as oxygen uptake, changed less than 5%180. Mean test-retest reliability studies on 14 participants from a previous study revealed test-retest correlations (r) of collected oxygen uptake range from 0.315 to 0.901 (mean 0.638) and coefficient of variation range from 8.2% to 12.0% (mean 9.9%) with a mean intraclass coefficient of 0.942; p<0.00135.
Blood Collection and Analysis Procedures

Fasted and whole blood and serum samples were collected using standard phlebotomy techniques. Whole blood samples were analyzed for complete blood counts with platelet differentials utilizing an Abbott Cell Dyn 3500 automated hematology analyzer (Abbott Laboratories, Abbott Park, IL, USA). Serum samples were analyzed for a complete metabolic panel by Quest Diagnostics (Quest Diagnostics, 5850 Rogerdale Road, Houston TX, USA 77072) using an Olympus AAU 5400 Chemistry Immuno Analyzer (Olympus America Inc., Center Valley, PA, USA). Serum leptin was determined in duplicate using a commercially available enzyme linked immunoabsorbent assay (ELISA) kit (No. 11-LEPHU-E01, ALPCO, Salem, NH) using a BioTek ELX-808 Ultramicroplate reader (BioTek Instruments Inc, Winooski, VT) at an optical density of 450 nm against a known standard curve utilizing standard procedures using BioTek Gen5 Analysis software (BioTek Instruments Inc, Winooski, VT). Intra-assay coefficient of variation has been shown to range from 3.7% to 5.5, whereas the inter-assay coefficient of variation of has a ranged from 5.8% to 6.8% (ALPCO, Salem, NH). Fasting insulin was also assayed in duplicate via a commercially available Enzyme Linked Immunosorbent assay (ELISA) kit (No. 80-INSHU-E10, ALPCO, Salem, NH) using a BioTek ELX-808 Ultramicroplate reader (BioTek Instruments Inc, Winooski, Vermont) at an optical density of 450 nm against a known standard curve using standard procedures with BioTek Gen5 Analysis software (BioTek Instruments Inc, Winooski, VT). The intra-assay coefficient of variation has been shown to ranged from 2.9% to 6.2%, with an inter-assay coefficient of variation range of 5.4% to 8.6% (ALPCO,
Salem, NH). The homeostasis Model Assessment for insulin resistance (HOMA-IR) was calculated as the product of fasting insulin times fasting glucose expressed in standard units divided by 405188.

Exercise Capacity

Resting heart rate was determined by palpitation of the radial artery and resting blood pressure was assessed in the supine position utilizing a mercurial sphygmomanometer (American Diagnostic Corporation, model #AD-720, Hauppauge, NY, USA) using standard procedures181. Maximal Cardiopulmonary exercise tests (peak VO\textsubscript{2}) were performed utilizing the Bruce treadmill protocol189. Standard test termination criteria were utilized to assess maximal volitional fatigue181. The Nasiff Cardio Card electrocardiograph (Nasiff Associates, Inc, Central Square, NY, USA) was used to assess heart function using a standard 12-lead arrangement181. Expired gases were collected using a ParvoMedics 2400 TrueMax Metabolic Measurement System (ParvoMedics Inc, Sandy, UT, USA). Gas and flow sensors were calibrated before testing and were found to be within 3% of previous calibration points.

Participants had their 1RM determined using an isotonic Olympic bench press (Nebula Fitness, Versailles, OH, USA) and a standard hip sled/leg press (Nebula Fitness, Versailles, OH, USA) to determine changes in maximal strength. Hand positioning on the bench press and foot and seat position on the hip sled/leg press were standardized between trails. Muscular endurance was assessed by having participants performed as many repetitions as possible at 80% of their predetermined 1RM on the bench press and leg press using standard lifting techniques and testing criteria191. Test-retest reliability
of performing these strength tests on resistance-trained subjects in the ESNL have yielded low mean coefficients of variation and high reliability for the bench press (1.9%, intraclass $r = 0.94$) and leg press/hip sled (0.7%, intraclass $r = 0.91$) \cite{192}.

Psychometric Assessments

Participants completed the SF-36 Health-Related Quality of life (QOL) inventory \cite{140} and an appetite/eating satisfaction questionnaire. The SF-36 quality of life questionnaire has been validated for the measurement of psychosocial dimensions that may be influenced by general improvement in health and/or weight loss \cite{145, 193}. The SF 36 questionnaire assessed a number of physical and mental components including physical functioning (ie, the ability to perform most vigorous physical activities without limitation to health), role physical (ie, ability to work and perform daily activities), bodily pain (ie, limitations due to pain), general health (ie, assessment of personal health), vitality (ie, feeling of having energy), social functioning (ie, ability to perform normal social activities), role emotion (ie, problems with work or other daily activities), and mental health (state of feelings of peacefulness, happiness, and calm). Eating Satisfaction Questionnaires were performed for comparison to previous curves intervention studies. These questionnaires satisfied the requirements of the sponsor of this study and are listed as a limitation of the study as they have not been validated or tested for reliability. Following the final testing session, participants were asked to complete a post-study questionnaire to assess their impressions about the weight loss study.
Statistical Methods

Only subjects who completed the 16 week trial were included in the analyses. Missing data, if any, were replaced using the last observed value method or by replacing missing values with the group mean method. Baseline demographic data were analyzed by one-way Analysis of Variance (ANOVA). Data were normally distributed. Study data were analyzed by Multivariate Analysis of Variance (MANOVA) with repeated measures (PASW Statistics version 19, 2011, SPSS Inc, Chicago, IL.). Overall MANOVA effects were examined using Wilks’ Lamda time and group x time p-levels as well as MANOVA univariate ANOVA group effects. Greenhouse-Geisser univariate tests of within of within-subjects time and group x time effects and between-subjects univariate group effects were reported for each variable analyzed within the MANOVA model. In some instances, repeated measures ANOVA was run on variables not included in a MANOVA design with univariate group, time, and group x time interaction effects reported. Variables with baseline differences determined by ANOVA were analyzed using analysis of covariance (ANCOVA). Delta values or percent difference were calculated and analyzed on select variables by ANOVA for repeated measures to assess changes from baseline values. Delta values were calculated by subtracting the first testing session (T1) from later testing sessions (T6-T1). Percent differences were calculated by subtracting T1 from the later testing session, then performing division by T1 followed by multiplication by 100 \([(T6-T1)/T1·100]\). Data were considered statistically significant when the probability of type I error was 0.05 or less and statistical trends were considered when the probability error ranged between >0.05 to
p<0.10. If a significant group, treatment and/or interaction alpha level was observed, Tukey’s least significant difference (LSD) post hoc analyses were performed to determine where significance was obtained. Power analysis of previous studies using similar designs and subject populations indicated that a sample size of 30 subjects per group yielded high power (>0.8) for delta values of 0.75 to 1.25 for weight and fat loss. All data are presented as means ± standard deviation.

Results

Fifty-one apparently healthy but sedentary and obese women (age 35±8 yrs, height 163±7 cm; weight 90±1 kg; BMI 34±5 kg/m²; 47±7 % body fat) completed the 16-week study (n=24 C group; n=27 W group) with greater than 80% compliance. No significant differences were observed between groups in baseline age, height, weight, BMI, or percent body fat as determined by ANOVA (Table 4).

| Table 4. Baseline demographics for the Curves (C) and Weight Watchers (W) groups |
|---------------------------------|-----------------|-----------------|
| Group | C group (n=24) | W group (n=27) |
| Age (years) | 34.5±7.7 | 35.1±9.2 | 34.0±6.2 | 0.63 |
| Height (cm) | 162.8±7.0 | 163.0±7.4 | 162.6±6.7 | 0.84 |
| Weight (kg) | 90.1±14.5 | 90.8±15.7 | 89.5±13.6 | 0.77 |
| BMI\(^a\) (kg/m²) | 34.0±5.1 | 34.1±5.1 | 33.9±5.2 | 0.90 |
| DEXA\(^b\) fat mass (%) | 46.5±7.1 | 48.1±6.5 | 45.1±7.3 | 0.14 |

All data is presented as means ± SD at baseline. Significance level was set at 0.05.
\(^a\)Body mass Index
\(^b\)Dual Energy X-ray Absorptiometry

Dietary Intake

Table 5 presents changes in nutritional intake at 0, 4, 10, and 16 weeks of program intervention. Complete food records were obtained on all participants completing the
study. MANOVA analyses were run on energy intake (kcals/kg/d), macronutrient intake expressed in g/kg/day, and macronutrient intake expressed as a percentage of total calories consumed. MANOVA analysis of dietary intake data revealed an overall time

Table 5. Changes in nutritional intake obtained at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>0</th>
<th>4</th>
<th>10</th>
<th>16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kcals/kg/d)</td>
<td>C</td>
<td>19.17±5.99</td>
<td>16.53±4.23</td>
<td>15.83±4.04</td>
<td>17.24±4.54</td>
<td>G=0.34</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>22.32±6.80</td>
<td>15.58±4.52</td>
<td>16.27±4.12</td>
<td>15.67±4.22</td>
<td>T=0.001</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20.84±6.55</td>
<td>16.03±4.37</td>
<td>16.06±4.05</td>
<td>16.50±4.42</td>
<td>I=0.04</td>
</tr>
<tr>
<td>CHO Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g/kg/d)</td>
<td>C</td>
<td>1.94±0.89</td>
<td>1.58±0.66</td>
<td>1.54±0.62</td>
<td>1.51±0.68</td>
<td>G=0.12</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>2.26±0.88</td>
<td>1.70±0.53</td>
<td>1.69±0.55</td>
<td>1.89±0.50</td>
<td>T=0.001</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2.11±0.89</td>
<td>1.64±0.59</td>
<td>1.62±0.58</td>
<td>1.71±0.61</td>
<td>I=0.43</td>
</tr>
<tr>
<td>Protein Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g/kg/d)</td>
<td>C</td>
<td>0.89±0.27</td>
<td>1.07±0.28</td>
<td>0.94±0.31</td>
<td>1.00±0.35</td>
<td>G=0.02</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>0.86±0.23</td>
<td>0.79±0.24</td>
<td>0.85±0.25</td>
<td>0.80±0.22</td>
<td>T=0.44</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.88±0.25</td>
<td>0.93±0.29</td>
<td>0.89±0.28</td>
<td>0.90±0.30</td>
<td>I=0.005</td>
</tr>
<tr>
<td>Fat Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g/kg/d)</td>
<td>C</td>
<td>0.74±0.27</td>
<td>0.62±0.18</td>
<td>0.58±0.19</td>
<td>0.59±0.25</td>
<td>G=0.64</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>0.90±0.32</td>
<td>0.47±0.20</td>
<td>0.48±0.19</td>
<td>0.58±0.18</td>
<td>T=0.001</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.82±0.31</td>
<td>0.54±0.20</td>
<td>0.53±0.20</td>
<td>0.58±0.22</td>
<td>I=0.001</td>
</tr>
<tr>
<td>CHO Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>C</td>
<td>42±6</td>
<td>38±7</td>
<td>41±11</td>
<td>40±10</td>
<td>G=0.003</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>43±9</td>
<td>47±9</td>
<td>46±9</td>
<td>47±6</td>
<td>T=0.90</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>42±9</td>
<td>43±10</td>
<td>43±10</td>
<td>43±9</td>
<td>I=0.06</td>
</tr>
<tr>
<td>Protein Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>C</td>
<td>21±5</td>
<td>27±6</td>
<td>25±7</td>
<td>27±7</td>
<td>G=0.006</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>17±3</td>
<td>22±4</td>
<td>23±5</td>
<td>20±3</td>
<td>T=0.75</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>19±5</td>
<td>24±6</td>
<td>24±6</td>
<td>23±6</td>
<td>I=0.02</td>
</tr>
<tr>
<td>Fat Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>C</td>
<td>37±8</td>
<td>35±6</td>
<td>34±7</td>
<td>33±6</td>
<td>G=0.11</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>39±8</td>
<td>30±8</td>
<td>30±9</td>
<td>32±8</td>
<td>T=0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>38±8</td>
<td>32±8</td>
<td>32±8</td>
<td>33±6</td>
<td>I=0.02</td>
</tr>
</tbody>
</table>

* Complete food intake records were obtained at 0, 4, 10, and 16 weeks for 24 participants in the C group and 27 participants in the W group (n=51). Data were analyzed using ESHA Food Processor Nutritional Analysis Software (Version 8.6).

bp<0.05 difference from baseline.
G=group alpha level.
T=time alpha level.
I=group x time interaction alpha level.
Carbohydrate intake
bp<0.01 difference between C and W groups.
p<0.05 difference between C and W groups.
(Wilks’ Lamda p=0.001) and overall time by diet interaction (Wilks’ Lamda p=0.03) observed. MANOVA univariate analysis revealed the W group had a greater reduction in energy intake per kilogram body weight than the C group (C -2.6±5.4, -3.3±5.1, -3.5±6.0; W -6.7±5.8, -6.0±6.2, -5.1±6.2 g/kg/d) with time (p=0.001) and time by diet (p=0.04) effects observed. There was a greater reduction in fat intake in the W group (C -0.12±15, -0.16±0.31, -0.17±0.26; W -0.42±0.28,-0.41±0.33, -0.31± 0.34 g/kg/d) with time (p=0.001), time by diet (p=0.001) effects observed. Univariate ANOVA also revealed the W group had a greater reduction in the percentage of energy intake from fat (C -2.6±8.6, -3.0±8.9, -3.7±7.4; W -9.6±9.5, -9.4±11.2, -6.7±8.8 %) with effects seen for time (p=0.001) and time by diet (p=0.02).

Carbohydrate intake decreased over time in both groups (C -0.36±0.68, -0.40±0.61, -0.43±0.73; W -0.56±0.94, -0.57±0.87, -0.37±0.88 g/kg/d) with no significant difference between groups (p=0.43). However, the percentage of kcaldories consumed as carbohydrate tended to increase with reduced energy intake in the W group (C -3.5±8.2, -1.0±10.2, -2.0±9.0; W 4.0±11.0, 2.7±12.1, 3.5±9.1 %) with a trend in time by diet (p=0.06) and diet (p=0.003) effects observed. The C group increased dietary protein intake (C 0.18±0.20, 0.05±0.30, 0.11±0.35; W -0.07±0.18, -0.01±0.26, -0.06±0.20 g/kg/d) with both time by diet (p=0.005) and diet (p=0.02) effects observed. One way ANOVA revealed the C group consumed a higher percentage of kcaldories as protein at baseline (p=0.005). Univariate ANCOVA revealed the C group experienced a greater increase in the percentage of kcaldories consumed as protein (C 6.4±7.1, 4.1±6.4, 6.1±7.7;
W 5.0±5.4, 6.2±6.5, 3.1±4.4 %) with significant time by diet (p=0.02) and group effects (p=0.006) observed.

Physical Activity

Table 6. Changes in physical activity patterns values observed at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>0</th>
<th>4</th>
<th>10</th>
<th>16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low PA(^b)</td>
<td>C</td>
<td>1,097±1,301</td>
<td>1,240±1,222</td>
<td>1,146±1,637</td>
<td>1,370±1,722</td>
<td>G(^c) = 0.80</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>703±1,170</td>
<td>890±1,258</td>
<td>1,467±2,022</td>
<td>1,428±1,868</td>
<td>T(^d) = 0.09</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>889±1,237</td>
<td>1,054±1,241</td>
<td>1,316±1,840</td>
<td>1,401±1,783</td>
<td>I(^e) = 0.27</td>
</tr>
<tr>
<td>Moderate PA</td>
<td>C</td>
<td>1,295±1,606</td>
<td>1,081±876</td>
<td>1,625±1,691</td>
<td>1,446±1,787</td>
<td>G = 0.85</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>1,037±1,372</td>
<td>1,432±2,406</td>
<td>1,427±1,839</td>
<td>1,205±1,544</td>
<td>T = 0.49</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>1,158±1,477</td>
<td>1,267±1,842</td>
<td>1,573±1,754</td>
<td>1,318±1,650</td>
<td>I = 0.65</td>
</tr>
<tr>
<td>Vigorous PA</td>
<td>C</td>
<td>437±791</td>
<td>1,033±1,208d</td>
<td>1,281±937d</td>
<td>928±460d</td>
<td>G = 0.002</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>137±313</td>
<td>598±1,008d</td>
<td>637±943d</td>
<td>341±670</td>
<td>T = 0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>278±602</td>
<td>803±1,117d</td>
<td>940±986d</td>
<td>617±647d</td>
<td>I = 0.61</td>
</tr>
<tr>
<td>Total PA</td>
<td>C</td>
<td>2,341±1,950</td>
<td>3,334±2,228d</td>
<td>4,053±2,671d</td>
<td>3,805±2,764d</td>
<td>G = 0.37</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>1,825±2,028</td>
<td>2,879±3,228</td>
<td>3,703±3,687d</td>
<td>2,970±3,055</td>
<td>T = 0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2,068±1,989</td>
<td>3,093±2,785d</td>
<td>3,868±3,222d</td>
<td>3,363±2,923d</td>
<td>I = 0.93</td>
</tr>
<tr>
<td>Job PA</td>
<td>C</td>
<td>1,230±1,713</td>
<td>1,157±1,999</td>
<td>1,465±1,936</td>
<td>1,526±2,334</td>
<td>G = 0.18</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>460±1,132</td>
<td>751±1,332</td>
<td>1,341±2,504</td>
<td>640±1,443</td>
<td>T = 0.19</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>822±1,472</td>
<td>942±1,674</td>
<td>1,400±2,233</td>
<td>1,057±1,946</td>
<td>I = 0.45</td>
</tr>
<tr>
<td>Transportation PA</td>
<td>C</td>
<td>274±389</td>
<td>311±450</td>
<td>419±636</td>
<td>523±1,003</td>
<td>G = 0.44</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>129±294</td>
<td>183±545</td>
<td>477±878</td>
<td>820±1,528d</td>
<td>T = 0.05</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>197±346</td>
<td>243±501</td>
<td>450±767d</td>
<td>680±1,303d</td>
<td>I = 0.59</td>
</tr>
<tr>
<td>House PA</td>
<td>C</td>
<td>594±882</td>
<td>627±532</td>
<td>1,133±1,500</td>
<td>670±601</td>
<td>G = 0.36</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>876±1,251</td>
<td>1,262±2,279</td>
<td>873±1,124</td>
<td>950±1,388</td>
<td>T(_q) = 0.56</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>743±1,092</td>
<td>963±1,712</td>
<td>996±1,308</td>
<td>818±1,090</td>
<td>I = 0.26</td>
</tr>
<tr>
<td>Recreation PA</td>
<td>C</td>
<td>439±577</td>
<td>1,259±593d</td>
<td>1,036±275d</td>
<td>995±492d</td>
<td>G = 0.01</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>340±549</td>
<td>746±958</td>
<td>868±1,321d</td>
<td>421±481</td>
<td>T = 0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>387±559</td>
<td>987±840d</td>
<td>947±974d</td>
<td>691±561d</td>
<td>I = 0.20</td>
</tr>
</tbody>
</table>

\(^a\)International Physical Activity Questionnaire (IPAQ) data were analyzed at 0, 4, 10, and 16 weeks of program participation for 24 participants in the C group and 27 participants in the W group (n=51).

\(^b\)PA=physical activity.

\(^c\)Met-min/week=MET level x minutes of activity per day x days per week.

\(^d\)p<0.05 difference from baseline.

\(^e\)G=group alpha level.

\(^f\)T=time alpha level.

\(^g\)I=group x time interaction alpha level.
Table 6 shows changes in physical activity observed at 0, 4, 10, and 16 weeks of program intervention. Overall MANOVA revealed a significant time effects (Wilks’ Lamda p=0.001) with a trend in overall time by diet interaction observed (Wilks’ Lamda p=0.08) in physical activity variables. Both groups increased total recreational activity (C 818±852, 597±549, 556±680; W 407±1052, 528±1082, 82±707 MET-min/week; p=0.20) with an effect of group observed (p=0.01) indicating total recreational activity was greater in the C group. Vigorous physical activity also increased in both groups (C 595±666, 845±1059, 491±943; W 462±1026, 500±1028, 204±763 MET-min/week, p=0.61) with the C group increasing vigorous activity to a greater degree than the W group (p=0.002). Both groups increased total physical activity (C 993±2148, 1712±2275, 1464±1775; W 1054±3519, 1878±2689, 1145±3215 MET-min/week; p=0.93) with no differences observed between groups. The W group increased low physical activity (C 143±1075, 49±1001, 273±1139; W 187±1501, 764±1454, 725±1806 MET-min/week) and transportation physical activity (C 37±278, 145±530, 249±948; W 54±558, 349±893, 691±1562 MET-min/week) with no significant difference observed between groups (p=0.27) and (p=0.33) respectively. Large standard deviations revealed considerable variability in the physical activity levels of study participants.

Body Composition, Anthropometry and Resting Energy Expenditure

Table 7 presents changes in body composition, anthropometry, and resting energy expenditure data observed at 0, 4, 10 and 16 weeks of program participation.

MANOVA analysis of body composition data revealed overall time (Wilks’ Lamda p=0.001) and time by diet effects (Wilks’ Lamda p=0.003). MANOVA Univariate
analysis revealed that both groups lost a similar amount of total mass (C -2.4±2.0, -4.1±3.4, -5.1±3.9; W -2.3±2.3, -4.5±3.0, -5.5±4.6 kg, p=0.78). Lean tissue mass was

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>0</th>
<th>4</th>
<th>10</th>
<th>16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Mass (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>84.5±15.0</td>
<td>82.1±13.8</td>
<td>80.4±13.0</td>
<td>79.4±13.0</td>
<td>G=0.62</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>82.8±12.7</td>
<td>80.5±13.2</td>
<td>78.3±13.4</td>
<td>77.3±14.1</td>
<td>T=0.001</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>83.6±13.7</td>
<td>81.3±13.4</td>
<td>79.3±13.1</td>
<td>78.3±13.5</td>
<td>F=0.78</td>
<td></td>
</tr>
<tr>
<td>Fat Mass (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40.9±10.5</td>
<td>37.0±8.1</td>
<td>36.2±8.4</td>
<td>34.5±8.5</td>
<td>G=0.67</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>37.4±9.1</td>
<td>37.0±8.7</td>
<td>35.3±10.5</td>
<td>34.5±10.7</td>
<td>T=0.001</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>39.1±9.9</td>
<td>37.0±8.4</td>
<td>35.8±9.4</td>
<td>34.5±9.6</td>
<td>I=0.09</td>
<td></td>
</tr>
<tr>
<td>Lean Mass (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>43.6±7.8</td>
<td>45.1±7.6</td>
<td>44.1±7.0</td>
<td>44.9±6.7</td>
<td>G=0.68</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>45.3±8.7</td>
<td>43.5±7.2</td>
<td>42.9±6.8</td>
<td>42.8±6.2</td>
<td>T=0.32</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>44.5±8.2</td>
<td>44.3±7.4</td>
<td>43.5±6.7</td>
<td>43.8±6.5</td>
<td>I=0.01</td>
<td></td>
</tr>
<tr>
<td>Body Fat (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>48.1±6.5</td>
<td>44.8±4.7</td>
<td>44.8±5.6</td>
<td>43.4±5.4</td>
<td>G=0.74</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>45.1±7.3</td>
<td>45.7±5.6</td>
<td>44.5±7.3</td>
<td>43.7±6.7</td>
<td>T=0.007</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>46.5±7.1</td>
<td>45.3±5.2</td>
<td>44.7±6.5</td>
<td>43.5±6.1</td>
<td>I=0.10</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>34.1±5.1</td>
<td>33.2±4.8</td>
<td>32.5±4.6</td>
<td>32.2±4.5</td>
<td>G=0.75</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>33.9±5.1</td>
<td>32.9±5.2</td>
<td>31.9±5.2</td>
<td>31.6±5.5</td>
<td>T=0.007</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>34.0±5.1</td>
<td>33.0±5.0</td>
<td>32.3±4.8</td>
<td>31.9±5.0</td>
<td>I=0.24</td>
<td></td>
</tr>
<tr>
<td>Waist (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>96.7±12.3</td>
<td>92.9±11.4</td>
<td>90.3±10.1</td>
<td>89.6±10.2</td>
<td>G=0.64</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>93.2±8.6</td>
<td>92.3±11.3</td>
<td>89.8±10.6</td>
<td>87.9±10.7</td>
<td>T=0.001</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>94.4±10.5</td>
<td>92.6±11.2</td>
<td>89.9±10.5</td>
<td>88.7±10.4</td>
<td>I=0.46</td>
<td></td>
</tr>
<tr>
<td>Hip (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>120.8±10.2</td>
<td>118.4±10.3</td>
<td>115.4±9.3</td>
<td>114.7±9.3</td>
<td>G=0.98</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>120.5±10.9</td>
<td>118.9±10.8</td>
<td>115.7±11.1</td>
<td>113.3±12.0</td>
<td>T=0.001</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>120.6±10.4</td>
<td>118.7±104</td>
<td>115.6±10.2</td>
<td>114.0±10.7</td>
<td>I=0.31</td>
<td></td>
</tr>
<tr>
<td>REE (kcal/d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1,389.1±252.5</td>
<td>1,465.5±191.9</td>
<td>1,507.7±195.6</td>
<td>1,507.1±223.2</td>
<td>G=0.34</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>1,361.3±257.6</td>
<td>1,415.3±200.4</td>
<td>1,425.9±190.2</td>
<td>1,418.4±244.2</td>
<td>T=0.002</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1,374.4±253.0</td>
<td>1,438.9±196.1</td>
<td>1,464.4±195.2</td>
<td>1,460.1±236.5</td>
<td>I=0.22</td>
<td></td>
</tr>
</tbody>
</table>

aData are from 24 participants in the C group and 27 participants in the W group (n=51) who completed the 16-week study.
bp<0.05 difference from baseline.
G=group alpha level.
T=time alpha level.
I=group x time interaction alpha level.
BM1 = body mass index.
Resting Energy Expenditure
maintained in the C group and decreased in the W group (C 1.5±4.3, 0.52±3.7, 1.3±4.0; W -1.8±5.4, -2.4±5.8, -2.5±5.1, p=0.01). The C group tended to have a greater reduction in percent body fat (C -3.3±5.2, -3.2±4.6, -4.7±5.4; W 0.6±6.7, -0.6±8.3, -1.4±8.1 %, p=0.10) and fat mass (C -3.9±5.5, -4.6±5.3, -6.4±5.9; W -0.4±5.7, -2.1±6.7, -2.9±7.8, p=0.09). Review of body composition data lead to acceptance H1 and a partial rejection of H01.

MANOVA analysis of anthropometry data revealed an overall time effect (Wilks’ Lamda p=0.001) effect with no significant overall time by diet effect (p=0.18). After 16 weeks both groups had decreased BMI (C -0.9±0.8, -1.6±1.3, -1.8±1.4; W -1.0±0.5, -2.0±0.9, -2.3±1.5 kg/m²; p=0.24), waist circumference(C -2.8±3.7, -5.4±5.4, -6.2±5.1; W -0.9±5.7, -3.8±6.0, -5.4±5.2 cm; p=0.46) and hip circumference (C -2.1±2.6, -5.0±4.2, -5.8±5.0; W -1.8±4.0, -5.1±3.7, -7.4±4.9 cm; p=0.31), with no differences observed. Univariate ANOVA revealed both groups had an increase in resting energy expenditure (REE) (C 76.4±195.7, 118.6±185.5, 118.0±162.5; W 53.9±187.9, 64.6±188.9, 57.0±216.6 kcals/d, p=0.54) with no difference observed between groups and lead to a rejection of H2.

Resting Heart Rate and Blood Pressure

Table 8 presents resting heart rate (RHR), resting systolic blood pressure (BP), and resting diastolic blood pressure observed at 0, 4, 10 and 16 weeks and changes in cardiorespiratory and muscular fitness after 16 weeks of program participation. MANOVA analysis of RHR and BP data revealed an overall time effect (Wilks’ Lambda p=0.001) effect with no overall time by diet interaction effect (Wilks’ Lambda p=0.22).
The C group experienced reductions in RHR (C -4.6±9.3, -5.9±10.7, -1.0±8.8; W -5.2±12.4, -1.0±12.1, -2.0±14.1 bpm, p=0.17) with no differences observed between groups. Both groups experienced similar changes in resting systolic BP (C -3.3±7.8, -3.8±11.1, -5.0±11.2; W -5.5±10.1, -4.9±11.9, -5.3±8.9 mmHg, p=0.86) and resting diastolic BP (C -4.1±8.0, -1.8±10.1, -1.5±10.1; W -4.3±8.8, -5.4±9.4, -4.7±7.9 mmHg, p=0.32) with no differences observed between groups. Review of resting cardiovascular data lead to an acceptance of H02.

Cardiorespiratory and Muscular Endurance and Fitness

MANOVA analysis of peak VO2 and treadmill time revealed an overall time effect (p=0.001) with no overall time by diet (p=0.12) effect observed. Univariate ANOVA analysis revealed both groups experienced an increase in peak oxygen uptake in L/min (C 0.09±0.16; W 0.03±0.13 L/min, p=0.13), peak oxygen uptake in ml/kg/min (C 2.4±2.3; W 2.1±2.0 ml/kg/min, p=0.68) and treadmill time (C 0.61±0.76; W 0.72±1.22 min, p=0.71) with no differences observed between groups after 16 weeks of program participation. Consideration of peak VO2 and treadmill time data lead to a rejection of H3.

MANOVA analysis of muscular fitness and endurance changes from 0 to 16 weeks revealed an overall time x diet effect (Wilks’ Lambda p=0.01) with no overall time effect (Wilks’ Lambda p=0.99). No significant changes were observed in either the C group or W group in leg press 1 RM (C 8.4±29.6; W -4.6±30.3 kg, p=0.13), bench press 1RM (C 1.1±4.7; W -0.7±3.8 kg; p=0.13), or leg press lifting volume at 80% 1 RM (C 131.3±925.3; W -56.1±1119.5 reps*kg; p=0.52). One way ANOVA revealed the C
Table 8. Changes in general health and fitness values obtained at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>0</th>
<th>4</th>
<th>10</th>
<th>16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean±standard deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resting Heart Rate (bpm)</td>
<td>C</td>
<td>72.5±8.5</td>
<td>67.9±8.4b</td>
<td>66.6±9.2b</td>
<td>71.5±8.5</td>
<td>G= 0.27</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>70.0±9.1</td>
<td>65.8±8.1b</td>
<td>69.0±7.1</td>
<td>68.0±8.7</td>
<td>T=0.008</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>71.2±8.8</td>
<td>66.3±8.3b</td>
<td>67.9±8.1b</td>
<td>69.7±8.7</td>
<td>T= 0.17</td>
</tr>
<tr>
<td>Resting Systolic BP (mmHg)</td>
<td>C</td>
<td>120.5±11.4</td>
<td>117.2±8.5b</td>
<td>116.7±13.3</td>
<td>115.5±12.5b</td>
<td>G = 0.20</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>118.4±9.6</td>
<td>112.9±9.4b</td>
<td>113.6±7.3b</td>
<td>113.2±8.7b</td>
<td>T = 0.003</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>119.4±10.4</td>
<td>114.9±9.2b</td>
<td>115.1±10.6</td>
<td>114.3±10.6b</td>
<td>I = 0.86</td>
</tr>
<tr>
<td>Resting Diastolic BP (mmHg)</td>
<td>C</td>
<td>75.5±8.5</td>
<td>71.4±9.0b</td>
<td>73.8±8.4</td>
<td>74.0±11.5</td>
<td>G = 0.72</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>77.9±6.3</td>
<td>73.6±7.7b</td>
<td>75.2±7.0b</td>
<td>73.2±6.5b</td>
<td>T = 0.005</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>76.8±7.5</td>
<td>72.6±8.3b</td>
<td>73.1±7.6b</td>
<td>73.6±9.1b</td>
<td>I = 0.32</td>
</tr>
<tr>
<td>Peak VO₂g (L/min)</td>
<td>C</td>
<td>2.0±0.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>2.0±0.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.0±0.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Peak VO₂g (ml/kg/min)</td>
<td>C</td>
<td>23.0±4.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>22.7±3.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>22.8±3.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Treadmill Time (min)</td>
<td>C</td>
<td>7.9±1.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>G=0.72</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>7.8±1.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>T=0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.8±1.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>I=0.71</td>
</tr>
<tr>
<td>Bench Press 1 RMb (kg)</td>
<td>C</td>
<td>34.4±7.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>G= 0.13</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>34.5±9.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>T = 0.70</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>34.5±8.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>I = 0.13</td>
</tr>
<tr>
<td>Bench Lifting Volumei (repetitions*kg)</td>
<td>C</td>
<td>156.0±77.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>G = 0.002</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>218.7±107.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>T = 0.97</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>189.2±98.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>I = 0.002</td>
</tr>
<tr>
<td>Leg Press 1 RM (kg)</td>
<td>C</td>
<td>196.0±57.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>G = 0.88</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>200.0±67.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>T = 0.65</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>198.1±61.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>I = 0.13</td>
</tr>
<tr>
<td>Leg Lifting Volumej (repetitions*kg)</td>
<td>C</td>
<td>1857.2±1018.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>G = 0.65</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>2057.7±1103.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>T = 0.80</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>1954.0±1059.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>I = 0.52</td>
</tr>
</tbody>
</table>

aData are from 24 participants in the C group and 27 participants in the W group (n=51) who completed the 16-week study.
bp<0.05 difference from baseline.
G=group alpha level
t=time alpha level
I=group x time interaction alpha level
Blood Pressure
Peak VO₂= peak oxygen uptake.
1 RM = 1 repetition maximum
Bench press lifting volume at 80% 1 RM (kg)
Leg Press lifting volume at 80% 1 RM (kg)
group had a significantly lower baseline bench press lifting volume at 80% 1 RM (p=0.02). Univariate analysis of changes from baseline revealed participants in the C group had a moderate increase in bench press endurance at 16 weeks, while the W group displayed a decreased endurance (C 40.2±104.1; W -39.1±65.4 reps*kg) with effects of group (0.002) and time by diet (p=0.002) observed. Review of overall muscular strength and endurance data lead to a partial acceptance of H4.

Biochemical Markers of Health

Table 9 presents changes in Fasting blood lipid values observed at 0, 4, 10 and 16 weeks of program participation. An overall MANOVA of fasting lipids revealed a time effect (Wilks’ Lamda p=0.001) with no significant overall MANOVA time x diet interactions (Wilks’ Lamda p=0.21). MANOVA Univariate analyses were conducted on percent changes from baseline. Both groups experiences a decrease in CHL, with no differences observed between groups (C -6.1±11.0, -4.1±7.4, -2.3±9.5; W -6.8±9.4, -5.7±12.6, -6.3±13.0 %, p=0.49). LDL-c levels decreased in the W group with no differences observed between groups (C -6.9±17.3, -2.7±13.6, -4.6±17.2; W -5.6±14.5, -2.8±19.7, -11.4±15.9 %, p=0.31). The C group had a moderate increase in HDL-c, while the W group experienced a decrease in HDL-c at 4 and 10 weeks (C -2.1±12.5, 3.0±12.3, 5.9±18.3; W -9.5±11.5, -9.5±12.7, -1.6±14.6 %) with time by diet (p=0.03) and diet (p=0.005) effects observed leading to rejection of H04. The W group experienced an increase in the CHL:HDL ratio at 10 weeks (C -1.8±13.1, -4.0±10.1, -3.8±12.2; W 3.4±13.4, 5.3±12.5, -3.4±14.2 %) time by diet effect (p=0.04) and trend in diet effect (p=0.08) observed. The C group tended to experience greater reductions in TG levels,
with an effect of diet observed (p=0.06) (C -8.0±26.3, -11.7±18.0,-2.3±26.1; W 4.0±25.2, 5.0±32.1, 7.8±52.4 %). Consideration of overall lipid biomarker data lead to a partial acceptance of H03.

Table 9. Fasting blood lipid values obtained at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groupsa

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>Week 0</th>
<th>Week 4</th>
<th>Week 10</th>
<th>Week 16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol (CHL) (mg/dl)</td>
<td>C</td>
<td>174.63±30.29</td>
<td>163.54±31.37</td>
<td>167.22±31.35</td>
<td>170.67±33.15</td>
<td>G = 0.34</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>186.07±29.51</td>
<td>172.40±26.50</td>
<td>174.67±30.97</td>
<td>173.47±30.22</td>
<td>T = 0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>180.69±30.17</td>
<td>168.23±29.00</td>
<td>171.16±31.06</td>
<td>172.10±31.34</td>
<td>I = 0.42</td>
</tr>
<tr>
<td>LDL Cholesterol (mg/dl)</td>
<td>C</td>
<td>97.67±25.97</td>
<td>90.54±28.83</td>
<td>94.04±25.07</td>
<td>92.88±28.07</td>
<td>G = 0.36</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>110.00±26.08</td>
<td>102.54±24.15</td>
<td>105.07±25.48</td>
<td>95.72±21.86</td>
<td>T = 0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>104.20±26.50</td>
<td>96.89±26.87</td>
<td>99.88±25.65</td>
<td>94.38±24.80</td>
<td>I = 0.15</td>
</tr>
<tr>
<td>HDL Cholesterol (mg/dl)</td>
<td>C</td>
<td>51.71±15.07</td>
<td>49.72±11.98</td>
<td>52.66±14.15</td>
<td>54.25±16.38</td>
<td>G = 0.41</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>52.11±14.05</td>
<td>46.80±12.78</td>
<td>46.44±11.53</td>
<td>50.78±13.98</td>
<td>T = 0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>51.92±14.39</td>
<td>48.18±12.37</td>
<td>49.37±13.08</td>
<td>52.41±15.10</td>
<td>I = 0.02</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>C</td>
<td>125.58±58.51</td>
<td>113.00±58.15</td>
<td>108.85±49.36</td>
<td>123.54±63.40</td>
<td>G = 0.70</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>120.00±43.88</td>
<td>122.22±48.62</td>
<td>121.85±53.35</td>
<td>130.56±98.60</td>
<td>T = 0.32</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>122.63±50.83</td>
<td>117.88±52.97</td>
<td>115.73±51.37</td>
<td>127.25±83.17</td>
<td>I = 0.51</td>
</tr>
<tr>
<td>CHL/HDL ratio</td>
<td>C</td>
<td>3.8±1.0</td>
<td>3.5±0.9</td>
<td>3.4±0.9b</td>
<td>3.4±1.0</td>
<td>G = 0.24</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>3.6±1.1</td>
<td>3.9±1.0</td>
<td>4.0±1.1c</td>
<td>3.6±1.2</td>
<td>T = 0.19</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>3.7±1.0</td>
<td>3.7±1.0</td>
<td>3.7±1.0</td>
<td>3.5±1.1</td>
<td>I = 0.08</td>
</tr>
</tbody>
</table>

*aLipid data were obtained at 0, 4, 10 and 16 weeks on 24 participants in the C group and 27 participants in the W group (n=51) completing the 16-week weight loss program.

*To convert mg/dL cholesterol to mmol/L, multiply mg/dL by 0.026. To convert mmol/L cholesterol to mg/dL, multiply mmol/L by 38.6. Cholesterol of 194 mg/dl = 5.04 mmol/L.

*p<0.05 difference from baseline.

G = group alpha level.

T = time alpha level.

I = group x time interaction alpha level.

cp<0.01 difference between C and W groups.

hTo convert mg/dL triglyceride to mmol/L, multiply mg/dL by 0.0113. To convert mmol/L triglyceride to mg/dL, multiply mmol/L by 88.6. Triglyceride of 137 mg/dl = 1.55 mmol/L.

Table 10 presents changes in fasting glucose, insulin, HOMA and leptin values observed at 0, 4, 10 and 16 weeks of program participation. MANOVA analysis of fasting glucose
glucose and glucose-to-insulin ratios revealed neither group experienced significant changes in glucose (p=0.30) or glucose-to-insulin ratios (p=0.30). One way ANOVA analysis revealed higher insulin and HOMA values in the C group at baseline (insulin,
p=0.001; HOMA, p=0.001). Univariate ANCOVA revealed neither group experienced significant changes in fasting insulin levels (p=0.47) or HOMA (p=0.79. Large standard deviations revealed considerable variability in study participant insulin levels. Review of glucose related variables resulted in acceptance of H05. One way ANOVA revealed higher leptin levels in the C group at baseline (p=0.03). Univariate ANCOVA revealed the C group tended to have greater reductions in leptin when compared to the W group (C -13.24±21.77, -24.17±31.00, -13.58±25.45; W -4.59±20.15, -5.86±27.60, -9.04±28.97 ng/ml, p=0.08).

Psychosocial

Table 11 presents changes in psychosocial values observed at 0, 4, 10 and 16 weeks of program participation as determined by the SF36 Quality of Life Inventory. MANOVA analysis of SF36 quality of life indices revealed an overall time effect (Wilks’ Lamda p=0.001) with no significant overall time x diet interactions observed (p=0.11). Univariate MANOVA analysis revealed the C group tended to have a greater increase in vitality than the W group (C 8.96±8.84, 12.24±10.64, 10.00±11.33; W 8.06±9.9, 5.09±12.72, 9.35±14.99) with trends in time by diet (p=0.10) and diet effects (p=0.10) observed. Both programs increased ratings of emotion (C 5.50±7.47, 10.41±10.74, 10.58±8.95; W 7.26±10.11, 8.74±13.81, 6.07±14.35, p=0.18) bodily pain (C 8.58±18.23, 8.63±20.01, 11.38±20.39; W 6.96±13.25, 5.85±15.81, 7.37±14.64, p=0.72) and general health (C 6.67±10.72, 9.36±12.13, 7.54±12.83; W 4.37±10.63, 4.70±13.20, 6.11±12.50, p=0.41) with no differences observed between groups. The C group experienced
Table 11. Changes in SF36 Quality of Life Inventory values observed at 0, 4, 10 and 16 weeks of program participation for the Curves (C) and Weight Watchers (W) groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>0</th>
<th>4</th>
<th>10</th>
<th>16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean±standard deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Fitness</td>
<td>C</td>
<td>88.54±12.72b</td>
<td>91.67±9.05</td>
<td>94.05±6.38</td>
<td>94.58±8.59</td>
<td>G=0.63</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>78.15±21.53</td>
<td>88.33±13.16</td>
<td>90.56±12.66</td>
<td>90.00±14.48</td>
<td>T=0.14</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>83.04±18.52</td>
<td>89.90±11.42</td>
<td>92.20±10.25</td>
<td>92.16±12.18</td>
<td>F=0.73</td>
</tr>
<tr>
<td>Role Physical</td>
<td>C</td>
<td>342.71±83.14</td>
<td>370.83±53.50</td>
<td>374.45±46.73</td>
<td>373.96±51.33</td>
<td>G=0.22</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>337.04±87.26</td>
<td>344.44±72.50</td>
<td>346.30±76.81</td>
<td>354.63±66.88</td>
<td>T=0.06</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>339.71±84.58</td>
<td>356.86±65.02</td>
<td>359.50±65.36</td>
<td>363.73±60.2f</td>
<td>I=0.55</td>
</tr>
<tr>
<td>Role Emotional</td>
<td>C</td>
<td>51.88±12.75</td>
<td>60.83±11.86f</td>
<td>64.12±9.88gf</td>
<td>61.88±10.82gf</td>
<td>G=0.10</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>48.98±12.16</td>
<td>57.04±11.29f</td>
<td>54.07±15.51f</td>
<td>58.33±16.41f</td>
<td>T=0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>50.34±12.61</td>
<td>58.82±11.60f</td>
<td>58.80±11.60f</td>
<td>60.00±14.04f</td>
<td>I=0.10</td>
</tr>
<tr>
<td>Vital</td>
<td>C</td>
<td>56.08±13.14</td>
<td>61.58±11.24f</td>
<td>66.49±9.79f</td>
<td>66.67±8.80f</td>
<td>G=0.10</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>52.74±11.74</td>
<td>60.00±9.67f</td>
<td>61.48±12.46f</td>
<td>58.81±13.49f</td>
<td>T=0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>54.31±12.41</td>
<td>60.75±10.36f</td>
<td>63.84±11.45f</td>
<td>62.51±12.08f</td>
<td>I=0.18</td>
</tr>
<tr>
<td>Emotion</td>
<td>C</td>
<td>49.19±6.88</td>
<td>49.46±8.66</td>
<td>47.90±7.96</td>
<td>50.00±3.69</td>
<td>G=0.36</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>49.52±7.37</td>
<td>50.00±4.90</td>
<td>50.93±3.34</td>
<td>49.54±6.45</td>
<td>T=0.96</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>49.36±7.08</td>
<td>49.75±6.86</td>
<td>49.50±6.10</td>
<td>49.76±5.29</td>
<td>I=0.51</td>
</tr>
<tr>
<td>Social</td>
<td>C</td>
<td>70.63±17.14</td>
<td>79.21±11.89f</td>
<td>79.26±11.32f</td>
<td>82.00±10.69f</td>
<td>G=0.28</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>69.37±15.56</td>
<td>76.33±13.31</td>
<td>75.22±15.93f</td>
<td>76.74±14.61f</td>
<td>T=0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>69.96±16.17</td>
<td>77.69±12.62c</td>
<td>77.12±13.97f</td>
<td>79.22±13.06f</td>
<td>I=0.72</td>
</tr>
<tr>
<td>Bodily Pain</td>
<td>C</td>
<td>67.79±16.38</td>
<td>74.46±13.58f</td>
<td>77.15±12.81f</td>
<td>75.33±13.56f</td>
<td>G=0.26</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>65.81±14.97</td>
<td>70.19±13.44</td>
<td>70.52±13.55f</td>
<td>71.93±15.68f</td>
<td>T=0.001</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>66.75±15.52</td>
<td>72.20±13.54f</td>
<td>73.64±13.49f</td>
<td>73.53±14.68f</td>
<td>I=0.41</td>
</tr>
</tbody>
</table>

SF36 Quality of Life Inventory data were analyzed at 0, 4, 10, and 16 weeks of program participation for 24 participants in the C group and 27 participants in the W group (n=51).

*p<0.05 difference between C and W groups.

G=group alpha level.

d=time alpha level.

e=group x time interaction alpha level.

p<0.05 difference from baseline.

p<0.01 difference between C and W groups.

Increases in the role emotional rating (C 13.60±75.8, 34.00±63.50, 40.01±69.99; W 12.41±69.31, 16.14±80.26, 14.01±69.99, p=0.24) with no differences observed between
groups. Neither group experienced changes in ratings of role physical (p=0.55) or social
(p=0.51). One way ANOVA revealed the C group rated physical fitness higher than the
W group at baseline (p=0.05). Univariate ANCOVA revealed neither group experienced
significant changes in rating of physical fitness (p=0.85). Large standard deviations
revealed considerable variability between study participant ratings of SF36 indices.
Consideration of overall psychosocial data resulted in a partial rejection of H06.

Eating Satisfaction

Table 12 depicts changes in eating satisfaction observed at 0, 4, 10 and 16 weeks of
program participation. Overall MANOVA analysis of eating satisfaction indices
revealed a significant time effect (Wilks’ Lamda p=0.001) with a trend in time by diet
effect observed (Wilks’ Lamda p=0.06). Feelings of fullness decreased in the W group
(C 0.42±1.93, 0.01±1.75, 0.54±1.44; W -0.81±1.8, -0.67±1.9, -0.78±1.5, p=0.02). One
way ANOVA revealed the W group rated food quality lower at baseline than the C
group (ANOVA p=0.05). Univariate ANCOVA revealed neither group experienced
significant changes in food quality (p=0.52). Neither the C group nor the W group
experienced changes in hunger (p=0.51) or food satisfaction scores (p=0.68). Both the C
group and W group experienced increases in energy (C 1.83±1.81, 1.23±2.0, 2.00±2.04;
W 1.30±1.84, 1.63±1.78, 1.26±1.9, p=0.41) and decreases in appetite (C -0.83±1.49, -
0.61±1.40, -0.50±1.50; W -0.48±1.45, -0.93±2.11, -0.44±1.45, p=0.72).
Table 12. Changes in eating satisfaction values observed at 0, 4, 10 and 16 weeks of program participation for Curves (C) and Weight Watchers (W) groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>0</th>
<th>4</th>
<th>10</th>
<th>16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean±standard deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>W</td>
<td>C</td>
<td>W</td>
<td>C</td>
</tr>
<tr>
<td>Appetite</td>
<td></td>
<td>6.17±1.20</td>
<td>6.00±1.73</td>
<td>5.33±1.17<sup>b</sup></td>
<td>5.52±1.25</td>
<td>6.08±1.94</td>
</tr>
<tr>
<td>Hunger</td>
<td></td>
<td>5.33±1.58</td>
<td>5.07±0.98</td>
<td>5.08±1.50</td>
<td>5.00±1.44</td>
<td>5.20±1.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.08±1.53</td>
<td>6.63±1.18</td>
<td>6.5±1.44<sup>f</sup></td>
<td>5.81±1.69<sup>b</sup></td>
<td>6.37±1.37</td>
</tr>
<tr>
<td>Fullness</td>
<td></td>
<td>5.13±1.73</td>
<td>4.52±1.72</td>
<td>5.96±1.34</td>
<td>5.96±1.34</td>
<td>4.80±1.73</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td>4.58±2.15</td>
<td>3.56±1.50</td>
<td>6.48±1.25</td>
<td>6.48±1.28</td>
<td>4.04±1.89</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
<td>4.52±1.72</td>
<td>5.81±1.44<sup>b</sup></td>
<td>6.15±1.59<sup>b</sup></td>
<td>6.41±1.40</td>
<td>6.11±1.45</td>
</tr>
</tbody>
</table>

^aEating Satisfaction Questionnaire data were analyzed at 0, 4, 10, and 16 weeks of program participation for 24 participants in the C group and 27 participants in the W group (n=51).

^bp<0.05 difference from baseline.

^cG=group alpha level.

^dT=time alpha level.

^eI=group x time interaction alpha level.

^fp<0.05 difference between C and W groups.
CHAPTER V

SUMMARY

The alarming rise in the prevalence of obesity, along with the direct and indirect costs of the disease, has caused much emphasis to be placed on finding efficacious weight loss interventions. A multitude of industry-sponsored commercial weight loss programs have emerged that are marketed as producing significant weight loss in overweight or obese individuals. Many of these programs are based on scientifically proven weight loss strategies such as following a nutritionally sound reduced kilocalorie diet plan, consuming nutritious prepared meals or meal replacements, providing physical activity recommendations or facilitating participation in a supervised exercise program, and/or behavior modification. Conducting comparative effectiveness trials on commercial programs that utilize proven weight loss strategies will reveal the relative efficacy, safety, and value of these programs. Our investigation compared the efficacy of the Curves® Fitness and Weight Management Plan to the Weight Watchers® Momentum™ Plan on body composition and markers of health and fitness in previously sedentary obese women.

Few studies have investigated the efficacy of commercial weight loss programs on weight loss and markers of fitness and health in randomized controlled trials. Truby et al. conducted a randomized controlled comparative effectiveness trial of 4 commercially available weight loss diets over a period of 6 months. A commercial program based on regular weighing, advice about diet and physical activity, motivation
and group support; a commercial program based on a low fat diet plan and weekly exercise; a meal replacement plan, and a self-monitored low carbohydrate eating plan were investigated. All diets resulted in clinically meaningful weight loss (4.9-7.3 %) and fat loss (2.1-3.6 %) compared with a no diet control, -0.6 and -0.1 % respectively, with no differences observed between diets. Both of the commercial weight loss programs reduced plasma LDL-c. Additionally, the group support based commercial program and the self-monitored low carbohydrate plan lead to reduced TG at 6 months; however, LDL particle size was also increased following these interventions \(^{45,46}\).

In our investigation, the C group followed a structured higher protein meal-plan-based cyclic diet plan while the W group followed a points centered diet plan that was based on weight, height, age, and activity level. The C group meal plan resulted in a similar average caloric intake as the W diet plan, with approximately 1,353±232 vs. 1,356±232 kcalories/d consumed on average throughout the study. The C group consumed a greater percentage of kcalories as protein (26±5 vs. 22±3 %), a higher percentage of kcalories as fat (34±5 vs. 30±5 %) and a lower percentage of kcalories as carbohydrate (39±8 vs. 47± 6%) in comparison to the W group. Though participants in both the C group and W group increased total physical activity 3,731±2,214 vs. 3,184±2,485 MET-min/week, participants in the C group increased recreational activity to a greater extent (1,097±273 vs. 678±646 MET-min/week) than the W group. Furthermore, the C group performed circuit resistance-training interspersed with a low-impact calisthenics three times each week, which resulted in a greater increase in vigorous activity 1,081±635 vs. 525±577 MET-min/week in comparison to the W group.
Both the C program and the W program resulted in similar levels of moderate physical activity 1,384±1,869 vs. 1,388±1,453 MET-min/week, job physical activity 1,382±1,869 vs. 911±1,332 MET-min/week, house physical activity 810±633 vs. 1,028±1,316 MET-min/week, low physical activity 1,252±1,424 vs. 1,261±1,316 MET-min/week and transportation physical activity 417±619 vs. 493±737 MET-min/week; however, only the W group experienced an observable increases in low and transportation physical activity.

In our study, overall body composition changes were more favorable in the C group. Both groups lost a similar amount of total mass over the 16 week study with the C group experiencing a loss of 5.1±3.9 kg (5.8±4.0 % decrease in body mass) and the W group having a reduction of 5.5±4.6 kg (6.9±5.8 % decrease in body mass). However, the C group maintained lean tissue with a modest increase of 1.3±4.0 kg, while the W group had a reduction in lean mass of -2.5±5.1 kg. The C group also tended to have a greater reduction in fat mass -6.4±5.9 vs. -2.9±7.8 kg and percent body fat -4.7±5.4 vs. -1.4±8.1 % following the 16 week study. Both the C and W programs resulted in reductions in BMI -1.8±1.4 vs. -2.3±1.5 kg/m², waist circumference -6.2±5.1 vs. -5.4±5.2 cm and hip circumference -5.8±5.0 vs. -7.4 ±4.9 cm. Our results are in agreement with a previous study conducted by Kreider and colleagues¹⁹⁷, where the C program resulted in significant reductions in body mass, fat mass, BMI and waist circumference, while preserving muscle mass and other investigations where resistance based circuit training combined with calorically restricted high protein diets resulted in enhanced loss of body fat and preservation of lean body mass³³,³⁴. As observed in our
investigation, previous trials have found the W program to be efficacious for the reduction of total body mass, body fat mass, BMI and waist circumference, though preservation of lean tissue mass has not been demonstrated \(^{45, 198-200}\). Our findings suggest adherence to a high protein meal-plan based diet and supervised resistance-training exercises interspersed with a low-impact calisthenics exercise program is more effective in promoting positive body composition changes than a points based diet plan combined with education and encouragement to increase physical activity.

Both the C program and W program resulted in improvements in cardiovascular capacity. The C group experienced a 5.2±10.1 % increase in peak VO\(_2\) in L/min and 11.1±11.5 % increase in peak VO\(_2\) in ml/kg/min, while the W group experienced a 1.3±6.6 % increase in peak VO\(_2\) in L/min and 9.3±8.5 % increase in ml/kg/min. Both the C group and W group experienced decreases in RHR and diastolic BP during program participation; however, the W experienced a reduction in diastolic BP throughout the study and at 16 weeks (-1.5±10.1 vs. -4.7±7.9 mmHg). Both the C group and W group experienced a decrease in resting systolic BP at 16 weeks (-5.0±11.2 vs. -5.3±8.9 mmHg). Previous investigations have demonstrated reductions in blood pressure following participation in both the C program \(^{35, 197}\) and W program \(^{198, 200}\). Both the C and W programs resulted in an increase in REE values by 9.7±12.8 vs. 5.7±18.0 % after 16 weeks of program participation. We did not observe any changes in upper or lower body 1RM strength or lower body endurance in either the C group or the W group during our investigation. However, the W group experienced a decrease in upper body muscular endurance, while participants in the C group had an increase in bench press
repetitions at 80 % 1RM, -12.3±35.5 vs. 49.1±89.0 %. The increase in upper body endurance observed in the C groups was most likely a result of biweekly Zumba workouts, which emphasizes muscular endurance. Other trials evaluating changes in muscular strength and cardiovascular fitness following participation in the C program have observed significant increases in upper and lower body 1 RM strength and peak oxygen uptake at 2.5, 3.5 and 8.5 months of program participation. Though we did not observe significant changes in 1RM strength in our investigation, this may be a result of greater upper and lower body 1RM strength at baseline in our study participants in comparison to other trials. Changes in muscular strength and fitness and cardiovascular endurance have not been evaluated in previous trials investigating the W program.

In our investigation, both the C group and W group had reductions in CHL after 16 weeks of program participation, -2.3±9.5 vs. -6.3±13 %. The W group also experienced reductions in LDL-c levels at 16 weeks, -11.4±15.9 vs. -4.6±17.2 %. While the C group maintained HDL-c levels throughout the investigation, the W group experienced a -9.5±11.5 % reduction in HDL-c at 4 and 10 weeks and a 5.3±12.5 % increase in CHL:HDL ratio at 10 weeks. The C group also experienced a -11.7±18.0 % reduction in TG levels at 10 weeks of program participation. Kersick and colleagues examined changes in lipid panels after 3.5 months of participation in the C program’s resistance-based circuit training combined with calorically reduced diets of varying macronutrient composition. A high carbohydrate, low protein intake resulted in reduced CHL, while a low carbohydrate moderate protein meal plan resulted in reduced TG after 14 weeks of program participation. All macronutrient combinations in combination with
the C program exercise plan maintained HDL-c levels35. Other investigations have also shown a superior affect of elevated protein ingestion23, 25, 29 and elevated protein combined with a supervised circuit training based programs34 for the reduction of triglycerides while maintaining HDL-C33. Previous investigations of the W program have shown varying lipid panel changes following program intervention. Bellise et al.200 observed reductions in CHL and LDL-c with no changes in HDL-c, TG or in CHL:HDL-c ratio after 3 months of program participation, while Morgan et al.46 observed decreased TG, LDL-c and HDL-c following 2-6 months of participation. In contrast, Jebb and coworkers199 observed no significant changes in lipid panel values following 12 months of participation in the W program. We did not observe any changes in glucose, glucose to insulin ratio, insulin or HOMA following participation in either the C or W program. However, the C group tended to have greater reductions in leptin when compared to the W group -13.5±25.5 vs. -9.0±29.0 %. These results support previous findings that adherence to a meal plan based diet combined with weekly resistance-based circuit training can result in reductions in serum leptin levels35. The greater reduction in leptin may be directly related to the greater fat mass loss observed in the C group, as the concentration of leptin in plasma has been shown to parallel adipose tissue mass99, 104.

Moderate weight loss has been associated with improved health related quality of life142, 145. Both the C program and W programs resulted in improved physical and mental health ratings following 16 weeks of program participation. Both the C and W groups experienced increases in ratings of emotion (23.3±23.6 vs. 15.5±34.3%), bodily pain (24.8±42.3 vs. 13.9±25.0%), and general health (14.7±22.3 vs. 11.0±24.8%) at 16
weeks. The C group tended to have a greater increase in vitality than the W group, 24.4±30.8% vs. 22.3±36.1%, and also experienced an improvement the role emotional rating, 16.4±28.7% vs. 7.7±30.9%. Other trials have found similar increases in vitality following participation in the C program. Feelings of fullness decreased in the W group following 16 weeks of program participation while remaining elevated in the C group, -11.1±27.9 vs. 13.2±30.5%. Feelings of fullness may have been maintained in the C program secondary to the higher protein intake consumed by the C group, as hypocaloric diets in combination with elevated protein intake have been shown to result in increased satiety. Moreover, exercise induced weight loss has also been associated with improved appetite control. Both the C group and W group experienced increases in energy, 34.0±55.1 vs. 46.1±85.3 % at 16 weeks.

There are several limitations in conducting weight loss clinical trials that should be taken into account when interpreting the results of this investigation. First, participants who volunteer to participate in weight loss trials are often more motivated to adhere to weight loss programs than the general population. Furthermore, study participants are continually monitored and encouraged to meet program requirements. In our trial, the C group had a compliance rate of 81% or greater for exercise and the W group had 90% compliance with attendance of weekly meetings. Although these are compliance rates for similar to those observed in other long term weight loss trials, results may not be generalizable to populations that do not receive similar monitoring and support. Second, both of the programs evaluated in this trial have required costs for participation in the program. Therefore, utilization of these programs may be limited to
populations that can afford to participate in them. Thirdly, the results observed in this trial are limited to the population studied, sedentary and obese women, and may not be applicable to other populations. Fourth, this trial lasted for only 4 months. Thus, this trial provides no information on maintenance of body composition changes and improvements in markers of health and fitness with long term participation in these programs. Finally, results are limited to the inherent difficulties in conducting clinical trials of this nature, compliance to diet and/or exercise protocols, and accuracy in data collection and analysis.

Conclusion

In our investigation, participants in both the C group and W groups experienced clinically significant weight loss, reductions in BMI, decreased waist and hip circumferences, increases in physical activity, improvements in cardiovascular endurance and positive changes in biomarkers of cardiovascular disease risk. However, adherence to a higher protein diet in combination with the resistance-based circuit training was found to be more efficacious in promoting fat mass loss, preserving fat free mass, increasing upper body endurance, and maintaining HDL-c levels. Participants in the C group engaged in a greater amount of vigorous recreational activity, while participants in the W group had increases in low physical activity. Present results support previous findings that participating in a supervised resistance-based exercise program may be more efficacious in promoting favorable changes in muscular fitness in sedentary obese women compared to a lifestyle based program with encouragement to increase physical activity. Both the C program and W program lead to improved ratings
of physical and mental health and eating satisfaction. However, the C group tended to experience a greater increase in vitality and emotional stability when dealing with daily challenges. Additionally, feelings of fullness were maintained in the C group, whereas the W group experienced a decrease. Feelings of fullness may have been maintained as a result of the higher protein intake consumed by the C group.

Our investigation supports the efficacy of both the C program and W program for promoting weight loss and improvement in markers of fitness and health. However, our findings suggest adherence to the C program’s higher protein meal-plan based diet and supervised resistance-training exercises interspersed with a low-impact calisthenics exercise program is more effective in promoting positive body composition changes, enhancing muscular fitness, and improving ratings of physical and mental health and eating satisfaction than adherence to the W program points based diet plan combined with behavior modification advice, group support and encouragement to increase physical activity.

Commercial weight loss programs have the potential of reaching large numbers of overweight or obese individuals. Conducting randomized and controlled research trials on industry sponsored weight control programs will provide conclusions and results that health practitioners and governmental agencies can utilize when recommending and/or funding programs for overweight and obese populations. Future research on commercial weight loss programs should include long-term investigations that evaluate the costs of these programs relative to outcome benefits in terms of
prevention of obesity related illnesses, improvements in markers of health and enhancement of quality of life.
REFERENCES

68. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. *Eur Heart J*. May 2002;23(9):706-713.

147. Keogh JB, Brinkworth GD, Noakes M, Belobrjadic DP, Buckley JD, Clifton PM. Effects of weight loss from a very-low-carbohydrate diet on endothelial function
and markers of cardiovascular disease risk in subjects with abdominal obesity.

160. Lejeune MP, Westerterp KR, Adam TC, Luscombe-Marsh ND, Westerterp-Plantenga MS. Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety,

166. Westerterp-Plantenga MS, Rolland V, Wilson SA, Westerterp KR. Satiety related to 24 h diet-induced thermogenesis during high protein/carbohydrate vs high fat

172. Hochstenbach-Waalen A, Veldhorst MA, Nieuwenhuizen AG, Westerterp-Plantenga MS, Westerterp KR. Comparison of 2 diets with either 25% or 10% of
energy as casein on energy expenditure, substrate balance, and appetite profile.

APPENDIX A

CONSENT FORM

CONSENT FORM
Comparison of Two Diet Approaches on Weight Loss and Health Outcomes in Women II

Introduction
The purpose of this form is to provide you information that may affect your decision as to whether or not to participate in this research study. If you decide to participate in this study, this form will also be used to record your consent.

You have been asked to participate in a research project studying the Curves International fitness and weight loss program and the Weight Watchers program. The purpose of this study is to determine whether following a Curves high protein/low fat diet for 30-days several times during 16 weeks of participating in the Curves fitness program promotes stepwise reductions in body weight, improvements in body composition, and/or improvements in markers of fitness and health better than following the Weight Watchers Momentum Program for the same time period. You were selected to be a possible participant because you met all entrance criteria for this study. This study is being sponsored/funded by Curves International.

What will I be asked to do?
If you agree to participate in this study, you will first be asked to sign an Informed Consent statement in compliance with the Human Subject’s Protection Program (HSPP) at Texas A&M University and the American College of Sports Medicine. You will then be familiarized to the study requirements, food log recording and tests to be conducted during the study. This session will take approximately one hour to complete. Prior to reporting to the lab for baseline testing, you will record all food that you eat on dietary record forms for four days (including one weekend day). You will not exercise for 48 hours nor eat for 12 hours prior to reporting to the lab for baseline testing. You will then undergo a battery of tests as described in Table 1. You will fill out a Demographic Form, a Health History Form, A Radiation Safety Form, a Quality of Life Questionnaire, a Body Image Questionnaire and an eating Satisfaction Questionnaire. You will also be required to report any adverse side effects that you may experience on a weekly basis.

You will then continue with the tests as described in Table 1. You will first be weighed and have your resting energy expenditure (REE) determined. This will involve lying down on an exam table and having a light blanket placed over you to keep you warm and placing ear plugs in your ears to reduce distractions. A see through plastic canopy will then be placed over your neck and head so that the air that you breathe can be measured for oxygen and carbon dioxide. You should stay motionless without going to sleep for 15-minutes so that your resting energy expenditure can be calculated. You will then donate about 20 milliliters (4 teaspoons) of venous blood from a vein in your arm. Blood samples will be obtained by standard/sterile procedures using a needle inserted into a vein in your arm. Personnel who will be taking your blood are experienced in phlebotomy
(procedures to take blood samples) and are qualified to do so under guidelines established by the Texas Department of Health and Human Services. This will take about 5-minutes. You will then have your total body water determined using a bioelectrical impedance analyzer (BIA). The BIA analysis will involve lying down on your back on a table and having two small electrodes placed on your right hand and your right foot. The analyzer wires will be attached and a small and safe current (500 micro-amps at a frequency of 5- kHz) will pass through your body so that the amount of water can be measured. This analyzer is commercially available and has been used in the health care/fitness industry as a means to assess body composition and body water for over 20 years. The use of this device has been approved by the Food and Drug Administration (FDA) to assess total body water and the current to be used has been deemed safe. Your body composition and bone density will then be determined by using a Discovery W dual energy x-ray absorptiometer (DEXA). This will involve lying down on your back on the DEXA exam table in a pair of shorts or a gown for about 6 minutes. A low dose of radiation will scan your entire body to determine the amount of fat weight, muscle weight, and bone weight. You will be exposed to an x-ray dose that is similar to the amount of natural background radiation a person would receive in one month while living in College Station. After this test, you will have resting blood pressure determined using a blood pressure cuff and stethoscope and heart rate determined by taking your pulse. You will then be prepared to perform a maximal treadmill test. You will have your right and left shoulder, right and left part of your stomach, and several places around your upper chest and below your bra line rubbed with alcohol gauze. Ten (10) electrocardiograph (ECG) electrodes will then be placed on your shoulders, chest, and stomach and you will be attached to an ECG to evaluate your heart. You will then be positioned on the treadmill and a sterile mouthpiece will be placed in your mouth and a mouthpiece holder will be placed on your head. A nose clip will be placed on your nose and that the air you breathe will be measured for oxygen and carbon dioxide content. Once the equipment is attached, you will be given instructions to begin walking on the treadmill. You will then perform an exercise test that involves increasing the speed and grade you are walking on the treadmill until you reach your maximal effort. Heart rate, ECG tracings, blood pressure and your ratings of exertion will be monitored throughout the test. Once you reach your maximum, you will undergo a slow walking and seated recovery period. This test will take about 30 minutes to complete. You will then perform a one repetition maximum (1RM) and 80% of 1RM endurance repetition test on the bench press and hip/leg sled using standard procedures. This will involve warming up and performing successive one repetition lifts on the bench press until you determine your 1 RM. You will then rest for 5-minutes and lift 80% of your 1 RM as many times as you can. You will then rest for 10-minutes and follow the same procedure in determining your 1 RM and 80% of 1 RM on the hip/leg sled. These tests will take about 20 minutes to complete. The same battery of tests will be performed at the post-study assessment 16 weeks into the study protocol. All the assessments minus the exercise tests will also be performed at 4, 6 10 and 12 weeks into the study protocol. Each testing session will take between 1.5 and 3 hours to complete. In the event of an emergency during an exercise test proper emergency response protocols (calling 9-911 for serious injury or a medical emergency, calling Biosafety/EHS for cleanup assistance or spill team response, calling UPD for incidents in public areas, retrieving AED located in the lab, performing CPR or other First Aid techniques, etc.) will be followed by the Exercise & Sport Nutrition Laboratory (ESNL) Staff depending on the severity of the emergency.
After baseline testing, you will be matched based on age and BMI and randomized into one of three intervention groups as described in Table 2. The first group (n=40) will follow the Curves high protein/low fat diet group (30% CHO, 45% PRO, 25% FAT) for 7-days at 1,200 kcals/day and then 1,500 kcals/day for 21-days. If you are assigned to this group you will then consume a 2,200 kcal/day diet consisting of 45% CHO, 30% PRO, 25% FAT for 14-days during a metabolic recovery and weight maintenance phase. You will diet for 2-days at 1,200 kcals/day only if you gain 3 pounds of weight during the maintenance phase. You will then repeat this entire cycle twice and then end with the 30-day weight loss and weight maintenance intervention to determine if this is an effective step-wise weight loss plan. If you are randomized into the second group (n=40) you will follow the Weight Watchers Momentum Program that is based on their four pillar approach (food, exercise, behavior and support). Every food has a POINTS value, based on its calories, fat and fiber. The Momentum program uses POINTS values to help keep track of what you eat. A POINTS “budget” will be personalized for you at the weekly meetings. You will be required to attend at least one meeting per week at the local Weight Watchers facility located at 4001 E. 29th Street, Suite 112 in the Carter Creek Center in Bryan, Texas. Membership dues/passes to the Weight Watchers program/facility will be covered for you during the duration of the study. The third group (n=40) will act as a control group. If you are assigned to this group you will not follow a prescribed nutrition program but will continue with your normal daily habits. Everyone, regardless of group assignment, will keep a food record and food frequency log to monitor dietary compliance.

If you are randomized to participate in the first group (n=40) you will participate in the Curves 30-minute fitness program three times per week throughout the investigation. The Curves program involves performing thirteen hydraulic resistance exercise machines that utilize bidirectional resistance that work all major muscle groups. These are interspersed with floor-based calisthenics exercises designed to maintain an elevated heart rate. Research has shown that exercise intensity averages 65% of maximal aerobic capacity and that participants generally perform 50 – 75% of 1 repetition maximum on the main exercise machines. The new Curves equipment includes the attached force measurement and feedback system. You will be instructed to push hard enough to generate a green light on the feedback panel for each repetition. All exercise sessions will be held in the ESNL. Research Assistants will monitor your exercise sessions and record your attendance. You will also be encouraged to walk for 30-minutes at a brisk pace (60 – 80% of heart rate reserve) on days they do use the Curves equipment. If you are randomized to participate in second group (n=40) you will start by focusing on the food plan and then incorporate the specifics of activity a week alter once you have had the chance to get conformable with the eating plan. After a week of reducing sedentary behavior, the POINTS Activity System is introduced. In a way that complements the POINTS values of food, a formula that calculates the POINTS values for activity is used. The formula is based on body weight, the amount of time the activity is done, and the level of intensity. This method enables you to do any exercise or activity that is enjoyable and fits within your lifestyle. If you are assigned to the third group (n=40) you will not follow a prescribed exercise program but will continue your normal daily habits. Everyone, regardless of group assignment, will be required to complete activity logs to monitor exercise frequency and intensity.
Please do your best to: 1) follow the instructions outline by the investigators; 2) show up to all scheduled testing and training sessions; and 3) follow the diet prescribed and do not take any other nutritional supplements or performance enhancing aids during this study (i.e., vitamins/minerals, creatine, HMB, androstenedione, DHEA, etc). In addition, please do not take any non-medically prescribed medications and report any medication that is prescribed for you to take during this study. If you take any other nutritional supplements or medications during the course of the study that may affect vitamin/mineral status, body composition, or strength you may be removed from the study.

What are the risks involved in this study?
The risks associated with this study are: You will be exposed to a low level of radiation during the DEXA body composition tests, which is similar to the amount of natural background radiation you would receive in one month while living in College Station. In addition, a very low level of electrical current will be passed through your body using a bioelectrical impedance analyzer (BIA). This analyzer is commercially available and has been used in the health care/fitness industry as a means to assess body composition and body water for over 20 years. The use of the BIA and DEXA analyzers have been shown to be safe methods of assessing body composition and total body water and are approved by the FDA. You will donate about 4 teaspoons (20 milliliters) of venous blood six (6) times during the study using standard phlebotomy procedures. This procedure may cause a small amount of pain when the needle is inserted into the vein as well as some bleeding and bruising. You may also experience some dizziness, nausea, and/or faint if you are unaccustomed to having blood drawn. The exercise tests that will be performed may cause symptoms of fatigue, shortness of breath, and/or muscular fatigue/discomfort. The exercise tests may also cause short-term muscle soreness and moderate fatigue for several days following the tests. You may also experience muscle strains/pulls during the exercise testing and/or training program. However, exercise sessions will be conducted by trained personnel and monitored to ensure you follow appropriate exercise guidelines. You will follow a prescribed dietary regimen involving consuming 1,200, 1,500 or 2,200 calories per day during various phases of the program. In addition, one group will ingest a high percentage of calories in the form of protein. Although the total amount of total protein is not excessive (100-220 grams/day or 1.1 - 2.3 grams/kg/day for a 95 kg female) it may be higher than you are accustomed to ingesting and may exceed recommended protein intake for active individuals (i.e., 1-2 grams/kg/day). As a result, you may experience weight loss or gain, feelings of hunger or fullness, and/or changes in appetite and/or mood during various phases of the dietary intervention.

What are the possible benefits of this study?
The possible benefit you may receive from participation in this study is increased physical fitness and improvements in body composition. You may also gain insight about your health and fitness status from the assessments that will be performed.

Do I have to participate?
No. Your participation is voluntary. You may decide not to participate or to withdraw at any time without your current or future relations with Texas A&M University being affected.

Will I be compensated?
You will receive $175 (i.e., $25 for each familiarization and experimental session) upon completion of the study. Disbursement will occur upon completion of all sessions and after all study related materials (food logs, training logs, etc.) are turned in. Participants who discontinue, or are dropped prior to completion will be compensated on a pro-rated basis depending on the total number of sessions completed (i.e., $25 for each familiarization and experimental session). Participants will be dropped if they are non-compliant with any portion of the study requirements at the discretion of the Principal Investigator, Dr. Richard Kreider.

Who will know about my participation in this research study?
The records of this study will be kept private. No identifiers linking you to this study will be included in any sort of report that might be published. Research records will be stored securely and only Mr. Christopher Rasmussen and Dr. Richard Kreider will have access to the records.

Whom do I contact with questions about the research?
If you have questions regarding this study, you may contact Dr. Richard Kreider, 945-1333, rkreider@hlkn.tamu.edu or Mr. Christopher Rasmussen, crasmussen@hlkn.tamu.edu.

Whom do I contact about my rights as a research participant?
This research study has been reviewed by the Human Subjects’ Protection Program and/or the Institutional Review Board at Texas A&M University. For research-related problems or questions regarding your rights as a research participant, you can contact these offices at (979)458-4067 or irb@tamu.edu.

Signature
Please be sure you have read the above information, asked questions and received answers to your satisfaction. You will be given a copy of the consent form for your records. By signing this document, you consent to participate in this study.

Signature of Participant: ___________________________ Date: ______________
Printed Name: ___

Signature of Person Obtaining Consent: __________________ Date: ______________
Printed Name: ___
APPENDIX B

INFORMATION SHEET

INFORMATION SHEET
Comparison of Two diet Approaches on Weight Loss and Health Outcomes in Women II

Introduction
The purpose of this form is to provide you (as a prospective research study participant) information that may affect your decision as to whether or not to participate in this research.

You have been asked to participate in a research study involving the Curves International fitness and weight loss program and the popular Weight Watchers program. The purpose of this study is to compare the Curves fitness and weight loss program to the Weight Watchers Momentum Program.

What will I be asked to do?
If you agree to participate in this study, you will be asked to complete each of the following:
- Read and sign an Informed Consent statement
- Attend a Familiarization session detailing the requirements of the study
- Complete a series of 6 forms/questionnaires
- Complete a body weight assessment
- Complete a resting energy expenditure (REE) assessment
- Donate approximately 20 milliliters (4 teaspoons) of venous blood
- Complete a total body water assessment using a bioelectrical impedance analyzer (BIA)
- Complete a body composition/ bone density assessment using a dual energy x-ray absorbiometer (DEXA)
- Complete a resting blood pressure (BP) assessment
- Complete a resting heart rate (HR) assessment
- Complete a graded exercise test (GXT)
- Complete a 1 repetition maximum (1RM) & 80% of 1RM test on the bench press and leg press
- Complete an exercise and diet intervention program lasting a total of 16 weeks
- Call a Research Assistant on a weekly basis to report progress in the study
- Complete some or all of these same testing procedures following 4, 6, 10, 12 and 16 weeks of training and dietary intervention as described in Table 1

What are the risks involved in this study?
The possible risks associated with this study are:
- Exposure to a low level of radiation during the DEXA body composition assessment
- Exposure to a very low level of electrical current during the BIA assessment
- Possible pain, bleeding, bruising, and/or dizziness or nausea during the phlebotomy procedure
- Possible fatigue, shortness of breath, and/or muscular fatigue during the exercise tests
- Possible weight loss/gain, feelings of hunger/fullness and/or changes in appetite and/or mood during different phases of the dietary intervention

What are the possible benefits of this study?
The possible benefits associated with this study are:
- Increased physical fitness and improvements in body composition
- Insight into personal health and fitness status from the assessments performed

Do I have to participate?
No. Your participation is voluntary. You may decide not to participate or to withdraw at any time without your current or future relations with Texas A&M University being affected.

Will I be compensated?
You will receive $275 (i.e., $25 for each familiarization and experimental session). Disbursement will occur upon completion of all sessions and after all study related material (food logs, training logs, etc.) are turned in.

Who will know about my participation in this research study?
The records of this study will be kept private. No identifiers linking you to this study will be included in any sort of report that might be published. Research records will be stored securely and only Mr. Christopher Rasmussen and Dr. Richard Kreider will have access to these records.

Whom do I contact with questions about the research?
If you have questions regarding this study, you may contact Dr. Richard Kreider, 945-1333, rkreider@hlkn.tamu.edu or Mr. Christopher Rasmussen, crasmussen@hlkn.tamu.edu.

Whom do I contact about my rights as a research participant?
This research study has been reviewed by the Human Subjects’ Protection Program and/or the Institutional Review Board at Texas A&M University. For research-related problems or questions regarding your rights as a research participant, you can contact these offices at (979)458-4067 or irb@tamu.edu.

Participation
Please be sure you have read the above information, asked questions and received answers to your satisfaction. If you would like to be in the study you will now be scheduled for a familiarization session.
APPENDIX C

MEDICAL HISTORY QUESTIONNAIRE

Texas A&M UNIVERSITY

EXERCISE & SPORT NUTRITION LABORATORY

Medical History Inventory

Directions. The purpose of this questionnaire is to enable the staff of the Exercise and Sport Sciences Laboratory to evaluate your health and fitness status. Please answer the following questions to the best of your knowledge. All information given is CONFIDENTIAL as described in the Informed Consent Statement.

Name: ____________________________ Age ______
Date of Birth ____________________

Name and Address of Your Physician: _______________________________________

MEDICAL HISTORY

Do you have or have you ever had any of the following conditions? (Please write the date when you had the condition in the blank).

___ Heart murmur, clicks, other cardiac findings? ___ Asthma/breathing difficulty?
___ Frequent extra, skipped, or rapid heartbeats? ___ Bronchitis/Chest Cold?
___ Chest Pain of Angina (with or without exertion)? ___ Cancer, Melanoma, or Suspected Skin Lesions

___ High cholesterol? ___ Emphysema/lung disease
___ Heart attack or any cardiac surgery? ___ Epilepsy/seizures?
___ Leg cramps (during exercise)? ___ Rheumatic fever?
___ Chronic swollen ankles? ___ Scarlet fever?
___ Varicose veins? ___ Ulcers?
___ Frequent dizziness/fainting? ___ Pneumonia?
___ Muscle or joint problems? ___ Anemias?
___ High blood sugar/diabetes? ___ Liver or kidney disease
___ Thyroid Disease? ___ Autoimmune disease?
___ Low testosterone/hypogonadism? ___ Nerve disease?
___ Glaucoma? ___ Psychological Disorders?

Do you have or have you been diagnosed with any other medical condition not listed?

__
__
__
Please provide any additional comments/explanations of your current or past medical history.

Please list any recent surgery (i.e., type, dates etc.).

List all prescribed/non-prescription medications and nutritional supplements you have taken in the last 3 months.

What was the date of your last complete medical exam?

Do you know of any medical problem that might make it dangerous or unwise for you to participate in this study? (including strength and maximal exercise tests) _____ If yes, please explain. __

Recommendation for Participation (for ESNL use only):

_____ No exclusion criteria presented. Subject is *cleared* to participate in the study.

_____ Exclusion criteria is/are present. Subject is *not cleared* to participate in the study.

Signed: ___________________________________ Date: ________________________
APPENDIX D
PERSONAL INFORMATION WORKSHEET

Texas A&M University
EXERCISE & SPORT NUTRITION LABORATORY

Personal Information

Name: __

Address: ___

City: _________________________ State: ______ Zip Code ______

Home Phone: (___) __________________ Work Phone: (___) ____________

Beeper: (___) ________________ Cell Phone: (___) __________________

Fax: (___) ________________ E-mail address: _________________________

Birth date: _____ / _____ / ______ Age: _______ Height: _______ Weight: _______

Exercise History/Activity Questionnaire

1. Describe your typical occupational activities.

2. Describe your typical recreational activities.

3. Describe any exercise training that you routinely participate.

4. How many days per week do you exercise/participate in these activities?

5. How many hours per week do you train?
6. How long (years/months) have you been consistently training?
APPENDIX E
DATA COLLECTION FORM

Texas A&M University: Exercise & Sport Nutrition Laboratory
Trial: Comparison of Two Diet Approaches on Weight Loss and Health Outcomes in Women II

Demographics
ESNL Staff Initials: _____
Name: _____________________Testing Session: _____ Group: _____
Date: _____ D.O.B.: _____ Age: _____

Resting Measures
ESNL Staff Initials: _____

Psychological Questionnaires/Informed Consent:
HLKN Informed consent: _____ Body Image: _____
Radiation consent: _____ MOS SF-36: _____
Activity Log: _____ Eating Satisfaction: _____
Food Log: _____ Post-Study Questionnaire (T6 only): _____

Physiological Parameters: ESNL Staff Initials: _____

Height: _____ in. Waist: _____ in.
REE #1: _____ Resting H.R.: _____bpm.
Time: _____am Resting B.P.: _____/_____mmHg
Last Meal: _____am/pm BIA: _____
Hrs Fasted: _____hr. Handheld BIA: _____ #1 or #2
Last Wkout: _____ DEXA #2: _____
Lab (EBNL): (2) SST Tubes/ (1) EDTA ECG (Rest): _____ #1 or #2
Time: _____am Max Test: _____ #1 or #2
Yr. /Menopause Notes: _____

Exercise Measures: Strength Testing: ESNL Staff Initials: _____

Leg Press: Foot Position: _____ Sled Position: _____
Preceding Weights/Reps:
_____x_____: _____x_____: _____x_____: _____x_____: _____x_____
1 RM: _____ 80% 1RM: _____ 80% 1RM repetitions: _____

Preceding Weights/Reps:
_____x_____: _____x_____: _____x_____: _____x_____: _____x_____
1 RM: _____ 80% 1RM: _____ 80% 1RM repetitions: _____

128