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ABSTRACT 
 

 A small group of profit seeking publishers dominates the American textbook 

market and guides the learning of the majority of our nation’s calculus students. The 

College Board’s AP Calculus curriculum is a de facto national standard for this gateway 

course that is critically important to 21st century STEM careers. A multi-representational 

understanding of calculus is a central pillar of the AP curriculum. This dissertation asks 

whether this multi-representational vision is manifest in popular calculus textbooks.  

This dissertation began with a survey of all AP Calculus AB Examination free 

response items, 2002-2011, and found that students score worse on items characterized 

by numerical anchors or verbal targets. Based on previously elucidated models, a new 

cognitive model of five levels and six principles is developed for the purpose of calculus 

textbook task analysis. This model explicates complexity as a function of 

representational input and output. Eight popular secondary calculus textbooks were 

selected for study based on Amazon sales rank data. All verbally anchored mathematical 

tasks (n=555) from sections of those books concerning the mean value theorem and all 

AP Calculus AB prompts (n=226) were analyzed for cognitive complexity and 

representational diversity using the model.  

 The textbook study found that calculus textbooks underrepresented the numerical 

anchor and verbal target. It found that the textbooks were both explicitly and implicitly 

less cognitively complex than the AP test. The article suggested that textbook tasks 

should be less dense, avoid cognitive attenuation, move away from the stand-alone item, 
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juxtapose anchor representations, scaffold student solutions, incorporate previously 

considered overarching concepts and include more profound follow-up questions. 

 To date there have been no studies of calculus textbook content based on 

established research on cognitive learning. Given the critical role that their calculus 

course plays in the lives of hundreds of thousands of students annually, it is incumbent 

upon the College Board to establish a textbook review process at the very least in the 

same vain as the teacher syllabus auditing process established in recent years. 
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CHAPTER I      

INTRODUCTION 

 
During the 2006-2007 school year, I was assigned to teach regular and honors 

sections of Geometry and a section of Advanced Placement (AP) Calculus AB at a 

private suburban Texas high school. That fall I taught a student named Nick in one 

section of Honors Geometry. In that particular course we used the Larson, Boswell, and 

Stiff (2001) Geometry text. One day we were working through some mathematical tasks 

from the book and I disagreed with the answer given in the back of the book. The answer 

was absurd in the context of what was asked; the book had made a mistake. In and of 

itself, that answer was inconsequential. On the other hand, Nick’s reaction to my 

correction of the book was a seminal moment in my teaching career. He confidently and 

succinctly stood his ground, “the book is never wrong.” 

Nick did not know the right answer, but my quick dismissal of the book shook 

his worldview. He was a young man for whom mathematics never came easily. In the 

absence of intrinsic confidence in his mathematical abilities, Nick had found a surrogate. 

He had learned to rely on the book as his mathematical Sherpa. Just as I 

discombobulated him, his response shook me. He was incapable of questioning the math 

book. His fallacious belief in the infallibility of the math textbook had handicapped his 

ability to learn.  

Later that school year, I began my first foray into the study of textbook efficacy 

that would become the subject of this dissertation. The occasion was the 2007 AP 
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Calculus AB test. One afternoon after the administration of that test I began to hear from 

my students that one of the free response items was particularly difficulty. They had 

never seen anything like it. We used Calculus: Concepts and Contexts (Stewart, 2005) in 

my class. But apparently neither my textbook nor I had provided adequate preparation 

for this particular problem. I wanted to know why.  

Starting in 2002, the College Board has published national means and standard 

deviations for each of its tests’ free response items. In the summer of 2007 I learned that 

the national mean for problem #3 of the 2007 AP Calculus AB test (2007AB3) was 0.96 

out of a possible 9. Nationally, students earned approximately 10% of the available 

points. Why was 2007AB3 (see Appendix A-2) so prohibitively difficult? What about 

that item set it apart from the 59 others posed over the past 10 years?  

A quick inspection of the other scores then available revealed that the next lowest 

mean was 1.76 out of 9 on problem #3 from 2005AB3. Both items presented students 

with a table of values. Both invoked the Mean Value Theorem (MVT) and both included 

two solicitations for an explanation of a concept or a context among four total prompts.  

Calculus students in America have different backgrounds, schools, teachers, and 

technology. The textbooks they share are their one pedagogical commonality. A handful 

of textbooks dominate the market and implicitly dictate not only what students learn but 

also more importantly how they learn. This dissertation is a study of the impact of 

textbooks on calculus learning. It is a study of the implementation of the nationwide AP 

Calculus curriculum in textbooks.   
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Literature Review 

Problem Solving 

The “problems” students solve are the most basic unit of classroom instruction 

(Arbaugh & Brown, 2004). The critical thinking, higher order reasoning, and creativity 

required to find a solution determine the quality of a mathematical task (Polya, 1967; 

Schoenfeld, 1985; Schoenfeld, 1987; Selden, Selden, Hauk, & Mason, 2000). 

Correlations between increased student achievement and higher quality questioning 

facilitated by the solving of complex problems have been documented (Lampert & 

Cobb, 2003). In short, questions control student learning (Manouchehri & Lapp, 2003); 

heightened expectation through challenging questions yields heightened achievement 

(Piccolo, Carter, Harbaugh, Capraro, & Capraro, 2008). 

Textbooks 

The dominant source of the mathematical tasks encountered by students is the 

textbook (Crawford & Snider, 2000; Witzel & Riccomini, 2007). American textbooks 

are more bloated and less focused than their international counterparts (Schmidt, 

McKnight, & Raizen, 1996). Teachers are largely ill equipped to differentiate between 

questions of varying quality (Kulm, 1994) and appropriately choose from the multitude 

of available tasks. It is paramount that students have the opportunity to reflect on and 

make connections to well-chosen high-quality problems (Porzio, 1999).  

Difficulty versus Complexity 

 The quintessential quality of a mathematical task is its cognitive complexity 

(Webb, 1997), as opposed to its difficulty. The extended duration of a solution (e.g. 
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moving 500 boxes from one room to another) makes a task difficult not complex. There 

is no question about how to solve a difficult task. Alternatively, there is no immediate 

procedure available to solve a complex task (e.g. arranging 500 boxes to fit into a limited 

space). For complex tasks, the choice of mathematical tools useful to a solution is the 

chief element of the cognitive conundrum (Schoenfeld, 1985).   

Scales of Cognitive Complexity  

The Van Hiele model was developed to improve teaching by considering 

students’ thinking (Pegg & Davey, 1998). This model, which includes five levels – 

visualize, analyze, generalize, deduce, and rigor, was originally developed for geometry 

but was purported to apply to all of mathematics (Van Hiele, 1986). The depth of 

knowledge scale (Webb, 1997) explicitly considered cognitive complexity (not 

difficulty) and has been used to evaluate the alignment between the four states’ science 

and mathematics standards and assessment items (Webb, 1999). The four cognitive 

levels of Webb’s scale are: recall, application, strategic thinking, and extended thinking. 

Representations in Calculus 

In the 1980’s the calculus reform movement sought to fundamentally alter the 

manner in which calculus was taught (Wilson, 1997) by embracing higher quality multi-

dimensional tasks that encompass a diversity of representational contexts (Demana, 

1994). A national AP curriculum was developed that prescribed robust learning in terms 

of a rule of four – the prescription that all concepts be understood via graphical, 

numerical, algebraic, and verbal representations (College Board, 2012). Free response 

items from the AP test reflect this position; each test includes 6 free response items, each 
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of which is a word problem involving another distinct anchor representation—an 

algebraic expression, graph, table of values, or combination of those. Students must 

equally adept at interpreting all representations.  

 Algebraic Representations 

 Algebraic representation was the singular focus of traditional calculus curriculum 

(Tucker, 1996). Though algebra is a powerful and essential component of mathematical 

learning, notational abstraction with its accompanying symbolic obfuscation often 

detracts from a proper understanding of the fundamental underlying concepts. Often 

these mathematical concepts are more clearly discernable with an alternative 

representation (Stigler, 1986). Calls for a multi-dimensional representational approach to 

learning calculus are a reflection of the raw mathematical problem solving power that 

accompanies versatility.  

 Graphical Representations 

  Since classroom technology became widely available, research into the role of 

graphical representations in classrooms has been extensive (e.g., Apinwall & Shaw, 

2002; Baker, Cooley, & Trigueros, 2000; Curcio, 1987; Edens & Potter, 2008; Heid, 

1988).  With graphing calculators, the rote graphing of functions is trivial. When 

graphical representations became tractable, they became an efficient means to a 

conceptual end. Students’ effort can be redirected towards efficiently experimenting with 

graphs, interpreting those graphs, and making sense of the mathematical realities 

reflected by the visualization.  
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 Numerical Representations  

 Calculators have also made numerical representations more accessible. Tables of 

numerical data are available at a touch of a button and allow a student to make 

conjectures based on tabular patterns. Activities of this type are the most natural (and 

simple) for our students (Kaplan & Kaplan, 2008). Mathematicians have using tabular 

conjecture methods of learning through the ages. Algebraic methods dominated 

mathematics in the 300 years since Newton, only due to the lack of technology to 

facilitate efficient tabulation-based conjecture (Tucker, 1996). Children work with 

numerical representations before they learn algebra or how to graph an equation. Yet this 

representation is largely displaced in the traditional calculus curriculum (Tall, 1997).  

 Verbal Representations  

 “Without language, thinking is impossible,” (Van Hiele, 1986, p.9) and without 

thinking, learning is impossible. Student explanations (via verbal representations) are the 

mechanisms through which empirical representations (algebra, graphs, and tables) are 

connected and explicated. Verbal discourse plays a central role in mathematics learning 

(Carpenter, Fennema, Franke, Levi, & Empson, 1999; Lempert & Cobb, 2003; 

Manouchehri & St. John, 2006). Verbal representations are the medium of mathematical 

learning. Without them, advanced levels of cognitive complexity incorporating rigor and 

abstraction are unapproachable.  

Representations and Problem Solving  

 The essence of mathematical power is representational transfer (Goldin, 2003). 

Classical mathematic problems (i.e. word problems) are anchored in verbal 



 

7 
 

representations and, in general, the first step towards solution is the translation of the 

words into some other mathematical representation (typically an algebraic expression) 

for interpretation. Previous attempts to create a four-level hierarchy for elementary word 

problems (Caldwell & Goldin, 1987) have failed to explicitly consider translations 

between representations. Limited attempts to explore connections between 

representations in calculus have been made (Porzio, 1999) but centered on student 

preference rather than proficiency.   

Research Niche  

 The number of high school seniors who took at least one AP test has doubled 

since 2001 (Seiben, 2011) and just in the last decade the number of students taking 

calculus AB increased by 56% (College Board, 2012) to nearly 250,000 students each 

year. Calculus is a critical pedagogical juncture in the preparation of students for careers 

in science, technology, engineering, and mathematics (Bressoud, 2009). Despite decades 

of curricular reform efforts, students still entered college calculus ill prepared (St. Jarre, 

2008; Selden, Selden, Hauk, & Mason, 2000).  

 In recent years, the College Board developed an AP course audit process (Geiser, 

2008) that required teachers to acknowledge the intended AP curriculum (Usiskin, 1994) 

and, at least on paper syllabi, appropriately reflect the defined AP curricular standards 

(College Board, 2012). What the College Board could not guarantee, however, was the 

veracity of the implemented curriculum. What was being taught in the classroom remains 

unknown.  
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 Textbooks provide a window into the implemented curriculum. They offer 

profound insight into both what was taught and how it was taught (Capraro, Capraro, 

Younes, Han, & Garner, 2012). In 1998 the American Association for the Advancement 

of Science (AAAS) analyzed 25 middle school mathematics textbooks and 20 middle 

school science textbooks, and judged only 5 satisfactory in terms of potential of promote 

quality mathematical learning (Roseman, Kulm, & Shuttleworth, 2001). There have been 

no similar studies of calculus textbooks. Without an in-depth analytic review of calculus 

textbooks, we cannot know whether the books are likely to help students learn 

(McNeely, 1997). 

 The roles of representations (Cunningham, 2005; Knuth, 2000; Porzio, 1999) and 

representational transfer (Keller & Hirsch, 1998; Romberg, Fenema, & Carpenter, 1993) 

in problem solving have not been adequately addressed in the literature. Representations 

provide a lens through which we can begin to explore the cognitive complexity of 

calculus textbook tasks. In this dissertation a study of a sample of mathematical tasks 

from popular calculus textbooks will be the first study of any kind of calculus textbooks. 

This study will be the first to connect representational transfer to cognitive complexity 

and the first to adapt the Depth of Knowledge inventory (Webb 1997; 1999) for textbook 

task analysis.  

 

Article 1 (Chapter II) 

 The College Board’s call for a multi-dimensional representational presentation of 

concepts is the cornerstone of AP Calculus curriculum. Students are expected to be 
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equally adept at interpreting concepts algebraically, graphically, numerically, and 

verbally. Cursory inspection of the national mean scores for AP Free Response items 

since 2002 suggested that there was a distinct association between mean score and 

representational anchor/target. This article seeks to answer whether the AP calculus 

vision for a multi-representation learning environment in the classroom (i.e. the rule of 

four) has been faithfully realized? 

 Experience with representations plays a key role in the quality of the problem 

solving process (Cheng, 1999; Goldin, 2003). Algebraic representations were the 

primary focus of traditional mathematics pedagogies (Tucker, 1996). The danger of a 

single representation focus is that a preponderance of symbolic manipulation can 

obfuscate conceptual understanding. With the increased availability of technology, 

graphical representations became tractable (Edens & Potter, 2008) and offered a visual 

window towards student understanding. Tables of values (i.e. numeric representations) 

are the most basic mathematics representation but also the most overlooked in calculus 

(Tall, 1997). Verbal discourse is an inexplicable aspect of the mathematics learning 

(Manouchehri & St. John, 2006) and the foundation of every word problem.  

 This quantitative article attempted to verify and document the association 

between anchor and output representations and mean free response scores on the AP 

Calculus AB test in an effort to explain why students across the nation scored so poorly 

on Free Response Item #3 in 2007. National summary statistics were available for AP 

Calculus AB free response items from 2002 through 2011. Each item was a word 

problem built off of at least one anchor representation (algebraic, graphical, or table of 
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numerical values). Each item included 3-4 prompts in which the students were tasked 

with using the representational stem to provide a solution via some distinct output 

representation. 

 The validity and reliability of the College Board test creation process, its rigorous 

grading processes, and the large sample sizes the existence of significant insight to be 

found within data in regard to representation, representation transfer, and student 

performance as a mirror of the current state of the nation’s secondary calculus 

classrooms. The considered free response items (n=60) were categorized according to 

both input and output representations and aggregated into groups. Summary statistics for 

each group were computed for comparison and contrast.  

 

Article 2 (Chapter III) 

Textbooks are the single constant factor across the nation’s calculus classrooms; 

a few publishers dominate the market for calculus books. The purpose of this article was 

to elucidate a model for cognitive complexity in terms of representations that would 

allow the analysis the mathematical tasks of common calculus textbooks. This 

qualitative article built on the premise that representational transfers were the essence of 

mathematical learning (Goldin, 2003).  It surveyed the Van Hiele theory of learning (e.g. 

Usiskin, 1982) for geometry and recalled the bifurcation of mathematical tasks into 

exercises and problems (Schoenfeld, 1985). The Depth of Knowledge model (Webb, 

1997) was discussed and the concepts of mechanical “difficulty” and cognitive 

“complexity” were distinguished.  
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 From its historical antecedents, a new model of cognitive complexity is adapted 

for the purpose of textbook task analysis. The new model in explicated in five levels: 

Level 0 “recall,” Level 1 “apply,” Level 2 “interpret,” Level 3 “synthesize,” and Level 4 

“abstract.” Each of the five levels was defined in terms of the number of representational 

transfers required for the solution of a given problem. Principles of Independence, 

Relativism, Parsimony, Inheritance, Reducibility, and Completeness were established. 

These principles illustrated the appropriateness and versatility of the model for 

mathematical task analysis. Examples mathematical tasks are provide to illustrate the 

cognitive intricacies of each level and principle.  

  

Article 3 (Chapter IV) 

 Representational diversity is a pillar of the AP Calculus curriculum (College 

Board, 2012), yet students do not perform as well with free response items with either 

numerical anchors or verbal targets (Romero1, 2012).  The College Board has instituted 

an auditing process of teacher syllabi to assure that courses with the designation AP 

meet certain curricular standards. Though the College Board provided a provided a list 

of sample textbooks on its website (College Board, 2012), it has not audited the contents 

of those calculus textbooks to assure that they meet its curricular standards.  

 This article investigated the following: Does the cognitive complexity in common 

calculus textbooks align with the complexity expected by the AP curriculum? Is the 

multi-representational vision of the AP Calculus curriculum manifest in textbooks? 

 After adapting an instrument (Romero2, 2012) based on previous cognitive learning 
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models (e.g. Webb, 2007), eight of the most popular textbooks were chosen for this 

study based on Amazon Sales Rank. Textbook lessons centering on Mean Value 

Theorem were selected from each book. All tasks with verbal anchors (i.e. word 

problems) were evaluated for cognitive complexity and representations employed and 

required. A parallel analysis was completed for all AP Calculus AB tasks between 2002 

and 2011. Statistics for each book were aggregated into tables, along with the numbers 

for the AP Test items. Numbers were contrasted and results were legitimized with a 

subsequent qualitative analysis of a sample of tasks from both the textbooks and the AP 

Test.  

 

Conclusion 

Understanding mathematics is not what it used to be, the demands on our 

students are great and as such our textbooks must meet the challenge of empowering not 

only the mathematics students but also teachers of the 21st century (Usiskin, 1997). As a 

teacher in 2007, I trusted my textbook to guide my teaching and my students’ learning. I 

assumed that the tasks at the end of each section would sufficiently reflect the AP 

curriculum I was charged to teach and adequately prepare my students for the end of the 

year examination. Like my student Nick, I had implicitly trusted the authors of my 

textbook; I, uncritically, just assumed they were right. This dissertation is about testing 

that assumption. 
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CHAPTER II     

PULLING BACK THE CURTAIN ON SECONDARY CALCULUS: A 

REPRESENTATIONAL ANALYSIS OF AP CALCULUS AB FREE RESPONSE 

ITEMS, 2002-2011 

 During the 2006-2007 school year, I was an Advanced Placement (AP) calculus 

AB teacher at a private suburban Texas high school. The afternoon of the AP 

examination that May, I heard from my students about an “impossible” free response 

item they encountered on the test. It was a mathematical task for which they were ill 

prepared. I had failed my students and I wanted to know how and why.  

 Between 2002 and 2011 more than 2 million students sat for the AP Calculus AB 

test. (College Board, 2012). Since 2002 the College Board has released national mean 

scoring data on each of its free response items. The national average for this particular 

free response item, #3 on the 2007 AB test (2007AB3) was 0.96 points, out of a possible 

9. At the other extreme of the data, the mean from #1 on the 2005 AB test (2005AB1) 

was 5.73 out of a possible 9. Overall 4 items fell between 1.00 and 1.99. Another 21 

came between 2.00 and 2.99, 22 between 3.00 and 3.99, and 11 between 4.00 and 4.99. 

Of the 60 items tested between 2002 and 2011, no items other than 2007AB3 or 

2005AB1 have yielded national mean scores either greater than 5.0 or less than 1.0.  

 The best scoring item (2005AB1) began with a graph, and asked students to find 

two areas and a volume. In fact 6 of the 12 best scoring free response items (i.e. with 

means greater than 4.0) asked students to find areas and volumes beginning with either 

graphs or algebraic expressions that can be quickly input into technology to yield a 



 

14 
 

 

graph. On these items students were not required explain their reasoning; a rudimentary 

algorithmic application was sufficient.  

 The worst scoring item (2007AB3) provided a numerical table of values. Two of 

its prompts required students to summon intricate knowledge of calculus theorems to 

explain why certain facts must be true of the function represented by the table. In fact 2 

of the 3 lowest scoring items (i.e. with means less than 1.77) began with a table of 

numerical values. Those two (2007AB3 and 2005AB3) both allowed no quick formula 

to be applied and implicitly invoked the Mean Value Theorem (MVT) as a means of 

justification for the answer to why questions.  

 Representations would seem play a profound role in predicting student success 

(or lack of thereof) on given AP Calculus AB free response items. The best scoring 

items were graph based and the worst scoring items were number table based. The best 

scoring items required simple algebraic manipulation and the worst scoring items 

required students to explain their understanding of a provided numerical model. Have 

students realized the College Board’s vision of multi-representational calculus 

proficiency? This article investigates AP Calculus AB free response items through a 

representational lens. What pedagogical insights can be gleaned from the study of 

national mean scores on these items?  
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Literature Review 

What Is a Representation? 

 External representations are systematized presentations (e.g. algebraic 

expressions, tables of numbers, Cartesian graphs) of information that reflect some 

aspect(s) of mathematical reality (Neilssen & Tomic, 1996). Learning is the process of 

constructing internal representations of mathematical reality (Cobb, Yackel, & Wood, 

1992). External representations are the tools with which students construct internal 

representations (and learn mathematics). Without external representations, learning is 

not possible. 

 The emergence of representational theories of learning coincided with the global 

paradigm shift that has marked the dawn of the modern information age. The rise of 

technology in our world has presaged the introduction of cognitively guided pedagogies 

in our classroom.  The focus of research-supported classroom best practices has shifted 

from the product of mathematics (i.e. answers) to the process of the construction of 

internal representations of mathematics. 

One challenge to the establishment of cognitive based pedagogy is assessment. 

Traditional mechanical pedagogy is rooted in what we can easily access— answers.  In 

the past representations were underutilized in our curriculum (Kaput, 1987). 

Representations allow the generation of an assessable trail of documentation that can 

reveal information about student thinking (Lesh, 2006). Without an explicit classroom 

representational focus, the assessment and implementation of cognitive based curriculum 



 

16 
 

 

is more difficult.  Representation is a key to the realization of cognitively guided 

pedagogy 

Mathematical representations cannot be understood in isolation (Goldin & 

Shteingold, 2001). The degree of understanding is determined by the quantity and 

quality of connections between internal and external representations (Hiebert & 

Carpenter, 1992).  The essence of mathematical power is the ability to transfer between 

different representations (Goldin, 2003).  Partially developed internal systems of 

representations leave long-term cognitive obstacles and associated confidence-related 

barriers (Goldin & Shteingold).  

Problem Solving and Representation 

 Though a problem solving approach to secondary mathematics learning has been 

advocated for years (e.g., Halmos, 1980; National Council of Teachers of Mathematics 

(NCTM), 1980; NCTM, 1989, NCTM, 2000), a genuine realization of problem solving 

in the classroom has remains elusive (Kulm, 1994; Lester & Kehle, 2003; Schoenfeld, 

2004; Stacey, 2005).  The defining characteristic of the problem solving process is its 

unscripted, non-routine nature (e.g., Polya, 1967; Schoenfeld, 1985; Selden, Selden, 

Hauk, & Mason, 2000). In addition to assessment challenges, the fact that problem 

solving is indefinable in terms of some always-applicable linear recipe contributes to its 

pedagogical elusiveness.  

 Lakatos (1976) describes the process of problem solving as following a “zigzag 

path of discovery (p. 42).”  Adapting and refining a definition from Lester and Kehle 

(2003) we can precisely define problem solving as the process of resolving ambiguity 
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via the generation of new representations from representations familiar from previous 

experience or knowledge.  Representations are the milestones along the path of the 

problem solving process, based on which problem solvers zigzag—adjust their cognitive 

and metacognitive approaches toward success.  

 Goldin and Shteingold (2001) suggest that an avenue for overcoming the 

cognitive impasse with representational transfer is the explicit consideration of 

representational aspects of mathematical problem solving.  This idea is implicitly alluded 

to by Polya (1973, p. 47):  

We may add auxiliary elements to the conception of our problem in order 

to make it fuller, more suggestive, more familiar although we scarcely 

know yet explicitly how we shall be able to use the elements added.   

External representations are “auxiliary elements.”  Tables, figures, and words are not 

always necessary on a solution path; however, they can provide guidance when a 

problem solver is not yet certain which direction to follow.  An examination of Polya’s 

“dictionary” reveals that each of our familiar categorizations of representations (i.e., 

graphical, tabular, verbal, and algebraic) was either explicitly (e.g. draw a figure) or 

implicitly (e.g. mathematical induction) included as heuristics.    

 Adapting a diagram (see Figure 1) of Lester and Kehle (2003) as a representation 

of a potential problem solving process to solve a portion of a calculus murder mystery 

problem (Romero, 2008), we can visualize the zigzag between representations.  In the 

portion of the task depicted, students are asked to determine which poison was used to 

kill the victim. The student is offered three anchor representations: an algebraic 
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representation of a differential equation that models the decay of poison in the body, a 

table listing of suspect poisons with corresponding constants, and a verbal description of 

the victim’s interactions of the previous day. The schematic in Figure 1 only depicts a 

portion of a possible problem solving process. Each entity in the diagram signifies a 

representation that a student might employ in a solution process. The solution of the 

murder mystery treks from algebraic to numeric to algebra to verbal. One representation 

leads to the next, implicitly guiding the problem solving process. Without the 

representations students might be left without insight into future steps. 

 

Figure 1 Zigzag representational schematic for calculus murder mystery 
 

 

 

Representations in Calculus  

 Traditionally calculus was taught exclusively via analytic representations (i.e. 

algebraic symbols that are manipulated with algorithms). Calculus reformers (e.g., 

Douglas, 1986; Solow, 1994; Tucker, 1990) noted that numeric representations (e.g. 

tabular data) and graphical representations (e.g. Cartesian plots), which were intractable 
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prior to the wide-scale introduction of the graphing calculator into calculus classrooms, 

are underutilized in traditional classrooms. Technology made a multi-representational 

calculus experience possible and allowed many teachers to a take a definitive step 

towards the cognitively guided pedagogy advocated by reformers (Waits & Demana, 

1994).  

 The AP calculus curriculum’s rule of four prescribed that every calculus concept 

to be developed in terms of four representations –algebraic, graphical, numerical, and 

verbal (College Board, 2012). For example, consider the question, what does it mean to 

understand the concept of the derivative?  An AP Calculus student is expected to 

understand the derivative via numerous formulas for computation (algebraic), by its 

definition as the limit of secant approximations (graphical), via a difference table of a 

discrete number of points, and contextualized as a rate of change as might be described 

in a newspaper article (verbal).  

The Rule of Four: Algebraic 

Symbolic algebraic representations were the singular focus of the traditional calculus 

curriculum (Tucker, 1996). American elementary textbooks have been shown to more 

frequently use symbolic representations to replace alternate representations and dilute 

the learning experience (Cai & Lester, 2005). Though algebra is a powerful and essential 

component of mathematical learning, notational abstraction with its accompanying 

symbolic obfuscation often detracts from a proper understanding of the fundamental 

underlying concept that is more clearly discernable via a simpler alternative 
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representation (Stigler, 1986). This realization gave rise to calls for the inclusion of 

graphical, numerical, and verbal representations in the learning of calculus.  

The Rule of Four: Graphical 

 Since classroom technology became available, research into the role of graphical 

representations in classrooms has been extensive (e.g., Apinwall & Shaw, 2002; Baker, 

Cooley, & Trigueros, 2000; Curcio, 1987; Edens & Potter, 2008; Heid, 1988). The 

purpose of using concrete visual representations is to mediate students’ conceptual 

understanding of abstraction (Cai & Lester, 2005). Students’ effort can be redirected 

towards efficiently experimenting with graphs, interpreting those graphs, and the sense-

making processes necessary for conceptual learning.   

 Calculators are mechanisms for cognitive amplification (Grassl & Mingus, 

2002); students are able to access problems that are inaccessible without technology. 

Calculators and their representation generation capabilities allow students can explore 

families of solutions to an intractable differential equation (Braiden, 2011) or climb a 

cognitive scaffold to understand the fundamental theorem of calculus (Schnepp & 

Nemirovsky, 2001). Calculators empowered the graphical representation to transcend its 

role as a static reflector of a correct mechanical process to a new role as one of may 

dynamic intermediary representations from which better understanding emanates.    

The Rule of Four: Numerical 

 Calculators have also made numerical representations more accessible. Tables of 

numerical data are available at a touch of a button and allow a student to make 

conjectures based on tabular patterns. Kaplan & Kaplan (2008) inform us that activities 
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of this type are the most natural (and simple) for our students. Mathematicians have 

using tabular conjecture methods of learning through the ages. Algebraic methods 

dominated mathematics in the 300 years since Newton, only due to the lack of 

technology to facilitate efficient tabulation-based conjecture (Tucker, 1996). Children 

work with numerical representations from an early age, before they learn algebra or how 

to graph an equation. Yet this representation is largely displaced in the traditional 

calculus curriculum (Tall, 1997). This fact coincides with the dearth of research into 

students’ use of numerical representations. 

The Rule of Four: Verbal 

“Without language, thinking is impossible,” (Van Hiele, 1986, p.9) and without thinking 

learning is impossible. Verbal representations are essential to the reflective cognitive 

action central to deep conceptual learning. (Carpenter, Fennema, Franke, Levi, & 

Empson, 1999; Lempert & Cobb, 2003; Manouchehri & St. John, 2006). Verbal 

representations (i.e., student explanations) allow student to connect physical 

representations (algebra, graphs, and tables) and explain “how” and “why” a solution 

must be correct.  Modern calculus pedagogies invoke the verbal representation through 

contextualizing stories (Hughes-Hallett, 2006) that can make abstract mathematics 

concepts attainable to more students. No longer is mathematical understanding reserved 

to only those who are proficient with symbols.   

Representational Determinism  

 Representations substantially affect both the effectiveness and quality of the 

problem solving process (Cheng 1999). Proficiency with the creation and deployment of 
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representations towards a solution is one characteristic of expert problem solvers and a 

central skill requiring practice of novice problem solvers (Schoenfeld, 1985; Stylianou & 

Silver, 2004). The representations used to describe a function determined whether 

students could answer questions about it (Keller & Hirsch, 1998). That is, whichever 

representation is given in a problem is highly deterministic of a particular student’s 

success with the problem.  

 Though a research-based underpinning of the role of representations in classroom 

pedagogy has begun to emerge (Keller & Hirsch, 1998), work in this area remains 

(Janvier, 1987; Lester & Kehle, 2003). Problem solving can be conceptualized as the 

process of finding a particular output representation to explain or resolve an uncertainty 

inherent from one or more input representations. This representational transition process 

is not clearly understood and should be a focus of curriculum research (Porzio, 1999; US 

Dept of Education, 2008).  

 

Instrumentation 

 A test development committee comprised of both university and secondary 

experts creates the AP Calculus free response items via an established process. The 

validity of these items is supported by a meta-analysis of Bressoud (2009) who found 

that AP examination scores reasonably correlate to grades in college calculus courses. 

This conclusion reinforces the reliability of AP scores as a metric of future college 

calculus scores. The purpose of this study is to analyze available College Board data. 

The validity and reliability of the College Board test creation process, its rigorous 
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grading processes, and the large sample sizes hinted at the existence of significant 

insight to be found within data in regard to representation and student performance as a 

mirror of the current state of the nation’s secondary calculus classrooms.   

 The AP calculus test consists of two equally weighted sections of multiple choice 

and free response items. Multiple-choice items are not released regularly. The free 

response items are released each year, along with national student mean scores for those 

items. Each free response item includes 2 to 4 parts requiring output (or target) 

representations as solutions. The antecedent to each of those parts is a common anchor 

representation. Each stem includes a verbal representation (word problem like 

presentation) in combination with either an algebraic, graphical, or numerical 

representation as an anchor.  

Each AP Calculus AB free response item is scored out of a possible 9 points. The 

College Board provides a scoring rubric along with each of its items. As of this writing, 

student statistics for 60 free response items (from 2002 to 2011) are available at the AP 

Central website (College Board, 2012) complete with summary statistics and scoring 

rubrics. Scoring data for individual parts of a given item is not available. This article 

seeks to answer whether the AP calculus vision for a multi-representational learning 

environment in the classroom (i.e. the rule of four) is evidenced by student performance 

on the AP Calculus AB test?  
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Method 

 For this study, each AP Calculus AB free response item offered between 2002 

and 2011 was classified categorically according to given anchor representation and 

required target representation(s). Verbal representations were inherent in the 

presentation of every AP free response item and were not considered as part of the 

anchor portion of this study. Because it was possible for a student to generate a correct 

solution with different representations, the target analysis portion of this study focused 

on verbal representational requirements. Verbal representations requirements were 

identified through phrases like “explain your reasoning” or “justify your answer.” 

 A free response item can have as many as 3 different expected target 

representations included among the multiple prompts following up a given anchored 

problem.  Each item from among the original 60 was classified based on whether its 

multiple prompts included elicitations for verbal representations. Of the 60 items, 27 

contained at least one prompt requiring a verbal output representation. Eleven of those 

items required 2 verbal outputs and only one required 3 verbal outputs.  

 Because the national mean of an item requiring 3 verbal outputs is more 

representative of verbal representational proficiency than the mean of an item requiring 

one verbal output, individual prompts were considered distinct in this portion of the 

study. That is, in order to study an appropriate mean related to verbal representation 

proficiency, items were weighted based upon the number of verbal outputs required; a 

item with 2 verbal outputs was weighted twice while an item with only 1 verbal output 

was weighted once. 



 

25 
 

 

 Following representational classification, 3 categorical tables of free response 

items were created for anchors (graphical, algebraic, and numerical) and 2 tables were 

created for targets (verbal and non-verbal). Each table allowed the calculations of 

summary statistics for items of each type for contrast. These statistics included mean, 

weighted mean, maximum, minimum, and number of items considered. This data then 

allowed for statistical analysis to compare mean student results with respect to 

representation with an appropriate t-test. 

  

Results 

 The mean of the means of national student scores on AP Calculus AB free 

response items (n=60) from 2002 through 2011 was 3.22 with a maximum of 5.73 and a 

minimum of 0.96 (see Table 1). The standard deviation of the sample was 0.95. The 1st, 

2nd, and 3rd quartiles were 2.52, 3.14, and 3.94 respectively. AP Calculus students scored 

highest on questions with a graphical anchor representation (µ=3.45) and lowest with a 

numerical anchor representation (µ=2.54). This corresponds respectively to the graphical 

and numerical anchors for the maximum (5.73) and minimum (0.96) of the entire set. It 

was found that weighted means (found by incorporating yearly sample sizes) were 

practically insignificant. All difference of weighted mean and simple mean (equal 

sample size assumption) was less than 0.5. 

Anchor Representation Comparisons   

 The equality of means of items categorized by anchor representations (see Table 

2) was compared with a series of independent sample t-tests. A statistically significant 
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difference (α=0.05) was found when comparing the mean of numerically anchored items 

against the means of both the algebraically and graphically anchored items. A 

statistically significant (α=0.05) difference between algebraically anchored items and 

graphically anchored items was not found.  

 

Table 1   Anchor Representation Summary Statistics 
 

 Anchor 
Representation Max Min Mean 

Weighted 
Mean Num 

Graphical 5.73 1.76 3.45 3.43 22 
Algebraic 4.89 1.63 3.29 3.28 28 
Numeric 3.48 0.96 2.54 2.58 11 

Total 5.73 0.96 3.22 3.21 61* 
Note. One item (2003 #4) included both graphic and numeric anchors 

 

 

Table 2   Anchor Representation Means t-tests 
 

Anchor (n)  
Levene’s Sig. 
for Eq Var 

2-tailed t-Test Sig. 
No Eq Var Assumed 

2-tailed t-Test Sig. 
Equal Var Assumed 

Graphical (n=22)  vs.  
Algebraic (n=28) 0.067 0.573 0.559 

Algebraic (n=28) vs.  
Numeric (n=11) 0.470 0.011 0.011 

Graphical (n=22) vs. 
 Numeric (n=11) 0.047 0.008 0.017 
 

 

Target Representation Comparisons 

 Over the decade between 2002 and 2011, the AP Calculus AB examinations 

offered students 207 prompts (see Table 3) among its 60 free response items or 3.48 
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prompts per item. AP Calculus students scored higher on prompts not requiring verbal 

outputs (µ=3.28) than they did on items requiring the verbal representation (µ=2.74). It 

should be noted that the number of verbal prompts has increased over the decade. From 

2002 to 2005, 9 total verbal eliciting prompts were offered. From 2006 through 2008, 12 

were offered; from 2009 through 2011, 19.  A statistically significant (α=0.05) 

difference was found between the national means for items with verbal targets versus 

those without verbal targets (see: Table 4) 

 

Table 3   Target Representation Summary Statistics 
 

 Target 
Representation  Max Min 

Weighted 
Mean Num 

Non-Verbal 5.73 0.96 3.28 167 
Verbal 4.67 0.96 2.74 40 
Total 5.73 0.96 3.18 207 

 
 
 
Table 4   Target Representation Means t-test 

 

Targets (n)  
Levene’s Sig. 
for Eq Var 

2-tailed t-Test Sig. 
No Eq Var Assumed 

2-tailed t-Test Sig. 
Equal Var Assumed 

Verbal (n=167)  vs.  
Non-Verbal (n=40) 0.724 0.001 0.001 

 

 

Discussion 

This study was inspired by the consideration of a low extreme free response item 

(2007AB3) and the discovery of another low extreme (2005AB3) and a high extreme 
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(2005AB1). The pattern of performance suggested by these extremes has, in fact, 

emerged following analysis. The numerical representation is the only anchor that falls 

below the overall mean and it is significantly different (α=0.05) from both of the other 

anchors. The algebraic and graphical anchors are not significantly different and both 

above the overall mean. There exists a gap between the student performance on 

numerical representation and performance with algebraic or graphical representations.  

Similar disparity was found between verbal and non-verbal targets. Evidence suggests 

that students do not understand numerical and verbal representations as well as they 

understand graphical and algebraic representations.   

 This study has confirmed the conclusion of a previous one that found anchor 

representations were associated with student performance (Keller & Hirsch, 1998). 

Student ill performance with numeric anchors likely coincides with a neglect of that 

representation within the implemented curriculum, just as positive student performance 

with graphical anchors coincides with the explicit introduction of a technology-

empowered graphical representational focus into the classroom. In order for our students 

to perform well on tasks involving numerical representations, student need exposure to 

tabular based tasks in our classrooms. In fact the rule of four insists that we adopt such 

an approach.  

 Cunningham (2005) asserts that student behavior stems from instructional factors 

rather that cognitive ones. Textbooks dominate secondary curriculum and teachers are 

dependent on them as their primary source of curriculum (Crawford & Snider, 2000). It 

is incumbent upon textbooks, assessments, and teachers to embrace the multi-



 

29 
 

 

dimensional and multi-representational process of problem solving (M. Capraro, 2001; 

Stacey, 2005; R. Capraro & Yetkiner, 2008; NCTM, 2009). 

 As the chief medium through which the AP curriculum is realized, textbooks 

should reflect the “rule of four” focus. This article calls into question the fitness of our 

textbooks to facilitate the modern vision of calculus curriculum. A more in-depth study 

into the content of our textbooks is required.  Parents, teachers, administrators, and 

students put faith in our textbooks and assume that they will facilitate good teaching and 

good learning.  This research indicates that we should not uncritically accept this 

assumption.  

 Dreyfus and Eigenberg (1982) found that students with high ability preferred the 

graphical mode, while low ability pupils favored the tabular representation. Is this a self-

fulfilling prophecy? Is a failure by textbooks to include a numerical avenue to solution 

an implicit indictment of the potential success of certain students? If a student who is 

most comfortable with tabular representations is forced to work exclusively outside of 

his preferred domain, perhaps he will be ill suited for success. Rote mathematical tasks 

are prescriptive and limiting of students’ potential for success; alternative avenues via 

non-traditional representations to problem solving success are crucial to egalitarian 

student achievement.  

 Students’ choice of representational tool is a key element of the alleviation of 

students’ ill success in problem solving. The contrast between expert and novice 

performance can be, at least partially, attributed to the representations chosen to aid 

reasoning (Cheng, 1999). The expertise of a problem solver is grounded in the choice of 
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representational path. Though it is instructive to study students’ behavior with prescribed 

paths, exploration of students’ behavior on tasks where he or she must choose a path 

offers promise of deeper insight into a more general understanding of student problem 

solving efficacy. 

 From his work with Model-Eliciting Activities Lesh (2006) suggests that a 

representational-tool-choice laden pedagogy offers the opportunity of success to 

traditionally low achieving students, while students who thrive in pedagogy centering on 

prescribed algebraic and graphical means may be less successful in a multi-

representational environment. Our need, as teachers, for more power mathematical tasks 

is evident. The research (e.g. Capraro & Slough, 2008) has pointed us in the right 

direction with regard to more appropriate tasks.  However the question remains, are 

powerful multi-representational tasks appropriate for the modern vision of reasoning and 

sense making (NCTM, 2009) available in the textbooks that dictate curriculum in our 

calculus classrooms? 
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CHAPTER III    

WHAT I CANNOT CREATE I DO NOT UNDERSTAND: USING 

REPRESENTATIONS TO DIAGNOSE THE COGNITIVE COMPLEXITY OF 

MATHEMATICAL TASKS 

 
 Just prior to his death in 1988 physicist Richard Feynman scrawled the sentence 

“What I cannot create, I do not understand” on his blackboard (Hawking, 2001). This 

sentence encompasses the conundrum facing American secondary mathematics learners. 

I have taught calculus for 5 years—four in high schools and one at the college level. 

When assigned a problem to solve, my students all too often sit and helplessly wait for 

sudden insight that will lead to a solution. From their earliest days American students are 

exclusively dependent on their textbooks as their guiding light to mathematical learning. 

The hallmarks of powerful learning, resiliency and adaptability, are notably lacking in 

my students and American students in general.  

 The high school calculus course is the gateway between high school and college 

for those pursuing a Science, Technology, Engineering, and Mathematics (STEM) 

career. In spite of calculus reform efforts over the past twenty years, good students are 

still not mastering the concepts of calculus (St. Jarre, 2008; Selden, Selden, Hauk, & 

Mason, 2000). Previous examinations of textbooks have found that very few have 

potential to facilitate deep student mathematics learning (Roseman, Kulm, and 

Shuttleworth, 2001) and mathematics reform efforts will remain ineffective until high-

quality standards-based textbooks are developed (Smith, 1994).  



 

32 
 

 

 After an investigation of student performance on the AP examination, it was 

concluded in a previous article (Romero1, 2012) that the College Board’s multi-

representational problem solving vision that is the heart of reform tenets is not being 

realized in American AP Calculus classrooms. While American calculus students have 

different backgrounds, schools, teachers, and technology, they share one common factor 

– textbooks.  

 American textbooks rarely go beyond exposing students to the mechanics of 

mathematics and emphasizing the application and definitions and formulas to routine 

problems (Ginsburg, Leinward, Anstrom, & Pollock, 2005). The central role of 

textbooks in the American secondary mathematics classroom cannot be underestimated 

(Crawford & Snider, 2000; Kulm & Capraro, 2008; Witzel & Riccomini, 2007). They 

are the primary repositories of the instructional tasks that undergird student learning. 

  

Literature Review 

 The selection of mathematical tasks is the most significant choice affecting 

student learning (Lappan & Briars, 1995). Innately mathematics is creative, practical, 

and functional so why do mathematical textbook tasks have the reputation of being 

mundane, esoteric, and ineffectual. As long as teachers are expected to “cover” textbook 

lessons, school mathematics will continue to be an “academic charade of procedure, 

form, and convention” (Gregg 1995, p. 464). Asking a student to follow a textbook step 

by step is the mathematics equivalent of a literature teacher teaching from a phone book 

(Kaplan & Kaplan, 2008). 
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 Authentic learning occurs when students are repeatedly challenged to express 

and revise their current thinking methods – not because they are guided along a narrow 

conceptual path toward idealized solutions of their textbook or teacher (Lesh & Yoon, 

2004). In other words students learn through bona fide problem solving, an aspect that is 

discernibly lacking in school mathematics (Lockhart,2009). Problem solving is 

contingent upon the generation of new representations to resolve the tension or 

ambiguity inherent in unfamiliar mathematical tasks (Lester & Kehle, 2003).  

Representations 

 In other words mathematical representations are the objects whose creation via 

problem solving is alluded to by the sentence on Feynman’s blackboard. The ability to 

interpret and synthesize given representations and develop and create new ones is a 

hallmark of a successful problem solver (Cai & Lester, 2005). High quality 

mathematical tasks require student creation of new representations, the necessary avenue 

to conceptual understanding (Black, Harrison, Lee, Marshall, & William, 2004).   

On its website the College Board has posted national averages for each of its free 

response items since 2002. In 2007 students scored an average of 0.96 (out of 9) on Free 

Response Task #3. No free response item before or since has registered that low with 

students. This task provides students with a stem based around a numerical anchor (i.e. a 

table of data) and asked students a total of four questions: two why questions and two 

types of questions not commonly featured in calculus textbooks. A gap between student 

performances on numerically anchored problems as compared to algebraic or graphically 

anchored ones has previous been documented (Romero1, 2012).  
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 Organized collections of numbers, such as a data table, are an example of the 

numeric type of “representations” that pervade the AP Calculus curriculum. The “Rule 

of Four, ” which prescribes that each calculus concept should be represented 

algebraically, graphically, numerically, and verbally by students, teachers, and 

textbooks, is a key aspect of the AP curriculum. By providing multiple concretizations of 

a given concept, the rule of four selectively emphasizes different aspects of a concept 

and facilitates a cognitive linking of concepts that facilitates a robust understanding that 

is more than the sum of its parts (Janvier, 1987; Kaput, 1985; Keller & Hirsch, 1998). 

 “Representations” are ephemeral external mirrors of reified mathematical reality 

(Neilseen & Tomic, 1996). Representations start as mere records of problem solving 

processes before becoming objects of reflection that empower deep student 

understanding (Lampert & Cobb, 2003). Once concepts have been internalized, a student 

is able to “visualize” a mathematical abstraction in his mind’s eye. He is able to draw 

upon his internal representations to intuit aspects of the problem solving process without 

needing external representations. Despite the critical role representations play in guiding, 

constraining, and stimulating cognition, relatively little research has considered the 

nature of representations in cognition (Zhang, 1997).  

 Once a variety of representations and their interrelations have been constructed 

by the student mathematics is learned powerfully (Goldin, 2003). It is representational 

versatility that leads to success in post calculus courses (Tall, 1992). The lack of success 

widely seen amongst college students (St. Jarre, 2008, Selden, Selden, Hauk, & Mason, 

2000) can be attributed to a lack of multi-representational focus that would later become 
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central reform calculus dogma. Gordon and Hughes-Hallett (1994) reported that 

students’ appreciation of their understanding under the new representational paradigm 

developed. Previously students did not have to understand what they were doing to get 

the right answers. These students took the first step to overcoming the shortcomings of 

what Allendoerfer (1963) derogatorily called “cookbook calculus” by recognizing the 

deficits inherent in traditional one-dimensional mathematics.  

 The ability to transfer between representations is indicative of understanding. 

Few researchers have examined students’ understanding of the representational 

connections (Knuth, 2000). The steps in students’ transition from concrete 

representations to abstract ones are not clearly understood should be the focus of 

curriculum research (Department of Education, 2008). Although we do not explicitly 

understand the epistemological role of representations in mathematics learning, NCTM 

(2009) has noted that without connections among representations, reasoning and sense 

making facility cannot develop.  

 The impact of the multi-representational mathematics is vast. Students, who in 

the past may have failed to be successful with one learning paradigm, can escape the 

“one size fits all” tradition of secondary mathematics through multi-representational 

calculus and embrace alternative paths to success. Keller and Hirsch (1998) recalled that 

two dyslexic students would often misread algebraic representations but found a 

tractable course with graphical representations. In light of past and present students 

difficulties with calculus, multiple representations provide promise of a more egalitarian 
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calculus experience and by extension more mathematicians, scientists, and engineers to 

lead our nation into the 22nd century. 

 Knuth (2000) found that more than 75% of students, when given a 

representational choice, elected for an algebraic solution method, even in situations 

when an alternative representational approach was less difficult or more efficient. In 

another study students preferred to use tables on the pre-test and graphs on the post-test 

(Keller & Hirsch, 1998). Romero (2012) found that algebra representational anchors still 

predominate the AP test and Tall (1997) found that traditionally the numeric 

representation has been missing from calculus.  

 Numbers are the mathematical representations that children learn first and they 

are the most natural representation with which to work. Yet students prefer algebra and 

graphs to numbers? How can this be? As the chief medium through which the AP 

curriculum is realized, textbooks should reflect the “rule of four” focus and equally 

include numerical representations among offered mathematical tasks. But do they? This 

study appropriates a representational lens through which we may evaluate the status of 

the ideals of calculus reforms as realized in our nation’s textbooks and by extension our 

nation’s calculus classrooms. 

Challenging Tasks 

 In the 1940’s Gestalt psychologist Max Wertheimer, in the work Productive 

Thinking, found that students were able to find the area of a parallelogram under 

circumstances they had previously seen but failed to do so when the problem was altered 

slightly. Schoenfeld (1988) documented students’ overreliance on their textbook’s 
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examples; if they were not able to mimic algorithmic procedures they were unable to 

solve presented mathematical tasks. Unsurprisingly Selden, Selden, Hauk, and Mason 

(2000) found that student conceptual mastery is dependent on the explicit inclusion of 

non-algorithmic tasks as part of the curriculum.  

 Experiences with harder (i.e. non-routine) mathematical tasks are directly 

correlated to increased student achievement (Hiebert & Wearne, 1993; Knoebel, Kurtz, 

& Pengelley, 1994). Though various studies have analyzed textbooks (Kulm, 1999; 

McCrory, 2006; McNeely, 1997; Yan & Lianghuo, 2004), there are no studies in the 

literature that analyze calculus textbooks. Muir, Beswick, and Williamson (2008) 

conjecture that narrow textbook teaching approaches have implicitly encouraged 

students to uncritically apply algorithms to all mathematical tasks.  

 Students who have habitually consulted previous worked examples before 

attempting their own solutions have little occasion to reflect on their learning (Selden, 

Selden, Hauk, & Mason, 1999). Challenging instructional tasks are the key to deep 

learning because they provide the opportunity for reflective abstraction advocated by 

Piaget (Dubinsky, 1991). A student who has reflected on a number of different 

unfamiliar tasks will build faculty with other unfamiliar challenging tasks in general 

(Selden, Selden, Hauk, & Mason, 2000). As students’ reflection on tasks is abstracted 

they become the basis of future acts of reflection in new tasks (Battista, 1999). Selden et 

al. (2000) found that 76% of calculus students failed to successful complete a 

mathematical task for which they had an adequate basis of factual knowledge. Without 

adequate practice with high-level tasks students will be unable to solve problems unlike 
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those they have previously seen. High-level tasks are a necessary prerequisite for high-

level achievement (Carpenter, Fennema, Franke, Levi, &  Empson, 1999). 

 Kulm (1999) suggested that a careful analysis of content depth or complexity is 

required to judge whether there exists potential for students to learn mathematics with a 

textbook. It is this criterion that was at the center of the American Association for the 

Advancement of Science (AAAS) Project 2061 analysis of middle school mathematics 

textbooks (Kulm & Capraro, 2008). Do they provide an adequate diet of non-routine 

tasks capable of promoting the appropriate level of conceptual learning depth? Porzio 

(1997) has suggested that the calculus textbooks need to be revised and revision must be 

preceded by diagnostic analysis of their alignment with the multi-representational AP 

calculus curriculum.  

The Right Questions  

 Because the AP calculus curriculum provides the curricular framework employed 

by all AP Calculus textbooks, there is little textbook variability with respect to what 

lesson topics are included. Every textbook will have a section that includes implicit 

derivatives and another will focus on related rates, for example. The central issue is how 

textbooks present the standard set of AP calculus topics.  

 In his 1997 autobiography, The way I remember it, eminent mathematician and 

analysis textbook author Walter Rudin (1997, p. 113) is quoted, “Widely used calculus 

books must be mediocre.” Interestingly while Rudin’s two widely acclimated real 

analysis textbooks are both less than 500 pages, virtually every major calculus textbook 

is double that size at more than 1000 pages. Unless a mathematics textbook provides 
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students with appropriate practice, no quantity of pages or additional topical coverage 

will compensate for lack of mathematical task quality.  

 Historically, once the right questions have been asked in the right way 

breathtaking achievement has been accomplished in short order (Lesh et al., 2000). The 

first step in an assessing the appropriateness of textbook pedagogy is asking whether a 

textbook is asking the right questions.  The right questions will start a student on a path 

of conceptual discovery and deeper understanding (Battista, 1999). The right questions 

will highlight naïve misconceptions and empower student construction of appropriate 

representational connections. Whether a textbook asks the right questions determines 

whether there exists potential for students to authentically learn mathematics with a 

textbook (Kulm, 1999) 

 The introduction of the graphing calculator into the classroom has marked the 

single biggest paradigm shift in the history of mathematics education. No idea, no 

development, no pedagogy has had a more profound potential impact on the way 

students learn. With the availability of a graphing calculator, some traditional textbook 

tasks such as the point by point graphing of a function are trivial. A more meaningful 

task might be to construct an algebraic function to model some plotted set of data. The 

first task employs a single representation and requires the student to apply a rote 

algorithm with little need for discussion about a trite task he would have previously 

completed dozens of times. The second task requires: a) the connection of three 

representations (algebraic, numerical, graphical), b)  the recall of an appropriate parent 

function, c) the application of knowledge of that function when creating a graph atop the 
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previous plot, and d) the interpretation of the appropriateness of the model. More 

importantly the second problem provides the opportunity for a discussion among 

students about the simultaneous correctness of different functional models.  

 The idea of what makes one mathematical task a good one and another bad is 

epistemological. More than fifty years ago Jerome Bruner (1960) called for the teaching 

for depth and continuity rather than for coverage. Over the years researchers (Knuth, 

2000; Romberg, Fenema, & Carpenter, 1993) have called for studies on the 

developmental aspects of student learning while others have called for a focus on the 

content depth of textbooks (Kajander & Lovric, 2009; Kulm, 1999). No such effort has 

ever been completed for upper secondary mathematics (i.e. calculus and pre-calculus).  

Cognitive Leveling Theories 

 The “depth” of a mathematical task is more properly referred to as “cognitive 

complexity.”   Historically mathematics education research has considered the notion of 

the complexity of mathematical tasks both informally (Keller & Hirsch, 1998; Smith & 

Stein, 1998) and via theoretical explications (Freudenthal, 1973).  Schoenfeld (1985) 

distinguished between an “exercise,” a mathematical situation for which a known path to 

a solution is available, and a “problem,” a situation in which a new cognitive path 

towards solution must be blazed. Exercises are ineffective at revealing student’s 

understanding or lack thereof (Lesh, Hoover, Hole, Kelly, & Post, 2000) while problems 

that require the highest levels of cognitive demand are positively related to the levels of 

student performance (Stein & Lane, 1996). In fact, curricula characterized by higher 
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cognitive demand can help students overcome pre-existing mathematical deficiencies 

(Darling-Hammond, 1998; Gordon, 2006). 

 The cognitive leveling model of Dina and Pierre von Hiele is the most 

comprehensive of its kind. This theory was originally designed to improve teaching by 

taking into account students’ thinking (Pegg & Davey, 1998). It was originally 

contextualized in terms of geometry and is purported by Pierre (1973) to apply to all 

mathematics. The van Hiele theory classified geometry understanding across five levels 

– recognition, analysis, order, deduction, and rigor. It would be inappropriate to apply 

the van Hiele theory locally, to investigate individual learning differences for instance 

(Pegg & Davey, 1998).  

 Webb’s Depth of Knowledge (DOK) model employs verb analysis and 

contextual analysis by content experts to classify mathematical tasks into one of four 

levels –recall, skill, strategic thinking, or extended thinking.  The DOK levels (Webb, 

1997) were validated and used as one portion of a project to analyze the alignment of 

state standards and corresponding high-stakes tests designed to assess the attainment of 

those standards by students through 11th grade.  This research will not employ the full 

program of criterion developed by Webb. Other criterion includes those considering 

student affective concerns and what is covered by assessment/curriculum. This study is 

focused exclusively on how mathematical tasks are presented.  
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The Model 

 

  In the subsequent paragraphs, a new diagnostic instrument of cognitive 

complexity is extrapolated with respect to calculus in five levels –recall, application, 

interpretation, synthesis, and abstraction. Unlike any previous models, this theory 

explicitly incorporates mathematical representations and the pathways between them. 

This article’s penultimate section describes the principles of consistency, independence, 

parsimony, relativism, inheritance, reducibility, and completeness inherent in the model. 

 This complexity model is indebted to the work of Webb (1997, 1999) and van 

Hiele (Hoffer, 1983; Shaughnessy  & Burger, 1985; Usiskin, 1982). Webb (personal 

email, 2008) acknowledged that his levels could be adapted to analyze the “complexity 

(not difficulty)” of textbook tasks but level definitions would have to be characterized in 

terms of calculus examples. The van Hiele theory has been found to be widely applicable 

(Usiskin, 1982) and this article seeks a global application of the two theories as a 

pedagogical model through which we can later analyze mathematical textbooks tasks. 

 This model is one of cognitive complexity of mathematical tasks; it does not 

consider the difficulty of tasks.  Webb (1999) considered the hypothetical in which a 

student measures the water temperature each day for a month and then constructs a 

graph. This mathematical task is Level 2 according to the DOK. However if a student 

were to conduct a river study that considers multiple variables and constructs a model 

for its temperature based on those variables, the task would be classified as Level 4. The 

temperature measuring activity itself may be difficult (i.e. time consuming or laborious) 
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but it is not cognitively complex (i.e. challenging conceptually). The procedure for 

measuring temperature is well understood. Conversely predicting the temperature of a 

river based on a model considering multiple variables is complex but not necessarily 

difficult. Completion of the second task would require blazing a new cognitive path; the 

first would not. 

 DOK analysis of how mathematical tasks are presented is related to the number 

of conceptual connections required and the originality of student thinking (Webb, 1997). 

The AP “rule of four” offers us a lens through which we can assess the complexity of 

calculus tasks.  This model explicates a one to one relationship between the number of 

representations invoked and the level of cognitive complexity. In order to be deemed as 

aligned, mathematical tasks must elicit ideas and representational connections from 

students that are as demanding cognitively as the prescriptions of the appropriate 

curricular standards.  

Level 0: Recall 

The first level of the model (referred to as level 0) is a stage of recollection. In 

the context of mathematical questioning, items which are one-step, well defined, and 

algorithmic would be classified within the first level. A level 0 question requires zero 

representations and instead requires a single memory step such as recalling a formula. 

Understanding of the concept invoked is not required. “What is the formula for the third 

side of a triangle given two sides and the angle included between the given sides?” is a 

level zero item. This question can essentially be rewritten as “what is the law of 

cosines?” and requires recall without any use of algebraic, graphical, or numeric 
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representations and without any understanding of what a particular definition or formula 

means.    

 I think it is important to note that particularly in mathematics, the recall of 

definitions is unimportant. As students move from a rudimentary understanding of 

mathematics to a more robust understanding they will recognize that definitions are 

arbitrary and relative. A student will construct (or be given) new definitions for familiar 

terms (e.g. parallel, normal) throughout his mathematical career. This is indicative of the 

cyclic process of problem solving—exploration leads to generalization leads to the 

establishment of a new definition that in turn leads to additional exploration.  

In the context of the secondary classroom, the recall of definitions is 

insignificant; definitions should be given to students because they are arbitrary. In one of 

my calculus classes my students were confused by the definition of relative maximum as 

the point at which a function has a first derivative equal to zero. One precocious student 

pointed out that y=x3 should have a relative maximum at x=0 since y’ (0)=0. When 

looking at the graph it was apparent that y=x3 did not have a relative maximum at 0. The 

next day I brought into class every calculus book I could find, assigned groups of 

students to look up the definition for relative extremes, and write the definitions on the 

board so that we could compare. My students were surprised that the various definitions 

were not the same. After discussion and subsequent exploration they discovered that a 

more precise definition for a relative maximum is when a function changes from 

increasing to decreasing.  
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This discovery, however, was not possible without representations. 

Understanding of the concept of relative maximum required the use of a graph or the use 

of algebra; increasing/decreasing can also be understood in terms of a positive/negative 

first derivative test. It is incumbent on students to recognize the need for representational 

tools and then select an appropriate tool. In this anecdote the understanding of the 

definition does not require the transfer between representations but does require the 

selection of a single representation tool through which a solution can be achieved. This 

selection of a tool and the application of it towards a solution is the hallmark of 

mathematical tasks at the next level.  

Level 1: Application 

Items that require the application of rote procedures are characterized as Level I 

items. These items typically invoke a single representation (e.g. draw a graph of the 

function y=x2) and hence there is no interpretation required and no need for transfer 

between representations. Though multiple representations may be involved such as an 

included graph or table, an item that does not require the use of ancillary representations 

is characterized as an application item.  

Under van Hiele’s model (Hoffer, 1983, p. 207) items at this level would require 

students to analyze the properties of figures such as “a rhombus has all sides equal” but 

they are unable to explicitly interrelate figures and properties. Under Webb’s model 

items at this level require something more than a habitual response. In the context of 

calculus tasks offered across the entire nation, habitual response is difficult to qualify. 

What is rote for one teacher’s student is not for another. Representations offer us an 
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opening to qualify tasks independent of student context. We can classify tasks at this 

level via a choice of representational tool. Tasks at this level use a single representation 

(such as graphical for the properties of the rhombus) and require students to apply some 

recollection of knowledge and apply in it in a calculus context (perhaps to find a 

derivative). The interrelation of figures would require two distinct representations and 

such a task is classified in the next level. 

 

Figure 2 Graphical anchor included with free response item 2008AB1 

 
 
 
 

On part A of 2008AB1 (see Figure 2), students were asked to find the area of the 

region bounded by the graphs of y=sin (πx) and y = x3–4x (College Board). A solution to 

this item requires the student to first algebraically or geometrically find the intersection 

of the two curves. This value is in turn used as a limit of integration in a standard 

formula to the area between the two curves. This item is Level I because its cognitive 

requirement is the recall and application of a cognitive tool (i.e. a rote algebraic 
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procedure contextualized in terms of a representation). Students would be familiar with 

items of this type and will have practiced procedural applications of this exact type. 

Though this item requires two distinct iterations of an algebraic procedure, both were 

Level I. The aspect of the problem with the single highest cognitive complexity 

requirement defines the cognitive complexity required to solve the item. Though this 

task references a graph, this item would typically be solved entirely within the algebraic 

domain. The 2008 AP Calculus Free Response Solution Rubric only values algebraic 

methods to find the solution. This task gives students the option of finding a graphical 

solution (using a graphing calculator) to the algebraic equation. Even if the student were 

to solve the equation graphically, that part of the solution only requires 1 representation 

(graphical).  The next part of the solution would again only require 1 representation 

(algebraic) and then require the algebraic solution to the integral. This item does not rise 

to Level 2 because those two distinct modes of representations were independent 

components of the solution. Without a transfer between representations a problem 

cannot rise to Level 2.  

Level 2: Interpretation 

 Items that require at least 1 representational transfer and require some form of 

argument, explanation, or conclusion would be classified as Level 2. The central 

indicator involved with the distinguishing between levels 2 and 3 is representational 

transfer—students have to interpret one representation and output another representation. 

In this circumstance it is possible that the form of the representation may be the same. 
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For instance, a student may have to consider one graph and output another. It is 

important to note, however, that the two representations must be distinct.    

 Whereas students are mostly likely familiar with Level 1 items they encounter, 

items from Level 2 are unfamiliar. The van Hiele model requires the generation of 

solutions without reliance on rote learning (Pegg & Davey, 1998). A student will not 

immediately know how to solve a Level 2 item because he does not have a routine 

algorithm at the ready. Under Webb’s DOK model, this level requires strategic thinking 

in which reasoning, planning, and evidence are employed towards the discovery of an 

original solution. It is through the reasoning of available evidence that students are able 

to plan a strategy that will lead to an eventual solution. This distinction between familiar 

and unfamiliar, between routine and non-routine are a central issue to classification and 

will be considered in totality after each levels’ elucidation. 

In the context of geometry, Hoffer (1983) noted that this level would be 

exemplified by tasks that require students to relate the properties of two distinct figures 

such as “every square is a rectangle.” This recognition requires the connection of two 

representations— the visual representation of the rectangle and the visual representation 

of the square. Proofs in which the starting and ending points of the proof (e.g. Given that 

figure A is a square, prove that figure A is a rectangle) are provided to the student would 

be indicative of a task at this level according van Hiele’s generalization level. Proofs that 

require an original conjecture followed by a justification would rise to Level 3.  

In the aforementioned lowest-ever scoring AP free response stem 2007AB3 (see 

Appendix A-2) all four prompts would be classified as Level 2. In part a, students were 
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asked why there must be a value r between 1 and 3 such that the function and 

part b asks why there must be a value c between 1 and 3 such that . The 

requirement for an explanation in each of these prompts is distinguishing of level 2 

items. These tasks are not routine because the sought after solutions are words as 

opposed to a standard simple numerical response (e.g. the answer is ). Respectfully 

part A requires the Intermediate Value Theorem and part b requires the Mean Value 

Theorem. A student will have to begin with the numerical anchor (in the given table) and 

then translate the data within it into an appropriate verbal representation of the “why” 

solution. Before a student can proffer an explanation, he must examine the given 

numerical evidence, recall the theorems as the necessary tool, interpret the given 

conditions in terms of the theorem’s requirements, and finally verbalize the findings in 

an explanation of the connection between the given conditions and the applied theorem.  

 In part C of 2007AB3 students are presented with the definition of a new 

function in terms of an integral of a previously considered function, and asked to find the 

derivative of this function at the point  (see Appendix A-2). The first step of this 

task is to plug 3 into the equation, a level 0 task.  The next step is an application of the 

second fundamental theorem of calculus (FTC2) with which students should be familiar. 

The third step involves a representational transfer from algebraic to algebraic. What may 

be unfamiliar is at what point to input the 3.  In one aspect  is a constant and naively 

the derivative of a constant is 0. Though the function g(x) is not explicitly defined, it is a 

function with a non-zero derivative at . Algebraic simplification, substituting in 

values from the tables, and calculation follow before an answer of –2 is found. This task 
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is not a classic rote calculus application of a single concept. The implicit definition of 

the function (in terms of a table) is the complicating factor that differentiates this task 

from a Level 1 rote application. The fact that the vast majority of American calculus 

students had never practiced these calculus skills with a function defined by a table is the 

likely reason for the monumentally low score on this free response question. 

In part D of AB2007A#3 students were asked to find the equation for the tangent 

line for the inverse function defined point-wise in the question stem. Because the task 

asks for a tangent line equation, the student will recall that a point and a slope will be 

needed to input into the point slope formula (level 0). The procedure for determining the 

value of the derivative of the inverse is algorithmic (level 1). These two portions are 

time consuming but not cognitively complex. The next step, the determination of the 

point is less difficult than finding a derivative but more complex. This solution step takes 

recognition of the reverse nature of inverse functions. The fact that  implies 

 and  is the point needed for the equation of the tangent line. This 

backwards-thinking step is a pre-calculus one and the most complex aspect of all 4 

prompts.  

In review of the prompts, an appropriate solution to the fourth prompt requires a 

transfer from numeric representation to algebraic representation and a segment of 

knowledge from a prerequisite course that very likely was not explicitly covered in the 

recent past. The solution to the third prompt requires an algebraic to algebraic 

transformation keyed by an intricate application of a theorem. An appropriate solution to 

the first and second prompts requires verbalizations of recalled theoretical understanding 
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in terms of the given numeric data. This free response question invokes three major 

theorems— mean value, intermediate value, and the fundamental theorem, requires 

numerous Level 2 representational transfers, and calls for recall of non-trivial 

prerequisite knowledge. Proficient problem solving with such a combination of 

mitigating factors is exactly the goal of cognitive-based mathematics. Unfortunately 

students have traditionally failed to succeed with tasks of this type (Selden, Selden, 

Hauk, & Mason, 1999; 2000) and did not succeed with this free response item as the 

historically low average AP calculus score attests.  

Level 3: Synthesis   

 Non-Routine Tasks that require several representational connections and 

significant planning or development would be characterized as Level 3. This level is 

directly akin to Webb’s Level of extended thinking. Examples of tasks that might be 

characterized as Level 3 include the design of an experiment, the proof of a conjecture, 

or the connection of ideas across disciplines. This level is particularly situated towards 

collaboration among peers. Tasks of this type are characterized by unfamiliar 

circumstances. Distributed cognition efforts make verbal representations necessary, 

invoke the zone of proximal development, empower heightened levels of 

representational transfer, and allow a solution greater than the sum of its parts to emerge 

from a group.   

 This synthesis level aligns with van Hiele’s deduction level in which a geometry 

student could independently construct and understand a proof in terms of a sequential 

application of theorems and postulates. An original proof requires planning and 
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development indicative of this level. It is unlikely that such a proof would be completely 

without false starts and appropriate course correction.  A student would be able to make 

conjectures about interesting mathematics and work towards a resolution to his 

conjecture based on his understanding of the mathematics system. The student would be 

required to complete multiple representational transfers, constructing an interdependent 

sequence of logical statements corresponding to algebraic and graphical representations. 

The verbal mode of representation is particular pertinent as the medium through which a 

student constructs his proof.  

 Capraro and Slough (2009) cite an exemplar of a calculus project that would be 

classified as a Level 3 task. In the “Who Killed Bob Krusty?” exemplar, students are 

provided with an extended word problem, a Clue-inspired scenario in which a murderer 

must be discovered based on three sub-tasks. In the first, students must naively apply 

(level 1) a differential form of Newton’s kinematic laws. In the second, students must 

apply Newton’s law of cooling in a novel manner (level 2) to determine time of death. In 

the third, students must deduce (level 3) which suspects were viable based upon time of 

death, a given differential equation, and a table of physiological decay rates for various 

poisons.  Because the highest cognitive complexity contained within this task is level 3, 

the Bob Krusty problem is level 3.  

 Who Killed Bob Krusty has a simple solution; the solution required is an essay 

justification of reasoning.  The solution requires the transfer among numerical, algebraic, 

and verbal representations. Though graphical representations are not required it is 

possible a student might employ them. The solution requires students to connect a 
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problem that is more typical of a science classroom than mathematics. Students must 

connect reasoning from different disciplines and must synthesize three distinct clues 

discerned via calculus reasoning from the given verbal elucidation. There is no single 

path to a solution and this problem falls short of the final level requiring abstraction.  

Level 4: Abstraction 

 Because of the extended planning and time requirements, items of this 

complexity are infeasible on the AP calculus examination but are feasible in textbooks. 

One might attribute a lack of this complexity to the all-for-the-test mentality that 

pervades modern mathematics classrooms. Thornton (1998) noted that in geometry 

textbooks the dearth of tasks at this level corresponded to the lack of tasks of this 

complexity in the classroom. Classrooms lack complex tasks because books lack them. 

Books lack them because the AP test lacks them and student learning is sacrificed. The 

tail wags the dog and students, teachers, and textbook authors are locked in a vicious 

cycle of good enough to pass but nothing more.  

 Van Hiele posited an ultimate stage where students could abstract their 

understanding to an extent such that he or she could compare distinct axiomatic systems 

in the absence of a concrete model. Later in his career van Hiele recognized the “rigor” 

level is inconsequential to the secondary classroom experience (Pegg & Davey, 1998). 

This realm is reserved for the complexity and depth characteristic of graduate level, 

proof based mathematics. In comparison Webb’s DOK lacks a “rigor” or “abstraction” 

stage but as van Hiele realized such a level is impractical. 

 For example Andrew Wiles’ proof of Fermat’s Last theorem, perhaps history’s 
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best known unsolved mathematical problem, would be classified as a level 4 task. With a 

proof of more than 100 pages, one can only imagine the number of representational 

transfers Wiles’ solution encompasses. The solution requires immense mathematical 

creativity to connect a series of seemingly unrelated conjectures. The solution is 

definitely abstract and makes use of new abstract branches of mathematics (e.g. group 

theory) that do not have concrete models and had not yet been developed when the 

problem was formulated. 

For all practical purposes, this level will only characterize an extremely small 

number of tasks found in the high school curriculum. A problem of this level would not 

appear on the AP calculus test due to extreme time constraints. It is unlikely that any 

item of this level would appear in a mathematics textbook due to the inherent ambiguity 

of the solutions of such items. Due to the nature of these problems at this level, there are 

no short, neat solutions and they cannot be encapsulated in a solutions manual. Level 4 

tasks are open-ended and characterized by ambiguous solutions. These solutions could 

take multiple forms. Two absolutely correct solutions could be completely dissimilar, if 

a solution exists at all.  

 

The Instrument 

 Problem Solving proficiency has been the defining characteristic of mathematics 

knowledge. Schoenfeld (1985) defined the distinction between problems and exercises. 

That finding is mirrored in the differentiation of exercises as levels 0 or 1 and of 

problems as levels 2, 3, or 4. Selden et al. (2000) summarized the bulk of instructional 
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task research in textbooks by noting that the vast majority of tasks are excises not 

problems.  

 The van Hiele’s were interested in ways to develop insight, the ability to perform 

unfamiliar mathematical tasks (Hoffer, 1983). A student cannot solve the same problem 

twice. A solution to a problem must be original and unfamiliar. Novel insight is 

developed via understanding what, why, and when to apply knowledge in order to solve 

problems (Hoffer, 1983). The greatest naïve misconception of upper secondary 

mathematics is based in the “what—how” dichotomy. Students do not do poorly because 

they lack knowledge; too often teachers try to teach mathematics as a discrete catalog of 

skills. Students perform poorly because they lack the ability to apply their knowledge. 

The main goal of a mathematics teacher is to empower students to learn how to think not 

just what to think.  

 What remains is an instrument for the diagnostic analysis of instructional tasks. 

That instrument employs the cognitive complexity definitions as the basis of its 

indicators and is included as appendix C.  Each level is based in part of the theoretical 

foundations laid by van Hiele, Webb, and their adherents who have further explicated 

those theories. Because this instrument was created on the “shoulders of giants,” the 

dogmatic aspects of its predecessor theories are inherited by this model and allow the 

following principles to be established as representative of this effort. These principles 

when considered in combination with the discretely defined cognitive complexity levels 

allow a teacher or researcher to effectively analyze the potential of student learning 

through the instructional tasks found in calculus textbooks.  
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Principles 

Independence 

 Consider the calculus task . This problem can be solved by one of at 

least three algebraic methods: u-substitution, trig substitution, and partial fractions. It 

could be solved approximately with a graphical/numerical approach using Simpson’s 

Rule, the Trapezoid Rule, or Riemann sums. The choice of procedure is irrelevant to 

cognitive complexity. This task is a level 1 item; a task’s cognitive complexity is 

independent of approach used to solve it. In this case, a u-substitution approach is rather 

straightforward. The partial fraction approach is a bit more algebraically dense and the 

trig substitution is more daunting still. In effect the approaches require prerequisite 

procedural skills from Algebra I, Algebra II, and pre-calculus respectively. The choice of 

tool will change the difficulty of the item, however the length of time or amount of effort 

required does not affect the complexity of the item. The cognitive hurdles one must 

overcome to find a solution only affect the complexity.  

Relativism  

 Because a student cannot ever solve the same problem twice (Selden et al., 

2000), the cognitive complexity of an instructional task is relative to the student.  The 

aforementioned integral would be classified at one level for a calculus student because 

he has had the prerequisite precalculus course and at a higher level for an algebra II 

student. Partial fractions, u-substitution, and trig substitution would not be known to an 

Algebra I student. He has not yet “discovered” or “learned” that content. To solve the 
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integral, a calculus student would have to choose his tool from a cognitive toolbox. An 

Algebra I student would be required to develop those tools before he could attempt to 

solve the task. Because impromptu learning is required for the Algebra student, the task 

would be classified at a higher level than it would be for a calculus student.  

Parsimony  

 The graphical/numerical approach to a solution would require applying a 

geometric algorithm to a graph of the integral’s function argument and then translating 

that approach into a calculation.  A researcher might be tempted to code this item as 

Level 2 because it could require a translation from a graphical representation to an 

algebraic one. However, each item must be coded according to the cognitive steps that 

must be used. Students, teachers, and textbooks prefer the most common (i.e. most 

direct) route to a solution. It is this most common cognitive requirement that determines 

the cognitive complexity.  

Inheritance  

 A mathematical task of a given level will encompass all levels that come before 

it in the model. That is, level 2 tasks will inevitably include sub-steps, which are level 0 

and level 1. Every mathematical task will unavoidably involve some recall step; good 

mathematical tasks are grounded in basics that are established and well known to the 

student.  

Completeness 

This model of cognitive complexity is complete; every mathematical task can be 

classified at some level on the continuum.  Both the most elementary counting task 
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learned by toddlers and the most complex unsolved problems that baffle the smartest of 

mathematicians can be classified.  

Reducibility 

 A task is cognitively leveled based on students’ thinking. The context of the 

statement of the task can undercut the intended cognitive complexity of that task. 

2007AB3a asked “why there must be a value r between 1 and 3 such that the function 

h(r)=-5” and was classified as level II. However if the question were rewritten “Using 

the intermediate value theorem, why must there be a value r between 1 and 3 such that 

the function h(r)=-5” it would be a level I task. The inclusion of the introductory phrase 

prescribing the solution route removes the cognitive step of choosing a mathematical 

tool and hence reduces the cognitive complexity of the item to application.   

 

Implications for Teaching and Research  

 Previously I taught mathematics at a large public high school in an affluent 

suburb of Houston, Texas.  Cindy is a veteran teacher of twenty years and my 

department head. Each year her principle concerns are students’ passing the April 

administration of the mathematics portion of the Texas Assessment of Knowledge and 

Skills (TAKS). At a February department meeting Cindy expressed frustration with our 

planning for last minute TAKS preparation, a series of pull-outs and mandated tutorials 

covering troublesome topics from the full scale TAKS practice test the entire school took 

in January. In the course of this meeting Cindy was upset by the endless cycle of 

reteaching, in particular that of slope. She acknowledged that the 11th grade students 
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“had been taught slope 5 or 6 times and they knew it for the test but still can’t do it on 

TAKS”. We were going to try to teach it to them one more time.  

 Cindy’s posture and affective state did not suggest any confidence in possible 

success of our eleventh hour efforts. She was resigned to failure once more and was 

clueless as to what we could do differently to affect a better outcome. We are going to 

try to teach them a 6th or 7th time because maybe this time it will stick or if not at least 

they might forget right after the TAKS test. They may not actually learn the material but 

hopefully our school will earn the ballyhooed Texas Education Agency Exemplary 

rating. 

 The cognitive complexity diagnostic instrument developed in this article is the 

tool that every school needs. It is this tool that can provide teachers with a pedagogical 

road map to successful student learning. The basis of this instrument (particularly within 

a geometry context) has been available to teachers for decades but van Hiele is nowhere 

to be found in my suburban Houston high school. Our teachers ascribe to an old 

fashioned rugged individualistic and blind pedagogy. Just as in so many other schools, 

my school idiot proofs its curriculum. We follow the textbook for better or worse. 

Whatever happens we trust the mathematics authority of the textbook. Ron Larson may 

have failed us the first six times, but we continue to trust him year after year to guide our 

students’ learning experience.  

 Five years ago I taught an honors geometry section using Larson’s geometry and 

my students struggled mightily with proofs. In the book the author presents tasks in 

which students are asked to recall theorems and postulates (level 0) and then fewer tasks 
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in which they are interpret this properties in very specific contexts (level 1). The author 

asks the students to complete proofs in which students logically traverse from one 

statement through 3, 4, or 5 intermediary steps to another (level 3). My students could do 

level 0 and level 1 tasks but could not do level 3 tasks. I recognized the missing level 2 

and recalled the continuous nature of progression through the levels. My students could 

not be successful at level 3 tasks without first being successful at level 2 tasks.  

 In this circumstance, the van Hiele model provided me with a prescription for 

intervention. I printed out 10 proofs (even more challenging than those offered by the 

textbook’s authors), cut the statements out without any numbering, and required my 

students to work in groups to reconstruct the proof. In effect what I did was I took level 

3 tasks and made them level 2 tasks. I asked my students to relate properties and figures 

because the textbook had failed to consider this level. I encouraged my students to make 

the level 2 connections first so that they could ascend to the level 3 connections later.  

 My geometry textbook was undercutting my students’ learning. Without a van 

Hiele inspired intervention, I suspect my students learning would have been significantly 

retarded. It is my best guess that the multiple unsuccessful attempts to teach slope 

alluded to by my department head are directly attributable to textbooks that are not 

properly aligned to the best cognitive practices known to research. The van Hiele model 

allowed me to help my student cross the necessary cognitive bridge. This instrument 

elucidated by this article promises to do the same for other teachers and their students. 

 Although the geometry context for cognitive complexity has been the most fully 

explicated, there remains a dearth of research on the cognitive complexity of the 
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textbook learning associated with other courses antecedent to calculus. In particular 

Algebra is rife with need for complexity analysis. This research has filled part of the gap 

with respect to calculus but still our education system is in desperate need of a large-

scale textbook analysis effort for geometry, algebra II, precalculus, and calculus.  

 We can use a stage metaphor to highlight the inherent curricular issues in 

classrooms. The student is akin to an actor, the textbook to the script and the teacher to 

the director. It is expected that the curriculum will be rehearsed by student-actors as 

directed by their teacher-director to be later performed on a test. The script consists of 

the catalog of exercises-lines a student is expected to master-perform. For fear of not 

meeting standardized expectations the administrator-producers cannot allow deviations 

from the script.  

The only way in which our classrooms can improve is through thoughtful 

textbook refinements. This cognitive complexity diagnostic instrument is the tool we 

need to begin the process through which we can attempt to break the textbooks’ firm 

entanglement with stale, sterile, and unyielding curricula. It is naïve to believe we can 

break the textbooks’ hold on our curricula. Maybe this instrument is the tool we need to 

align our textbooks with challenging, multi-representational tasks indicative of modern, 

enlightened, cognitively guided mathematics learning.  
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CHAPTER IV     

THEY MUST BE MEDIOCRE: A COGNITIVE ANALYSIS OF POPULAR 

SECONDARY CALCULUS TEXTBOOKS 

 
Walter Rudin, the author of the compact 325-page classic text Principles of 

Mathematical Analysis asserted, “Widely used calculus books must be mediocre” (1997, 

p. 113). I used “Baby Rudin,” as it is affectionately known, for grad school and analysis 

class and remember the work for its brevity, succinctness, and raw power. It is the tool 

that thousands of young mathematicians have used for the last half-century.  

This research began on a spring day in 2007 when my calculus students took the 

Advanced Placement (AP) Calculus AB test. After the test my students spoke of a free 

response item that was “impossible.” Little did I know at the time, but that particular 

problem was more impossible than any AP Calculus AB Free Response had ever been. 

College Board, the maker of the AP test has released scoring data on every one of its 

free response items since 2002. In more than at decade of problems, more than 60 in 

total, no other item has yielded a lower national mean score of 0.96 out of 9 (College 

Board).  

More than 211,000 students sat for the AP Calculus AB test in 2007. Calculus 

students in America have different backgrounds, schools, teachers, and technology. The 

textbooks that they share are their one pedagogical commonality. A handful of textbooks 

dominate the market and implicitly dictate not only what students learn but also more 

importantly how they learn. Without an in-depth analytic review of calculus textbooks, 
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we cannot know whether those books are likely to help students learn what they need to 

learn (McNeely, 1997). 

 This article is the culmination of my action research to explain why this 

particular problem was so egregious. This article is framed by a statistical curiosity on 

the AP Calculus AB Exam and the indubitable truth of the importance of representation 

in learning calculus. It was shaped by the fundamental and elusive role of the mean 

value theorem, and explores the role of textbooks as the most impactful curriculum 

influence in secondary AP Calculus classes across the nation. It is a quest to find a 

prescription that might condition a better higher secondary mathematics curriculum 

future. 

 
Literature Review 

The transition from high school to college mathematics (a role which calculus now 

occupies) is a most critical juncture in the preparation of individuals to meet the 

mathematical demands for STEM fields for the 21st century (Bressoud, 2009).  

Although, it is claimed that reform efforts have moved calculus from a course of 

meaningless symbolic manipulation to a “lean and lively” course which, through 

multiple contexts, affords its students the opportunity answer to why questions (Ferrini-

Munday & Graham, 1991) ill reports of student learning persists (St. Jarre, 2008; Selden, 

Selden, Hauk, & Mason, 1999; 2000).  Previous research studying student results on the 

annual Advanced Placement (AP) Calculus examination (Romero1, 2012) found patterns 
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of student difficulties with problems anchored with numerical representations or 

targeting responses with verbal representations. 

In Foundations for Success, the US department of Education (2008) stated “the 

system that translates mathematical knowledge into value and ability for the next 

generation is broken and must be fixed” (p. 11).  An improvement in our system of 

education requires an improvement in our textbooks (Crawford & Snider, 2000; Kulm, 

2001; Schmidt, 1996). Current textbooks are often divorced from research-supported 

best practices and are instead a reflection of the antiquated pedagogy that is all too 

comfortable to entrenched educators and promulgated by profit-seeking publishers 

(Battista & Clements, 2000; Schwartz, 2006). To understand the impact of school 

mathematics, research must consider the curriculum that is enacted via textbook tasks 

(Smith & Star, 2007). Textbooks are the most common element across American 

classrooms and are de facto national standards (Schmidt, McKnight, & Raizen, 1997) for 

the providence of mathematical instructional tasks. Textbooks are the fossil records of 

American pedagogy (Capraro, Yetkiner, Ozel, Capraro, Ye, & Kim, 2009). Teachers 

decide what to teach, how to teach it, and assign instructional practice based largely on 

what is contained in the textbook (Reys, Reys, Tarr, & Chavez, 2006). 

 The question of what is expected from good mathematics textbooks has been one 

of the most contentious questions of decades past. In its Principles and Standards (1989, 

2000) the National Council of Teachers of Mathematics (NCTM) tells us that “students 

must learn mathematics with understanding” and become “…flexible and resourceful” 

problem solvers by engaging in complex mathematical tasks. Mathematical power is not 
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mechanical proficiency or general conceptual understanding or test taking success. The 

functional unit of mathematical power is cognitive proficiency demonstrated through 

problem solving facilitated by creative critical thinking. There is a correlation between 

higher level questioning and increased student achievement (Lampert & Cobb, 2003). 

 Cognitive theories of learning hold that knowledge is constructed and such 

construction is facilitated by social contexts. Challenge is the keystone and was the 

essence of Cobb’s (1988) call for teachers to affect a dialectical learning environment 

which can allow students to transcend the basic stage of understanding and move 

towards the more encompassing metacognitive stage, a revision of the Pigetian notion of 

reflective abstraction (Pandiscio & Orton, 1998). 

 It was Vygotsky’s work, introduced to the U.S. during the 1960’s, that leads us to 

the realization that all higher order cognitive skills originate in and develop via the 

internalization of individuals’ interactions with one another (Hung & Chen, 2001; 

Vygotsky & Kozulin, 1986). A challenging question requires equivalent dissonant 

representations of a mathematical situation. That dissonant situation, in turn, is the 

precursor to the struggle to solve a problem, which is abated by the social negotiation 

inherent in problem solving pedagogy. It is the challenging question that leads to 

dissonant representations that are reconciled via communicative struggle among peers 

that maximizes a student’s opportunity to internally construct mathematical 

understanding and authentically learn (Goldin & Shteingold, 2001).  

 The basic dichotomy between problems and exercises is inherently predictive of 

the potential of mathematical tasks to promote good learning (Schoenfeld, 1985). No 
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person would find the task of lifting a 200-pound suitcase complex. Everyone knows 

how to lift a suitcase. This task is a cognitive “exercise” because it is commonly 

understood how to lift a suitcase no matter how arduous it might be for a person who is 

not physically strong (Webb, 1997). Conversely, a task such as finding the set of 

possible integer angles in any triangle with integer side lengths is not particularly 

difficult. It is complex. Brute force  might work for the suitcase but guessing and 

checking for triangle task would be intractably difficult.  For a smart problem solver, 

however, the solution is quick if he recognizes that the law of cosines (Scher & 

Goldenberg, 2001) is an appropriate cognitive tool and can intuit that 60 degrees, 120 

degrees, and 90 degrees are the only integer angles whose cosines are rational (either ½ 

or 1).  Almost every student can learn by finding a solution to an unfamiliar problem 

(Selden, Selden, Hauk & Mason, 1999; 2000).  Almost no student will learn by 

completing a mundane task.  

 In 1957, Dina and Pierre van Hiele elucidated a five-stage model of cognitive 

understanding applicable specifically to geometry. Therefore, cognitive models should 

serve as the foundation to inform our understanding of student development and as a 

likely beginning for examining the effectiveness of our textbooks in fostering student 

learning. For instance, Hoffer (1983) noted the tendency of traditional geometry texts to 

begin at van Hiele level 4, ignoring the natural scaffold process to deduction. In Criteria 

for Alignment (1997), Norman Webb elucidated a depth of knowledge (DOK) scale for 

evaluating mathematics assessment items. Whereas,the van Hiele model was intended as 

a developmental model directly applicable to a specific student, the DOK scale was 
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intended as a diagnostic tool applicable to mathematical tasks approachable by some 

hypothetical student.  

 Staging theories of cognitive development, such as Bloom’s Taxonomy, are 

directly antecedent to staging theories of learning, such as van Hiele’s, which by 

extension provide a basis on which complexity analysis, such as Webb’s, can be adapted 

(Webb, 2007) via the problem solving theories of Schoenfeld to analyze mathematics 

textbook tasks.  A new model, complete with indicators, was developed (Romero2, 

2012). This model provides a single conceptual framework elucidated in terms of 

calculus examples. A graphical depiction of the model is provided in Appendix C.  

 Previous studies have focused on lower secondary textbooks and found none to 

be high quality (Roseman, Kulm, & Shuttleworth, 2001; Capraro & Kulm, 2008) while 

others (e.g. Battista & Clements, 2000) suggest that current commercial textbooks are 

doing more harm than good, there have been no studies on Calculus textbooks. The 

College Board, the company that creates the AP Calculus test, provides a list of 21 

“example” textbooks (College Board) that “meet the curricular requirements” but 

disclaims the list as, “not exhaustive and the texts listed should not be regarded as 

endorsed, authorized, recommended, or approved by the College Board.” Without a 

calculus textbook review, we cannot know whether its material will help students learn 

as expected (Mullis, 1996). 

 A central tenet of AP Calculus (College Board, 2012) is that the curriculum 

should ubiquitously embrace a multiplicity of representation; each concept should be 

presented: numerically, graphically, verbally, and algebraically. This policy is a 
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reflection of the underlying principle of the calculus reform movement (Stanley, 2002) 

and recognition of the indisputable truth that the ability to translate between 

representations is the essence of individual mathematical power (Goldin, 2003). 

Previous research (Romero1, 2012) found patterns connecting representations and 

student performance on historically low-scoring AP calculus free response items. 

Specifically students underperformed on free response items featuring numerical stems 

or requiring verbal responses. Conversely students performed better on questions with 

algebraic and graphical stems. Obviously, there is a question as to whether the textbook 

enactments meet the expectations tested on the AP exam. That is, the intended 

curriculum may not align the textbooks’ diversity of representation.  

 Understanding mathematics is not what it used to be.  The learning demands on 

our students are great and our textbooks must meet the challenge of empowering not 

only the math students but also the math teacher of the 21st century (Usiskin, 1997).  The 

viability of the problem solving content of calculus textbooks is paramount to the issue 

of whether students will be able to succeed. A teacher may be doing an excellent job of 

teaching problem solving inside his classroom, but if practice tasks available in his book 

are insufficient or inadequate, his students will likely be unable to reify the higher order 

problem solving skills required by the AP curriculum. Without problems of an 

appropriate cognitive complexity or a presentation consistent with modern understanding 

of how students think and learn, it may be impossible for a good teacher to effectively 

teach a calculus student in the 21st century.   
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Research Questions 

 Although various issues regarding student learning in calculus (Aspinwall & 

Shaw, 2002; Hughes-Hallett, 2006; Selden, Selden, Hauk, & Mason, 1999; 2000; Tall, 

1997) and issues regarding textbook content (Caparo, Yetkiner, Ozel, Capraro, Ye, & 

Kim, 2009; Ginsburg, Leinwand, Anstrom, & Pollock, 2005; Kajander & Lovric, 2009; 

Kulm & Caparo, 2008; Mullis, 1996) have been explored over the years, there is no 

extant research concerning the role of textbooks in calculus learning. Using a previously 

developed instrument (Romero2, 2012) this study investigated the following: Does the 

cognitive complexity in common calculus textbooks align with the complexity expected 

by the AP curriculum? Is the multi-representational vision of the AP Calculus 

curriculum manifest in textbooks?   

 

Method 

 The subjects of this study were the mathematical tasks of best selling 

commercially produced AP calculus textbooks. From AP calculus AB textbook list 

(College Board), the eight best selling textbooks (see Table 5) were selected. To 

determine the best selling textbooks Amazon’s sales rank number was used; the higher 

the rank, the more popular the book. It should be noted that in some cases, the College 

Board included multiple versions of texts by a given author in its list. Because authors 

offer multiple synoptic editions of their textbooks with subtle differences, this study only 

considered one book per author team regardless of Amazon’s ranking. 



 

70 
 

 

From each textbook, a sample of two lessons, covering the concepts of mean 

value theorem and average value of a function, were selected. These two lesson topics 

were chosen because they were the chief conceptual subject matter of the historically 

low scoring AP Calculus AB Free Response Item (Romero1, 2012) that inspired this 

study.  

After the index of each of the 8-subject textbooks was searched for “Mean Value 

Theorem” and “Average Value,” the appropriate page numbers were noted. From these 

pages the sections (see Table 6) in which these two concepts were first developed was 

noted.  Prior to the coding of the tasks from any textbook lesson, all AP Calculus AB 

free response items since 2002 with available summary statistics, were coded using the 

Cognitive Complexity model (see Appendix C) previously developed (Romero2, 2012). 

These data served as a control for comparisons after the coding of the 15 of the 16 

textbook lessons. Thomas’ text did not cover Average Value.  

 

Table 5   Sample Textbooks by Amazon Sales Rank 
 

First  
Author 

Abbreviation 
 

Amazon  
Ranking # 

Publisher Edition; 
Year 

Larson LA 28,727 Houghton Mifflin 8; 2006 
Rogawski RO 30,726 W.H. Freeman 1; 2008 
Stewart ST 43,888 Brooks/Cole 3; 2005 
Finney FI 46,583 Pearson 3; 2007 
Anton AN 52,092 John Wiley 8; 2005 

Thomas TH 68,598 Addison Welsey 11; 2007 
Foerster FO 106,814 Key Curriculum 2; 2005 

Hughes-Hallett HH 128,456 John Wiley 4; 2005 
 



 

71 
 

 

Every mathematical task solution opportunity offered to students within each of 

the 15 lessons was coded using the Cognitive Complexity model.. A previous study 

(Romero1, 2012) found that all AP Calculus Free Response Items were word problems 

(i.e. they were characterized by a verbal anchor). Because of this fact, all textbook tasks 

not including a verbal anchor were not considered further. For each task with a verbal 

anchor (i.e. word problem), alternate anchor representations, required output 

representations and cognitive complexity were noted.  All coded data were compiled into 

summary tables (see Tables 7 & 8) for comparison and contrast.   

 In instances where a given item asked more than one question, the question with 

the highest complexity requirement dictated the complexity for the whole item. In 

instances in which multiple representational inputs or outputs were encompassed, 

multiple representations were noted on the coding documents. Therefore, while the total 

number of items in the complexity column summed to the total number of items, it was 

possible for the total in the representation columns to not equal the total number of 

items. Additionally, some tasks had no representational anchor beyond the verbal 

representation inherent in word problems.  

 Validity for this quantitative analysis was based on the work of Webb (1997, 

1999, 2007) whose Depth of Knowledge inventory was antecedent to the Cognitive 

Complexity Model (Romero2, 2012). Because this research was an individual effort, 

inter-rater reliability was not a concern. However, intra-rater reliability, with respect to 

consistency of the single rater, was considered and steps were taken to minimize rater 

drift over the duration of the coding process. After coding all the lessons from the 8 
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textbooks, the first one-third of the lessons was recoded to control rater drift and a 

dependability of 96% was established.  

 

Table 6   Sample Lessons 
 

Section Lesson Book Section Title Numbered 
Items Page 

3.10 MVT HH Theorems about Differentiable 
Functions 28 155 

4.3 MVT ST Derivatives and the Shapes of 
Curves 58 279 

4.3 MVT RO The Mean Value Theorem and 
Monotonicity 71 230 

4.2 MVT FI The Mean Value Theorem 63 196 

5.7 MVT AN Rolle’s Theorem; Mean Value 
Theorem 43 330 

3.2 MVT LA Rolle’s Theorem and the Mean 
Value Theorem 85 174 

5.5 MVT FO Mean Value Theorem and Rolle’s 
Theorem 41 211 

4.2 MVT TH The Mean Value Theorem 68 277 

5.3 AVF HH Fundamental Theorem and 
Interpretations 37 259 

6.4 AVF ST Average Value of a Function 20 467 

6.6 AVF RO Setting up Integrals: Volume, 
Density, Average Value 60* 387 

5.3 AVF FI Definite Integrals and Anti-
Derivatives 53 287 

7.6 AVF AN Average Value of a Function and 
its applications 32 476 

4.4 AVF LA Fundamental Theorem of Calculus 106 286 

10.3 AVF FO Average Value Problems in 
Motion and Elsewhere 20 509 

 

 

 Following the aggregation into metacategories of the textbook and AP Test tasks, 

post hoc internal reconciliation yielded a series of reflections regarding the comparison 
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of textbook tasks with AP test tasks. The Quantitative results of this study were 

legitimized with a qualitative assessment (Johnson & Onwuegbuzie, 2004). A selection 

of 16 textbook tasks and 12 AP test tasks (see Appendix A) were chosen to demonstrate 

how textbook tasks demonstrated significant cognitive discrepancies in comparison to 

the test items.  

 

Results 

 The composite results of the analysis of representation and cognitive complexity 

in the sample of free response items found in the most popular calculus textbooks was 

given in Tables 3 and 4, respectively. This study considered a total of 555 mathematical 

textbook task prompts sampled from sections on mean value theorem and average value 

of a function and contrasted the contexts and expectations of those prompts with 226 

prompts found on the AB Calculus AB test from 2002 through 2012. One important side 

note was that textbook tasks without a verbal anchor were not considered. Thus this 

study ignored the “drill and kill” exercises that were not assessed on the AP Calculus 

Test.  

Representations 

 Some of the lowest scoring tasks from the AP Calculus AB test over the past 10 

years centered about numerical anchors (i.e. tables of values). These low scores 

nationally can undoubtedly be attributed to the lack of numerically anchored tasks in 

calculus textbooks. Whereas, more than 20% of AP Calculus prompts were anchored by 

a table, 5 of the 8 textbooks considered in this study featured less than 2% of its tasks 
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anchored by tables. Given that teachers choose which tasks to assign, it was likely that 

many students had never seen a task with a numerical anchor invoking the mean value 

theorem before the test.  Likewise there was an underrepresentation of graphical anchors 

and verbal targets. More than 39% of AP Calculus prompts were anchored with 

graphical representations while less than 25% of textbook tasks were. More than 29% of 

AP Calculus tasks required an explanation or the answer to some why question. Less 

than 20% of textbook tasks offered a similar requirement.  

The sample textbooks included too few opportunities for students to develop 

understanding of calculus concepts through interpretation of graphical and numerical 

anchors. The books also included too few opportunities for student to answer the “why” 

questions and further develop understanding through verbalization. Based upon the 

results, secondary calculus textbooks lack the diversity of representational anchors found 

on the AP test. It must be concluded that the textbooks do not adequately realize the AP 

Calculus curriculum’s rule of four (College Board, 2012). 

Cognitive Complexity  

 On the 2007 AP Test Free Response Item #3 (College Board, 2012), students 

were twice required to demonstrate verbally their understanding of the application of the 

mean value theorem and the intermediate value theorem, respectively. Each instance was 

worth 2 points. These prompts would fall on Level 2, “Interpret” on the Cognitive 

Complexity model previously elucidated (Romero2, 2012). The remaining 5 points out 

of the 9 total points were allocated to level 1 “application” tasks involving an integral 

defined function and the inverse function of one of the given functions.  
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 Textbooks included more solicitations for Level 0 or “Recall” tasks (10.7% to 

3.1%) while the AP Calculus test included more requests (1.8%) for Level 3 or 

“Synthesis” tasks (0.1%). This study’s results showed that the majority of tasks from 

both the sampled textbooks and the AP tests fell within the “application” or Level 1 

regime of the cognitive complexity model, with the textbooks offering more coverage of 

application tasks (68.3% versus 62.8%) than the AP Calculus Test. This level was 

characterized by tasks requiring application of rote procedures typically explicated in the 

pages immediately preceding the tasks in the textbooks.  

 

Table 7   Textbook Representational Summary in Alpha Order 
 

Source Word 
Probs 

Algebraic 
Anchor 

Graphical 
Anchor 

Numeric 
Anchor 

Double 
Anchor 

Verbal 
Target 

Anton 86 64 
(74.4%) 

5 
(5.9%) 

1 
(1.2%) 

2 
(2.3%) 

15 
(17.4%) 

Finney 39 25 
(64.1%) 

0 
(0.0%) 

7 
(18.0%) 

0 
(0.0%) 

2 
(5.1%) 

Forester 52 37 
(71.2%) 

26 
(50.0%) 

1 
(1.9%) 

22 
(42.3%) 

23 
(17.9%) 

Hughes-
Hallet 85 49 

(57.7%) 
30 

(35.3%) 
6 

(7.1%) 
0 

(0.0%) 
34 

(40.0%) 

Larson 114 66  
(59.7%) 

39 
(34.2%) 

7 
(6.1%) 

4 
(3.5%) 

18 
(15.8%) 

Rogawski 99 54 
(54.5%) 

29 
(29.3%) 

2 
(2.0%) 

1 
(1.0%) 

6 
(6.0%) 

Stewart 51 31 
(60.8%) 

8 
(15.7%) 

1 
(2.0%) 

0 
(0.0%) 

5 
(9.8%) 

Thomas  28 20 
(71.1%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

5 
(19.5%) 

Textbook 
Totals 555 346 

(62.5%) 
137 

(24.7%) 
25 

(4.5%) 
29 

(5.3%) 
108 

(19.5%) 
AP Calculus 

AB 226 147 
(65.0%) 

89 
(39.4%) 

47 
(20.8%) 

56 
(24.8%) 

66 
(29.2%) 
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 With both the textbooks and the AP tests, the next most popular cognitive 

complexity was the Interpretation level. This level is characterized by tasks in which a 

student is required to adapt direct knowledge of calculus concepts into some unfamiliar 

context. That is, students have to decide which cognitive tool to select to attack a given 

problem. The uncertainty in the selection of the proper tool is the defining characteristic 

of the Interpretation level. 

 

Table 8   Textbook Cognitive Complexity Summary in Alpha Order 
 

Source Word Problems Level 0 
Recall 

Level 1 
Apply 

Level 2 
Interpret 

Level 3 
Synthesize 

Anton 86 0 
(0.0%) 

68 
(79.1%) 

18 
(20.9%) 

0 
(0.0%) 

Finney 39 0 
(0.0%) 

21 
(53.9%) 

18 
(46.2%) 

0 
(0.0%) 

Forester 52 5 
(9.6%) 

21 
(40.4%) 

18 
(34.6%) 

3 
(5.8%) 

Hughes-Hallet 85 0 
(0.0%) 

63 
(74.1%) 

22 
(25.9%) 

0 
(0.0%) 

Larson 114 2  
(1.8%) 

79 
(69.3%) 

33 
(29.0%) 

0 
(0.0%) 

Rogawski 99 3 
(0.03%) 

79 
(80.0%) 

9 
(9.1%) 

0 
(0.0%) 

Stewart 51 4 
(8.0%) 

31 
(61.0%) 

12 
(23.5%) 

0 
(0.0%) 

Thomas 28 3 
(10.7%) 

17 
(60.7%) 

6 
(21.4%) 

0 
(0.0%) 

Textbook 
Totals 555 17 

(3.1%) 
379 

(68.3%) 
136 

(24.5%) 
3 

(0.01%) 
AP Calculus 

AB 226 0 
(0.0%) 

142 
(62.8%) 

83 
(36.7%) 

4 
(1.8%) 
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There was, roughly, a twelve-percentage point differential between the Level 2 

tasks in the textbooks and on the AP test (24.5% versus 36.7%). Phrases like “explain 

your reasoning” and “justify your answer” were far more common on the AP test than 

they were in textbooks.  This corresponds to the roughly 10% dichotomy between the 

percentage of solicitations for verbal anchors between textbooks and the tests (19.5% 

versus 29.2%).    

The cognitive complexities of calculus textbook tasks do not align with that of 

the AP Test. Whereas 24.5% of textbook tasks are of higher order (Level 2 or Level 3), 

38.5% of AP tasks were classified as higher order. This is a particularly troubling result 

with respect to the context of the textbook tasks. Because textbook tasks are located 

following a section discussing certain concepts, there is a huge implicit hint that the 

solution to the tasks must somehow invoke the recently covered material. In effect the 

cognitive complexities of textbook tasks are attenuated by the organization of the 

textbook. This is not the case on the AP Test. The dichotomy between the complexities 

of the test and the textbook is actually greater than these numbers indicate.  

Qualitative Legitimization 

 Free Response Item 2007AB3 remains the lowest scoring (0.96 out of 9 possible 

points) item since 2002 when statistics (College Board, 2012) were available. This item 

(see Appendix A-2) was framed about a numerical table and included 4 points (College 

Board, 2012) assigned to analysis and conclusion following an “explain your reasoning “ 

prompt. Specifically these two prompts required the invocation of the Intermediate 

Value Theorem and Mean Value Theorem, respectively.  
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 Free Response Item 2008AB2 was remarkably similar to #3 from 2007. It too 

used a numerical table as a stem and it required students to provide analysis and 

conclusion in response to a “why” question. Unlike the problem from 2007, however, 

the 2008 problem only allocated 2 points to this type of Level 2 item. The mean score 

from 2008 was 3.36. For two very similar problems in setup there was a difference in 

mean score of 2.4 points.  

 Two points of the differential between the scores between 2007 and 2008 is 

directly attributable to a lower cognitive complexity required. On the AP test, the 

difference between the lowest score ever and a mediocre but respectable score is the 

lessening of cognitive complexity. Perhaps if textbooks would raise the cognitive 

complexity of its items, the score change could be found in a positive direction. 

 Explicit Cognitive Attenuation  

 Based upon 2007 and 2008 results, it is perhaps unsurprising that AP Test 

creators would shy away from Mean Value Theorem problems. There was no hint of the 

MVT on the free response questions from either 2009 or 2010, though in 2011 one does 

appear. Like 2008, the writers relegate the concept to only 2 points (not 4) but this time 

they go a step further to make the item more accessible. One portion of the 2011 AP 

Calculus AB #4 problem reads,  

D. Find the average rate of change of  on the interval . There 

is no point , , for which  is equal to the average rate of 

change. Explain why this statement does not contradict the Mean Value 

Theorem.  (College Board, 2012) 
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The “why” question is now couched explicitly in terms of the MVT. The author could 

have asked a different question without giving away the fact that the item was designed 

for the student to invoke MVT. Instead, there can be no question what cognitive tool a 

student is supposed to use. The test creators are no longer asking for a Level 2 

“interpretation” of the task. Instead they are asking for a Level 0 “recall” of what the 

MVT is, followed by a Level 1 “application” of the theorem to the given context. 

Despite the extra hint, the national mean (2.44 out of 9) was actually lower than 2008.  

 The use of phraseology to lower cognitive complexity is a common technique 

applied by mathematical problem creators to decrease the “difficulty” for students and 

increase scores. Though this technique is not as common on the AP test, it is very 

common in textbooks. In fact, it is the most discernable commonality of the textbook 

tasks. Sample tasks 1 through 8 (see Appendix B) are taken from each of the sample 

textbooks. In each task a phrase of the form “Use X to show Y” appears. In each case, 

the author takes a task from the level 2 “interpretation” realm and relegates it to a level 1 

“application” realm.  

 In effect the author provides a specific cognitive road map for the student to find 

a solution. There is no need for a student to think about how to solve the problem. The 

author has given away a solution method. Each task like these is a missed opportunity by 

the author to empower the student to develop understanding. Why not remove from the 

textbook all phrases of the form “Use X to show Y” and include them in a teacher 

ancillary? In that case at least a teacher could decide if a student needed the cognitive 
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assist, rather than giving it to everyone.  Many students may not need the hint but all 

students are given the same cognitive crutch.  

Global Conceptualization  

 In addition to the explicit cognitive attenuation provided by hint or design, as 

previously noted that, by the very nature of textbook organization into discrete sections 

focused on specific concepts, there was an implicit cognitive attenuation of textbook 

tasks. Both the 2007 AP problem and the 2011 AP problem invoke the intermediate 

value theorem in parallel to the mean value theorem. This parallelism was natural 

because the theorems are virtually identical conceptually; the former distinguishes a 

property for a continuous function while the latter considers the same property of the 

continuous function’s derivative.  

 Despite this natural connection, none of the sample textbooks invoke the 

intermediate value theorem in the mean value theorem section. None of the textbooks 

ask the students to distinguish between the two very similar theorems in any of the 

presented tasks. The students’ thinking is guided by the pattern of implicit cognitive 

attenuation. They do not consider concepts outside of the section’s cookbook. Is it any 

surprise that students struggle when asked to apply global understanding to new 

situations? This study found no evidence that textbooks deviated from the worn path. 

Perhaps this explains why a score of 3.36 out of 9 is considered a mediocre score rather 

than a poor one in the context of the AP calculus test?  
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Juxtaposition of Representations 

 Explaining the lower score from the 2011 free response item compared with the 

2008 item is challenging in part because the two problems differ in anchor 

representation. The 2011 item is a graphical representation anchored problem while a 

table anchors the 2008 item. What is common among the 2008 and 2011 AP items (and 

also the 2007 item) is a juxtaposition of representational anchors. In each of the three 

items, students are asked to answer questions through interpretation of multiple 

representations. All three provide algebraic representations in some aspect in addition to 

the frame representation, graphical (2011) or numeric (2007 and 2008).  

 This mixing and matching of representations is the essence of mathematical 

versatility; it is exactly what the College Board has in mind when it advocates for a rule 

of four. Students should be able to effortlessly interpret between and among diverse 

representations of the same scenario. By its design each year’s AP Calculus Assessment 

includes only 6 free response questions, typically each with 3-4 prompts framed by some 

common representational anchor. Because of brevity of the opportunity to assess 

students, it was imperative that test designers assess collaborative (rather than discrete) 

representational understanding.  

 Calculus textbooks do not have the same issues with brevity. This research found 

555 word problems in 15 sections of our 8 sampled textbooks. This is an average of 37 

prompts per lesson. These prompts do not include any prompts without a verbal anchor. 

That is, this number does not include any of the rote exercises that traditionally 

characterize mathematics homework. The Larson text alone offered an additional 80 rote 
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exercises. As one might expect this research also found an extreme lack of compound 

representational anchors among textbook tasks. In total, less than 6% of all textbook 

tasks were set around a compound representational anchor while almost 25% of AP 

prompts were. In fact, the textbook number is misleading; almost 76% of all doubly 

anchored textbook tasks came from the Foerster book. Excluding the Forester book, 

1.4% of the tasks from the remaining 7 books were doubly anchored. Undoubtedly tasks 

involving multiple representational anchors are difficult to develop for textbook authors 

and challenging to solve for students, but in light of the AP assessment it is imperative 

that such compound representational tasks be included in the textbooks.  

  Number 33 from page 291 of the Foerster text can illuminate the power of such 

problems. From the outset the author tells the student that this group of tasks, which 

begins with a graphical representation, is a proof of Rolle ’s Theorem, a corollary to 

MVT.   The first prompt asks students to graph an algebraic function on his calculator. 

Though this task is low level, it is setting the stage for further robust questions and in the 

first prompt encompasses an algebraic representation to parallel the given graphical one.  

 The second prompt asks the student to find a value, a level 1 “application” but 

this is a different sort of application. Because the author has worked in a second anchor 

representation, the student now has a choice. He can either find the value algebraically 

or graphically. This is the choice a developing calculus student needs. The majority of 

students likely will choose his way, find an answer, and move on. But in this setup the 

author presents an opportunity for an inquisitive student to connect the two 

representations. Given the setup of this problem, a teacher can take the opportunity with 
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his class or with a struggling student to tangentially explore the connections between the 

two representations. Compare this to the situation in which the author’s choices preclude 

deep thought.  

 The third prompt asks the student to plot a second function on the same screen. It 

asks the student to compare the current graph to the previous. It requires students to 

create a table of values for the new function. Here we can demonstrate the power of 

multiple representations. The author has introduced two more representations, a second 

graph and a corresponding table. It follows it up by asking the student what do you 

notice? This is a seemingly innocuously simple question, but it is incredibly profound. 

The student now has lots of choices. He can verbalize connections he saw between the 

original graph on the paper and the graph he first made. He can verbalize connections 

between the second graph he made and the table. He can verbalize connections between 

the second graph and the first graph. The question is open ended. This question is 

cognitively amplifying (not attenuating) learning but opening up avenues of thought and 

discussion.  

 After developing 4 different representations with the students in previous parts of 

the problem, the fourth prompt of this problem was the compound question:  

Read the Proof of Rolle’s Theorem, which appears in this section. 

Explain how the  work, you’ve done in this problem relates to the proof. 

Tell which hypothesis of  Rolle’s theorem has been mentioned so far 

in the problem. Is this hypothesis true for the function ? Can the 
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conclusion of Rolle’s theorem be true for a function if the hypotheses 

aren’t? Explain. (Foerster, 2005, p. 219) 

For good measure, Forester throws another group of representations into the mix, the 

verbal description of the proof of Rolle ’s Theorem and its accompanying set of graphs 

and algebraic expressions. None of the nine questions asked across 4 prompts are simple. 

None give a hint as to how to answer them. Rather than a rudimentary application 

requiring the most basic understanding of Rolle ’s Theorem, the author has chosen to 

delve into the gory details of the proof encompassing many global concepts not 

explicitly covered in this section.  

 It may not be probable that all students will choose to dive into the previously 

described problem, but at least such an exploration in the wonders of calculus is 

possible. Most tasks considered by this study do not even offer that opportunity because 

they lack the representations that make it possible. The ability to create and juxtapose 

representations, the ability to discuss connections among those representations, and the 

ability to interpret what those representations mean is the goal of the rule of four.  

No Representations 

 Though lack of compound representations is an issue that plagues textbooks, the 

issue of lacking of any base representation is also pertinent. The following task in #59 in 

section 3.2 of the Larson text:  

Two bicyclists begin a race at 8:00 a.m. They both finish the race 2 hours and 15 

minutes later. Prove that at some time during the race, the bicyclists are traveling 

at the same velocity. (Larson et al, 2006, pg, 177) 
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In its conception this task is not totally dislike some of the tasks we found on the AP 

Calculus test. It asks students to interpret a mathematical scenario and apply the MVT. 

In this case, however, there are no anchor representations. There is no graph like in 

2011. There is no table like in 2007 or 2008.  

 This textbook task is of little value to a student because it is too rudimentary and 

tests no mathematical understanding because by it requires no representational transfer. 

In effect, the lack of representation is another manner in which an author can lessen the 

cognitive complexity of a mathematical task. If there is no representation to “interpret” 

the best a student can do is blindly apply a theorem to a scenario. It is another situation 

in which the textbook author’s choice of presentation has undercut students’ ability to 

learn.   

Follow-Up Questions  

 Questions of the stand-alone variety dominate Calculus Textbooks. Task #59 

from Larson lacked any follow-up question; Task #33 from Forester includes a bevy of 

follow-up questions. These two represent the extremes found in the textbooks. The 

former is much more common than the later. On page 204, Finney offers a numerically 

anchored multiple prompt free-response item in #58 (see Appendix B). Due to the 

succinctness of the presentation, Finney’s problem is probably more representative of an 

AP problem than Foerster, though the learning potential of this one is not quite as rich as 

the Foerster one.  Part A is a basic level 1 “application” and Part B is a straight forward 

level 2 “interpretation.” To this point the problem has stayed with its original numerical 

table as the lone representation.  
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 Before continuing with the critique of this Finney problem, it should be noted 

that this is an order of magnitude superior to most of the textbook tasks considered in 

this study. However, faults were evident in parts C and D. Part C asks the students to 

find a cubic regression equation for the data given in the table. Cubic Regression is not 

in the AP Calculus curriculum and this aspect of the problem would likely discourage 

any teacher from choosing this number for homework. Moreover in Part D, Finney asks 

the student to use the model to find a formula for the derivative of the original function. 

There is no scaffolding here. There is no setup question. There is no follow-up question.  

 A better tact might be for the author to provide the cubic expression. In this 

fashion, there is no need to pull in an extra-curricular concept and teachers would be 

more likely to choose this item. Moreover, by introducing the algebraic representation 

the author can ask a follow-up question eliciting a verbal response and forcing student to 

address the connections between representations by explicitly asking how they connect.  

 Alternatively the author could have asked on which interval the function reached 

its maximum or minimum. This is hinted at in Part B. If the author asked that question, 

he could follow it up with the current Part B. Then he could follow it up to talk about the 

rate of change of position and ask when it reaches its maximum and ask for an 

interpretation. Now in another part the student could attempt to distinguish between the 

Mean Value Theorem and the Intermediate Value Theorem.  Finney missed this 

opportunity to help his students.  

 Though this problem has an AP-like setup, it still falls just short of realizing its 

potential to guide deep understanding. There should be no problem in an AP calculus 
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text that lacks at least one follow-up question. Nine of the 17 textbook prompts 

considered in this paper lack any sort of follow-up. Follow up questions are a sacrifice 

calculus textbooks cannot afford to make because the next question is often the more 

important one. 

Task Density 

 It is hard to imagine completing, in any relatively short period of time (an hour or 

less), more than a few of the problems like Finney #58 or Foerster #33. Similarly, the AP 

test does not expect students to plow through problems quickly.  The AP test offers a 

total of 6 stems with approximately 20 prompts each year. These twenty prompts are 

expected to take a total of 90 minutes or 4.5 minutes per prompt. Assuming each student 

does 60 minutes of homework a night, consisting of tasks as cognitive complex as the 

AP test prompts, and takes 4 minutes per task, then a student would be expected to have 

no more than 15 prompts per night. This equates to approximately 3 AP test stems.  

 There is a finite amount of time each student will spend on mathematics 

homework each day. The central question we, as educators face is whether we wish for 

our students to spend a little time on an each of a large number of problems or a good 

amount of time on a smaller number of problems. One truism of our classrooms is that 

quantity and quality of assigned mathematical tasks are inversely proportional. 

 The implication is that the textbook tasks as presented encourage teachers to 

assign more easy problems rather than a few challenging problems. This study provides 

a heuristic to assess the most appropriate tasks from a textbook section. Unfortunately, 

the creation of “higher quality” homework assignments is not likely possible without an 
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intense and laborious effort by teachers. A set of 15-20 appropriately complex and 

representationally diverse tasks would be preferable to any set of tasks in a current 

textbook.  

Summary 

 Textbook tasks should be less dense, avoid cognitive attenuation, move away 

from the stand-alone item, juxtapose anchor representations, scaffold student solutions, 

include previously considered overarching concepts and include more profound follow-

up questions. In short the cognitive complexity of textbook tasks must be higher. The 

majority of textbook tasks simply do not go far enough to promote thinking and learning. 

The tasks are plagued by the aforementioned factors that distract from the opportunity to 

learn. It is not that students do not learn. Just as has been found before with Algebra I 

and middle school textbooks (Kulm, 1999), this study finds that students are unlikely to 

find the opportunity to learn within these textbooks.  

 
Discussion 

 Is it any surprise that the MVT is at the center of the most bewildering AP 

Calculus AB free response score ever? The mean value theorem is inextricably a part of 

calculus’ cognitive fabric. It is a formalization of the properties of the derivative over an 

interval and is the concept atop which the Fundamental Theorem of Calculus is proved.  

As critical as it is, the Mean Value Theorem is also esoteric, abstract, and not easily 

accessible to many students nor teachers.  
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 Because the mean value theorem is not as intuitively obvious as other more 

“common sense” concepts like slope, student learning of it must be properly scaffolded. 

That is, the right questions must be asked in the right context with the right structure and 

the right follow-up. Knowledge cannot be transferred from teacher to learner; learning is 

facilitated by the disequilibrium of challenge not the stasis of rote practice. If we ask the 

right questions in the right ways students will be empowered to learn in a deep rich 

conceptual manner, an authentic manner. It is learning that will allow them to construct 

understanding now and apply it later in a new context.  

 This study found that textbooks, in general, do not ask the right questions. The 

American textbook system is stuck in a vicious cycle of good enough. Because 

established teachers are familiar with traditional textbooks rife with sterile tasks, there is 

no incentive for profit-seeking publishers to make a higher quality textbook despite the 

thirty-year knell of America’s parting mathematical prowess. Administrators, parents, 

teachers, and students are all comfortable with the sub-standard mathematics education 

that they know.  

 For many, if not most educators, the choice of classroom textbook is a proxy for 

the choice of curriculum. Because the tasks studied here fail to reflect either the AP’s 

prescribed diversity of representations or the cognitive complexity necessary for robust 

conceptual understanding, nationwide there is little opportunity for authentic learning. 

Without the improvement of textbooks, our system of mathematics education will not 

improve.  
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 The discrete nature of the lessons and tasks in American mathematics textbooks 

must be called into question. What if, instead of a large number of tasks focusing on a 

small set of concepts, students were presented with a smaller number of tasks 

encompassing a broader group of concepts? If the problems were less predictable, 

resilient students would be forced to become more industrious and would be empowered 

to learn more consequentially.  

 The one-size-fits-all mentality of publishers has led to mathematics textbooks 

becoming a series of disconnected lessons. It would be fiscally irresponsible for textbook 

publishers to include the inter-lesson reflective questions necessary in high-quality 

textbooks. In order to be palatable to a huge number of school districts and teachers, 

textbooks cannot impose themselves on reticent students, teachers, and administrators. 

The path of least resistance (and least quality learning) is the path to the greatest sales.  

Walter Rudin and other mathematicians knew that it is impossible to mass-market good 

learning. Quality learning is a function of great teachers, receptive students, and 

challenging questions with no simple answers.   

 Teachers, educators, and administrators have, for decades, struggled over the 

question of how to improve calculus learning? The answer to that question is strikingly 

simple: improve textbooks. There are thousands of teachers and thousands of schools. 

There are very few textbooks and even fewer publishers. Why shouldn’t textbooks be 

held to a higher standard? College Board has implemented an Audit system for its 

teachers and schools. No person or group monitors textbook content.  It is time to audit 
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the textbooks. For years textbook publishers have made millions but yet are accountable 

to no one.  

 This research began with a question as to why one calculus problem anchored by 

a table of values caused so much consternation. This research was inspired by a statistic 

with no precedent and no explanation. It began with a referendum on calculus textbooks 

and ends with a wholesale indictment. Rudin’s Principles of Mathematical Analysis is 

everything that popular calculus textbooks are not. It is short and cogent but more 

importantly it is efficacious. Modern calculus textbooks are, in fact, just mediocre.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

New ideas are the lifeblood of education. In the classroom, new ideas are the 

driving force behind learning. Cognitive dissonance and the struggle to understand drive 

the assimilation of new concepts in unfamiliar contexts. Research by Dewey, Piaget, 

Vygotsky, Van Hiele, Brunner, Glasersfield, Shoenfeld, and Cobb has evidenced the 

importance of assimilating, scaffolding, constructing, and socializing learning. These 

thinkers have empowered educators to transcend old definitions of learning and 

understanding. These ideas have encouraged us to embrace a new conceptualization of 

learning as an active process. No longer must learning be individual, sterile, or furtive.  

Learning can be open, fertile, and collaborative.  

I am currently in my eighth year as a high school teacher and in those eight years 

I have taught at both public and private schools. I have taught at both urban and 

suburban schools. I have taught at both new schools and established schools. In those 

eight years, I have found one common characteristic among my schools and 

administrators—an absolute aversion to change or challenge of any kind. New ideas are 

an anathema for educational administrators.  

Five years ago, I was in my first year at a suburban public independent school 

district (ISD). This ISD had spent thousands of dollars for summer professional 

development provided by the mathematics department from the Exeter Academy. Exeter 

did not teach mathematics out of textbooks. But rather, their classes were guided by 

series of single page problem sets intended for small groups. Each problem set was 
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related to the previous set and subsequent set. Each problem set guided systematic 

simultaneous explorations and discoveries within multiple conceptual threads. The sets 

were conceptually rich but not overly long. The sets were high quality and low quantity.  

Though I did not have the opportunity to attend that summer professional 

development, I learned of the problem sets later when my veteran department head, a 

mathematics teacher of some 30 years experience, announced that she had placed 

binders with the problems in the mathematics work room. The final word she ever said 

publically about those materials was “feel free to use them in your classes.” I looked at 

them and thought they were great. My gut inclination was that they were better than 

textbook tasks I had encountered. I wanted to use them. 

About 6 weeks later, I was called to speak to my department head. There had 

been student complaints about “my” problems, which were actually Exeter problems. I 

pleaded my case and suggested that the students needed some time to acclimate to the 

problems. Her response was simple and decisive, “our students are not smart enough for 

those problems.” I protested vehemently and our conversation ended with her screaming, 

“Do you want to go talk to the principal?” at me. I responded, “Let’s Go!” 

The subsequent conversation with the principal did not go well for me. My stand 

on curricular principle ended discouragingly. The principal called me childish and 

arrogant for arguing with a teaching veteran of 30 years. I was not hired to analyze 

mathematics classes. I was not hired to lead; I was hired to follow. The district had spent 

a lot of money on textbooks my principal informed me. The problems in our book had 

been vetted for years. Students from our district in previous years had been “successful” 
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with book problems. Why change now? The mathematical tasks in our textbook were 

“good enough.” 

Eighteen months before my principal chastised me for suggesting that textbooks 

were inadequate, I wondered why my students had fared so poorly with free response 

item #3 on the 2007 AP Calculus AB examination. That item began with a numerical 

table and asked students in-part to explain why a certain fact must be true because of the 

mean value theorem (MVT). Previous research (e.g., Roseman, Kulm, & Shuttleworth, 

2001) had suggested that my textbook (Stewart, 2005) might be the culprit. In this study, 

that suspicion was confirmed.  

In the first article, the free response tasks (n=60) of all AP Calculus AB-test free-

response items available (2002 to 2011) were studied in the context of representational 

anchors and targets. This article found that the AP’s multi-dimensional representational 

vision, expounded as the rule of four, has not been realized.  The article found that 

students performed less well with numeric anchors and verbal targets. Alternatively 

graphical targets and anchors produce the best student results. The implication is that the 

AP’s intended curriculum does not align with the curriculum that is implemented by 

teacher via textbooks in American classrooms.  

 Given that students do worse with numerical tasks, the logical inference would 

be that numerical representations are not taught in the classroom and what is taught in 

the classroom is highly dependent upon the textbook (Kulm & Capraro, 2008). With this 

background, article 2 sought to create a textbook task assessment instrument. The 

instrument was based upon previous models developed by van Hiele (1986) and Webb 
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(1997; 1999) and defined a cognitive complexity scale for calculus textbook tasks in 

terms of representational transfer. Examples from textbooks and research are offered to 

define 5 levels: recollection, application, interpretation, synthesis, and abstraction and 6 

principles: independence, parsimony, relativism, inheritance, completeness, and 

reducibility.  

 In the third article, the previously developed instrument was applied to both AP 

Calculus AB tasks from 2002 through 2011 and to a sample of textbook tasks from 

popular calculus textbooks. The textbooks were chosen based upon both the AP Calculus 

AB suggested textbook list and amazon.com sales rank data. Fifteen sections of the 

selected textbooks, each centering on the MVT were selected for analysis. All word 

problems from those sections were evaluated for cognitive complexity and 

representations invoked.  The study found that calculus textbooks underrepresented the 

numerical anchor and verbal target. It found that the textbooks were both explicitly and 

implicitly less cognitively complex than the AP test. The article suggested that textbook 

tasks should be less dense, avoid cognitive attenuation, move away from the stand-alone 

item, juxtapose anchor representations, scaffold student solutions, incorporate previously 

considered overarching concepts and include more profound follow-up questions. 

This study confirmed the results of Keller and Hirsch (1998) who found that that 

the anchor representation is associated with student performance; students did poorly 

with numerical representations because anchors of that type were conspicuously absent 

from textbook tasks. This analysis found that students perform less well on tasks with 

numeric anchors and suggests that this pattern of ill performance extends to verbal 
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targets. Alternatively, graphical targets and anchors yielded the best student results. The 

calculus nation has not achieved multi-representational proficiency and calculus 

textbooks are unlikely engender deep student learning. This research confirms, just 

previous research (e.g., Ginsburg, Leinward, Anstrom, & Pollock, 2005) did with other 

books, that calculus textbooks fail to go beyond exposing students to mathematical 

mechanics of routine problems. 

The story of calculus pedagogy is the story of a culture war between the 

antiquated and modern pedagogies. The mathematics wars of years past (Schoenfeld, 

2004) have not disappeared; a cold pedagogical war is fought everyday in classrooms 

around the country (Kaplan & Kaplan, 2008; Lockhart, 2009). The pedagogy espoused 

in classrooms is decidedly not cognitively guided. The evidence for this fact, which was 

previously discussed anecdotally (St. Jarre, 2008), is now more formally documented in 

terms of a representation-based cognitive-complexity analysis of major textbook tasks.  

 As I learned in one suburban high school, antiquated orthodoxy is entrenched, 

reinforced, and buttressed. I walked into a high school hoping to teach great ideas 

through great problems. An ambitious principal whose future was dependent upon 

maintaining the status quo, an entrenched veteran teacher whose primary concern was 

minimizing personal effort, and a publisher whose number one priority was profits -- 

dashed my hopes. All rationale used against the allowance of more challenging problems 

in one classroom was based in the unchallenged perception of the infallibility of the 

textbook.  
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 How many textbook adoption processes across the nation are rigorous and based 

on high quality research? The process of textbook analysis and adoption must cease to 

be intellectually soft (Battista & Clemens, 2000). The choice of textbook cannot just be a 

show of hands. As a colleague of mine once remarked, the choice of Larson calculus in 

his school district was a choice to minimize prep work. They had always used the Larson 

text, changing would only cause more work for he and his fellow teachers. What was the 

point? The point is that the question of quality student learning never factored into the 

process.   

 The 2006-2007 school year ended for me with a conundrum about an AP 

Calculus AB test item. I now know why my students (and the rest of their counterparts 

across the nation) faired so poorly on that question. I never asked the hard questions; the 

hard questions about the validity of my textbook, which meant I did not have the hard 

questions available to ask of my students, who in turn had no hard questions to ask of 

me. The cycle of learning was stunted because I trusted my textbook. I was wrong. It is 

time to analyze textbooks, all of them. If the College Board can develop a formal review 

process for its teachers’ syllabi, why can’t it institute a review of the dozen textbooks it 

recommends? Why is that teachers are held to a higher standard than textbooks? There 

are thousands of teachers. There are very few textbooks.  

Just as students must be challenged intellectually with non-routine thought 

provoking problems, our teachers and curriculum selectors must seek a thought-

provoking process of textbook analysis. It is time we require more of the publishers who 

make millions proliferating pedagogical garbage. We live in a mathematics culture 
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where textbooks that lack hard questions are hardly questioned by teachers, who 

implicitly trust the publishers, about whom the hard questions are never asked. All 

calculus textbooks are mediocre because we have never demanded better.  

In the past 6 six years, Texas A&M University has not graduated a single 

engineering Ph.D. who did not take calculus on the university level (Nite, 2012). In other 

words, no student who has taken AP Calculus at the high school level has earned an 

engineering doctorate degree. For a university, that as of Fall 2011, boasted more than 

2800 graduate level engineering students, that fact is an astonishing indictment of the AP 

curriculum. The AP curriculum is not satisfactorily empowering students to attain 

quality calculus understanding.  

More than 2 million students have taken the calculus AB examination over the 

past decade. In that same time, more students have sat for the BC examination and still 

more have taken the class but opted not to take either examination. The number of 

students who have taken the exams each year has been steadily rising. The College 

Board is successfully marketing and expanding its curricular reach. But are those gains 

being attained at the expense of quality learning? The findings of this dissertation and 

the previous research cited certainly do not controvert that hypothesis. 

In recent years, the College Board has developed an auditing process for its 

calculus teachers. Across the nation thousands of calculus teachers are required to 

submit their syllabi for review. The syllabi are checked to assure that classes meet AP 

quality standards. Meanwhile, the AP publishes, though does not endorse, a list of 

calculus textbooks on its website (College Board, 2012). These books are written by a 
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select few authors and disseminated by even fewer publishers. Whereas the College 

Board has made an effort to crack down on rogue teachers, it has made no such effort 

with textbooks. Publishers make millions from the AP course with impunity.  

The College Board needs to vet its calculus textbooks. It needs to develop a 

process through which books can be assessed for both strengths and weaknesses. 

Ultimately the only way in which to change textbooks is to change the market for those 

textbooks. The College Board has put out a number of supplemental resources in the past 

on curricular issues, including one on reasoning with tabular data in the past. Materials 

on topics such as reasoning with multiple representations or choosing good mathematical 

tasks would be monumentally helpful to both teachers and textbook authors.  

Adjustments are necessary. Students are slipping through the cracks and we are 

losing the STEM graduates that we need to assure our culture’s future prosperity. Every 

aspect of the system of calculus education could be better, particularly the textbooks on 

atop which the AP curriculum is implemented.  For the sake of the students who will 

learn in the STEM-dominated 21st century, the textbooks cannot be just mediocre.  
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APPENDIX A 

SAMPLE AP CALCULUS AB FREE RESPONSE ITEMS 

 
1. AP Free Response Question #1 from 2005 (National Mean:5.73/9) 
 

Let and be functions given by  and . Let be the 

shaded region in the first quadrant enclosed by the y-axis and the graphs of and g, and 
let be the shaded region in the first quadrant enclosed by the graphs of and g as 
shown in the figure.  
 

 
A. Find the area of [3 points]. 

 
B. Find the area of [3 points]. 

 
C. Find the volume of the solid 

generated when  is revolved 
about the horizontal line .[3 
points] 

 
 

 
2. AP Free Response Question #3 from 2007 (National Mean: 0.96/9)  
 

     
1 6 4 2 5 
2 9 2 3 1 
3 10 -4 4 2 
4 -1 3 6 7 

 
The functions and  are differentiable for all real numbers and  is strictly increasing. 
The table above gives values of the functions and their first derivatives at selected values 
of . The function  is given by .  
A. Explain why there must be a value  for  such that . [2 points] 
B. Explain why there must be a value  for  such that . [2 points] 
C. Let  be the function given by . Find the value of . [2 points] 
D. If  is the inverse function of , write an equation for the line tangent to the graph 
of  at . [3 points] 
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3. AP Free Response Question #2 from 2008 (National Mean: 3.36/9) 
 

 (hours) 0 1 3 4 7 8 9 
 (people) 120 156 176 126 150 80 0 

 
Concert tickets went on sale at noon ( ) and were sold out within 9 hours. The 
number of people waiting in line to purchase tickets at a time  is modeled by a twice-
differentiable function  for . Values of  at various times  are show in the 
table above.  
 
A. Use the data in the table to estimate the rate at which the number of people waiting in 

line was changing at 5:30 p.m. ( ). Show the computations that lead to your 
answer. Indicate units of measure. [2 points] 

 
B. Use a trapezoidal sum with three subintervals to estimate the average number of 

people waiting in line during the first four hours of the sale. [2 points] 
 
C. For , what is the fewest number of times at which  must be equal to 0. 

Give a reason for your answer. [3 points] 
 
D. The rate at which tickets were sold for  is modeled by  tickets 

per          hour. Based on the model, how many tickers were sold by 3 p.m. ( ), to 
the nearest whole number? [2 points] 

 
4. AP Free Response Question #4 from 2011 (National Mean: 2.44/9) 
 
The continuous function  is defined on the interval 

. The graph consists of two quarter circles and one 
line segment as show in the figure. Let 

.  
 
A. Find . Find  and evaluate . [3 points] 
B. Determine the x-coordinate of the point at which  has an 
absolute maximum on the interval . Justify your 
answer. [3 points] 

 

C. Find all values of  on the interval  for which the graph of  has a point of 
inflection. Given a reason for your answer. [1 point] 
 
D. Find the average rate of change of  on the interval . There is no point , 

, for which  is equal to the average rate of change. Explain why this 
statement does not contradict the Mean Value Theorem.  [2 points]  
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APPENDIX B 

SAMPLE CALCULUS TEXTBOOK TASKS 

 
1. Use the inequality  which holds for  to find an upper bound for the 
value of . (Finney, p. 292, #42) 

2. Let . Use the Mean Value Theorem to show that  

(Larson, p. 178 #85) 
 
3. Show that  for . [Hint: Show that  is increasing  
on ] (Stewart, p. 289, #51) 
 
4. Use the Racetrack principle and the fact that  to show that  for all 

 (Huges-Hallett, p 158, #10) 
 
5. Use the Constant Difference Theorem (5.7.3) to show that if  for all  
on  and if f and g have the same value at some point , then  for all 

 on  (Anton, p 335, #24a) 
 
6. Suppose that  and  for . Apply the MVT to the interval  
to prove that . (Rogawski, p 237, #62) 
 
7. Use the same derivative argument as was done to prove the Product and Power Rules 
for logarithms, to prove the Quotient Rule property (Thomas, p. 284 #65) 
 
8. Prove that if an object moves with a constant acceleration, such as it does in ideal free 
fall, then its average velocity over the time interval is the average of the velocities at the 
beginning and end of the interval. (This result leads to one of the physics formulas you 
may have learned and that may have led to you to a false conclusion about average 
velocity when the acceleration is not constant). (Foerster, p 512, #13) 
 
 



 

115 
 

 

 
9. The proof of Rolle’s theorem shows that a high point  for the open interval  

the difference quotient  is always positive (or zero) when  and always 

negative with . In this problem you will show graphically and numerically that this 
fact is true for a fairly complicated function.  
 

a. The figure below shows the graph of . Plot 
the graph as . Does your graph agree with the figure?  

b. Find . How is the value of  consistent with the fact that the high point 
of the graph is at ? 

c. Let  be the difference quotient . Plot  on the same screen as 

. Sketch the result. Then make a table of values of the difference quotient from 
each 0.5 unit of  from  to . What do you notice about the table and 
the graph about the values of  for  and ? 

d. Read the Proof of Rolle’s Theorem, which appears in this section. Explain how 
the work, you’ve done in this problem relates to the proof. Tell which hypothesis 
of Rolle’s theorem has been mentioned so far in the problem. Is this hypothesis 
true for the function ? Can the conclusion of Rolle’s theorem be true for a 
function if the hypotheses aren’t? Explain.  

(Foerster, p 219 #33) 
 
 
  
10. Priya’s distance D in meters from a motion detector is given in the table below.  
 

a) Estimate when Priya is moving toward the motion detector and away from the 
motion detector 

b) Give an interpretation of the extreme values in terms of this problem situation  
c) Find a cubic regression equation D=f(t) for the data and superimpose it on a 

graph of the scatter plot of the data 
d) Use the model in C for f to find a find a formula the derivative of F. Use your 

formula to estimate the answers to part a.  
(Finney, p. 204, #58) 
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APPENDIX C 

COGNITIVE COMPLEXITY MODEL 
 # Verb Reps Indicators/Description 

Recall 0 0A. Recall the definition of rectangle 
0B. Identify the number of roots of this graph 0 

 • No cognitive effort is extended, this level is one of 
habitual response 

Apply 1 

1A. Rote Procedures (Find Solutions, Simplify 
Expressions, Compute) 
1B. Simple Data Operations (Observe, Collect, 
Display, Compare) 

Ex
er

ci
se

s 

1 

 

• Selection of tool is 
not required of 
students; tasks are 
often rote 
procedure 

• A single 
representation: 
Algebraic, Numeric, 
or Graphical 

Interpret 2+  
2A. Explain your reasoning 
2B. Argue logically from evidence 
2C. Explain phenomena in terms of concepts 

 2 

 
• Planning Required 
• More than 1 

solution possible 

• Excessive of “grunt” 
work does not entail 
higher levels, higher 
cognitive demand 
does 

Synthesize 3-4 

3A. Prove Conjecture 
3B. Connect related concepts & phenomena 
3C. Synthesize or Generalize ideas into new 
concepts 3 

 

• Multiple Possible Paths 
to Solutions 

• Students might dislike 
lack of direction 

• Several Connections 
distinguish this level  

• Dynamic Problem 
Solving Events 

Abstract 
NA Abstract concepts and procedures into context of 

alternative mathematical systems without concrete 
models 

Pr
ob

le
m

s 

4 

 
• Not practical in secondary classrooms or textbooks 

Required to encompass entire mathematical 
continuum  


