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ABSTRACT 

 

This dissertation presents the findings of a study to quantify the effect of heat 

source configurations on the performance of passive chilled beams.  Experiments in a 

thermally controlled test room were conducted using thermal manikins as heat sources 

cooled with a 0.6 m by 2.4 m beam.  The thermal manikins were arranged in a 

symmetric and an asymmetric configuration and tested over a range of input power to 

simulate a low-to-high load heat distribution of an indoor space.  A computational fluid 

dynamics (CFD) model was developed in Star CCM+ v6.06 and used for further analysis 

of the flow field and to predict additional spatial arrangements of the beam, interior 

dimensions, and heat source configurations.  The CFD model implemented a calculation 

for the beam cooling capacity to predict the beam performance based on the room 

thermal conditions. 

The experimental data revealed an average reduction of 15 % in the passive beam 

cooling capacity for the asymmetrically configured thermal manikins compared to the 

symmetric arrangement.  The CFD model was validated with the experimental data and 

predicted the asymmetric heat source beam performance reduction to be 17 %.  The 

reduction in performance based on the heat source arrangement was found with analysis 

of the CFD simulations to be a result of the above-beam air velocity field.  The 

unbalanced thermal manikin configuration generated an unbalanced flow condition at 

the inlet of the beam that resulted in the room air circumventing the inlet of the passive 

beam, as compared to the inlet velocity field of the symmetric configuration. 
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Additional configurations were investigated with the CFD model to include the 

beam position, floor area, ceiling height, and thermal manikin arrangements.  The 

simulation results were analyzed by comparing the efficiency of beam performance 

using the beam cooling capacity calculation for each scenario.  The predictions of 

additional configurations found that the efficiency increased when the beam was 

perpendicular to a group of heat sources and the changes in beam performance with heat 

source configurations was not affected by the interior dimensions of the space.  

However, the resulting thermal conditions in the occupied zone for the beam positions of 

highest efficiency may negatively impact the thermal comfort of occupants. 



 

iv 

 

DEDICATION 

 

To Courtney, my best friend and forever companion.  And to my parents for their 

ever-steady support. 

 

 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere gratitude to my advisor, Dr. Culp.  Over the 

past five years, he has been a guide and mentor to me in my academic and professional 

development.  His commitment to support me as a graduate assistant researcher for the 

duration of my studies enabled me to pursue this project and finish it.  From our time 

together, I learned to be a better engineer, investigator, analyzer, writer, communicator 

and leader.  I would also like to recognize my committee members, Dr. Claridge, Dr. 

Duggleby and Dr. O’Neal for their wise input and direction that increased the quality of 

this study. 

I am grateful to the engineers at Price who supported me in the experimental data 

collection and allowed me to conduct this study in their laboratory.  Specifically I would 

like to thank Julian Rimmer, who was enthusiastic about helping when I approached him 

with the project concept.  I would also like to thank Brad Tully and Tom Epp for their 

help and assistance in the scheduling, experimental setup, data collection and overall 

interest in seeing the success of this work. 

Finally, my family and friends provided me support and counsel, helping me to 

find the resolve to continue working through setbacks and believe that the hard work 

would soon lead to the completion of this project. 



 

vi 

 

NOMENCLATURE 

 

A area (m2) 

b characteristic length scale (m) 

c speed of sound (m∙s-1) 

cp specific heat capacity (kJ∙kg-1∙K-1) 

C coefficient of porous inertial resistance; transport equation 
coefficient 

Cbc coefficient of beam cooling  

Cc plume parameter 

CM coefficient of dilatation dissipation 

Cμ empirically derived constant, Equation 2.7 

CT realizable time scale coefficient 

D coefficient of porous viscous resistance 

Df diffusion flux (kg∙m-2∙s-2) 

E entrainment rate (kg∙s∙m-2); energy (W) 

F buoyancy flux (N∙m-2) 

g gravitational constant (m∙s-2) 

G turbulence production 

Gr Grashoff number 

h enthalpy (kJ∙kg-1); heat transfer coefficient (W∙m-2∙K-1) 

J diffusion flux (kg∙m-2∙s-1) 

k turbulence kinetic energy (m2∙s-2);                                             
thermal conductivity (kJ∙m-1∙K-1) 

L distance (m) 
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m mass (kg) 

�̇� mass flow rate (kg∙s-1) 

Nu Nusselt number 

p pressure (Pa) 

P power (W) 

Pr Prandlt number 

q heat flux (W∙m-2) 

Q volume flux (m∙s-1); heat transfer (W) 

Qb beam capacity (W) 

r radius (m) 

Re Reynolds number 

S source term; strain rate tensor (s-1) 

t time (s) 

T temperature (°C); turbulent time scale (s) 

u x-component of velocity (m∙s-1) 

u+ dimensionless velocity 

v y-component of velocity (m∙s-1) 

V mean velocity (m∙s-1); volume (m3); volume flux (m∙s-1) 

w z-component of velocity (m∙s-1) 

x coordinate of distance (m) 

X body force (N) 

y coordinate of distance (m) 

y+ dimensionless wall distance 

YM dilatation dissipation 



 

viii 

 

Yy Yap correction 

z coordinate of distance (m) 

Greek Symbols 

α entrainment coefficient; half angle (rad) 

β coefficient of thermal expansion (°C-1) 

δij Kronecker delta 

∆t change in time (s) 

∆TRM reference temperature minus the mean water temperature (°C) 

ε dissipation rate of turbulence energy (m2∙s-3) 

η efficiency 

φ general scalar 

γ porosity 

Γ ratio of buoyancy force to momentum force of a plume; 
diffusivity (kg∙s-1) 

Γf diffusion coefficient 

κ von Karman constant 

Λ plume heating characteristic 

𝛻φ gradient of general scalar 

𝛻ρ gradient of density (kg∙m-3) 

𝛻𝑇 gradient of temperature (°C) 

ρ density (kg∙m-3) 

σ Schmidt number 

σt turbulent Prandtl number 

τ shear stress (N∙m-2) 
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τij Reynolds stress (kg∙m-1∙s-2) 

μ viscosity (kg∙m-1∙s-1) 

ν kinematic viscosity (m2∙s-1) 

ω specific turbulence dissipation (s-1) 

ωμ under-relaxation factor 

Subscripts 

0 bulk fluid 

1 reference fluid 

∞ ambient or free stream value 

a air 

al aluminum 

ave average 

b buoyancy; beam 

beam passive chilled beam 

cu copper 

eff effective 

ε turbulence energy dissipation rate 

D reference 

f fluid; cell face 

fin passive chilled beam fin 

φ general scalar 

h horizontal 

i inlet; general index 

j general index 
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k turbulence kinetic energy; general index 

L length 

max maximum 

mid middle 

min minimum 

nl non-linear 

o outlet 

r reconstruction 

ref reference 

RG resolved grid 

s solid; surface 

t turbulent 

T realizable time scale 

TC thermocouple 

TG test grid 

τ friction 

v vertical 

w water 

Superscripts 

′′′ volumetric flux 

* reference value 

h enthalpy 

n time step 

new newly calculated value 
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Abbreviations 

BP beam position 

CFD computational fluid dynamics 

DAQ data acquisition 

DDC direct digital control 

DES detached-eddy simulation 

DIA diameter 

DR draft rating 

HVAC heating, ventilating, and air conditioning 

LES large-eddy simulation 

MWT mean water temperature 

MTT Morton, Taylor, and Turner 

PMV predicted mean vote 

PPD predicted percentage dissatisfied 

RANS Reynolds-averaged Navier-Stokes 

RNG renormalization group 

RSM Reynolds-stress model 

RTD resistance temperature detector 

SCR silicon-controlled rectifier 
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CHAPTER I  

INTRODUCTION AND BACKGROUND 

 

The description of room airflow characteristics in buildings is necessary to 

evaluate the thermal comfort of occupants and optimize the energy use of the climate 

control system [1].  Radiation, conduction and forced and natural convection heat 

transfer between surfaces, occupants and room air define the flow of energy in indoor 

spaces.  Natural convection heat transfer produces a buoyant force of the locally heated 

or cooled air that interacts with other sources of fluid momentum [2].  The primary 

airflow characteristics that can be used to predict thermal comfort in a space are the air 

temperature, air speed, radiant temperature and humidity [3].  Buoyant flows may impact 

thermal comfort based on the temperature and velocity of plumes and the differences in 

radiant sources.  In spaces with non-uniform thermal environments, single point analysis 

for the zone will reduce the accuracy of the predictions.  A careful prediction of the 

indoor thermal comfort includes analysis of the non-uniform environment and the direct 

effect on the airflow characteristics that impact occupant thermal comfort.  Experimental 

methods of characterizing buoyant room airflow necessitate many hours [4] for the 

conditions to stabilize at each operating point and must be conducted with sophisticated 

measurement equipment and techniques [5] that are restricted to laboratory 

environments.   

Modeling is another approach to understand the room airflow dynamics.  

Buoyancy driven indoor airflows require highly detailed modeling of the natural 
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convection and radiation heat transfer between room surfaces and the air to correctly 

characterize time-dependent energy and mass flows [6].  Indoor airflow modeling 

characterizes room conditions by solving the fundamental principles of energy, 

momentum and mass flow [7] to predict the interactions of inlet and outlet mass flows 

with the heat sources and sinks.  The nature of air movement and heat transfer 

throughout the space yields many interdependent relationships [2] that must be resolved 

at very small scales throughout regions many orders of magnitude larger [8].  Several 

simplification methodologies have been developed that enable solutions of complex 

airflows that reduce the modeling effort and the overall time and expense [9].  

Computational fluid dynamics (CFD) has emerged as the dominate simulation technique 

for modeling indoor airflows because of the ability to accurately model extremely 

complex flows with computational power that has dramatically increased in the last 

twenty years [10]. 

Alternative designs for comfort control in buildings separate the functions of 

equipment used to meet the ventilation requirement, and latent and sensible loads in the 

space, as shown in Figure 1.  With designs that include a central primary system to 

provide dehumidified fresh air to the zones and a local secondary system for sensible 

loads, the equipment sizing and operating conditions impact the occupant comfort 

differently than mixed air systems.  Multiple sources of momentum and buoyancy 

interact to provide a non-uniform thermal environment and the resultant airflow 

characteristics. 
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Figure 1.  Indoor air schematic with primary and secondary system configuration showing 
sources of momentum and buoyancy. 

 
 
 
Buoyancy is the driving force of the airflow in rooms supplied by stratification-

based heating, ventilation and air conditioning (HVAC) designs and in traditional mixed 

air systems incorporating passive cooling or heating [2].  Passive cooling technologies 

provide controlled heat rejection in a space utilizing chilled surfaces that generate 

buoyant flows [11].  Chilled beams directly cool room air with exposed water coils 

supplied with chilled water and can be classified into two types: passive and active.  

Passive beams deliver cooling to the room by induction only.  The room air rejects heat 

to the coil through natural convection.  The air-side and water-side operation of the 

passive chilled beam is shown in Figure 2.  As the room air is cooled by the coil, the 

increased density creates a buoyancy force that causes the mass of air to sink directly 

beneath the beam [12].  The volumetric flow rate from a passive beam depends on the 

Primary System:
Fresh Air and Dehumidification

Secondary System: 
Sensible Cooling
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heat exchange at the coil that results from a difference in temperature between the room 

air and the coil surface.  On the coil side, the chilled water supply flow rate and 

temperature are control set points for the beam operation.  Whereas, the room air 

temperature is the result of the heat gain in the space.  Time-dependent internal loads 

result in time-dependent beam characteristics, such as cooling capacity and plume 

velocity.  The airflow generated by passive beams has been described using simplified 

models and experimental flow visualization in few publications. 

 
 
 

 

Figure 2.  Passive chilled beam schematic showing air and water flow. 
 
 
 

For designs that incorporate air buoyancy, the airflow characteristics should fall 

within thermal comfort requirements.  The analytical models reviewed in the literature 

SUPPLY RETURN
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predict characteristics of individual buoyancy sources.  Integrating these for application 

to multiple sources of air buoyancy to predict the resultant airflow becomes overly 

complex and very difficult to generalize [2].  CFD has been applied to room airflow 

prediction for mixed and stratified environments and used to study the heat transfer by 

forced, free and mixed convection airflow[13].  Buoyant flow modeling with CFD 

presents many challenges including the use of a turbulence model to account for the 

anisotropic nature of the low-Reynolds flow [14] and long simulation times (5,000 s to 

27,400 s) for the solution to reach steady state [15].  Additionally, the geometrical 

characteristics of passive beams preclude a full scale meshing in an indoor environment 

because of the fine grid necessary to model the densely packed fins. 

The purpose of this study was to analyze passive chilled beam operation as 

effected by heat loads in the space and to create a reliable method of modeling a passive 

chilled beam using CFD for studies of beam efficiency and thermal comfort predictions.  

Multiple sources of momentum and buoyancy in the space result in airflow 

characteristics through the room that require sophisticated models to incorporate the 

competing forces.  The first of three objectives of the CFD model development was to 

create a generalized methodology for a passive chilled beam that can be applied in CFD 

commercial packages.  The second objective was that the model be validated with 

experimental data to predict the passive chilled beam performance and resultant plume 

airflow characteristics.   The third objective for the CFD model development was 

documented input values and specifications based on experimental data or engineering 

analysis.  Additional objectives of the project included quantifying the effect of the heat 
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load configuration on the passive chilled beam capacity and airflow characteristics of the 

plume and establishing an explanation for the effect of the heat load configuration on the 

passive chilled beam. 

The project methodology for accomplishing the objectives of the study was to 

collect experimental data of a passive chilled beam, use the model predictions for the test 

conditions to validate the model and use the model to calculate the airflow 

characteristics for additional scenarios outside of the scope of the testing.   Experiments 

were conducted with a passive chilled beam and heat loads in a climatic chamber.  

Different spatial arrangements and types of heat loads were tested and the effect on the 

passive chilled beam capacity measured.  A CFD model was developed based in part on 

the observations during testing.  The results of the simulations for the climatic chamber 

experiments were compared to the data for assessing the validity of the model 

construction.  Additional simulations of the passive chilled beam and heat loads were 

conducted to study scenarios not tested experimentally and to analyze changes in the 

airflow characteristics that resulted in changed performance of the passive chilled beam.  

The techniques used to model the passive beam, validated by the experimental data, can 

be used by designers or building energy engineers within commercial CFD packages or 

other numerical simulations that solve the flow equations for indoor air cooled by 

systems that include passive beams.   

This dissertation is organized into nine chapters.  Published literature on the 

effect of thermal loads on airflow characteristics in buildings, CFD modeling techniques 

for indoor airflow, and experimental techniques and results for buoyancy-driven indoor 
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airflows are reviewed in Chapter II.  The experimental setup and method of testing is 

described in Chapter III.  Chapter IV documents the construction of the CFD model and 

in Chapter V an analytical model for the fin-to-air heat transfer of the passive beam is 

developed.  Chapter VI presents the results of the experimental data, model predictions 

and the comparisons used to validate the CFD model.  The effects of heat loads in the 

space on the performance of passive beams and airflow characteristics of room air are 

provided in Chapter VII.  Chapter VIII presents the results of the CFD model used to 

predict the passive beam cooling capacity and the airflow characteristics in the occupied 

zone for different spatial arrangements of the simulated volume and locations of the heat 

sources and passive beam.  Chapter IX presents the conclusions of the study and 

includes remarks on using the passive beam model and opportunities for additional 

research. 
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CHAPTER II  

LITERATURE REVIEW 

 

2.1 Introduction 

This literature review is divided into three sections that supported the hypothesis 

that heat load characteristics affect the resultant airflow of a passive chilled beam and 

helped guide the formation of the passive chilled beam modeling.  Section 2.2 covers 

thermal plume experimental results and the effect of thermal loads on room air 

characteristics and the impact on equipment performance in indoor environments.  

Section 2.3 includes plume modeling techniques and results from numerical simulations 

of plume equations.  Section 2.4 covers the techniques used for CFD simulations of 

room airflow including turbulence modeling and simplifications of complex geometries. 

 

2.2 Thermal Plume Experiments in Indoor Environments 

For passive chilled beam installations that service stratified indoor environments 

where buoyancy determines the airflow patterns in the room, the buoyant flow indoor 

environments are characterized by low velocity airflow and non-uniform surface 

temperatures [2].  The thermal comfort of occupants exposed to buoyant flow conditions 

is an active area of research and the results from studies [16-19] show that the surface 

temperatures and locations of buoyancy sources in indoor spaces govern the airflow 

characteristics.  Some studies of displacement ventilation systems using chilled ceilings 

isolate the variations in buoyancy sources responsible for airflow characteristic changes 
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[16, 20].  In one study [20], experiments were conducted to assess thermal comfort in 

offices with chilled ceilings and displacement ventilation.  An office with an average 

cooling load of 60 W/m2 was constructed with control of the supply airflow rate, air 

temperature, relative humidity, mean radiant temperature and the surface temperature of 

the chilled ceiling.  The conducted tests showed that occupants experienced thermal 

comfort based on calculations of the Predicted Mean Vote (PMV) and Predicted 

Percentage Dissatisfied (PPD) according to the BS EN ISO 7730 Standard method.  

However, it was observed that at low ceiling temperatures (14 °C – 16 °C) the combined 

system did not function with a stratified air distribution because of the disruptive 

convective currents caused by the natural convection at the ceiling.  The data also 

showed that despite the higher local velocities due to the lower ceiling temperatures, the 

comfort levels were not affected due to draft.  In spaces with more than one buoyancy 

source, the combined airflows were found to disrupt thermal comfort.  Additional 

experiments were conducted to study the indoor air quality of a cooled ceiling ventilated 

by displacement compared to mixed air distribution [16].  The surface temperature of the 

cooled ceiling affected the room airflow by disrupting the displacement ventilation 

stratification and developed airflow patterns similar to the mixed air distribution in the 

occupancy zone.  Three buoyant airflow movements were observed that contributed to 

the mixed air conditions with the displacement ventilation system:  1) buoyant airflow 

moving from the ceiling to the floor from the warm air rejecting heat to the cooled 

ceiling, 2) buoyant airflow moving towards the floor from the walls caused by radiative 
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heat transfer from the cooled ceiling and 3) buoyant airflow created from heat sources 

near the floor moving towards the ceiling. 

The interaction of convective currents in the room and the relationship to thermal 

load intensity was studied experimentally [21].  A scaled test room was used to visualize 

the air distribution and measure the air velocity in a room over a range of heat loads 

generating thermal plumes from multiple sources along the floor.  The tests showed that 

at heat loads of 50 W/m2 and above, the airflow pattern in the room became more 

turbulent than at lower heat load densities and was best characterized as a floor to ceiling 

vortex.  It was found that the maximum velocities recorded in the room increased 

proportionally with the recorded power input to the heat load.  In a study of the thermal 

comfort of occupants in a room with active chilled beams, Melikov, Yordanova, 

Bozhov, Zboril and Kosonen used a test room to measure the air temperature and 

velocity over a range of internal heat loads [22].  The test subjects in the experiments 

responded to different conditions by filling in surveys to describe their comfort levels.  

The authors noted that convection from windows, the solar load on the floor, the people, 

and the computer were strong enough to affect the room airflow patterns created by the 

chilled beams.  As heat loads increased, the non-uniformity of the thermal environment 

increased, which resulted in decreased thermal comfort.   

The effect of variations on the interior heat loads in a room cooled with active 

chilled beams was studied [17].  The supply air discharged from active chilled beams 

remains attached to the ceiling until it is re-directed towards the floor by the walls.  Solar 

loads from windows increase the local surface temperature on the floor creating 
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convective airflow that in the experiments was observed to increase the air velocity of 

active chilled beam supply at the floor.  By increasing the solar load in the room, the 

draft rating increased due to the increased convective flow from the floor.  Additionally, 

the position of the chilled beams in the ceiling was shown to significantly impact 

thermal comfort as the characteristics of the combined momentum and buoyancy sources 

of supply air jet and surface temperature convection were highly dependent on source 

location. 

The convective airflow patterns created by heat loads interacting with active 

chilled beam airflow was studied by Kosonen and Melikov [18].  The heat loads used in 

the space were computers (100 W), thermal manikins (60 W), lighting (144 W) and one 

window (350 W, 142 W/m2) with a heated mat on the floor to simulate solar load (300 

W).  The experimental results showed the maximum air velocity recorded in the room 

was proportional to the value of the total heat load in the space and also dependent on 

the heat load distribution through the room.  In a similar study, the effect of internal 

loads on the airflow produced by chilled beams was studied with a simulated office test 

room [23].  Active chilled beams were installed 2.5 m from the floor with a water flow 

rate between 0.03-0.1 kg/s at an inlet temperature of 14 °C and an airflow rate of 2.0 

l/s/m2 at a supply temperature of 18 °C.  Internal loads were simulated with computers, 

thermal manikins, lights, heated floor panels and one window.  Smoke visualizations and 

temperature and velocity measurements showed that with heat loads above 56 W/m2, the 

air distribution from the chilled beam was affected.  The maximum velocities recorded 

in the space were shown to increase with the higher internal loads while the supply 
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airflow rate was held constant.  In this scenario, the draft ratings were not significantly 

affected since the maximum velocities did not surpass 0.26 m/s.  Additionally, the 

distribution of heat loads in the space was studied and found to affect the location of the 

maximum velocity but did not affect the magnitude of the maximum velocity. 

The study of the effect on occupant comfort in a room cooled with active chilled 

beams was continued by experimentally observing the air distribution in a test room with 

varying heat loads and air supply flow rates [19].  At average heat loads of 80 W/m2 50 

% of the measured area recorded a draft rating (DR) higher than 15 %.  Also, at supply 

flow rates of 3 l/s/m2, over 80 % of the area measured a DR above 15 %. 

The few studies that have published the results of tested passive chilled beams 

have measured the thermal plume characteristics.  Fredriksson, Sandberg and Moshfegh 

[24] studied the thermal plume created by an exposed passive chilled beam in an 

enclosed test room.  Using flow visualization techniques the thermal plume development 

was recorded using laser-illuminated smoke injected above the beam.  The captured 

pictures show the transition from the laminar to turbulent flow as the cooler air descends 

from the beam.  Anemometers and thermocouples were used to characterize the velocity 

and temperature of the cooled air and the authors used thermal plume models to compare 

with the data captured from the experiments.  The application of the models to the 

experimental work showed an over-prediction of the thermal plume strength, defined by 

lower temperatures and higher velocities.  Fluctuations in the plume location were 

attributed to the motion of thermals descending from the cooling coil.  Using instability 

criterion theory and the calculated Rayleigh number of the air at the fins, the frequency 
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of descending thermals was estimated to be 4 s.  It was noted that the beam sensitivity to 

heat sources was a necessary continuation of the research.  Additionally, it was 

suggested that the oscillations of the thermal plume reported in this article may cause 

occupant discomfort and contribute to a sensation of draft. 

The thermal plume from heat loads directly underneath a passive beam was 

studied [25].  Using a simulated person at a workspace with a computer, positioned 

directly below or 0.5 m from the center of the beam, the results showed that the thermal 

plume from the beam was much stronger than the heat load plumes.  The variation in 

beam thermal plume characteristics were attributed to the geometric shape of the 

simulated heat loads as the results were similar with and without power. 

The return openings in false ceilings were studied to access the impact on the 

cooling effectiveness of passive chilled beams [26].  The study found that the cooling 

effectiveness of the beam, the ratio of cooling delivered to heat generated in the space, 

was dependent on the area of return grating and the location.  The highest cooling 

effectiveness (81 %) was found with grating area twice as large as the chilled beam and 

located near the walls. 

 

2.3 Analytical Models of Thermal Plumes 

The cold airflow generated by passive chilled beams is driven by the density 

difference between the cold air and the ambient room air resulting in a buoyancy force 

that directs the cold air toward the floor [11].  The buoyant airflow from the chilled 

beam can be described as a plume, which is generally used to describe constant 
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buoyancy source flows.  The increase in diameter as a function of the distance from the 

source is caused by large turbulent eddies across the well-defined boundary separating 

the turbulent plume air from the quiescent room air [27].  Studies of buoyant flow  [28] 

were first conducted based on an interest in environmental fluid flows.  The time-

averaged values of the temperature and velocity values of a plume from both a point 

source and a line source were predicted by using a Gaussian distribution.   

The theoretical model development of plumes by Morton, Taylor and Turner 

(MTT) [29], using the conservation equations of volume flux, momentum flux and 

buoyancy flux for a steady point source in stably stratified or uniformly stratified 

environments, remains the most effective modeling of plumes [30].  The main 

assumptions of this modeling for both environments include a constant value for the 

entrainment rate and that the local variations of density are small compared to the 

reference density of the ambient fluid at the level of the source.  For the case of a stably 

stratified environment, velocity and buoyancy force profiles are assumed uniform, 

independent of height above the point source.  With these assumptions, the solution for a 

point source in a stably stratified environment was represented by three equations [29].  

The first, the conservation of mass, was derived as: 

 d
d𝑥

(𝑏2𝑢) = 2𝑏𝛼𝑢 
2.1 

where b is a characteristic length scale, u is the axial vertical velocity and 𝛼 is the 

entrainment coefficient.  The conservation of momentum was derived as: 

 d
d𝑥

(𝑏2𝑢2) = 2𝑏2𝑔
𝜌0 − 𝜌
𝜌1

 
2.2 
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where g is the gravitational constant, 𝜌0 is the density outside the plume, 𝜌 is the density 

inside the plume and 𝜌1 is the reference density for the system.  The third equation, the 

conservation of density deficiency was derived as: 

 d
d𝑥

�𝑏2𝑢𝑔
𝜌0 − 𝜌
𝜌1

� = 2𝑏2𝑢
𝑔
𝜌1

d𝜌0
d𝑥

. 
2.3 

A schematic of the plume equation parameters is presented in Figure 3. 

 

 

 

 

 

Figure 3.  Schematic of plume parameters for MTT equation derivations. 
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Turner [31] studied turbulent plume development of atmospheric thermals using 

laboratory experiments scaled by similarity and found that the entrainment rate of the 

thermal can be described by: 

 
𝐸 =  

3 ∝
𝑟

 
2.4 

where E is the entrainment rate, α is the half angle of radial spread of the plume and r is 

the radius of the thermal.  The experiments were setup to simulate constant temperature, 

constant velocity, or constant density plumes and the results of all three tests showed that 

the radius increased linearly with distance from the source [32].  It was observed that the 

mechanism for entrainment was by large eddy motion.  Baines [33] found that the 

entrainment rate was a function of only the Froude number and was dependent only on 

the plume characteristics and boundary density difference.  The parameter Γ was defined 

to be the ratio of the buoyancy force and momentum force of a plume.  The plume was 

defined as forced if Γ < 1, lazy if Γ > 1, or pure if Γ = 1 [34]. 

Corrections to the model source conditions for plumes with different values of Γ 

have been studied since the MTT equations were developed for idealized plume sources.  

Empirical measurements [32], application of a conical shape to the plume boundary [29], 

jet-length scaling [35], and a method based on the source conditions [35], have been 

developed to assign a correction to the source location of forced, lazy, and pure plumes.  

Additionally, a new plume parameter (Cc = 1 – 1/ Γ) was developed and the equations 

for Q0 (volume flux), F0 (buoyancy flux) and Cc were solved numerically [36] to find the 

volume flux based on the distance from the source.  The virtual origin of lazy plumes 

[37] was the main objective of a study that presented a one-step method similar to the 
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MTT method of virtual source location.  Hunt and Kaye [38] introduced a dimensionless 

parameter, Λ, a heating characteristic of the plume and solved the MTT equations for 

lazy plumes.  The steady state solutions showed a reduced entrainment rate for lazy 

plumes when compared to pure plumes.  The work verified that the MTT equations (and 

the entrainment rate assumption) applied for near source analysis if the correct source 

conditions are used in the modeling. 

Dynamic source conditions of buoyant plumes have been studied to examine the 

effect on plume behavior of increasing or decreasing source strength.  Scase, Caulfied 

and Dalziel numerically solved the MTT equations and defined a region of narrowing in 

the plume development for decreased source strength [39].  Within a stratified 

environment, two regions in the plume can be described with a transition from the near 

source area to greater heights.  With decreased source strength, the stall time of the 

plume ascent was predicted based on the buoyancy frequency.  The work was continued 

for uniform environments [30] and showed that three regions existed for a decreased 

source strength: an upper region unaffected by the changing source conditions, a lower 

region characterized by the reduced buoyancy and a transition region with a narrowing 

of the plume.  The authors note that in the near-source region, the constant entrainment 

assumption may not be valid and lead to a pinch-off of the plume. 

The transition from laminar to turbulent plume flow was studied using laboratory 

experiments with cigarette smoke [40].  The observations from the project characterized 

the transition as a sinusoidal function with a wavelength that scaled with the plume 

diameter.  This characterization of plume transition was derived to include asymmetric 
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plume response [41].  Through the equation derivation, the observed unstable sinusoidal 

behavior of the plume was shown theoretically. 

 

2.4 Indoor Airflow Numerical Modeling 

CFD is a numerical simulation technique that is able to predict fluid flow by 

iteratively solving the Navier-Stokes equations [42].  The application of these techniques 

to room airflow has greatly increased the ability to study implications of air distribution 

design and simulate real-life scenarios [43].  Within CFD, the choice of models used to 

approximately solve the Navier-Stokes equations is flow-type dependent.  Turbulence 

models, boundary conditions for surfaces, mesh sizing and radiation modeling include 

the main areas of continued research in room airflow [2].  Additionally, simplifications 

to complex geometries have been studied to reduce the mesh size and computational 

resources necessary to model full scale rooms and buildings [8].   

Many different turbulence models have been applied to room airflow in order to 

correctly characterize the laminar turbulent flow.  Reynolds-averaged Navier-Stokes 

(RANS) and large-eddy simulation (LES) methods have been the predominate 

approaches used in indoor air simulations.  Of the RANS models, two main categories 

exist:  eddy viscosity models and Reynolds-stress models (RSM) [44].  Eddy viscosity 

models, also termed eddy diffusivity, rely on estimating the turbulence by considering 

the velocity fluctuations effect on the fluid characteristics:  specifically, the variation of 

the viscosity of the fluid.  The effective viscosity, 𝜇𝑒𝑓𝑓, of the fluid can be defined as: 
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 𝜇𝑒𝑓𝑓 = 𝜇𝑡 + 𝜇 2.5 

where 𝜇𝑡 is the turbulent viscosity and 𝜇 is the physical viscosity.  Variations within the 

eddy viscosity models center on the calculation of the turbulent viscosity term [45].  

There are many different models that include zero-equation, one-equation, two-equation 

and multiple-equation methodologies to calculate the turbulent viscosity.  Chen and Xu 

[4] developed a zero-equation model that uses an algebraic relationship to model the 

turbulent viscosity that is dependent on the density, local mean velocity and 

characteristic length scale of the flow.  The turbulent viscosity is calculated as: 

 𝜇𝑡 = 0.03874 𝜌𝑉𝐿 2.6 

where 𝜌 is the density, 𝑉 is the local mean velocity, L is the distance to the nearest wall 

and the constant is determined empirically.  One-equation models, such as the model 

developed by Spalart and Allmaras [46], use an equation to calculate the turbulent 

viscosity that consists of another parameter, the turbulent kinetic energy, determined by 

solving the transport equation.  The standard k-ε model developed by Launder and 

Spalding [47] has been used extensively for indoor flows [45].  The turbulence kinetic 

energy, k, with the dissipation rate of turbulence energy, ε, is used in to calculate the 

turbulent viscosity: 

 
𝜇𝑡 = 𝐶𝜇𝜌

𝑘2

𝜀
 

2.7 

where 𝜌 is the fluid density and 𝐶𝜇 is an empirically derived constant [47].  Many 

variations of the standard k-ε model were developed that attempt to better predict the 

turbulence for low Reynolds flow [48-51].  Different approaches to using the k-ε model 
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in scenarios with both fully turbulent flow and low velocity, laminar flow incorporate 

damping functions to the model development to account for the airflow near boundaries 

and for areas with destruction of the turbulent kinetic energy due to buoyancy [45].  The 

renormalization group (RNG) k-ε model [52] is another two-equation model that uses 

additional techniques to predict the fully turbulent regions and the near-wall regions in 

room airflow. Gan [53] compared the RNG k-ε model to the standard k-ε model and 

found the former to be a more accurate predictor of turbulent buoyant flow.  Similarly, in 

their study of low velocity diffusers, Cehlin and Moshfegh [54] found that the RNG k-ε 

model predictions were the most stable and comparable to temperature distributions and 

velocity profiles of the measured data.  The RNG k-ε model was used successfully for 

predictions of natural displacement ventilation in an enclosure connected to an atrium 

[55], simplifications of low velocity displacement ventilation diffusers [56], the thermal 

plume from a time-dependent thermal model of a human body [57] and other studies of 

indoor airflow [5, 58-63].  

Simplification of complex geometries is an important method to reduce 

computing time for room air simulations [13].  The detailed geometry of the supply 

diffuser significantly influences the room air characteristics [8].  Simplification 

methodologies have been developed to model the supply diffuser without distorting the 

airflow characteristics [64-67].  Zhao, Li and Yan combined a diffuser simplification 

methodology with a zero-equation turbulence model and an error calculation 

methodology.  The system predicted the room air characteristics with a calculation rate 

eighty five percent faster than the calculation rate of a similar solution using the standard 
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k-ε model with basic solver methods [68].  The box and momentum methods were 

developed to simplify the CFD mesh around complicated diffuser geometries [7].  The 

box method applies the velocity inlet boundary condition to a much larger volume 

surrounding the diffuser until the airflow is approximately uniform [66].  A method of 

testing for experimental data was shown to obtain the input parameters used in the 

methods [8]. 

The implications on the predicted throw profile were studied with five supply 

diffuser modeling techniques along with a comparison between the standard k-ε and 

RNG k-ε turbulence models [69].  It was shown that the momentum method should be 

applied to displacement and combined jet mixing diffusers and that the box method 

should be used for nozzle, slot and valve diffusers that discharge separate jets [7].  

Zhang, Lee and Chen [56] used a cell-blocking method to simplify inlet diffuser 

simulation.  Individual cells in the calculation grid were blocked from mass flow in order 

to account for the effective area ratio of the diffuser. 

CFD has been employed to study the minute details of flow development for 

buoyant plumes.  Soteriou, Dong and Cetegen [70] were able to simulate the pulsation 

frequency of the plume generation and showed that the symmetry of the plume 

development grew with increased buoyancy dominance.  It was shown that the pulsation 

frequency was dependent on nozzle width and density ratio but almost entirely 

independent of external flow parameters.  

The k-ε model was used to simulate airflow distribution of a task conditioning 

system in a typical office space with the assumptions that the air is incompressible, the 
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Boussinesq approximation is applicable, and the airflow is steadily turbulent with a high 

Reynolds number and isotropic turbulence viscosity [71].  The interior walls, ceiling and 

floor were set to adiabatic boundaries with an exterior wall subject to convective heat 

transfer with a heat transfer coefficient of 1.5 W/m2K.  The airflow distributed by an 

active chilled beam was simulated without simplifying the complex diffuser geometry 

[72].  The non-validated simulation results show room air temperatures and velocities for 

a typical office during both the cooling and heating season. 

The diameter and curvature of convective rolls from a cooled ceiling were 

studied for a wide range of Rayleigh numbers [73].  The numerical simulations showed 

that the change in the average roll diameters was effected by the transition into an 

oscillatory flow regime.  Using the freeze-flow method of unsteady simulation, Cook, 

Zitzmann and Pfrommer [74] modeled a dynamic thermal indoor environment and 

calculated the temperature distributions for two temperature-controlled walls and also 

for the cooling of a solid wall.  The k-ω model for calculating the eddy viscosity was 

used in conjunction with the discrete transfer model for radiative heat transfer. 

CFD was used to study the thermal plume from a thermal manikin in a room with 

displacement ventilation [75].  Comparisons between different turbulence models with 

and without radiation showed that the detached-eddy simulation (DES) including 

radiative heat transfer best matched the experimental data.  Another study using the k-ε 

model for turbulence modeling varied the location of a convective heat source in a two 

dimensional displacement ventilation setup [76].  The results showed the temperature 

stratification and the air recirculation patterns of the room disrupted by the heat source.   
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A comparison study between a radiative cooling panel system to an all-air system 

showed the CFD predictions validated by experimental data [77].  The calculated air 

velocities and room air temperature measurements were shown to match closely to the 

test room data by using the k-ε turbulence model and the coupled flow solver.  The walls 

were setup with estimated heat transfer coefficients and reference temperatures 

dependent on material and location. 
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CHAPTER III  

EXPERIMENTS AND METHODOLOGY 

 

3.1 Experimental Facility 

3.1.1 Test Room 

Experimental data was collected at the Price Research Center in Winnipeg, 

Canada using a hydronic test chamber shown in Figure 4.  The chamber was developed 

for the testing of chilled beams and radiant panels and featured temperature control and 

monitoring on each interior surface.  The room was constructed with a 4 in (10.16 cm) 

layer of R-20 insulation, a 6 in (15.24 cm) air gap, radiant panels and a second 4 in 

(10.16 cm) layer of R-20 insulation, as listed from the exterior wall to the interior wall, 

as shown in Figure 4.  Temperature-controlled water was circulated through the radiant 

panel coils to provide a uniform and consistent surface temperature on the interior 

surfaces of the room.  Each wall was designated as the North wall, East wall, South wall, 

or West wall.  The opening shown in Figure 4 was on the South wall. 
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Figure 4.  Temperature-controlled test chamber cross section shown at left and inside 
dimensions at right. 

 
 
 

The supply water was controlled with a direct digital control (DDC) valve 

adjusting the flow rate to the beam.  A secondary loop of chilled water, connected 

thermally to the primary loop by a series of heat exchangers, provided heat rejection 

with either a dry or wet chiller located outside the testing facility.  To reduce water 

temperature variations in the secondary supply, a buffer tank (approximately 380 l 

capacity) was connected in series and included an internal gas-fired burner. 

A passive chilled beam (Figure 5), 61 cm in width and 244 cm in length was 

attached to a bracket 0.25 meters from the ceiling of the room, centered from the walls.  

The beam was constructed of 12.7 mm diameter copper tubing with aluminum extruded 

fins measuring 15 cm in height and 61 cm in length and 2.4 mm thick.  The beam was a 

two-row, twelve-pass coil with an aluminum shroud extending down around the outside 

Conditioned Exterior

Test Room Interior
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of the fins and an additional 46 cm from the bottom of the fins.  The total number of fins 

was 384 at a spacing of 1.6 fins/cm (4 fins/in). 

 

 

 

Figure 5.  Passive Chilled Beam (PCB) geometry and dimensions. 

 
 
 

Thermal manikins were used as one type of heat source in the space, shown in 

Figure 6.  Each manikin was constructed to conform to standard EN 14240 and could be 

controlled with a digital silicon-controlled rectifier (SCR) up to 194 W of power.  The 

metal cylinders, coated with high emissivity paint, contain three light bulbs and openings 

at the top and bottom to simulate the radiation and convection heat transfer of a person.  

Twelve manikins, connected in series, were used in the testing with a possible total heat 

input of 2300 W. 

0.15 m

12-pass coil

2.44 m

0.61 m
Fins
Thickness:         2.4 mm
Spacing:      1.6 fins/cm
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Figure 6.  Thermal manikins used in testing. 

  
 

 
A second type of heat source, radiant panels, was also tested.  Each panel 

measured 61 cm by 122 cm and 5 cm thick.  A layer of insulation was placed beneath 

each panel and the floor to reduce the transfer of heat generated by the radiant panels to 

floor.  The panels were connected to the same power outlets as the thermal manikins. 

3.1.2 Sensors 

Temperature sensor calibrations were conducted using a metrology well 

calibrator.  The reference Resistance Temperature Detector (RTD) was calibrated by a 

calibration service laboratory to an accuracy of ± 0.03 °C.  The metrology well calibrator 

was used to maintain a uniform internal temperature and the temperature probe under 

test was compared to the reference RTD through a range of temperature points.  Each 

Internal Light Tree

1 cm 
DIA

8 cm 
DIA

1 m



 

28 

 

temperature sensor was calibrated with the data acquisition boards and power supplies 

used in the experiments.   

The primary measurements in the testing included the supply and return water 

temperatures to the beam, the supply water mass flow, the power input to the thermal 

manikins, and air temperature and velocity measurements of the plume generated by the 

beam.  Four-wire RTDs were used on the supply and return of the beam water.  The 

temperature sensors were calibrated as a pair before conducting the experiments and the 

estimated accuracy was ± 2.2 % for the eight comparison points over the temperature 

range 40 °F – 126 °F.  A coriolis flow meter measured the flow rate on the supply-side 

to the beam.  The manufacturer specifications of the meter list an accuracy of ± 0.1 % of 

the measured mass flow rate and laboratory calibration of the meter resulted in an 

accuracy of ± 0.3 %.  The input power to the heat sources was measured with a watt 

meter with an accuracy of ± 0.5 % of the measured power.  Six omni-directional velocity 

transducers were supported by a vertical stand and positioned symmetrically below the 

beam along a central path of the descending plume air.  The velocity sensors were 

calibrated prior to running the experiments and were found to have an accuracy of ± 

3.3 % over the velocity range of 25–500 feet per minute.  Four-wire RTDs were attached 

to the stand in the same location as the velocity probes to measure the temperature, as 

shown in Figure 7.  Three omni-directional velocity sensors measured the discharge 

velocity from the beam twelve inches from the coil, spaced equally along the centerline 

of the beam.  Three four-wire RTDs were positioned above the beam to measure the 

room air reference temperature and were calibrated before conducting the experiments 
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with an estimated accuracy of ± 0.12 % for the fourteen comparison points over the 

temperature range 50 °F – 120 °F.  Additionally, a globe temperature sensor was 

positioned 1.1 m from the floor outside of the path of the beam plume.  Table 1 presents 

a summary of the sensor specifications.  The locations of the sensors are shown in Figure 

8. 

 
 

 

 

Figure 7.  RTD probe and TSI omni-directional velocity probe pictured left to right, 
respectively. 
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Table 1.  Sensor specifications for test room experiments. 
Sensor Type Accuracy Range 
Inlet and outlet beam water 
temperatures RTD ± 2.2 % of reading 40–126 °F 

Supply water mass flow 
rate Coriolis ± 0.3 % of reading 0-95 kg/h 

Thermal manikin input 
power Watt meter ± 0.5 % of reading 0-150 VAC, 0-30 AAC 

Plume air velocity Omni-directional ± 3.3 % of reading 25-500 fpm 
Reference air temperature RTD ± 0.12 % of reading 50–120 °F 
 
 
 
 

 

Figure 8.  Sensor locations of the plume temperature thermocouple array (ZTC = 2.3 m), the 
plume velocity and RTD tree (ZRTD = 2.1 m), the outlet velocities from the beam (Zv3 = 1.9 m, Zv2 

= 2.2 m, Zv1 = 2.7 m) and the globe temperature sensor (ZG = 3.5 m). 
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Air temperatures were recorded with T-type thermocouples constructed with 

soldered junctions no more than 1 mm in diameter as shown in Figure 9.  The 

thermocouples were connected to a Keithly 2700 data logger.  Calibration was 

conducted on each thermocouple used in the experiments.  The Fluke 9171 Metrology 

Well was used in a two point comparison with the reference RTD at 70 °F and 135 °F, 

resulting in an error of ± 2 % (± 1.4 °F at 70 °F). 

 
 

 

 

Figure 9.  T-type thermocouples measured the beam plume air temperatures. 
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Two thermocouple arrays were constructed to measure the air temperatures 

below the beam as shown in Figure 10.  The first, a seven-by-five grid positioned 

directly below the beam, consisted of a vertical stand with slotted arms supporting each 

row of seven T-type thermocouples spaced eight inches apart laterally.  The second array 

construction featured two rows with 13 cm between each sensor and 13 cm between 

each row.  The stand was positioned to capture the plume air directly beneath the beam 

and continue to the space above the heat sources. 

 
 
 

 

Figure 10. Thermocouple array configurations for measuring the Passive Chilled Beam (PCB) 
plume air temperatures (y1,A = 22 cm, yTC,A = 1.0 m, y1,B = 52 cm, yTC,B = 1.9 m). 

 
 
 
Each wall radiant panel, sized 61 cm x 427 cm, contained twelve thermocouples 

connected by an averaging joint, and measured the inside and outside surface 

temperatures throughout the room as shown in Figure 11.  
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Figure 11.  Wall, ceiling and floor surface temperature measurements. 
 
 
 
The beam capacity was calculated as the product of the mass flow rate of water 

through the beam, specific heat of water at the average temperature measured between 

the inlet and outlet, and the difference in temperature between the inlet and outlet.  The 

equation for the measured beam capacity is the following: 

 𝑄𝑏 = �̇�𝑤𝑐𝑝𝑤�𝑇𝑤,𝑜 − 𝑇𝑤,𝑖� 3.1 

where Qb is the passive beam capacity, �̇�𝑤 is the mass flow rate of the supply water as 

measured from the Siemens mass flow meter, cpw is the specific heat capacity of the 

water evaluated at the average of the inlet and supply water temperatures, 𝑇𝑤,𝑜 is the 

outlet water temperature from the beam, and 𝑇𝑤,𝑖 is the inlet water temperature to the 

beam, both measured with the RTD sensors. 
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The estimated error of the measured beam capacity was calculated by 

incorporating the cumulative accuracies of the sensors measuring the water temperatures 

and mass flow.  The water temperature sensors were calibrated as a pair and their 

accuracy was estimated to be ± 2.2 % of the reading.  The mass flow meter was 

calibrated by Siemens with an estimated accuracy of ± 0.3 % of the reading.  The total 

error of the measured beam capacity was then estimated at an accuracy of ± 3 % of the 

reading. 

3.1.3 Data Collection 

The data was networked on the local Ethernet connections in the lab from the 

National Instruments data acquisition (DAQ) boards to a supervisory data logging server 

located in the control room.  An overview of the data logging system is shown in Figure 

12.  
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Figure 12.  Data collection in test room of thermocouple, RTD and velocity measurements. 
  
 
 

The thermocouples connected to the Keithly 2700 were installed in a 

thermocouple control module and the system capability was a maximum of 3500 

readings/s at a maximum scanning rate of 500 channels/s.  The data logger converted the 

voltage signals from the thermocouples to °F that were then broadcast through the 

Ethernet connection to the data logging server at 22-bit resolution.  The averaged 

readings from the thermocouples in °F were recorded in 20 s increments in the database 

test file. 

The measurements from the velocity and RTD sensors were conducted with a 0-

10V analog voltage loop between the sensor transducers and the field point modules in 
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16-bit resolution.  The temperature readings were linearized and scaled in the RTD 124 

module, with a 1.08 s update period, a 2 mA excitation current, a 60 Hz rejection filter, 

and were configured for temperature readings in °C.  The velocity readings in the 

National Instruments AI-110 analogue input module were filtered at 60 Hz with a 

channel update rate of 1.47 s.  The National Instruments FP-2000 network module sent 

the input module data from the RTDs and velocity sensors through the Ethernet 

connection to the supervisory data logging computer at a 10 Mb/s communication rate. 

 

3.2 Test Methodology 

3.2.1 Validation 

The approach to validating the numerical model was to test a passive chilled 

beam in a thermally controlled environment with symmetrically positioned heat loads 

and run a series of simulations to predict air characteristics of the modeled test room for 

the same test operating set points.  By thermally isolating the test conditions from the 

external environment (and measuring any heat transfer into or out of the experiment), the 

passive chilled beam operation was measured without any additional unaccounted for 

effects.  The experimental set points were designed to test over a range of thermal loads 

and passive chilled beam capacities.  The passive chilled beam water conditions (mass 

flow rate, inlet and outlet temperatures), temperature profiles of the room air above and 

below the beam, velocity profiles in the beam plume, the power input to the thermal 

loads, and surface temperatures of the inside walls of the test chamber were measured so 

as to compare with the CFD model predictions.  The CFD model was then used to 
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predict the steady state thermal conditions of each test set point based on the initial and 

operating conditions of the tests.  Table 2 lists the experimental set points for each test 

that were used in the CFD model to calculate the airflow characteristics. 

 
 
 

Table 2.  Measured test data used for CFD model inputs. 

Test 
Thermal 
Manikin 

Power (W) 

Beam 
Capacity 

(W) 

Floor Surface 
Temperature 

(°C) 

Ceiling Surface 
Temperature 

(°C) 

Wall Surface 
Temperature 

(°C) 
1 474 578 26.4 25.6 25.7 
2 514 599 26.6 25.6 25.7 
3 533 555 26.8 25.5 25.6 
4 622 790 26.3 25.4 25.5 
5 691 765 26.4 25.4 25.4 
6 735 767 26.6 25.3 25.3 
7 841 1035 26.1 25.3 25.2 
8 912 973 26.3 25.2 25.2 
9 979 1017 26.7 25.2 25.2 
10 1101 1280 26.1 25.2 25.2 

 
 
 
3.2.2 Test Setup and Initial Conditions 

The primary objective for data collection was to record temperature and velocity 

measurements in the test space that would be used to compare with predicted values 

using the CFD model.  The experimental procedure followed similar specifications listed 

in EN 14518 [78] for the testing of passive chilled beams.  The beam supply water 

temperature and flow rate were specified for each set point of the test and the input 

power to the thermal manikins was controlled to meet a specified value for the reference 

temperature above the beam.  Once the set point values were reached and the standard 

deviations of water flow rate, supply temperature, and the reference temperatures were 
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below 0.1 for 60 min, the data was recorded and the testing procedure moved onto the 

next set point value.  Figure 13 shows the sensors for the testing procedure that were 

used as either test set point targets or feedback for the control system and Table 3 lists 

the parameters used for each set point in each test. 

 

 

 

Figure 13.  Sensors used for the testing procedure set points:  power input to the thermal 
manikins (P), supply water mass flow and inlet and outlet temperatures (�̇�w, Tw,i, Tw,o), reference 

air temperatures above the beam (Tref,1, Tref,2, Tref,3). 
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Table 3.  Inlet water temperature and supply flow rate for each test set point. 

Set 
Point 

Inlet Water 
Temperature (°C) 

Supply Water 
Flow Rate (l/hr) 

1 18 453.5 
2 18 340.2 
3 18 226.8 
4 16 453.5 
5 16 340.2 
6 16 226.8 
7 14 453.5 
8 14 340.2 
9 14 226.8 

10 11 453.5 
 

 

 

Each test required between 15 hr and 20 hr to complete.  During each test, the 

measured values from the thermocouples, velocity probes, RTDs, watt meter, and mass 

flow meter were recorded at 20 s increments. 

Symmetric and asymmetric heat load configurations were tested.  The thermal 

manikins were arranged 104 cm from the outer wall to the center of the thermal manikin, 

spaced equally apart parallel to the length of the beam.  Two rows of six thermal 

manikins each were placed on both sides of the beam in the symmetric configuration, 

shown in Figure 14 and both rows on one side in the asymmetric configuration as shown 

in Figure 15. 
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Figure 14.  Test setup A with symmetric placement of thermal manikins, where xa = 1.1 m and 
za = 30 cm. 

 
 
 

 

Figure 15.  Test setup B with asymmetric thermal dummy placement, where xb = 1.1 m and  
zd,b = 30 cm. 
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Radiant panels were also used as heat sources in a third configuration, shown in 

Figure 16 to test for the beam operation and plume characteristic differences based on 

the type of heat source.  The radiant panels measured 61 cm by 122 cm.  Two panels 

were placed on either side of the beam with the panel centers 104 cm from the wall.  A 

layer of insulation was placed beneath each panel. 

 

 

 

Figure 16.  Test setup C with symmetrically placed radiant panels, where xc = 1.1 m, zc,f = 1.3 m, 
and zc,r = 2.7 m. 
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CHAPTER IV  

NUMERICAL MODEL 

 

4.1 Introduction 

The numerical simulation was constructed using Star CCM+ v6.06.  The 

following section, first, documents the methodology for simplifying the passive beam 

geometry using a porous medium.  Second, the applied boundary conditions, turbulence 

model and solver techniques are reported.  Third, the mesh construction is explained and 

the results of a grid convergence study are documented.  The methodology and 

techniques used to develop the passive chilled beam simulations are available in other 

commercial CFD packages and should produce equivalent model results.  A derivation 

and explanation of the fundamental equations in CFD can be found in Appendix A. 

 

4.2 Porous Region 

The passive chilled beam geometry and heat transfer characteristics were 

simplified by using the porous region function for the volume encompassing the passive 

chilled beam in the room simulation.  The porous medium model simulates a specified 

region within the simulation volume as a solid with channels that allow fluid flow.  The 

geometric characteristics of the solid and the channels are not specified.  Instead, the 

movement of the flow through the region is governed by a set of user inputs that 

determine the heat transfer and momentum exchange within the volume.  The primary 

calculations applied to the porous medium are a momentum source term added to the 
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momentum equation and an energy source term added to the energy equation.  The 

momentum source term, Sij, is calculated as a function of viscous and inertial resistance: 

 
𝑆𝑖𝑗 =  −��𝐷𝑖𝑗𝜇𝑢𝑗

3

𝑗=1

+  �𝐶𝑖𝑗
1
2
𝜌|𝑢|𝑢𝑗

3

𝑗=1

� 
4.1 

where Dij is the coefficient of porous viscous resistance and Cij is the coefficient of 

porous inertial resistance.  The first term on the right hand side of Equation 4.1 is the 

viscous resistance and the second term on the right hand side of Equation 4.1 is the 

inertial resistance.  The energy source term is added to the energy equation for all cells 

in the designated volume to model heat transfer through the porous region: 

 𝜕
𝜕𝑡
�𝛾𝜌𝑓𝐸𝑓 + (1 − 𝛾)𝜌𝑠𝐸𝑠� + ∇ ∙ �𝑢�⃑ �𝜌𝑓𝐸𝑓 + 𝑝��

=  ∇ ∙ �𝑘eff∇𝑇 − ��ℎ𝑖𝐽𝑖
𝑖

� + (𝜏̿ ∙ 𝑢�⃑ )� + 𝑆𝑓ℎ 

4.2 

where 𝛾 is the porosity, Ef is the total fluid energy, Es is the total solid medium energy, p 

is the pressure, keff is the effective thermal conductivity of the medium, ∇𝑇 is the 

temperature gradient, h is the enthalpy, J is the diffusion flux, τ is the shear stress, and 

Sh
f is the fluid enthalpy source term.  The following sections detail the functions and user 

inputs that were specified for the porous medium region of the passive chilled beam 

simulations.   

4.2.1 Energy 

A positive or negative value for the energy source term designates the porous 

region as either a source or sink of heat, respectively.  To model the passive chilled 

beam, the energy source option was selected to specify the region as a heat sink and to 
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provide cooling to the room air.  For the validation simulations, the beam capacity at 

each test point from the experiments was used to define the value of the volumetric 

energy source of the porous region, 𝐸𝑓′′′.  Additionally, the value for the energy source 

term was calculated at each iteration as a function of the temperature difference between 

the room air above the beam and the mean water temperature assumed for the beam for 

simulations with a varying beam capacity.  The equation used in the simulations 

included a coefficient, Cbc, that was determined based on the experimental data: 

 
𝐸𝑓′′′ =  𝐶𝑏𝑐

𝑇𝑟𝑒𝑓 −  𝑇𝑤,𝑎𝑣𝑒

𝑉
 

4.3 

where Tref is the average reference temperature measured across a horizontal plane in the 

simulation 0.14 m above the porous medium, Tw,ave is an assumed mean water 

temperature for a typical passive chilled beam, and V is the volume of porous medium 

region.  Tw,ave was 18 °C and V was 0.223 m3.  The value of Cbc was calculated at each 

iteration based on a relationship to Tref – Tw,ave that was derived from experimental data.  

The calculation method and the equation development for Cbc is reported in Chapter VII.  

4.2.2 Porosity 

The porosity of the volume was set based on the geometry of the passive beam.  

The total volume of a one fin section of the passive beam was 517 cm3, as shown in 

Figure 17.  Within the total volume that accounts for both the passive beam and the air, 

the beam volume (one fin plus twelve sections of the coil) was 229 cm3.  The remaining 

air volume was 287 cm3.  The volume porosity was calculated as the ratio of the volume 

of the air in a one-fin section of the coil to the total volume of a one-fin section of the 
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coil.  The porosity of the passive beam was calculated to be 0.56 based on this 

approximation method. 

 

 

 

Figure 17.  One fin section of passive chilled beam volume of air used in porosity 
approximation. 
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4.2.3 Porous Inertial Resistance 

The porous inertial resistance coefficient, Cij, is used to calculate the inertial 

resistance contribution to the overall momentum source term for the porous region as 

shown in Equation 4.1.  A positive value of Cij would have the effect of slowing down 

the velocity of the fluid flowing through the region and is similar to the effect of 

constricted flow through a pipe with a decrease in pipe diameter.  A uniform inertial 

resistance can be specified or a directional inertial resistance based on the three 

components.  With the geometry of the passive chilled beam fin bank, a three component 

inertial resistance was applied for the passive chilled beam simulations.  The x-

component of inertial resistance was set many orders of magnitude higher than the y-

component and the z-component to restrict the room airflow in the direction 

perpendicular to the fin surfaces. 

4.2.4 Porous Viscous Resistance 

The porous viscous resistance coefficient, Dij, is used to calculate the viscous 

resistance contribution to the overall momentum source term for the porous region as 

shown in Equation 4.1.  A positive value of Dij would have the effect of slowing down 

the velocity of the fluid flowing through the region and is similar to the effect of 

constricted flow through a pipe with an increase in roughness along the surface of the 

pipe.  A uniform viscous resistance can be specified or a directional viscous resistance 

based on the three components.  With the geometry of the passive chilled beam fin bank, 

a three component viscous resistance was applied for the passive chilled beam 

simulations.  The x-component of viscous resistance was set many orders of magnitude 
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higher than the y-component and the z-component to restrict the room airflow in the 

direction perpendicular to the fin surfaces. 

4.2.5 Solid Thermal Conductivity 

The solid thermal conductivity is used to calculate the effective thermal 

conductivity of the volume consisting of the fluid and solid.  The equation for the 

effective thermal conductivity, which is used in the energy equation, is based on the 

porosity of the region: 

 𝑘eff =  𝛾𝑘𝑓 +  (1 − 𝛾)𝑘𝑠 4.4 

where kf is the fluid thermal conductivity, and ks is the solid medium thermal 

conductivity.  The thermal conductivity of the solid region was estimated based on the 

thermal conductivity of extruded aluminum and copper along with the mass ratio of 

aluminum to copper in the passive beam.  The following equation was used: 

 𝑘s =  
𝑚𝑎𝑙

𝑚𝑐𝑢
𝑘al +  �1 −   

𝑚𝑎𝑙

𝑚𝑐𝑢
 � 𝑘𝑐𝑢 4.5 

where ks is the effective solid thermal conductivity, mal is the mass of aluminum, mcu is 

the mass of copper, kal is the thermal conductivity of aluminum, and kcu is the thermal 

conductivity of copper.  ks was calculated to be 200 W/mK. 

4.2.6 Interfaces 

The boundaries of the porous medium region were setup as two different types of 

interfaces:  an in-place interface that did not restrict fluid flow or heat transfer, and an in-

place interface that was defined as an adiabatic baffle that both restricted fluid flow and 

heat transfer.  The passive chilled beam is surrounded by sheet metal that restricts 

airflow in the direction parallel to the length of the fin.  The inlet and the outlet to the 



 

48 

 

beam are open to the room air without any flow restriction.  In order to replicate the 

airflow characteristics through the passive chilled beam boundaries, the inlet and outlet 

were defined as in-place interfaces with no restriction to fluid flow or heat transfer and 

the four sides of the beam were defined as adiabatic baffles. 

 

4.3 Boundary Conditions 

Wall boundary conditions were used for solid-to-fluid interfaces in the 

simulation volume.  The velocities were defined based on the no-slip condition where 

the wall velocity was set to zero (𝑢𝑖 = 0).  The heat transfer at the wall boundaries was 

defined by either a surface temperature (taken from experimental data) or a constant heat 

flux for the heat sources.  The interface between the passive chilled beam region and the 

room air region were defined as either an adiabatic baffle or an in-place interface 

without heat transfer or fluid flow restrictions.  A summary of the boundary condition 

applications is shown in Figure 18. 
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Figure 18.  Boundary conditions for passive chilled beam model. 
 

 

 

4.4 Turbulence Model 

The standard k-ε turbulence model was used for the CFD simulations.  This 

turbulence model is based on a RANS two-equation eddy viscosity method for 

approximating the turbulent flow.  Star CCM+ uses a finite volume discretization of the 

flow equations and the governing equations for the flow represented in differential form 

as derived in Appendix A are: 

Heat Flux Surface 
Temperature

Adiabatic 
Baffle
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�
𝜕𝜌
𝜕𝑡

+ 𝑢𝑗
𝜕𝜌
𝜕𝑥𝑗

� + 𝜌
𝜕𝑢𝑗
𝜕𝑥𝑗

= 0 
4.6 

 
𝜌 �

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

� =  −
𝜕𝑝
𝜕𝑥𝑖

+  
𝜕𝑇𝑖𝑗
𝜕𝑥𝑗

 
4.7 

The velocity (𝑢) and pressure (𝑝) can be decomposed into a mean (𝑢� , �̅�) and fluctuating 

(𝑢′,𝑝′) component to represent the instantaneous values of Equations 4.1 and 4.2 and are 

defined as: 

 𝑢 = 𝑢� + 𝑢′ 4.8 

 𝑝 = �̅� + 𝑝′ 4.9 

Using Equations 4.8 and 4.9 and reinserting into Equations 4.6 and 4.7, the rearranged 

equations become:  

 𝜕𝑢𝑗
𝜕𝑥𝑗

 
4.10 

 
𝜌 �

𝜕𝑢�𝑖
𝜕𝑡

+ 𝑢�𝑗
𝜕𝑢�𝑖
𝜕𝑥𝑗

� =  −
𝜕�̅�
𝜕𝑥𝑖

+  
𝜕
𝜕𝑥𝑗

�𝑇𝚤𝚥��� −  𝜌�𝑢𝑖′𝑢𝑗′�� 
4.11 

The last term on the right-hand-side, 𝜌�𝑢𝑖′𝑢𝑗′�, is defined as the Reynolds Stress and is 

an approximation of the flow behavior that does not directly represent a characteristic of 

the fluid or the flow.  As a result, the Reynolds Stress must be modeled based on fluid 

and flow properties.  The Boussinesq eddy viscosity assumption relates the Reynolds 

Stress, 𝜏𝑖𝑗 to the turbulent kinetic energy, the mean strain rate, and a term defined as the 

turbulent viscosity: 

 
𝜏𝑖𝑗 = 2𝜇𝑡𝑆𝑖𝑗 −

2
3
𝜌𝑘𝛿𝑖𝑗 

4.12 
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where 𝜇𝑡 is the turbulent viscosity, 𝛿𝑖𝑗 is the Kronecker delta, and 𝑆𝑖𝑗 is the strain rate 

tensor defined as: 

 
𝑆𝑖𝑗 =

1
2
�
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

� 
4.13 

The turbulent viscosity is modeled, as defined by Launder and Spalding, as: 

 
𝜇𝑇 =  𝜌𝐶𝜇

𝑘2

𝜀
 

4.14 

where 𝐶𝜇 is a constant, k, is the turbulent kinetic energy, and 𝜀 is the turbulent 

dissipation.  The turbulent kinetic energy and the turbulent dissipation are defined as: 

 
𝑘 ≡  

1
2
𝑢𝚤𝑢𝚤����� 

4.15 

 
𝜀 ≡  𝜈

𝜕𝑢𝚤𝜕𝑢𝚤���������
𝜕𝑥𝑘𝜕𝑥𝑘

 
4.16 

where 𝜈 is the kinematic viscosity. 

The method of solution of the transport equations used to calculate k and 𝜀 is 

reviewed below and can be found documented in the Star CCM+ user guide.  The 

transport equations used to calculate the turbulent kinetic energy and the turbulent 

dissipation written in differential form are the following: 

 𝜕
𝜕𝑡

(𝜌𝑘) +
𝜕
𝜕𝑥𝑖

(𝜌𝑘𝑢𝑖)

=  
𝜕
𝜕𝑥𝑗

��𝜇 +
𝜇𝑡
𝜎𝑘
�
𝜕𝑘
𝜕𝑥𝑗

� + 𝐺𝑘 +  𝐺𝑛𝑙 −  𝜌𝜀

−  𝑌𝑀 + 𝑆𝑘 

4.17 
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 𝜕
𝜕𝑡

(𝜌𝜀) +
𝜕
𝜕𝑥𝑖

(𝜌𝜀𝑢𝑖)

=  
𝜕
𝜕𝑥𝑗

��𝜇 +
𝜇𝑡
𝜎𝜀
�
𝜕𝜀
𝜕𝑥𝑗

� + 𝐶1𝜀
𝜀
𝑘

(𝐺𝑘 + 𝐶3𝜀𝐺𝑏)

− 𝐶2𝜀𝜌
𝜀2

𝑘
+ 𝑆𝜀 

4.18 

where Sk and Sε are optional user-specified source terms, σk and σε are the turbulent 

Schmidt numbers for the respective transport equations, Gk, Gnl, Gb are turbulence 

production terms, YM is the dilatation dissipation, and C1ε, C2ε and C3ε are specified 

coefficients. 

The turbulent production, Gk, was calculated by: 

 
𝐺𝑘 = 𝜇𝑡 �

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

�
𝜕𝑢𝑖
𝜕𝑥𝑗

−
2
3
𝜕𝑢𝑘
𝜕𝑥𝑘

�3𝜇𝑡
𝜕𝑢𝑘
𝜕𝑥𝑘

+ 𝜌𝑘� 
4.19 

The non-linear model was not included in this research project and, therefore, Gnl was 

set to zero.  The turbulent production due to buoyancy, Gb, was calculated based on the 

Boussinesq buoyancy model by: 

 
𝐺𝑏 =  𝛽

𝜇𝑡
𝜎𝑡
𝑔𝑖
𝜕𝑇
𝜕𝑥𝑖

 
4.20 

where 𝛽 is the coefficient of thermal expansion, g is the gravitational vector, and 𝜎𝑡 is 

the turbulent Prandtl number.  The ideal gas relation was used in this research project 

and, using the Boussinesq approximation, the coefficient of thermal expansion was 

calculated as: 

 
𝛽 =  −

1
𝜌
𝜕𝜌
𝜕𝑇

 
4.21 
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The coefficient 𝐶3𝜀 was calculated by: 

 𝐶3𝜀 =  tanh|𝑣𝑣 𝑢ℎ⁄ | 4.22 

where vv is the vertical velocity component (parallel to g) and uh is the horizontal 

velocity component (perpendicular to g).  Outside the natural convection boundary 

layers, 𝐶3𝜀 is set to zero.  The dilatation dissipation, YM was calculated as: 

 
Y𝑀 =  

𝐶𝑀𝑘𝜀
𝑐2

 
4.23 

where c is the speed of sound and CM is a coefficient set to 2.  The Yap correction, Yy, 

was set to zero as a two-layer model was not included.  Table 4 lists the model 

coefficients used. 

 

 

Table 4.  Standard k-ε coefficient values. 
Model Coefficient User-specified 

Value 
C1ε 1.44 
C2ε 1.92 
𝐶𝜇 0.09 
𝜎𝑘 1.0 
𝜎𝜀 1.3 
Ct 1 

 

 

 

Finally, the turbulent viscosity, 𝜇𝑡 is calculated as: 

 𝜇𝑡 = 𝜌𝐶𝜇𝑘𝑇 4.24 
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where T, the turbulent time scale is calculated as the maximum of the k to 𝜀 ratio and the 

product of the realizable time scale coefficient, CT, and the square root of the ratio of the 

kinematic viscosity to the turbulence dissipation: 

 
𝑇 = 𝑚𝑎𝑥 �

𝑘
𝜀

,𝐶𝑇�
𝜈
𝜀
� 

4.25 

The wall treatment for the standard k-ε turbulence model in the Star CCM+ environment 

used the high-y+ formulation and calculated the reference velocity, u*, as: 

 
𝑢∗ =  �𝐶𝜇

1
2� 𝑘 

4.26 

The turbulent production at the wall, Gk, is calculated as: 

 
𝐺𝑘 =  

1
𝜇
�𝜌𝑢∗

𝑢
𝑢+
�
2 𝜕𝑢+

𝜕𝑦+
 

4.27 

where u+ is a dimensionless velocity and y+ is the dimensionless wall distance.  The 

wall-cell dissipation was calculated as: 

 
𝜀 =  

𝑢∗3

𝜅𝑦
 

4.28 

where 𝜅 is the von Karman constant. 

 

4.5 Solver Specifications 

The Star CCM+ solver uses a finite volume discretization to solve the flow 

equations.  Integral forms of the transport equations are discretized and applied at each 

cell of the computational grid.  This process results in a set of linear equations with the 

number of unknowns equal to the number of cells in the grid.  The Star CCM+ algebraic 
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multigrid solver then calculates the solution of the system of equations.  This section 

follows the documentation of the solver specification in the Star CCM+ user guide. 

For the first step, finite volume discretization, the transport equation in 

differential form of an example scalar or vector, 𝜙, can be written as: 

 𝜕𝜌𝜙
𝜕𝑡

+  ∇ ∙ (𝜌𝑢�⃗ 𝜙) =  ∇ ∙ (Γ∇ϕ) +  𝑆𝜙 
4.29 

where Γ is the diffusion coefficient or diffusivity.  The first term on the left hand side of 

Equation 4.29 represents the transient term or the amount of 𝜙 that enters the control 

volume, while the second term represents the convection term or the transport of 𝜙 due 

to the velocity field.  The first term on the right hand side of Equation 4.29 represents the 

transport of 𝜙 due to gradients and is defined as the diffusion term, while the second 

term is the source term that calculates sources or sinks of the variable 𝜙.   

The Star CCM+ solver uses either a first or second order temporal scheme to 

solve the transient term.  For this research project, a second-order temporal scheme was 

used to solve for the transient term: 

 𝜕𝜌𝜙
𝜕𝑡

=  
3(𝜌0𝜙0)𝑛+1 − 4(𝜌0𝜙0)𝑛 + (𝜌0𝜙0)𝑛−1

2Δ𝑡
 

4.30 

where n+1 is the solution at the current time level, n is equal to the previous time level, 

n-1 is equal to the solution from two previous time levels before the current time level, 

and Δt is the change in time. 

Many options within the Star CCM+ environment exist for solving the 

convection term, including first-order upwind, second-order upwind and central-

differencing.  A second-order upwind differencing scheme was applied for the 
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discretization of the convection term in this research project and was calculated as 

follows: 

 ∇ ∙ (𝜌𝑢�⃗ 𝜙) =  (�̇�𝜙)𝑓 =  �̇�𝑓𝜙𝑓 4.31 

and 

 
(�̇�𝜙)𝑓 =  �

�̇�𝑓𝜙𝑓,0      𝑓𝑜𝑟 �̇�𝑓  ≥ 0
 

�̇�𝑓𝜙𝑓,1      𝑓𝑜𝑟 �̇�𝑓 <  0
 

4.32 

where the subscript f signifies the value at the cell face, and 𝜙𝑓,0 and 𝜙𝑓,1 are linearly 

interpolated face values of the faces on either side of the cell: 

 𝜙𝑓,0 =  𝜙0 + s0 ∙ (∇𝜙)𝑟,0 4.33 

 𝜙𝑓,1 =  𝜙1 + s1 ∙ (∇𝜙)𝑟,1 4.34 

where (∇𝜙)𝑟,0 and (∇𝜙)𝑟,1 are the respective reconstruction gradients for cells 0 and 1, 

and: 

 𝑠0 =  𝑥𝑓 −  𝑥0 4.35 

 𝑠1 =  𝑥𝑓 −  𝑥1 4.36 

Finally, the diffusion term is solved implicitly for the cell values 𝜙0 and 𝜙1 based on a 

decomposition of the face value: 

 ∇𝜙𝑓 =  (𝜙0 −  𝜙1)�⃗� +  ∇ϕ���� −  (∇𝜙���� ∙ ds)�⃗� 4.37 

where: 

 �⃗� =  
𝐚

𝐚 ∙ ds
 4.38 

 ds =  x1 −  x0 4.39 
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∇𝜙���� =  

(∇𝜙0 + ∇𝜙1)
2

 
4.40 

and a is the area vector.  The diffusion flux can then be written as: 

 
𝐷𝑓 = Γ𝑓∇𝜙𝑓 ∙ 𝐚 =  Γ𝑓 �

(𝜙0 −  𝜙1)�⃗� ∙ 𝐚 +  ∇𝜙���� ∙ 𝐚
− (∇𝜙���� ∙ ds)�⃗� ∙ 𝐚

� 
4.41 

4.5.1 K-Epsilon Solver 

The Star CCM+ k-ε turbulence solver calculates the values for each transport 

variable, k and ε, by first updating the boundary conditions, computing the 

reconstruction and cell gradients, constructing the linear system for the face values using 

Gauss’ divergence theorem, computing the residual sum, solving the linear system, and 

updating the transport variable values.  The turbulent viscosity, 𝜇𝑡, for each iteration is 

calculated using the Laudner and Spalding equation based on the transport variables as 

described in Section 4.4.  However, the assigned value, 𝜇𝑡𝑛+1, for the iteration is 

calculated using the new calculated value, 𝜇𝑡new, combined with the assigned value of 

the previous iteration, 𝜇𝑡𝑛, based on the following equation: 

 𝜇𝑡𝑛+1 =  𝜔𝜇𝜇𝑡new +  �1 − 𝜔𝜇�𝜇𝑡𝑛 4.42 

where 𝜔𝜇 is the under-relaxation factor.  The under-relaxation factor was assigned a 

value of 1.0 for this research project. 

 

4.6 Meshing 

The meshing was completed in the Star CCM+ v6.06 environment.  An 

unstructured polyhedral meshing scheme was used with a single prism layer as the first 

cell along the walls, ceiling and floor.  The distance between the wall surface and the 
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first cell in the volume mesh was specified by iteratively solving for the dimensionless 

wall distance, y+, defined as: 

 𝑦+ ≡  
𝑢𝜏𝑦
𝜈

 4.43 

where 𝑢𝜏 is the friction velocity at the wall, y is the distance to the wall, and 𝜈 is the 

kinematic viscosity.  Since the calculation depends on the fluid and flow properties, a 

value for the first layer cell distance from the wall was estimated and used in a solution.  

At the completion of the solution, the y+ value was calculated and the average for all the 

wall surfaces was used to determine if the estimated first layer cell distance needed to be 

adjusted.  The target value for y+ when using the standard k-ε turbulence model was 

approximately 30. 

 Within the Star CCM+ mesher, input values to control the mesh construction 

were adjusted to vary the overall number of cells generated within the volume mesh and 

the density of cells in specific locations within the volume mesh.  For each construction, 

the base cell size, number of prism layers, prism layer thickness, surface growth rate, 

and the minimum and target sizes for the surface were adjusted to obtain a volume mesh 

that would sufficiently resolve the flow conditions with the fewest number of cells.  In 

Figure 19, an example is shown of a highly dense volume mesh of room air with 

symmetrically positioned thermal manikins and a passive chilled beam.  The 

characteristics of this volume mesh are listed in Table 5. 
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Figure 19.  Cross-sectional view of volume mesh of 1.2 million cells. 

 

 

Table 5.  Mesh parameters for 1.2 million cell volume mesh. 
Number of Cells 1,195,994 
Base Cell Size 4 cm 
Number of  Prism Layers 1 
Prism Layer Thickness 4 cm 
Surface Growth Rate 1.3 
Minimum Surface Size 1cm 
Target Surface Size 4 cm 
Beam surface mesh size 2 cm 
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In Figure 20, an example is shown of a moderately dense volume mesh of room air with 

symmetrically positioned thermal manikins and a passive chilled beam.  The 

characteristics of the volume mesh are listed in Table 6. 

 

 

 

Figure 20.  Cross-sectional view of volume mesh of 560,000 cells. 
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Table 6.  Mesh parameters for 560,000 cell volume mesh. 
Number of Cells 563,181 
Base Cell Size 8 cm 
Number of  Prism Layers 1 
Prism Layer Thickness 4 cm 
Surface Growth Rate 1.3 
Minimum Surface Size 2 cm 
Target Surface Size 8 cm 
Beam surface mesh size 2 cm 

 

 

In Figure 21, an example is shown of a low density volume mesh of room air with 

symmetrically positioned thermal manikins and a passive chilled beam.  The 

characteristics of the volume mesh are listed in Table 7. 
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Figure 21. Cross-sectional view of volume mesh of 138,000 cells. 

 

 

Table 7.  Mesh parameters for 138,000 cell volume mesh. 
Number of Cells 137,831 
Base Cell Size 12 cm 
Number of  Prism Layers 1 
Prism Layer Thickness 4 cm 
Surface Growth Rate 1.3 
Minimum Surface Size 3 cm 
Target Surface Size 12 cm 
Beam surface mesh size 6 cm 
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4.7 Grid Convergence Study 

In order to establish the solution results of the CFD model as unaffected by the 

size of the mesh, a grid dependency study was conducted.  For a CFD model, as the grid 

resolution is refined, the solution results will remain similar if the cell sizes are 

sufficiently small to capture the motion of the fluid flow.  The degree of similarity 

between simulation results is a subjective comparison and depending on the area of 

application, the acceptance of the solution as grid independent depends on the value of 

change between simulation parameters.  Since the cooling of the passive chilled beam 

was the primary focus of this research study, the mass flow through the beam was used 

to compare simulation results as the grid was resolved. 

Three characteristics of the mesh were found to influence the grid dependency of 

the solution:  the surface size of the mesh on the porous region, the distance between the 

wall and the first cell in the volume mesh, and the size of the cells in the volume mesh 

between the ceiling and the porous region.  Through initial testing, the cell surface size 

on the porous region was found to impact the grid dependence results.  The mesh was 

constructed by modifying the base cell size in the mesher to obtain solutions for a range 

of total cells in the volume mesh.  The range of total cells tested was between 30,000 

cells and 1,000,000 cells. 

The grid dependency can be assessed by calculating the difference between the 

finest resolved grid and the compared grid.  The result of this comparison is defined as 

the simulation grid error and is calculated as: 
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𝐸𝑟𝑟𝑜𝑟𝑇𝐺 =  

�̇�𝑇𝐺 − �̇�𝑅𝐺

�̇�𝑅𝐺
 

4.44 

where �̇�𝑇𝐺 is the outlet mass flow through the beam calculated by the grid under test 

and �̇�𝑅𝐺 is the outlet mass flow through the beam calculated by the most resolved grid 

(highest number of total cells).  The results of plotting the error of the resolved grids, for 

a log plot, should appear as a straight line with a slope of -2 for second-order 

discretization.  The results from the initial grid dependence test are shown in Figure 22. 

 

 

  
Figure 22.  Initial grid dependence test. 

 

 

The construction of the mesh needed further refinement as the initial grid 

dependence test showed that the flow was not fully resolved.  The difference between 
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the calculated outlet mass flow rates was inconsistent as the grid was resolved into 

higher total cell counts and required additional steps in defining the mesh. 

 The next step was to define the surface size of the mesh along the boundaries of 

the porous region to remain constant as the total number of cells was increased as the 

grid was resolved.  A grid spacing of 2 cm was used uniformly on the surface of the 

porous region boundaries.  Additionally the volume mesh characteristics along the wall 

surfaces were considered. 

The distance between the wall and the first cell was selected based on the 

turbulence model.  Some turbulence models approximate the viscous boundary layer 

with built-in calculations while some models do not and additional functions are used to 

calculate the thermal and fluidic properties of the flow near walls.  The calculated value 

y+, is a dimensionless parameter that accounts for the friction velocity, kinematic 

viscosity and distance to the nearest wall and can be used to define the viscous boundary 

layer of a fluid flow bounded by a wall.  The standard k-ε turbulence model accounts for 

the boundary layer and a larger distance between the wall and the first cell can be used 

than for different turbulence models that require more calculation points through the 

boundary layer.  The y+ value acceptable for a certain turbulence model is application 

specific and depends on the agreed values within research areas.  Large (y+ > 50), 

medium (25 < y+ < 50) and small (y+ < 25) values of y+ were tested in the grid 

dependence study to determine an appropriate value for the passive beam modeling.  

Cross-sectional views of the simulations displaying the mesh for the three y+ values, 

each with a total cell count of approximately one million, are shown in Figure 23. 
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Figure 23.  One million cell meshes with large, medium and small y+ values. 

 

 

The grid dependency test was applied over the range of 125,000 cells to 

1,500,000 cells for the large, medium and small values of y+.  Each mesh was 

constructed with a single prism layer that defined the distance between the wall and the 

first cell in the volume mesh.  The value of y+ was held approximately constant by 

specifying the same value for the single prism layer for each mesh of a different number 

of total cells.  A course grid steady state solution (7,000 iterations) was used as initial 

conditions for the y+ grid dependency tests.  The outlet mass flow to the beam was 

calculated after 2.0 s at a 0.1 s time step and the values compared.  The results are listed 

in Tables 8-10.  The results are plotted in Figures 24-26 for each y+ characterization. 

 

 

 

25cm 7cm 3cm
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Table 8.  Grid dependency test for large values of y+. 
Total Number 

of Cells y+ Outlet Mass 
Flow (kg/s) 

110,701 98 -0.200 
217,474 96 -0.196 
294,543 95 -0.195 
819,353 94 -0.204 
1,293,587 94 -0.204 

 

 

Table 9.  Grid dependency test for medium values of y+. 
Total Number 

of Cells y+ Outlet Mass 
Flow (kg/s) 

133,610 35 -0.191 
268,570 35 -0.194 
373,902 35 -0.194 
1,037,246 34 -0.194 
1,640,054 33 -0.194 

 

 

Table 10.  Grid dependency test for small values of y+. 
Total Number 

of Cells y+ Outlet Mass 
Flow (kg/s) 

139,125 19 -0.200 
281,721 19 -0.196 
390,253 19 -0.195 
1,089,006 20 -0.204 
1,735,129 19 -0.204 
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Figure 24. Grid dependency results for simulations characterized by large y+ values. 

 
 
 
 
 
 

  
Figure 25. Grid dependency results for simulations characterized by medium y+ values. 
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Figure 26. Grid dependency results for simulations characterized by small y+ values. 

 

 

The large, medium and small y+ value error plots did not resolve linearly with a 

slope of -2, but the small y+ values were most similar.  The mesh was further refined 

with small y+ values (less than 25). 

Together with the defined surface size of 2 cm along the boundary of the porous 

region and the y+ values less than 25, the construction of the grid in the region of the 

volume mesh between the porous region and the ceiling was specified for an average cell 

size of 2 cm and the grid dependent test was run over the range of total cell counts 

between 300,000 and 2,800,000.  The simulation results were calculated by starting the 

converged steady state course grid solution from an initial condition of uniform 
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run for a period of 0.1 s at a time step of 0.001 s.  The results of the simulation runs are 

listed in Table 11 and the error values as a function of the total cell count plotted in 

Figure 27. 

 

 

Table 11.  Simulation results from grid dependency test. 
Total 

Number of 
Cells 

Outlet Mass 
Flow Rate 

(kg/s) 

Outlet 
Mass Flow 
Rate Error 

293,217 0.2645 0.0192 
580,794 0.2617 0.0085 

1,441,719 0.2600 0.0019 
2,756,772 0.2595  

 

 

 

  
Figure 27.  Results of grid dependency tests for the outlet mass flow rates. 
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 It was observed from Figure 27 that the solution converged as the grid resolved.  

The difference between the compared grid calculation for the outlet mass flow rate of the 

porous region and the 2,400,000 cell grid decreased consistently as the grid was resolved 

into higher total cell counts.   
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CHAPTER V  

ANALYTICAL MODEL 

 

5.1 Objective 

An analytical model was developed for a passive chilled beam in order to 

compare with the results obtained in the experiments.  The objective of the analytical 

model was to predict the overall heat transfer from room air at the experimentally 

measured conditions to the passive chilled beam.  Fundamental heat transfer 

relationships were applied to simulate the free convection at the surface of the fins in 

order to predict the total cooling capacity of the beam from the fin surface temperature 

and the quiescent air temperature.   

 

5.2 Simplifications and Assumptions 

The fin surface temperature distribution was assumed to be uniform in both the 

horizontal and vertical directions.  The average water temperature of the supply and 

return of the passive chilled beam measured during the experiment was used as the fin 

surface temperature.  Additionally, the variations in the density of air were assumed 

negligible.  The passive chilled beam was simplified to be a series of two dimensional 

vertical flat plates, the number of plates equaling two times the number of fins.  The 

remaining simplifications, assumptions and approximations are explained in the 

following section of the equation derivations. 



 

73 

 

5.3 Boundary Layer Heat Transfer 

The heat transfer relationships in the boundary layer on the fin surface were 

derived beginning with the conservation of mass, momentum and energy equations. 

Beginning with the momentum equation in the x-direction: 

 
𝜌 �𝑢

𝜕𝑢
𝜕𝑥

+ 𝑣
𝜕𝑢
𝜕𝑦
� =  −

𝜕𝑝
𝜕𝑥

+  𝜇 �
𝜕2𝑢
𝜕𝑥2

+  
𝜕2𝑢
𝜕𝑦2

� + 𝑋 
5.1 

where u is the x-component of velocity, v is the y-component of velocity, ρ is the 

density, p is the pressure, µ is the viscosity, and  X is the x-component of the body force.  

Since the solution is for the boundary layer, several approximations and simplifications 

can be applied.  The velocity in the x-direction (u) is much larger than in the y-direction 

(v) and v can then be ignored.  Similarly, the gradient of u with respect to y�𝜕𝑢
𝜕𝑦
� is much 

larger than the gradient of u with respect to x, the gradient of v with respect to y, and the 

gradient of v with respect to x.  For this solution, it is assumed steady, two-dimensional, 

incompressible (with one exception to be explained below), viscous and constant 

properties.  With these assumptions and simplifications applied: 

 
𝑢
𝜕𝑢
𝜕𝑥

+ 𝑣
𝜕𝑢
𝜕𝑦

=  −
1
𝜌
𝜕𝑝
𝜕𝑥

+  𝜈
𝜕2𝑢
𝜕𝑦2

+ 𝑋 
5.2 

where ν is the kinematic viscosity.  For free convection, the body force can be described 

as the product of the density and the gravitational constant: 

 
𝑢
𝜕𝑢
𝜕𝑥

+ 𝑣
𝜕𝑢
𝜕𝑦

=  −   
1
𝜌
𝜕𝑝
𝜕𝑥

  −   𝑔  +    𝜈
𝜕2𝑢
𝜕𝑦2

 
5.3 

where g is the gravitational constant.  The y-component of the momentum equation is: 
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𝜌 �𝑢

𝜕𝑣
𝜕𝑥

+ 𝑣
𝜕𝑣
𝜕𝑦
� =  −

𝜕𝑝
𝜕𝑦

+  𝜇 �
𝜕2𝑣
𝜕𝑥2

+ 
𝜕2𝑣
𝜕𝑦2

� + 𝑋 
5.4 

The same approximations and assumptions can be applied with the addition of 

the following:  the y-component of the body force is equal to the pressure gradient with 

respect to y.  However, the y-component of the body force is equal to zero, which leads 

to: 

 𝜕𝑝
𝜕𝑦

= 0 
5.5 

It follows that if the pressure gradient with respect to y is zero, then the pressure 

gradient with respect to x inside the boundary layer must equal the pressure gradient 

outside the boundary layer.  Since u is equal to zero outside the boundary layer, the x-

component of the momentum equation (outside the boundary layer) reduces to: 

 𝜕𝑝
𝜕𝑥

=  −𝜌∞𝑔 
5.6 

where ρ∞ is the free stream density.  Using this result for the solution inside the 

boundary layer and since the pressure gradient with respect to x is equal inside and 

outside the boundary layer, is the following: 

 
𝑢
𝜕𝑢
𝜕𝑥

+ 𝑣
𝜕𝑢
𝜕𝑦

=  𝑔 �∆𝜌 𝜌� �   +    𝜈
𝜕2𝑢
𝜕𝑦2

 
5.7 

where ∆𝜌 =  𝜌∞ − 𝜌.  If the temperature variation in the fluid is the only factor creating 

a density variation, the first term on the right hand side of Equation 1.7 can be related to 

β, the coefficient of thermal expansion defined by: 
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𝛽 =  −

1
𝜌
�
𝜕𝜌
𝜕𝑇
�
𝑝
 

5.8 

The following approximations can then be applied: 

 
𝛽 ≈  −

1
𝜌
∆𝜌
∆𝑇

=  −
1
𝜌
𝜌∞ − 𝜌
𝑇∞ − 𝑇

 
5.9 

 𝜌∞ − 𝜌 ≈  𝜌𝛽(𝑇 − 𝑇∞) 5.10 

where T is the temperature and T∞ is the free stream temperature.  This result is termed 

the Boussinesq approximation.  Substituting Equation 5.10 into Equation 5.7: 

 
𝑢
𝜕𝑢
𝜕𝑥

+ 𝑣
𝜕𝑢
𝜕𝑦

= 𝑔𝛽(𝑇 − 𝑇∞) +  𝜈
𝜕2𝑢
𝜕𝑦2

 
5.11 

Equation 5.11, the momentum equation in the x-direction, is used to solve the vertical 

flat plate boundary layer along with the conversation of mass and energy equations: 

 𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦

= 0 
5.12 

 
𝑢
𝜕𝑇
𝜕𝑥

+ 𝑣
𝜕𝑇
𝜕𝑦

=  𝛼
𝜕2𝑇
𝜕𝑦2

 
5.13 

where α is the thermal diffusivity.  Non-dimensional parameters can be defined for these 

three equations that contribute to a simplified solution.  These parameters are as follows: 

 𝑥∗ ≡
𝑥
𝐿

 5.14 

 𝑦∗ ≡
𝑦
𝐿

 5.15 

 𝑢∗ ≡
𝑢
𝑢𝐷

 5.16 

 𝑣∗ ≡
𝑣
𝑢𝐷

 5.17 
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𝑇∗ ≡

𝑇 − 𝑇𝑠
𝑇𝑠 − 𝑇∞

 
5.18 

where L is a characteristic length, uD is an arbitrary reference velocity (since the 

quiescent fluid velocity is zero), and Ts is the surface temperature.  When inserted into 

Equations 5.11 and 5.13, the momentum and energy equations become: 

 
𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑢∗

𝜕𝑦∗
=
𝑔𝛽(𝑇𝑠 − 𝑇∞)𝐿

𝑢𝐷2
𝑇∗ +  

1
Re𝐿

𝜕2𝑢∗

𝜕𝑦∗2
 

5.19 

 
𝑢∗
𝜕𝑇∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑇∗

𝜕𝑦∗
=  

1
Re𝐿Pr

 
𝜕2𝑇∗

𝜕𝑦∗2
 

5.20 

where ReL is the Reynolds number and Pr is the Prandtl number.  The momentum 

equation can be further simplified by multiplying by the square of the Reynolds number 

resulting in the first term on the right hand side becoming GrL, the Grashoff number: 

 
𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑢∗

𝜕𝑦∗
=

Gr𝐿
Re𝐿2

𝑇∗ +  
1

Re𝐿
𝜕2𝑢∗

𝜕𝑦∗2
 

5.21 

where, 

 
Gr𝐿 =  

𝑔𝛽(𝑇𝑠 − 𝑇∞)𝐿3

𝜈2
 

5.22 

The Grashoff number of the fluid is significant as it is the ratio of the buoyancy 

force to the viscous force and can be used to characterize the flow.  LeFevre [79] found 

that the Nusselt number, NuL of the fluid could be described by: 

 
Nu𝐿����� =  

ℎ�𝐿
𝑘

=  
4
3
�

Gr𝐿
4
�
1
4�

𝑔(Pr) 
5.23 

where h is the heat transfer coefficient, k is the thermal conductivity and, 
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𝑔(Pr) =  

0.75Pr
1
2�

�0.609 + 1.221Pr
1
2� + 1.238Pr�

1
4�
 

5.24 

Using the calculated Nusselt number to solve for the heat transfer coefficient, the total 

heat transfer from a vertical flat plate, Qplate, is calculated as: 

 𝑄𝑝𝑙𝑎𝑡𝑒 =  ℎ�𝐴(𝑇𝑠 − 𝑇∞) 5.25 

where A is the area of the plate.  To simplify the analysis of the fin heat transfer, the total 

heat transfer from the vertical flat plate was used to estimate the total heat transfer from 

the fin, Qfin, yielding: 

 𝑄𝑓𝑖𝑛 ≈ 2𝑄𝑝𝑙𝑎𝑡𝑒 5.26 

The total heat transfer between the room air and the passive chilled beam can be 

calculated as the product of Qfin and the total number of fins.  Additionally, the 

maximum velocity of the air in the boundary layer can be estimated by equating the gain 

in kinetic energy to the work done by the buoyant fluid resulting in: 

 1
2
𝜌𝑣2 ≅ 𝑔∆𝜌𝐿 

5.27 

After rearranging, the velocity at the outlet of the beam can be calculated as: 

 
𝑣 ≅  ��

∆𝜌
𝜌
𝑔𝐿� 

5.28 
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CHAPTER VI  

VALIDATION OF THE NUMERICAL MODEL 

 

6.1 Introduction 

This chapter presents the results of the passive chilled beam experiments 

conducted in the thermal climate chamber used to validate the CFD model.  Section 6.2 

contains the recorded values of the beam capacity and the temperature profile at the 

outlet of the beam for the tests conducted with the thermal manikins configured 

symmetrically.  In Section 6.3, the adjustments to the CFD model to account for 

momentum loss of the air passing through the passive chilled beam region is 

documented.  Sections 6.4-6.7 contain the comparisons of the test results to the CFD 

model calculations for the reference temperatures above the beam, the temperature 

profiles at the outlet of the beam, the temperatures along the vertical centerline, and the 

beam outlet air velocities.  As reported in Chapter III, the experiments were named with 

a letter according to the thermal manikin configuration followed by a number to 

designate the test set point conditions.  The symmetric thermal manikin tests presented 

in this chapter were Test A.  Test set points 1, 5, 7, and 10 are presented for low, 

medium-low, medium-high, and high load conditions, respectively. 
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6.2 Thermal Manikins Symmetrical Configuration Experiments 

The thermocouple array readings from below the beam were used to determine 

the center of the plume location.  The measurements shown in Figures 28-31 were 

recorded at the first thermocouple row beneath the beam every 20 s.  In the left of each 

figure, the points plotted are the measured points, termed the test measurement points, 

taken once the criteria for stability had been achieved, as described in Chapter III.  The 

right side of each figure shows the 20 s data over a period of 300 s leading up to the 

recording of the measured points.  The results in Figure 28 show that the center of the 

plume (based on the minimum temperature measurement) was recorded 9 cm from the 

vertical centerline of the beam for Test A1 (symmetric, low load).  At the location of the 

minimum temperature reading (9 cm from the centerline), the temperature varied 

between 21.2 °C and 21.9 °C for the 300 s period. 

 

 

 

Figure 28.  Test A1 measured temperatures at the beam outlet and the temperature 
measurements for the range of values over a 300 s period. 
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The Figure 29 results for Test A5 (symmetric, medium-low load) are similar to 

Test A1 in that the minimum temperature was recorded in the location 9 cm from the 

vertical centerline of the beam.  The variation in temperature measurements was studied 

by recording the temperatures over a period of 300 s.  At the location of the minimum 

temperature reading (9 cm from the centerline), the temperature varied between 20.3 °C 

and 20.9 °C for the 300 s period.  The results of Test A7 (symmetric, medium-high 

load), in Figure 30, and Test A10 (symmetric, high load), in Figure 31, also show the 

minimum temperature 9 cm from the vertical centerline of the beam with variations in 

the temperature reading between 19.2 °C and 20.0 °C, and 17.8 °C and 18.9 °C, 

respectively.  

 

 

 

 

 

Figure 29. Test A5 measured temperatures at the beam outlet and the temperature measurements 
for the range of values over a 300 s period. 
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Figure 30.  Test A7 measured temperatures at the beam outlet and the temperature 
measurements for the range of values over a 300 s period. 

 

 

  

 

Figure 31.  Test A10 measured temperatures at the beam outlet and the temperature 
measurements for the range of values over a 300 s period. 
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 The results of the outlet temperatures from the beam in Tests A1, A5, A7 and A10 are 

summarized in Table 12. 

 

 

Table 12.  Summary of outlet temperature results from Test A1, A5, A7, and A10. 
 A1 A5 A7 A10 
Test Measurement Point  
Minimum Temperature (°C) 21.4 20.6 19.4 18.6 

Minimum Temperature Location  
(Distance from Vertical Centerline) 9 cm 9 cm 9 cm 9 cm 

Maximum Temperature in 300 s Period (°C) 21.9 20.9 20.0 18.9 
Minimum Temperature in 300 s Period (°C) 21.2 20.3 19.2 17.8 

 

 

 

6.3 CFD Model Predictions 

The CFD model was compared to the results of the experiments with the 

reference temperature measurements.  Additionally, the plume temperature and velocity 

measurements were compared.  Initial comparisons of the model results found that the 

calculated outlet velocities of the CFD simulations were as much as two times higher 

than the measured values.  The beam outlet velocity was estimated in order to compare 

with the calculated CFD results and the measured values.  A simplified control volume 

was used to account for the mass of air entering and exiting the beam, using the 

measured inlet and outlet temperatures of the beam and comparing the estimated beam 

cooling capacity using both the measured and the CFD calculated velocities.  The beam 
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cooling capacity was calculated as follows based on the air-side measurements and CFD 

calculations: 

 𝑄𝑏 = �̇�𝑎𝑐𝑝𝑎�𝑇𝑎,𝑖 − 𝑇𝑎,𝑜� 6.1 

For the Test A10 conditions, the air temperature difference between the inlet and 

the outlet was approximately 2.7 °C in both the measured results and the CFD 

calculations.  Using 1,000 𝐽
𝑘𝑔𝐾

 as the specific heat of air at the average temperature 

between the inlet and the outlet, the beam cooling was estimated to be 1024 W from the 

measured values on the air-side.  From the simulation results, the beam cooling capacity 

was calculated as 1365 W.  The beam cooling capacity calculated according to Equation 

3.1 with the water-side measured values was 1297 W and taken to be the reference value 

for the comparisons.  When compared to the water-side measurement capacity 

calculation, the estimation of beam capacity based on the outlet air velocity was 21.0 % 

lower.  The estimated beam capacity with the CFD-calculated outlet velocity was 5.2 % 

higher than the measured beam capacity.  A summary of the results of this analysis are 

listed in Table 13. 
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Table 13.  Estimated beam cooling capacities for inlet conditions of measured and CFD results 
compared to measured beam capacity. 

 
𝑇𝑎,𝑖 𝑇𝑎,𝑜 

Outlet 
Velocity 

(m/s) 

Estimated Beam 
Cooling 

Capacity (W) 

% Difference 
from Measured 

(1297 W) 
Air-side 
Measurements 23.1 °C 20.4 °C 0.21 1024 -21.0 % 

CFD 
Calculations 23.4 °C 20.7 °C 0.28 1365 5.2 % 

 

 

One of the two porous medium region specifications applies to the momentum 

increase or decrease through the volume.  The two parameters of the momentum within 

the porous medium are the porous inertial resistance and the porous viscous resistance.  

The fin bank of the passive chilled beam consists of many fins and tube passes that 

create a resistance to airflow.  In the initial CFD solutions, the added resistance of tubes 

and fins were not accounted for as either an inertial or viscous resistance.  The resistance 

to airflow in the beam was increased by increasing the porous inertial resistance 

coefficient (Equation 4.1) in the porous medium region.  Tests of different values of the 

porous inertial resistance coefficient in the y-component direction were studied to match 

the outlet velocities from the CFD calculations to the measured values, as shown in 

Figure 32.  
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Figure 32.  Outlet velocity calculations for different porous inertial resistance coefficient values 
as compared to measured values. 

 

 

From the test results, the differences between the measured values and the 

calculated values were used to determine the porous inertial resistance coefficient that 

best matched the data.  The results are shown in Table 14, and based on the analysis a 

value equal to 100 kg/m4 was used for the porous inertial resistance coefficient. 
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Table 14.  Average velocity and absolute difference compared to the measured values of the 
outlet velocity of the beam for different values of the porous inertial resistance coefficient. 
Sensor 

Location 
Measured 

(m/s) 
10 kg/m4 50 kg/m4 100 kg/m4 200 kg/m4 

Velocity 
(m/s) 

Diff 
(m/s) 

Velocity 
(m/s) 

Diff 
(m/s) 

Velocity 
(m/s) 

Diff 
(m/s) 

Velocity 
(m/s) 

Diff 
(m/s) 

V1 0.185 0.215 0.030 0.210 0.025 0.190 0.005 0.174 -0.011 
V2 0.153 0.222 0.069 0.205 0.052 0.193 0.040 0.167 0.014 
V3 0.196 0.242 0.046 0.214 0.018 0.196 0.000 0.174 -0.022 

 

 

 

 

 

 

6.4 Reference Temperature Comparison 

The three room air temperatures measured directly above the beam were 

compared to the calculated temperature profile from the CFD solution.  The temperature 

profile from the CFD solution was configured 2.8 m from the floor and 6 cm from the 

centerline in the positive x-direction to correspond to the measurement locations.  The 

two data sets for the Test A1 conditions (578 W beam capacity) are plotted in Figure 33.  

The calculated temperature values compare well to the measured values.  The maximum 

difference between the three measured points and the corresponding CFD calculated 

values is 0.7 °C. 
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Figure 33.  Measured and calculated temperatures 2.8 m above the floor at the Test A1 
conditions. 
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The measured and calculated references temperatures were compared for the Test 

A5 conditions (765 W beam capacity) as above.  The calculated temperature values 

compared to the measured values, shown in Figure 34, resulted in a maximum difference 

of 0.6 °C. 

 

 

 

Figure 34.  Measured and calculated temperatures 2.8 m above the floor at the Test A5 
conditions. 

 

 

 

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

26.0

1 1.5 2 2.5 3 3.5

T
em

pe
ra

tu
re

 (°
C

)

Z-coordinate Above Beam (m)

Test A5 Reference Temperature

Measured Calculated



 

89 

 

The measured and calculated references temperatures were compared for the Test 

A7 conditions (1035 W beam capacity) as above.  The calculated temperature values 

compared to the measured values, shown in Figure 35, resulted in a maximum difference 

of 1.2 °C. 

 

 

 

Figure 35.  Measured and calculated temperatures 2.8 m above the floor at the Test A7 
conditions. 

 

 

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

26.0

1 1.5 2 2.5 3 3.5

T
em

pe
ra

tu
re

 (°
C

)

Z-coordinate Above Beam (m)

Test A7 Reference Temperature

Measured Calculated



 

90 

 

The measured and calculated references temperatures were compared for the Test 

A10 conditions (1297 W beam capacity) as above.  The calculated temperature values 

compared to the measured values, shown in Figure 36, resulted in maximum difference 

of 1.2 °C.  A summary of the results from Tests A1, A5, A7, and A10 are listed in Table 

15. 

 

 

 
Figure 36. Measured and calculated temperatures 2.8 m above the floor at the Test A10 

conditions. 
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Table 15.  Measured and calculated reference temperatures 6 cm from the centerline in the 
positive x-direction. 

 Z-coordinate 
(m) 

Measured 
(°C) 

Calculated 
(°C) 

Difference 
(°C) 

Test A1  
(578 W beam capacity) 

1.65 23.8 24.3 0.5 
2.29 23.8 24.5 0.7 
2.87 23.8 24.2 0.4 

Test A5 
(765 W beam capacity) 

1.65 23.9 24.5 0.6 
2.29 23.9 24.3 0.4 
2.87 23.9 23.6 -0.3 

Test A7  
(1035 W beam capacity) 

1.65 23.3 24.2 0.9 
2.29 23.2 24.4 1.2 
2.87 23.3 23.9 0.6 

Test A10 
(1279 W beam capacity) 

1.65 23.2 24.2 1.0 
2.29 23.1 24.3 1.2 
2.87 23.2 23.9 0.7 

 

 

6.5 Vertical Temperature Distribution Comparison 

Additionally, the vertical temperature profiles below the beam along the 

centerline were compared between the measured and calculated values.  The measured 

values were recorded with Thermocouple Array #1 (5x7 grid) and the CFD solution 

profile was calculated along the beam centerline (x = 2.1 m) from the floor to the ceiling, 

2.3 m from the wall along the z-axis to correspond to the measured locations.  Figure 37 

and Table 16 show the comparisons for the Test A1, A5, A7 and A10 conditions. 
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Figure 37. Plume temperature profile of measured and calculated values for (a) Test A1, (b) Test 
A5, (c) Test A7, and (d) Test A10. 
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Table 16.  Measured and calculated plume temperatures along the centerline in the y-direction. 
 y-coordinate 

(m) 
Measured 

(°C) 
Calculated 

(°C) 
Difference 

(°C) 

Test A1  
(578 W beam capacity) 

2.286 21.6 21.0 -0.6 
1.930 22.4 22.3 -0.1 
1.613 23.0 22.8 -0.2 
1.461 23.1 23.0 -0.1 
1.003 22.8 23.5 0.7 

Test A5 
(765 W beam capacity) 

2.286 20.9 19.0 -1.9 
1.930 21.9 21.3 -0.6 
1.613 22.7 22.1 -0.6 
1.461 22.9 22.3 -0.6 
1.003 22.6 22.5 -0.1 

Test A7  
(1035 W beam capacity) 

2.286 19.7 18.7 -1.0 
1.930 21.2 21.2 0.0 
1.613 22.0 22.2 0.2 
1.461 22.2 22.5 0.3 
1.003 22.0 22.7 0.7 

Test A10 
(1279 W beam capacity) 

2.286 19.2 17.9 -1.3 
1.930 20.6 20.8 0.2 
1.613 21.4 21.9 0.5 
1.461 21.5 22.2 0.7 
1.003 21.3 22.3 1.0 

 

 

6.6 Outlet Temperature Comparison 

As was described in Section 6.2, the center of the plume can be defined by the 

minimum temperature observed through a horizontal temperature profile, parallel to the 

beam outlet.  The location of the plume was compared between the measured and 

calculated values 2.29 m from the floor, 31 cm from the bottom of the beam coils.  The 

results of comparison between the predicted plume temperatures and the measured 

plume temperatures are shown in Figure 38 and listed in Table 17. 
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Figure 38.  Plume temperature profile at the outlet of the beam for (a) Test A1, (b) Test A5, (c) 
Test A7 and (d) Test A10. 
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Table 17.  Measured and calculated outlet temperatures 31 cm from bottom of the beam coils. 
 Distance from 

Centerline (m) 
Measured 

(°C) 
Calculated 

(°C) 
Difference 

(°C) 

Test A1  
(578 W beam capacity) 

-0.28 23.5 24.3 0.8 
-0.18 21.8 23.9 2.1 
-0.09 21.4 21.5 0.1 
0.00 21.6 21.1 -0.5 
0.09 21.9 22.9 1.0 
0.19 22.5 24.1 1.6 
0.28 23.7 24.3 0.6 

Test A5 
(765 W beam capacity) 

-0.28 23.7 24.0 0.3 
-0.18 21.8 23.2 1.4 
-0.09 20.6 21.4 0.8 
0.00 20.9 18.5 -2.4 
0.09 21.7 19.9 -1.8 
0.19 22.3 23.1 0.8 
0.28 23.8 23.9 0.1 

Test A7  
(1035 W beam capacity) 

-0.28 22.8 23.9 1.1 
-0.18 20.4 23.3 2.9 
-0.09 19.4 21.2 1.8 
0.00 19.7 18.5 -1.2 
0.09 20.9 20.6 -0.3 
0.19 21.9 23.1 1.2 
0.28 23.3 23.9 0.6 

Test A10 
(1279 W beam capacity) 

-0.28 22.4 24.0 1.6 
-0.18 19.5 23.4 3.9 
-0.09 18.6 21.1 2.5 
0.00 19.2 17.6 -1.6 
0.09 19.8 20.1 0.3 
0.19 20.6 23.1 2.5 
0.28 23.0 23.9 0.9 
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6.7 Outlet Velocity Comparison 

The three plume velocities measured at the outlet of the beam were compared to 

the calculated velocity profile from the CFD solution for Tests A1, A5, A7, and A10 as 

shown in Figure 39.  The velocity profile from the CFD solution was configured 2.4 m 

from the floor and 3 cm from the centerline in the negative x-direction to correspond to 

the measurement locations. 

 

 

 

Figure 39.  Measured and calculated air velocities at the beam outlet for (a) Test A1, (b) Test 
A5, (c) Test A7 and (d) Test A10. 
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On average, the CFD solution calculated higher velocities than the measured 

results in all the tests conducted.  In Test A1 the calculated values were a maximum of 

0.029 m/s higher than the measured velocities, 0.040 m/s higher in Test A5, 0.069 m/s 

higher in Test A7, and 0.040 m/s higher in Test A10.   

 

 

Table 18.  Measured and calculated outlet velocities 10 cm from the bottom of the beam coils. 
 Z-coordinate 

(m) 
Measured 

(m/s) 
Calculated 

(m/s) 
Difference 

(m/s) 

Test A1  
(578 W beam capacity) 

1.51 0.134 0.145 0.011 
2.17 0.135 0.144 0.009 
2.74 0.119 0.148 0.029 

Test A5 
(765 W beam capacity) 

1.51 0.159 0.163 0.004 
2.17 0.119 0.159 0.040 
2.74 0.202 0.163 -0.039 

Test A7  
(1035 W beam capacity) 

1.51 0.153 0.181 0.028 
2.17 0.114 0.183 0.069 
2.74 0.212 0.180 -0.032 

Test A10 
(1279 W beam capacity) 

1.51 0.185 0.190 0.005 
2.17 0.153 0.193 0.040 
2.74 0.196 0.196 0.000 

 

 

 

 

However, the time variation of the velocity measurements was considered to 

investigate large differences between the calculated values and the experimental values.  

The 20 s recorded data points were plotted as a function of time for a 600 s period prior 

to the recording of the measured values reported.  The results from the three velocity 

transducers beneath the beam are shown in Figure 40.  The average percent variation 
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from the three sensors was calculated to be 36 % with a frequency between 40 s and 60 

s.  If the 36 % variation in recorded values over the 600 s period is taken into 

consideration when compared to the model predictions, the differences between the 

measured and calculated values are highly dependent on the time variation component of 

the measured values.  

 

 

 

Figure 40.  Time variation in velocity measurements below the beam for a 600 s period before 
the final measurement. 
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6.8 Summary 

The CFD model initially compared well to the results of the experiment for the 

reference temperatures (less than 1.2 °C difference), the plume temperatures (less than 

1.9 °C difference), and the outlet temperatures (less than 3.9 °C difference).  However, 

the outlet velocities calculated with the CFD model were as much as two times higher 

than the measured values.  The initial simulations did not account for momentum loss 

through the fin bank in the vertical direction.  However, when the added inertial 

resistance of the fins and tubes of the passive chilled beam were included in the model 

calculations, the outlet velocities compared more closely to the measured results but still 

significantly deviated from the experiment values.  Though, when the time variance of 

the plume characteristics was considered, the modeled results matched closely within the 

range of variance to the recorded values.  The plume generated by the passive chilled 

beam can be described as dynamic as the temperature distributions and velocity profiles 

oscillate over time even with steady loads.  For accurate measurement of the outlet 

conditions, quick response directional velocity sensors should be used in order to 

measure the changing velocity field well.   
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CHAPTER VII  

EFFECT OF HEAT SOURCE CONFIGURATIONS 

 

7.1 Introduction 

The effect of heat source geometric configurations was studied using the results 

of experiments and simulations from the CFD model.  The objective of the tests was to 

isolate the effect of the position and the type of heat sources on the beam cooling 

performance and plume characteristics.  A symmetric arrangement and an asymmetric 

arrangement of thermal manikins were tested to study the effect of heat source location.  

To study the effect of heat source type, tests of symmetrically arranged thermal manikins 

and radiant panels were performed.  The CFD model was used to calculate the airflow 

characteristics for the symmetric and asymmetric thermal manikin tests and was then 

compared to the experimental data.  Additionally, the results of the CFD simulations 

were used to further investigate the observed change in performance of the beam cooling 

capacity based on the arrangement of the thermal manikins.   

 

7.2 Results of the Symmetrically Configured Thermal Manikins Experiments 

The heat transfer between the warmer room air and the colder passive chilled 

beam fin surfaces can be described as the beam cooling capacity, or the total cooling 

provided by the beam to the room.  As described in Chapter III, the beam cooling 

capacity, Qb, was calculated using Equation 3.1 based on the mass flow rate, supply 

temperature, and return temperature of chilled water through the beam.  Figure 41 shows 
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the beam cooling capacity as a function of the difference of ΔTRM, the reference air 

temperature (average of the three temperature measurements above the beam) and the 

mean water temperature (average of the inlet and outlet water temperature), for tests A1-

A10.  The data was fit with a linear regression as plotted.  The regression is 

characterized by an R-squared value of 0.95.  As expected, the beam cooling capacity is 

directly related to the driving temperature difference in the room:  the warm room air 

surrounding the cooler fin surfaces on the passive chilled beam. 

 

 

 

Figure 41.  Measured beam capacity, Qb, as a function of the reference temperature minus the 
mean water temperature, ΔTRM, for the symmetric heat load configuration; ΔTRM = Tref – Tw,ave. 

 

Qb =  (149.3 * ΔTRM ) - 269.83
R² = 0.9546

200

400

600

800

1000

1200

1400

3.00 6.00 9.00 12.00

Q
b

(W
)

ΔTRM (°C)

Symmetric Thermal Manikins



 

102 

 

Though the data fits closely to the linear regression, the difference in expected 

values of the regressed equation and measured points is not fully accounted for by the 

sensor error.  The error associated with the sensors based on calibrations at steady state 

does not include the dynamic nature of the airflow in the test room.  The beam capacity 

and ΔTRM measurements were an average of data collected over a 20 s period recorded 

once the measured values of Tref stabilized based on the qualifications listed in Chapter 

III.  To fully account for the variation in expected values of beam capacity as a function 

of the ΔTRM, the time-dependency of the measurements were considered.  For the Test 

A10 measurement of beam capacity, the 20 s data was plotted as a function of time for a 

2,000 s period (100 data points) prior to the final data point used in Figure 41.  The 

results as shown in Figure 42 reveal a 9 % variation in the measured beam capacity with 

respect to time. 
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Figure 42.  The beam cooling capacity as a function of time for a 2,000 s period prior to the 
measured data point for Test A10. 

 
 
 

 
Figure 43.  ΔTRM as a function of time for a 2,000 s period prior to the measured data point for 

Test A10. 
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Similarly, the time variation of ΔTRM over the same 2,000 s time period reveals a 

3 % variation in values, as shown in Figure 43.  The results of Figure 42 and Figure 43 

confirm that while the control point variables in the room had stabilized based on the test 

criteria, the cooling rate delivered to the room by the passive chilled beam varied as a 

function of time at a frequency dependent on additional test room characteristics.  As 

applied to the measured data points in Figure 41, the combined 9 % variation along the 

y-axis and the 3 % variation along the x-axis are represented as the blue shaded area for 

each point in Figure 44.  The shaded area representing the time variance of the data point 

for all the plotted points from Tests A1-10 fall on the linear regression indicating a 

strong correlation between the beam cooling capacity and ΔTRM once the dynamic nature 

of the test room experiments was accounted for.  The variation with respect to time of 

the beam capacity and ΔTRM may be attributed to elements of the experiment that were 

controlled with a tolerance for time-variance.  The small fluctuations in the control 

variables were representative of additional fluctuations in heat transfer and fluid flow 

throughout the test room.   
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Figure 44.  The beam cooling capacity, Qb, as a function of ΔTRM, showing the time-variance of 

the plotted data points; ΔTRM = Tref – Tw,ave. 
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Using the water temperature and mass flow rate measurements of the chilled 

water through the beam for the Test A10 data, the frequency of the beam cooling 

capacity estimated from Figure 42 was approximately 100 s, a much longer frequency 

than the exit airflow frequency predicted by Fredriksson et al. 

The experiment was repeated to use a re-configured thermocouple array to 

measure the air temperature below the beam.  The second test run of the data is plotted 

together with the first data set in Figure 45.  The results show the degree of repeatability 

in the test procedure with measured values.  When plotted together, both data sets 

resulted in a linear regression of the beam capacity as a function of the reference 

temperature minus the mean water temperature with an R-squared value of 0.98. 

 

 

 

Figure 45.  Measured beam capacity data from tests A1-A10 and E1-E10. 
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The results of both tests show that when the time-dependency of the beam 

capacity and ΔTRM measurements are considered, the predictability of the beam cooling 

for a given ΔTRM is high using a linear relationship.  For the purpose of predicting the 

total beam cooling capacity using a simplified approach, the analytical model developed 

in Chapter V was based on the beam geometry, inlet water temperature and the 

properties of air at the bulk room air temperature.  The total heat transfer from the 

passive chilled beam was calculated with information readily available to designers with 

knowledge of the passive chilled beam manufacturer catalogue information and the 

design conditions for the occupied zone in the space.  The results of the analytical model 

predictions were compared to the experimental data obtained with thermal manikins 

arranged symmetrically for a passive chilled beam that featured 384 fins, each 15 cm 

tall, 61 cm long and 2.4 mm wide, with a vertical surface area of 915 cm2 on each face.  

Table 19 lists the measured and predicted beam capacities. 
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Table 19.  Comparison of measured beam capacity to predicted beam capacity for symmetric 
thermal manikins. 

Test 
Temperature (°C) Capacity (W) Percent 

Difference 
(%) 

Entering 
Water  

Leaving 
Water 

Reference 
Air 

Measured  Predicted 

A1 17.9 19.0 23.8 577 568 -1.56 
A2 17.9 19.5 24.3 598 605 1.17 
A3 18.1 20.2 25.0 554 638 15.2 
A4 16.0 17.5 23.6 789 767 -2.79 
A5 16.0 18.0 23.9 763 780 2.23 
A6 15.7 18.7 24.8 766 880 14.9 
A7 13.7 15.6 23.6 1034 1039 0.48 
A8 14.0 16.5 23.6 972 1007 3.60 
A9 14.1 17.9 24.9 1015 1080 6.40 

A10 12.0 14.4 23.2 1279 1250 -2.27 
 

 

 

The results from Table 19 were plotted and shown in Figure 46.  The prediction 

of the beam capacity as a function of ΔTRM matches the measured data within a 15 % 

difference for the entire range of cooling capacities.  If the time variation of the 

measured values of beam capacity and ΔTRM are again applied, all the ranges of time-

variance of the measured points overlap with the predicted values. 
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Figure 46.  Measured and predicted beam capacity as a function of the difference between the 
reference temperature and the mean water temperature. 
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which is directly related to the temperature difference between the bulk room air and the 

plume temperature.  A linear regression was fit to the data and the R-squared value was 

found to be 0.88. 

 

 

 

Figure 47.  The beam cooling capacity, Qb, as a function of the minimum temperature recorded 
in the thermocouple array, Tmin for Tests A1-A10. 
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outlet.  For single point measurement techniques, this process would be labor and time 

intensive and unjustifiable for field measurement applications.  However, a single 

temperature measurement at a consistent location in relation to the beam outlet would be 

easily justifiable for field measurement.  To investigate this possibility, the beam cooling 

capacity was plotted as a function of the temperature recorded at the middle position of 

the thermocouple array at the outlet of the beam, as shown in Figure 48.  The data was 

linearly regressed with an R-squared value of 0.72. 

 

 

 

Figure 48.  The beam cooling capacity, Qb, as a function of the recorded temperature at the 
middle position of the thermocouple array, Tmid. 
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The data of Figure 48 is more scattered than Figure 47 and approximated the 

beam cooling capacity within a larger percent difference range of 30 %.  This higher 

degree of uncertainty can be expected for a plume center that sways laterally upon exit 

of the beam.  However, the beam capacity and the temperature measured at the middle 

position of the beam outlet were recorded over a 5 min period and averaged.  The 

results, plotted in Figure 49, reveal a lower degree of scatter around the linear regression 

that results in predictions within 23 %. 

 

 

 

Figure 49.  The beam cooling capacity, Qb, as a function of the middle position temperature at 
the outlet of the beam, Tmid. 
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7.3 Results of the Asymmetrically Configured Thermal Manikins Experiments  

Experimental data was collected using the asymmetric configuration of the 

thermal manikins and compared to the symmetric configuration.  The beam cooling 

capacity as a function of the difference between the reference temperature and the mean 

water temperature was plotted in Figure 50 for the asymmetric configuration of thermal 

manikins.  The data was fit to a linear regression with a characteristic R-squared value of 

0.92.   

 

 

 

Figure 50.  The beam capacity, Qb, as a function of the difference between the reference 
temperature and the mean water temperature, ΔTRM, for the thermal manikins in the asymmetric 

heat source configuration. 
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The asymmetric configuration was repeated in tests F1-F10 using a different 

thermocouple array to measure the plume air temperature, as in tests E1-E10 described 

in Section 7.2.  The results in Figure 51 show repeatability of the experimental data and 

confirm the finding of a reduced beam capacity with an asymmetric heat source 

configuration.  With a linear regression fit to the beam capacity as a function of the 

reference temperature minus the mean water temperature, the R-squared value was 0.95 

for the combined data sets. 

 

 

 

Figure 51.  Repeatability of asymmetric thermal manikin configuration for Test B and Test F. 
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The results from the symmetric thermal manikin configuration of tests A1-A10 

and the asymmetric thermal manikin configuration of tests B1-B10 show a reduced 

beam cooling capacity for the asymmetric configuration, as shown in Figure 52.  The 

average reduction in the beam cooling capacity of 15 % was recorded for the asymmetric 

thermal manikin configuration as compared to the symmetric thermal manikin 

configuration. 

 

 

 

Figure 52.  Beam cooling capacity for both the symmetric and asymmetric thermal manikin 
configurations. 
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Aggregating the results from tests A1-A10 and E1-E10 with tests B1-B10 and 

F1-F10, the reduced capacity of the beam cooling an asymmetric thermal manikin 

configuration is an average 16 % lower than the capacity of a beam cooling a symmetric 

heat load configuration.  The R-squared value for the linear regression of the symmetric 

data set is 0.98 and the R-squared value of the linear regression of the asymmetric data is 

0.95, as shown in Figure 53. 

 

 

 

Figure 53.  The beam cooling capacity as a function of the reference temperature and the mean 
water temperature for all test runs of the symmetric and asymmetric thermal manikin 

configurations. 
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The measured data obtained with the thermal manikins in tests B1-B10 was 

compared to the calculated beam capacity using the same method as described in Section 

7.2.  The analytical model does not include any provisions for differences in room heat 

load configurations and simplifies the beam surface temperatures as uniform and equal 

to the average of the inlet and outlet water temperatures.  The results, shown in Figure 

54, reveal that the analytical model over-predicts the capacity of the beam for the 

asymmetric thermal manikins by an average of 25 %. 

 

 

 
Figure 54.  Measured and predicted beam capacity for thermal manikins in the asymmetric test 

configuration. 
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The results from Figure 46 combined with Figure 54 show that the analytical 

model failed to capture the change in beam capacity associated with the spatial 

arrangement of the thermal manikins, as shown in Figure 55. 

 

 

 
Figure 55. The beam cooling capacity prediction of symmetric and asymmetric thermal manikin 

configurations. 
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positioned radiant panels is shown in Figure 56.  A linear regression was fit to the data 

with an R-squared value of 0.996. 

 

 

 

Figure 56. The passive beam cooling capacity as a function of the difference between the 
reference temperature and the mean water temperature for the symmetrically positioned radiant 

panels. 
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significant enough to effect the beam cooling capacity by changing the airflow 

characteristics above the beam, or the distance between the inlet to the beam and the 

source of the thermal plumes is large enough that the differences in source conditions are 

reduced to the point of being considered negligible. 

 

 

 

Figure 57.  Comparison of the beam capacity for the thermal manikins and radiant panel heat 
sources. 
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detailed in Chapter VI for the simulations of the symmetrically arranged thermal 

manikins, the CFD model was setup and initialized based on the experiment test 

conditions for the asymmetrically arranged thermal manikins.  In Figure 58 and Figure 

59, the temperature distributions are shown for the cross-sectional views of both heat 

source arrangements.  Figure 60 and Figure 61 show a cross-sectional view of the 

velocity fields for the symmetric and asymmetric arrangement of the thermal manikins, 

respectively.  The temperature distributions reveal the beam and heat source plumes as 

well as areas throughout the room of varying temperature.  In Figure 58, the temperature 

distribution throughout the space is symmetric with respect to the beam as the two 

halves of the room are similar.  However, the temperature distribution plotted in Figure 

59 shows areas of higher temperature near the thermal manikins in one half of the room. 

These findings are confirmed with the velocity profiles for the symmetric and 

asymmetric thermal manikin simulations.  The velocity profile for the symmetric 

thermal manikins in Figure 60 shows a balanced flow throughout the space.  The cold air 

plume descends from the beam outlet, moves out to either wall and then recirculates 

back up to the inlet of the beam.  The two halves of the room are equally mixed and the 

velocity profiles appear balanced.  The contrast between the two thermal manikin 

configurations is more pronounced when the velocity profiles are compared.  The 

asymmetric thermal manikin simulation shows a flow pattern that primarily mixes only 

one half of the room.  The cold air plume descends from the beam to the floor, is 

directed towards the thermal manikins, and then circulated back up to the beam inlet.  

This motion is entirely contained within one half of the room with the thermal manikins. 
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Figure 58.  Cross-sectional view of the temperature distribution for the symmetrically arranged 
thermal manikins. 

 
 
 

 
Figure 59.  Cross-sectional view of the temperature distribution for the asymmetrically arranged 

thermal manikins. 
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Figure 60.  Cross-sectional view of the velocity field for the symmetrically arranged thermal 

manikins. 
 
 
 

 
Figure 61.  Cross-sectional view of the velocity field for the asymmetrically arranged thermal 

manikins. 
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For a three-dimensional representation of the beam plume, an isosurface was 

created from the results of the CFD simulations based on the defined temperature of 21.3 

°C.  In Figure 62, the thermal plume from the beam cooling the symmetric configuration 

of thermal manikins appears to descend directly below the beam without much 

contraction or significant variation from the vertical centerline along the entire length of 

the beam.  The plume center (relative to the length of the beam) does not extend as far 

vertically as the front and rear sections.  Time-dependent simulations were completed to 

investigate the shape of the plume as a function of time.  A vertical oscillation in the 

middle section of the plume created a dumping motion from the beam outlet to the floor.   

 

 

 

Figure 62.  Three-dimensional isosurface of 21 °C for the symmetric thermal manikin 
configuration. 
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Throughout this time period equal to 90 s, the lateral movement of the beam 

followed a similar frequency of oscillation away from the vertical centerline of the 

beam.  The center of the plume, as defined by the minimum temperature in each vertical 

row of a two-dimensional cross section, was recorded from the beam outlet to the floor 

for the symmetric heat source configuration.   The minimum temperature location of 

each 1 s time step for the 90 s period was plotted along the vertical axis in Figure 63.  

The horizontal bars on each point signify the minimum and maximum distance from the 

vertical centerline where a minimum temperature was recorded at each time step.  The 

circles in Figure 63 represent the averages of all the minimum temperature locations for 

the 90 s period.   

 

 

 
Figure 63.  Minimum temperatures calculated for each vertical row over a 90 s period at 1 s 

increments for the symmetric heat source configuration. 
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Similarly, the simulation results of the asymmetric thermal manikin 

configuration were plotted as an isosurface equal to 21.3 °C.  In Figure 64, the thermal 

plume created by the beam cooling the asymmetrically arranged thermal manikins 

appears with more variation than the symmetric thermal manikin results.  Three distinct 

sections of the plume exist, each at different points along the beam centerline and each at 

different distances from the vertical centerline of the beam.  A dumping motion with a 

frequency of oscillation that was similar to the symmetric configuration was observed.  

However, the movement of the beam with reference to the vertical centerline was more 

pronounced.   

 

 

 
Figure 64.  Three-dimensional isosurface of 21 °C for the asymmetric thermal manikin 

configuration. 
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As for the symmetric configuration, the center of the plume location, as defined 

by the minimum temperature along a two-dimensional row, was recorded for the 

asymmetric thermal manikin configuration.  The results, in Figure 65, reveal a larger 

range of motion for the center of the plume.  The median position of the oscillations is 

further from the vertical beam centerline and the magnitude of the range is larger than in 

the symmetric results.  The unbalanced heat source locations in the room appear to 

contribute to instabilities in the room airflow and a beam plume with a higher range of 

motion. 

 

 

 
Figure 65.  Minimum temperatures calculated for each vertical row over a 90 s period at 1 s 

increments for the asymmetric heat source configuration. 
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 The impact on thermal comfort of occupants needs to be considered with the 

increased oscillatory behavior of the asymmetric thermal manikin configuration.  A 

recent study [80] showed that fluctuations in the airflow surrounding occupants resulted 

in higher tolerances of the thermal conditions. 

 

7.6 Beam Capacity Prediction 

The simulation results from Section 7.5 were calculated with a constant value 

assigned for the heat rejection in the beam region.  For additional simulations, the beam 

cooling rate was calculated for each iteration based on the value of the reference 

temperature sampled above the beam.  The temperature difference between the average 

reference temperature and an assumed mean water temperature for typical operation was 

multiplied by the input parameter Cbc as defined in Chapter 4.  The value of Cbc was 

calculated at each iteration based on the temperature difference between the reference 

temperature and the mean water temperature value.  From the experiments, the 

relationship between Cbc and the reference temperature minus the mean water 

temperature was plotted in Figure 66. 
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Figure 66.  Linear regression for the beam cooling coefficient as a function of ΔTRM. 
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were completed based on monitoring the average room and reference temperatures, 

shown in Figure 67 and Figure 68.  The simulation was considered at a steady state 

condition once the average room air temperature, and the average reference temperature 

reached a constant value.  For both the symmetric configuration and asymmetric 

configuration, the simulations reached a steady state condition after 8,000 iterations, for 

a total simulation time of 30,000 s.  The average room air temperature and reference 

temperature as a function of simulation iteration are plotted in Figure 67 for the 

symmetric test, and in Figure 68, for the asymmetric test. 

 

 

 

Figure 67.  Average room temperature and Tref for each iteration in the asymmetric simulation. 
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Figure 68.  Average room temperature and Tref for each iteration in the asymmetric simulation. 
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Additionally, the mass flow rate of air through the beam was almost 18 % lower in the 

asymmetric thermal manikin beam.  The drop in cooling capacity of the beam was a 

result of the lower flow rate of air. 

 

 

Table 20.  Calculated beam cooling rate based on the capacity calculation. 
 Symmetric 

Manikins 
Asymmetric 
Manikins 

Percent 
Difference 

𝑇𝑟𝑒𝑓 (°C) 22.9 23.1 0.87 % 
ΔTRM (°C) 9.87 10.11 2.43 % 
Room Temperature (°C) 22.0 22.1 0.45 % 
Cbc 123 124 0.81 % 
�̇�𝑎,𝑜 (kg/s) 0.158 0.130 -17.7 % 
𝑇𝑎,𝑜 (°C) 16.1 16.2 0.62 % 
Qb (W) 1074 897 -16.5 % 
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7.7 Inlet Velocity Field 

The reduced capacity of the asymmetric configuration was found in the 

experiments to be an average of 15 % when compared to the symmetric configuration.  

The velocity field above the beam was studied using the CFD simulation results with the 

capacity calculations that also showed a reduced capacity for the asymmetric 

configuration.  Streamtubes were calculated and plotted for the inlet conditions above 

the beam region.  For the simulations with the symmetrically arranged thermal manikins, 

the orientation of the streamtubes on both sides of the beam as the room air enters are 

similar, as shown in Figure 69. 

 

 

 

Figure 69.  Streamtubes above the beam region for the simulations of symmetrically arranged 
thermal manikins. 
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The streamtubes for the simulations of the asymmetrically arranged thermal 

manikins were calculated and plotted in Figure 70.  The difference in velocity fields 

above the beam between the two simulations is apparent as the streamtubes above the 

beam for asymmetrically arranged heat sources enter from the side of the beam closest to 

the thermal manikins and continue past the inlet to the beam.  The magnitude of the 

entering air velocity is higher than the symmetric configuration and the direction of the 

flow is parallel to the beam inlet. 

 

 

 

 

Figure 70.  Streamtubes above the beam region for the asymmetrically arranged thermal 
manikins. 
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Likewise, Figure 71 is the velocity field above the beam region and shows the 

direction and magnitude of the air velocity vectors on the thermal manikin side of the 

beam as parallel to the beam inlet.  On the opposite side of the beam region, according to 

the plotted velocity field vectors, the air is traveling from the thermal manikin side of the 

beam and past the inlet. 

 

 

 

 

Figure 71.  Vector field above the beam region for the asymmetrically arranged thermal 
manikins. 
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Additionally, the streamlines were calculated and plotted originating from the 

outlet of the beam for both configurations.  The flow pattern shown in Figure 72 appears 

symmetric from the outlet of the beam as the air circulates back up towards the beam 

inlet with uniform mixing throughout the space.  The streamlines plotted in Figure 72 

match the temperature distribution and velocity profile of Figure 58 and Figure 60, 

respectively.  The beam plume in Figure 72, identified by the region of higher velocity 

directly beneath the beam, exhibited the same oscillation as reported in Section 7.5 

where the center of the beam plume was recorded by mapping the location of the 

minimum temperatures. 

 

 

 
Figure 72.  Streamlines from the outlet of the beam for the symmetrically arranged heat sources. 
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For the asymmetric thermal manikins, the streamlines plotted in Figure 73 reveal 

a flow pattern biased towards the side of the room with the heat sources.  As the air 

leaves the beam, it travels towards the heat source locations and then back up to the 

beam inlet.  The room appears to be less mixed than the room with the symmetrically 

arranged heat sources.  The apparent difference in flow patterns throughout the rooms 

for both heat source arrangements contributes to a reduced mass flow of air through the 

beam cooling the asymmetrically arranged heat sources.  The higher magnitude of the 

entering air velocity above the beam combined with the unbalanced flow, results in a 

lower rate of total cooling provided to the room from the passive chilled beam.  As for 

the symmetric thermal manikin streamline results, the same oscillation reported in 

Section 7.5 for the asymmetric thermal manikins based on the minimum temperatures, 

was observed for the beam plume streamlines in Figure 73. 

 

 

 
Figure 73.  Streamlines from the beam outlet for the asymmetric arrangement of heat sources. 
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7.8 Summary 

The measured beam cooling capacity for the tests with thermal manikins placed 

asymmetrically in the test chamber was 15 % lower than the beam cooling capacity of 

the symmetrically placed thermal manikins.  CFD simulations of the two test 

arrangements revealed similar results, and with the beam capacity calculated at each 

simulation iteration, the calculated beam cooling capacity in the simulations with 

asymmetric thermal manikins was 17 % lower than the symmetric thermal manikins.  

The inlet velocity fields above the passive chilled beam for both heat load configurations 

were compared by calculating the streamlines of the entering air.  This revealed that with 

the asymmetrically configured thermal manikins, the entering air velocity at the beam 

inlet was higher than for the symmetric thermal manikins.  The bulk of the flow came 

from the side of the beam closest to the heat sources and circumvented the beam because 

of the magnitude and direction of the air velocity.  Additionally, experimental test results 

showed a negligible difference in beam cooling capacity, Qb, as a function of ΔTRM 

between the symmetric thermal manikins and the symmetric radiant panels.  The 

conclusion from the results of experimentation and simulation analysis is that the heat 

source location affects the performance of the passive chilled beam because of the 

difference in the inlet velocity fields, whereas the heat source type had negligible effect. 
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CHAPTER VIII  

HEAT SOURCE CONFIGURATION PREDICTIONS 

 

8.1 Introduction 

The objective of this study was to determine the beam efficiencies for different 

spatial arrangements and the resultant thermal conditions inside the space.  The CFD 

modeling method described in Chapter IV was applied to additional configurations than 

were experimentally tested to include variations of the inside room dimensions, the beam 

position, and heat source locations.  Two sets of simulation runs were completed that 

included comparisons of 1) the calculated beam cooling capacities under equivalent heat 

fluxes from the thermal manikins and 2) the thermal plume and room air conditions at 

equivalent beam cooling capacities.  For the first set of simulations, the method for 

calculation of the beam capacity was described in Chapter IV and Chapter VII.  The 

predictions of the beam cooling capacity were used to determine the effect of the varied 

spatial parameters in the room on the efficiency of the beam to remove the generated 

heat.  The equivalent beam cooling capacity tests were analyzed to compare the center of 

the plume position for each configuration and the temperature and velocity 

characteristics in the simulated room space. 

 

8.2 Beam Capacity Predictions 

The procedure developed in Chapter VII for calculating the beam cooling 

capacity was implemented to test various configurations of the simulation volume.  
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According to the steady state criteria listed in Chapter VII, the simulations finished once 

the average room air temperature and reference air temperature values remained 

constant.  First, variations in the beam position with respect to room orientation and the 

height from the floor were simulated to isolate the observed reduction in cooling 

capacity for asymmetric heat sources.  Additionally, various thermal manikin 

arrangements were simulated to generally represent typical heat source diversities 

expected in room design in order to develop some general observations and 

recommendations for positioning a passive beam to achieve the most cooling.  The 

following section reports the results of the calculated beam cooling capacities for beam 

orientation, beam height, and thermal manikin arrangement. 

8.2.1 Beam Orientation 

Four beam orientations in relation to the room were simulated and were referred 

to by a designated position number: Beam Position (BP) 1 centered along the North-

South axis, Beam Position 2 offset 1.1 m from the North-South axis, Beam Position 3 

centered along the East-West axis, and Beam Position 4 offset 1.1 m from the East-West 

axis, as depicted in Figure 74. 
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Figure 74.  Beam orientation for the four test cases. 
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to the position centered on the North-South axis.  The results of the testing are listed in 

Table 21 and include the values of the beam air mass flow rate (�̇�𝑎), the reference 

temperature (Tref), the average air temperature throughout the entire room (Troom,ave), the 

beam cooling coefficient (Cbc), the average air temperature at the beam outlet (To,ave), 

and the calculated beam cooling capacity (Qb). 

 

 

Table 21.  Results from the beam cooling capacity predictions for the four beam orientations. 
 Beam 

Position 1 
Beam 

Position 2 
Beam 

Position 3 
Beam 

Position 4 
�̇�𝑎 (kg/s) 0.158 0.252 0.294 0.253 
Tref (°C) 22.9 23.0 23.2 22.9 
Troom,ave (°C) 22.0 22.4 22.5 22.3 
Cbc 123 124 125 124 
To, ave (°C) 16.1 18.6 19.0 18.8 
Calculated Qb (W) 1074.4 1111.8 1215.4 1040.9 

 

 

A method to calculate the efficiency of the beam was used for comparing the 

configuration changes effect on beam performance.  The efficiency of the beam, ηb, for 

each configuration was calculated as the ratio of the beam cooling capacity, Qb, to the 

thermodynamic limit of the beam cooling: 

 
𝜂𝑏 =  

𝑄𝑏
𝑄𝑚𝑎𝑥

 
8.1 

where Qmax is the theoretical maximum cooling capacity of the beam and Qb was 

determined using the CFD simulations with the beam cooling capacity calculation, as 

defined in Chapter VII.  The theoretical maximum cooling was defined as the 
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thermodynamic limit of heat transfer between the air and the water.  To calculate the 

mass flow of air, �̇�𝑎, through the beam cooling a room at the theoretical maximum, 

Equation 5.28 was used to find the outlet velocity of the air together with: 

 
�̇�𝑎 =  𝜌𝑜��

∆𝜌
𝜌𝑜

𝑔𝐿�𝐴𝑜 
8.2 

where 𝜌𝑜 is the density of air at the outlet temperature and pressure, ∆𝜌 is the difference 

in air density between the inlet and the outlet, and 𝐴𝑜 is the area of the passive chilled 

beam outlet.  Qmax was then calculated as the product of the mass flow of air, specific 

heat of air, and the temperature difference between the reference air and the supply 

water: 

 𝑄𝑚𝑎𝑥 =  �̇�𝑎𝑐𝑝𝑎�𝑇𝑟𝑒𝑓 −  𝑇𝑤,𝑖� 8.3 

 where cpa is the specific heat capacity of air, Tref is the reference air temperature above 

the beam, and Tw,i is the supply water temperature.  The result for an above beam 

temperature of 24 °C and an inlet water temperature of 14 °C was 3,437 W.  The 

efficiency defined by the thermodynamic limit for the passive chilled beam was 

calculated to be 31.3 % for the beam position centered along the North-South axis.  The 

efficiencies for the four configurations are listed in Table 22 and show that the beam in 

Beam Position 3 had the highest efficiency. 
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Table 22.  Efficiencies for the passive chilled beam for four beam orientations with 
symmetrically configured thermal manikins. 

 Calculated Qb (W) ηb (%) 
Beam Position 1 1074 31 

Beam Position 2 1112 32 
Beam Position 3 1215 34 
Beam Position 4 1041 30 

 

 

8.2.2 Wall Lengths, Ceiling and Beam Height 

Three geometric parameters of the simulation volume were changed to quantify 

the effect on the beam cooling capacity.  The wall length was increased 1 m in each 

direction, the ceiling raised 1 m, and the beam height increased to 1 m, as shown in 

Figure 75.  The thermal manikin positions remained in the symmetric configuration, 

each row spaced 1 m from the closest wall.  Since changing any three of these 

parameters would require building a new test room to collect measured data, the 

validated method for modeling the passive chilled beam in CFD was used to calculate 

the beam cooling capacity for the additional configurations. 
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Figure 75.  Configurations with extended walls, raised ceiling, and raised beam. 
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Table 23.  Results from the beam cooling capacity predictions for the extended walls, raised 
ceiling, and raised beam tests. 

 

Extended 
Walls 

Extended 
Walls, 
Raised 
Ceiling 

Extended 
Walls, 
Raised 
Ceiling, 

Raised Beam 

Raised 
Ceiling 

Raised 
Ceiling, 
Raised 
Beam 

�̇�𝑎 (kg/s) 0.240 0.320 0.270 0.296 0.297 
Tref (°C) 23.8 24.0 24.0 23.3 23.5 
Troom,ave (°C) 23.4 23.7 23.6 23.0 23.0 
Cbc 128 129 129 125 126.3 
To, ave (°C) 18.8 19.9 19.4 19.2 19.5 
Calculated Qb (W) 1197.0 1309.1 1256.0 1198.3 1198.2 
ηb (%) 30 32 31 33 32 
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8.2.3 Thermal Manikin Locations 

In addition to the symmetrical and asymmetric thermal manikin configurations, 

six different configurations were tested, as shown in Figure 76 and Figure 77.  In 

Configuration C, three manikins each were placed in the Northeast and Southwest 

corners of the room to simulate an off-balanced load.  In Configuration D, the thermal 

manikins were removed from one side of the room in the symmetric configuration to test 

the beam performance with heat generated symmetrically in relation to the beam 

orientation but in just half of the room.  In Configuration E, six thermal manikins were 

located in the Northeast corner of the room to calculate the effects of a concentrated heat 

source away from the beam.  Twelve thermal manikins were used in Configuration F 

located directly beneath the beam in two symmetric rows to simulate a passive beam 

cooling a room where the thermal plume falls directly onto the heat sources.  In 

Configuration G, six thermal manikins positioned in the center of the room in two rows 

were used to study the effect on the beam performance of a concentrated heat source 

directly beneath the beam.  In the last configuration of the testing, Configuration H, the 

thermal manikin positions from Configuration G were moved from the center of the 

room to the North wall and remained directly under the beam. 
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Figure 76.  Thermal manikin locations for the C, D, E, F, G, and H configurations. 
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Figure 77.  Dimensions of thermal manikin locations for the six configurations. 
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higher cooling rates.  For Configuration D, the thermal manikins were placed in two 

rows and with Beam Position 3, were perpendicular to the beam.  Based on the results of 

all other configurations, it was expected that the D3 simulation would produce the 

highest efficiency beam cooling.  However, since the placement of the thermal manikins 

was essentially a 2 x 3 grid, two rows were perpendicular to the beam while three rows 

were parallel.  Any advantage of the beam oriented perpendicular to the two rows of 

manikins, was counteracted by the three rows of manikins that created a similar airflow 

pattern as was observed in the Test B experiments and simulations.  The beam 

efficiencies for each configuration grouped by beam position were plotted in Figure 78. 

 

 

 

 

Table 24.  Results from the beam cooling capacity predictions for the beam with thermal 
manikins in the C-configuration. 

 C1 C2 C3 C4 
�̇�𝑎 (kg/s) 0.156 0.240 0.285 0.238 
Tref (°C) 19.8 22.3 22.4 22.4 
Troom,ave (°C) 19.1 21.7 21.7 21.7 
Cbc 109 121 121 121 
To, ave (°C) 16.6 18.1 18.7 18.1 
Calculated Qb (W) 506.2 1019.5 1049.3 1028.6 
ηb (%) 28 33 33 33 
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Table 25.  Results from the beam cooling capacity predictions for the beam with thermal 
manikins in the D-configuration. 

 D1 D2 D3 D4 
�̇�𝑎 (kg/s) 0.263 0.265 0.262 0.224 
Tref (°C) 20.2 22.5 22.7 22.6 
Troom,ave (°C) 19.3 21.8 21.9 21.9 
Cbc 111 122 123 122.3 
To, ave (°C) 17.0 18.6 18.5 18.0 
Calculated Qb (W) 832.6 1033.6 1107.7 1029.4 
ηb (%) 42 32 33 32 

 
 
 

Table 26.  Results from the beam cooling capacity predictions for the beam with thermal 
manikins in the E-configuration. 

 E1 E2 E3 E4 
�̇�𝑎 (kg/s) 0.19 0.212 0.282 0.228 
Tref (°C) 24.2 22.5 22.5 21.7 
Troom,ave (°C) 23.1 21.7 21.6 21.9 
Cbc 130 122 122 118 
To, ave (°C) 18.2 18.1 18.5 18.8 
Calculated Qb (W) 1148.2 946.3 1141.4 656.0 
ηb (%) 27 30 36 24 

 
 
 

Table 27.  Results from the beam cooling capacity predictions for the beam with thermal 
manikins in the F-configuration. 

 F1 F2 F3 F4 
�̇�𝑎 (kg/s) 0.083 0.239 0.228 0.228 
Tref (°C) 22.5 22.9 22.8 22.8 
Troom,ave (°C) 22.4 22.3 22.6 22.6 
Cbc 122 124 123 123 
To, ave (°C) 18.8 18.7 19.0 18.9 
Calculated Qb (W) 313.6 1005.0 1165.6 894 
ηb (%) 10 29 32 27 
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Table 28.  Results from the beam cooling capacity predictions for the beam with thermal 
manikins in the G-configuration. 

 G1 G2 G3 G4 
�̇�𝑎 (kg/s) 0.169 0.223 0.263 0.228 
Tref (°C) 20.2 22.3 22.4 22.8 
Troom,ave (°C) 20.0 21.7 21.7 22.6 
Cbc 111 121 121 123 
To, ave (°C) 17.1 18.2 18.4 18.9 
Calculated Qb (W) 526.1 919.4 1044.0 894 
ηb (%) 26 30 33 27 

 
 
 

Table 29.  Results from the beam cooling capacity predictions for the beam with thermal 
manikins in the H-configuration. 

 H1 H2 H3 H4 
�̇�𝑎 (kg/s) 0.156 0.223 0.263 0.228 
Tref (°C) 20.1 22.3 22.4 22.8 
Troom,ave (°C) 19.4 21.7 21.7 22.6 
Cbc 111 121 121 123 
To, ave (°C) 17.0 18.2 18.4 18.9 
Calculated Qb (W) 486.8 919.4 1044.0 894 
ηb (%) 25 30 33 27 
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Figure 78.  Beam efficiencies for the different configurations of thermal manikins grouped by 
the beam position. 

 

 

 

 

8.3 Characteristics of Room Air and Thermal Plume 

The effect of beam location, room dimensions, and heat source configurations on 

the beam efficiency was reported in Section 8.2.  Additionally, the effect on the thermal 

characteristics in the occupied zone was studied to determine if the increase in beam 
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capacity was set to a constant value and the walls, ceiling, and floor were set as 

adiabatic.  The simulations were each run at 30 s time steps for a total simulation time of 

3,000 s.  The center of the beam plume from the beam outlet to the floor was calculated 

based on the minimum temperature and used to compare the location of the plume in 

relation to the beam vertical centerline and heat sources.  The occupied zone of the room 

was defined as all points within 1.8 m from the floor, and 0.3 m from the walls to follow 

the ASHRAE Standard 55 definition [3].  Within the occupied zone, the maximum and 

minimum temperatures as well as the maximum velocity were documented and used in 

the comparison between the configurations. 

8.3.1 Beam Orientation 

The results of the beam orientation tests for equivalent cooling capacities of 

Beam Positions 1-4 for thermal manikins positioned symmetrically and asymmetrically 

revealed that the beam position impacted the temperature and velocity distributions.  The 

temperature distributions of both configurations of heat sources with Beam Positions 1 

and 2 are shown in Figure 79 and with Beam Positions 3 and 4 in Figure 80.  Likewise, 

the velocity profiles for cross-sectional planes through the simulation volumes are shown 

for Beam Positions 1 and 2 in Figure 81 and Beam Positions 3 and 4 in Figure 82. The 

three-dimensional representations of the thermal plumes generated from the passive 

chilled beams are shown in Figure 83 and Figure 84, and were calculated with 

isosurfaces of 21 °C.  Generally, the center of the plume fell directly beneath the beam 

and did not depend on the location of the beam in relation to the heat sources.  However, 
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the balanced flow conditions observed in the symmetric configuration with Beam 

Position 1 were replicated in the asymmetric configuration by rotating the beam 90°.   

The unbalanced flow condition of the asymmetric configuration with Beam 

Position 1 was characterized by room air circulation created by the beam and the heat 

sources in the half of the room that contained the thermal manikins.  A similar flow 

condition was observed for the symmetrically configured thermal manikins with Beam 

Position 2, directly above one row of the thermal manikins.  The room air circulation 

was not limited to one half of the room as in the asymmetric configuration with Beam 

Position 1, but the flow mixed the entire space with one large rotation from the beam to 

the floor to the far wall and back to the beam.  Additionally, the thermal plume of the 

asymmetric configuration with Beam Positions 3 and 4 was angled away from the 

location of the heat sources and cannot be considered uniform along the centerline of the 

beam. 
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Figure 79.  Cross-sectional temperature distribution for the thermal manikins placed (a) 
symmetrically with BP 1, (b) asymmetrically with BP 1, (c) symmetrically with BP 2, and (d) 

asymmetrically with BP 2. 
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Figure 80.  Cross-sectional temperature distribution for the thermal manikins placed (a) 
symmetrically with BP 3, (b) asymmetrically with BP 3, (c) symmetrically with BP 4, and (d) 

asymmetrically with BP 4. 
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Figure 81.  Cross-sectional velocity profiles for the thermal manikins placed (a) symmetrically 
with BP 1, (b) asymmetrically with BP 1, (c) symmetrically with BP 2, (d) asymmetrically with 

BP 2. 
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Figure 82.  Cross-sectional velocity profiles for the thermal manikins placed (a) symmetrically 
with BP 3, (b) asymmetrically with BP 3, (c) symmetrically with BP 4, (d) asymmetrically with 

BP 4. 
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Figure 83.  Three-dimensional plumes from the beam (21 °C) for the thermal manikins placed 
(a) symmetrically with BP 1, (b) asymmetrically with BP 1, (c) symmetrically with BP 2, (d) 

asymmetrically with BP 2. 
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(c) (d)
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Figure 84.  Three-dimensional plumes from the beam (21 °C) for the thermal manikins placed 
(a) symmetrically with BP 3, (b) asymmetrically with BP 3, (c) symmetrically with BP 4, (d) 

asymmetrically with BP 4. 
 

 

The thermal characteristics of the occupied zone for the four beam positions are 

listed in Table 30.  The maximum temperature difference in the occupied zone was 

highest for Beam Positions 2 and 4, which corresponded to both of the simulations with 

(a) (b)

(c) (d)
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asymmetric airflow.   The plume centers plotted as a function of the lateral distance from 

the vertical beam centerline are shown in Figure 85.  The configuration changes did not 

appear to affect the plume locations as the plume center for each configuration did not 

deviate highly from the vertical centerline. 

 

 

Table 30.  Minimum temperature and maximum temperature and velocity for the symmetric 
thermal manikin configuration for beam position tests. 

 Beam 
Position 

1 

Beam 
Position 

2 

Beam 
Position 

3 

Beam 
Position 

4 
Minimum Temperature (°C) 20.9 20.9 20.6 21.6 

Maximum Temperature (°C) 26.9 30.5 27.3 31.4 

Maximum Velocity (m/s) 0.466 0.460 0.517 0.377 
Maximum Temperature 
Difference (°C) 6.0 9.6 6.7 9.8 
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Figure 85.  Plume center location as defined by the minimum temperature for the symmetric 
configuration of thermal manikins for the beam position tests. 
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90°, the higher velocity created could negatively impact the thermal comfort of 

occupants. 

 

 

 

Table 31.  Minimum temperature and maximum temperature and velocity for the asymmetric 
thermal manikin configuration for beam position tests. 

 Beam 
Position 

1 

Beam 
Position 

2 

Beam 
Position 

3 

Beam 
Position 

4 
Minimum Temperature (°C) 21.3 21.2 20.3 21.3 

Maximum Temperature (°C) 27.4 26.2 26.6 27.0 

Maximum Velocity (m/s) 0.387 0.441 0.632 0.466 
Maximum Temperature 
Difference (°C) 6.1 5.0 6.3 5.7 

 

 

 

The plume centers for the asymmetric configurations, plotted in Figure 86, show 

that the deviation from the vertical centerline present in Beam Positions 1 and 3 was 

reduced when the beam was rotated 90° to Beam Positions 3 and 4.  The plume center 

that deviates most from the vertical centerline, Beam Position 2, is a result of the beam 

positioned directly above two rows of the thermal manikins.  The strength of the heat 

source plumes was enough to push the beam plume away from its natural descent, 

directly beneath the beam outlet. 
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Figure 86.  Plume center location as defined by the minimum temperature for the asymmetric 
configuration of thermal manikins for the beam position tests. 
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8.3.2 Wall Length, Ceiling and Beam Heights 

The capacity of the beam for the extended walls, raised ceiling and raised beam 

tests was calculated to be approximately similar for all tests with the same thermal 

manikin configuration.  The results of Figures 87-92 are similar as the temperature 

distributions, velocity profiles, and plume shapes did not vary significantly for the 

thermal manikins arranged equivalently for the different inside dimensions.  For the 

asymmetric configuration with the beam in Beam Position 1, the reduced cooling 

capacity of the beam was found to be a result of the inlet air conditions that increased the 

amount of warmer air circulated around the beam and not through it.  In Figures 87-90 

the temperature profiles and velocity distributions of all the tests for the asymmetric 

configuration of thermal manikins revealed a similar result with room airflow that 

entered the above-the-beam region from the side closest to the thermal manikins, where 

room air circulation was limited to the half of the room with the thermal manikins. 
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Figure 87.  Cross-sectional temperature distribution for the thermal manikins placed (a) 
symmetrically with the walls extended, (b) asymmetrically with the walls extended, (c) 

symmetrically with the walls extended and ceiling raised, (d) asymmetrically with the walls 
extended and ceiling raised, (e) symmetrically with the walls extended and ceiling and beam 

raised, and (f) asymmetrically with the walls extended and ceiling and beam raised. 
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Figure 88.  Cross-sectional temperature distribution for the thermal manikins placed, (a) 
symmetrically with the ceiling raised, (b) asymmetrically with the ceiling raised, (c) 

symmetrically with the ceiling and beam raised, and (d) asymmetrically with the ceiling and 
beam raised. 
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Figure 89.  Cross-sectional velocity profiles for the thermal manikins placed (a) symmetrically 
with the walls extended, (b) asymmetrically with the walls extended, (c) symmetrically with the 
walls extended and ceiling raised, (d) asymmetrically with the walls extended and ceiling raised, 
(e) symmetrically with the walls extended and ceiling and beam raised, and (f) asymmetrically 

with the walls extended and ceiling and beam raised. 
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Figure 90.  Cross-sectional-velocity profiles for the thermal manikins placed, (a) symmetrically 
with the ceiling raised, (b) asymmetrically with the ceiling raised, (c) symmetrically with the 

ceiling and beam raised, and (d) asymmetrically with the ceiling and beam raised. 

*all lateral dimensions equivalent
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Figure 91.  Three-dimensional plumes from the beam (21 °C) for the thermal manikins placed 
(a) symmetrically with the walls extended, (b) asymmetrically with the walls extended, (c) 
symmetrically with the walls extended and ceiling raised, (d) asymmetrically with the walls 
extended and ceiling raised, (e) symmetrically with the walls extended and ceiling and beam 

raised, (f) asymmetrically with the walls extended and ceiling and beam raised. 
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Figure 92.  Three-dimensional plumes from the beam (21 °C) for the thermal manikins placed 
(a) symmetrically with the ceiling raised, (b) asymmetrically with the ceiling raised, (c) 

symmetrically with the ceiling and beam raised, and (d) asymmetrically with the ceiling and 
beam raised. 

 

 

The room airflow characteristics listed in Table 32 for the symmetric 

configuration of thermal manikins show that for the simulations of higher ceilings with 

the beam positioned 2.5 m from the floor, the maximum temperature difference in the 

(a) (b)

(c) (d)
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occupied zone is larger than for other tests.  Additionally, the maximum velocity in the 

occupied zone was relatively constant between each test within the range of 0.44 m/s to 

0.51 m/s. 

 

 

Table 32.  Minimum temperature and maximum temperature and velocity for the symmetric 
thermal manikins configuration for the extended walls, raised ceiling, and raised beam tests. 

 

Base Extended 
Walls 

Extended 
Walls, 
Raised 
Ceiling 

Extended 
Walls, Raised 

Ceiling, 
Raised Beam 

Raised 
Ceiling 

Raised 
Ceiling, 
Raised 
Beam 

Minimum 
Temperature 
(°C) 

20.9 21.3 20.9 22.4 20.6 22.0 

Maximum 
Temperature 
(°C) 

26.9 27.0 27.9 26.6 28.2 30.0 

Maximum 
Velocity (m/s) 0.466 0.466 0.465 0.439 0.508 0.482 

Maximum 
Temperature 
Difference (°C) 

6.0 5.7 7.0 4.2 7.6 8.0 

 

 

The minimum temperature location in relation to the beam centerline and vertical 

distance from the floor was plotted for each scenario of the symmetrically arranged 

thermal manikins in Figure 93.  The plume center location shows little variance between 

the different simulations and deviated at most 20 cm from the beam centerline in the 

occupied zone.  
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Figure 93.  Plume center location as defined by the minimum temperature for the symmetric 
configuration of thermal manikins for the extended walls, raised ceiling, and raised beam tests. 
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For the asymmetric configuration, the airflow characteristics listed in Table 33 

for the occupied zone show that the dimensions of the room and the beam height had 

little impact on the maximum temperature difference and maximum velocity in the 

occupied zone, the exception being the less than three degrees maximum temperature 

difference throughout the occupied zone for the extended walls and raised ceiling test. 

The minimum temperature location in relation to the beam centerline and vertical 

distance from the floor was plotted for each scenario of the asymmetrically arranged 

thermal manikins in Figure 94.  When compared to the results of the symmetric thermal 

manikin simulations, more variance between simulations existed in the plume location 

and a higher maximum deviation from the centerline (30 cm) in the occupied zone was 

calculated. 

 

 

Table 33.  Minimum temperature and maximum temperature and velocity for the asymmetric 
thermal manikins configuration for the extended walls, raised ceiling, and raised beam tests. 

 

Base Extended 
Walls 

Extended 
Walls, Raised 

Ceiling 

Extended 
Walls, Raised 

Ceiling, 
Raised Beam 

Raised 
Ceiling 

Raised 
Ceiling, 
Raised 
Beam 

Minimum 
Temperature 
(°C) 

21.3 21.3 22.4 21.6 21.6 21.1 

Maximum 
Temperature 
(°C) 

27.4 27.6 25.2 28.8 28.1 28.3 

Maximum 
Velocity (m/s) 0.387 0.411 0.441 0.536 0.433 0.479 

Maximum 
Temperature 
Difference 
(°C) 

6.1 6.3 2.8 7.2 6.5 7.2 
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Figure 94.  Plume center location as defined by the minimum temperature for the asymmetric 
configuration of thermal manikins for the extended walls, raised ceiling, and raised beam tests. 
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8.3.3 C-Configuration of Thermal Manikins 

The temperature distributions, velocity profiles, and three-dimensional plumes 

for the thermal manikins in Configuration C are shown in Figures 95-97, respectively.  

The plumes from Beam Positions 1 and 3 displayed higher velocities than from the beam 

positions with a portion of the beam directly above the heat sources.  The beam plumes 

descended directly beneath the beam outlet and the generated flow patterns were 

symmetric in the space.  For Beam Positions 2 and 4, with part of the beam located 

directly above the heat sources, the center of the beam plume was located at an angle 

away from the vertical beam centerline displaced by the heated plume generated from 

the thermal manikins. 

The test configurations with the highest velocity and largest temperature 

difference in the occupied zone were Beam Positions 3 and 4, with the beam oriented 

perpendicular to the rows of heat sources.  The results are listed in Table 34.  Beam 

Position 2 for the thermal manikins in the C-configuration can be considered the most 

well-mixed of the room spaces with the lowest maximum temperature difference.  In 

contrast, the thermal characteristics of the room air were most varied with the beam in 

Beam Position 3, the test with the highest maximum velocity and largest temperature 

difference. 
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Figure 95.  Temperature profiles for BPs 1-4 cooling the thermal manikins in the C-
configuration. 
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Figure 96.  Velocity distributions for BPs 1-4 cooling the thermal manikins in the C-
configuration. 
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Figure 97.  Three-dimensional plumes from the beam (21 °C) in BPs 1-4 cooling the thermal 
manikins in the C-configuration. 
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Table 34.  Minimum temperature and maximum temperature and velocity for the Test C 
configuration. 

 C1 C2 C3 C4 
Minimum Temperature (°C) 20.7 20.8 20.1 21.2 
Maximum Temperature (°C) 29.3 26.9 31.7 31.7 
Maximum Velocity (m/s) 0.427 0.431 0.509 0.450 
Maximum Temperature Difference (°C) 8.6 6.1 11.6 10.5 

 

 

The minimum temperature location in relation to the beam centerline and vertical 

distance from the floor was plotted for each scenario of the C-configuration tests in 

Figure 98.  The plume center closely follows the vertical centerline in all configurations 

except for Beam Position 2.  In this position, the beam is directly above one row of the 

thermal manikins and the effect of the heat source plumes was to displace the beam 

plume, as observed by the center of the plume location as a function of distance from the 

floor. 
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Figure 98.  Plume center location for the C-configuration tests. 
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beam Beam Positions 1 and 3 also resulted in higher plume velocities.  The shape of the 

plume was noticeably dissimilar between the four beam positions.  The beam in Beam 

Positions 3 and 4 was located perpendicular to the rows of thermal manikins and was 

closest to the thermal manikins in Beam Position 3.  The plume from the beam in Beam 

Position 3 was drawn in towards the middle of the beam, whereas, the plume from the 

beam in Beam Position 4 branched out at the ends closest to the thermal manikin rows.  

The heat source thermal plumes affected the beam plume in both scenarios.  For Beam 

Position 3, closest to the rows, the heat source plumes displaced the beam plume towards 

the middle of the room.  For Beam Position 4, the heat source plumes were too far away 

to affect the shape of the beam plume in a similar way.  The airflow at the beam inlet 

was greatest in the locations closest to the rows of thermal manikins.  The higher mass 

flow rate of warmer air created localized areas of higher volumetric cooling within the 

beam region.  The resulting beam plume shape reflected the areas within the beam of 

higher localized cooling capacity. 
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Figure 99.  Temperature profiles for BPs 1-4 cooling the thermal manikins in the D-
configuration. 
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Figure 100.  Velocity distributions for BPs 1-4 cooling the thermal manikins in the D-
configuration. 
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Figure 101.  Three-dimensional plumes from the beam (21 °C) in BPs 1-4 cooling the thermal 
manikins in the D-configuration. 

 

 

The airflow characteristics of the occupied zone, listed in Table 35, show that the 
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well-mixed occupied zone with the smallest maximum temperature difference.  As in the 
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C-configuration tests, the beam in Beam Position 3 resulted in the highest maximum 

temperature difference and the highest maximum velocity in the occupied zone. 

 

 

Table 35.  Minimum temperature and maximum temperature and velocity for the Test D 
configuration. 

 D1 D2 D3 D4 
Minimum Temperature (°C) 20.6 20.5 19.5 21.4 
Maximum Temperature (°C) 30.9 25.0 30.6 29.9 
Maximum Velocity (m/s) 0.442 0.451 0.531 0.427 
Maximum Temperature Difference (°C) 10.3 4.5 11.1 8.5 

 

 

 

The minimum temperature location in relation to the beam centerline and vertical 

distance from the floor was plotted for each scenario of the D-configuration tests in 

Figure 102.  All of the test configurations deviate from the beam vertical centerline.  The 

beam in Beam Position 2 results in the largest deviation with the center of the plume 

over 40 cm from the vertical centerline. 
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Figure 102.  Plume center location for the D-configuration tests. 
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plume.  However, when the beam was not positioned above the thermal manikins, the 

stronger airflow currents generated by the heat sources created a greater mass flow rate 

and subsequent rate of cooling through localized areas of the beam.  The plume from the 

beam in Beam Position 4 demonstrates this as the plume is strongest underneath the 

section of the beam that is closest to the rows of thermal manikins. 

 

 

 

Figure 103.  Temperature profiles for BPs 1-4 cooling the thermal manikins in the E-
configuration. 
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Figure 104.  Velocity distributions for BPs 1-4 cooling the thermal manikins in the E-
configuration. 
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Figure 105.  Three-dimensional plumes from the beam (21 °C) in BPs 1-4 cooling the thermal 
manikins in the E-configuration. 
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The airflow characteristics of the occupied zone, listed in Table 36, show that the 

beam orientation for the thermal manikins in the E-configuration had less effect on the 

room air characteristics than for the C or D thermal manikin configurations.  The 

maximum velocity in the occupied zone for the E-configuration of thermal manikins was 

highest for Beam Position 3, perpendicular to the rows of thermal manikins.   

 

 

Table 36.  Minimum temperature and maximum temperature and velocity for the Test E-
configuration. 

 E1 E2 E3 E4 
Minimum Temperature (°C) 21.3 20.4 19.7 21.0 
Maximum Temperature (°C) 25.3 24.9 28.1 28.7 
Maximum Velocity (m/s) 0.376 0.439 0.528 0.363 
Maximum Temperature Difference (°C) 4.0 4.5 8.4 7.7 

 

 

 

The center of the beam plumes generally followed the vertical centerline of the 

beam, as shown in Figure 106, except for Beam Position 2.  As in the D-configuration of 

thermal manikins, the Beam Position 2 beam plume deviated from the vertical centerline 

by more than 40 cm, a result of the proximity of the thermal manikins located directly 

beneath the beam. 
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Figure 106.  Plume center location for the E-configuration tests. 
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beam positions oriented in the center of the room, either perpendicular or parallel to the 

rows of thermal manikins.  The airflow pattern created from Beam Position 2 was 

similar to the airflow pattern created by the thermal manikins in the asymmetric 

configuration, where the room air circulation was limited to the half of the room that 

contained the beam and the thermal manikins. 

 

 

 

Figure 107.  Temperature profiles for BPs 1-4 cooling the thermal manikins in the F-
configuration. 
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Figure 108.  Velocity distributions for BPs 1-4 cooling the thermal manikins in the F-
configuration. 
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Figure 109.  Three-dimensional plumes from the beam (21 °C) in BPs 1-4 cooling the thermal 
manikins in the F-configuration. 
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The airflow characteristics of the occupied zone, listed in Table 37, show that for 

all four beam orientations, the temperatures throughout the space were relatively 

uniform, with small maximum temperature differences of 5 °C or less as compared to the 

C, D and E configurations.  The highest maximum velocities in the occupied zone were 

generated by the beam in Beam Positions 1 and 3, both located in the center of the room. 

 

 

Table 37.  Minimum temperature and maximum temperature and velocity for the Test F 
configuration. 

 F1 F2 F3 F4 
Minimum Temperature (°C) 20.2 21.2 20.5 21.6 
Maximum Temperature (°C) 25.3 25.2 24.4 25.1 
Maximum Velocity (m/s) 0.557 0.415 0.527 0.388 
Maximum Temperature Difference (°C) 5.1 4.0 3.9 3.5 

 

 

 

The minimum temperature location in relation to the beam centerline and vertical 

distance from the floor was plotted for each scenario of the F-configuration tests in 

Figure 110.  The beam plume from the positions at the center of the room resulted in 

plume centers that followed the vertical centerline.  Beam Positions 2 and 4 resulted in 

higher deviation from the vertical centerline. 
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Figure 110.  Plume center location for the F-configuration tests. 
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Positions 1 and 3 located in the center of the room either perpendicular or parallel to the 

rows of thermal manikins.  For Beam Positions 2 and 4, the flow is highly varied.  In 

Beam Position 4, a large area of air speed greater than 0.5 m/s was present for the region 

of the occupied zone nearest the thermal manikins and beam.  The circulation of room 

air for Beam Position 2 was limited to the half of the room containing the beam and the 

thermal manikins, similar to the results in the asymmetric and F-configuration tests. 

The airflow characteristics of the occupied zone, listed in Table 38, are similar to 

the F-configuration results and show that the beam orientation had an insignificant effect 

on the maximum temperature difference in the occupied zone.  However, the maximum 

velocity in the occupied zone for Beam Position 3 was almost 50% higher than with 

Beam Position 2. 

 

 



 

200 

 

 

Figure 111.  Temperature profiles for BPs 1-4 cooling the thermal manikins in the G-
configuration. 
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Figure 112.  Velocity distributions for BPs 1-4 cooling the thermal manikins in the G-
configuration. 
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Figure 113.  Three-dimensional plumes from the beam (21 °C) in BPs 1-4 cooling the thermal 
manikins in the G-configuration. 
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Table 38.  Minimum temperature and maximum temperature and velocity for the Test G-
configuration. 

 G1 G2 G3 G4 
Minimum Temperature (°C) 20.0 20.8 19.8 20.6 
Maximum Temperature (°C) 25.1 25.0 24.0 24.7 
Maximum Velocity (m/s) 0.512 0.409 0.592 0.485 
Maximum Temperature Difference (°C) 5.1 4.2 4.2 4.1 

 

 

 

The minimum temperature location in relation to the beam centerline and vertical 

distance from the floor was plotted for each scenario of the G-configuration tests in 

Figure 114.  Of the four tests, only Beam Position 3 followed the vertical centerline.   In 

the occupied zone, Beam Positions 1, 3, and 4 resulted in deviations of greater than 20 

cm from the vertical centerline. 
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Figure 114.  Plume center location for the G-configuration tests. 
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8.3.8 H-Configuration of Thermal Manikins 

The temperature distributions, velocity profiles, and three-dimensional plumes 

for the thermal manikins in Configuration H are shown for the four beam positions in 

Figures 115-117, respectively.    The results are similar to the Configuration G tests, 

with symmetric airflow patterns generated with Beam Position 1, and varied flow 

conditions for Beam Positions 2, 3 and 4.  In Beam Position 1, the concentration of 

thermal manikins located beneath the beam, reduces the localized mass flow rate in the 

beam region directly above the thermal manikins.  The shape of the plume reflected the 

reduced localized cooling rate and the displacement of the beam plume due to the 

proximity of the thermal manikins.   

The airflow characteristics of the occupied zone for the H-configuration of 

thermal manikins, listed in Table 39, are similar to the G-configuration and show that the 

beam orientation had an insignificant effect on the maximum temperature difference in 

the occupied zone.  Additionally, the maximum velocity in the occupied zone was 

relatively constant for each beam orientation. 
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Figure 115.  Temperature profiles for BPs 1-4 cooling the thermal manikins in the H-
configuration. 
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Figure 116. Velocity distributions for BPs 1-4 cooling the thermal manikins in the H-
configuration. 
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Figure 117.  Three-dimensional plumes from the beam (21 °C) in BPs 1-4 cooling the thermal 
manikins in the H-configuration. 
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Table 39.  Minimum temperature and maximum temperature and velocity for the Test H 
configuration. 

 H1 H2 H3 H4 
Minimum Temperature (°C) 20.3 20.7 19.6 20.7 
Maximum Temperature (°C) 25.1 24.8 24.7 24.8 
Maximum Velocity (m/s) 0.490 0.431 0.497 0.477 
Maximum Temperature Difference (°C) 4.8 4.1 5.1 4.1 

 

 

 

The minimum temperature location in relation to the beam centerline and vertical 

distance from the floor was plotted for each scenario of the G-configuration tests in 

Figure 118.  Beam Position 1 resulted in a beam plume center that followed the vertical 

centerline.  For Beam Positions 2, 3, and 4, the plume center deviated away from the 

heat sources by at least 20 cm for all three tests.  
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Figure 118.  Plume center location for the H-configuration tests. 
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8.4 Summary 

The objective of this chapter was to quantify effects on beam performance and 

room air characteristics for different beam positions, room dimensions, and heat source 

locations.  The results of the beam capacity calculations showed that the beam 

orientation countered the reduced effect of an unbalanced heat source distribution.  By 

rotating the beam to be perpendicular to the rows of thermal manikins, the calculated 

beam efficiency increased for the unbalanced heat sources.  Additionally, the rotation of 

the beam resulted in a symmetric airflow pattern, mixing the entire occupied zone in 

contrast to the asymmetric flow pattern with mixing in only half of the room as a result 

of the unbalanced heat source distribution cooled by a beam with a parallel orientation.  

However, a change in beam orientation that increases the efficiency of the beam 

performance can negatively impact the room air characteristics in the occupied zone.  

Higher maximum velocities and larger temperature differences in the occupied zone 

were shown for the beam oriented perpendicular to the heat sources in both the 

symmetric and asymmetric distributions.  Similar results were found for additional 

configurations of diverse heat source distributions. 

The beam thermal plume was not strongly influenced by the beam orientation, 

though the heat source locations changed the position and shape.  For concentrated heat 

load distributions, the localized cooling capacity of the beam increased for the regions 

nearest to the heat sources if the beam was not near enough for the thermal plumes to 

interact.  For beams positioned directly over the heat sources or in close proximity, the 
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heat source plumes were strong enough to displace the beam thermal plume away from 

the heat sources. 

Finally, the results of testing the room dimensions were that little impact was 

calculated on the beam performance, thermal plume characteristics, or room air 

characteristics by increasing the volume of air cooled and the height of the beam.  For 

room designs with passive chilled beams cooling symmetric heat load distributions, the 

flow pattern and thermal characteristics in the space will be unaffected with an increased 

ceiling height, beam height or wall length.  Similarly, for designs with asymmetric or 

unbalanced heat source distributions, the adverse effects of reduced beam performance 

and variations in the room air characteristics throughout the occupied zone may not be 

compensated for by changing the room dimensions. 
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CHAPTER IX  

CONCLUSIONS AND RECOMMENDATIONS 

 

9.1 Summary 

A numerical model was developed to calculate the performance and resultant 

airflow characteristics of a passive chilled beam.  The methodology for the model 

development used a porous medium region to simulate the fin array of the passive 

chilled beam.  Experiments were conducted in a thermal climate test chamber to measure 

the beam cooling capacity, air temperatures and velocities, and power input to heat 

sources.  Symmetric and asymmetric arrangements of thermal manikins were tested and 

the data analysis showed a 15 % reduction in the passive beam cooling capacity for the 

asymmetric heat sources. 

The measured data was used to validate the model predictions.  Predictions of 

reference air temperatures above the passive chilled beam were within 5 % of the 

measured values.  Similarly, air temperatures predicted below the passive chilled beam 

were within 10 % of the measured values.  Coefficients used in the inertial resistance 

calculation throughout the porous medium region were adjusted to match the predicted 

passive chilled beam outlet velocities within 20 % of the measured values.  Though, 

when the time-variance of the velocity was taken into account, the CFD calculation 

values fell within the range of variation. 

The CFD model was used to further investigate the reduced cooling capacity of 

the beam with an asymmetric heat source distribution by comparing the calculated inlet 
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velocity field to the symmetric inlet velocity field.  The results of the comparison 

revealed that the air velocities above the passive chilled beam of the asymmetric thermal 

manikin tests were higher than the symmetric thermal manikin tests.  Additionally, the 

direction of the velocity field was parallel to the inlet of the passive chilled beam region, 

decreasing the mass flow rate of air through the beam.   

A calculation for the beam cooling capacity was used to predict the passive 

chilled beam efficiency of additional geometric and spatial room arrangements.  The 

results were increased beam efficiencies for spaces with the beam oriented perpendicular 

to the groupings of heat sources.  However, increases in the beam efficiency also 

resulted in higher maximum velocities in the occupied zone.  With unbalanced heat load 

configurations, the beam orientation affected the airflow in the space and, depending on 

the position in relation to the thermal manikins, created either well-mixed conditions or 

occupied zone conditions with a high degree of air temperature ranges that could 

negatively impact the thermal comfort of occupants. 

 

9.2 Conclusions 

From the investigative results presented in the dissertation, the following list of 

conclusions was drawn: 

1.  A passive chilled beam can be successfully modeled in CFD by using a 

porous medium model that acts as a heat sink and a source of momentum loss.  

The porous medium region requires a lower density of grid points for converged 
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solutions than modeling the surfaces of the beam fin array and can be used to 

calculate the resultant airflow in much larger spaces. 

2.  Arrangement of the heat sources in a space cooled by a passive chilled beam 

will affect the beam performance.  The results of experimental tests were a 15 % 

reduction in the beam cooling capacity with heat sources grouped to only one 

side of the beam compared to a balanced load configuration.  The combined 

strength of the thermal plumes from the grouped heat sources contributed to 

higher velocities at the inlet of the passive chilled beam directing the flow above 

and around the beam. 

3.  The calculation of the beam cooling capacity implemented in the CFD model 

was shown to be generalizable and could predict changes in beam performance 

based on heat source configurations. 

4.  The beam performance was increased for unbalanced heat source 

configurations by rotating the beam to be perpendicular in relation to the heat 

source locations.  Unbalanced load configurations reduced the beam performance 

and contributed to asymmetric airflow in the space resulting in high variations of 

temperature throughout the occupied zone. 

5.  The basic features of the room geometry did not affect the beam performance 

and did not alter the reduction in beam performance for unbalanced loads. 
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9.3 Recommendations 

 Based on the results of this study, the passive chilled beam location should be 

designed with the expected heat load locations in consideration.  For unbalanced heat 

sources, the position of the beam should be perpendicular to the grouping of heat sources 

for the maximum efficiency.  Future studies of passive chilled beam performance should 

investigate effects from heat source configurations for a system that includes supply air 

distribution.  The airflow through the space will be impacted not only by the passive 

chilled beam and the heat sources but also by the design of the supply air diffuser.  The 

CFD model validated in this study can be used to calculate the cumulative effects of 

multiple sources of buoyancy and momentum in order to predict the thermal comfort of 

occupants. 
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APPENDIX A  

THEORETICAL BACKGROUND OF CFD 

 

A.1 CFD Basis 

The fundamental equations of continuity, momentum and energy are based on the three 

physical principles that:  1) mass is conserved, 2) force is equal to the product of mass 

and acceleration, and 3) energy is conserved [42].  These physical principles are applied 

to the flow model to develop the partial differential equations that govern the flow 

equations.  In CFD, numbers are used to replace the partial differential equations and are 

advanced through space or time to solve the mathematical relationships.  The end result 

is a numerical description of the flow field. 

 

A.2 Governing Equations 

The continuity equation can be derived based on an integral analysis of a fixed volume 

in space of the fluid based on the physical principle that mass is conserved.  The flow of 

mass into or out of the control volume can be described by the surface integral: 

 �𝜌𝑉�⃑ ∙ d𝑆
 

𝑆
 A.1 

The mass contained within the volume can be described with the volume integral: 

 �ρd𝒱
 

𝒱
 A.2 

and the time rate of change of the total mass is then: 
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 𝜕
𝜕𝑡
�ρd𝒱

 

𝒱
 A.3 

Setting the time rate of change of total mass within the control volume equal to the mass 

flow into and out of the control volume, results in the following: 

 𝜕
𝜕𝑡
� ρd𝒱 +  �𝜌𝑉�⃑ ∙ d𝑆

 

𝑆
= 0

 

𝒱
 A.4 

which is the integral form of the continuity equation for a fixed volume in space.  In 

order to transform the integral equation into a differential form, the divergence theorem 

is applied.  The surface integral can then be written as: 

 �𝜌𝑉�⃑ ∙ d𝑆 = 
 

𝑆
�∇ ∙ �𝜌𝑉�⃑ �d𝒱

 

𝒱
 A.5 

Substituting this result into the integral form of the continuity equation: 

 
�

𝜕ρ
𝜕𝑡

d𝒱 +  �∇ ∙ �𝜌𝑉�⃑ �d𝒱
 

𝒱
 = 0

 

𝒱
 A.6 

where the time differential was placed inside the volume integral.  This can be re-written 

as: 

 
� �

𝜕ρ
𝜕𝑡

 +  ∇ ∙ �𝜌𝑉�⃑ ��d𝒱 = 0
 

𝒱
 A.7 

In order for the volume integral to equal zero, the integrand must also equal zero.  As a 

result the differential form of the continuity equation for a fixed infinitesimal volume in 

space is: 

 𝜕ρ
𝜕𝑡

 +  ∇ ∙ �𝜌𝑉�⃑ � = 0 A.8 

The second physical principle applied to the flow leads to the momentum equation.  The 

forces acting on an infinitesimal fluid particle are set equal to the product of the mass 
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and acceleration of the particle.  The forces that act on a fluid particle are categorized as 

either a body or surface force.  Gravity and electrical and magnetic fields are examples 

of body forces, while surface forces are either shear or normal.  In the x-direction of the 

flow in three dimensional Cartesian space, the forces can be described by: 

 
𝐹𝑥 =  �−

𝜕𝑝
𝜕𝑥

+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

+
𝜕𝜏𝑧𝑥
𝜕𝑧

�d𝑥d𝑦d𝑧 + 𝜌𝑓𝑥d𝑥d𝑦d𝑧 A.9 

The mass of fluid can be written as: 

 𝑚 = 𝜌d𝑥d𝑦d𝑧 A.10 

and the acceleration as the substantial derivative of the fluid velocity: 

 𝑎𝑥 =  
D𝑢
D𝑡

 A.11 

Substituting Equations A.10 and A.11 into A.9: 

 
𝜌

D𝑢
D𝑡

=  −
𝜕𝑝
𝜕𝑥

+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

+
𝜕𝜏𝑧𝑥
𝜕𝑧

+ 𝜌𝑓𝑥 A.12 

By expanding the substantial derivative of u and applying the divergence theorem, this 

becomes: 

 𝜕(𝜌𝑢)
𝜕𝑡

+ ∇ ∙ �𝜌𝑢𝑉�⃑ � =  −
𝜕𝑝
𝜕𝑥

+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

+
𝜕𝜏𝑧𝑥
𝜕𝑧

+ 𝜌𝑓𝑥 A.13 

which is the x-direction momentum equation.  Along with the y-direction and z-direction 

equations, this group of three equations are named the Navier-Stokes equations: 

 𝜕(𝜌𝑣)
𝜕𝑡

+ ∇ ∙ �𝜌𝑣𝑉�⃑ � =  −
𝜕𝑝
𝜕𝑦

+
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜏𝑦𝑦
𝜕𝑦

+
𝜕𝜏𝑧𝑦
𝜕𝑧

+ 𝜌𝑓𝑦 A.14 

 𝜕(𝜌𝑤)
𝜕𝑡

+ ∇ ∙ �𝜌𝑤𝑉�⃑ � =  −
𝜕𝑝
𝜕𝑧

+
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧
𝜕𝑦

+
𝜕𝜏𝑧𝑧
𝜕𝑧

+ 𝜌𝑓𝑧 A.15 

For Newtonian fluids the shear stresses can be written as: 
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𝜏𝑥𝑥 =  𝜆∇ ∙ 𝑉�⃑ + 2𝜇

𝜕𝑢
𝜕𝑥

 A.16 

 
𝜏𝑦𝑦 =  𝜆∇ ∙ 𝑉�⃑ + 2𝜇

𝜕𝑣
𝜕𝑦

 A.17 

 
𝜏𝑧𝑧 =  𝜆∇ ∙ 𝑉�⃑ + 2𝜇

𝜕𝑤
𝜕𝑧

 A.18 

 
𝜏𝑥𝑦 =  𝜏𝑦𝑥 =  𝜇 �

𝜕𝑣
𝜕𝑥

+
𝜕𝑢
𝜕𝑦
� A.19 

 
𝜏𝑥𝑧 =  𝜏𝑧𝑥 =  𝜇 �

𝜕𝑢
𝜕𝑧

+
𝜕𝑤
𝜕𝑥
� A.20 

 
𝜏𝑦𝑧 =  𝜏𝑧𝑦 =  𝜇 �

𝜕𝑤
𝜕𝑦

+
𝜕𝑣
𝜕𝑧
� A.21 

with the Stokes hypothesis for the bulk viscosity coefficient: 

 
𝜆 =  −  

2
3
𝜇 A.22 

and substituting in are the Navier-Stokes equations in conservation form: 

 𝜕(𝜌𝑢)
𝜕𝑡

+
𝜕(𝜌𝑢2)
𝜕𝑥

+
𝜕(𝜌𝑢𝑣)
𝜕𝑦

+
𝜕(𝜌𝑢𝑤)
𝜕𝑧

=  −
𝜕𝑝
𝜕𝑥

+
𝜕
𝜕𝑥

�𝜆∇ ∙ 𝑉�⃑ + 2𝜇
𝜕𝑢
𝜕𝑥
�

+
𝜕
𝜕𝑦

� 𝜇 �
𝜕𝑣
𝜕𝑥

+
𝜕𝑢
𝜕𝑦
�� +

𝜕
𝜕𝑧
� 𝜇 �

𝜕𝑢
𝜕𝑧

+
𝜕𝑤
𝜕𝑥
��

+ 𝜌𝑓𝑥 

A.23 
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 𝜕(𝜌𝑣)
𝜕𝑡

+
𝜕(𝜌𝑢𝑣)
𝜕𝑥

+
𝜕(𝜌𝑣2)
𝜕𝑦

+
𝜕(𝜌𝑣𝑤)
𝜕𝑧

=  −
𝜕𝑝
𝜕𝑦

+
𝜕
𝜕𝑥

� 𝜇 �
𝜕𝑣
𝜕𝑥

+
𝜕𝑢
𝜕𝑦
��

+
𝜕
𝜕𝑦

�𝜆∇ ∙ 𝑉�⃑ + 2𝜇
𝜕𝑧
𝜕𝑦
� +

𝜕
𝜕𝑧
� 𝜇 �

𝜕𝑤
𝜕𝑦

+
𝜕𝑣
𝜕𝑧
��

+ 𝜌𝑓𝑦 

A.24 

 

 𝜕(𝜌𝑤)
𝜕𝑡

+
𝜕(𝜌𝑢𝑤)
𝜕𝑥

+
𝜕(𝜌𝑣𝑤)
𝜕𝑦

+
𝜕(𝜌𝑤2)
𝜕𝑧

=  −
𝜕𝑝
𝜕𝑧

+
𝜕
𝜕𝑥

� 𝜇 �
𝜕𝑢
𝜕𝑧

+
𝜕𝑤
𝜕𝑥
��

+
𝜕
𝜕𝑦

� 𝜇 �
𝜕𝑤
𝜕𝑦

+
𝜕𝑣
𝜕𝑧
�� +

𝜕
𝜕𝑧
�𝜆∇ ∙ 𝑉�⃑ + 2𝜇

𝜕𝑤
𝜕𝑧
�

+ 𝜌𝑓𝑧 

A.25 

The third principle applied to the flow is the conservation of energy and results in the 

energy equation.  The rate of change of energy inside the fluid element is equal to the 

sum of the heat flux into the element and the rate of work done on the element due to 

surface and body forces.  The rate of energy within the fluid element may be written as: 

 

𝜌
D �𝑒 + 𝑉2

2 �

D𝑡
d𝑥d𝑦d𝑧 

A.26 

The heat flux into the fluid element is the sum of the volumetric heating of the element 

and the heating due to thermal conduction: 
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�𝜌𝑞 ̇ −  �

𝜕�̇�𝑥
𝜕𝑥

+  
𝜕�̇�𝑦
𝜕𝑦

+  
𝜕�̇�𝑧
𝜕𝑧

��d𝑥d𝑦d𝑧 A.27 

The conduction can be related to the product of the thermal conductivity and the 

temperature gradient and substituting into Equation A.27 becomes: 

 
�𝜌𝑞 ̇ +  

𝜕
𝜕𝑥

�𝑘
𝜕𝑇
𝜕𝑥
� +  

𝜕
𝜕𝑦

�𝑘
𝜕𝑇
𝜕𝑦
� +  

𝜕
𝜕𝑧
�𝑘
𝜕𝑇
𝜕𝑧
�� d𝑥d𝑦d𝑧 A.28 

The rate of work done on the element due to body force is the product of the force and 

the velocity component in the direction of the force: 

 𝜌𝑓 ∙ 𝑉�⃑ (d𝑥d𝑦d𝑧) A.29 

The rate of work done on the element due to surface forces is a result of pressure and 

shear forces.  For the x-direction rate of work for the pressure forces is: 

 
�𝑢𝑝 − �𝑢𝑝 +

𝜕(𝑢𝑝)
𝜕𝑥

d𝑥��d𝑦d𝑧 =  −
𝜕(𝑢𝑝)
𝜕𝑥

d𝑥d𝑦d𝑧 A.30 

The x-direction rate of work for the shear forces is: 

 
��𝑢𝜏𝑦𝑥 +

𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑥

d𝑦� − 𝑢𝜏𝑦𝑥�d𝑥d𝑧 =
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑥

d𝑥d𝑦d𝑧 A.31 

Combining the body and surface forces: 

 
�−

𝜕(𝑢𝑝)
𝜕𝑥

+  
𝜕(𝑢𝜏𝑥𝑥)
𝜕𝑥

+  
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑦

+  
𝜕(𝑢𝜏𝑧𝑥)
𝜕𝑧

�d𝑥d𝑦d𝑧 A.32 

With the addition of the y-direction and z-direction terms, the combined body and 

surface force expression becomes: 
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��−

𝜕(𝑢𝑝)
𝜕𝑥

+
𝜕(𝑣𝑝)
𝜕𝑦

+
𝜕(𝑤𝑝)
𝜕𝑧

� +
𝜕(𝑢𝜏𝑥𝑥)
𝜕𝑥

+
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑦

+
𝜕(𝑢𝜏𝑧𝑥)
𝜕𝑧

+
𝜕�𝑣𝜏𝑥𝑦�
𝜕𝑥

+
𝜕�𝑣𝜏𝑦𝑦�
𝜕𝑦

+
𝜕�𝑣𝜏𝑧𝑦�
𝜕𝑧

+
𝜕(𝑤𝜏𝑥𝑧)
𝜕𝑥

+
𝜕�𝑤𝜏𝑦𝑧�
𝜕𝑦

+
𝜕(𝑤𝜏𝑧𝑧)
𝜕𝑧

�d𝑥d𝑦d𝑧

+ 𝜌𝑓 ∙ 𝑉�⃑ (d𝑥d𝑦d𝑧) 

A.33 

By combining equations A.28, A.29, and A.33 the energy equation is defined as: 

 

𝜌
D �𝑒 + 𝑉2

2 �

D𝑡
= 𝜌𝑞 ̇ +  

𝜕
𝜕𝑥

�𝑘
𝜕𝑇
𝜕𝑥
� +  

𝜕
𝜕𝑦

�𝑘
𝜕𝑇
𝜕𝑦
� +  

𝜕
𝜕𝑧
�𝑘

𝜕𝑇
𝜕𝑧
�

−
𝜕(𝑢𝑝)
𝜕𝑥

+
𝜕(𝑣𝑝)
𝜕𝑦

+
𝜕(𝑤𝑝)
𝜕𝑧

+
𝜕(𝑢𝜏𝑥𝑥)
𝜕𝑥

+
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑦

+
𝜕(𝑢𝜏𝑧𝑥)
𝜕𝑧

+
𝜕�𝑣𝜏𝑥𝑦�
𝜕𝑥

+
𝜕�𝑣𝜏𝑦𝑦�
𝜕𝑦

+
𝜕�𝑣𝜏𝑧𝑦�
𝜕𝑧

+
𝜕(𝑤𝜏𝑥𝑧)
𝜕𝑥

+
𝜕�𝑤𝜏𝑦𝑧�
𝜕𝑦

+
𝜕(𝑤𝜏𝑧𝑧)
𝜕𝑧

d𝑥d𝑦d𝑧 + 𝜌𝑓 ∙ 𝑉�⃑  

A.34 

Based on the definition for the substantial derivative, the left-hand side of Equation A.34 

can be written as: 

 

𝜌
D �𝑒 + 𝑉2

2 �

D𝑡
= 𝜌

𝜕 �𝑒 + 𝑉2
2 �

𝜕𝑡
+ 𝜌𝑉�⃑ ∙ ∇ �𝑒 +

𝑉2

2
� A.35 

considering that: 
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𝜌
𝜕 �𝑒 + 𝑉2

2 �

𝜕𝑡
=
𝜕 �𝜌 �𝑒 + 𝑉2

2 ��

𝜕𝑡
− �𝑒 +

𝑉2

2
�
𝜕𝜌
𝜕𝑡

 A.36 

and, 

 
𝜌𝑉�⃑ ∙ ∇ �𝑒 +

𝑉2

2
� = ∇ ∙ �𝜌 �𝑒 +

𝑉2

2
�𝑉�⃑ � − �𝑒 +

𝑉2

2
�∇ ∙ �𝜌𝑉�⃑ � A.37 

Then substitute Equation A.36 and A.37 into A.35: 

 

𝜌
D
D𝑡

�𝑒 +
𝑉2

2
� =

𝜕 �𝜌 �𝑒 + 𝑉2
2 ��

𝜕𝑡

− �𝑒 +
𝑉2

2
� �
𝜕𝜌
𝜕𝑡

+ ∇ ∙ �𝜌𝑉�⃑ �� +  ∇

∙ �𝜌 �𝑒 +
𝑉2

2
�𝑉�⃑ � 

A.38 

Using the continuity equation, the second term on the right-hand side is zero, and 

simplifying: 

 

𝜌
D �𝑒 + 𝑉2

2 �

D𝑡
=
𝜕
𝜕𝑡
�𝜌 �𝑒 +

𝑉2

2
�� + ∇ ∙ �𝜌 �𝑒 +

𝑉2

2
�𝑉�⃑ � A.39 

Substituting Equation A.39 into A.34 the conservation form of the energy equation is 

obtained: 
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𝜌
𝜕
𝜕𝑡
�𝜌 �𝑒 +

𝑉2

2
�� +  ∇ ∙ �𝜌 �𝑒 +

𝑉2

2
�𝑉�⃑ �

= 𝜌𝑞 ̇ + 
𝜕
𝜕𝑥

�𝑘
𝜕𝑇
𝜕𝑥
� +  

𝜕
𝜕𝑦

�𝑘
𝜕𝑇
𝜕𝑦
�

+  
𝜕
𝜕𝑧
�𝑘
𝜕𝑇
𝜕𝑧
� −

𝜕(𝑢𝑝)
𝜕𝑥

+
𝜕(𝑣𝑝)
𝜕𝑦

+
𝜕(𝑤𝑝)
𝜕𝑧

+
𝜕(𝑢𝜏𝑥𝑥)
𝜕𝑥

+
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑦

+
𝜕(𝑢𝜏𝑧𝑥)
𝜕𝑧

+
𝜕�𝑣𝜏𝑥𝑦�
𝜕𝑥

+
𝜕�𝑣𝜏𝑦𝑦�
𝜕𝑦

+
𝜕�𝑣𝜏𝑧𝑦�
𝜕𝑧

+
𝜕(𝑤𝜏𝑥𝑧)
𝜕𝑥

+
𝜕�𝑤𝜏𝑦𝑧�
𝜕𝑦

+
𝜕(𝑤𝜏𝑧𝑧)
𝜕𝑧

d𝑥d𝑦d𝑧 + 𝜌𝑓 ∙ 𝑉�⃑  

A.40 
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APPENDIX B  

TENSOR NOTATION 

 

The following is an overview of the tensor notation used throughout this text.  Cartesian 

tensors were used to transcribe the fluid equations.  Tensors are made up of tensor 

components and basis vectors and the number of independent basis vectors defines the 

dimension of the tensor.  Tensors of order zero are scalars and do not need to be 

described with a basis vector.  Vectors are tensors of order one and can be written as: 

 
�⃑� =  �𝑥𝑖𝑒𝑖

3

𝑖=1

= 𝑥𝑖𝑒𝑖 B.1 

For example, the first order tensor for velocity, ui, is written as: 

 𝑢𝑖 =  (𝑢1,𝑢2,𝑢3) =  (𝑢, 𝑣,𝑤) B.2 

A second order tensor, formed by the product of two order one tensors can be written as: 

 
𝑻 = �⃑�𝑏�⃑ = ��𝑎𝑖𝑏𝑗𝑒𝑖𝑒𝑗

3

𝑗=1

3

𝑖=1

= 𝑎𝑖𝑏𝑗𝑒𝑖𝑒𝑗   B.3 

For example, the second order tensor of stress, is written as 

 𝜏𝑖𝑗  (𝑖, 𝑗 = 1, 2, 3) B.4 

and in the form of a matrix: 

 
𝜏𝑖𝑗 =  �

𝜏11 𝜏21 𝜏31
𝜏12 𝜏22 𝜏32
𝜏13 𝜏23 𝜏33

� =  �
𝜏𝑥𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜏𝑦𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜏𝑧𝑧

� B.5 

For a scalar product such as: 
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 �⃑� ∙ 𝑏�⃑ = (𝑎𝑖𝑒𝑖) ∙ �𝑏𝑗𝑒𝑗� = 𝑎𝑖𝑏𝑗�𝑒𝑖𝑒𝑗� B.6 

By using the Kroneker delta, 𝛿𝑖𝑗, the scalar product can be written in Cartesian index 

notation as: 

 �⃑� ∙ 𝑏�⃑ =  𝑎𝑖𝑏𝑗𝛿𝑖𝑗 = 𝑎𝑖𝑏𝑖 B.7 

where the Kroneker delta is defined as: 

 𝛿𝑖𝑗 =  𝑒𝑖 ∙ 𝑒𝑗 =  �1     𝑓𝑜𝑟 𝑖 = 𝑗
0     𝑓𝑜𝑟 𝑖 ≠ 𝑗 B.8 
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