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ABSTRACT

Decisions for asset allocation and protection are predicated upon accurate knowl-

edge of the current operating environment as well as correctly characterizing the

evolution of the environment over time. The desired kinematic and kinetic states of

objects in question cannot be measured directly in most cases and instead are inferred

or estimated from available measurements using a filtering process. Often, nonlinear

transformations between the measurement domain and desired state domain distort

the state domain probability density function yielding a form which does not nec-

essarily resemble the form assumed in the filtering algorithm. The distortion effect

must be understood in greater detail and appropriately accounted for so that even

if sensors, state estimation algorithms, and state propagation algorithms operate in

different domains, they can all be effectively utilized without any information loss

due to domain transformations.

This research presents an analytical investigation into understanding how non-

linear transformations of stochastic, but characterizable, processes affect state and

uncertainty estimation with direct application to space object surveillance and space-

craft attitude determination. Analysis is performed with attention to construction of

the state domain probability density function since state uncertainty and correlation

are derived from the statistical moments of the probability density function. Analyt-

ical characterization of the effect nonlinear transformations impart on the structure

of state probability density functions has direct application to conventional non-

linear filtering and propagation algorithms in three areas: (1) understanding how

smoothing algorithms used to estimate indirectly observed states impact state un-

certainty, (2) justification or refutation of assumed state uncertainty distributions

ii



for more realistic uncertainty quantification, and (3) analytic automation of initial

state estimate and covariance in lieu of user tuning.

A nonlinear filtering algorithm based upon Bayes’ Theorem is presented to ac-

count for the impact nonlinear domain transformations impart on probability density

functions during the measurement update and propagation phases. The algorithm

is able to accommodate different combinations of sensors for state estimation which

can also be used to hypothesize system parameters or unknown states from available

measurements because information is able to appropriately accounted for.
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1. INTRODUCTION

Whenever measurements of an object’s parameters are recorded, e.g. size, shape,

distance and/or angle from observer, they are subject to measurement error typi-

cally characterized by a metric known as the standard deviation [1]. The standard

deviation is a statistical measure representing the amount by which the measured

parameter can vary, thereby producing a region about the measurement which the

truth is deemed to lie inside. The shape of the region is dictated by the probability

density function [2] which is an analytical expression of the shape of the uncertainty

region centered upon the measurement. Sometimes, the probability density func-

tion requires more than the standard deviation to describe the uncertainty region,

but these parameters are always available when the analytical expression of the un-

certainty region is reported. Many a time, one wishes to compute the uncertainty

associated with an indirect parameter which can be computed from the measured

parameters, e.g. Cartesian position with respect to the observer when only range

and angle measurements are available. The transformation of uncertainty from one

set of basis functions, i.e. measurement space, to a new set of basis functions, such

as Cartesian position, requires careful attention to insure that all uncertainty infor-

mation will be conserved when the transform is applied. This is especially true when

the object is undergoing motion subject to nonlinear differential equations utilizing

state parameters that are nonlinearly related to measurement of the motion.

Examination of the effect nonlinear transformations impart on state estimation

and uncertainty characterization is conducted by assessing how a known analytic

form of a probability density function is altered when the given set of basis functions

are exchanged for a new set of basis functions to allow for more convenient problem
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analysis. An example of such an alteration is the exchange of Cartesian coordinates

for description of rectilinear motion while the object is observed using line-of-sight

range and angle measurements. Junkins et al. [3] demonstrated that different state

coordinate choices produced different results with respect to the accuracy of state

uncertainty computed by the use of linear error theory for propagation. Since the

physics underlying object motion are apathetic to the coordinate system chosen

to mathematically describe the motion, it is clear that the effect of nonlinearity

on state uncertainty is not appropriately characterized if different state coordinate

descriptions produce different estimates. To minimize the effect of the nonlinearity

between the two domains, one would typically choose a state coordinate system

which is most conducive to the observed motion [3, 4] such as spherical coordinates

for curvilinear motion or Cartesian coordinates for rectilinear motion since these

choices produce the most linear forms of the equations of motion.

For problems such as orbital motion, a myriad of coordinate descriptions exist to

allow for relatively easy analysis of motion [5], e.g. surveillance, rendezvous, pertur-

bation analysis, uncertainty analysis, etc. For orbital motion, it has been repeatedly

shown that using either Keplerian or equinoctial elements for state propagation pre-

serves the initial probability density function character of the state uncertainty longer

than other state representations [3,6,7]. The length of time that certain state repre-

sentations will maintain their initial uncertainty character vary drastically depending

upon orbit type. Junkins et al. [3] demonstrated that propagation of the Cartesian

representation of uncertainty for an orbit possessing an eccentricity of 0.2, a perigee

altitude of 300 kilometers, and subjected to drag will remain Gaussian for approxi-

mately half of the orbit period. Sabol et al. [7] demonstrated that, for a relatively

circular low Earth orbit subjected to only the J2 perturbation, propagation of the

Cartesian representation of uncertainty remained Gaussian for up to approximately
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three days while the equinoctial element representation remained Gaussian for up to

ten days. Both Junkins et al. [3] and Sabol et al. [7] noted that the first and second

moment of the true distribution were matched fairly well by the Cartesian represen-

tation, this demonstrated that merely matching the first and second moment of a

probability density does not imply that the higher moment character or correlation

is appropriately characterized.

Scheeres et al. [8] proposed fundamental limits on spacecraft orbit uncertainty

propagation for Keplerian motion in the Cartesian domain, however the uncertainty

distribution was required to be Gausssian at the orbit epoch. For increased accuracy

in propagation of state estimates and the associated covariance, higher-order state

transition tensors have been explored to provide corrections to the propagated mean

and covariance once the state domain is established, such as Cartesian elements

shown by Park and Scheeres [9] or orbital Poincaré elements shown by Fujimoto et

al. [10]. Higher-order state transition tensors and universal elements was proposed

by Majji [11] for solution to the Two-Body problem and could be used in lieu of the

approach of Fujimoto [10]. The data structure and procedure for higher-order tensor

calculations outlined by Turner [12] generated a perturbation model determined by

the nonlinear system’s solution. This approach allowed for solutions to open and

closed loop control and was used by Majji et al. [13, 14] for estimation of dynamic

system estimation in the form of the J th Moment Extended Kalman Filter (JMEKF)

and its perturbed variant (PJMEKF).

Even with the use of the state coordinate system which best preserves the initial

uncertainty character during propagation, significant nonlinearities are introduced

when observing object motion. The degree of nonlinearity introduced to the system

by the observations requires appropriate quantification to make sure assumptions of

the applied state estimation routine are not violated. Violation of the estimation
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algorithm assumptions with respect to uncertainty character typically stem from an

invalid linearization range within the state domain or an assumed state posterior

density form. The nonlinear mapping between coordinate descriptions of the same

space can significantly impact the amount of uncertainty associated with the state

estimate, especially if the nonlinearity is significant at orders higher than one or the

measurement probability density function is not symmetric.

Alteration of the probability density function due to the exchange of domains

must be careful examined and understood since state estimate and uncertainty com-

putations are derived from an approximated posterior probability density function.

The posterior probability density is calculated by Bayes’ Theorem which optimally

combines present statistical observation information with previous statistical knowl-

edge [2]. Approximation of the posterior probability density function to compensate

for the change of domains is performed by either sampling the probability density

function [15] or by assuming the probability density function can be characterized

by only the first and second moments [16]. Approximation of the probability density

function in the form of the first and second moments, mean and covariance, can

produce different state estimates and confidence levels depending upon the degree of

nonlinearity possessed by the transform, either between the measurement and state

domains or the present and future state domains.

Vallado and Seago [17] sought to find statistical tests of hypotheses to aid in

assessment of whether or not the propagated position covariance could be consid-

ered realistic. However, their definition of a “realistic” covariance needed the true

error distribution be multivariate normal and zero mean, which required high accu-

racy observation data and orbit determination solutions. Additionally, even with the

normality hypothesis accepted, the covariance computed by the batch orbit determi-

nation process was found to be biased or incorrectly scaled. The bias and incorrect
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scaling of the covariance result is common to the differential corrections process since

the bias tends to zero and the uncertainty decreases as the number of observations

increases. The concept of covariance realism is utilized in this research and used

interchangeably with covariance accuracy. A covariance is considered realistic if it

agrees well in comparison with the true covariance computed numerically via Monte

Carlo analysis of the modeled process. Computation of a realistic covariance and

appropriate characterization of higher-order statistical moments of a multivariate

state distribution requires the probability density function of the state domain be

appropriately constructed. The derived probability density function must correctly

account for the mapping of statistical information available from either the measure-

ment domain at present time or the state domain at a previous time. Commonly,

the distortion of range and angle measurements are debiased [18, 19] to form a bet-

ter Cartesian position and position uncertainty estimate. However, these proposed

corrections are developed only for statistical distributions that are symmetrical in

nature and more importantly Gaussian. If the sensor probability density function

is not Gaussian or cannot be completely characterized by the first two statistical

moments, the debiased solution could lead to a biased estimate.

The transformation of variables technique [2] allows for exact mapping of the

probability density function given in a specified domain into a different domain. The

technique allows for the exact expression of the probability density function in a

desired domain when (1) the analytic form of probability density function is known

in a different domain and (2) the mapping between initial and desired domains is

known, is at least once differentiable, and is bijective. The exact mapping produces

precise knowledge of the system likelihood distribution, statistical characterization

of present measurement knowledge, to allow for a better idea of the combination of

system states which generated the measurement. Since the likelihood distribution
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is exactly mapped between domains, Bayesian estimation can be easily carried out

given the prior distribution is appropriately characterized, previous knowledge in

statistical form. The posterior probability produced from Bayes’ Theorem allows

for availability of all statistical moments and not just the mean and covariance as

with conventional filtering techniques. Availability of the state probability density

function given a single measurement set can allow for automation of the covariance

initialization needed for conventional filtering, thereby decreasing the amount of

tuning needed to ensure proper filter operation. For systems requiring multiple

observation times to be rendered observable, the transformation of variables approach

can be applied to assess the amount of uncertainty associated with the smoothing

process used to compute all observed states at a particular time instant.

The application of Bayes’ Theorem for object surveillance applications has been

explored previously, but in different capacities. Stone et al. [20] showed an ap-

plication of Bayesian filtering to submarine and surface ship position and velocity

estimation as well as object association/correlation via multiple hypothesis testing.

However, domain transformations between sensing and state were not considered.

Studies on correlating and tracking space debris [21] as well as asteriod orbit de-

termination, sensor tasking, and collision probability [22–24] have been carried out,

but utilized statistical sampling techniques, i.e. Markov Chain Monte Carlo, to nu-

merically compute the posterior distribution of the desired state domain utilizing

angular measurements with proposed range and range-rate domains. However, these

methods were shown to be computationally burdensome and required proposing an

initial prior distribution of the desired states as well as an acceptance criteria for

proposed points. The proposed prior densities were computed multiple ways includ-

ing trial and error, multiple Markov Chain Monte Carlo runs [21], multiplication

of batch least-squares analysis with different scaling constants and application of a
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chi-squared acceptance criteria [22,23], or normalizing the prior distribution to make

it invariant to domain transformation [24]. The statistical sampling algorithms were

found to be extremely sensitive to the proposed prior distribution which could stem

from the algorithms’ dependence upon log-likelihood of the measurements’ multi-

variate Gaussian distribution. The studies did not account for the domain transform

affect on the scalar multiplying the exponential term which is typically not constant,

e.g. the polar to Cartesian transform [25].

The transformation of variables technique has been previously used in the as-

trodynamics community to examine the probability density function of eccentric

anomaly given the probability density of mean anomaly over a range of eccentricity

values [26]. The generalization of the transformation of variables technique via use of

the Dirac Delta function [27], with further examples given by [28–30], has been uti-

lized by Izzo [31–33] to intuit the spatial density of orbital debris or asssess the effect

of orbital element distributions on the distributions of spherical observations or the

square of velocity. Meshcheryakov [34, 35] used the Dirac generalization to compute

the singly-averaged spatial density of orbital debris and a uniform field of particles

for application to collision and impact analysis. For these applications however, the

distribution of the orbital elements was treated as a known instead of an unknown,

which is opposite of the problem of state estimation using spherical measurements

with characterized uncertainty.

In a recent contribution, Weisman et al. [25] applied the transformation of vari-

ables technique for nonlinear sequential state estimation of linear and nonlinear sys-

tems where Cartesian state estimates and uncertainties were computed and compared

to Monte Carlo results for position and velocity and position only polar measure-

ments. The likelihood density function computed from the transformation of vari-

able technique was found to closely track the Monte Carlo uncertainty results for
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the cases considered and allowed for automated initialization of conventional nonlin-

ear sequential state estimation routines and even improved convergence properties

of the extended Kalman filter [25, 36]. The studies also showed that with available

previous data, the transformation of variables procedure could be applied to com-

pute the prior density function, thereby allowing for a Bayesian filter or smoother

to be implemented. Additionally, Weisman et al. [36] were able to apply the tech-

nique for estimation of state uncertainty and state correlation stemming from an

analytic initial orbit determination routine where position measurements are linked

via Two-Body dynamics to estimate the object’s velocity at a given time.

The approach of applying transformation of variables in a Bayesian filter frame-

work for astrodynamic state estimation and uncertainty is in contrast to the method

of Fujimoto and Scheeres [37–39], for initial orbit determination because the uncer-

tainty is computed directly from the analytical form of the measurement probability

density function instead of numerically computed from Monte Carlo analysis over

a pre-defined region. The method is also different from statistical sampling tech-

niques [21–24] since the posterior is computed analytically from the transformed like-

lihood and prior density functions, centered only upon the recorded measurements,

instead using heuristically proposed prior densities, scaled likelihood densities, or a

linear transformation of covariance.

With regard to propagation of probability density functions, Majji et al. [40] were

able to demonstrate that if an initial probability density function was analytically

available then the propagation of uncertainty for Two-Body motion in Keplerian

variables without any perturbations was able to be effectively carried out through

use of the technique. It was shown that the solution flow of the Keplerian variables

inherently satisfied Liouville’s Equation, the Fokker-Planck-Kolmogorov Equation

without diffusion, due to the linear time update for mean anomaly.
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In addition to space surveillance, the idea of using probability density functions

for spacecraft attitude filtering was addressed by Shuster [41] who found that the

Wahba problem was equivalent to that of maximum likelihood estimation of sen-

sor measurement probability density functions. Additionally, measurements could

be examined to judge whether or not they were defective and measurements from

various sources could be integrated together for processing [42], such a practice is

commonly called Data Fusion. However, maximum likelihood estimation does not

provide an easily understandable form of uncertainty associated with the state esti-

mate since most conventional state estimation routines utilize the minimum variance

error criterion for their derivation.

The transformation of variables technique has been applied in other disciplines

for solution of what is known as the “inverse problem” where “data from indirect

measurements are used to estimate unknown parameters of physical systems” [43].

Mosegaard and Tarantola [43] presented the technique for computation of spatial

domain probabilities for application of Bayes’ Theorem in seismology and considered

the example of estimating the probability density function of an object’s position as it

fell in a constant gravity field but, the corrupted position and velocity measurements

were in the same domain as the dynamic model state variables. Kadry [44] paired the

transformation of variables technique with conventional finite element analysis for

improvement of the solution of stochastic differential equations for structural analy-

sis, but noted that the technique was hard to generalize due to the nonhomogenity

of stiffness matrix.

The need for the transformation to be bijective can lead to problems in mapping

probability density between domains all in one step since there are times when the

desired domain has a smaller number of basis functions than the initial domain. In

this case, auxiliary variables [2] can be utilized to make the transform one-to-one
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with a nonsingular determinant of the differential volumes, the auxiliary variables

are then integrated over to produce the desired probability density function. For

bijective cases involving circular functions, i.e. trigonometric functions, the domain

must be split up into regions of bijectivity then summed together for the complete

solution. An alternative to using auxiliary variables is the use of the Dirac Delta

function [27] where the roots to the transformation still need to be available and a

partial derivative computed, but the need for a computing a large matrix determinant

is alleviated.

The rest of this dissertation is outlined as follows: Section 2 presents background

theory on propagation of dynamical system states via use of the state transition

and parameter sensitivity matrices as well as canonical transformations which allow

for alleviation of nonlinear equations of motion, Section 3 presents theory underly-

ing conventional state estimation routines as well the proposed Bayesian filter using

transformation of variables for direct state estimation and state estimation via differ-

ential correction, Section 4 presents the results of Bayesian filter using transformation

of variables compared to conventional estimation routines for different surveillance

examples of increasing complexity as well as an example of three dimensional atti-

tude estimation, and Section 5 presents conclusions as well as future work directions

resulting from this research.

10



2. DYNAMICAL SYSTEMS THEORY

The conventional mathematical representation of continuous state dynamics and

measurement models for linear and nonlinear relationships is shown in Equation (2.1).

The differential equation governing the evolution of the system states, x, is a function

of the present system states and control inputs, u. If the state dynamic model is not

exactly known or higher-order forcing terms are neglected, a stochastic correction

term known as process noise, w (t), is introduced to compensate. Likewise, the

measurement model is typically only a function of the present states but instances of

input transmission can be considered and, like the process model, can be corrupted

by measurement noise, v (t), of known stochastic character. For a system to be

considered nonlinear, either the dynamic model or measurement model or both are

mathematically modeled as nonlinear equations.

Dynamic Model:

ẋ (t) =





A (t) x (t) +B (t) u (t) +G (t) w (t) Linear

f (x (t) ,u (t) ,w (t)) Nonlinear

x (t0) known , w (t) distribution known

Measurement Model:

ỹ (t) =





H (t) x (t) +D (t) u (t) + v (t) Linear

h (x (t) ,v (t)) Nonlinear

v (t) distribution known

(2.1)

In the modeling of dynamic systems, process and measurement noise are typically

assumed to be additive and assumed to have a simple stochastic character, e.g.

11



Gaussian with known mean and variance. However if a process is subject to a

normalization constraint, such as attitude quaternion dynamics [16], or if an object

is tracked via bearings-only measurements, a multiplicative error model allows for

preservation of the unitary norm. Extreme care and sometimes restraint should be

exercised with the incorporation of process noise. Since process noise is often used

as a substitute of neglected higher-order effects, it should only exist at the highest

order of the state differential equation since integration to lower orders is exact.

For the discrete time state-space formulation, the measurement equation is the

same as the continuous time formulation except, the measurement noise is a discrete

random variable. For the discrete process model different approximations are applied

to transform from continuous to discrete, but the most common transform is to

apply a zero-order hold whereby the value is assumed to be constant until a specified

amount of time, ∆t, has elapsed. The transformed equations for a deterministic,

continuous, linear, and time-invariant system are given by Equation (2.2) without

derivation, see [16], since the state transition matrix and its application to nonlinear

systems is presented in following sections.

Dynamic Model:

ẋ (t) = Ax (t) +Bu (t) ⇒





xK = ΦxK−1 + ΓuK−1

Φ = exp [A∆t]

Γ =

[∫ ∆t

0
exp [At] dt

]
B = Φ−1 ((Φ− 1n×n)B)

Measurement Model:

y (t) = Hx (t) +Du (t) ⇒ yK = HxK +DuK

(2.2)
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2.1 Deterministic State Mapping for Linear Systems

The State Transition Matrix [16] allows for computing the time history of the

states as stand alone functions of the initial conditions and time and does not require

the integration of the state differential equation. The generic state transition matrix

definition for a deterministic, process noise free, is given in Equation (2.3) with

properties of the state transition matrix listed in Equation (2.4).

x (t) = Φ (t, t0) x (t0)



x1(t)

...

xn(t)




=




Φ11 (t, t0) . . . Φ1n (t, t0)

...
. . .

...

Φn1 (t, t0) . . . Φnn (t, t0)







x1(t0)

...

xn(t0)




(2.3)

Initial Condition : Φ (t0, t0) = 1n×n

Inversion : Φ (ti, t0) = Φ−1 (t0, ti)

Recursion : Φ (tj, t0) = Φ (tj, ti) Φ (ti, t0)

(2.4)

The differential equation governing the evolution of the state transition matrix

can be derived by substituting the time derivative of Equation (2.3) for the left

hand side of the generalized form of Equation (2.1), then substituting the mapping

between final and initial conditions into the right hand side of the generalized form

of Equation (2.1). The resulting differential equation for nontrivial solutions of all

the substitutions is then given by Equation (2.5) with the integral solution given by

Equation (2.6), otherwise known as the “Matrix Volterra Integral Equation” [16].

Φ̇ = A (t) Φ (t, t0) , Φ (t0, t0) = 1n×n (2.5)

Φ (t, t0) = 1n×n +
∫ t

t0
A (τ) Φ (τ, t0) dτ (2.6)
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If the state mapping matrix, A (t), is constant then the solution of Equation (2.6)

is the matrix exponential solution, Φ (t, t0) = exp [A (t− t0)] x (t0). If the state

mapping matrix is not constant in time, numerical integration of Equation (2.5) is

required, if series expansions are too slow to converge, [16].

2.2 Deterministic State Mapping for Nonlinear Systems

Section 2.1 considered only linear mappings between the state initial conditions

and final conditions but, many a time nonlinear systems are of the most interest. The

concept of the state transition matrix can be applied to nonlinear systems when a

reference of state motion is already known and it is relatively close to the actual state

history [16], e.g. reference model of motion. When a reference motion or trajectory

is already known, the state transition matrix can be applied to map departures, or

error, from state initial conditions to a time of interest. As with the presentation of

Section 2.1, the nonlinear system is assumed to be completely deterministic.

Assuming a deterministic nonlinear system reference model is available, a refer-

ence time history of the states and observations can be generated by simple inte-

gration of the nonlinear dynamic model equation. Using the reference model states,

controls, and observations plus small deviations to produce the true state and ap-

plied control inputs at the time interest, shown by Equation (2.7), the evolution of

the states, controls, and observations can be computed in a linearized neighborhood

of the nonlinear reference model.

x (t) = xRef (t) + δx (t)

u (t) = uRef (t) + δu (t)

y (t) = yRef (t) + δy (t)

(2.7)

Given the decomposition of the true state, input, and observation into reference
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model and deviation values, Equation (2.8) can be applied to compute the state

deviations using a first-order Taylor Series expansion of the dynamic model.

δẋ (t) = ẋ (t)− ẋRef (t)

= f (xRef (t) + δx (t) ,uRef (t))︸ ︷︷ ︸
First-Order Taylor Expansion

−f (xRef (t) ,uRef (t))

= f (xRef (t) ,uRef (t)) +
∂f

∂x

∣∣∣∣∣
xRef ,uRef

δx

+
∂f

∂u

∣∣∣∣∣
xRef ,uRef

δu− f (xRef (t) ,uRef (t))

=
∂f

∂x

∣∣∣∣∣
xRef ,uRef

δx +
∂f

∂u

∣∣∣∣∣
xRef ,uRef

δu

(2.8)

In a likewise fashion, the first-order mapping from state and control perturbations

to perturbations in observations can be computed and is shown in a short-hand form

given by Equation (2.9) with the partial derivative matrices given by Equation (2.10).

δẋ = F (t) δx (t) +B (t) δu (t)

δẏ = H (t) δx (t) +D (t) δu (t)

(2.9)

F (t) =
∂f

∂x

∣∣∣∣∣
xRef ,uRef

, B (t) =
∂f

∂u

∣∣∣∣∣
xRef ,uRef

H (t) =
∂h

∂x

∣∣∣∣∣
xRef ,uRef

, D (t) =
∂h

∂u

∣∣∣∣∣
xRef ,uRef

(2.10)

2.3 Deterministic State and Parameter Mapping for Nonlinear Systems

Sections 2.1 and 2.2 considered only mappings between the initial state condition

and final state condition or the initial condition state error and final state error.

However systems are often functions of parameters, model constants denoted by

p, whose influence over state dynamics is shown by Equation (2.11). The system
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parameters are considered to be at a steady-state condition, but may be poorly

known so observation of state dynamics allows for refinement of parameter estimates.

Integration of Equation (2.11) then partial differentiation with respect to initial

state conditions and system parameters, Equation (2.12), allows for the derivation

of the state transition matrix, Φ, and the parameter sensitivity matrix, Ψ. The

time derivatives of Equation (2.12) compute the differential equations of the state

transition matrix and the parameter sensitivity matrix with initial conditions taken

from Equation (2.12), summarized in Equation (2.13).

ẋ (t) = f (x (t) ,u (t) ,p)

ṗ (t) = 0

(2.11)

x (t) = x (t0) +
∫ t

t0
f (x (τ) ,u (τ) ,p) dτ

Φ (t, t0) =
∂x (t)

∂x (t0)
= 1n×n +

∫ t

t0

∂f (x (τ) ,u (τ) ,p)

∂x (τ)

∂x (τ)

∂x (t0)
dτ

Ψ (t, t0) =
∂x (t)

∂p
=
∫ t

t0

(
∂f (x (τ) ,u (τ) ,p)

∂p
+
∂f (x (τ) ,u (τ) ,p)

∂x (τ)

∂x (τ)

∂p

)
dτ

(2.12)

Φ̇ (t, t0) = F (t) Φ (t, t0) , Φ (t0, t0) = 1n×n

Ψ̇ (t, t0) = F (t) Ψ (t, t0) +
∂f (x (t) ,u (t) ,p)

∂p
, Ψ (t0, t0) = 0n×n

F (t) =
∂f (x (τ) ,u (τ) ,p)

∂x (t)

(2.13)

Comparing Equation (2.13) with Equation (2.9) and utilizing the results of Sec-

tions 2.1 and 2.2, the derivative matrices, Φ (t, t0) and Ψ (t, t0), can be used to

linearly map perturbations of the initial conditions and parameters to a future or
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past time given a reference model, shown in Equation (2.14).

x (t) = xRef + Φ (t, t0) δx (t0) + Ψ (t, t0) δp︸ ︷︷ ︸
δx (t)

(2.14)

2.4 Hamiltonian Mechanics

As an alternative to system modeling at the acceleration level, thereby generating

n second-order differential equations, i.e. Newton’s second law and Lagrange’s Equa-

tions, the Hamiltonian formulation relies upon generating 2n first-order differential

equations, thus relegating system modeling to only the velocity level [45]. Hamilton’s

Equations of motion are derived using the concept of system energy as in the La-

grange formulation, but generalized momenta are exchanged for generalized velocity,

which are derived from the Lagrangian of the system’s generalized coordinates and

generalized velocities.

The topic of Hamiltonian mechanics is of interest to this research since it provides

much of the background for statistical mechanics in addition to forming the basis of

many perturbation approaches [45]. The Hamiltonian approach does not typically

tame problem complexity, what it does do is allow for different abstractions of the

underlying physics. Thus, initially defined quantities of generalized coordinates and

momenta can be transformed into different parameterizations, through use of a gen-

erating function, to allow for increased insight into specific system behavior while

still preserving the canonical form of the equations of motion.

2.4.1 Hamilton’s Canonical Equations

Assuming a system is already posed in a set of generalized coordinates, q, with re-

spective velocities, q̇, the conjugate momenta, p, are computed from the Lagrangian,

the difference of kinetic (T) and potential (V) energies, of the given system as shown
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by Equation (2.15) [45].

p = ∇q̇L (q, q̇, t)

=
∂L (q, q̇, t)

∂q̇
=
∂ (T (q̇)− V (q))

∂q̇

=
∂T (q̇)

∂q̇

(2.15)

The Hamiltonian function is derived from the Lagrangian via the Legendre trans-

formation given by Equation (2.16). The Hamiltonian will be equal to the total en-

ergy of the system, ξ = T + V , when the transformation of generalized coordinates

between reference frames are not explicit functions of time and all forces external to

the system are derivable from a potential, fExt = −∇qV (q).

H (q,p, t) = pT q̇−L (q, q̇, t) (2.16)

Hamilton’s equations of motion for the generalized coordinates and momenta,

otherwise known as the canonical equations of Hamilton, are derived by equating

the coefficients in the material derivative of the Legendre transformation and the

desired form of the Hamiltonian. The material derivative of the Hamiltonian is

shown in Equation (2.17) with the equations of motion given by Equation (2.18).

dH (q,p, t) =
∂H

∂q

T

dq +
∂H

∂p

T

dp +
∂H

∂t
dt

= pTdq̇ + q̇Tdp−
(
∂L

∂q

T

dq +
∂L

∂q̇

T

dq̇ +
∂L

∂t
dt

)

= pTdq̇ + q̇Tdp−
(
∂L

∂q

T

dq +
∂L

∂q̇

T

dq̇ +
∂L

∂t
dt

)

=
��

�
��

��*
0 by (2.15)(

p− ∂L

∂q̇

)
Tdq̇ + q̇Tdp−

(
∂L

∂q

T

dq +
∂L

∂t
dt

)

(2.17)
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q̇ =
∂H (q,p, t)

∂p

ṗ = −∂H (q,p, t)

∂q

∂H (q,p, t)

∂t
= −∂L (q, q̇, t)

∂t

(2.18)

Inserting the differential equation relationships of Equation 2.18 into the first line

of Equation (2.17) demonstrates that the total differential of the Hamiltonian with

respect to time is equivalent of the partial of the Hamiltonian with respect time.

Additionally, if the Hamiltonian is not a function of generalized coordinates then

the system momenta are constant and their respective generalized coordinates are

referred as either cyclic or ignorable [45]. The last line of Equation (2.18) shows

that if the Lagrangian is not an explicit function of time, the Hamiltonian will be a

constant of motion.

2.4.2 Canonical Transformations

A canonical transformation is one in which Hamilton’s equations of motion re-

main satisfied after an initial set of generalized coordinates and momenta, (q,p), is

exchanged for a different set of coordinates and momenta, (Q,P). The reason for the

transformation could be to produce a desired result with respect to the mathematical

interpretation of system behavior or for a different understanding, via abstraction,

of the underlying physics. For example, if a satellite’s motion is described using geo-

centric distance, geocentric latitude, and right ascension and one were to transform

into a space with generalized coordinates of geocentric distance, geocentric latitude,

and geocentric longitude they would find the Hamiltonian, which was time varying

in the initial domain, is now constant in the transformed domain [46].

For the transformed phase space variables to remain canonical, a specific relation

of the initial and transformed Hamiltonians is required and produced via Hamilton’s
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principle and the concept of the action integral. Hamilton’s principle states that

the motion of a system from one instant in time to another is such that the action

integral has a stationary value for the true path of motion [45]. The action integral

is the integral of the sum of the Lagrangian and any work done by nonconservative

forces over the time span in question. If the external forces are all derivable from

potentials, the action integral is simply over the Lagrangian with respect to the time

interval in question. The stationary solution of the action integral is the particular

solution which has Lagrange’s equations holding for all times within the time interval

of interest and is computed by setting the variation of the action integral to zero

yielding Hamilton’s Principle [45], shown by Equation (2.19).

Action Integral: I =
∫ t2

t1
(L (q, q̇, t) +WNonCon) dt

Hamilton’s Principle: 0 =δ
∫ t2

t1
(L (q, q̇, t) +WNonCon) dt

(2.19)

For the generalized coordinates and momenta to be canonical with respect to their

given Hamiltonian, Hamilton’s principle must be satisfied when the Lagrangian is

replaced with the result of solving the Legendre transformation for the Lagrangian.

This condition is deemed necessary and sufficient to achieve canonical behavior [46].

Hamilton’s principle must be satisfied by both the initial phase space variables and

transformed phase space variables at every time instance within the time interval.

Satisfaction of Hamilton’s principle over the same time span by the initial and trans-

formed phase space domains allows for their integrands equated via Equation (2.20).

δ
∫ t2

t1

(
pT q̇−H (q,p, t)

)
dt = 0

δ
∫ t2

t1

(
PT Q̇−K (Q,P, t)

)
dt = 0

⇒λ
(
pT q̇−H (q,p, t)

)
= PT Q̇−K (Q,P, t) +

dS

dt

(2.20)
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The function S is the generating function allowing for the transformed phase space

domain Hamiltonian, K, to be computed from the initial phase space domain Hamil-

tonian. The generating function is typically only a function of one initial phase space

domain variable and one transformed phase space domain variable. The generating

function can have its form selected a priori or it can be computed based upon the

initial phase space variables and selected transformed phase space variables. The λ

is a constant scale factor arising from the change of bases from initial to transformed

phases spaces, λ = 1 is associated with canonical transformations, and is equivalent

to the determinant of the mapping Jacobian between the two sets of bases. Gold-

stein [45] and Vinti [46] give the four basic canonical generating functions, the latter

derives all of them, which are restated in Table 2.1 without derivation. Once given

the transformation between the initial and final phase space variables, the generating

function can be derived thus allowing for the transformed phase space Hamiltonian

to be computed from Equation (2.20). If the relationship is one of the four shown in

Table 2.1 then the transformed Hamiltonian is given by Equation (2.21).

K (Q,P, t) = H (q,p, t) +
∂S

∂t
(2.21)

A point transformation is defined as a transformation which renders the gener-

alized coordinates to be only functions of the initial generalized coordinates while

the transformed generalized momenta are computed from Equation (2.15). If one

were to select a generating function of the form S = qTQ, the resulting transform

would simply exchange the coordinates and momenta. The exchange would lead to

an abstraction of the idea of coordinates and momenta to the level where they are

simply codependent variables designated by some (α,β) and related by Hamilton’s

equations. An important generating function to the world of orbital mechanics is a
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special instance of Case 2 in Table 2.1 where S = qTP is used to separate and study

short-period, long-period, and secular behavior of Keplerian orbital elements [47].

The result of such a transformation renders the momenta to be constants of motion

thereby allowing for the coordinates to be simply propagated in time in lieu of inte-

gration, which is of great utility in the Two-Body problem subject to gravitational

perturbations. This special instance of Case 2 is called an identity transformation

because the resulting Hamiltonian, representing the total energy of the conservatively

forced system, is unchanged in scalar value even though it is expressed as a function

of different variables.

Table 2.1: Canonical Transformation Properties

Case Generating Function
Generating Function Generating Function

Initial Relation Transformed Relation

1 S = S (q,Q, t) p =
∂S

∂q
P = − ∂S

∂Q

2 S = S (q,P, t)−QTP p =
∂S

∂q
Q =

∂S

∂P

3 S = S (p,Q, t) + qTp q = −∂S
∂p

P = − ∂S
∂Q

4 S = S (p,P, t) + qTp−QTP q = −∂S
∂p

Q =
∂S

∂P

2.4.3 Canonical System Order Reduction

Often, canonical transformations are employed to reduce the order of a dynamical

system to gain insight into system behavior from a perturbation point of view. As al-

luded to in the previous section, particular canonical transformations can be applied

to produce a new set of variables where the momenta are constant, thereby allowing

system order reduction. This reduction of system order allows one to better under-

stand the effects imparted on a system reference model by perturbations. However,
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computation of the generating function for the new desired coordinate and momenta

variable set can be carried out using different approaches whose solutions can yield

different results, but are all correct based upon the assumptions made before car-

rying out the particular method [48, 49]. For example, Brouwer [47] utilized von

Zeipel’s method of computing a generating function that was composed of old and

new variables in order to eliminate slowly varying coordinates, while Kozai [50] used

the method of averaging to directly to eliminate the slowly varying angular coordi-

nates with both methods producing approximately the same solution. Additionally,

Hori’s method of defining the generating function to be solely a function of new

coordinates and momenta was shown to produce the same solution as von Zeipel’s

method up through third order of the perturbing parameter, i.e. zonal geopoten-

tial of Earth, but when applied to motion about the moon, the theories produced

different Hamiltonians [51,52].

To illustrate how canonical transformations can be utilized to reduce the system

order and study the effect of perturbing parameters, consider a nominal system model

expressed via the Hamiltonian approach whose Hamiltonian and equations of motion

are given by Equations (2.16) and (2.18). If the nominal model is analogous to a

mass-spring system but, the spring constant changes depending upon the deformed

length of the spring, one could still study the long-term or secular trajectory effects

of such a perturbation. This can be done by finding a generating function which

isolates such effects over the period of oscillation, or even longer time scales, without

the need for integration of the instantaneous equations of motion.

For project SPACETRACK [53, 54], Brouwer utilized von Zeipel’s method of

successive canonical transformations to eliminate coordinates in the Hamiltonian

for computation of secular motion due to geopotential perturbations starting with

the Two-Body geopotential perturbed Hamiltonian expressed in Delaunay variables.
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The two canonical transformations produced a Hamiltonian devoid of coordinates

thus, the conjugate momenta were constant and the corresponding coordinates var-

ied linearly in time. Lyddane [55] later modified Brouwer’s theory by exchanging

the Delaunay variables for Poincaré variables in order to avoid problems with small

eccentricity and inclination. Analytic characterization of perturbed object motion

was of necessity at that time due to computational requirements onboard naval ships

and onshore tracking stations [53]. However due to the large amount of space ob-

jects and debris which cannot be continuously tracked, analytic characterization of

orbital motion is still required for data processing. Today, Brouwer’s theory with

Lyddane’s modification still stands and is used in conjunction with some terms de-

rived by Kozai [50], relating mean motion to semi-major axis, for the Navy’s satellite

prediction model(PPT3) and Air Force’s prediction models(SGP, SGP4, SDP) which

differ with respect to resonance and atmospheric model characterization [53].

The von Zeipel method [48] provides a procedure with which to calculate the par-

tial differential equations for the generating function at given orders of the perturbing

parameter, ε, assuming the form of the generating function is composed of old co-

ordinates and new momenta. Let the form of the original Hamiltonian, H (q,p, ε),

be given by Equation (2.22), which shows it can be decomposed into the summation

of terms in ascending powers of the perturbing parameter up to order N and let the

new Hamiltonian, H ∗ (Q,P, ε), take the same form but with new variables in lieu

of the old variables. The subscript i denotes the order of the perturbing parameter.

Let the generating function which goes from the old variables to the new variables

be decomposable, like the Hamiltonians, and let the generating function at zeroth-

order be the dot product of the old coordinates with the new momenta as shown by
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Equation (2.23).

H (q,p, ε) =
N∑

i=0

Hi

(
q,p, εi

)
+O

(
εN+1

)
(2.22)

S (q,P) =
N∑

i=0

S
(
q,P, εi

)
+O

(
εN+1

)

S0 (q,P) = qTP

(2.23)

For the von Zeipel method, the old and new Hamiltonians are equated and ex-

panded in a Taylor Series about the perturbing parameter while being expressed as

functions of the generating function and the old and new variables. The coordinates

to be eliminated are chosen by finding those coordinates not in the nominal solution

and proposing a canonical transform, particularly the point transform, where their

conjugate momenta are constant, thereby allowing for a system order reduction.

H0

(
q,p =

∂S

∂p

)
+ H1

(
q,p =

∂S

∂p
, ε

)
+ H2

(
q,p =

∂S

∂p
, ε2

)
+ · · · =

H ∗
0

(
Q =

∂S

∂P
,P

)
+ H ∗

1

(
Q =

∂S

∂P
,P

)
+ H ∗

2

(
Q =

∂S

∂P
,P

)
+ . . .

(2.24)

Before system order reduction, the von Zeipel method assumes that the old and

new coordinates and momenta will differ by at least the order of perturbing parame-

ter. If the zeroth-order generating function is assumed to be the identity transforma-

tion, this assumption will make the zeroth-order Hamiltonian equal to the nominal

Hamiltonian and yield a partial differential equation solution for the first-order part

of the generating function [48]. The consequence of this approach for computing

the generating function is that solutions at orders higher than first will be functions

of terms involving the perturbing parameter of higher orders, e.g. the first-order

25



solution of the generating function will contain second-order terms. This can lead to

extremely long and complicated solutions [47,56] when one is trying to study periodic

effects of the artificial satellite problem and not simply just secular.

In an attempt to reduce complexity, Izsak [57] proposed and derived the short-

period equations of motion using the Hill canonical variable set within Brouwer’s

theory, simply exchanging the mean anomaly and argument of perigee coordinates

for the radius and argument of latitude. Aksnes [58] later completed the theory by

deriving the long-period equations and compared the results of the Hill variable for-

mulation with the Delaunay [47], Kepler [50], and Poincaré [55] variable sets. Aksnes

showed that the produced equations were singularity free at zero eccentricity and ap-

peared to produce a more compact algorithm. It should be noted that the chosen

variable set is typically dictated directly by the type of operations being conducted.

For example, in surveillance one is typically interested in an object’s perigee location,

whereas for proximity or rendezvous operations one is more concerned about where

the object is located in the shared orbit plane with regard to the node vector.
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3. STOCHASTIC STATE ESTIMATION

Stochastic or statistical estimation of system states and/or specific parameters,

slowly time varying or time invariant, utilizes a decision making algorithm to compute

the “best” estimate of system states or parameters. The “best” estimate typically

seeks to minimize a given error criterion with the error defined via comparison of

empirical measurement data corrupted by some type of random process with output

generated from mathematical system model that may neglect higher order effects.

System constants or an initial state vector can typically be estimated via batch

estimation techniques while system state variables are more situation dependent.

System state variables characterize an object’s instantaneous dynamic behavior and

are used for control, tracking, or decision making purposes because they can be used

to predict object motion given an appropriate motion model. Statistical estimation

algorithms seek to accurately calculate the values of system states and parameters

while appropriately capturing state and parameter uncertainty due to measurement

corruption.

For nonlinear systems, governed by either a nonlinear state, measurement model,

or both, typical assumptions of linear system estimation routines are commonly ap-

plied for nonlinear system estimation without thought as to whether the assumptions

are valid or not. As such, the user must first take care to understand the assumptions

of the applied estimation routine so that they are not violated, else the result is mis-

use of the technique. For nonlinear stochastic estimation, one of the most important

assumptions is that of the form or shape of the uncertainty of the system states and

parameters as well as their respective correlations during system operation.
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3.1 Bayesian Inferencing

Bayesian inference combines the Likelihood Principle with knowledge of prior

information about parameter(s) of interest. The Likelihood Principal states that a

specific function, known as the likelihood function, when evaluated at the observed

system events is a complete summary of the information in the observations and the

likelihood of unobserved events is irrelevant [20]. The likelihood function, analytic or

numerically obtained through repeated experiments or Monte Carlo trials, expresses

the probability of observed events as a function of unknown system states and is

the link between observed events and the unknown system states. The Likelihood

Principal is combined with prior information because there is always some type of

a priori information that can help eliminate improbable events due to physical sys-

tem constraints, e.g. speed, or other statistical knowledge. The likelihood and prior

probability information are combined using Bayes’ Theorem [2,16,59] to produce the

posterior probability, which can then be used for decision making purposes such as

control or tasking actions. Bayes’ Theorem can be applied for batch estimation via

maximum likelihood estimation but is also able to be recursively implemented. As

long as the observational errors are independent, the posterior at the previous obser-

vation time can be mapped to the present time and used as the prior for calculation

of the posterior at the present observation time.

Bayes’ Theorem [2], Equation (3.1), quantifies the amount in belief for possible

state values, xK , given the present observation, zK , and prior information, p
(
x−K
)
,

at a specific instant in time, K. The likelihood function, p (zK |xK), expresses the

likelihood that zK would be the outcome given specific instances of the state vector

xK . The prior density function, p
(
x−K
)
, represents all information available imme-

diately before the present measurement. The denominator is a normalizing factor so
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that the produced posterior distribution satisfies the definition of a probability den-

sity function, i.e. p (xK |zK) ≥ 0 and the sum, or integral if continuous distribution,

of the conditional posterior over all random variables is 1. The likelihood, prior,

and posterior can all be expressed as probability density functions(PDFs), which are

interpreted as functions expressing the frequency of a particular outcome over the

state-space, and are characterized either analytically or numerically. Traditionally,

when the probability function is continuous it is called a probability density function

with its discrete counterpart called a probability mass function, computed as the

integral of the continuous function of a defined region expressed at the midpoint of

the region [2].

p (xK |zK) =





p (zK |xK) p
(
x−K
)

∑

xK

p (zK |xK) p
(
x−K
) , Discrete

p (zK |xK) p
(
x−K
)

∫ ∞

−∞
p (zK |xK) p

(
x−K
)
dxK

, Continuous

(3.1)

Knowledge of the posterior distribution enables computation of the optimal state

estimate with respect to any criterion, e.g. maximum likelihood, minimum error,

or minimum variance [15]. However, the state estimate utilizing the posterior result

from Bayes’ Theorem can be calculated differently depending upon the error crite-

rion one wishes to minimize [16]. This work utilizes the minimum variance estimate

conditioned upon available data, which is the expectation of the conditional poste-

rior distribution produced by Bayes’ Theorem for a given random variable vector,

x. The Expectation operator [2], E {•}, for discrete and continuous conditional ran-

dom variable distributions is given by Equation (3.2). Expectation of functions of a

random variable are computed by replacing the leading term in the integrand by the
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function in question.

E {α|β} =





N∑

i=1

αip (αi|β) , Discrete Random Variables

∫ ∞

−∞
p (α|β) dα, Continuous Random Variables

(3.2)

Equation (3.3) shows the computation of the first moment for discrete random

variables from a multidimensional conditional distribution. For nomenclature, Xi

represents a column vector of possible values which a specific random variable xi can

take with i ∈ [1, n] where n is the total number of states. Additionally, Xj
i represents

a specific scalar element of Xi vector with j ∈ [1, N ] and N is the total number of

different elements in Xi.

x̂ =




x̂1

...

x̂n




= E {x|z} =




N∑

j=1

Xj
1p
(
Xj

1 |z
)

...
N∑

j=1

Xj
np
(
Xj
n|z
)




(3.3)

Equation (3.3) requires use of a random variable’s conditional marginal density

which is computed from the joint posterior density by either integrating(continuous

random variables) or summing(discrete random variables) over all random variable

vectors which are not of interest. For discrete densities this operation is shown in

Equation (3.4).

p (Xi|z) =
∑

Xk
k 6=i

p (X1, X2, . . . , Xn|z) (3.4)

With the minimum variance estimate and the joint posterior density, the covari-

ance matrix, summarizing second-order statistical moment of variance and the state
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correlation, can be calculated using Equation (3.5).

cov {x̂i, x̂k} = E

{
(Xi − x̂i) (Xk − x̂k)T

∣∣∣∣∣z
}

; i, k ∈ [1, n] (3.5)

In general, Bayes’ Theorem is not always analytically determinate, but restrictive

cases do exist where the posterior density is completely and exactly computed. The

lack of general determinacy for typical nonlinear systems is due to hard a priori con-

straints, which introduce nonlinearites that can truncate the proposed probability

density function character. However, incorporation of any relatively accurate knowl-

edge should improve estimation accuracy. For instance, sensor noise characteristics

are typically reported with respect to on-average behavior via the Central Limit

Theorem [2], there can be cases where the reported measurement will lie outside the

typically applied three standard deviation bound. This will not impact estimation

applications for data rich environments, but can be problematic when measurements

are sparse. Additionally, the computation of the prior distribution requires storage of

all previous measurements, which is not always possible so one must consider using

only a subset of previous measurements, known as limited-memory filtering [59].

Approximation of Bayes’ Theorem can produce computationally efficient and

relatively accurate but, sub-optimal estimates. They can be broadly grouped into

four rather large families of nonlinear sequential filtering [15]: (a) analytic(linear)

approximation, (b) numerical approximation, (c) Gaussian Sum or Multiple Model,

and (d) Posterior Distribution Sampling. The conventional filters examined in this

work are from the first and fourth families and the proposed Bayes’ filter utilizing

transformation of variables falls into the second category because it constructs the

likelihood and prior probabilities to produce the posterior distribution even though

it requires a grid generation structure similar to posterior sampling solutions.

31



3.2 Linear System Approximation

The Kalman filter is the optimal sequential estimator for linear systems [16], so

it becomes rather natural to want to take advantage of its simplicity by linearizing

the system model about a given operating point. The most common analytic ap-

proximation made is to linearize the system model and apply the optimal sequential

linear estimation framework of the Kalman filter, resulting in the extended Kalman

filter(EKF). Traditionally, the Kalman filter structure is used to directly compute

state estimates based upon current measurements and previous system knowledge,

however the framework can also be adapted to estimate a differential correction to a

pre-existing state estimate. The latter form is especially useful in computing vehicle

attitude since the pre-existing attitude would be updated via a multiplication of a

the current attitude estimate and the computed differential correction update, this

leads to the multiplicative extended Kalman filter(MEKF). [16]

3.2.1 Direct State Estimation

Depending on the degree of nonlinearity of the state process and measurement

model, the EKF has been shown to work well for many applications in aircraft, space-

craft, and passive sensing [5, 15, 16]. The EKF utilizes the Kalman filter framework

by linearizing the system model, Equation (2.1), about the present state estimate,

x̂−K , shown in Equation (3.6).

xK+1 = ΦKxK + ΓKuK + ΥKwK

zK = HKxK + vK

HK =
∂hK
∂x

∣∣∣∣∣
x̂−K

, ΦK =
∂fK
∂x

∣∣∣∣∣
x̂−K

, ΓK =
∂fK
∂uK

, ΥK =
∂fK
∂wK

(3.6)

Using the linearization of Equation (3.6) and given an initial state estimate and
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covariance, x̂−0 = x̂0 and P0 = E
{
x̂0x̂

T
0

}
, the filter proceeds with the update and

propagation equations shown by Equation (3.7).

x̂−0 , P−0__

��_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
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�
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�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

x̂+
K = x̂−K +KK

[
z̃K − hK

(
x̂−K
)]

P+
K = P−K −KKP

vv
K KT

K

KK = P xz
K (P vv

K )−1

P xz
K = P−KHT

K , P vv
K = HKP

−
KHT

K +RK

7

Propagate

�� ��_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�

�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

x̂−K+1 = ΦKx̂−K + ΓKuK + ΥKwK

P−K+1 = ΦKP
+
KΦT

K + ΥKQKΥT
K

B

Update

cccc

(3.7)

Due to the linearization used by the EKF to enable use of the optimal linear

system solution, problems may arise during operation due to significant neglect of

nonlinearity. The EKF assumes the posterior state probability density function is

always Gaussian, which is not generally true for nonlinear systems. A judicious

choice of state coordinates can allow for the posterior PDF to remain Gaussian for a

longer period of time, e.g. orbital elements to keep the dynamics relatively linear or

curvilinear coordinates to match measurement output [3]. Linearization of the state

and measurement processes can create problems with filter initialization as well as

consistency and accuracy. Filter initialization errors can result from the initial state

estimate being outside the applicable range of linearization or initializing the state

covariance incorrectly, either too small or incorrectly assessing the correlation struc-

ture. Incorrect covariance initialization causes the filter to ignore new measurement

information due to bias towards the process model.

Proper characterization of uncertainty and state correlation in problems can be-
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come an issue during filter operation since a first-order tensor mapping is used be-

tween the state and measurement domain for the filter gain equation, as well as

between the present and future observation times for the covariance propagation.

For systems with measurement nonlinearities present at orders higher than one, the

updated covariance will not respond in an appropriate or timely manner, especially

after a significant number of measurements have been received. For systems with slow

manifestation of measurement nonlinearity, the system can become overconfident

and will begin to ignore additional measurements until the measurement Jacobian

becomes significant enough to counteract the pole-shifting nature of the covariance

update inherited from the traditional Kalman filter. To combat linearization errors,

many tweaks for the EKF have been developed such as the addition of Gaussian

noise to the state process, increasing the initial state covariance, and iterating on the

present estimate [16].

3.2.2 State Differential Correction Estimation

In lieu of the typical approach to Kalman filtering where object states are directly

updated via the measurement residual and the Kalman gain, the state update equa-

tion can be modified to estimate a differential correction to a pre-existing estimate

of the current state much like Gaussian least-squares with differential corrections

(GLSDC) [16]. This is especially applicable in attitude filtering where one is seek-

ing to estimate the orientation of a spacecraft with respect to a given fixed frame.

However, since orientation is described by rotation, the computed differential up-

date would be a corrective rotation applied to the pre-existing attitude estimate.

However, one must note that the covariance matrix computed using the differential

correction approach is associated with the differential corrections and not directly

with the state. If the update to the state is linear then the covariance matrix is
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associated with the state error but if the update is not linear than the covariance

must be transformed also.

For state differential correction estimation utilizing the Kalman framework, Equa-

tions (3.6) and (3.7) are recast in terms of the state error, ∆x = xTrue − x̂Est, and

the first-order linearization of the state dynamics and covariance is taken around the

updated state estimate, x+
K . The propagation equations for the differential correction

and its associated covariance are given by Equations (3.8) and (3.9).

∆x−K+1 = xTrue,K+1 − x̂−K+1

= fK (xTrue,K ,wK)− fK (x̂K ,wK)

= fK
(
x̂+
K

)
+
∂fK
∂x

∣∣∣∣∣
x̂+
K

(
xTrue,K − x̂+

K

)
+
∂fK
∂w

∣∣∣∣∣
wK

xTrue,K − fK
(
x̂+
K

)

= ΦK∆x+
K + ΥKwK

(3.8)

P−K+1 = E
{

∆x−K+1

(
∆x−K+1

)T}

= ΦKP
+
KΦT

K + ΥKQKΥT
K

(3.9)

The update equation for the covariance associated with the differential correction

to the propagated previous state update is the same as given in Equation (3.7). The

state estimate can then be updated after the differential correction is updated by

the measurement innovation. Equation (3.10) shows the update to the differential

correction assuming a linear update rule to the actual state estimate. Even if a

nonlinear update to the state estimate is applied, e.g. q̂+
K = δqK ⊗ q̂−K , the update

rule for the differential correction still holds.

∆x+
K+1 = KK+1

[
z̃K+1 − hK+1

(
x̂−K+1

)]

x̂+
K+1 = x̂−K+1 + ∆x+

K+1

(3.10)
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For spacecraft attitude filtering, the commonly used state parameterization is

the quaternion since it is free of orientation singularities and its dynamics can be

written in a linear fashion. However the quaternion is a four dimensional represen-

tation of three-dimensional orientation, so the unity constraint of the quaternion

must be handled in some form. A reduction from four parameters to three is accom-

plished through assuming that only small corrections of the quaternion are required,

thus the model is able to be reduced to estimating differential corrections for the

vector part of the quaternion since the scalar part is assumed constant. This is a

very good approximation since the sampling frequency for attitude determination

is typically high. The MEKF starts off by proposing a differential correction to a

pre-existing estimate of the attitude in quaternion form where the updated quater-

nion estimate is computed, not linearly as previously shown but, via the quaternion

composition shown by Equation (3.11), the composition mathematics are given by

Equation (3.12). The initial attitude estimate for the MEKF can come from any one

of the many pre-existing attitude determination algorithms, e.g. q-Method [60, 61]

or TRIAD [62].

q̂+
K = δqK ⊗ q̂−K (3.11)

q̂2 ⊗ q̂1 = [Ψ (q̂2) q̂2] q̂1

q̂2 ⊗ q̂1 = [Ξ (q̂1) q̂1] q̂2

Ξ (q̂) =



qSI3×3 + [qV×]

−qTV




Ψ (q̂) =



qSI3×3 − [qV×]

−qTV




q̂ =
[
qTV qS

]T
; |q̂| = 1

(3.12)
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Quaternion dynamics are given by Equation (3.13) assuming an estimated angular

velocity and gyro bias from a noise and bias corrupted measurement where the bias

is subject to random walk.

˙̂q =
1

2
Ξ (q̂) ω̂ =

1

2
Ω (ω̂) q̂

ω̂ = ωTrue + β + ηGyro︸ ︷︷ ︸
Gyro Measurement

−β̂ = ω̃ − β̂

β̇ = ηBias

(3.13)

From the quaternion composition, when a quaternion is composed with the inverse

of itself results in the unit quaternion, δq ⊗ q̂−1 = [0 0 0 1]T . This is a key part of

the development of the MEKF because if the updated quaternion is assumed to be

close to the propagated updated quaternion from the previous time, then the scalar

part should remain constant and one only has to deal with computing differential

corrections to the vector part of the quaternion. The direction cosine matrix, which

rotates inertial vectors, r, into body frame vectors, b, can be computed from a

given quaternion using Equation (3.14). Noting that successive rotations can be

accomplished through quaternion composition yields the results of Equation (3.15).

The equation shows how the differential quaternion correction can be used to update

a previous quaternion estimate given a new body frame measurement, bK .

C (q̂) = I3×3 − 2qS [qV×] + 2 [qV×] [qV×]

= Ξ (q̂)T Ψ (q̂)

(3.14)

bK = C
(
q̂+
K

)
rK

= C
(
δqK ⊗ q̂−K

)
rK

(3.15)

Referring to Equation (3.14) and assuming that the scalar quaternion part re-
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mains constant and neglecting second order terms, the direction cosine matrix can

be approximated as simply a linear function of the vector part of the quaternion.

Assuming that the star measurements and rate gyro measurements are corrupted by

a given level of noise and the gyro bias is subject to random walk, the differential

correction states estimated by the MEKF are ∆x = [δα ∆β]T . Where δβ is the cor-

rection to the pre-existing estimate of the gyro bias and δα is twice the differential

correction for simplification of equations.

3.2.2.1 State and Covariance Propagation

The MEKF discrete error model for state propagation is given by Equation (3.16)

where the updated angular velocity and bias estimate are assumed to remain constant

over the propagation interval. The quaternion state transition matrix is given by

Equation (3.17), [16]. The typical EKF nomenclature of The “+” meaning updated

and “-” meaning propagated is adopted.

q̂−K+1 = Ω̄
(
ω̂+
K

)
q̂+
K

ω̂+
K = ω̃K − β̂+

K

β̂−K+1 = β̂+
K

(3.16)

Ω̄
(
ω̂+
K

)
=




cos
(

1
2
|ω̂+

K |∆t
)
I3×3 −

[
ψ+
K×

]
ψ+
K

(
−ψ+

K

)T
cos

(
1
2
|ω̂+

K |∆t
)




ψ+
K =

sin
(

1
2
|ω̂+

K |∆t
)
ω̂+
K

|ω̂+
K |

(3.17)

The discrete time propagation of the covariance associated with the differential

corrections is computed using the typical EKF covariance propagation equation.

Equation (3.18) gives the explicit matrix formulations for a gyro with measurement
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noise with a bias subject to random walk [16].

P−K+1 = ΦKP
+
KΦT

K + ΥKQKΥT
K

ΥK =



−I3×3 03×3

03×3 I3×3




QK =




(
σ2
Gyro∆t+ 1

3
σ2
Bias∆t

3
)
I3×3 −

(
1
2
σ2
Bias∆t

2
)
I3×3

−
(

1
2
σ2
Bias∆t

2
)
I3×3 (σ2

Bias∆t) I3×3




ΦK =




Φ11 Φ12

03×3 I3×3




Φ11 = I3×3 − [ω̂×]
sin (|ω̂|∆t)
|ω̂| + [ω̂×]2

1− cos (|ω̂|∆t)
|ω̂|2

Φ12 = [ω̂×]
1− cos (|ω̂|∆t)

|ω̂|2 − I3×3∆t− [ω̂×]2
|ω̂|∆t− sin (|ω̂|∆t)

|ω̂|3

(3.18)

3.2.2.2 State and Covariance Update

With the propagated or initial quaternion and gyro bias estimate along with

the covariance associated with the differential corrections, once a measurement of

a star becomes available the propagated solution can be updated. This research

utilizes Murrell’s version of the update so that measurements are processed one at

a time to avoid inversion of a 3n × 3n matrix, n corresponds to the number of

star measurements available at a given time. The “ith” measurement at time K is

assumed to be corrupted by additive Gaussian noise and is given by Equation (3.19).

b̃K , i = C (q̂K,True) r̂i + vK,i = hK (q̂K,True) + vK,i

vK,i ∼ N
(
03×1, σ

2
MeasI3×3

) (3.19)

The pseudo-measurement used for computing the measurement residual, or inno-
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vation, from the propagated previous updated quaternion, q̂−K , can be calculated by

applying Equation (3.19) without the measurement noise and using the estimated

quaternion in place of the true quaternion. For computation of the measurement

sensitivity matrix, HK , the partial derivative of the measurement residual is taken

with respect to the differential state corrections and shown by Equation (3.20).

HK

(
x̂−K
)

=
∂
(
C (q̂K,True) rK,i − C

(
q̂−K
)

rK,i
)

∂∆x

=
[[(

C
(
q̂−K
)

rK,i
)
×
]

03×3

] (3.20)

Using the measurement sensitivity matrix and the propagated covariance of the

differential corrections, the differential corrections can be updated by cycling through

each measurement at the given measurement time. The updated differential correc-

tion covariance and differential correction states are given by Equation (3.21). Using

Murrell’s version, at the start of each measurement time, the updated differential

corrections are set to zero, ∆x̂−K = 06×1, while the covariance is initialized from the

propagated previously updated covariance then all measurements are cycled through

for updating of the differential corrections and their covariance.

P+
K = [I6×6 −KKHK ]P−K

∆x̂+
K = ∆x̂−K +KK

[
b̃K,i − C

(
q−K
)

rK,i −HK∆x̂−K
]

KK = P−KH
T
K

(
HKP

−
KH

T
K +RK

)−1

RK = σ2
MeasI3×3

(3.21)

After all measurements have been processed, the quaternion and bias states are

updated via Equation (3.22), then an angular velocity measurement is taken and

corrected with the updated bias states. The quaternion and differential covariance
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are then propagated according to Equation (3.16) and Equation (3.18). Before the

quaternion can be propagated, it must be renormalized after the differential correc-

tion update to maintain unit value.

q̂+
K =




1
2
δα̂+

1


⊗ q̂−K

= q̂−K +
1

2
Ξ
(
q̂−K
)
δα̂+

β̂+
K = β̂−K + δβ̂+

∆x̂+
K =



δα̂+

δβ̂+




(3.22)

3.3 Posterior Density Sampling Approximation

Sampling filters use statistical linearization to approximate the posterior state

PDF then propagate the PDF using the nonlinear state equations. Approximations

made for sampling the posterior PDF produce their own shortcomings, such as only

propagating the first two statistical moments instead of the entire PDF or the need

to reinitialize the weighting structure when the user-defined PDF is not the exact

posterior. The two most common sampling filters are the unscented Kalman fil-

ter(UKF) and particle filter(PF), which utilize the nonlinear equations of motion

and measurement with linear updates for the state estimate and covariance. How-

ever, use different techniques for weighting possible state estimates, i.e. generating

the posterior PDF, are utilized. The UKF approximates the posterior PDF using a

small set of deterministically chosen samples while the PF uses a rather large set of

random samples [15]. The filters are summarized with respect to their approaches

to allow for comparison with the Bayes’ filter, a formal writeup and comparison can
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be found by van der Merwe et al. [63].

3.3.1 Unscented Kalman Filter

The unscented Kalman filter utilizes the same update structure as the extended

Kalman filter, but uses the nonlinear process equations to propagate the state es-

timate and “sigma points” to propagate the posterior PDF up through the second

moment, third moment if the distribution is symmetric. The sigma points are deter-

ministically selected depending upon the distribution shape and system nonlinearity

via the scheme shown in Equation (3.23) given a previous state estimate vector,

x̂K−1, and state covariance, P+
K−1. The state estimate is then propagated to the next

time using the nonlinear process equations while the covariance is propagated utiliz-

ing sigma points selected to capture the posterior PDF character. Selection of the

sigma points depends upon (a) the number of process states, (b) if the user wishes

to estimate the process and/or measurement noise vectors, and (c) user-defined pa-

rameters dictating the scaling of the sigma points. Equation (3.24) defines how the

sigma points are weighted depending on the dimensionality and nonlinearity of the

system. The weights form a pseudo-probability density function except the sum of

the weights does not necessarily equal one.

XK−1 =
[
x̂+
K−1 x̂+

K−1 ±
√

(L+ λ)P+
K−1

]
(3.23)

Wmean
1 =

λ

L+ λ

W cova
1 = Wmean

1 +
(
1− α2 + β

)

Wmean
i = W cova

i =
1

2 (L+ λ)

i ∈ [2, 2L+ 1]

L = dim
(
x̂+
K−1

)

λ = α2 (L+ κ)− L

α ∈ [ 0, 1 ] , κ ≥ 0

(3.24)

The first scaling parameter, α, determines the spread of the sigma points and is
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usually small to combat nonlinearity effects [63]. The second user-defined parameter,

κ, allows for exploitation of prior knowledge about higher moments of the distribu-

tion. If κ is set to 3−L, the mean square error may be minimized up to fourth-order,

but if the parameter is negative, the predicted covariance may become nonpositive

semidefinate [16]. The β parameter affects the weight of the initial sigma point, i.e.

the propagated estimate from the previous time. If knowledge of the distribution of

state variables is known, this parameter can be used to minimize higher-order er-

rors [63]. With the given sigma point and weight calculation equations, propagation

of the covariance requires 2L + 1 sigma points, each of dimension L, with weight

vectors of length 2L + 1 for the mean and covariance, but only the first element

of the weight vectors is different. The propagation stage of the UKF is shown in

Equations (3.25) and (3.26) [63]. The UKF uses the same measurement update

for the state and covariance as the EKF update, Equation (3.7), but the innovation

covariance, P vv
K , and cross covariance, P xz

K , are calculated based upon propagation

of sigma points from the previous measurement update.

X−K = fK−1 (XK−1,uK−1, t,wK−1)

x̂−K =
2L+1∑

i=1

Wmean
i X−K

P−K =
2L+1∑

i=1

W cova
i

(
X−K − x̂−K

) (
X−K − x̂−K

)T

(3.25)

Z−K = hK
(
X−K ,vK

)

ẑ−K =
2L+1∑

i=1

Wmean
i Z−K

P zz
K =

2L+1∑

i=1

W cova
i

(
Z−K − ẑ−K

) (
Z−K − ẑ−K

)T

P vv
K = P zz

K +RK

P xz
K =

2L+1∑

i=1

W cova
i

(
X−K − x̂−K

) (
Z−K − ẑ−K

)T

(3.26)

After calculation of the present state estimate and covariance, the cycle then

starts back at Equation (3.23) to generate an updated set of sigma points, Equa-
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tion (3.25) is used to propagate the sigma points to the next measurement time, and

so on. The UKF possesses increased computational burden compared with the EKF,

but the use of sigma points relieves the need to compute Jacobians. Additionally,

sigma point scaling contingent on system nonlinearity allows for higher-order validity

so the expected error is lower than the EKF.

3.3.2 Particle Filter

Particle filters utilize Monte Carlo sampling to approximate the posterior PDF

via random samples with appropriately chosen weights. Monte Carlo simulation is

applied in conjunction with importance sampling to allow for state estimation using

weights computed from a sampled posterior density. Importance sampling computes

the weights of generated samples and requires the user to define the analytic character

of the posterior state PDF, known as the importance or proposed density [15]. If

the posterior PDF is not known exactly, as is common in most problems, a posterior

approximation must be used, which renders the PF suboptimal. If the posterior

PDF is relatively well known, the number of samples must be rather large so that

the importance density approaches the true posterior PDF.

A generic PF is presented utilizing Sequential Importance Sampling(SIS) with

Bayesian weight inference and resampling. The SIS step forms the backbone for

most PFs and is shown by Equation (3.27) [15]. Besides appropriate proposition

of the importance density, q (xK |xK−1, z̃K), the number of particles, N , must be

chosen to produce an accurate and consistent estimate without producing a large

computational burden as the state vector dimension, n, grows. For nomenclature,

at time K, let XK represent the set of particles and be of dimension n x N and let

WK represent the 1×N vector of weights. Then let X i
K represent the ith sample of

the state domain and W i
K representing its respective scalar weight. Given an initial
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set of particles with respective weights at time K − 1 and a measurement at time K

the generic PF is carried out sequentially.

X i
K ∼ q

(
XK |X i

K−1, z̃K
)

W i
K =

W̃ i
K

N∑

i=1

W̃ i
K

W̃ i
K = W i

K−1

p (z̃K |X i
K) p

(
X i
K |X i

K−1

)

q
(
X i
K |X i

K−1, z̃K
)

(3.27)

The importance density in Equation (3.27), q (xK |xK−1, z̃K), is typically selected

to fit the assumption that state variable uncertainties are of Gaussian character

with mean and covariance given by fK−1 (xK−1,uK−1, t) and QK−1 respectively. The

Gaussian assumption for the importance density produces a suboptimal filter for

nonlinear problems. Even if the Gaussian assumption is valid for a certain state

variable, it may not be valid for others. Using the Gaussian distribution assumption,

the importance density becomes equivalent to the prior, p (xK |xK−1). Since the

importance density is selected to be equivalent to the prior the Bayes’ update for

the weights, Equation (3.27) simply reduces to the product of the prior weights and

present likelihood distribution.

If the chosen importance density is not exactly the posterior distribution, the

variance of the importance weights has been shown to increase as the number of re-

cursive steps increases leading to only one particle possessing a nonzero weight. This

is known as degeneracy and resampling is carried out to combat this problem [15].

The resampling step eliminates samples with low importance and increases the num-

ber of samples with high importance to avoid excessive computational resources for

near zero weights. However, resampling requires a measure of degeneracy,such as the
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inverse of the sum of the square weights, and a user-defined threshold for triggering

the resampling procedure.

The typically utilized resampling procedure maps the current samples and respec-

tive weights to a new domain where the weights are uniform and uses the Cumulative

Sum of Weights(CSW) as the measure for eliminating or spawning particles [15]. The

resampling step is not shown here, but can be found in Ristic et al. [15] or van der

Merwe et al. [63]. Whether the resampling is triggered or not, the result is a set of

particles at the present time, XK , with respective weights, WK . The state estimate

and covariance at the present time is calculated similarly to how a random variable’s

mean and variance are calculated if one possessed the PDF of the random variable,

Equation (3.28). After the state estimate and covariance are updated, the PF propa-

gates the particles forward to the next measurement time and SIS carried out utilizing

the previous time step’s particle weights. With the SIS procedure completed, degen-

eracy is checked and resampling is carried out if needed with the new state estimate

and covariance produced from the newly calculated particles and weights. With the

initial tuning parameters of the number of particles and the importance density se-

lected, other refinements exist to improve importance density evolution and sample

diversity [15].

x̂+
K =

N∑

i=1

W i
KX i

K

P+
K =

N∑

i=1

W i
K

(
X i
K − x̂+

K

) (
X i
K − x̂+

K

)T
(3.28)

The added computation burden of the PF compared with the UKF is readily

apparent, typically the number of particles is much larger than the number of sigma

points utilized by the UKF, N � 2L+1. Thus, tuning the number particles is needed

to appropriately balance the trade-off between accuracy and computational burden.
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However, utilization of the importance density can allow for increased filter accuracy

and performance. Accordingly, appropriate selection of the importance density is

crucial to PF operation since incorrect selection can result in divergence or excessive

degeneracy. Refinement methods have been introduced to increase the accuracy of

the importance density in various ways: (a) using intermediate densities between

time steps to reweight the particles which are resampled, (b) using the measurement

at time K to refine the particles at time K−1 before propagation, or (c) applying an

EKF or UKF to generate a Gaussian approximation for the importance density [15].

Sample diversity is an important concern since degeneracy is inherent to SIS

particle filters and resampling can cause diversity loss among particles. Thus, other

methods such as regularization or the Markov Chain Monte Carlo(MCMC) move

step have been implemented to maintain diversity, which can be hard to accomplish

especially for systems with little or no process noise. The regularized PF combats

loss of diversity by jittering the particles selected from the importance density by

a proposed kernel density. Since particle jittering can cause divergence from the

true posterior, addition of a MCMC move step, utilizing the Metropolis-Hastings

acceptance probability dictating jittering acceptance, can improve operation.

3.4 Transformation of Variables Technique

The transformation of variables(TOV), or change of variables [2], technique al-

lows for exact mapping of a probability density function given in a specified domain

into a different domain. The technique allows for the exact expression of the proba-

bility density function in a desired domain when (1) the analytic form of the initial

probability density function is known and (2) the mapping between initial and de-

sired domains is known, at least once differentiable, and is bijective. Equation (3.29)
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summarizes the requirements for TOV.

p(y) =⇒ p(x) if :

1. p(y) given with known analytic form

2. y = ψ (x) ; ψ (•) : <n =⇒ <n and is at least C1

(3.29)

The TOV technique is based on the integral invariant property of the total prob-

ability of an event. Namely, the total probability of a particular event, P (E), occur-

ring within a defined space is invariant of the coordinate system description as long

as the basis functions completely span the space. Figure 3.1 displays the integral

invariant property of total probability.

x̂2

x̂1

x̂3

ŷ2

ŷ1

ŷ3

ẑ2

ẑ1

ẑ3

S = <3

Probability Volume

P =
∫

D pdV—

Figure 3.1: Integral Invariant Property of Probability

Figure 3.1 shows that even with three different sets of basis functions spanning

the same space, the total probability as dictated by the integration of the probabil-

ity volume will not change. Equation (3.30) displays the relationship demonstrated
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by Figure 3.1 utilizing continuous PDFs of two different coordinate systems which

fully span the same n-dimensional space. It is from this relationship that the trans-

formation of variables technique is directly derived. The minimum realization of

the basis directions is typically utilized to produce orthogonal basis functions, but

non-orthogonal basis functions can be used, however they result in a more complex

solution.

P (E) = P (y) = P (x)

=
∫

Dy
p (y) dV (êy) =

∫

Dx
p (x) dV (êx)

(3.30)

The differential volumes in Equation (3.30) are computed using the wedge prod-

uct,Equation (3.31). The wedge product is the n-dimensional form used to compute

the volume occupied by an n-dimensional parallelpiped spanned by a given set of

basis vectors, ê = [ê1, . . . , ên]. The wedge product uses vector arguments to compute

a signed scalar value measuring the size of the space encompassed by a given set of

basis functions. Since the wedge product calculates a signed scalar, the Levi-Civita

permutation symbol, εijk...n is used to compute whether the scalar exists and if it is

positive or negative.

dV (ê) = dê1 ∧ dê2 ∧ · · · ∧ dên

= η (ê) εijk...ndê1 ∧ dê2 ∧ · · · ∧ dên
(3.31)

The volume density, η (ê), used in Equation (3.31) is a scalar measure of the

amount of distance spanned by the basis functions and is irrespective of order in

which basis directions are utilized. Equation (3.32) shows how the volume density

is calculated based upon using a distance metric of L2 type. Common L2 distance

measure scalars are ds2 = dx2 + dy2 + dz2 for Cartesian and ds2 = dr2 + r2dθ2 +
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r2 sin (θ)2 dφ2 for spherical.

η (ê) =
√

det (G (ê))

G (ê) =
∂2 (ds2)

∂êi ∂êj
, i, j ∈ [1, n]

(3.32)

3.4.1 Transformation of Variables Procedure

Let the initial domain of n-independent basis functions completely spanning

the space of interest be denoted by y, y = [y1, y2, . . . , yn], with p (y) designat-

ing the known analytic form of the probability density function which is desired to

be transformed. Let x designate the desired domain spanned by a different set of

n-independent basis functions and be related to the initial basis functions by a one-

to-one transform which is at least once differentiable over the range to be mapped,

Equation (3.29).

The TOV technique given by Equation (3.33) allows for a known PDF in the

initial domain, p (y), to be mapped exactly to a desired domain, p (x). For instances

where the inverse of the mapping between domains yields multiple solutions, e.g.

y = x2, the mapped PDF solution is the sum of all piecewise solutions for the inverse

of the mapping function.

p (x) =





[
p (y) |J |−1

]

y=ψ(x)

, Single Solution

∑

yi=ψi(x)

[
p (y) |J |−1

]

yi=ψi(x)

, Multiple Solutions

Jαβ =
∂ψ−1(yα)

∂yβ
; α, β ∈ [1, n = dim (y)]

(3.33)

Equation (3.33) is utilized when it is more convenient to compute partial deriva-

tives of the desired domain functions written in terms of the initial domain functions.
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When it is more convenient to compute the derivatives of the initial domain functions

written in terms of the desired domain functions, Equation (3.34) can be utilized.

p (x) = p (y)y=ψ(x) |K|

Kαβ =
∂ψ(xα)

∂xβ

(3.34)

The determinant of the partial derivative matrix between bases in Equations (3.33)

and (3.34) arises from the ratio of differential volume elements of the respective do-

mains, rearranging Equation (3.30) for the domain of interest, not a Taylor series

expansion of the mapping between domains [43]. Since the determinant of the Ja-

cobian serves as a scale factor between the differential domains, its absolute value

is needed instead of its signed value. The sign of the determinant simply dictates

whether or not the new domain reflects the initial domain’s PDF.

Once the transform between domains is complete, the statistical moment char-

acteristics of the PDF in the new domain can be computed based upon information

provided in the initial domain. Assuming that the initial domain bases are con-

structed from measurements while the desired domain bases are dynamic states, the

uncertainty characteristics of the transformed PDF can be used to justify or refute

assumptions made about the indirectly observed state distributions or utilized as

the likelihood distribution for Bayesian inferencing. The TOV technique can also be

applied to stochastic difference equations for solutions of prior densities for Bayesian

inferencing [59].

3.4.1.1 Transformation of Variables for <n → <m , m = n

To illustrate the application of TOV, consider the two-dimensional mapping of

Cartesian coordinates, x
.
= (x, y), from a range and angle pair set, z

.
= (ρ, α), with

their relationship given by Equation (3.35). Let the spherical domain be the initial
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domain with a given continuous joint PDF, p (z), the Cartesian domain PDF, p (x),

is computed by applying Equation (3.33) and the result shown in Equation (3.36).

Note that the Jacobian is much easier to evaluate in terms of the measurement

domain then transfer to the Cartesian domain and the singularity remains at the

origin.

ρ =
√
x2 + y2 x = ρ cos(α)

α = arctan

[
x

y

]
y = ρ sin(α)

(3.35)

p (x) = p

(
z = ψ (x)

)∣∣∣∣∣ρ
∣∣∣∣∣

−1

z=ψ(x)

(3.36)

3.4.1.2 Transformation of Variables for <n → <m , m < n (Auxiliary Variable

Method)

There exist cases where one is only concerned with a subset of variables that are

related to the initial domain, but do not span the entire space with respect to their

basis directions. As an example, consider the same domain mapping given in the

above example except that the state of interest is only x. In this case, the method of

auxiliary variables [2] can be applied with the auxiliary variable defined as the angle,

α, resulting in the Jacobian shown by Equation (3.37) and the joint and marginal

PDFs shown in Equation (3.38). Alternatively, had the auxiliary variable been de-

fined as ρ, Equation (3.38) would instead take the form of Equation (3.39). The so-

lutions of Equations (3.38) and (3.39) are derived differently based upon elimination
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of auxiliary variables but are equivalent due to the invariance of total probability.

∂ (x, α)

∂ (ρ, α)
=




cos(α) −ρ sin(α)

0 1




︸ ︷︷ ︸
J



ρ

α


 (3.37)

p (x, α) = p

(
ρ =

x

cos(α)
, α = α

)∣∣∣∣∣ cos(α)

∣∣∣∣∣

−1

p (x) =
∫ αf

α0

p (x, α) dα

(3.38)

p (x, ρ) = p

(
ρ = ρ, α = arccos(x/ρ)

)∣∣∣∣∣ ρ sin(α)

∣∣∣∣∣

−1

α=arccos(x/ρ)

p (x) =
∫ ρf

ρ0
p (x, ρ) dρ

(3.39)

3.4.1.3 Transformation of Variables for <n → <m , m < n (Dirac Delta Method)

From the above example, the complete Jacobian needed to be calculated even

when only the PDF of a particular subset of variables was desired. The reduced

state variable PDF representation can be computed in an alternative way which

avoids the need for a one-to-one transformation between all variables [27]. The

method applies the Dirac generalized function in order to transform only the needed

variables to the state(s) of interest, for discrete random variables the application is

given by Theorem 1.

Theorem 1. Suppose that zi, i = [1, n], are discrete random variables with joint

probability distribution p (z1, z2, . . . , zn). Let D be the n-dimensional set of every

possible outcome of the zi’s. Then the discrete random variable

x = ψ−1 (z1, z2, . . . , zn)
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has the probability distribution given by use of the Kronecker delta δa,b in the form

p (x) =
∑

zi∈D
p (z1, z2, . . . , zn) δ

[
ψ−1 (z1, z2, . . . , zn)− x

]
. (3.40)

Where

δa,b = δ [a− b] =





1, a = b

0, a 6= b
.

The Kronecker delta can also be applied for computation of continuous random

variable PDFs given relationships to other known continuous random variable dis-

tributions. The conversion process is outlined by Theorem 2.

Theorem 2. Suppose that zi, i = [1, n], are continuous random variables with joint

probability distribution p (z1, z2, . . . , zn). Let D be the n-dimensional set of every

possible outcome of the zi’s. Then the continuous random variable

x = ψ−1 (z1, z2, . . . , zn)

has the probability distribution given by use of the Kronecker delta δa,b in the form

p (x) =
∫

Dz
p (z1, z2, . . . , zn) δ

[
ψ−1 (z1, z2, . . . , zn)− x

]
dz1dz2 . . . dzn. (3.41)

In order to compute the result of Theorems 1 and 2, properties of the Kronecker

delta are required and given by Equation (3.42). The composition property in Equa-

tion (3.42) is computed using the roots, yn, of the function f , hence f(yn) = 0. For

the translation property the limits of integration can be over any domain surrounding
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the critical points where the Kronecker delta is not zero.

Scaling

δ(ay) =

∣∣∣∣∣
∂(ay)

∂a

∣∣∣∣∣

−1

δ(y) =
1

|a|δ(y)

Translation(sifting)

f(a) =
∫ ∞

−∞
f(y)δ(y − a)dy

Composition

δ

(
f(y)

)
=
∑

n

δ(y − yn)

∣∣∣∣∣
∂f(y)

∂y

∣∣∣∣∣

−1

yn

Where: f(yn) = 0 and
∂f(y)

∂y
6= 0

(3.42)

Application of Theorem 2 allows for Equation (3.38) to be computed without

the need for evaluating the 2× 2 Jacobian, shown in Equation (3.43). The roots of

x−ρ cos(α) = 0 are ρ = x/ cos(α) and α = arccos(x/ρ), using the first root to replace

the range random variable results in the scaling factor to be ∂
∂x

(x/ cos(α)) = sec(α).

Once the distribution is properly scaled, it can then be sifted to alleviate dependence

on the range random variable, leaving only the angle random variable to be integrated

over to produce the desired marginal PDF.

p (x) =
∫

Dρ

∫

Dα
p (ρ, α) δ [ρ cos(α)− x] dρdα

Scale

zz=
∫

Dρ

∫

Dα
p (ρ, α)

cos(α)
δ

[
ρ− x

cos(α)

]
dρdα

Sift

{{=
∫ αf

α0

1

cos(α)
p

(
ρ =

x

cos(α)
, α

)
dα

(3.43)

Equation (3.39) can be reproduced in a similar manner by utilizing the angle

root, α = arccos(x/ρ), and using its derivative with respect to the state of interest,
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x, for the scaling factor as shown by Equation (3.44).

p (x) =
∫

Dρ

∫

Dα
p (ρ, α) δ [ρ cos(α)− x] dρdα

=
∫

Dρ

∫

Dα
p (ρ, α)

ρ sin(α)
δ

[
α− arccos

(
x

ρ

)]
dρdα

=
∫ ρf

ρ0

∣∣∣∣∣
1

ρ sin(α)

∣∣∣∣∣
α=arccos

(x
ρ

) p
(
ρ = ρ, α = arccos

(
x

ρ

))
dρ

(3.44)

3.4.2 Comparison of Transformation of Variables to the Similarity

Transform Method

The similiarity transform [64] has been used in previous communities along with

astrodynamics [49, 65] to compute the covariance matrix of a desired domain from

a pre-existing covariance matrix of a different domain. The transformation of the

covariance from one domain to another can be derived in the exact same manner

as the propagation phase of the Kalman filter, Equation (3.7). In the computation,

one assumes a linear mapping, evaluated at the current estimate, holds between

the domains over the entire region encompassed by the initial domain’s covariance

hypervolume. The similiarity transform is given by Equation (3.45) and maps a

covariance matrix from the initial domain via the Jacobian between the domains

evaluated at the present state estimate to the new domain.

P (x̂′, x̂′) =

[
∂x′

∂x

]

x̂′=f(x̂)

P (x̂, x̂)

[
∂x′

∂x

]T

x̂′=f(x̂)

P (x̂, x̂) = E
{

(x− x̂) (x− x̂)T
}

(3.45)

The resulting mapping is not unlike the inertia tensor mapping used when rotat-

ing basis directions [66]. However, in inertia tensor computations, when bases are

exchanged and not just merely rotated, one must compute the inertia in the new do-
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main by applying the integral definition of inertia to preserve all information across

the mapping and not simply applying a linear mapping [67].

In a trivial, but valuable, example taken from Stark and Woods [68], consider

two two-dimensional domains linked via a simple rotation, θ, about the out-of-plane

axis of the initial domain resulting in the relationship given by Equation (3.46).

x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ)

(3.46)

The determinant of the Jacobian of the simple rotation with respect to the un-

primed variables is +1. Assuming the unprimed variables are Gaussian, the mul-

tivariate probability density function given by Equation (3.47), with mean µ and

covariance Σ, the transformed PDF would be the same as the original except that

v′ replaces v where v = [x’,y’]T . The transformation of variables result is that the

computed covariance for the primed domain is the same as the covariance for the

unprimed domain. The mean of the primed domain is the mean of the unprimed

domain mapped into the prime domain.

N (v;µ,Σ) =
1

(det (2πΣ))1/2
exp

[
−1

2
(v − µ)T Σ−1 (v − µ)

]
(3.47)

Generalizing and expanding the given example, if there existed a double primed

domain differing from the primed domain by a matrix of constant values, v′′ = αv′,

the resulting PDF is computed by applying transformation of variables and is shown

by Equation (3.48). Since the double primed and single primed domains are linearly

related then the mean of the double prime domain is easily computed from the

expectation operator, E {v′′}=µv′′ = αµ, allowing for the mean of the single primed

domain to be expressed as a function of the double primed domain mean as is done
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in Equation (3.48).

p (v′′) =
|det (α) |−1

(det (2πΣ))1/2
exp

[
−1

2

(
α−1v′′ −α−1µv′′

)T
Σ−1

(
α−1v′′ −α−1µv′′

)]

(3.48)

Comparing Equation (3.48) to Equation (3.47), it is easy to see that the double

primed domain PDF can be expressed in terms of a Gaussian PDF, N (v′′;µv′′ ,Σv′′),

with the covariance matrix of the double primed domain is expressed as Σv′′ =

αΣvα
T . This example shows how the similarity transform is easily derived from

TOV when the initial distribution is Gaussian. In the example, the linear transfor-

mation could also have taken the form of v′′ = αv′ + β where β is a constant. The

presence of the additional constant only serves to alter the mean value of the double

primed domain by translating it in addition to rotating it about a fixed point.

In Equations (3.47) and (3.48), if the matrix argument of the exponential is set

equal to the square of an integer, (v − µ)T Σ−1 (v − µ) = d2, the equation of the

probability ellipsoid [16,69] is formed. Due to the nature of the Gaussian distribution,

principal direction and scale decomposition of the probability ellipsoid allows for a

complete assessment of state uncertainty and correlation within the hypervolume.

The similiarity transform is a shortcut method, which can be employed when one is

simply rotating bases about a point, but the initial distribution must possess the same

linear type of behavior as the Gaussian distribution, and only be characterized by the

first two statistical moments. The similarity transform preserves the characteristic

values of the original matrix, thus the lengths of the probability ellipsoid are constant

but simply rotated due a change in the eigenvectors since the covariance matrix has

been transformed.

Even if the initial distribution was Gaussian, a nonlinear transformation will not

allow for the exponential argument to be reduced down to a Gaussian exponential
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argument form. Many a time, the nonlinear transformation between domains is state

dependent which yields a nonconstant scale factor resulting from the determinant of

the Jacobian. An example of a nonconstant Jacobian determinant is given by Equa-

tion (3.49), where one seeks to transform from the two-dimensional polar domain to

the two-dimensional Cartesian domain.

Given : z =




ρ

θ

ρ̇

θ̇




=




√
x2 + y2

arctan
[
y

x

]

ρ−1 (xẋ+ yẏ)

ρ−2 (xẏ − ẋy)




=⇒ |J |z=h(x) = ρ2
z=h(x) = x2 + y2 (3.49)

The determinant for the three-dimensional transformation from spherical position

to Cartesian position is ρ2 sin(φ), where φ is measured from the Cartesian vertical

axis [67]. Due to the existence of a nonconstant scaling betweeen the domains, a sim-

ple point transformation about the present state estimate can produce a covariance

matrix that may not be appropriate, in size or shape, in the new state domain es-

pecially as the number of states increases and/or the Jacobian determinate becomes

increasingly nonlinear. When the similiarity transform is used for analysis of space

surveillance systems, the transformed covariance must, many a time, be multiplied

by a scalar constant in order to make the transformed covariance more realistic [49].

Another reason why one should start with transforming the PDF then proceed

with state estimation is to make sure that the new domain variables do possess fi-

nite statistical moments. Consider a second example from Stark and Woods [68],

where the double primed domain is nonlinearly related to the single primed do-

main, given by Equation (3.50), and the transformation possesses multiple solutions.

Assuming the single primed domain is Gaussian with no correlation and the same
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variance for each variable, transformation of variables is carried out for each of the

unique solutions over the appropriate regions and results in the PDF given by Equa-

tion (3.51) [68].

x′′ = (x′2 + y′2)
1/2

x′1,2 = ±x′′ (1 + y′′2)
−1/2

y′′ =
y′

x′
y′1,2 = y′′x′1,2

⇒ |J | = 1 + y′′2

x′′

(3.50)

p (x′, y′) =
1

2πσ
exp

[
− 1

2σ2

(
x′2 + y′2

)]

p (x′′, y′′) =
x′′

σ2
exp

[
− x

′′2

2σ2

]
1

π (1 + y′′2)
, x′′ ≥ 0, y′′ ∈ (−∞,∞)

(3.51)

The PDF solution given by Equation (3.51) of the double primed domain shows

both variables remain independent and that the x′′ variable is Rayleigh distributed

while the y′′ variable is Cauchy distributed. If one were to apply the similarity

transform to compute the covariance of the new domain they would be doing so

improperly because the Cauchy distribution does not have any statistical moments

defined, only its median. This example shows that one must start with transforming

the PDF from one domain to another then proceed with computing the higher order

moments if possible, otherwise information may be lost or misrepresented.

3.4.3 Comparison of Transformation of Variables to the Method of

Characteristics

The TOV technique is often thought of in terms of transforming between domains

at a given instant in time, but the technique can also be used to propagate uncertainty

in systems with state evolutions subject to differential equations through use of the

state transition matrix. Weisman et al. [25,36] used the TOV technique and exploited

the availability of exact state transition matrix formulations for state propagation to
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construct the prior PDF for surveillance applications. In Majji et al. [40], the same

group showed that the TOV approach provided the solution to Liouville’s equation,

which is a partial differential equation dictating the evolution of the probability

density function of a Hamiltonian system, the Fokker-Planck-Kolomogorov equation

without process noise.

The method of characteristics is a solution method for linear or quasi-linear partial

differential equations in which partial differential equations are reduced to ordinary

differential equations so that a solution flow for the PDF can be generated from

known initial conditions. To show that the TOV technique gives the same solution

as the method of characteristics, the example used by Majji et al. [40] to compare

to the method of characteristics solution by Halder and Bhattacharya [70] is again

utilized.

Considering a one-dimensional system subject to the differential equation of

ẋ = −x2 with the initial state and PDF conditions given by x0 and p(x0, t0). The

solution of the differential equation is x = x0 (1 + (t− t0)x0)−1, which allows for

TOV to be used in computing the time varying solution of the initial PDF, given

by Equation (3.52). The solution is equivalent to the method of characteristics solu-

tion and does not require any additional integration of the dynamics since the state

transition is already defined and is exact.

p (x) =

∣∣∣∣∣
∂x0

∂x

∣∣∣∣∣ p
(
x0 =

x

1− x(t− t0)

)

=

∣∣∣∣∣
1

1− x(t− t0)
+

xt

(1− x(t− t0))2

∣∣∣∣∣ p
(
x0 =

x

1− x(t− t0)

)

=
1

(1− x(t− t0))2
p

(
x0 =

x

1− x(t− t0)

)
(3.52)
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3.5 Use of Transformation of Variables for Bayesian Inferencing

Exact mapping of the probability density function between domains enabled by

TOV produces exact knowledge of the system likelihood distribution which allows

for a better idea of the combination of system states that generated the measure-

ment. Since the likelihood distribution is exactly mapped between domains, Bayesian

estimation can be easily carried out given the prior distribution is appropriately char-

acterized. The posterior probability produced from Bayes’ Theorem allows for all

statistical moments to be assessed, not just the mean and covariance as with conven-

tional filtering techniques. Availability of the state probability density function can

allow for automation of covariance initialization needed for conventional filtering,

thereby decreasing the amount of tuning needed to ensure proper filter operation.

For systems requiring more than one measurement time to be rendered observable,

due to sensing limitations, the transformation of variables approach can be applied

to assess the amount of uncertainty associated with the process.

The TOV technique is applied to the measurement and process equations to gen-

erate the likelihood and prior distributions respectively for implementation of Bayes’

Theorem. It is assumed that an analytic form of the measurement noise PDF exists

so the likelihood function can be constructed and TOV applied to map the measure-

ment PDF to the state domain. The prior PDF is generated by applying TOV to

map the present state domain backward to allow use of previous measurements. Once

the analytic form of the likelihood and prior are constructed, they must be evaluated

over a domain of possible state values which generated the measurement(s).

This research uses a simple perturb-then-grid technique, shown in Figure 3.2,

similar to sigma point generation, except the measurement is perturbed in the mea-

surement domain using the known standard deviations with the results then mapped
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into the state domain. The figure shows examples of how to proceed when the states

are fully observable at the given time instant or when additional measurements and

a smoothing operation are required to fully observe the system states, e.g. using two

consecutive position measurements to estimate velocity at the previous measurement

time. After the points are mapped into the state domain, they are redicritized to

equally span the space between the extremal points computed from the mapping of

the measurement domain points. The technique is not meant to be optimal since

the focus of the work is on applying TOV for sequential state estimation instead of

optimal sigma point, particle, or grid point generation. The nomenclature is similar

to that of the Unscented Kalman Filter [63], XK represents the set of all possible

state combinations at time K computed from its measurement domain counterpart

ZK , which represents the collection of all measurement domain points resulting from

perturbing the observations by a specified amount. The dimension of XK is Nn, e.g.

for three states the dimension is N x N x N .

As shown in Figure 3.2, generation of a complete probable state domain requires

assembling the minimal number of measurements required to render the dynamic

states observable. For scenarios where the number of independent basis function

measurements are equal to the number of dynamic states, m = n, the measure-

ment domain grid can be generated at each time instant. For scenarios where the

number of independent measurements are less than the number of dynamic states,

m < n, one must wait until the dynamic process is rendered observable, then apply a

smoothing routine to estimate the higher derivative states, e.g. use successive posi-

tion measurements to estimate initial velocity. Once the dynamic process is rendered

observable, assuming all measurements are statistically independent, the joint like-

lihood is the product of the individual likelihood PDFs shown by Equation (3.53).

The measurement function in Equation (2.1) is utilized to map the state variables
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Collect Measurements
zK = [z1, . . . , zm]

��

oo If dim(zK)<dim(xK) ____________

Discretize Measurement Domain
For i = 1,m

δi = 3σzi or User-Defined region about measurement

Discretize Range of zi ± δi into N Points

Zi = Discretized Range

End

Assemble Measurement Domain Grid: ZK = [Z1, . . . , Zm]

��
Generate State Domain

Full Observations : dim (zK) = dim (xK)

Compute Full State Domain

XTemp,K = h−1 (ZK)

Reduced Observations : dim (zK−1) + dim (zK) = dim (xK)

Collect Enough Measurements for Full Observability

XPos,Temp = [h−1 (ZK) , h−1 (ZK−1)]

Run Smoother to Estimate initial Higher Derivative States

XV el,T emp,K−1 = Smoother (XPos,Temp)
Assemble Discretized State Domain

XTemp,K−1 = [XPos,Temp,K−1 , XV el,T emp,K−1]

��

� ___

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Rediscretize XTemp for Uniform Grid
X = Rediscretized Grid of N points in each state direction

Figure 3.2: Perturb-then-Grid State Domain Generation from Measurement Infor-
mation

into the observation variables corrupted by a stationary noise process whose analytic

form exists. The joint likelihood, as a function of state variables and the present

measurement vector, is calculated by applying Equation (3.33) to Equation (3.53)
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resulting in Equation (3.54).

p (z̃K |ZK) =
m∏

i=1

p (z̃i|Zi)K (3.53)

p (z̃K |XK) =

[
p (z̃K |ZK) |J |−1

]

ZK=hK(XK)

(3.54)

3.5.1 Direct State Estimation

3.5.1.1 Full Observation State Estimation

The likelihood PDF, p (z̃K |XK), gives a probability measure, in the form of fre-

quency, expressing the amount of belief that a given combination of state variables

generated the present measurement. An example likelihood for a Gaussian corrupted

measurement process transformed into the state domain is given by Equation (3.55).

Equation (3.55) resembles the typical assumption of the likelihood distribution being

Gaussian except for the Jacobian scale factor, which may not be invariant over the

domain demonstrating the assumption can be invalid. As an example, the polar to

Cartesian mapping yields different scale factors over the entire polar domain that

are functions of the random state position variables, Equation (3.49), which results

in a non-Gaussian state likelihood.

p (z̃K |XK) =
|J |−1

z̃=hK(XK)

det (2πRK)1/2
exp

{
−1

2
(hK (XK)− z̃K)R−1

K (hK (XK)− z̃K)T
}

(3.55)

With the likelihood function posed in state variable form, all that is left is to

compute the state prior PDF so that Bayes’ Theorem can be evaluated to compute

the state posterior PDF. Construction of the prior PDF takes advantage of the nature

of the process model Equation (2.1), which is considered to be a Markov process

because the process noise is statistically stationary causing the predicted state to
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be dependent only upon the present state [59]. The form of the prior for a Markov

process is given by Equation (3.56) and reflects the likelihood of the current state

being arrived at via the equations of motion and knowledge about the distribution of

the previous state. The summation is used to resolve the joint conditional PDF from

the present and previous state domains to the present state domain. The prior density

is typically initialized assuming a uniform distribution within the generated state

domain since all other available information has been exhausted, p
(
x−0
)
∼ U (0, 1).

p
(
x−K
)

=
∑

xK−1

p (xK |xK−1) p
(
x−K−1

)
(3.56)

At the first measurement time, K = 1, Bayes’ Theorem is carried out using

Equations (3.54) and (3.56), with the assumption of a uniform prior distribution

and normalizing the result. The structure of the resulting posterior distribution

can then be utilized for computing the prior PDF at the next measurement time.

Construction of the next prior uses TOV and the process equations to map between

the time domains, shown by Equation (3.57). Transformation of variables is used to

construct the prior by using the process equations as the mapping between the present

and previous time domains as shown by Equation (3.57). The first measurement is

assumed to occur at K = 1, so a uniform prior is assumed, p
(
x−1
)

= p
(
x−0
)
∼

U (0, 1).

p (xK |xK−1) =

[
p (xK−1|z̃K−1) |J |−1

]

xK−1=f−1
K (xK ,uK−1,t)

= p
(
f−1
K (xK ,uK−1, t)

∣∣∣z̃K−1

)∣∣∣∣Φ (tK , tK−1)
∣∣∣∣
−1

Where: Φ (tK , tK−1) =
∂xK
∂xK−1

and xK = fK (xK−1,uK−1, t)

(3.57)

Note that the Jacobian of the mapping between the previous and present state
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domains is the conventional forward state transition matrix. For a linear process

model, the determinant of the Jacobian should be one since the basis functions of

the solution of the differential equations reside in the same domain and are orthog-

onal. For nonlinear dynamics, the inverse of the state transition matrix must be

computed at each time step, but if the time step is small or the dynamics are rela-

tively linear the determinant will be close to one. The prior PDF using TOV is then

found by substituting Equation (3.57) into Equation (3.56) recursively. However, the

recursion structure of the prior PDF requires previous measurements to be stored

since p
(
x−K−1

)
is a function of the all previous measurements. To illustrate how the

prior is dependent on previous measurements, the first three prior calculations are

shown in Equation (3.58).

Assume : p
(
x−1
)
∼ U (0, 1)

p
(
x−2
)

=





p (x2|x1) = p
(
f−1
2 (x2,u1, t)

∣∣∣z̃1

)∣∣∣∣Φ (t1, t2)
∣∣∣∣
−1

p
(
x−1
)

= U (0, 1)

p
(
x−3
)

=





p (x3|x2) = p
(
f−1
3 (x3,u2, t)

∣∣∣z̃2

)∣∣∣∣Φ (t2, t3)
∣∣∣∣
−1

p
(
x−2
)

= p
(
f−1
2

(
f−1
3 (x3,u2, t) ,u1, t

) ∣∣∣z̃1

)∣∣∣∣Φ (t1, t2)
∣∣∣∣
−1

U (0, 1)

(3.58)

If the utilized process model is incorrect, Equation (3.56) will be biased toward

the incorrect model resulting in the posterior beginning to ignore new measurement

information, i.e. the low agreement between the likelihood and prior distributions

will produce a more uniform posterior within the generated domain. Filter divergence

can result when present measurements have little effect on the posterior calculation

due dominance of the process model. This behavior has been previously observed

with regard to linearization considerations in the Kalman filter. A way to combat
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possible bias resulting from an incorrect process model is use of limited-memory

filtering [59], which considers only data from the recent past.

The amount of previous data considered can be evaluated by examining the

amount of information gained through incorporation of additional previous mea-

surements. This can be done via use of PDF agreement metrics, e.g. Kullback

distance content [43], but care should be exercised so as not to introduce unneces-

sary user-defined tuning parameters. From the computed likelihood and prior joint

PDFs, Bayes’ Theorem calculates the joint posterior PDF, dimension Nn, for the

generated state domain conditioned upon the present measurement and the previous

measurements utilized in the calculation of the prior. For individual state estimates,

the joint posterior is resolved into marginal PDFs for each state by summing over

all the indicies not associated with the state in question. The state estimate and

covariance can then be calculated using Equations (3.3) and (3.5).

3.5.1.2 Reduced Observation State Estimation

The TOV technique can be used to quantify the amount of uncertainty associated

with calculating the smoothed estimates of indirectly observed states at time K − j

given directly observed states at time K− j through K, and the state process model

which satisfies the system observability criterion [16] at a given point in time. This

is accomplished by recording enough measurements to yield the system observable,

then using the state process model to establish the prior PDF using transformation

of variables. The result is then used in conjunction with the transformed likelihood

PDF at the time of interest to compute the smoothed estimate of the states at the

desired time.

Consider the dimension of the measurement vector, m, to be half the dimension

of the state vector, n, this corresponds to position only observations of a process
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dictated by position and velocity level variables. Velocity smoothing is required while

filtering position measurements to form a complete estimate of the system states. Let

z̃K represent a vector of independent position observations at time K while xK and

ẋK represent the state position and velocity states at time K respectively.

The position likelihood PDF, at each measurement time, can be generated from

the measurement vector using Equation (3.54). Position state filtering can be car-

ried out as described in the full sensing case, but only assuming a uniform prior

distribution since the prior distribution requires velocity information at the present

time for backward propagation. Once enough position measurements are received to

fully observe the velocity state variables at the time of interest, K − j, the velocity

domain can be generated and TOV applied to estimate the uncertainty associated

with the smoothing process. Equation (3.59) is a general expression for calculating

the domain of the velocity variable at the time of interest subject to the modeled

dynamics and measurements from the time of interest up to the present time K.

The j index represents the number of measurements prior to the present time K

needed to render all states observable given the process equations of motion and re-

duced observation measurements. For a two-dimensional problem possessing linear

dynamics, a minimum of two measurement times, K − 1 and K, are needed for full

observability of the velocity variables at time K − 1.

ẊK−j|K−j,...,K = F (XK−j, . . . ,XK ,uK−j, . . . ,uK−1, t) (3.59)

After the velocity states are observable at time K − j, the joint likelihood of the

position measurements is computed then mapped via TOV to be a function of only

the position and velocity domains at the time of interest. Equation (3.60) forms the

joint likelihood of the position likelihood PDFs at the required measurement times
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then applies the TOV technique to produce a PDF that is solely a function of state

variables at the time of interest, K − j. Since the velocity domain is computed

from differencing multiple position domains the Jacobian, JK−i, will not be square

so the determinant cannot be evaluated. However, use of the method of auxiliary

variables [2] and judiciously choosing the position variables at the time of interest to

be the auxiliary variables, the Jacobian will be square. The dimension of the joint

PDF will be increased because both the position and velocity variables at the current

time are now treated as random variables in the PDF, but the velocity likelihood

can be resolved from the joint by summing over the position variables.

p (z̃K−j, . . . , z̃K |XK−j, . . . ,XK) =
0∏

i=j

p (z̃K−i|XK−i)

p
(
z̃K−j, . . . , z̃K |XK−j, ẊK−j

)
=

0∏

i=j

[
p (z̃K−i|XK−i) |JK−i|−1

]

XK−i=f(XK−j ,ẊK−j ,uK−j ,t)

(3.60)

An example of Equation (3.60) is shown in Equation (3.61) for a two dimensional

problem with constant acceleration, τ = tK − tK−1. With the domain and likelihood

generated for the velocity states at time K − j, all that is left is the computation of

the prior, p
(
x−K−j, ẋ

−
K−j

)
. Following the same procedure outlined in the full sensing

case, the prior for the K− j velocity estimate is calculated by propagating the K− j

domains backward in time and centering their results about the previous measure-

ments. The resulting prior possesses a similar flow to that shown by Equation (3.58)

and is shown by Equation (3.62). Bayes’ Theorem can be evaluated to compute the

posterior distribution for the generated position and velocity domains at the K − j

measurement. The reduction from joint PDF to marginal PDF can be carried out to

produce the marginal distributions from the joint posterior so that smoothed velocity
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and position estimates can be calculated using Equations (3.3) and (3.5). Figure 3.3

presents a flowchart for the initialization of the reduced sensing TOV Bayesian filter

for position and smoother for velocity.




x

ẋ



K−1

=




x

y

ẋ

ẏ



K−1

=




1 0 0 0

0 1 0 0

−1

τ
0

1

τ
0

0 −1

τ
0

1

τ




︸ ︷︷ ︸
det(JK−1)=τ−2




xK−1

yK−1

xK − 0.5axτ
2

yK − 0.5ayτ
2




p
(
z̃K , z̃K−1|XK−1, ẊK−1

)
= p (z̃K−1|XK−1) p

(
z̃K |fK−1

(
XK−1, ẊK−1

))
|JK−1|−1

(3.61)

Assume : p
(
x−1 , ẋ

−
1

)
∼ U (0, 1)

p
(
x−2 , ẋ

−
2

)
=





p (x2, ẋ2|x1, ẋ1) = p
(
f−1
2 (x2, ẋ2,u1, t)

∣∣∣z̃1

)∣∣∣∣J1

∣∣∣∣
−1

p
(
x−1 , ẋ

−
1

)
= U (0, 1)

p
(
x−3 , ẋ

−
3

)
=





p (x3, ẋ3|x2, ẋ2) = p
(
f−1
3 (x3, ẋ3,u2, t)

∣∣∣z̃2

)∣∣∣∣J2

∣∣∣∣
−1

p
(
x−1 , ẋ

−
1

)
= p

(
f−1
2

(
f−1
3 (x3, ẋ3,u2, t) ,u1, t

) ∣∣∣z̃1

)∣∣∣∣J1

∣∣∣∣
−1

U (0, 1)

(3.62)
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3.5.1.3 Full State Observation with State and Parameter Estimation

For systems with all states fully observable at every instant in time, parameter

estimation can be carried out in a manner similar to that of the reduced measurement

case. State PDFs at consecutive, or more largely spaced, times can be joined to

form a joint PDF where time evolution of the states is governed by a mathematical

model with some parameter uncertainty. Assuming the mathematical model used to

compute the state transition matrix was not exact with respect to the value used

for the parameters, p, TOV can be applied to sequentially estimate the parameters

when the model estimates do not agree with what is presently measured. With the

appropriate conditions met to trigger the parameter estimation, e.g. propagated

states do not agree with present measurements or the propagation time interval is

significant, TOV can be applied to map the joint PDF of present states and previous

states to the joint PDF of parameters in question, with present or previous states

used as auxiliary variables if necessary.

Equation (3.63) applies TOV to compute the resulting joint likelihood PDF of

a set of unknown parameters given previous and present full state measurements.

Assuming no other information about the parameters uncertainties is available,

p (p−) ∼ U (0, 1), Bayes’ Theorem can be applied to compute the posterior PDF.

The nomenclature of [aux] is taken to be the use of any auxiliary variables in order

to provide a square Jacobian while x (tK , . . . , tK−i) and z (tK , . . . , tK−i) represent the

i number of state and measurement vectors needed to properly estimate the given

parameter vector.

p

(
z (tK , . . . , tK−i)

∣∣∣∣∣p, [aux]

)
= [p (x (tK . . . tK−i)) |K| ]x(tK ...tK−i)=ψ(p,[aux]) (3.63)

73



Where:

K =




∂ψ1

∂p1

. . .
∂ψ1

∂pend

∂ψ1

∂ [aux]T

...
. . .

...
...

∂ψend
∂p1

. . .
∂ψend
∂pend

∂ψend

∂ [aux]T




For initialization of the parameter domain, one can simply take the range of values

based upon insight into the behavior of the system. Utilizing the initial parameter

estimate given by marginalizing the joint PDF given in Equation (3.63), one can

proceed until conditions are such that the parameter must be updated again, e.g. the

propagated states not lying within a specified region about the present state estimates

defined by the present state uncertainties. Additionally, instead of using the initial

parameter domain over, one could apply the same tactic used in the perturb-then-

grid method and simply take the present parameter estimate and perturb by some

multiple of its uncertainty to generate the new domain.

3.5.1.4 Reduced State Observation with State and Parameter Estimation

Consideration of parameter uncertainty in the reduced sensing case requires ad-

ditional manipulation and care in execution since the smoothed smoothed state es-

timates are derived not only from the available measurement data, but from the

assumed and erroneous model which is in error. This can lead to a sort of chicken

and egg problem reminiscent of an iterated extended Kalman filter which incorpo-

rates model parameters in the estimated state vector.

3.5.2 State Differential Correction

This section presents a discussion of using the TOV Bayes’ filter for state differ-

ential correction like the MEKF presented in Section 3.2.2. The discussion in this

section is not as general as the direct state estimation section, instead the TOV
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Bayes’ filter analog to the MEKF is derived for spacecraft attitude estimation which

maps body frame measurements and uncertainties into the differential quaternion

frame.

3.5.2.1 Likelihood Density Computation

For the TOV Bayes’ attitude filter, the TOV approach is applied to map the

additive measurement uncertainty in the body frame into the differential quaternion

domain via the same type of decomposition used by the MEKF, shown by Equa-

tion (3.64). The likelihood of the differential corrections computed by ToV for all

the measurements at time K is shown by Equation (3.65) where n is the number of

measurements at time K. Note that since one is able to express the measurement as

a function of the desired variables, the latter matrix version of the TOV approach,

Equation (3.34), can be used.

b̃K,i = C (q̂True) r̂K,i + vK,i

= C (δq)C
(
q̂−K
)

r̂K,i + vK,i

⇒ vK,i = b̃K,i − C (δq)C
(
q̂−K
)

r̂K,i

(3.64)

p (vK,i|δq) =
n∑

i=1

p
(
vK,i = b̃K,i − C (δq)C

(
q̂−K
)

r̂K,i
) ∣∣∣∣∣
∂vK,i
∂δq

∣∣∣∣∣ (3.65)

The probability density function of the measurement noise is assumed to be Gaus-

sian and uncorrelated in time, Cartesian position, and successive measurements, thus

the joint probability density function for the measurement noise for each measure-

ment is given by Equation (3.66). The PDF for a Gaussian distributed random

vector with mean, µ, and covariance, Σ, is given by Equation (3.47). For the case
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of zero mean Gaussian noise, µ = 0, and Σ = σ2
MeasI3×3.

p (vK,i) = p (xK,i, yK,i, zK,i) = p (zK,i|xK,i, yK,i) p (yK,i|xK,i) p (xK,i)

= p (zK,i) p (yK,i) p (xK,i)

∼ N
(
vK,i; 0,13×3σ

2
Meas

)
(3.66)

If one were to consider the case of a single measurement, Equation (3.65) would

take the form of Equation (3.67). Equation (3.67) uses the shorthand notation of

c = C
(
q̂−K
)

r̂K with individual elements denoted by c (1, 2, or 3) and Cij denoting

elements of C (δq) which are computed from Equation (3.14).

p (vK,i|δq) = N (v; 0,Σ) |K|

v =




v (x)

v (y)

v (z)




=




b̃ (x)− (C11c (1) + C12c (2) + C13c (3))

b̃ (y)− (C21c (1) + C22c (2) + C23c (3))

b̃ (z)− (C31c (1) + C32c (2) + C33c (3))




K =




∂v (x)

∂ δq1

∂v (x)

∂ δq2

∂v (x)

∂ δq3
...

. . .
...

∂v (z)

∂ δq1

· · · ∂v (z)

∂ δq3




(3.67)

For computation of the Jacobian matrix elements, the process is straightforward

with an example of computing the partial derivatives of the first element given by

Equation (3.68). Since the absolute value of the determinate is taken, all partial

derivatives are taken using −vK,i instead of vK,i to avoid the negative sign every-

where. Note that δq4 = 1 because the scalar part of the quaternion is assumed

constant. For reference, the first row of the multiplied out direction cosine matrix as
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a function of elements is given by Equation (3.69)

∂v (x)

∂ δq1

=
∂C11

∂ δq1

c (1) +
∂C12

∂ δq1

c (2) +
∂C13

∂ δq1

c (3)

= 2δq1c (1) + 2δq2c (2) + 2δq3c (3)

(3.68)

C (δq)Row 1 =
[
C11 C12 C13

]

=




δq2
4 + δq2

1 − δq2
2 − δq2

3

2 (δq1δq3 + δq4δq2)

2 (δq1δq3 − δq4δq3)




T

(3.69)

3.5.2.2 Prior Density Computation

A similar procedure for the generation of the prior PDF exists for the Bayes’

filter. The structure of the prior results from the Markov nature of Equation (2.1),

where future states predicated only on the present states. Equation (3.56) gives the

form of the prior, δq substituted for x, which reflects the likelihood of the current

state being arrived at via the equations of motion and knowledge about the PDF of

the previous state [59]. The summation in the equation resolves the joint conditional

PDF of the present and previous state domains to the marginal PDF of the current

state domain.

The form of the conditional PDF in Equation (3.56) is inherited from the previous

measurement time posterior PDF. Let z̃K−1 stand for the array of all concatenated

measurements at the previous time, z̃K−1 = [̂rK−1,1 · · · r̂K−1,n]. The previous mea-

surement time prior is computed by applying Equation (3.56) for K−1 instead of K.

Equation (3.57) applies TOV to represent the conditional PDF as only a function

of the present state domain using the equations of motion as the mapping between

the present and previous state domains. Equation (3.57), with δq substituted for x,
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shows that the computation of the prior requires the filter to store previous measure-

ments. This dependency on previous measurements renders the TOV Bayes’ filter a

limited memory filter since the user dictates how many previous measurements are

considered in the computation of the prior PDF. The Bayes’ filter is typically initial-

ized assuming a uniform prior distribution since all present measurement information

has been completely used in the generation of the likelihood distribution.

To compute the prior distribution of the prior domain of quaternion differen-

tial corrections based upon collections of star measurements at previous times, con-

sider the discrete propagation of quaternion updated states from Equations (3.16)

and (3.17) decomposed into a previous estimate and a differential correction shown

by Equation (3.70). Solving Equation (3.70) for only the domain of the quaternion

differential corrections at the previous time in Equation (3.70) yields the solution

given by Equation (3.71).

q̂+
K = Ω̄ (ω̂K)−1 q̂−K+1



δqK

1


⊗ q̂−K = Ω̄ (ω̂K)−1






δqK+1

1


⊗ q̂−K+1






δqK

1


⊗ q̂−K = Ω̄ (ω̂K)−1

[
Ξ
(
q̂−K+1

)
q̂−K+1

]


δqK+1

1




(3.70)



δqK

1


 = Ω̄ (ω̂K)−1

[
Ξ
(
q̂−K+1

)
q̂−K+1

]


δqK+1

1


⊗

(
q̂−K
)−1

=
[
Ξ
((

q̂−K
)−1

) (
q̂−K
)−1

]
Ω̄ (ω̂K)−1

[
Ξ
(
q̂−K+1

)
q̂−K+1

]


δqK+1

1




(3.71)

From Equation (3.71), the domain mapping for the differential corrections relies
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upon the propagated previous updated quaternion solutions at time K − 1 and K.

For long propagation times or consideration of many measurement times, this could

prove troublesome due to small errors stacking up at time increases or the number

of previous measurement times increases. For the solution of the determinant of the

state transition matrix between the differential domains at different times, the result

is one or nearly one depending upon the propagation time considered. The determi-

nant serves as a way to check if the propagation time is too long because the bases

are not changed, i.e. stay in differential quaternion space, so if the determinant starts

to decline from one then the state transition matrix solution over that propagation

time begins to lose accuracy.

3.5.2.3 Computation of Differential Quaternion Domain from Measurements

Equations (3.65) and (3.71) compute the probability density functions for the dif-

ferential quaternion element values, however the domain of the differential quaternion

corrections needs to be specified without being too general or too narrow in range.

One does not want to use the entire possible range of values which the quaternion

elements since q̂ and −q̂ describe the same orientation. This problem can be alle-

viated by choosing the scalar part of the quaternion to be positive, corresponding

to the shortest rotation [66]. Alternatively, one does not want to narrow the range

of values which the differential corrections take so that possible orientations are not

ignored.

The possible domain of differential quaternion correction values can be computed

based upon perturbing available measurement, then mapping these perturbations

into differential quaternion space. After all measurements have been perturbed and

mapped, the domain is generated by discretizing between the extremum values in

the differential quaternion correction domain. With the measurement equation de-
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composed into the differential quaternion rotation and the propagated quaternion

rotation, an expression of the rotation resulting from the differential quaternion can

be computed for each measurement using the Moore-Penrose pseudo-inverse as shown

by Equation (3.72). Equation (3.72) can then be decomposed into the differential

quaternion parts and, noting that δq4 is always the largest, Equation (3.73) can be

applied to compute the differential quaternion correction domain.

C (δq) = b̃K,i

[(
C
(
q̂−K
)

r̂K,i
)T (

C
(
q̂−K
)

r̂K,i
)]−1 (

C
(
q̂−K
)

r̂K,i
)T

(3.72)

δq4,T emp =
1

2
(1 + trace (C (δq)))1/2

δqTemp =
1

4δq4,T emp




C23 − C32

C31 − C13

C12 − C21




[
δqT δq4

]T
= Normalized

[
δqTTemp δq4,T emp

]T

(3.73)

Equations (3.72) and (3.73) map the given corrupted measurement into the dif-

ferential quaternion space. To generate a possible domain of differential quaternion

values, the character of the corrupting noise is utilized to perturb the measurement

so that the entire space does not need to be analyzed. Computation of the per-

turbed possible domain can be performed different ways but this research utilizes

the perturb-then-grid method utilized by Weisman et al. [25,36]. Since the measure-

ment is assumed to be corrupted by a zero-mean Gaussian noise with known variance,

the corrupt measurement, b̃K,i, in Equation (3.72) is exchanged for b̃K,i ± kσMeas,

k = 3 or 4, then Equation (3.73) maps the extremal points into the differential

quaternion space so that proper ranges can be generated for the particular correc-

tions to the vector part of the quaternion.
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When evaluating the joint likelihood or prior using many measurements, a more

accurate domain is generated by mapping each perturbed measurement then using

the ensemble extremals instead of applying Equation (3.72) in a batch sense, i.e.

setting b̃K =
[
b̃K,1 · · · b̃K,n

]
+ kσMeas and r̂K = [̂rK,1 · · · r̂K,n] then carrying out

Equation (3.72). Equation (3.72) depends upon a propagated or current best es-

timate of vehicle attitude before the current measurements are used to update the

estimate. This can pose problems when the propagation interval is long and/or the

angular velocity estimate possesses inaccuracies. When utilizing prior measurement

times, care must be taken to ensure that when the generated domain is propagated

backward, it contains the perturbations of the previous measurements mapped into

differential correction space.
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4. APPLICATION EXAMPLES∗

This section illustrates the application of the TOV technique in a Bayes’ Theorem

framework for various filtering applications. The first two examples possess linear

dynamics in the state domain with observations that are nonlinear functions of the

states. The examples are used to illustrate certain behaviors of the TOV Bayes’

filter versus conventional nonlinear filtering techniques. The last two examples are

particular applications of the TOV Bayes’ filter to space surveillance and spacecraft

attitude determination.

The first example of a simple arcing mass in a constant gravity field is used to

demonstrate fundamentals of the TOV Bayes’ filter approach as well as illustrate

how the geometry of the observation can affect state estimation. The example also

demonstrates how the TOV Bayes’ filter approach can be used to assess the effect

of applying a smoother for state estimation as well as the effect of incorporating

previous data on correctly estimating state uncertainty and correlation.

The linear oscillator example is used as an analog to the periodic nature of orbiting

spacecraft as well as conducting state estimation over data drop-outs. The example

shows how the TOV Bayes’ filter can be used to estimate system parameters by

hypothesizing, and then refining the hypotheses after more data has been collected.

The third example, initial orbit determination and object tracking, shows the

merit of using TOV to estimate the uncertainty associated with a nonlinear smooth-

ing method which over-constrains the desired states. The form of the probability

density functions associated with state domains typically used for space surveillance

∗Part of this section is reprinted with permission from “Analytic Assessment of Sensor Uncer-
tainty for Application to Space Object Tracking and Correlation” by Ryan M. Weisman, Manoran-
jan M. Majji, and Kyle T. Alfriend, 2011. 62nd International Astronautical Congress, Cape Town,
South Africa. Copyright 2011 by Ryan M. Weisman, Manoranjan M. Majji, and Kyle T. Alfriend.
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analysis are computed and examined. Finally, the technique is shown as a way to au-

tomate the initialization of conventional nonlinear filters’ initial state estimates and

state covariances, which can improve their tracking performance and convergence.

The last example, attitude filtering, demonstrates how the TOV Bayes’ filter can

be used for spacecraft attitude filtering, as an alternative to the MEKF, especially

when measurements are few and far between. The attitude determination example

is a departure from previous examples because it shows how the TOV Bayes’ filter

can be used in a state differential correction framework instead of a direct state

estimation framework.

4.1 Planar Arcing Mass in Constant Gravity Field

4.1.1 Geometry

Preliminary evaluation of the TOV Bayes’ filter with full and reduced sensing

is conducted using a simulation possessing linear state domain dynamics and non-

linearly related measurements. The discrete time system model of two dimensional

planar motion for a point mass falling in a gravity field free of drag, ax = 0 and

ay = −9.81m/s2 is given by rearranging Equation (3.61). The relation of the Carte-

sian states and polar measurements is shown in Figure 4.1.

θ

ρ

Y

X

ẋ0

ẏ0
~g

Figure 4.1: Geometry of Falling Mass in Constant Gravity Field with Polar Mea-
surements of Cartesian States
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The tracking station is located at the Cartesian origin with measurements taken

every two seconds. The object’s initial conditions were set to (15, 60) kilometers

for position and (1, −1) kilometers per second for velocity. The measurement noise

is modeled as mean Gaussian with measurement standard deviations of 0.1km for

range, 0.001rad for elevation angle, 0.01km/s for range-rate, and 0.0001rad/s for

elevation-rate. For the reduced sensing case, only range and elevation angle are

measured. Figure 4.2 illustrates the simple perturb-then-grid method utilized for

generating the state domain from the measurement domain.

ρ̂

θ̂

−∆θ

+∆θ
+∆ρ

−∆ρ

Mapped x Domain

Mapped
y Domain

Measurement(
ρ̃, θ̃

)

Y

X

Figure 4.2: Illustration of Perturb-then-Grid Technique Utilized for State Domain
Generation

4.1.2 Full Sensing Results

For the scenario of observing as many independent quantities as there are states,

the TOV Bayes’ filter performance is compared against an extended Kalman filter

and an unscented Kalman filter. For tuning of the Kalman filters, only the initial

covariance was tuned while the sigma point scaling parameters for the UKF were

selected based upon typical approaches [16, 63]. Both the EKF and UKF used the

same initial state estimate, computed by mapping the polar measurements to the
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Cartesian space, with the initial covariance selected as a diagonal matrix of 1× 105.

Due to the linearity of the process dynamics, the UKF results are extremely close

to the results of the EKF, so the results of the UKF operation are omitted for

comparison clarity to the TOV Bayes’ filter.

The tuning for the TOV Bayes’ filter consisted of (a) selecting the number of grid

points along each state direction, (b) the amount the measurement was perturbed

in each observation basis direction to generate the measurement domain, and (c)

how many previous measurements should be used in the computation of the prior

distribution. The number of grid points along each direction was selected to be 15

over a domain defined by the measurement being perturbed 3σ in each observation

basis direction. To demonstrate the effect of incorporating different amounts of

previous measurement data into the prior calculation, the number of considered

previous measurements was varied between zero and ten.

A Monte Carlo analysis was performed using 10,000 corrupted measurements at

each observation point on the true trajectory. The corrupted measurements were

then mapped to the Cartesian domain and used to calculate a numerical mean, x̄K ,

and covariance, PK , for the state domain at each time, K. Equation (4.1) displays the

numerical computation for the first two statistical moments with h (ỹ) representing

the nonlinear transformation of the measurements into the state domain.

x̄K =
1

NTrials

NTrials∑

i=1

h (ỹi,K)

PK =
1

NTrials − 1

NTrials∑

i=1

(h (ỹi,K)− x̄K) (h (ỹi,K)− x̄K)T
(4.1)

The numerical covariance served as the metric dictating the true dispersion of

states which could have generated the measurement. The numerical covariance was

compared with the covariance computed by the EKF and the TOV Bayes’ filter
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utilizing different amounts of previous data in order to assess uncertainty and cor-

relation performance of the different filters. Figure 4.3 plots the standard deviation

and correlation coefficient errors computed from covariance matrix elements gener-

ated by the EKF and TOV Bayes’ filter using zero and three previous measurements

for calculation of the prior PDF.

Figure 4.3: Arcing Mass Position and Velocity Measurement: Covariance Element
Comparison of the EKF and TOV Bayes’ Filter with Different Priors vs. the Nu-
merical Covariance (σθ = 0.001rad)

Figure 4.3 shows that the Bayes’ filter assuming a uniform prior, i.e. the likelihood

PDF solution, for the state distribution best replicates actual error distribution,

both for the diagonal elements and the correlation terms, the other correlation terms

showed the same results. This is to be expected since the TOV likelihood solution
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represents the PDF solution which the Monte Carlo solution is sampling from while

the solutions utilizing prior information are concentrating the PDF solution because

more information is available for solution refinement. Figures 4.4 and 4.5 compare

the state error and 3σ covariance bound behavior of the EKF and TOV Bayes’ filter

using zero, one, three, and ten previous measurements respectively. The estimator

errors and error bounds are separated into different plots for easier discrimination

but all errors were within their respective 3σ bounds.
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Figure 4.4: Arcing Mass Position and Velocity Measurement: Error for EKF and
TOV Bayes’ Filter with Different Priors (σθ = 0.001rad)

Behavior of the state error and 3σ covariance bounds for the Bayes’ filter in Fig-

ures 4.4 and 4.5 demonstrates that as the prior distribution incorporates more data,

the dynamic model is trusted more and the filter is less susceptible to observation

variance. Examining the true state time histories and uncertainty bounds generated
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Figure 4.5: Arcing Mass Position and Velocity Measurement: Covariance Bounds for
EKF and TOV Bayes’ Filter with Different Priors (σθ = 0.001rad)

by the Bayes’ filter using zero to three previous measurements shows the inflection

point of the covariance bounds occurs at the point of closest approach of the object,

approximately 25 seconds. For the Bayes’ filter using zero to three previous measure-

ments, the state estimate is dominated by the likelihood PDF due to the increase in

the uncertainty for the horizontal position and velocity estimates.

From Figure 4.5, the range observation noise is the dominating measurement

noise because the uncertainty in the horizontal position is increasing as the elevation

angle goes to zero. One would expect growing uncertainty in the vertical position as

the elevation angle goes to zero since the sine function is more sensitive to changes

in angle as the elevation angle decreases, unless the elevation angle noise was be-

ing overshadowed. Figure 4.5 also shows that as more previous measurements are
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considered, the TOV Bayes’ filter uncertainty bounds settle to those of the EKF,

which should be expected since the dynamics are linear and the measurements are

only slightly nonlinear. Figure 4.6 displays the state error and covariance results for

the case where the prior considers the past three measurements and the elevation

angle noise standard deviation is raised from 0.001rad to 0.005 rad. The uncertainty

increase causes the elevation angle noise to dominate, resulting in increasing vertical

position error as the object falls.
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Figure 4.6: Arcing Mass Position and Velocity Measurement: Error and 3σ Bounds
for EKF and TOV Bayes’ Filter with Prior using 3 Previous Measurements (σθ =
0.005rad)

Since the TOV Bayes’ filter can generate a state estimate and covariance given

a single measurement vector, the output of the filter at the first measurement can
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be used to autonomously initialize the state estimate and covariance of the EKF.

Figure 4.7 displays the state error and covariance bound results of the EKF ini-

tialized by the Bayes’ filter output versus the user-tuned covariance for the original

measurement noise character set.

0 10 20 30 40 50
−300

−200

−100

0

100

200

300
Horizontal Position Error

P
os

iti
on

 E
rr

or
 (

m
)

 

 

ToVInitEKF EKF ToVInitEKF 3σ EKF 3σ
0 10 20 30 40 50

−300

−200

−100

0

100

200

300
Vertical Position Error

0 10 20 30 40 50
−25

−20

−15

−10

−5

0

5

10

15

20

25
Horizontal Velocity Error

V
el

oc
ity

 E
rr

or
 (

m
/s

)

Time (sec)
0 10 20 30 40 50

−35
−30
−25
−20
−15
−10
−5

0
5

10
15
20
25
30
35

Vertical Velocity Error

Time (sec)

Figure 4.7: Arcing Mass Position and Velocity Measurement: Error and 3σ Bounds
for EKF initialized with P0 =diag[1 × 105] and by output of TOV Bayes’ Filter at
First Measurement (σθ = 0.001rad)

Figure 4.7 shows that a TOV Bayes’ filter can be useful in automating the tuning

of initial estimate, especially the covariance of conventional nonlinear filters which

are typically derived heuristically or by trial and error. Additional analysis showed

that if the initial user-tuned covariance for the EKF were chosen inside the initial

covariance bounds of the Bayes’ filter, the EKF filter would converge to the same

bounds as the Bayes’ filter, once the simulation time increased past 10 seconds.
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4.1.3 Reduced Sensing Results

When multiple observation times must be utilized to fully observe the system,

the TOV Bayes’ filter operation is compared against an EKF and a generic PF. The

PF tuning consisted of the number of particles, the estimated variance of the velocity

states, and the selection of the importance density. The number of particles was set

to 10,000, the importance density was selected to be Gaussian, and the estimated

velocity variances were set to 5 meters/sec and 0.0001 rad/sec respectively. The

tuned velocity variances were found by trial and error with an acceptance criteria of

keeping the state error within the 3σ bounds. The tuning parameters for the EKF

covariance and position state estimates remained the same as those in the full sensing

case, but the object was assumed to possess zero horizontal and vertical velocity. For

the TOV Bayes’ filter, the number of grid points remained the same, the prior for all

position filtering was assumed uniform, and the prior for velocity smoothing was set

to use only the most recent measurement previous to the time the velocity is being

estimated. For example, measurements K and K − 1 were utilized to estimate the

velocity states at time K − 1 and the measurement at time K − 2 was utilized to

construct the prior PDF.

Figure 4.8 displays the filters’ state error results for the reduced sensing case.

The error and uncertainty plots are separated for easier performance discrimination,

but all errors were within their respective 3σ bounds. Figure 4.8 shows that the state

errors produced by the Bayes’ filter and the EKF were larger than the full sensing

case, approximately double those shown in Figure 4.4. As with previous results, the

TOV Bayes’ filter results are not as smooth as the other conventional filters. By not

considering all previous data, a larger state domain is produced which satisfies the

generated prior PDF.
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Figure 4.8: Arcing Mass Position Only Measurement: Error for EKF, Generic PF,
and TOV Bayes Filter with Prior using 1 Previous Measurement (σθ = 0.001rad)

The position covariance bounds shown in Figure 4.9 for the TOV Bayes’ filter are

equivalent to the uniform prior full sensing Bayes’ filter bounds shown in Figure 4.5.

The velocity covariance bounds for the TOV Bayes’ filter are much larger for the

reduced sensing scenario than the full sensing scenario, approximately five times by

comparison when using one previous measurement. When comparing the reduced

sensing smoothed covariance bounds with the full sensing covariance bounds, the

smoothed covariance bounds lie between the prior considering one previous measure-

ments and three previous measurements. This behavior should be expected since a

total of three measurements are used to make a decision about the smoothed position

states.
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Figure 4.9: Arcing Mass Position Only Measurement: 3σ Bounds for EKF, Generic
PF, and TOV Bayes Filter with Prior using 1 Previous Measurement (σθ = 0.001rad)

4.2 Linear Harmonic Oscillator

4.2.1 Geometry and Equations of Motion

State and parameter estimation are now considered for a one-dimensional lin-

ear oscillator shown by Figure 4.10. The system parameters, m, c, k, h, are mass,

damping ratio, spring constant, and height of observer, respectively, and are initially

assumed known and constant. The desired state vector, x, is composed of horizon-

tal position and velocity, (x, ẋ), with measurements, ỹ, of the angle formed by the

horizontal position and vertical height,
(
θ, θ̇

)
. Both measurements are assumed to

be corrupted by a zero mean Gaussian processes with known variances.
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Figure 4.10: Geometry of Harmonic Oscillator Problem

For simplicity, the oscillator is assumed to be put into motion by initial condition

perturbation, while being unforced for all time, u = 0 ∀t. The equations of motion

are exactly known at the acceleration level, so the process noise is unnecessary to

make up for modeling error, w (t) = 0. The angular position and rate measurements

are assumed to be statistically independent of each other and the measurement pro-

cesses are assumed stationary, independent of the particular observation time. Using

these assumptions, Equation (4.2) shows the state-space model for the system.



ẋ

ẍ


 =




0 1

− k
m
− c

m






x

ẋ






ỹ1

ỹ2


 =




tan−1
(
x

h

)

ẋ

h

(
1 +

(
x

h

)2
)−1




+ v , v ∼ N (0, R) , E {ỹ1ỹ2} = 0

(4.2)
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The solution of the second-order linear differential equation represented by the

state-space model is given by by Equation (4.3). Two different fitted exponential

solutions are presented depending upon the system type, either critically damped,

c2 = 4mk, or under/over-damped, c2 6= 4mk. The roots of the characteristic equation

for the second-order linear differential equation are found via use of the characteristic

equation.

c2 6= 4mk c2 = 4mk

x = A exp(r1τ) +B exp(r2τ) x = (A+Bτ) exp(rτ)

r1,2 =
−c±

√
c2 − 4mk

2m
r =
−c
2m

τ = t− t0

(4.3)

Given initial conditions of the system, x (t0) = [x (t0) , ẋ (t0)]T , the constant coef-

ficients, (A,B), in Equation (4.3) can be directly solved for, the results are given by

Equation (4.4). The solutions of these constants in terms of the initial conditions and

characteristic roots allows for the state transition matrix [16] to propagate the initial

conditions to any point in time, hence TOV can be used for uncertainty propagation.

c2 6= 4mk


A

B


 =

1

r2 − r1




r2x (t0)− ẋ (t0)

−r1x (t0) + ẋ (t0)




c2 = 4mk


A

B


 =




x (t0)

−r1x (t0) + ẋ (t0)




(4.4)

Utilizing the concept of the state transition matrix, Equations (2.3) and (2.4),

the solutions for the critically and not critically damped cases are given by Equa-
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tion (4.5). For the under-damped case, c2 < 4mk, the first state transition matrix

in Equation (4.5) can be further simplified using trigonometric functions, shown by

Equation (4.6).

c2 6= 4mk

ΦU/O (t, t0) =
1

r2 − r1



r2 exp(r1τ)− r1 exp(r2τ) − exp(r1τ) + exp(r2τ)

r1r2 (exp(r1τ)− exp(r2τ)) −r1 exp(r1τ) + r2 exp(r2τ)




c2 = 4mk

ΦC (t, t0) =




(1− rτ) exp(rτ) τ exp(rτ)

−r2τ exp(rτ) (1 + rτ) exp(rτ)




τ = t− t0
(4.5)

ΦU (t, t0) = exp(−ζωnτ)




cos(ωdτ) +
ζωn
ωd

sin(ωdτ)
1

ωd
sin(ωdτ)

−ωd sin(ωdτ) + ζωn cos(ωdτ) cos(ωdτ)




r1,2 = −ζωn ± jωd = − c

2m
± j
√

4mk − c2

2m

ωd = ωn
√

1− ζ2

τ = t− t0

(4.6)

4.2.2 State Estimation Procedure

4.2.2.1 State Estimation with Full Measurements and Parameter Certainty

Using the nonlinear relationship of system states and measurements in Equa-

tion (4.2) and assuming the multivariate measurement space PDF is Gaussian, the

state domain PDF can be computed by carrying out TOV, shown by Equation (4.7).

Equation (4.7) makes use of the statistical independence of the measurement vari-
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ables, allowing for the joint PDF of the measurement domain to be computed by

simply taking the product of the two independent distributions, shown by Equa-

tion (4.8).

p (x) = p (y = h(x))

∣∣∣∣∣
∂h(x)

∂x

∣∣∣∣∣

p (x, ẋ) =

(
1 + (x/h)2

)−2

2πh2σy1σy2
exp


−

1

2

(
tan−1

(
x

h

)
− ỹ1

)2

σ2
y1




× exp


−

1

2

((
1− (x/h)2

)−1 ẋ

h
− ỹ2

)2

σ2
y2




(4.7)

p (y) = p (y1) p (y2) = p (y1, y2)

p (y1) =
1√

2πσy1
exp

[
−1

2

(ỹ1 − µy1)2

σ2
y1

]

p (y2) =
1√

2πσy2
exp

[
−1

2

(ỹ2 − µy2)2

σ2
y2

]
(4.8)

Equation (4.7) serves as the spatial map between the measurement domain joint

PDF and the state domain joint PDF at a specific time. To compute the marginal

PDF of a specific state, Equation (4.7) is simply integrated over with respect to the

unneeded state variable. Mapping of the state domain joint PDF forward or back-

ward in time can be carried out by applying TOV and using the state transition

matrix as the mapping functional. Equation (4.9) shows the TOV solution for prop-

agating the state PDF using the state transition matrix solution, given by either

Equation (4.5) or (4.6), depending upon the system type. Computation of Equa-

tion (4.9) requires Equation (4.7) to be calculated first with the end result being the

joint PDF of the measurements, ỹ, at time ti or tj conditioned upon the states, x,

at time tj. The measurement is conditioned upon the states because the measure-
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ment is generated from the system being at a given state. The strict notation of

Equations (4.7) and (4.9) is given by Equation (4.10).

p
(
x(ti)

)
= p

(
x(tj) = Φ (tj, ti) x(ti)

) ∣∣∣∣∣
∂x(tj)

∂x(ti)

∣∣∣∣∣

= p

(
x(tj) = Φ (tj, ti) x(ti)

)
|Φ (tj, ti)|

(4.9)

p
(
ỹ (tj)

∣∣∣x(ti)
)

= p

(
ỹ (tj)

∣∣∣∣∣x(tj) = Φ (tj, ti) x(ti)

)
|Φ (tj, ti)| (4.10)

4.2.2.2 State Estimation with Full Measurements and Parameter Uncertainty

Assuming the mathematical model used to compute the state transition matrix

was not exact with respect to the value used for the damping force, c, TOV can

be applied to sequentially estimate the damping force parameter and its associated

PDF. When the appropriate conditions are satisfied to trigger parameter estimation,

e.g. propagated position and velocity do not agree with present measurements or

the propagation time interval is greater half the system cycle, TOV can be applied

to map the joint PDF of present position, previous position, and previous velocity to

the joint PDF of damping force parameter, previous position, and previous velocity.

The joint PDF of the present and previous positions and the previous velocity

is chosen as the analysis starting point due to the relationship between the present

position and previous states, shown in Equations (4.3) and (4.4). The damping

parameter can then be exchanged for the present position by using TOV and the

state transition matrix, shown by Equation (4.11).

p (c, x (tK−1) , ẋ (tK−1)) = [p (x (tK) , x (tK−1) , ẋ (tK−1)) |K| ]x(tK)=ψ(c,x(tK−1),ẋ(tK−1))

(4.11)
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Equation (4.11) shows the application of TOV to compute the resulting joint

PDF of damping force, position, and velocity at the previous measurement time.

Equation (4.12) shows the Jacobian solution resulting from the exchange of present

position to previous measurement time damping coefficient. If one were to observe

sequential decaying oscillations of the system, the ψ function in Equation (4.11) could

be assumed to be that of the under-damped oscillator given in Equation (4.3). The

absolute value of the determinant of the Jacobian can then be computed according

to Equation (4.13).

K =




∂ψ

∂c

∂ψ

∂x (tK−1)

∂ψ

∂ẋ (tK−1)

0 1 0

0 0 1



→ |K| =

∣∣∣∣∣
∂ψ

∂c

∣∣∣∣∣ (4.12)

∣∣∣∣∣
∂ψ

∂c

∣∣∣∣∣ =

∣∣∣∣∣

(
∂A

∂c
+ Aτ

∂r1

∂c

)
exp [r1τ ] +

(
∂B

∂c
+Bτ

∂r2

∂c

)
exp [r2τ ]

∣∣∣∣∣

r1,2 =
−c±

√
c2 − 4mk

2m

∂r1,2

∂c
=
−1± c (c2 − 4mk)

−1/2

2m

τ = t2 − t1

(4.13)

For initialization of the damping force parameter domain, one can simply take

the range of undamped to critically damped,
[
0, 2
√
mk

]
. Utilizing the parameter

estimate given by marginalizing the joint PDF given in Equation (4.11), one can

proceed until significant disagreement is observed between the current measurement

and propagated solution. After parameter initialization, instead of using the ini-

tial parameter domain, one could apply the same tactic used in the perturb-then-

grid method and simply take the present parameter estimate and perturb by some

multiple of its uncertainty to generate the new domain of damping coefficient. In
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this manner, the TOV approach allows for one to pose different hypotheses for the

damping coefficient and reject hypotheses that do not allow agreement between the

measurements and the mathematical model.

4.2.2.3 State Estimation with Reduced Measurements and Parameter Certainty

If only the position measurement from Equation (4.2) was available, but the

velocity state was desired to be estimated, TOV can be carried out by using enough

measurements to render the system states observable. The result is TOV operating

as a smoother, future states used to estimate previous states, instead of a filter just

as with the previous case of full measurements with parameter uncertainty. For the

oscillator, either a present and future or a present and past position measurement

set is required to estimate the velocity at the present time.

Considering the state transition matrix formulation for mapping between initial

and final states, equation rearrangement can allow for mapping of initial and final

positions from initial position and velocity. This rearrangement is shown by Equa-

tion (4.14), Equation (4.15) demonstrates how the properties of the state transition

matrix can be exploited to compute the states at time tj based upon states at the ini-

tial condition time, t0, and states at a previous time, ti. For generality, it is assumed

that the initial position is not measured in the reduced measurement scenario.

Full Observation


x(tj)

ẋ(tj)


 =




Φ11 (tj, ti) Φ12 (tj, ti)

Φ21 (tj, ti) Φ22 (tj, ti)






x(ti)

ẋ(ti)


 = Φ (tj, ti) x (ti)

Position Only Observation


x(tj)

x(ti)


 =




Φ11 (tj, t0) Φ12 (tj, t0)

Φ11 (ti, t0) Φ12 (ti, t0)






x(t0)

ẋ(t0)


 = Ξ (tj, ti, t0) x (t0)

(4.14)
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


Φ11 (tj, t0)

Φ12 (tj, t0)


 =




Φ11 (tj, ti) Φ11 (ti, t0) + Φ12 (tj, ti) Φ21 (ti, t0)

Φ11 (tj, ti) Φ12 (ti, t0) + Φ12 (tj, ti) Φ22 (ti, t0)


 (4.15)

The key assumption in this analysis is that the PDFs generated for each position

state are statistically independent of each other in time. This assumption is appro-

priate since the noise used to generate the position measurements is a stationary

process. Due to the stationarity of the measurement function, the joint PDF of the

position states at times ti and tj is computed by taking the product of the two PDFs,

shown by Equation (4.16).

p

(
y(tj), y(ti)

∣∣∣∣∣x(tj), x(ti)

)
= p

(
y(tj)

∣∣∣x(tj)

)
p

(
y(ti)

∣∣∣∣∣x(ti)

)

=
(1 + (x(ti)/h))−1

2πh2σ2
y1

(
1 + (x(tj)/h)2

)−1

× exp

[
−1

2

(tan−1 (x(tj)/h)− ỹ1(tj))
2

σ2
y1

]

× exp

[
−1

2

(tan−1 (x(ti)/h)− ỹ1(ti))
2

σ2
y1

]

(4.16)

The spatial PDF given by Equation (4.16) can then be mapped to the position

and velocity states in the t0 domain by using the reduced state transition matrix

mapping given by Equation (4.14). Equation (4.17) displays the joint PDF at time ti

conditioned upon the initial position and velocity of the system via the TOV solution

using position measurements at times ti and tj and the state transition matrix.

Equation (4.18) displays the intermediate variables used to condense Equation (4.17).

If information about the initial position was available, Equation (4.17) would reduce

to a form similar to Equation (4.16), shown by Equation (4.19) which results when

t0 is set equal to ti. Equation (4.20) displays the intermediate variables used to
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condense Equation (4.19) so that it is easier to read and implement computationally.

p

(
y(tj), y(ti)

∣∣∣∣∣x(t0), ẋ(t0)

)
= p

(
y(tj), y(ti)

∣∣∣∣∣ [x(tj), x(ti)] = Ξ(tj, ti, t0)x(t0)

)

×
∣∣∣∣∣Ξ (tj, ti, t0)

∣∣∣∣∣

=

∣∣∣∣∣Ξ (tj, ti, t0)

∣∣∣∣∣
2πh2σ2
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(
1 +α2

)−1 (
1 + β2
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× exp

[
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2
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2
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]

× exp
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2
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2
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]

(4.17)

α =
Φ11 (tj, t0)x(t0) + Φ12 (tj, t0) ẋ(t0)

h

β =
Φ11 (ti, t0)x(t0) + Φ12 (ti, t0) ẋ(t0)

h

(4.18)
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∣∣∣∣∣Φ12 (tj, ti)
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(4.19)

α =
Φ11 (tj, ti)x(ti) + Φ12 (tj, ti) ẋ(ti)

h

Ξ (tj, ti) =




Φ11 (tj, ti) Φ12 (tj, ti)

1 0




(4.20)
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4.2.2.4 State Estimation with Reduced Measurements and Parameter Uncertainty

Parameter uncertainty in the reduced sensing case requires additional manipula-

tion and care in execution since the smoothed velocity estimate is derived not only

from position measurement data, but also from the assumed model which possesses

error. As in the full sensing case with parameter uncertainty, three measurement

PDFs are used to compute the joint PDF to be transformed into the desired do-

main, however three position measurements are used instead of two position and one

velocity.

Position and velocity state estimation with uncertainty in the damping force pa-

rameter for the under-damped linear oscillator becomes the problem of mapping the

joint PDF of three position measurements, p (x (ti) , x (ti−1) , x (ti−2)), to the desired

state domain, p (c, x (ti−1) , ẋ (ti−1)). The Jacobian resulting from mapping the three

position measurements to the time of interest is given by Equation (4.21). The

intermediate partials for Equation (4.21) are given by Equation (4.22). Note that

the bookend measurements, ti−2 and ti, must be nonsymmetric about the middle

measurement time, ti−1, so that the determinant of the Jacobian is nonzero.

Ki−1 =




A (ti, ti−1) Φ11 (ti, ti−1) Φ12 (ti, ti−1)

0 1 0

A (ti, ti−2) Φ11 (ti, ti−2) Φ12 (ti, ti−2)




(4.21)

A (tA, tB) =
∂Φ11 (tA, tB)

∂c
x (ti−1) +

∂Φ12 (tA, tB)

∂c
ẋ (ti−1) (4.22)

Assuming the form of the under-damped state transition matrix is given by Equa-

tion (4.5), the partial derivatives with respect to the damping force coefficient are

given by Equations (4.23) and (4.24). The partial derivatives of the roots used
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Equations (4.23) and (4.24) are given by Equation (4.13).

∂Φ11

∂c
=

−1

(r2 − r1)2

(
∂r2

∂c
− ∂r1

∂c

)
(r2 exp [r1τ ]− r1 exp [r2τ ])

+
1

r2 − r1

{
∂r2

∂c
(exp [r1τ ]− r1τ exp [r2τ ])

+
∂r1

∂c
(r2τ exp [r1τ ]− exp [r2τ ])

}
(4.23)

∂Φ12

∂c
=

−1

(r2 − r1)2

(
∂r2

∂c
− ∂r1

∂c

)
(− exp [r1τ ] + exp [r2τ ])

+
1

r2 − r1

(
−∂r1

∂c
τ exp [r1τ ] +

∂r2

∂c
exp [r2τ ]

) (4.24)

The initialization of the damping domain can be carried out in the same way as

done for the full measurement case. The domain for the velocity can be computed

by inverting the state transition matrix relationships between the i − 1 observation

time and the i and i − 2 observation times, shown in Equation (4.25). Note that

nonsymmetric measurement intervals about the i − 1 observation are required so

that the determinant used in computing the velocity is nonzero. As an example,

consider the sequential track case with data gaps, the last position measurement of

the previous track and the first two position measurements of the new track should

be used.




x(ti)

x(ti−2)


 =
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


⇒
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1

∆
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Φ12 (ti−2, ti−1) −Φ12 (ti, ti−1)
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





x(ti)

x(ti−2)




∆ = Φ11 (ti, ti−1) Φ12 (ti−2, ti−1)− Φ12 (ti, ti−1) Φ11 (ti−2, ti−1)

(4.25)
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4.2.3 State Estimation Results

The TOV Bayes’ filter, as outlined by the state and parameter estimation proce-

dures, is applied to the linear oscillator system given by Equation (4.2). The system

parameters, initial conditions, and Gaussian measurement noise characteristics are

listed in Table 4.1. The table also reports the value for the critically damped system

to give a reference for how lightly damped the utilized damping force coefficient of

0.5 Ns/m makes the system.

Table 4.1: True Model Parameters for Linear Harmonic Oscillator

Parameter Value
Mass (kg) 10

Spring Force Coefficient (N/m) 1.0
Damping Force Coefficient (Ns/m)

0.5
(Critically Damped=2

√
10 ≈ 6.3246)

Initial Position (m) 1.0
Initial Velocity (m/s) 0.1

Position Observation Noise (rad,rad2) ∼ N (0, 2.5× 10−1)
Velocity Observation Noise (rad/sec,rad2/sec2) ∼ N (0, 2.5× 10−3)

Figure 4.11 shows the system response for the lightly damped, LD, and critically

damped, CD, systems. For the lightly damped case, an additional constraint was

added for state estimation where observations were only available when the system

was experiencing a positive velocity. This scenario was used to illustrate how subse-

quent tracks can be used to estimate the damping force coefficient when the modeled

parameter value was not equivalent to the simulated parameter. Figure 4.12 displays

the tracking results for uncorrupted observations and noise corrupted observations

that are only available when the horizontal velocity is positive.

Computation of a representative “true” mean and covariance from the corrupted

measurements is computed using Monte Carlo analysis. To compute the mean and
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Figure 4.11: Linear Harmonic Oscillator System Response
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Figure 4.12: Observation Results for Noise Free and Noise Corrupted with Positive
Velocity Only Observation
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covariance of the state at each observation time, a large number of corrupted obser-

vation pairs about the true trajectory are simulated, mapped to the state domain,

and their numerical mean, x̄, and covariance, P , are computed at each measurement

time. Equation (4.1) displays the computation of the numerical mean and state

covariance at each measurement time, designated by K. The number of trials for

computation of the numerical mean and covariance was set to 10,000.

4.2.3.1 Full Observation State Estimation Results

Parameter Certainty: Figures 4.13 and 4.14 present the results of applying TOV for

computing the likelihood solution of the full observation with parameter certainty

case. The figures show the same results of the TOV solution tracking the Monte

Carlo solution that were seen for the arcing mass system are seen for a damped

linear oscillator. This shows that the TOV solution is appropriately constructing the

state domain PDF which the Monte Carlo solution is sampling.

Figure 4.13 plots the state estimation error and the three standard deviation

bounds solution from the TOV likelihood with the Monte Carlo three standard de-

viation bounds overlaid. Figure 4.14 plots the tracking error ratio of the covariance

elements computed from the TOV likelihood compared with the numerical covari-

ance computed from Monte Carlo analysis of the state errors, for the percent error

one simply has to multiply the error ratio by 100. Figure 4.14 shows the position

and velocity uncertainties were able to be tracked within three percent of the Monte

Carlo uncertainty estimate. The oscillatory nature and decay of the system signifi-

cantly impacts computation of the correlation coefficient error ratio but, the overlay

of the TOV solution on top of the Monte Carlo correlation solution shows they are

in good agreement.
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Figure 4.13: Linear Oscillator State Estimation Results: Full Observations with
Parameter Certainty
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/
ρXẊ,MC
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Figure 4.14: Linear Oscillator Covariance Tracking Results: Full Observations with
Parameter Certainty
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Parameter Uncertainty: For assessment of the performance of the state and param-

eter estimation procedure outlined for full state sensing, the damping force coefficient

of the system model is initially assumed to be zero even though the true system is

lightly damped, c = 0.5. The system was also observed only when the true system

velocity was positive, thereby producing consecutive “tracks” of system motion. Fig-

ure 4.15 compares the true state time history versus the time history simulated by

the incorrect assumed system model, c = 0, parameter during the trackable time

periods.
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Figure 4.15: Linear Oscillator Results: Assumed vs. Actual Model

Table 4.2 presents the estimation results for the damping coefficient using dif-

ferent triggering conditions for parameter estimation. The first set of results were

computed by estimating the damping coefficient only when a new track was started,

while the second set of results utilized sequential tracks as well as whether or not

the propagated states agreed with the results of the next measurement within each
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individual track. The latter triggering condition allows for parameter estimation to

be executed during the present track while the former will not update its parame-

ter estimate until a new track has been started. The state disagreement triggering

condition was met when the propagated solution did not lie within the state domain

produced by the perturbed position measurements mapped to the time of interest.

Table 4.2: Damping Coefficient Estimation Results: Full Observations

Estimate Parameter when New Track Starts
Time Damping Coefficient Uncertainty

Update Trigger
(sec) (Ns/m) (Ns/m)

0 0 N/A Initial Guess
31.600 0.5068 0.0100 New Track
51.350 0.4970 0.0072 New Track
71.495 0.4890 0.0064 New Track
91.245 0.4818 0.0064 New Track
Estimate Parameter when New Track Starts or Propagation

does not agree with Measurements
Time Damping Coefficient Uncertainty

Update Trigger
(sec) (Ns/m) (Ns/m)

0 0 N/A Initial Guess
16.195 0.5641 0.0217 Propagated ẋ Disagree
31.600 0.5441 0.0140 New Track
51.350 0.5247 0.0110 New Track
71.495 0.5098 0.0091 New Track
91.245 0.4982 0.0079 New Track

Figures 4.16 and 4.17 display the estimated state error with three standard devi-

ation uncertainty bounds and the covariance element errors for the entire simulation

time using the state and parameter estimation procedure used for full state sensing

using the second set of parameter estimation trigger conditions. Comparing the pa-

rameter uncertainty and parameter certainty resultsshows that the TOV likelihood

estimation procedure with parameter uncertainty produces state error and covariance

results that are on par with the results obtained from parameter certainty.
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Figure 4.16: Linear Oscillator State Estimation Results: Full Observations with
Parameter Uncertainty
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Figure 4.17: Linear Oscillator Covariance Tracking Results: Full Observations with
Parameter Uncertainty
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4.2.3.2 Reduced Observation State Estimation Results

Parameter Certainty: Figures 4.18 and 4.19 present the results of applying the TOV

procedure for position only observations with parameter certainty. Figure 4.18 plots

the state estimation error and the three standard deviation bounds computed from

the TOV likelihood and overlays the Monte Carlo sampling solution. The figure

demonstrates that the TOV likelihood solution for the reduced sensing case agrees

well with the Monte Carlo solution. Figure 4.18 shows the position state and uncer-

tainty errors are on par with the full observation case, but the velocity state and un-

certainty errors are approximately an order of magnitude larger since two corrupted

position measurements have to be used to compute a smoothed state estimate.
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Figure 4.18: Linear Oscillator State Estimation Results: Position Only Observations
with Parameter Certainty

Figure 4.19 plots the tracking error of the covariance elements computed from

the likelihood state probability density compared with the numerical covariance com-
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puted from Monte Carlo analysis of the state errors. Even with the increase in state

estimation error, Figure 4.19 shows the covariance results of the TOV likelihood solu-

tion are comparable to the Monte Carlo solution of the reduced observation scenario.
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Figure 4.19: Linear Oscillator Covariance Tracking Results: Position Only Observa-
tions with Parameter Certainty

Parameter Uncertainty: For the reduced observation case possessing damping pa-

rameter uncertainty and observation drop-out, Table 4.3 presents the estimation

results for the damping coefficient using the new track triggering condition for pa-

rameter estimation. Only the start of a new track was used to trigger parameter

estimation since it serves as worse case scenario during the tracks. Compared with

the full sensing results shown in Table 4.2, the reduced sensing TOV smoother per-

forms rather well and is relatively accurate, the higher parameter uncertainty is to

be expected since velocity is no longer measured.
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Table 4.3: Damping Coefficient Estimation Results: Reduced Observations

Estimate Parameter when New Track Starts
Time Damping Coefficient Uncertainty

Update Trigger
(sec) (Ns/m) (Ns/m)

0 0 N/A Initial Guess
31.600 0.4942 0.0442 New Track
51.350 0.4690 0.0325 New Track
71.495 0.4652 0.0469 New Track
91.245 0.4840 0.0630 New Track

Figures 4.20 and 4.21 display the estimated state error and uncertainty bounds

and the covariance element errors for the TOV likelihood solution compared with

the Monte Carlo solution. Comparison of the figures with the reduced sensing pa-

rameter certainty case shows that the algorithm is able to accommodate parameter

uncertainty without a large penalty inflicted upon the state estimation or uncertainty

characterization results.
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Figure 4.20: Linear Oscillator State Estimation Results : Position Only Observations
with Parameter Uncertainty
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(ρXẊ,ToV − ρXẊ,MC)
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Figure 4.21: Linear Oscillator Covariance Tracking Results : Position Only Obser-
vations with Parameter Uncertainty

4.3 Space Object Surveillance

4.3.1 Introduction

The arcing mass and linear oscillator examples served as toy problems which iso-

lated certain key features of the problems encountered during surveillance of resident

space objects (RSOs). The arcing mass example demonstrated the effects of the lin-

ear smoothing process, consideration of previous data, as well as the behavior of the

Cartesian state error and uncertainty bounds due to the decreasing elevation angle

and the magnitude of range and angle uncertainties. The linear oscillator example

demonstrated how measurements could be linked across data drop-outs to allow for

effective state and parameter estimation for a periodic system. This section brings

together the lessons learned from the previous examples and applies them for state

and covariance initialization via a nonlinear smoothing algorithm, object tracking
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using the TOV Bayes’ filter, and trajectory prediction of RSOs residing in or transit-

ing through low Earth orbit(LEO) in three different state domains commonly used

for space object surveillance.

4.3.2 Initial Orbit Determination

Initial Orbit Determination(IOD) is often required since the states of most or-

biting objects are not instantaneously fully observable, so multiple observations are

required to render the object’s states fully observable. There are many different

routines, see Escobal [71], depending upon the data type and amount of information

available, such as two position vectors and time, three position vectors, angles-only

measurements, consecutive measurement time histories, etc.

The Herrick-Gibbs method for IOD is well documented and frequently used in

space surveillance because of its applicability to closely spaced observations of an

RSO [71,72]. The routine uses three Earth Centered Inertial(ECI) position measure-

ments and their observation times to compute the velocity at the second observation

time. The algorithm expresses the first and third position measurements as fourth-

order Taylor Series expansions about the second measurement while assuming the

RSO is influenced by Two-Body dynamics only. Equation (4.26) shows the equation

governing Two-Body dynamics and the fourth-order Taylor Series expansion about

the second ECI position vector, µ is the gravitational constant of Earth. The fourth-

order expansion about the second position vector thereby introduces an uncertainty

on the order of the fifth time derivative of the second position vector.

r̈ = − µ

||r||3 r

ri = r2 + τi2ṙ2 +
τ 2
i2

2
r̈2 +

τ 3
i2

6

...
r 2 +

τ 4
i2

24

....
r 2 +O (rv

2)

τij = ti − tj

(4.26)
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The Herrick-Gibbs equation for computing the velocity at the second observation

time is given by Equation (4.27) without derivation. See Vallado [5] or Battin [72]

for the complete derivation.

ṙ2 = HG (r1, r2, r3) = t23

(
1

t21t31

+
µ

12r3
1

)
r1 + t21

(
1

t31t32

+
µ

12r3
3

)
r3

+ (t32 − t21)

(
1

t21t32

+
µ

12r3
2

)
r2

ri = ||ri||

(4.27)

The form of the Herrick-Gibbs IOD routine requires the inputs to be represented

in the ECI frame whose primary axis points towards the Vernal Equinox. This

research assumes that the tracking station observes a space object using range, az-

imuth, and elevation, which are relative to the local topocentric frame and the Earth

Centered Earth Fixed(ECEF) frame. The ECEF frame is assumed to have its ter-

tiary axis aligned with the tertiary axis of the ECI frame, but the primary axis

remains fixed and extends outward through the Prime Meridian. For this analysis,

the ECEF frame is assumed to differ only from the ECI frame by a rotation about

the ECI tertiary axis through the Greenwich Mean Sidereal Time angle, θGMST . This

assumption is often exercised since the precession of the Vernal Equinox causes more

of discrepancy between the frames than the precession or nutation of the North Pole

of the ECEF frame [5]. For a more in-depth discussion with respect to coordinate

frames, transformations for the Two-Body problem, and for justification of the single

rotation between ECI and ECEF see Appendix A.

The equations relating the local measurement frame triad(SEZ), composed of

axes pointing locally Southernly, Easternly, and along the local vertical, to the ECI

frame are given by Equation (4.28). The angle pairs of (el, β) and (φ, λ)TS repre-

sent the local elevation and azimuth angles measured by the tracking station at a
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given latitude and longitude respectively. The Rot[{1,2, or 3}, angle] nomenclature

stands for the direction cosine matrix representing an angular displacement about

the primary, secondary or tertiary axes. The local measurement vector and the track-

ing station position vector in the ECEF coordinate frame are resolved in their local

frames according to Equation (4.29), using the justification given in Appendix A.1.2.

rECI = Rot [3, θGMST ]
(
RTS−ECEF + Rot [3, λTS]T Rot [2, π/2− φTS]T ρSEZ

)

(4.28)

ρSEZ = ρ




− cos(el) cos(β)

cos(el) sin(β)

sin(el)




RTS−ECEF = (REarth + AltTS)




cos(φTS) cos(λTS)

cos(φTS) sin(λTS)

sin(φTS)




(4.29)

Another local measurement frame can be constructed by assuming that spherical

measurements are made with respect to a local coordinate system whose axes are

parallel with that of the ECI coordinate system, K̂t ‖ K̂ECI and X̂t ‖ X̂ECI . The

topocentric spherical measurements are given by range, topocentric right ascension,

and topocentric declination, (ρ, αT , δT ), and are related to the position and veloc-

ity vectors in ECI frame by Equation (4.30) after the simplifying assumptions of

alignment.

rECI = ρECI + RT.S.−ECI

= ρ




cos(αT ) cos(δT )

sin(αT ) cos(δT )

sin(δT )




+ Rot [3,−θGMST ] RTS−ECEF

(4.30)
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Figure 4.22 illustrates the SEZ frame along with the relationship between the

ECEF and ECI frames while Figure 4.23 displays the geometry of using a measure-

ment triad parallel to the ECI frame. Figure 4.22 shows that the typically measure-

ment distance vector is ρECEF but, according to Newton’s Second Law, rECI must

be used in Equation (4.26). Thus, Equation (4.28) is used to transform the measured

topographical measured distance into the inertial frame. Likewise, Figure 4.23 shows

that the distance vector ρTOPO must be transformed into the inertial frame, which

is done by using Equation (4.30).

rECEF

ρECEF

K̂ : Aligned with North Pole

Ĵ : Pointing East

Υ : To Vernal EquinoxÎ : Through Prime Meridian

2π − θGMST

RT−S

ẐT

ŜT

ÊT

Figure 4.22: Relation of SEZ Frame to ECI Frame
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rECI

ρTOPO

K̂ : Aligned with North Pole

Ĵ : Complete K̂ ×Υ Triad

Υ : To Vernal Equinox

‖ Υ

‖ K̂

αTOPO

δTOPO

α

δ
‖ Ĵ

Figure 4.23: Relation of Topocentric Right Ascension and Declination Frame to ECI
Frame

4.3.3 Transformation of Variables Analysis of Herrick-Gibbs Initial

Orbit Determination

For mapping spherical measurement uncertainties to the Cartesian velocity do-

main at the second observation, either the first or third position measurement needs

to be expressed as a function of the position and velocity vectors at the second ob-

servation time. For nomenclature, the first and third measurements are referred to

as the bookend measurements of the second measurement. In keeping with the spirit

of how the Herrick-Gibbs IOD algorithm is derived, the F and G series solution us-

ing the first-order fundamental invariants [72] is utilized and truncated after fourth

order. The mapping between the bookend position measurements and the second

position and velocity vectors are given by Equation (4.31). The fundamental invari-

ants used by the F and G series solution are shown in Equation (4.32), and are solely
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functions of the position and velocity vectors at the second observation time. They

are deemed fundamental because they form a closed set under time differentiation

and are invariant because they are scalars, thus independent of the coordinate system

choice [72].

r1 = F12r2 +G12ṙ2

r3 = F32r2 +G32ṙ2

Fi2 = 1− τ 2
i2

2
ε+

τ 3
i2

2
ελ− τ 4

i2

24

(
15ελ2 − 3εψ + 2ε2

)
+ . . .

Gi2 = τi2 −
τ 3
i2

6
ε+

τ 4
i2

4
ελ+ . . .

(4.31)




ε

λ

ψ




=




µ
(
rT2 r2

)−3/2

(
rT2 r2

)−1 (
rT2 ṙ2

)

(
rT2 r2

)−1 (
ṙT2 ṙ2

)




(4.32)

The time derivatives of the F and G series are useful when the need arises to prop-

agate the position and velocity vectors in time and are given by Equation (4.33) to

first-order in the time rates of change of the fundamental invariants. For higher order

expansions of the fundamental invariants time rates of change see Battin [72]. The

time rates of change of the fundamental invariants are given by Equation (4.34) [72].

d

dτ
(Fi2) = −τi2ε−

τ 2
i2

2
ε̇+

3

2
τ 2
i2ελ+

τ 3
i2

2

(
ε̇λ+ ελ̇

)
+ . . .

d

dτ
(Gi2) = 1− τ 2

i2

2
ε− τ 3

i2

6
ε̇+ . . .

(4.33)

d

dτ







ε

λ

ψ







=




−3ελ

ψ − ε− 2λ2

−2λ (ε+ ψ)




(4.34)
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4.3.3.1 Cartesian Position and Velocity Likelihood Probability Density Function

Computation

The Herrick-Gibbs IOD algorithm is an over-constrained smoother since three

position vectors are used to form a single velocity vector, whereas a minimal smoother

would require only two position vectors. From Equation (4.27), the over-constrained

nonlinear system is of the form given by Equation (4.35).




ṙ2

r2


 = h−1







r1

r2

r3







=



t23

(
1

t21t31

+
µ

12r3
1

)
(t32 − t21)

(
1

t21t32

+
µ

12r3
2

)
t21

(
1

t31t32

+
µ

12r3
3

)

0n×n 1n×n 0n×n




×




r1

r2

r3




ri = ||ri||

(4.35)

Application of TOV using Equation (4.35) cannot be carried out directly because

of solving for the roots of the equation in terms of the desired state variables, (ṙ2, r2),

only. Additionally, the transformation of Cartesian position only to position and

velocity is not square due to over-constraint, so the determinant of the Jacobian

cannot be evaluated. For an approximate solution of the roots, Equations (4.31) and

(4.32) provide solutions of r1 and r3 in terms of (ṙ2, r2) for small propagation times,

error on O (rv
2), and are given in state-space form by Equation (4.36). However, the
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transformation between desired state variables and measurement variables does not

lead to a square Jacobian due to over-constraint on the velocity states.




r1

r2

r3




= h







ṙ2

r2







=




τ12 −
τ 3

12

6
ε+

τ 4
12

4
ελ 1− τ 2

12

2
ε+

τ 3
12

2
ελ− τ 4

12

24

(
15ελ2 − 3εψ + 2ε2

)

0n×n 1n×n

τ32 −
τ 3

32

6
ε+

τ 4
32

4
ελ 1− τ 2

32

2
ε+

τ 3
32

2
ελ− τ 4

32

24

(
15ελ2 − 3εψ + 2ε2

)




×




ṙ2

r2




(4.36)

Since the over-constraint of the velocity variable has led to a nonsquare Jacobian

of the transformation, application of the Dirac Generalized Function [27] can be used

to extract the necessary joint probability density function of (ṙ2, r2). Inspection of

the Herrick-Gibbs IOD routine shows that the roots of r1 or r3 cannot be written as

standalone functions of ṙ2, r2, and the other bookend position, either r1 or r3, due

to the existence of the magnitude of the position cubed.

In Equation (4.35), the contribution of the µ
(
12 |ri|3

)−1
term to the overall time

weighting of the position measurement in the velocity smoothing for an object at

an altitude of 160 kilometers is on the order of 1.2×10−7. When considering es-

timation error, if the position vector magnitude error was 10 kilometers when the

true magnitude was 160 kilometers, the difference between the true and estimated

µ (12r3
i )
−1

term would be on the order of 5.4×10−10. Keeping these differences in

mind, replacing the magnitude of either bookend position vector with its F and G
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series expansion solution in terms of the second position and velocity will not sig-

nificantly affect the outcome of the solution. Equation (4.37) provides the bookend

roots of the Herrick-Gibbs IOD solution using the substitution of the F and G series

solution. The partial derivatives of the Herrick-Gibbs IOD solution with respect to

the bookend measurements are given by Equation (4.38).

r1 = g12 (ṙ2, r2, r3) =

ṙ2 − (t32 − t21)

(
1

t21t32

+
µ

12r3
2

)
r2 − t21

(
1

t31t32

+
µ

12r3
3

)
r3

t23

(
1

t21t31

+
µ

12
|F12r2 +G12ṙ2|−3

)

r3 = g32 (ṙ2, r2, r1) =

ṙ2 − t23

(
1

t21t31

+
µ

12r3
1

)
r1 − (t32 − t21)

(
1

t21t32

+
µ

12r3
2

)
r2

t21

(
1

t31t32

+
µ

12
|F32r2 +G32ṙ2|−3

)

(4.37)

∂ṙ2

∂r1

=




∂ẋ2

∂x1

∂ẋ2

∂y1

∂ẋ2

∂z1

∂ẏ2

∂x1

∂ẏ2

∂y1

∂ẏ2

∂z1

∂ż2

∂x1

∂ż2

∂y1

∂ż2

∂z1




= t23

(
1

t21t31

+
µ

12r3
1

)
13×3 −

t23µ

4
|r1|−5 r1r

T
1

∂ṙ2

∂r3

= t21

(
1

t31t32

+
µ

12r3
3

)
13×3 −

t21µ

4
|r3|−5 r3r

T
3

(4.38)

Application of the Dirac Generalized function to compute the marginal joint PDF

of (ṙ2, r2) from the given joint PDF of (r1, r2, r3) can then be carried out. However,

due to the over-constraint of the Herrick-Gibbs smoothing process, the marginal

joint PDF can be computed by replacing either the first bookend measurement or

the last measurement. Computation of both marginal likelihood PDFs is shown

in Equation (4.39). Both joint densities shown in Equation (4.39) are equivalent,

but derived two different ways due to the over-constraint on the velocity state vari-
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able. Therefore, one could use either solution to compute the joint PDF of the state

variables of interest. However, numerical differences could arise since the integral

operation is typically reduced to a large sum and the bookend measurements can be

different time intervals away from the second observation. If the bookend measure-

ments are symmetrical in time, it would seem that one should use the latter solution

of the PDF, i.e. the replacement of the third position in terms of the other three

variables, due to the natural progression of measurements.

Replace r1

p (ṙ2, r2) =
∫

Dr2

∫

Dr3

p (r1, r2, r3) δ (HG (r1, r2, r3)− ṙ2) δ (r2 − r2) dr1dr2dr3

=
∫

Dr1

∫

Dr3

p (r1, r2, r3) δ (HG (r1, r2, r3)− ṙ2) dr1dr3

=
∫

Dr3

p (r1 = g12 (ṙ2, r2, r3) , r2, r3)

∣∣∣∣∣
∂ṙ2

∂r1

∣∣∣∣∣

−1

r1=g12(ṙ2,r2,r3)

dr3

Replace r3

p (ṙ2, r2) =
∫

Dr1

p (r1, r2, r3 = g32 (ṙ2, r2, r1))

∣∣∣∣∣
∂ṙ2

∂r3

∣∣∣∣∣

−1

r3=g32(ṙ2,r2,r1)

dr1

(4.39)

4.3.3.2 Joint Measurement Probability Density Function Computation

In order for Equation (4.39) to be calculated, the joint PDF of the Cartesian posi-

tions at the first, second, and third observation times must be computed. Figure 4.24

illustrates this task is not trivial since propagation of the previous measurement PDF

requires knowledge of the initial state domain for solution of the differential or dif-

ference equations.
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(ρ1, θ1)

(ρ2, θ2)

X

Y

Propagate 2nd PDF

Propagate 1st PDF

1st Measurement Uncertainty Region

2nd Measurement Uncertainty Region

3rd Measurement Uncertainty Region

(ρ3, θ3)

Figure 4.24: Propagated versus Measurement Update State Probability Density
Functions

Assuming all initial state domains are accurately known, Figure 4.24 shows that

the propagated solution is not only a function of the initial states but also of time via

comparison of the propagated PDF solutions at the third measurement time from

the first measurement and second measurements. If all initial position state PDFs

are known, the computation of the joint PDF is given by carrying out the chain

rule of probability [2], Equation (4.40). Computation of the conditional PDFs in

Equation (4.40) are dependent upon the dynamic model used in characterizing the
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RSO’s motion.

Chain Rule: p (a1, . . . , an) = p (an|an−1, . . . , a1) . . . p (a2|a1) p (a1)

p (r1, r2, r3) = p (r3|r1, r2) p (r1, r2)

= p (r3|r1, r2) p (r2|r1) p (r1)

(4.40)

Equation (4.40) can be somewhat simplified if the differential or difference equa-

tion(s) dictating the evolution of the state is Markov in nature, i.e. the differential

equation is ordinary, whereby the future states are predicated only upon the present

states. The solution of the PDF by the chain rule can be a problem for overly con-

strained solutions using measurements before and after the desired state observation

time. For the Herrick-Gibbs IOD algorithm, it was shown through examination of

time-weighting contributions that the last bookend measurement could be written

as a function of only previous time state variables without significant impact to the

solution. As such, the second marginal PDF solution of Equation (4.39) should be

utilized.

Before the Cartesian position and velocity marginal PDF at the time of interest

can be constructed, the measurement domain PDF must be developed then mapped

to the Cartesian position domain at each respective observation time. Using the spa-

tial transformation between coordinate frames, TOV can be carried out to map the

position uncertainty of either the SEZ frame or the topocentric frame parallel to ECI

into the Cartesian ECI frame. Assuming that the consecutive position measurements

are statistically independent of each other, Equation (3.53) can be computed for the

measurement domain joint likelihood, shown by Equation (4.41). The measurement

domain likelihood can then be mapped into the ECI frame using Equation (3.34),

the Jacobians for the different measurement domains are given by Equation (4.42),
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resulting in Equation (4.43).

p (z̃1, z̃2, z̃3) =
3∏

i=1

p (ρi) p (eli) p (βi)

=
3∏

i=1

p (ρi) p (αT,i) p (δT,i)

(4.41)

|Ji| =
∣∣∣∣∣

∂ri
{ρ, el, β}i

∣∣∣∣∣ = ρ2 cos(el)

=

∣∣∣∣∣
∂ri

{ρ, αT , δT}i

∣∣∣∣∣ = ρ2 cos(δT )

(4.42)

p (r1, r2, r3) =

[
p (z̃1, z̃2, z̃3)

3∏

i=1

|Ji|−1

]

z=f(ri)

(4.43)

Singularities are present in the Jacobians, ρ = 0 or el = δT = 0, but these singu-

larities are not due to the TOV procedure, but rather to the geometric limitations

of the measurement frames. The range singularity is trivial since one would not be

measuring object range if the object were already at the origin. The angle singularity

of an overhead observation can only be avoided when velocity measurements are also

available so that the cosine of the angle can be estimated [49].

4.3.3.3 Cartesian Position and Velocity Prior Probability Density Function

Computation

With computation of the marginal likelihood PDF, if positional measurement

data exists prior to the first measurement used in the Herrick-Gibbs algorithm, the

F and G series solution given by Equations (4.31) and (4.33) can be applied to map

the position-velocity domain to any other time of interest. The conventional F and

G solution, see Appendix A.2.5, is not used since it requires transforming into the

Keplerian element domain while the series solution remains in the Cartesian domain.

The posterior can be computed by using Equation (4.39) for the likelihood PDF and
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Equation (4.44) for the prior PDF, where i corresponds to the measurement time to

propagate to and j corresponds to the generated Cartesian domain to evaluate.

p
(
ṙ−j , r

−
j

)
= p

(
ri = Fijrj +Gij ṙj, ṙi = Ḟijrj + Ġij ṙj

) ∣∣∣FijĠij −GijḞij
∣∣∣ (4.44)

As noted in Section 3.5.1, application of TOV for the time mapping may not be

required if the mapping between time instances yields a constant across the domain,

which results from remaining in the same set of basis functions during propagation.

For the F and G solution, the determinate should theoretically remain unity, but

numerically may diverge from unity, which can indicate that the propagation time

is too long for the solution to remain valid.

4.3.4 Transformation of Variables Analysis of Osculating Orbital

Element Space

Analysis of the likelihood and prior PDFs in osculating, instantaneous, orbital

element space, follows the same approach as the Cartesian space approach. This

research uses the Keplerian elements, (a, e,Ω, i, ω,M or f or E), with the Cartesian

ECI to Keplerian element state mapping equations given in Appendix A.3. The PDF

of the measurement domain can be mapped into the Keplerian domain as shown

by Equation (4.45), following Equation (3.34). The vector s represents any state

description possessing the same number of basis functions as the Cartesian domain

and is related to the Cartesian domain via the transformation function ψ.

p (s) = p (ri = ψPos (s) , ṙi = ψV el (s))

∣∣∣∣∣
∂ ψ (s)

∂ s

∣∣∣∣∣ (4.45)

The Keplerian orientation parameters are shown in Figure 4.25 and are angles

whose 3-1-3 rotation sequence rotates the ECI frame into the local orbit frame whose
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origin is at the primary focus of the conic section defining the orbit. The angles in

order of rotation from ECI to orbit frame are Right Ascension of Ascending Node,

Inclination, and Argument of Perigee, (Ω, i, ω). The Keplerian time parameter is

also an angle and is measured from the line connecting the focus of the conic section

and point of closest approach, this line dictates the direction of the eccentricity

vector, ê, which is the primary axis of the orbital plane. The tertiary axis is aligned

with the direction of the RSO’s specific angular momentum vector, ĥ, the triad is

then completed with the cross product of the tertiary and primary axes. The time

parameter shown is true anomaly, f , which is the angle measured when considering

angular rotation about the conic section focus.

Ŷ

Ẑ

X̂,Υ

i

f

Ω

ω

n̂

i

ê

ĥ

Figure 4.25: Orientation Keplerian Orbital Elements with Respect to Cartesian
Earth Centered Inertial Frame
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With the orientation and time parameters, only the size and shape of the conic

section are left to define. The size parameter is the semi-major axis, a, and is half the

distance between the point of closest primary focal approach, periapsis, and point of

farthest primary focal approach, apoapsis, as such this parameter is undefined for a

parabola. The shape parameter is known as eccentricity, e, and indicates the type

of conic section: e = 0 for circle, 0 < e < 1 for ellipse, e = 1 for parabola, and e > 1

for hyperbola. Figure 4.26 displays the semi-major axis and eccentricity along with

two time parameters, true anomaly and eccentric anomaly, E.

f
E

ê

ĥ× ê

ae a (1− e)

F2 F1

Figure 4.26: Size, Shape, and Time Parameters for Keplerian Elements

As shown by Figure 4.26, in addition to true anomaly there exists what is known

as the eccentric anomaly, which is defined with respect to the RSO’s position pro-
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jected onto a circle with radius equal to the semi-major axis. With the magnitude

of the eccentricity vector and true anomaly known, eccentric anomaly is able to be

computed from true anomaly but, more importantly, the mean anomaly, M , is able

to be calculated. Mean anomaly is often used because it allows for linear propagation

of the RSO’s motion when undergoing Keplerian(unperturbed Two-Body dynamics)

motion. Selection of the time parameter also has an impact on the ease with which

one can convert between osculating and Cartesian domains.

As an example of the Jacobian computation for Equation (4.45), consider motion

in the ECI frame equatorial plane with the orbit frame axes parallel to those of the

ECI frame. The Cartesian position and velocity vectors will only be composed of an

x and y component while the Keplerian elements will be composed of only a size,

shape, and time parameter since all the orientation angles are zero. True anomaly

is chosen as the time variable, in lieu of eccentric or mean anomaly, since it is more

easily computed from the Cartesian states. However, a price is paid when partial

derivatives of the Cartesian states are computed since eccentric anomaly gives these

a nicer form.

For this example, Equation (4.45) is simplified to what is shown in Equation (4.46).

Equation (4.47) displays the Jacobian from the Cartesian state domain to the Keple-

rian domain using the y velocity as the auxiliary variable. This choice allows for the

determinant of the Jacobian to be simply the determinant of the upper 3×3 matrix,

due to the left most column being all zeroes except for the last element. Note that

the x velocity could have been used instead of the y velocity but the y velocity was

chosen for a slightly easier reduction.

p (a, e, f) =
∫

Dẏ
p (x, y, ẋ, ẏ) |K (a, e, f, ẏ)| dẏ (4.46)
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K (a, e, f, ẏ) =




∂x

∂a

∂x

∂e

∂x

∂f

∂x

∂ẏ

∂y

∂a

∂y

∂e

∂y

∂f

∂y

∂ẏ

∂ẋ

∂a

∂ẋ

∂e

∂ẋ

∂f

∂ẋ

∂ẏ

∂ẏ

∂a

∂ẏ

∂e

∂ẏ

∂f

∂ẏ

∂ẏ




(4.47)

For the planar orbit considered, the relationships between the Cartesian and Kep-

lerian elements are given by Equation (4.48). The intermediate expressions of radius,

radial velocity, and time rate change of true anomaly are given by Equation (4.49).

x = r cos(f) ẋ = ṙ cos(f)− rḟ sin(f)

y = r sin(f) ẏ = ṙ sin(f) + rḟ cos(f)
(4.48)

r =
a (1− e2)

1 + e cos(f)

ṙ =

√
µ

a (1− e2)
e sin(f)

ḟ =

√
µa (1− e2)

r2

(4.49)

The partial derivatives needed for the Jacobian are given by Equations (4.50)

through (4.52). The existence of the partial derivative of true anomaly with respect to

eccentricity arises from the solution of Kepler’s equation if true anomaly is computed

from the solution of Kepler’s equation.

∂r

∂a
=

1− e2

1 + e cos(f)

∂r

∂e
=

−2ae

1 + e cos(f)
− a (1− e2)

(1 + e cos(f))2

[
cos(f)− e sin(f)

∂f

∂e

]

∂r

∂f
=

re sin(f)

1 + e cos(f)

(4.50)
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∂ṙ

∂a
= − ṙ

2a
∂ṙ

∂e
=

√
µ

a (1− e2)

[
− e sin(f)

2 (1− e2)
+ sin(f) + e cos(f)

∂f

∂e

]

∂ṙ

∂f
=

√
µ

a (1− e2)
e cos(f)

(4.51)

∂
(
rḟ
)

∂a
= −rḟ

2a

∂
(
rḟ
)

∂e
=

√
µ

a (1− e2)

[
cos(f) +

1 + e cos(f)

1− e2
− e sin(f)

∂f

∂e

]

∂
(
rḟ
)

∂f
= −

√
µ

a (1− e2)
e sin(f)

(4.52)

If true anomaly is computed from mean anomaly or if one possesses true anomaly

directly and desires to transform the PDF of semi-major axis, eccentricity, and true

anomaly to that of semi-major axis, eccentricity, and mean anomaly for easier prop-

agation in time, Kepler’s equation [72] must be solved. Kepler’s equation is the most

well-known transcendental equation in orbital mechanics, given by Equation (4.53),

and relates eccentric anomaly to mean anomaly and true anomaly to mean anomaly.

M = E − e sin(E)

E = 2 arctan



√

1− e
1 + e

tan

(
f

2

)


(4.53)

A stand-alone solution of eccentric or true anomaly from mean anomaly with-

out use of previous anomaly data has been classically performed using Newton’s

Method, but Lagrange’s Generalized Expansion Theorem or Bessel Functions can

also be applied [72]. For orbits with eccentricity less than approximately 2/3, La-

grange’s Generalized Expansion Theorem can be applied to compute the eccentric

anomaly as a function of mean anomaly [72] or compute true anomaly as a function

of mean anomaly [73], via a power series expansion in eccentricity. For orbits with ec-
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centricity greater than 2/3, the series can be reordered in the form of a Fourier series

which possesses absolute convergence for all values of eccentricity. The Lagrange ex-

pansions [72,73] of eccentric and true anomaly as a function of eccentricity and mean

anomaly are given in Equation (4.54) and the Fourier-Bessel series expansions [72]

are given by Equation (4.55).

E = M +
(
e− 1

8
e3 +

1

192
e5
)

sin(M) +
(

1

2
e2 − 1

6
e4 +

1

48
e6
)

sin(2M)

+
(

3

8
e3 − 27

128
e5
)

sin(3M) +
(

1

4
e4 − 4

15
e6
)

sin(4M)

+
125

384
e5 sin(5M) +

27

80
e6 sin(6M) +O

(
e7
)

f = M +
(

2e− 1

4
e3 +

5

96
e5
)

sin(M) +
(

5

4
e2 − 11

24
e4 +

17

192
e6
)

sin(2M)

+
(

13

12
e3 − 43

64
e5
)

sin(3M) +
(

103

96
e4 − 451

480
e6
)

sin(4M)

+
1097

960
e5 sin(5M) +

1223

960
e6 sin(6M) +O

(
e7
)

(4.54)

E = M + 2
∞∑

k=1

1

k
Jk (ke) sin(kM)

f = M + 2
∞∑

k=1

1

k

[ ∞∑

n=−∞
Jn (−ke) β|k+n|

]
sin(kM)

β =
1−
√

1− e2

e

Jn (x) =
∞∑

j=0

(−1)j

(
x

2

)n+2j

j! (n+ j)!

(4.55)

From Equations 4.54 and 4.55, the partial derivatives of eccentric or true anomaly

can be computed with respect to eccentricity and mean anomaly. If one were to

instead use the iterated solution of Kepler’s equation, the partial derivatives would
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be those given by Equation (4.56) [46, 74].

∂E

∂e
=
a sin(E)

r

∂f

∂e
=
(
a

r
−
(
1− e2

)−1
)

sin(f)

∂E

∂M
=
a

r

∂f

∂M
=
(
a

r

)2√
1− e2

(4.56)

For the equatorial orbit example, only the true anomaly is being traded for mean

anomaly, the determinant of the mapping Jacobian from the true anomaly set to the

mean anomaly set is simply the partial derivative with respect to mean anomaly of

either the series expansions or numerical solution of Kepler’s equation. For three-

dimensional orbits, see Broucke [75] for the partial derivatives from Cartesian ECI

to Keplerian elements as well as other element sets.

4.3.4.1 Propagation of Osculating Orbital Elements and their Uncertainties

Propagation of osculating Keplerian elements can be accomplished by applying

TOV as it was used for the construction of the prior in the previous section. However,

instead of using the F and G power series solution, the Mean Anomaly is linearly

updated, Equation (4.57), while the rest of the osculating elements are held constant.

Since the orbital elements are curvilinear elements instead of rectilinear elements,

their propagated solution will more accurately describe the behavior of the PDF

which is undergoing curvilinear motion. For Two-Body unperturbed motion, the

determinant of the Jacobian required for time propagation will be unity since the all

other elements are considered constant with respect to mean anomaly.

M (t) = M (t0) +

√
µ

a3
(t− t0) (4.57)
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4.3.5 Transformation of Variables Analysis of Mean Orbital Element

Space

Brouwer [47] derived the secular drift of a RSO to the second-order and the long-

period motion to first-order of the dominant geopotential perturbation source. The

dominant geopotential perturbation source is from the J2 zonal harmonic and results

from the Earth’s bulge around the equator which causes rotation of perigee, rotation

of the orbit plane about the ECI tertiary axis, and a change in mean motion [76]. The

value of J2 is 1.0826266835×10−3 and due to its relatively high value, inclusion of

higher order zonal harmonic effects requires inclusion of the J2
2 contribution since the

second-order effect of J2 is on the order of the higher zonals’ first-order effects, namely

O (J2
2 ) ≈ O (J3), . . . , O (J7). Since consideration of only the J2 zonal harmonic is

a good approximation for a RSO’s geopotential perturbed Two-Body motion, the

osculating Hamiltonian of the geopotential perturbed Two-Body motion takes a more

simplified form than Equation (2.22), shown by Equation (4.58) with the Delaunay

elements used by Brouwer given by Equation (4.59).

H (q,p, J2) =
N∑

i=0

Hi (q,p)
J i2
i!

+O
(
JN+1

2

)

= − µ

2a
− µJ2R

2
�

4r3

[
3 cos2(i)− 1

+3
(
1− cos2(i)

)
cos(2ω + 2f)

]
+O

(
J2

2

)

(4.58)

q = [l, g, h] = [M, ω, Ω]

p = [L, G, H] =
[√
µa, L

√
1− e2, G cos(i)

] (4.59)

Brouwer’s approach used two canonical transformations with generating functions

chosen to eliminate mean anomaly and argument of perigee, the “doubly-averaged”

Hamiltonian is free of the Delaunay coordinates. The mean or secular, i.e. free
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of short-period and long-period effects, Hamiltonian to first-order of J2 is given by

Equation (4.60) in terms of momenta, denoted by double primes, with the equations

of motion derived using Equation (2.18). Since the Delaunay momenta are constant

for the secular Hamiltonian, the mean coordinates are denoted with an underscore

in the mean Hamiltonian to show they are cyclic.

H ′′ ( ,p, J2) = − µ2

2L′′2
− µ4J4

2

L′′3G′′3

(
−1

2
+

3

2

H ′′2

G′′2

)
(4.60)

Use of the first-order doubly-averaged, double canonical transformations, Hamil-

tonian for mapping between osculating and mean orbital elements requires only a

change in sign [66, 77], which alleviates the need for solution iteration when con-

verting from osculating to mean elements [78, 79]. One can add numerical stability

to the transformation between osculating and mean elements by using an orbital

element set similar to the equinoctial elements which replaces eccentricity, mean

anomaly, and argument of perigee with q1 = e cos(ω), q2 = e sin(ω), and λ = ω+M ,

then reformulate Brouwer’s equations [77]. However, this would require additional

applications TOV to produce the PDF for Keplerian elements, so the traditional

Keplerian element set is kept with Lyddane’s modification of Brouwer’s theory to

the first-order of J2 utilized to study the effect of the canonical transformations into

mean element space from osculating elements.

This research utilizes the first-order of J2 solution of Lyddane’s modification of

Brouwer’s theory to convert between osculating and mean Keplerian orbital elements,

which is given in Appendix B. As was done for the example in Section 4.3.4, if

one considers equatorial orbital motion, the PDF of the mean Keplerian orbital

elements can be computed through use of TOV with the mapping Jacobian given

by Equation (4.61). Using convention, unprimed elements denote osculating, single
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primed elements denote long-period elements, and double primed elements denote

mean elements.

K (a′′, e′′, M ′′) =




∂a

∂a′′
∂a

∂e′′
∂a

∂M ′′

∂e

∂a′′
∂e

∂e′′
∂e

∂M ′′

∂M

∂a′′
∂M

∂e′′
∂M

∂M ′′




(4.61)

Using the first-order of J2 the transformation procedure given in Appendix B,

the partial derivatives required for Equation (4.61) are derived in Appendix C. From

the osculating orbital solution of Equation (4.46), one can transform the solution

into the mean orbital space as shown by Equation (4.62). The function O2M()

is taken to represent the mapping from osculating to mean orbital element space

with the partial of true anomaly with respect to mean anomaly computed from

Equations (4.54), (4.55), or (4.56).

p (a”, e”, M”) = p ({a, e, f} = O2M {a”, e”,M”})
∣∣∣∣∣
∂f

∂M

∣∣∣∣∣ |K (a”, e”, M”)| (4.62)

4.3.5.1 Propagation of Mean Orbital Elements and their Uncertainties

Brouwer’s application of canonical transforms to the Delaunay element set re-

sulted in only the coordinates of mean mean anomaly, mean argument of perigee,

and mean right ascension of ascending node possessing equations of motion since

their conjugate momenta were constant. Since the mean conjugate momenta were

found to be constant, their respective composition variables of mean semi-major axis,

mean eccentricity, and mean inclination were also constant. The propagation of the

mean elements to first-order of J2 is given by Equation (4.63), R� is the radius of the
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Earth and n0 is the mean motion corresponding to the osculating semi-major axis.

M ′′ (t) = M ′′ (t0) + n0∆t
(

1 +
3

2
γ′2η

(
3 cos2(i)− 1

))

ω′′ (t) = ω′′ (t0) +
3

2
γ′2
(
5 cos2(i)− 1

)
n0∆t

Ω′′ (t) = Ω′′ (t0)− 3

2
γ′2 cos(i)n0∆t

∆t = t− t0 , γ′2 =
J2

2

(
R�

a

)2 1

η4
, η =

√
1− e2

(4.63)

4.3.6 Equatorial Plane Keplerian Motion Orbit Determination and

Tracking Results

Initial illustration of the application of the TOV technique for RSO orbit deter-

mination and sequential tracking is demonstrated via planar Two-Body dynamics

for a circular low Earth orbit with position and velocity observations and position

only observations. The ECEF frame is assumed to be aligned with the ECI frame so

that all orientation parameters can be assumed to be zero. Figure 4.27 displays the

geometry of the problem with the inertial frame denoted by (X,Y) and referred to

as ECI and the local topocentric measurement frame denoted by (x′,y′).

θ
ρ

Y

X
λ

REarth
ẋSat

ẏSat

y ′

x ′

Figure 4.27: Geometry of Planar Space Surveillance Example

140



The measurements of the true trajectory by the tracking station are corrupted

by a zero mean and Gaussian distributed process with standard deviation values

representative of typical tracking installations [5]. The standard deviations of the

range-rate and elevation angle rate were taken to be ten percent of their respective

position standard deviations. Table 4.4 gives the reference values used to simulate

the Two-Body orbital motion and the tracking station observations of the motion.

Table 4.4: Simulation Conditions for Space Surveillance Example

Parameter Value
µ (km3/sec2) 3.986004415e5

R� (km) 6378.1363
Tracking Station Longitude (Deg) 72

Range Noise 1σ (km) 0.030
Range-Rate Noise 1σ (km/sec) 0.003

Elevation Noise 1σ (Deg) 0.015
Elevation-Rate Noise 1σ (Deg/sec) 0.0015

Sampling Time (sec) 20

For TOV domain construction, the range of the measurement domain variables

was set to four times their respective standard deviations. For all cases, a sequen-

tial Bayes’ filter using the TOV approach was compared to a conventional EKF and

UKF. For user-initialization, the EKF and UKF were given state covariance matri-

ces of diag[10 10 1 1]T for the
(
X, Y, Ẋ, Ẏ

)
states respectively. Initialization of state

estimates by the user was done by taking the raw measurements and simply trans-

forming them into the state domain. Additionally, the integration routines used by

the Kalman filters possessed set time steps of one second. The Cholesky Decompo-

sition of the covariance matrix computed by the TOV Bayes’ filter was carried out

as a check to ensure that the matrix was positive definite.
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4.3.6.1 Equatorial Plane Two-Body Dynamics Full Sensing

To show the TOV technique allows for effective PDF mapping between frames, a

test case of only spatial differences between domains is considered, this case repeats

a prior one explored by Weisman et al. [36], except with different noise values to

reproduce more realistic observation data. The RSO being tracked resides in a

circular orbit with the tracking station reporting range, elevation, range-rate, and

elevation rate observations every 20 seconds, resulting in eight observations per object

pass. The initial conditions for the object were set to [x, y] = [6.9681, 0]Tkm and

[ẋ, ẏ] = [0, 7.5633]Tkm/sec, corresponding to a semi-major axis of 1.0925 Earth radii

with all other Keplerian orbital element parameters set to zero.

Figure 4.28 displays the position tracking performance for the EKF and UKF

with user-tuned initial state estimates and state covariance compared with the TOV

computed likelihood PDF results. The TOV likelihood solution is analogous to

assuming a uniform prior PDF in the Bayes’ filter and computes the maximum

uncertainty bounds at each measurement time. The initial estimates for the EKF

and UKF were simply the polar observations transformed into ECI space, the initial

covariance was the same for each filter and was tuned by the user to keep the EKF

state error within three standard deviations.
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Figure 4.28: Full Observation LEO: Sequential Filters State Tracking Performance

Figure 4.28 shows an increase in uncertainty in the primary ECI direction as

the RSO moves through its orbit, which is to be expected due to the value of the

cosine function near a local elevation of 90 degrees. The cosine function increases in

sensitivity to angle changes as the elevation angle nears 90 degrees, thus becoming

more sensitive to angle noise resulting in increasing uncertainty. This same behavior

is shown in the secondary ECI direction error plot where the error decreases as the

local elevation angle nears 90 degrees due to the sine function being insensitive to

angle changes around 90 degrees, but extremely sensitive to angle changes about zero

degrees elevation. These results are simply the reverse of those seen for the arcing

mass example in Section 4.1, the reason for the reversal is that the RSO is traveling

counter-clockwise while the arcing mass was traveling clockwise.

For comparison with the uncertainty bounds computed by the TOV likelihood

at every measurement time, a Monte Carlo analysis of the measurement errors was
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performed with the numerical covariance, Equation (4.1), computed at every mea-

surement time using 100,000 simulated measurements. Figure 4.29 compares the

TOV likelihood state uncertainty and correlation error with the EKF and UKF un-

certainty errors.

Figure 4.29: Full Observation LEO: Sequential Filters State Uncertainty and Corre-
lation Tracking Error

The numerical mean was compared with the true solution and the error was found

to be on the order of decimeters for position and centimeters per second for velocity,

so no significant bias was inserted into the numerical covariance computation. The

numerical covariance was held to be the truth with respect to state error uncertainty

as well as state correlation. The other correlation coefficient errors of the TOV
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likelihood are similar to those in Figure 4.29, where the Monte Carlo correlation is

tracked well while the EKF and UKF overestimate the correlations. The behavior

of the EKF and UKF is to be expected because they utilize previous data via the

covariance and the Kalman gain seeks to minimize the trace of the covariance at each

update time. A comparison of the TOV Bayes’ filter incorporating different amounts

of prior information, zero to two previous measurements measurements, to the EKF

and UKF was performed and is shown by Figure 4.30.

 

Figure 4.30: Full Observation LEO: Bayes’ Filter Uncertainty Bounds Using Prior
Data

Figure 4.30 illustrates how incorporation of previous data affects the uncertainty

bounds generated by the TOV Bayes’ filter. As the amount of previous information
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is increased for computation of the prior, Equation (3.56), the uncertainty bounds

for the Bayes’ filter begin to mimic those produced by the UKF and EKF, which

should be expected since the state estimates of the UKF and EKF are conditioned

on all previous measurements. Figure 4.31 shows how the incorporation of previous

measurement data into the prior PDF allows for the state estimate error of the Bayes’

filter to diminish.

 

Figure 4.31: Full Observation LEO: Bayes’ Filter State Error Using Prior Data

Since application of TOV for generation of the likelihood PDF allows for the ac-

curate tracking of the Monte Carlo solution, the EKF and UKF were initialized with

the output of the TOV approach which provided not only initial state uncertainty

but also state correlation information. Figure 4.32 compares the state error results
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of the user-tuned conventional filters with automated initialization of the filters by

the TOV approach and shows that the automation process allows for the EKF state

error to be significantly reduced while the UKF operation is slightly improved.

 

Figure 4.32: Full Observation LEO: User vs. Automated Conventional Filter State
Errors

4.3.6.2 Equatorial Plane Two-Body Dynamics Reduced Sensing

Performance assessment of TOV for uncertainty estimation of the Herrick-Gibbs

IOD routine was conducted using range and elevation angle measurements of the pre-

vious example’s circular equatorial orbit. After initialization of a full state estimate,

the Herrick-Gibbs solution was utilized to estimate smoothed velocity states via a

moving window of three sequential range and angle measurements transformed to
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ECI frame. The F and G series solutions were used as to map between the bookend

position measurements and the position and velocity states at the second measure-

ment time. In lieu of solving Kepler’s equation to compute the F and G coefficients,

the power series expansion solutions utilizing fundamental invariants [72] were used.

Orbit Initialization and Tracking This example repeats the circular orbit with full

sensing example but, using only position measurements. A Monte Carlo analysis of

the Herrick-Gibbs IOD algorithm was performed to numerically compute the covari-

ance for assessment of state uncertainty and correlation at the second measurement

time utilizing position only measurements. For the Monte Carlo solution, 100,000

simulated measurements at each observation time were produced from the true tra-

jectory corrupted by sensor noise for each of the measurements then Herrick-Gibbs

was applied. The Monte Carlo numerical mean and covariance solutions, Equa-

tion (4.1), were used as the true solutions and utilized to assess the error of the state

estimates, uncertainty estimates, and correlation estimates computed by the EKF,

UKF and TOV Bayes’ filter.

Figures 4.33 and 4.34 compare the marginalized joint state PDF results of the

Monte Carlo analysis and TOV for initialization of the RSO track. For plotting of the

Monte Carlo results, a 50 x 50 bin histogram was applied to the numerical results

of the analysis to provide the marginalized joint PDF plots. This is appropriate

because PDFs are measures of the frequency of occurrences of particular events. To

be completely comparable to the TOV marginal joint PDF results, a 14 x 14 bin

histogram(15 x 15 grid points) analysis was performed on the Monte Carlo data.

This produced the same results as the higher resolution analysis, namely the TOV

marginal joint PDF shows a positive bias in the ECI X direction of the ECI X-Y and

ECI Ẋ-X PDFs.
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Figure 4.33: ECI State Joint PDFs from Monte Carlo Analysis using Herrick-Gibbs
Routine for ECI velocity estimation
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Figure 4.34: ECI State Joint PDFs from TOV using Herrick-Gibbs Routine for ECI
Velocity Estimation
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The TOV technique was applied to compute the likelihood PDF results of the

Herrick-Gibbs IOD algorithm and compared with an EKF and UKF using user-

tuned initial estimates and covariance with the results shown in Figure 4.35. For

performance of the EKF, the integration timestep was set to one second to allow

convergence from user-tuned initialization. Comparison of Figures 4.35 and 4.28

show a different behavior in the velocity error bounds. This behavior difference is

due to the Herrick-Gibbs smoothing process used to compute the velocity estimate

domain as well as the F and G power series solution used in the application of TOV

to map the measurement PDF to the desired state domain. The TOV likelihood

solution was used to automate initialization of the EKF and UKF for the tracking

interval. Figure 4.36 plots the error performance of the user and TOV tuned filters

and Figure 4.37 plots the state error and covariance bound histories.
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Figure 4.35: Reduced Observation LEO: Sequential Filter State Tracking Perfor-
mance
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Figure 4.36: Reduced Observation LEO: Conventional Filter State Errors (User-
defined vs. TOV Automated)
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Figure 4.37: Reduced Observation LEO: TOV Tuned Filter Error and Uncertainy
Performance
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Figures 4.36 and 4.37 demonstrate that the TOV reduced sensing procedure al-

lows for automation of the initial state estimate and, more importantly, covariance.

This automation allows for a significant reduction in the amount of state error ac-

crued by the EKF and even helps to provide more consistent operation of the EKF

and UKF. The Monte Carlo computed state uncertainty and correlation tracking

performance of the TOV likelihood and EKF and UKF using TOV initialization

over the simulation time are shown by Figures 4.38 and 4.39. The figures plot the

ratio of the error between the filter and Monte Carlo results normalized by the Monte

Carlo results. As should be expected, the TOV likelihood solution best agrees with

the Monte Carlo uncertainty and correlation solutions because it does not consider

any additional data except what was used for the IOD.
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U
n

ce
rt

a
in

ty
 E

rr
o

r 
R

a
tio

Time (sec)

 

 

TOV EKF UKF
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Figure 4.39: Reduced Observation LEO: Sequential Filters State Correlation Track-
ing Error

Figures 4.40 and 4.41 compare the performance of the TOV Bayes’ filter utilizing

prior information to the TOV likelihood and the EKF and UKF solutions. The

prior density is computed using the approach in Section 4.3.3.1. The maximum

amount of previous data considered in the prior PDF computation was set to the

five most recent data points not utilized for IOD. Figure 4.40 compares the state

tracking results of the TOV Bayes’ filter versus the TOV likelihood density and

demonstrates that introduction of prior information allows for increased estimation

accuracy and reduced state uncertainty. Figure 4.41 reproduces Figure 4.38 but adds

the performance of the TOV Bayes’ filter. The figures show that as previous data

is added for computation of the prior, the uncertainty predictions begin to mimic

those of the conventional nonlinear filters, which was also shown by Figure 4.5 for

the arcing mass results.
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Figure 4.40: Reduced Observation LEO: TOV Bayes’ Filter Likelihood vs. Posterior
State Error and Uncertainty Comparison
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Figure 4.41: Reduced Observation LEO: Posterior TOV Bayes’ Filter and Conven-
tional Sequential Filters State Uncertainty Tracking Error Ratio
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4.3.7 Equatorial Plane Geopotential Perturbed Motion Orbit

Determination and Tracking Results

The results of applying TOV for estimation of Cartesian, osculating orbital el-

ement, and first-order mean orbital element state vectors with corresponding un-

certainties are shown in the following sections for more realistic LEO RSOs. In

the fashion of increasing problem complexity, two equatorial orbits with conserva-

tive perturbations are considered: (1) equatorial LEO RSO and (2) equatorial HEO

RSO that has just passed perigee. The orbits are subjected to the J2 zonal geopo-

tential perturbation, which is the dominant conservative perturbation for low earth

orbits [66].

The LEO RSO’s orbital parameters are changed from the previous example to

allow for analysis near the limit of the first-order expansion, e.g. eccentricity on

the order of J2, used for computing mean elements from osculating elements. The

Monte Carlo state and covariance solution for the geopotential perturbed orbits was

computed in the same manner as the unperturbed case using 250,000 measurement

trials of the true trajectory, then computing their statistical moments according to

the spread of points in the state domain of interest.

The LEO RSO’s initial osculating orbital elements were chosen as (a, e,Ω, i, ω,M)

= (6937.3 km, 0.00145,0 rad ,0 rad ,0 rad ,0 rad) where the semi-major axis and

eccentricity are close to that of Hubble Space Telescope and the eccentricity is also

representative of the lower limit of LEO eccentricities. The eccentricity is on the

same order of J2, so this case allows for analysis near the limit of the first-order

mean element transformation. The HEO RSO’s initial orbital elements were chosen

as (a, e,Ω, i, ω,M) = (23.26× 103km, 0.7, 0 rad, 0 rad, 0 rad, 0 rad) where the semi-

major axis and eccentricity are representative of some communications satellites. The
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HEO RSO’s trajectory was chosen such that its perigee altitude is approximately

600 kilometers and it just passed out of perigee as it entered the tracking station

window. The tracking station parameters are the same as those used for the circular

unperturbed LEO RSO with only position and angle measurements utilized, so IOD

must be carried out.

For the TOV Bayes’ filter, the likelihood density is computed by transforming

the current measurement space into the state-space of interest and the prior density

is computed by transforming the current state-space of interest to a previous mea-

surement time. The prior and likelihood densities for the Cartesian domain due to

the Herrick-Gibbs IOD algorithm were derived in Section 4.3.3 while the results for

the osculating and mean element domains were derived in Sections 4.3.4 and 4.3.5

respectively. For computation of the prior PDF, the number of previous data points

for the LEO RSO was the same as the circular LEO RSO, five, while the number of

previous data points for the HEO RSO was set to three. For the propagation phases

of the TOV Bayes’ filter, the Cartesian states were propagated using the F and G

series solution, the osculating orbital elements were propagated using the linear time

update of mean anomaly, and the mean orbital elements were propagated accord-

ing to the Brouwer theory. As with the previous surveillance results, the Cholesky

decomposition of the computed covariance matrix was applied as a check to ensure

positive definiteness.

To reduce the domain computation burden, not all combinations of the per-

turbed measurement domains were mapped into the desired state domains because

this would require N4 points for each state vector for the Cartesian domain. Instead,

all possible combinations were evaluated in the measurement domain for each ob-

servation time, then permutations with the other observation times were generated

by uniformly selecting a measurement combination in each domain. In this man-
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ner, only N2 points are generated for each observation time and from these points

NSelect are selected to generate the desired state domain. The following results were

produced using this sampling technique for permutation generation and were found

to coincide with the solutions produced by evaluating all permutations. This per-

mutation sampling technique allowed for the state domain size to be reduced from

approximately 2×106 to 1×104.

For user-tuned initialization of the EKF and UKF, the initial state estimate

was computed by direct application of the Herrick-Gibbs IOD algorithm while the

Cartesian state covariance was initialized differently depending on the type of orbit.

For the LEO RSO, the covariance was initialized on the diagonal with variances of 2

km2 and 0.5 km2/sec2 and off-diagonal elements equal to zero. For the HEO RSO, the

covariance was initialized on the diagonal with variances of 5 km2 and 0.5 km2/sec2

and off-diagonal elements equal to zero. For the UKF and EKF propagation phases,

the equations were modified to account for the J2 perturbation.

4.3.7.1 Cartesian State Vector from Herrick-Gibbs Initial Orbit Determination

Figures 4.42 through 4.45 plot the results for the Cartesian estimation of the

eccentric LEO RSO, index entries of “L” and “P” represent the TOV likelihood and

TOV Bayes’ posterior PDF solutions. The LEO geopotential perturbed results are

similar to those of the circular LEO RSO since the geopotential perturbation will only

present large differences over the period of the orbit, approximately 5700 seconds, not

over the period of the tracking window, 100 seconds. Figure 4.46 plots the Cartesian

state differences between the perturbed and Keplerian motion, the epoch time is at

the second observation time and the final time is with respect to the second to last

observation. The figure shows that the J2 perturbation causes differences on the

order of meters, within the Cartesian domain 1σ uncertainty bounds, Figure 4.43.

157



1020 1040 1060 1080 1100

−0.5

0

0.5

X Position Error and 3σ Bounds

P
o

si
tio

n
 E

rr
o

r 
(k

m
)

 

 

SeqToV EKF UKF SeqToV 3σ EKF 3σ UKF 3σ
1020 1040 1060 1080 1100
−1

−0.5

0

0.5

1
Y Position Error and 3σ Bounds

1020 1040 1060 1080 1100

−0.02

−0.01

0

0.01

0.02

X Velocity Error and 3σ Bounds

V
e

lo
ci

ty
 E

rr
o

r 
(k

m
/s

e
c)

Time (sec)
1020 1040 1060 1080 1100

−0.05

0

0.05
Y Velocity Error and 3σ Bounds

Time (sec)

Figure 4.42: LEO RSO TOV Likelihood Cartesian State Error and 3σ Covariance
Bounds Results vs. EKF and UKF
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Figure 4.43: LEO RSO TOV Likelihood and Posterior Cartesian State Error and 3σ
Covariance Bounds Results
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Figure 4.44: LEO RSO TOV Likelihood and Posterior Cartesian State Uncertainty
Tracking Results vs. EKF and UKF
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Figure 4.45: LEO RSO TOV Likelihood Cartesian State Error Initialization Results
of EKF and UKF vs. User-Tuned
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Figure 4.46: LEO RSO Cartesian Element Differences Over Tracking Window from
Herrick-Gibbs Initialization

Figure 4.44 demonstrates that the TOV likelihood is able to effectively track the

Monte Carlo computed uncertainties. In Figure 4.44, the TOV likelihood PDF solu-

tion slightly underestimates the position state solution of the Monte Carlo analysis ,

approximately 1%, while the behavior of the posterior with respect to the EKF and

UKF is less erratic than the circular LEO results. Figure 4.45 shows the merit of

using TOV for initialization of the EKF and UKF initial state estimate and covari-

ance where the initialized solutions possessed less fluctuation and higher accuracy

compared with user tuning.

Figures 4.47 through 4.50 plot the Cartesian estimation results of the HEO RSO.

Figure 4.47 shows the EKF diverging approximately 50 seconds after the track is

initialized, while the UKF and TOV Bayes filter results possess a behavior similar

to the LEO RSO results. Figures 4.48 and 4.49 show that the initialization of the
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EKF and UKF by the TOV Bayes’ filter allows for less erratic state error histories

as well as the ability to extend the convergence behavior of the EKF.
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Figure 4.47: HEO RSO TOV Likelihood Cartesian State Error and 3σ Covariance
Bounds Results vs. EKF and UKF
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Figure 4.48: HEO RSO TOV Likelihood and Posterior Cartesian State Error and 3σ
Covariance Bounds Results
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Figure 4.49: HEO RSO TOV Likelihood Cartesian State Error Initialization Results
of EKF and UKF vs. User-Tuned
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Figure 4.50: HEO RSO TOV Likelihood Cartesian State Error and 3σ Covariance
Bounds Results of TOV Initialized EKF and UKF

4.3.7.2 Osculating Orbital Element State Vector from Herrick-Gibbs Initial Orbit

Determination Results

Figures 4.51 and 4.52 plot the state error and covariance bounds computed by

the TOV Bayes’ filter for the osculating orbital elements of the LEO and HEO RSOs

respectively. Comparison of the likelihood and posterior PDF results characterize

the effectiveness of using prior information for state estimation. For the figures, the

semi-major axis and eccentricity results use the set of semi-major axis, eccentricity,

and true anomaly, (a, e, f), however the results using mean anomaly are similar.

Figure 4.53 compares the posterior result accuracy of the two sets for the LEO RSO,

the maximum differences in semi-major axis and eccentricity were approximately 3

kilometers and 6×10−4, the HEO RSO results possessed even less difference.
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Figure 4.51: LEO RSO TOV Likelihood and Posterior Osculating Orbital State Error
and 3σ Covariance Bounds Results
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Figure 4.52: HEO RSO TOV Likelihood and Posterior Osculating Orbital State
Error and 3σ Covariance Bounds Results
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Figure 4.53: LEO RSO TOV Posterior Osculating Orbital Element Error of (a, e, f)
vs (a, e, M)

The scale differences of the orbital element errors and uncertainties stand out

when comparing Figures 4.51 and 4.52, especially for the semi-major axis. For the

eccentricity state, the LEO RSO possesses error and uncertainty on the order of the

actual value of eccentricity, approximately 1.45× 10−3, while for the HEO RSO, the

error and uncertainty are approximately an order of magnitude less than the actual

value, approximately 0.7. For true anomaly, the state error and uncertainty for the

LEO RSO are five orders of magnitude less than true, f ∈ [62, 70]deg, while the mean

anomaly error is two orders of magnitude less for approximately the same angular

range. For the HEO RSO, the true anomaly error and uncertainty are four orders

of magnitude less than the truth. An interesting result when comparing the two

scenarios is that the mean anomaly likelihoods are of the same of order magnitude

while the true anomaly likelihoods differ by an order of magnitude.
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Figures 4.54 and 4.55 plot the Marginal PDF contours of osculating state pairings

from the likelihood generated by the TOV likelihood PDF and the Monte Carlo

analysis at first time the Herrick-Gibbs IOD was able to be applied. The likelihood

PDF contours are computed by (1) evaluation of the entire likelihood PDF, (2)

marginalizing over the unwanted variable, (3) applying a binned mesh to the resulting

domain, then (4) summing all likelihood values that reside within each bin to create

a matrix which enabled contour plotting. For the TOV likelihood PDF figures, the

top row presents results of the (a, e, f) state variable set while the bottom row

presents the results of the (a, e, M) state variable set. Figure 4.56 presents the

scatter plots of the marginal PDFs which were used to generate the contour plots,

red represents a high function value and blue represents a low function value. The

scatter plot domain evaluation points were generated from the selected measurement

domain points which were then mapped into the osculating orbital element domain.
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Contour Results
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Figure 4.56: LEO RSO TOV Likelihood Osculating Orbital Element Marginal PDF
Color-Coded Scatter Results
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Comparing Figure 4.54 to Figures 4.55 and 4.56, one sees (1) the marginalized

likelihood PDF occupies a larger amount of the two-dimensional domain than the

Monte Carlo analysis for the osculating pairs and (2) a bias is apparent in the TOV

likelihood PDF whose minimum variance solution is ŝ = (6952.1km , 4.0 × 10−3,

1.1177rad, 1.1106rad) while the true solution is a semi-major axis of 6937.3km,

eccentricity of 0.0014, and values of 1.1177rad and 1.1152rad for true anomaly and

mean anomaly respectively. The check-mark behavior of the (a, e) and (a,M) do-

mains for the TOV analysis was also seen in the histogram analysis of the Monte

Carlo results. The behavior is due to the low value of eccentricity considered, which

is causing the direction of the eccentricity vector to be not so well-defined. The be-

havior is not seen in the true anomaly results because true anomaly can be calculated

without the use of the eccentricity vector due to the equatorial orbit, which is not

true for the mean anomaly.

Figure 4.57 plots the PDF scatter plot for the TOV likelihood for the HEO

RSO and shows that a better defined eccentricity vector location produces a more

well defined state domain. The marginalized PDF contours for the HEO RSO are

shown in Appendix D and show good agreement between the Monte Carlo and TOV

likelihood solutions. Figures 4.58 and 4.59 compare the state errors for the TOV

likelihood, TOV Bayes’ filter, and Monte Carlo analysis for the LEO and HEO

RSOs respectively. In Figure 4.58, the first moment of the Monte Carlo analysis

for the LEO RSO can no longer be considered a zero mean process since there is

a relatively constant bias present in eccentricity and the anomalies. The biases for

the HEO RSO were approximately 18 kilometers in semi-major axis and 1×10−4 for

eccentricity. However, the biased numerical first moment will not bias the second

numerical moment computation because of a cancellation of the first moments when

computing the second moment.
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Figure 4.57: HEO RSO TOV Likelihood Osculating Orbital Element Marginal PDF
Color-Coded Scatter Results
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Figure 4.58: LEO RSO Osculating Orbital Element Tracking for TOV Bayes’ filter
and Monte Carlo vs. True
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Figure 4.59: HEO RSO Osculating Orbital Element Tracking for TOV Bayes’ filter
and Monte Carlo vs. True

Figures 4.60 and 4.61 plot the uncertainty tracking comparison between the TOV

likelihood and Monte Carlo, the first row corresponds to using the true anomaly as the

time coordinate while the second row uses the mean anomaly as the time parameter.

For the orbital elements not requiring eccentricity to be computed, semi-major axis

and true anomaly for an equatorial orbit with node known, Figure 4.60 shows that

the TOV likelihood and Monte Carlo solutions are in good agreement. For the LEO

RSO when an eccentricity estimate is required to be computed, both the Monte Carlo

and TOV likelihood solutions yield uncertainty answers which are on the same order

of magnitude as the true eccentricity value, so one can only make claims as to the

order of magnitude of the uncertainty and not the uncertainty value.
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Figure 4.60: LEO RSO Osculating Orbital Element Uncertainty vs. Monte Carlo

The LEO RSO eccentricity Monte Carlo results possess a more well-behaved

trend but, the TOV likelihood solution does mimic the same downward trend as the

tracking interval proceeds. The effect of the eccentricity uncertainty on the mean

anomaly uncertainty is directly apparent when comparing the LEO and HEO RSO

results.
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Figure 4.61: HEO RSO Osculating Orbital Element Uncertainty vs. Monte Carlo

4.3.7.3 Mean Orbital Element State Vector from Herrick-Gibbs Initial Orbit

Determination Results

Application of the results of Section 4.3.5 allows for a first-order J2 transforma-

tion of the osculating orbital element PDF to the mean element PDF through the

use of Lyddane’s modification of Brouwer’s theory [55], the conversion error between

domains will be on the order of J2 [66] and is shown in Appendix B. Figures 4.62

and 4.63 plot the state error and covariance bounds computed by the TOV Bayes’

filter for the mean orbital elements of the LEO and HEO RSOs respectively. For the

LEO RSO considered, when the osculating eccentricity is converted to the mean do-

main the value of the true mean eccentricity is 7.4×10−5 while the mean semi-major

axis is approximately the same as its osculating counterpart. For the HEO RSO,

the mean domain parameters are approximately equal to their osculating domain

counterparts.
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Figure 4.62: LEO RSO TOV Likelihood and Posterior Mean Orbital State Error and
3σ Covariance Bounds Results
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Figure 4.63: HEO RSO TOV Likelihood and Posterior Mean Orbital State Error
and 3σ Covariance Bounds Results

173



The results for the semi-major axis and eccentricity are approximately the same

as with their osculating counterparts except that the scale of the results for the

anomalies has increased drastically for the LEO RSO. The reason for the anomalies’

scale increase for the LEO RSO is due to the uncertainty of the osculating eccen-

tricity being on the order of the true osculating eccentricity, which causes the mean

eccentricity uncertainty to be on the same order as the osculating uncertainty. Fig-

ure 4.64 plots the mapping of the true osculating eccentricity to mean eccentricity

on the interval of eOsc=0.00145±1× 10−3 with the semi-major axis is set to the true

osculating semi-major axis and all other osculating elements are set to zero.
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Figure 4.64: LEO RSO Osculating Eccentricity to Mean Eccentricity Mapping

Besides the figure showing how the osculating eccentricity uncertainty directly

impacts the mean eccentricity uncertainty, if one were to take the true osculating

values of semi-major axis and mean anomaly but add 0.001 to the true osculating

eccentricity value, 0.00145, the resulting converted mean true anomaly, f ′′, would
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be 1.7190 radians while the true mean true anomaly is 2.1091 radians. Since the

uncertainty of the osculating eccentricity for the HEO RSO is an order of magnitude

less than the true value, there is only a slight increase in the mean true anomaly and

mean mean anomaly uncertainty bounds and error as shown in Figure 4.63.

Figures 4.65 and 4.66 plot the mean orbital element marginal PDF contours for

the Monte Carlo and TOV likelihood solutions for the LEO RSO. The scatter plot

used to generate Figure 4.66 over the nonuniform domain is shown in Figure 4.67.

The shape of the HEO RSO marginal PDF scatter plot from the likelihood solution

mimics its osculating counterpart which again shows that the domain shape is heavily

dependent upon ability to correctly estimate the eccentricity vector direction, the

contour results for the HEO RSO are again included in Appendix D.

Comparison of the mean element PDF figures with the osculating element figures

show that the solution domain has been warped from an ellipse-like shape to more

like a banana shape. This banana-like or concave shape has been encountered pre-

viously when propagating osculating orbital elements using TOV in time [40]. The

lure of mean elements is that their secular momenta are constant, allowing for their

coordinates to vary linearly in time. Thus, the mean element PDF representation

will be less susceptible to information loss over propagation time, whereas other state

representations, e.g. Cartesian, will lose information due to their nonlinear differen-

tial equations of motion. Once the measurement PDF is effectively transformed into

mean element space, propagation can easily be carried out to any time of particular

interest, then the solution can be transformed into another state representation via

the TOV technique.
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Figure 4.65: LEO RSO Monte Carlo Mean Orbital Element Marginal PDF Contour
Results
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Figure 4.67: LEO RSO TOV Likelihood Mean Orbital Element Marginal PDF Color-
Coded Scatter Results

Figure 4.68 compares the mean semi-major axis and eccentricity error of the

TOV Bayes’ filter posterior for the LEO RSO using different anomalies. The figure

shows use of the mean anomaly allows for more accurate estimation of the mean

eccentricity. Unlike the osculating results where the state estimate differences were

negligible, the difference in the estimated mean semi-major axis was approximately

8 kilometers, while the estimated eccentricity difference was approximately 1×10−3

with the (a′′, e′′, M ′′) coordinate set being the more accurate with respect to ec-

centricity estimation. Figure 4.69 displays the same analysis for the HEO RSO and

shows there is very little difference between using either anomaly but, the use of the

mean mean anomaly is much better for estimating the mean eccentricity.
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Figure 4.68: LEO RSO TOV Posterior Mean Orbital Element Error of (a′′, e′′, f ′′)
vs (a′′, e′′, M ′′)
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Figure 4.69: HEO RSO TOV Posterior Mean Orbital Element Error of (a′′, e′′, f ′′)
vs (a′′, e′′, M ′′)
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Figures 4.70 and 4.71 plot the state tracking results of the TOV likelihood and

posterior versus the Monte Carlo analysis. The semi-major axis and eccentricity

likelihood and posterior results are computed from the (a′′, e′′, f ′′) coordinate set

but the results of Figures 4.68 and 4.69 are kept in mind. The results for the LEO

mean element case are similar to its osculating counterpart for eccentricity in that

the posterior allowed for better state estimation than the Monte Carlo analysis.

Again the Monte Carlo analysis is biased for the mean eccentricity and anomalies

due to the osculating eccentricity uncertainty being on the order of the truth. The

TOV likelihood and posterior uncertainties for the mean elements of the HEO RSO

are similar to the osculating HEO results, both oscillate around the truth with the

posterior reducing the magnitude of the error oscillation. Figures 4.72 and 4.73

compare the TOV likelihood and Monte Carlo uncertainty analysis which show, as

could be intuited from osculating results, that the magnitude of the true eccentricity

has a large impact on the uncertainty tracking.
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Figure 4.70: LEO RSO Mean Orbital Element Error vs. Monte Carlo
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Figure 4.71: HEO RSO Mean Orbital Element Error vs. Monte Carlo
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Figure 4.72: LEO RSO Mean Orbital Element Uncertainty vs. Monte Carlo
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Figure 4.73: HEO RSO Mean Orbital Element Uncertainty vs. Monte Carlo
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4.3.8 Three-Dimensional Geopotential Perturbed Motion

As a final space surveillance example, state and uncertainty estimation in the

Cartesian, osculating orbital element, and mean orbital element domains via the

TOV Bayes’ filter is carried out using topocentric measurements of a simulated J2

perturbed LEO RSO. The three-dimensional motion will be greater affected than the

two-dimensional motion since the J2 effect will be more pronounced due to changes

in latitude from the equator. The true trajectory is computed by using the Two-

Line Element(TLE) set of Hubble Space Telescope(HST) for day 23 of 2011. Only

topocentric measurements of range, azimuth, and elevation angle are recorded so

that the Herrick-Gibbs IOD algorithm is required to be carried out.

The likelihood for the osculating and mean domains is computed from the TOV

solution of the IOD process. Computation of the prior for each domain is carried out

using the linear equations native to each domain for propagation, i.e. F and G solu-

tion for Cartesian, mean anomaly for osculating elements, and Brouwer’s theory for

mean elements. The Monte Carlo solution utilized 2.5×106 corrupted measurements

of the true trajectory for computation of the numerical first and second moments.

The TOV likelihood solution utilized only the three noise corrupted measurements

to construct the PDF and approximately 1×106 evaluation points while the TOV

Bayes’ filter posterior utilized up to nine corrupted measurement points, three for

the likelihood construction and six for the prior construction, with the same amount

of evaluation points.

Since the TLE is given in mean orbital elements, it is converted to osculating

elements, shown in Table 4.5, using the first-order J2 conversion given in Appendix B.

The osculating elements are then converted to rectilinear coordinates which are used

as the initial conditions for the Two-Body J2 perturbed differential equations. The
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Cartesian solution of the motion was checked against the solution computed from

Gauss’ Variational Equations [66].

Table 4.5: Initial Conditions of HST TLE for Day 23 of Year 2011

Parameter
Original Converted

Mean Osculating
Semi-Major Axis (km) 6941.499 6943.690

Eccentricity 3.35× 10−4 1.45× 10−3

RAAN (Deg) 238.23 237.79
Inclination (Deg) 28.47 28.48

Argument of Perigee (Deg) 30.04 6.530
True Anomaly (Deg) 330.02 354.46
Mean Anomaly (Deg) 330.04 354.47

Due to the relatively low eccentricity of HST, the equinoctial form of Gauss’

Varitional Equations [72] was used to maintain numerical stability. The format of

the TLE is given in Vallado [49] as well as on the website maintained by Kelso [80]

which reports the TLEs for many different satellites from NORAD.

From the results of Section 4.3.7 and closely examining Table 4.5, the initial

osculating eccentricity of HST will prove to be a problem in reliably estimating the

eccentricity vector location and its dependent elements in the osculating domain.

Additionally, one can expect that the mean eccentricity uncertainty will be on the

order of the osculating eccentricity uncertainty due to the mapping effect already

shown and the mean argument of perigee and mean mean anomaly will be directly

affected by this mapping. However, this orbit type must still be considered since low

eccentricity is characteristic of LEO RSOs and the 28 degree inclination possesses a

rather large population of space debris [76] and is typical of launch vehicle insertions

from Cape Canaveral for geosynchronous orbits.

The location of the tracking station was set to be Socorro, NM, using sensor pa-
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rameters similar to Eglin, FL [49]. The tracking station location and sensor parame-

ters are reported in Table 4.6. For this simulation, the position of the vernal equinox

is able to calculated since the TLE reports the Universal Coordinated Time(UTC).

The trajectory of HST was simulated for a 24 hour period during which the track-

ing station was able to observe HST over three different time spans separated by

approximately 97 minutes which occurred near the end of the simulation time. The

respective lengths of the time spans were 250, 270, and 115 seconds. The results

presented are for the first track, but the results of the second and third track and

conclusions drawn from them are the same.

Table 4.6: Tracking Station Parameters for Three-Dimensional Simulation

Parameter Value
Altitude Above Sea-Level (km) 1.5102

Longitude (Deg) -106.66
Latitude (Deg) 33.82

Range Noise 1σ (km) 0.030
Azimuth Noise 1σ (Deg) 0.015

Azimuth Observation Window (Deg) [0,360]
Elevation Noise 1σ (Deg) 0.015

Elevation Observation Window (Deg) [20,90]
Measurement Frequency (sec) 19.2

4.3.8.1 Cartesian Domain Results

Figure 4.74 plots the Cartesian domain state error and uncertainty bound results

of the TOV Bayes’ filter for the first track of the J2 perturbed trajectory of HST. The

uncertainty bounds reported from the covariance analysis are four times the standard

deviation because the system is six dimensional. Figures 4.75 and 4.76 compare

the estimated state error and uncertainty of the TOV likelihood and Bayes’ filter

posterior PDF versus the numerical moments computed from Monte Carlo analysis.
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The Monte Carlo and TOV likelihood solutions for the IOD uncertainty are shown

to agree extremely well so TOV serves as a viable way to initialize either an EKF or

UKF. Figure 4.77 shows that, just as with the planar example, the TOV approach

allows for an efficient and accurate way to automate initialization of conventional

filtering algorithms.
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Figure 4.74: TOV Bayes’ Filter Operation for Track 1 Cartesian States

185



0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4
X Position Error

E
rr

o
r 

(k
m

)

 

 

P L MC

0 50 100 150 200 250
−0.3

−0.2

−0.1

0

0.1

0.2
Y Position Error

0 50 100 150 200 250
−0.6

−0.4

−0.2

0

0.2

0.4
Z Position Error

0 50 100 150 200 250
−0.015

−0.01

−0.005

0

0.005

0.01

0.015
X Velocity Error

Time (sec)

E
rr

o
r 

(k
m

/s
e

c

0 50 100 150 200 250
−0.01

−0.005

0

0.005

0.01

0.015
Y Velocity Error

Time (sec)
0 50 100 150 200 250

−0.02

−0.01

0

0.01

0.02
Z Velocity Error

Time (sec)

Figure 4.75: TOV Likelihood and Bayes’ Filter Posterior State Error Comparison
with Monte Carlo for Track 1 Cartesian States
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Figure 4.76: TOV Likelihood and Bayes’ Filter Posterior Uncertainty Comparison
with Monte Carlo for Track 1 Cartesian States
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Figure 4.77: TOV Initialization of EKF and UKF for Track 1 Cartesian States

4.3.8.2 Osculating Keplerian Domain Results

Figure 4.78 plots the osculating orbital element domain results with four stan-

dard deviation uncertainty bounds of the TOV likelihood and Bayes’ filter posterior

solutions for the first track of the J2 perturbed trajectory of HST. The results are

similar to the low eccentricity planar example where the eccentricity uncertainty is

on the order of the true uncertainty, which causes the uncertainty in argument of

perigee and mean anomaly to be significant. The low value of eccentricity leads to

the eccentricity vector direction to be not easily located, which directly impacts the

argument of perigee and true anomaly computations. The semi-major axis, right

ascension of ascending node, and inclination are not affected by the eccentricity,

whereas the argument of perigee and anomalies rely upon accurate computation of

the eccentricity vector.
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Figure 4.78: TOV Bayes’ Filter Operation for Track 1 Osculating Orbital Elements

Figure 4.78 shows that the angular momentum and node vectors are well defined

while the eccentricity vector is not, so the orbit plane and orbit size are well defined

but significant shape ambiguity exists due to the eccentricity vector not being well

defined. Figures 4.79 and 4.80 plot the state error and uncertainty results of the

TOV likelihood and Bayes’ filter versus the Monte Carlo results and the similar-

ity transform solution, Equation 3.45. The similarity transform is applied to the

TOV likelihood and Bayes’ posterior Cartesian solutions with the resulting solutions

denoted as SP and SL respectively. The similarity transform state error solution

corresponds to the state error that would be observed if one simply transformed

the Cartesian TOV solutions into the osculating domain. The partial derivatives re-

quired by the similarity transform were already computed because they were needed

for the TOV solutions, the derivatives were derived by hand, checked with previous

references, e.g. Broucke [75], and also checked symbolically using MATLAB R©.
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Figure 4.79: Track 1 Osculating Orbital Element Error for TOV Bayes’, Monte Carlo,
and Similarity Transform
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Figure 4.80: Track 1 Osculating Orbital Element Uncertainty for TOV Bayes’, Monte
Carlo, and Similarity Transform
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Figures 4.79 and 4.80 show that the similarity transform is able to track the TOV

state and uncertainty solutions for semi-major axis, right ascension of ascending node,

and inclination, but possesses large fluctuations in eccentricity, argument of perigee

and mean anomaly. It is worth noting that simply transforming the TOV Cartesian

solutions allowed for better estimation of the eccentricity, but this still did not help to

accurately estimate the argument of perigee or mean anomaly due to inconsistency.

The inability to accurately pin down the eccentricity vector led to rather large state

and uncertainty errors for all estimators for the mean anomaly and argument of

perigee states. For the argument of perigee state error, all solutions which did not

utilize previous data possessed a large constant bias of approximately 50 degrees. It

is only by utilizing additional data that the TOV Bayes’ filter was able to reduce

the amount of error in the eccentricity estimate, this helped to reduce, but did not

eliminate, the estimation error of mean anomaly and argument of perigee.

Due to the uncertainty computation results of the eccentricity, mean anomaly,

and argument of perigee parameters, the marginal PDF contours of the TOV likeli-

hood solution and the Monte Carlo solution for the second observation time of the

first track are considered for analysis. Figures 4.81 and 4.82 plot the marginal PDF

contours of the TOV likelihood and Monte Carlo solutions for the semi-major axis

at track initialization. The TOV likelihood solution is bifurcated for the eccentric-

ity, argument of perigee, and mean anomaly states because it cannot accurately pin

down the eccentricity vector, but it can estimate the node vector relatively well. For

the Monte Carlo solution, the bifurcation is apparent and the solution area is better

defined since the Monte Carlo solution samples about the true trajectory and utilizes

six orders of magnitude more points than the TOV solution. The TOV solution pos-

sesses a shorter “flow” of uncertainty in the mean anomaly and argument of perigee

domains, however the contour shapes are relatively the same with respect to the
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semi-major axis. The shorter flow is also repeated in the TOV likelihood marginal

PDF solutions with respect to eccentricity as shown by comparing Figure 4.83 to

Figure 4.84. For completeness, the remaining six marginal PDF solutions with re-

spect to the orientation parameters are shown in Appendix D, which also show the

bifurcation behavior in mean anomaly and argument of perigee.

From Figures 4.81 through 4.84, it is apparent that the Gaussian assumption of

the similarity transform is not actually valid for the osculating Keplerian variables

for this type of low Earth orbit but, it can be stretched to work for the uncertainty

bounds for the semi-major axis, eccentricity, right ascension of ascending node, and

inclination. However, in no way can the Gaussian distribution assumption be applied

to the mean anomaly or argument of perigee domains due to the shape of their PDF

solutions and would be a misguided application of the technique.
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Figure 4.81: Track 1 Osculating Orbital Element Marginal PDFs with respect to
Semi-Major Axis from TOV Likelihood Solution
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Figure 4.83: Track 1 Osculating Orbital Element Marginal PDFs with respect to
Eccentricity from TOV Likelihood Solution
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Figure 4.84: Track 1 Osculating Orbital Element Marginal PDFs with respect to
Eccentricity from Monte Carlo Solution

4.3.8.3 Mean Keplerian Domain Results

From the results of the equatorial orbit analysis, one already knows that because

the uncertainty in osculating eccentricity is on the order of the true eccentricity,

conversion of the osculating domain solutions to the mean domain for the eccentricity,

argument of perigee, and mean anomaly will provide little insight into the problem.

However, they are presented in order to show the effect of the significant eccentricity

uncertainty in the mean domain, as well as assess the behavior of a second application

of the similarity transform. Figure 4.85 plots the mean orbital element domain results

with four standard deviation uncertainty bounds of the TOV Bayes’ filter for the first

track of the J2 perturbed trajectory of HST with the tracking accuracy results similar

to the osculating results.
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Figure 4.85: TOV Bayes’ Filter Operation for Track 1 Mean Orbital Elements

Figures 4.86 and 4.87 compare the state error and uncertainty of the TOV likeli-

hood and posterior solutions versus the Monte Carlo results and the similarity trans-

form of the osculating similarity transform solution. The similarity transform for

mean elements is computed by applying Equation 3.45 twice to the Cartesian TOV

solutions since it is assumed that the osculating TOV results would not be available.

Figure 4.86 shows the Monte Carlo state solution possesses not only strong bias in

the mean eccentricity, mean anomaly, and argument of perigee coordinates, but also

a bias in mean right ascension of ascending node is apparent. Figure 4.87 shows

that the similarity transform solution for mean element uncertainty possesses much

higher fluctuations than the Monte Carlo or TOV solutions and does not behave in

a consistent manner for any of the states.
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Figure 4.86: Track 1 Mean Orbital Element Error for TOV Bayes’, Monte Carlo,
and Similarity Transform
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Figure 4.87: Track 1 Mean Orbital Element Uncertainty for TOV Bayes’, Monte
Carlo, and Similarity Transform
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The marginal PDF contour results are presented in Appendix D and are similar

to their counterparts in the osculating domain. The TOV mean solution hints at

bifurcated behavior for the mean mean anomaly and argument of perigee, but the

Monte Carlo solution shows stronger evidence of a bifurcated solution in the two

coordinates. Additionally, the Monte Carlo mean right ascension of ascending node

solution starts to show a bifurcated solution with relatively equal likelihoods, unlike

the mean anomaly and argument of perigee where the likelihood is much stronger

for one than the other. However, the bifurcated mean right ascension of ascending

node solution only occupies a small angular region, approximately 1 degree instead

of 360 degrees for the its coordinate counterparts, so the location of the node vector

is still well known in mean element space. The results of the second and third track

follow closely the preceding results so they are not shown.

4.3.8.4 Increased Initial Osculating Eccentricity Results

As could be intuited from the planar perturbed Keplerian motion example in

Section 4.3.7, having the estimation uncertainty of the osculating eccentricity be on

the order of the true eccentricity renders the orientation of the eccentricity vector

ill-observed. This introduces significant uncertainty in the computation of mean

anomaly and argument of perigee because they are directly dependent upon the

eccentricity estimate and its uncertainty, which impact the mean element domain

uncertainty computation. In the same spirit as the results presented for equato-

rial motion, the initial osculating eccentricity of the HST orbit is increased by an

order of magnitude to 1.45 × 10−2 while holding the other parameters constant.

This increase in eccentricity changes the orbit’s perigee and apogee altitudes from

(555.485,575.622)kilometers to (464.870, 666.237)kilometers. From Figure 4.80, the

large difference between apogee and perigee is well outside the one standard devia-
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tion of the semi-major axis from the TOV likelihood so the eccentricity vector should

be well observed.

Figure 4.88 plots the Cartesian domain state error and uncertainty bound results

of the TOV Bayes’ filter for the first track of the J2 perturbed trajectory of the

HST TLE using the osculating eccentricity increased by an order of magnitude.

Figure 4.89 compares the estimated uncertainty of the TOV likelihood PDF and

the TOV Bayes’ filter posterior PDF versus the numerical uncertainties computed

from Monte Carlo analysis. The initialization results of the EKF and UKF are not

shown because their convergent behavior is similar to that of the original osculating

eccentricity results.
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Figure 4.88: Increased Eccentricity TOV Bayes’ Filter Operation for Track 1 Carte-
sian States
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Figure 4.89: Increased Eccentricity TOV Likelihood and Bayes’ Filter Posterior Un-
certainty Comparison with Monte Carlo for Track 1 Cartesian States

Figure 4.90 plots the osculating element error and uncertainty results of the TOV

Bayes’ filter for the first track of the J2 perturbed trajectory of the altered TLE.

Increasing the eccentricity by an order of magnitude drastically improved the state

estimation results and significantly reduced the uncertainty bounds for the mean

anomaly and argument of perigee. The standard deviation of eccentricity error is

an order of magnitude less than the true osculating eccentricity magnitude, which

could not be said for original eccentricity case. Note that the uncertainty bounds

for semi-major axis, eccentricity, right ascension of ascending node, and inclination

are only slightly less than the original eccentricity case but the argument of perigee

and mean anomaly uncertainty bounds are smaller by approximately an order of

magnitude.
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Figure 4.90: Increased Eccentricity TOV Bayes’ Filter Operation for Track 1 Oscu-
lating Orbital Elements

Figure 4.91 plots the state error of the TOV solutions, similarity transform, and

Monte Carlo results. The figure shows that with the increase in magnitude of the

eccentricity, the Monte Carlo results no longer possess any significant bias in any of

the states, which could not be said for the original eccentricity case.
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Figure 4.91: Increased Eccentricity Track 1 Osculating Orbital Element Error for
TOV Bayes’, Monte Carlo, and Similarity Transform

Figure 4.92 plots the osculating state domain uncertainty results of the TOV, sim-

ilarity transform, and Monte Carlo analysis. The figure demonstrates that all three

solutions are in good agreement with one another. The reason why the similarity

transform closely tracks the TOV solutions is shown in Figure 4.93, which displays

that the marginal PDFs of the TOV likelihood solution, for the first time in the

track where the Herrick-Gibbs IOD algorithm could be applied then mapped to the

osculating domain, can be approximated by a Gaussian so the similarity transform

could be applied. Figure 4.93 matches very well with the Monte Carlo generated

PDF contour plot as shown in Figure 4.94. The other marginal PDFs from the TOV

likelihood analysis closely mimic their Monte Carlo counterparts and are shown in

Appendix D.
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Figure 4.92: Increased Eccentricity Track 1 Osculating Orbital Element Uncertainty
for TOV Bayes’, Monte Carlo, and Similarity Transform
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Figure 4.93: Increased Eccentricity Track 1 Osculating Orbital Element Marginal
PDFs with respect to Semi-Major Axis from TOV Likelihood Solution
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Figure 4.94: Increased Eccentricity Track 1 Osculating Orbital Element Marginal
PDFs with respect to Semi-Major Axis from Monte Carlo Solution

The uncertainty bounds in Figure 4.93 for semi-major axis, eccentricity, right

ascension of ascending node, and inclination are only slightly less than the original

eccentricity case, but the argument of perigee and mean anomaly uncertainty bounds

are smaller by approximately an order of magnitude compared with Figure 4.81.

With this much improved PDF behavior, Figure 4.95 displays the state error and

covariance bounds results for the TOV likelihood and Bayes’ filter solutions. When

compared with the original eccentricity solution, shown in Figure 4.85, the increased

observability of perigee allows for the mean argument of perigee and mean mean

anomaly solutions to be better defined.
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Figure 4.95: Increased Eccentricity TOV Bayes’ Filter Operation for Track 1 Mean
Orbital Elements

Figure 4.96 plots the state error for the TOV solutions, similarity transform,

and Monte Carlo analysis. The figure shows no significant bias is present for the

Monte Carlo solution, and the similarity transform of the Herrick-Gibbs solution to

the mean element domain closely follows that of the TOV solutions. Figure 4.97

shows that the similarity transform solution for the mean domain does an acceptable

job of tracking the TOV and Monte Carlo solutions for the mean semi-major axis,

right ascension of ascending node, and inclination, but overestimates the eccentricity

uncertainty by approximately 50%. The mean element marginal PDFs closely follow

the shape of the osculating marginal PDFs, with the TOV likelihood analysis closely

mimicking the Monte Carlo analysis, the results are shown in Appendix D
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Figure 4.96: Increased Eccentricity Track 1 Mean Orbital Element Error for TOV
Bayes’, Monte Carlo, and Similarity Transform
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Figure 4.97: Increased Eccentricity Track 1 Mean Orbital Element Uncertainty for
TOV Bayes’, Monte Carlo, and Similarity Transform
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From the mean anomaly and argument of perigee results, the magnitude of ec-

centricity plays a critical role in the estimation of a RSO’s location in the orbit plane

with respect to perigee. An alternative could be to use the equinoctial elements [72]

or another nonsingular element set such as that used by Alfriend et al. [77]. Alter-

natively, instead of osculating mean anomaly one could use argument of latitude,

u = ω + f , which is computed from angular momentum and the ECI Cartesian po-

sition vector but, argument of perigee is still required so that the Cartesian velocity

vector can be computed from the orbital element set. Assuming one were to proceed

down this path, Figure 4.98 plots the TOV Bayes’ filter and Monte Carlo uncertainty

results using the original osculating elements of HST and using argument of latitude

instead of mean anomaly.
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Figure 4.98: HST Track 1 Osculating Orbital Element Uncertainty for TOV Bayes’
and Monte Carlo using Argument of Latitude instead of Mean Anomaly

Figure 4.98 shows that good Monte Carlo uncertainty tracking can be achieved
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by using Keplerian states that do not require eccentricity directly in their calcula-

tion, however the argument of perigee uncertainty is still poor. One could take the

approach of Izsak [57] and adopt the Hill set of range, argument of latitude, and

right ascension of ascending node as the coordinates with the conjugate momenta

given by range-rate, G =
√
µa(1− e2), and H = G cos(i) but, this set requires range-

rate to be either directly measured or determined via smoothing. More importantly,

by getting rid of the mean anomaly variable, one loses the ability to propagate lin-

early in time and one must convert to mean anomaly in order to use mean element

theory. The nonsingular equinoctial-like elements which use a composite longitude,

λ = ω + Ω + M , are an enticing set to explore along with the fact that Alfriend

et al. [77] have derived the first-order transformation between mean and osculating

domains as well as the mean element propagation equations.

4.4 Spacecraft Attitude Filtering

This section compares the state differential correction results of the MEKF and

TOV Bayes’ filter for attitude estimation of a slow-spinning spacecraft using a noise

corrupted body frame measurements of reference stars and a rate gyro. Different

sampling frequencies are examined to show filter sensitivity to measurement sparsity

and the filters are also compared against the q-Method [60, 61] attitude determina-

tion algorithm with respect to principal angle of the attitude error matrix. The q-

Method, Appendix E, is used for comparison since it computes the attitude estimate

in quaternion form, which is also the basis of many modern attitude determination

methods. The simulation was run for 300 seconds with the simulation constants

given in Table 4.7.
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Table 4.7: Simulation Conditions for Slow Spinning Spacecraft

Parameter Value

Initial Attitude
[0.4020 0.0886 − 0.8546 0.3165]T

(True: q̂True,0)

Initial Attitude Estimate
[0.4028 0.0888 − 0.8543 0.3164]T

(q̂Estim,0)

Vehicle Angular Velocity [0.0 0.1 0.0]TRad/Sec

Measurement Noise
σMeas = 20 (9.7× 10−5) Arseconds (Rad)

(vK ∼ N (03×3, σ
2
MeasI3×3))

Field of View
[10, 12] Deg x Deg

[θX , θY ]

Max Star Visual Magnitude 6

The initial state estimate, which is used by both the MEKF and Bayes’ filter, is

computed by taking the true attitude and corrupting it with a multiplicative error

model assuming a zero mean Gaussian angle error with standard deviation of 0.1

degrees. However, the initial estimate for the filters could also be computed from

the q-Method then sequential iterated upon.

Five different sampling, propagation, intervals were examined: [1, 5, 10, 20, 25]

seconds. The measurements from the rate gyro were assumed to be uncorrupted to

evaluate the utility of the construction of the prior without considering the effects of

process noise. The attitude error for the filters and q-Method is defined as the prin-

cipal angle of rotation resulting from the the product of the true attitude direction

cosine matrix and the transpose of the direction cosine matrix computed from the

attitude determination routine, Equation (4.64), at evaluation time K.

∆ = CTrue,KC
T
Est,K = C (q̂True,K)C (q̂Estim,K)T

φ = arccos
{

1

2
(trace (∆)− 1)

} (4.64)
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In keeping in the same spirit as previous examples, a Monte Carlo solution for the

differential corrections was computed for comparison with the TOV Bayes’ filter. The

solution was computed by computing NTrials =1000 corrupted body frame measure-

ments for each star that was in the Field-of-View then computing the direction cosine

matrix corresponding to each corrupted measurement by applying Equation (3.72)

using the propagated previous quaternion estimate. This yielded a matrix of size

[3× (1000nMeas)], nMeas= total number of stars in the Field-of-View. Using this

Monte Carlo resultant matrix, a solution of the estimated update and corresponding

covariance were computed using the numerical representations of the first and second

moments of a random vector, Equation (4.65).

δ̄qK =
1

NTrials × nMeas

NTrials×nMeas∑

i=1

(C (δq)→ δq)i,K

PK =
1

NTrials × nMeas − 1

NTrials×nMeas∑

i=1

(
residi,K residTi,K

)

residi,K = (C (δq)→ δq)i,K − δ̄q

(4.65)

4.4.1 Principal Angle of Attitude Error Matrix Results

Figures 4.99 through 4.103 plot the principal angle of the attitude error for the

MEKF, q-Method, and TOV Bayes’ filter for the different measurement time inter-

vals. Two different results of the Bayes’ filter are plotted, one showing the results

of TOV likelihood, TOVL, and the second showing the results of using the previous

measurement time’s observations, TOV1, to compute a prior density for the domain

of the differential corrections for the vector part of the quaternion.

From the figures, it is apparent that the TOV Bayes’ filter has better perfor-

mance with respect to error compared to the MEKF for approximately the first

50 seconds. Around 50 seconds, the MEKF is able to converge to a steady-state
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covariance solution for the differential correction estimate. Additionally, the TOV

likelihood solution at the initial measurement time possesses much less error than

the MEKF or q-Method. Comparison of the TOV likelihood solution to the TOV

Bayes’ posterior shows that consideration of measurements at the previous measure-

ment time has a smoothing effect on the differential state estimate and reduces the

variance of the solution time history. This smoothing effect reduces the amount of

overall attitude error accrued over the simulation time.
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Figure 4.99: Attitude Error Time History with Measurements Every 1 Second
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Figure 4.100: Attitude Error Time History with Measurements Every 5 Seconds
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Figure 4.101: Attitude Error Time History with Measurements Every 10 Seconds
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Figure 4.102: Attitude Error Time History with Measurements Every 20 Seconds
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Figure 4.103: Attitude Error Time History with Measurements Every 25 Seconds
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4.4.2 Error and Covariance Performance of MEKF and TOV Bayes’

Filter Results

Figures 4.104 through 4.105 plot the error and covariance results for the MEKF

for all three differential correction angles. The covariance bounds plotted are the

3σ bounds from the square root of the diagonal of the covariance matrix produced

by the filter. Only the 1 second sampling and 25 second sampling instances are

shown because the behavior for the other three trials follows suit. Examination of

the diagonal element behavior of the MEKF covariance shows that at approximately

50 seconds the variance stops changing which coincides with the principal angle of

attitude error results.

Figures 4.106 through 4.110 plot the error and covariance results for the TOV

Bayes’ filter for all three differential correction angles. For the TOV Bayes’ filter,

the results had to be multiplied by an additional factor of two since the filter dealt

with the quaternion corrections directly and not the differential angles as the MEKF

did. Examination of the TOV Bayes’ filter uncertainty bounds verifies the results of

the principal angle of attitude error results in that the variance of the nonuniform

prior density reduced the uncertainty bounds for the primary and second angles,

while the tertiary angle differential correction bounds remained relatively unchanged.

Comparison of the magnitude of the bounds between the TOV Bayes’ filters and

the MEKF show that the MEKF possesses tighter bounds, which is to be expected

because of the pole shifting nature of the covariance update in the Kalman filter which

minimizes the trace of the updated covariance. However, increasing the number of

prior data used in construction of the nonuniform prior density will cause the same

effect so long as the filter is converging.
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Figure 4.104: MEKF Quaternion Vector Correction Error and 3σ Bounds with Mea-
surements Every 1 Second
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Figure 4.105: MEKF Quaternion Vector Correction Error and 3σ Bounds with Mea-
surements Every 25 Seconds
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Figure 4.106: TOV Bayes’ Filter Quaternion Vector Correction Error and 3σ Bounds
with Measurements Every 1 Second
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Figure 4.107: TOV Bayes’ Filter Quaternion Vector Correction Error and 3σ Bounds
with Measurements Every 5 Seconds
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Figure 4.108: TOV Bayes’ Filter Quaternion Vector Correction Error and 3σ Bounds
with Measurements Every 10 Seconds
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Figure 4.109: TOV Bayes’ Filter Quaternion Vector Correction Error and 3σ Bounds
with Measurements Every 20 Seconds
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Figure 4.110: TOV Bayes’ Filter Quaternion Vector Correction Error and 3σ Bounds
with Measurements Every 25 Seconds

4.4.3 Monte Carlo State Error and Covariance Tracking

Performance of TOV Bayes’ Filter Results

Figures 4.111 through 4.120 compare the state error and covariance results of

the Monte Carlo analysis and the TOV likelihood and TOV Bayes’ filter using a

prior PDF generated from the previous measurement time. On average, the like-

lihood state solution was better able to track the Monte Carlo solution, but both

TOV solutions possessed biases, which was also encountered in previous examples.

The figures show that the TOV likelihood was better able to track the Monte Carlo

covariance solution in some instances while in others the reverse was true but, con-

struction of a prior density allowed for better tracking of the Monte Carlo covariance

and reduced the amount of oscillation in attitude error, as alluded to before. The

former result is to be expected since using only the likelihood solution allows for less

incursion of a biased solution due to propagation in a biased previous solution.
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Figure 4.111: TOV Bayes’ Filter Error Angle Tracking of Monte Carlo Solution with
Measurements Every 1 Second

0 50 100 150 200 250 300
0

0.01

0.02

ToV Bayes’ Filter Operation : Meas Interval = 1 sec
First Angle (α

1
) Uncertainty versus Time

σ 1

0 50 100 150 200 250 300
0

0.005

0.01

Second Angle (α
2
) Uncertainty versus Time

σ 2

0 50 100 150 200 250 300
0

0.005

0.01

Second Angle (α
3
) Uncertainty versus Time

Time (sec)

σ 3

 

 

MC ToV
L

ToV
1

Figure 4.112: TOV Bayes’ Filter Standard Deviation Tracking of Monte Carlo Solu-
tion with Measurements Every 1 Second
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Figure 4.113: TOV Bayes’ Filter Error Angle Tracking of Monte Carlo Solution with
Measurements Every 5 Seconds
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Figure 4.114: TOV Bayes’ Filter Standard Deviation Tracking of Monte Carlo Solu-
tion with Measurements Every 5 Seconds
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Figure 4.115: TOV Bayes’ Filter Error Angle Tracking of Monte Carlo Solution with
Measurements Every 10 Seconds
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Figure 4.116: TOV Bayes’ Filter Standard Deviation Tracking of Monte Carlo Solu-
tion with Measurements Every 10 Seconds

219



0 50 100 150 200 250 300
0

1

2

3

4

5

6x 10
−3

Time (sec)

P
rin

ci
pa

l A
ng

le
 Φ

 (
de

g)

Plot of Attitude Error Principal Angle vs. Time
Meas Interval = 20 sec

Φ is principal angle of ∆ = C
True

C
Est
T

 

 

MC ToV
L

ToV
1

Figure 4.117: TOV Bayes’ Filter Error Angle Tracking of Monte Carlo Solution with
Measurements Every 20 Seconds
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Figure 4.118: TOV Bayes’ Filter Standard Deviation Tracking of Monte Carlo Solu-
tion with Measurements Every 20 Seconds
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Figure 4.119: TOV Bayes’ Filter Error Angle Tracking of Monte Carlo Solution with
Measurements Every 25 Seconds
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Figure 4.120: TOV Bayes’ Filter Standard Deviation Tracking of Monte Carlo Solu-
tion with Measurements Every 25 Seconds
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5. CONCLUSIONS

5.1 Conclusions

In this work, application of the transformation of variables technique provided

valuable assessment of the impact nonlinear transformations have on the uncertainty

associated with indirectly observed states, with particular focus to space surveillance

and spacecraft attitude estimation applications. The technique exactly mapped an-

alytic forms of probability density functions between spatial and temporal domains

instead of proposing higher order corrections to lower order moments or numeri-

cally or heuristically approximating the state probability distribution. The nonlin-

ear transformations investigated consisted of spatial domain mappings as well as

spatial-temporal mappings used to estimate velocity level states when only position

level measurements were available. By effectively utilizing all available information,

the transformation of variables technique enabled an analytical approach to hypoth-

esis testing and uncertainty characterization of poorly known system parameters for

mathematical model refinement.

Transformation of variables demonstrated that the Gaussian assumption typically

used for the likelihood and posterior state distributions may not always be appro-

priate, due to nonlinearities and non-constant scale factors introduced by nonlinear

transformations. The approach was also shown to provide an analytical criterion for

the particular conditions under which the similarity transform, commonly applied to

map state uncertainties, could be appropriately applied. Application of the technique

to commonly encountered nonlinear transformations demonstrated the presence of

higher order moments and complicated correlations for certain states. This behavior

is in contrast to conventional nonlinear filters which assume statistical behavior only
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up through the second moment and that the state distribution exhibits symmetry.

Since the technique allowed for direct utilization of probability density functions,

Bayes’ Theorem was able to be directly applied to compute the appropriate state

posterior probability density function, after calculation of the likelihood and prior

probability density functions. The likelihood probability density function, computed

from the measurement domain, allowed the filter to capture the actual state distri-

bution dispersion relatively accurately, compared with Monte Carlo analysis of the

process. The transformation of variables technique was applied to map the state pos-

terior distribution at a previous time to the present measurement time to serve as

prior distribution, which reduced the state error and uncertainty. The approach for

construction of the prior via transformation of variables was found to be acceptable

because the technique was shown to yield the same solution as Liouville’s equation,

which describes the evolution of distribution functions for conservative systems.

From the examples shown, the transformation of variables technique allows for

appropriate quantification of state uncertainty and correlation due to nonlinear trans-

formations of domain variables. The technique was shown to accurately account for

how uncertainty is mapped across domains, which allows for confirmation or refu-

tation of the uncertainty distribution in the desired domain. From the linear mini-

mal smoother, nonlinear over-constrained smoother, and state differential correction

examples, transformation of variables provided correct assessment of the state un-

certainty and correlation impact. As a byproduct of appropriately accounting for

nonlinear transformations, the technique was shown to be a good candidate for au-

tomating state and covariance initialization of conventional nonlinear filters, which

improved filter operation. Direct computation of the likelihood and prior probability

density functions enabled application of Bayes’ Theorem in recursive fashion, which

produced more accurate state tracking results than the likelihood solution alone.
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The constructed Bayes’ filter facilitated appropriate combination of sensor measure-

ments, state estimates, and state propagation in different domains while conserving

uncertainty across all the utilized domains.

For the linear system examples of the arcing mass and linear oscillator, state es-

timates of the Bayes’ filter using transformation of variables were found to improve

as additional data was utilized since the prior distribution was able to better pin-

point areas of maximum likelihood. In cases of position only measurements with the

requirement of position and velocity estimation, the Bayes’ filter/smoother utilizing

transformation of variables was found to produce position error results comparable to

the full sensing case with somewhat larger velocity errors. The likelihood solution of

the uncertainty and correlation due to the smoothing process was found to mimic the

Monte Carlo simulation of the smoothing process. The larger errors in the velocity

estimate were to be expected and were attributed to the smoothing algorithm used

to estimate velocity states from corrupted position data. The likelihood solution was

found to be effective in initializing the state estimate and covariance of the extended

Kalman filter, using only the analytic form of the measurement domain probability

density function and the measurement data at the initial time. The linear oscillator

example demonstrated that the algorithm could be effectively applied to surveillance

applications where significant data drop-outs exist between tracks. When damping

was treated as an unknown parameter, the presented algorithm was shown to be

a viable means to estimate system parameters and their associated uncertainties.

Use of the constructed posterior density to hypothesize on the damping coefficient

provided a reliable means to generate confidence bounds on the parameter estimate

even when significant gaps existed between observations.

In the space surveillance examples, the transformation of variables technique was

effectively employed to map the probability density function of the sensor domain to
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many different state domains depending on the type of problem considered. In all

the space surveillance examples considered, the transformation of variables approach

allowed for successful construction of an accurate filter which used a limited amount

of data but, was able to appropriately assess the uncertainty and correlation effects

of a nonlinear smoother. Analysis of the transformation from spherical measure-

ment frame to the Cartesian frame enabled effective assessment of the uncertainty

and correlation associated with the Herrick-Gibbs initial orbit determination rou-

tine. By appropriately accounting for the state uncertainty and correlation due to

the nonlinear smoother, the technique was shown to be a viable option for automat-

ing the initialization of the extended and unscented Kalman filters. Comparison of

the transformation of variables likelihood solution to the Monte Carlo solution of

nonlinear smoother using nonlinear measurements of state variables showed that one

now has an analytic, instead of heuristic, way to estimate state correlation or uncer-

tainty for initializing the covariance of conventional nonlinear filters. The automated

initialization improved the convergence of the extended Kalman filter and reduced

the error fluctuation of the unscented Kalman filter. Automated initialization of the

covariance for the extended and unscented Kalman filters was shown to drastically

increase the tracking performance of state uncertainty and correlation.

For the planar Keplerian motion examples, analysis of the transformation to the

osculating orbital element frame allowed the use of a single linear equation for state

propagation. Additionally, the use of mean anomaly was shown to produce more ac-

curate state estimation results than use of true anomaly across different orbit types.

The orbit eccentricity was found to play a vital role in the uncertainty estimation

of argument of perigee and mean anomaly. As the considered orbit types became

more circular, the eccentricity vector location became less defined, this lead to larger

uncertainty into how to appropriately split the argument of latitude. The recom-
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mendation of using nonsingular elements was posed for simplicity so that one did

not have to switch between domains depending upon orbit type. The transformation

of variables approach was able to show when the singular nature of the element set

was starting to affect state estimation and a switch to a nonsingular element set was

needed, e.g. when state uncertainty was of the same order as the state estimate.

Transformation of variables was further applied to a three-dimensional geopoten-

tial perturbed orbit and demonstrated effective combination of different domains for

state uncertainty and correlation characterization. The measurements were made in

the spherical domain while the Cartesian domain was used for initial orbit determi-

nation and the mean element domain was used for uncertainty propagation.

As orbit eccentricity grew closer to zero, the osculating argument of perigee and

mean anomaly were affect the most. When mean anomaly was exchanged for argu-

ment of latitude, the state uncertainty was well characterized and only the argument

of perigee element possessed significant error. However, by exchanging argument of

latitude for mean anomaly, one loses the ability to linearly propagate in time which is

the lure of the osculating domain. When the osculating domain was mapped into the

mean element domain, all orbital elements were affected due to dependence on the

osculating eccentricity, whose error was on the order of the true value for both the

transformation of variables and Monte Carlo solutions. The accuracy of the similar-

ity transformation for mapping state covariance between domains was also examined

and shown to be inappropriate for cases of low eccentricity and only applicable for

certain states the mean element domain. For orbit types without the eccentricity

singularity affecting state uncertainty, the similarity transformation worked rather

well as an approximation. However, the similarity transform solution relied heav-

ily upon the transformation of variables solution of the Herrick-Gibbs initial orbit

determination routine which closely agreed with the Monte Carlo solution.
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The attitude determination example demonstrated that the transformation of

variables technique could be applied with Bayes’ Theorem to effectively estimate

differential corrections to state variables in lieu of direct state estimation. The com-

putational burden of the transformation of variables Bayes’ filter was more than

that of the multiplicative extended Kalman filter but, as the measurement sampling

rate decreased the transformation of variables filter possessed a more accurate solu-

tion. The likelihood solution of the transformation of variables approach possessed

lower error than the multiplicative extended Kalman filter until the Kalman filter

covariance solution reached steady-state operation.

5.2 Future Work

Coupling the damped linear oscillator, with observation gaps and model uncer-

tainty, results with the space surveillance examples, the transformation of variables

Bayes’ filter approach appears to be a good candidate for estimating the ballistic co-

efficient of objects in the low Earth orbit. This would be a good extension to pursue

since the two-line element set for the object reports a ballistic coefficient using a can-

nonball drag model. Since differential correction is often used for computation of the

element set, transformation of variables would be able to directly assess the amount

of uncertainty associated with the lumped parameter estimation scheme. Continuing

along the hypothesis testing line of thought, if an object is observed using only angles

and/or angular rates, the associated range and range-rate could be hypothesized us-

ing domain constraints from prior work performed in the astrodynamic community

for angles-only tracking, e.g. energy and other visibility constraints.

The approach presented could also be used for correlating successive object tracks

by propagating the uncertainty, in a canonical space where the momenta are con-

stant, to the next estimated time of object passage and comparing the result with
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the measurement likelihood at that time. This could be attractive to the space

surveillance community since object states are reported in mean elements where the

conjugate momenta are constant, producing a linear time update for the coordinates.

With respect to sensor tasking, the technique could be used to determine if additional

tracking resources need to be devoted to an object, depending upon the amount of

information provided by a given sensor or combination of different sensors or sensor

sites.

As alluded to in the attitude determination example, the algorithm in this work

did not consider an update to the noise corrupted gyro measurement. Since the

effect of process noise was not considered in this research, it should be considered to

see if an acceptable approximation to the Fokker-Planck-Kolmogorov equation can

be computed for certain applications with nonconservative perturbing forces or pro-

cesses with a higher degree of uncertainty. The technique could also be employed for

rendezvous or proximity operations to more accurately determine when or if the un-

certainty volumes of two objects will coincide. This could be done similarly to object

correlation with the objects’ respective probability density functions propagated to

a common epoch and compared. The amount of probability density function overlap

could then be used as a metric for determining if vehicles should maneuver or it they

should be more closely monitored to prevent unnecessary fuel usage.
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APPENDIX A

TWO-BODY ORBITAL MECHANICS

This appendix serves to introduce the geometry and equations of motion associ-

ated with what is known as the “Two-Body Problem”, involving only two objects

with one object assumed to be much more massive than the other, e.g. the Earth

and a closely orbiting spacecraft. First, the inertial and relative coordinate frames

are discussed along with time since the Earth cannot be considered fixed over long

periods of time. Second, the fundamental Two-Body equations of motion are in-

troduced along with equations accounting for perturbing forces such as drag and

the nonspherical shape of the Earth. Finally, state descriptions in domains other

than Cartesian and their relative transformations are introduced to allow for more

a intuitive study of Two-Body motion since the motion is curvilinear and not recti-

linear. This appendix was compiled using the discussions of Vallado [5], Schaub and

Junkins [66], Battin [72], and Montenbruck and Gill [74].

A.1 Coordinate Frames of the Two-Body Problem

The state vector solution of the space surveillance problem requires the use of

multiple frames of reference with differing coordinate systems. The equations of mo-

tion of the space object are with respect to an inertial frame of reference, ECI, while

the tracking station(s) make observations in a Earth-Centered Earth-Fixed frame,

ECEF. To further complicate matters, tracking station(s) produce observations in

coordinate systems that are translated and may be rotated with respect to the ECEF

frame. The modeling of tracking stations with respect to the satellite is performed

using common modeling assumptions and methods [5].
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The ECI reference frame has its origin at the Earth’s center and is described by

the primary axis pointing toward the Vernal Equinox, tertiary axis points toward

the North Pole, and the secondary axis completing the right-handed triad. The

primary and secondary axes of the ECI frame lie in the equatorial plane of the

Earth. Establishing the position of the Vernal Equinox on the equator on January

1, 2000 as a datum allows for this reference frame to be considered inertial so that

Newton’s laws are valid. The ECEF reference frame is established with the primary

axis pointing from the center of the Earth out along the equatorial plane through

the line of Greenwich, England longitude. The tertiary axis of ECEF is aligned with

the tertiary axis of the ECI reference frame and the secondary axis of ECEF points

due East in the equatorial plane.

The precession of the equatorial plane is neglected in this analysis and only pre-

cession of the Vernal Equinox is assumed to differentiate the ECI and ECEF ref-

erence frames, see Section A.1.2 for justification of assumption. Transformation of

ECI frame coordinates to ECEF coordinates utilizes Greenwich Mean Sidereal Time,

θGMST , which describes the precession of the Vernal Equinox with respect to the lon-

gitude of Greenwich, England and assuming a counter-clockwise rotation about the

tertiary axis of the ECI frame. The Cartesian position of a satellite calculated from

the necessary equations of motion in inertial frame, rECI , can be expressed in ECEF

frame by Equation (A.1).

rECEF = Rot [3, θGMST ] rECI (A.1)
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The common orthogonal triad rotations are given by Equation (A.2).

Rot [1, φ] =




1 0 0

0 cosφ sinφ

0 − sinφ cosφ




Rot [2, θ] =




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




Rot [3, ψ] =




cosψ sinψ 0

− sinψ cosψ 0

0 0 1




(A.2)

The above rotations can be generated using Euler’s Theorem of Principal Rota-

tion [66], where any rotation can be described by a single rotation through a principal

angle, Φ, about a principal axis, ê. The above rotations from an inertial frame to

body frame can then be generated according to Equation (A.3)

Rot [ê,Φ] = cos(Φ)13×3 + (1− cos(Φ)) êêT − sin(Φ) [ê×] (A.3)

To generate a rotation about the primary axis by an angle φ, set Φ = φ and

ê = [1 0 0]T . For compactness in the above equation the identity matrix and the

skew-symmetric cross-product matrix are expressed as shown in Equations (A.4)
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and (A.5).

I:
n×n

=




1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1




(A.4)

[α×] =




0 −α3 α2

α3 0 −α1

−α2 α1 0




(A.5)

Greenwich Mean Sidereal Time is calculated using the present Julian Date, the

number of days elapsed since January 1, 4713 B.C., modified to correct for polar

motion so the time is independent of station location. The equation to calculate

θGMST in degrees from arcseconds is given by Equation (A.6).

θsGMST =67310.54841s + (876600 ∗ 3600s + 8640184.812866s)TUT1+

0.093104T 2
UT1 − 6.2× 10−6T 3

UT1

θsGMST =MOD (θsGMST , 86400s)

θGMST =θsGMST ×
1 degree

240 seconds

(A.6)

The MOD procedure is the modulus procedure to resolve θsGMST inside of 86400

seconds. The universal time correction, TUT1, is calculated from the Julian Date using

Equation (A.7) given the observation time formatted in military time, HR:MIN:SEC,

with the year given by 4 digits, the FLOOR operation is merely rounding the resul-
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tant down.

TUT1 =
JD − 2451545.0

36525

JD = 367 ∗ YR− FLOOR





7
(
YR + FLOOR

{
MO+9

12

})

4



+ FLOOR

{
275MO

9

}

+ DAY + 1721013.5 +

SEC
60

+MIN

60
+ HR

24

(A.7)

A.1.1 Conversion of Topocentric Measurements to ECI

The Earth is modeled as a perfect sphere with a radius, R�, of 6378 kilometers.

The Cartesian position of the tracking station in ECEF frame is by Equation (A.8)

in spherical coordinates according to the tracking station’s latitude from the equator,

φ, and longitude from the Prime Meridian, λ.

RT.S.−ECEF = (R� + TSalt)




cosλ cosφ

sinλ cosφ

sinφ




= (R� + TSalt)ψ (λ, φ) (A.8)

The tracking station will observe topocentric measurements which must be related

to ECEF frame to carry out further analysis. The line-of-sight position vector, ρECEF

is calculated from Equation (A.9) given the locally observed slant range to satellite,

ρ, and topocentric right ascension and declination, αTOPO and δTOPO respectively.

The line-of-sight vector as defined by the differencing of the space object position

and tracking station location is expressed in coordinates relative to the ECEF axes.

The topocentric right ascension and declination angles are defined relative to the
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ECI coordinate frame.

ρECEF = rECEF−RT.S.−ECEF = ρ




cos(αTOPO) cos(δTOPO)

sin(αTOPO) cos(δTOPO)

sin(δTOPO)




= ρψ (αTOPO, δTOPO)

(A.9)

The line-of-sight vector in ECEF coordinates is not intuitive for an observer at

a tracking station which far removed from the equator so the line-of-sight vector is

expressed in terms of the “Local Vertical - Local Horizontal” with respect to the

tracking station location. This is accomplished through a rotation about the tertiary

ECEF axis then a rotation about the resulting secondary axis to yield either the Up-

East-North, (UEN), triad or the South-East-Up, (SEZ), triad. This study utilizes

the SEZ triad coordinate system with Cartesian position vector given according to

Equation (A.10).

ρSEZ = Rot [2, π/2− φ] Rot [3, λ]ρECEF = ρ




− cos(el) cos(β)

cos(el) sin(β)

sin(el)




(A.10)

From the above result, the range, azimuth, and elevation of a space object viewed

by of an observer at a given tracking station location, with latitude and longitude

245



(φ, λ), are given by Equation (A.11).

Range : ρSEZ =‖ρSEZ‖ =
(
ρ2
S + ρ2

E + ρ2
Z

)1/2

Elevation : el = arctan

{
ρZ

(ρ2
S + ρ2

E)
1/2

}

If Elevation Angle is Not 90 degrees :

Azimuth : β = arctan

{
ρE
−ρS

}

If Elevation Angle is Not 90 degrees :

Azimuth : β = arctan

{
ρ̇E
−ρ̇S

}

(A.11)

The velocity of the tracking station location in ECEF is zero because the tracking

station remains fixed in ECEF frame. The velocity of the tracking station relative

to the ECI frame is not zero due to the rotation of the Earth relative to the Vernal

Equinox. The velocity of the tracking station relative to the ECI frame can be found

using the transport theorem, Equation (A.12), for simplification the earth is assumed

to rotate only about its tertiary axis, ω� = ω�k̂.

ṘT.S.−ECEF
∣∣∣
Relative To ECI

= ω� ×RT.S.−ECEF

= ω�R�




sin(λ) cos(φ)

cos(λ) cos(φ)

0




(A.12)

The velocity of the ECEF Cartesian coordinates can then be written in terms

of the topocentric observations and the rate of change of the tracking station with
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respect to the origin, Equations (A.13) and (A.15).

vECEF = ρ̇ECEF +���
���

�:0
ṘT.S.−ECEF

= ρ̇ψ (αTOPO, δTOPO) + ρψ̇
(
αTOPO, δTOPO, α̇TOPO, δ̇TOPO

) (A.13)

ψ (θ1, θ2) =




cos(θ1) cos(θ2)

sin(θ1) cos(θ2)

sin(θ2)




ψ̇
(
θ1, θ2, θ̇1, θ̇2

)
=




− sin(θ1)θ̇1 cos(θ2)− cos(θ1) sin(θ2)θ̇2

cos(θ1)θ̇1 cos(θ2)− sin(θ1) sin(θ2)θ̇2

cos(θ2)θ̇2




(A.14)

Likewise, Equation (A.13) can be written in terms of the SEZ frame by using

the time derivative of Equation (A.10) to compute the local topocentric velocity

vector in terms of range, azimuth, and elevation angle as shown by Equations (A.15)

and (A.16).

ρ̇ECEF = Rot [3, λ]T Rot [2, π/2− φ]T ρ̇SEZ (A.15)

ρ̇SEZ = ρ̇




− cos(el) cos(β)

cos(el) sin(β)

sin(el)




+ ρ




sin(el) cos(β)ėl + cos(el) sin(β)β̇

− sin(el) cos(β)ėl + cos(el) cos(β)β̇

cos(el)ėl




(A.16)

A.1.2 Rotation from ECEF to ECI

The conventional transformation used to convert ECEF position and velocity

coordinates to ECI goes by “IAU-76/FK5 Classical Transformation” [5]. It is no

longer the current theory but is a legacy approach still used by many systems which

involves five separate rotation matrices generated by changes in the Earth’s pole

position, rotation of the Vernal equinox, precession of the Earth, obliquity of the
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ecliptic and a frame bias for correction of pole positions. The complete Cartesian

position and velocity transformations are given by Equation (A.17).

rECI = BPNRWrECEF

vECI = BPNR


WvECEF + ω� ×W


ρECEF + RT.S.−ECEF︸ ︷︷ ︸

rECEF







(A.17)

The B matrix is a bias correction matrix to allow for use of IAU-2000 pole position

calculations and is approximately given by Equation (A.18), see Vallado [5]for exact

matrix.

B =




1 7× 10−8 8× 10−8

−7× 10−8 1 3× 10−8

8× 10−8 3× 10−8 1



≈




1 0 0

0 1 0

0 0 1




(A.18)

The P matrix accounts for general precession of the Earth’s pole and is a com-

posite of three separate rotations given by Equation (A.19).

P = Rot [3, ζ] Rot [2,−Θ] Rot [3, z] (A.19)

The general precession angles are computed using Terestial Time [5] which is

approximately 32 seconds forward of Atomic time. However, these angles are rel-

atively small , O(1 × 10−2)degrees, making the general precession rotation matrix

approximately Identity. The N rotation matrix accounts for nutation effects and is

a composite rotation considering obliquity of the ecliptic and true obliquity by the

difference between the two is extremely small and the correction for the equinox is

extremely small allowing for the nutation matrix to be considered Identity, Equa-
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tion (A.20).

N = Rot [1,−ε̄] Rot [3,∆Ψ1980] Rot [1, ε]

≈ Rot [1,−ε̄]




1 0 0

0 1 0

0 0 1




Rot [1, ε]

≈




1 0 0

0 1 0

0 0 1




(A.20)

The R rotation accounts for complete sidereal time composed of Greenwich

Apparent Sidereal Time with the 1982 datum and the equation of the equinoxes

to account for Nutation effects. The contribution of nutation is relatively small

( O(1 × 10−3)degrees) so Greenwich Mean Sidereal Time dominates the rotation,

Equation (A.21).

R ≈ Rot [3,−θGMST ] (A.21)

The W matrix accounts for motion of the pole and is composite rotation of

coordinates given in arcseconds, so the matrix can be considered Identity if error on

the order of six meters is considered acceptable, Equation (A.22).

W = Rot [1, yp] Rot [2, xp]

≈




1 0 −xp
0 1 yp

xp yp 1




, (xp, yp) O
(
0.2” = 6× 10−5 deg

) (A.22)

From the above considerations the transformation of ECEF position and velocity
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Cartesian vectors reduces to Equation (A.23).

rECI = R [3,−θGMST ] rECEF

vECI = R [3,−θGMST ] (vECEF + ω� × rECEF )

(A.23)

The proof of the simplified above equations comes from the fact that the ECEF

frame is assumed to be only offset by a rotation about a shared tertiary axis by an

angle, θGMST , measured positively from the primary axis of the ECI frame, hence

Equation (A.24).

rECI = Rot [3,−θGMST ] rECEF (A.24)

Taking the time derivative of the above equation while noting that one is already

in the inertial frame yields Equation (A.25).

vECI =
d

dt
(Rot [3,−θGMST ]) rECEF + Rot [3,−θGMST ] ṙECEF (A.25)

Making use of the time rate change of a direction cosine matrix and noting that

the angular velocity of the ECI frame with respect to the ECEF is the negative of the

angular of the ECEF frame with respect to the ECI frame yields Equation (A.26).

vECI = − [ω×]ECI/ECEF Rot [3,−θGMST ] rECEF + Rot [3,−θGMST ] ṙECEF

[ω×]ECI/ECEF = − [ω×]ECEF/ECI

ωECEF/ECI = ω�K̂

(A.26)
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A.2 Equations of Motion

The equation governing the unperturbed motion of two bodies separated by a

Cartesian position vector, r, is given by Equation (A.27).

r̈ = − µ

||r||3 r = Gr (A.27)

Due to the presence of additional conservative and nonconservative forces, the

equation of motion for a satellite subject to short-period, long-period, and secular

perturbations is given as Equation (A.28).

r̈ = − µ

||r||3 r + r̈Geopotential + r̈Drag + r̈n−Body + r̈SRP + r̈Other (A.28)

The second and third accelerations arise from the shape of the Earth being non-

spherical resulting in varying attraction and the presence of air drag. The fourth

acceleration term arise from the gravitational attraction of other bodies which are

present within the satellite’s system. For Earth orbiting satellites, typically only

the attraction of the Sun and Moon are accounted for. The fifth term accounts for

the acceleration imparted from impacting light photons on the spacecraft. The sixth

term accounts for other acceleration sources such as Earth tides (ocean, ground, air),

magnetic field effects, and spacecraft commanded motion.
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A.2.1 Pertubation due to Geopotential

The acceleration perturbation due to zonal, tesseral, an sectorial harmonics is

given by Equation (A.29) [5].

r̈Geopotential = ∇r (U − U2−Body) = ∇r

(
U − µ

||rSat||

)

U =
µ

rSat

[
1−

∞∑

l=2

Jl

(
R�

rSat

)l
Pl (sin(φSat)) +

∞∑

l=2

l∑

m=0

(
R�

rSat

)l
Pl,m

× (sin(φSat)) {Cl,m cos(mλSat) + Sl,m sin(mλSat)}
]

U2−Body =
µ

rSat

(A.29)

Where rSat is the geocentric distance the satellite, (φSat, λSat) are the geocentric

latitude and longitude respectively, and Pl,m is the Legendre polynomial of degree l

and order m.

A.2.2 Pertubation due to Drag

The acceleration perturbation due to atmospheric drag is given by Equation (A.30)

and is commonly modeled as cannonball drag where the ballistic coefficient of the

object, m/ (CDA), is commonly estimated as a bulk parameter since the coefficient

of drag and apparent cross-sectional area can vary largely and mass is not always

constant. The atmospheric density is typically modeled using an exponential atmo-

sphere model. Note that the object’s velocity relative to the atmosphere is required

since the atmosphere of Earth is rotating.

r̈CannonballDrag = −1

2
ρAtmosDensity

CDA

m

(
ṙTSatRelṙSatRel

) ṙSatRel
||ṙSatRel||

ṙSatRel = ṙSat − ω� × rSat

(A.30)
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A.2.3 Pertubation due to Presence of Other Bodies

The acceleration perturbation, Equation (A.31), due to other heavenly bodies,

e.g. Sun or Moon, gives rise to “n-Body” dynamics where one can no longer utilize

Kepler’s first or second laws in order to solve for constants of integration as is done

in the Two-Body problem.

r̈ith−Body = µith−Body

(
rSat−ithBody
r3
Sat−ithBody

− r�−ithBody
r3
�−ithBody

)
(A.31)

A.2.4 Pertubation due to Solar Radiation Pressure

The acceleration perturbation due to the impact of photons on an object re-

quires consideration when the object is out of typically low Earth orbit range where

geopotential and drag perturbations dominate. The commonly used model for this

perturbation, Equation (A.32), is analogous to the drag model but with different

parameters characterizing how the photons are absorbed or reflected. The incidence

angle to the Sun becomes critical in order to determine the cross-sectional area ex-

posed to the Sun.

r̈CannonballSRP = −pSRcRA⊥�

m

rSat−�

||rSat−�||
(A.32)

A.2.5 F and G Solution

In lieu of direct integration of Equation (A.27), there exists an analytical solution

to the two body problem based upon constant angular momentum and is known

as the F and G solution [66]. The solution is based on the fact that the orbit

plane is defined by the initial position and velocity vectors thus any position and

velocity vector at a later time can be compute from a linear combination of the
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initial condition vectors which lie in the orbital plane.




r (t)

ṙ (t)


 =



F G

Ḟ Ġ







r (t0)

ṙ (t0)


 (A.33)

With the above relationship substituted into the equations of motion for a two

body system, the F and G functions are found to possess the following equations of

motion and initial conditions shown in Equation (A.34).

F̈ = − µ
r3
F , F (t0) = 1 , Ḟ (t0) = 0

G̈ = − µ
r3
G , G (t0) = 0 , Ġ (t0) = 1

(A.34)

From the first equation in Equation (A.33) and noting position and velocity vec-

tors are planar, the solution for F and G can be derived as shown in Equation (A.35).



F

G


 =

1√
µp



xẏ0 − yẋ0

yx0 − xy0




h = r0 × ṙ0

√
µp = h = x0ẏ0 − y0ẋ0

(A.35)

In terms of orbital elements the functions governing Equation (A.33) can be

shown as Equations (A.36) and (A.37) [5, 66].

F = 1− a

r0

(
1− cos(Ê)

)

G = (t− t0) +

√
a3

µ

(
sin(Ê)− Ê

)

Ḟ = −
√
µa

rr0

sin(Ê)

Ġ = 1− a

r

(
1− cos(Ê)

)

(A.36)
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r = a+ (r0 − a) cos(Ê) +
√
aσ0 sin(Ê)

σ0 =
rT0 ṙ0√
µ

(A.37)

The term Ê is the difference in eccentric anomalies, Ê = E−E0 and must be found

via iteration on modified Kepler’s equation, Equation (A.38), see Appendix A.3.1.3

for solution of Kepler’s equation. An alternative solution of the F and G series is

presented in Section 4.3.3 utilizing the fundamental invariants [72].

Find : Ê

Such that : M̂ − f
(
Ê
)

Where :

M̂ =

√
µ

a3
(t− t0)

f
(
Ê
)

= Ê −
(

1− r0

a

)
sin(Ê)− σ0√

a

(
cos(Ê)− 1

)

∂f
(
Ê
)

∂Ê
=

√
r0

a

(A.38)

A.3 State Space Transformations

The following sections describe the conversion between osculating Orbital Ele-

ments and ECI Cartesian states for the Two-Body unperturbed motion, Keplerian

Motion, problem. The outlined procedures follow that of Schaub [66] but for or-

bits that are equatorial and/or circular addition modifications are required to avoid

numerical complications [81].

A.3.1 ECI Cartesian to Keplerian Orbital Elements

Given Cartesian position and velocity vectors, rECI , vECI , the following proce-

dure can be applied to compute the orbital element set, {a, e, i, ω, Ω, M}.
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A.3.1.1 Semi-major Axis, a

The semi-major axis of the conic section describing the orbit of the space object

is computed directly from the vis-viva equation, Equation (A.39).

a =

(
2

r
− v2

µ

)−1

r = ||rECI || =
(
rECI(1)2 + rECI(2)2 + rECI(3)2

)1/2

v = ||vECI || =
(
vECI(1)2 + vECI(2)2 + vECI(3)2

)1/2

(A.39)

A.3.1.2 Eccentricity Vector and Scalar

First, calculate the angular momentum vector, hECI , given by Equation (A.40).

Then Compute Eccentricity Vector and Scalar given by Equation (A.41).

hECI = rECI × vECI =




rECI(2)vECI(3)− rECI(3)vECI(2)

rECI(3)vECI(1)− rECI(1)vECI(3)

rECI(1)vECI(2)− rECI(2)vECI(1)




h = ||hECI ||

(A.40)

e =
c

µ

e =

(
cTc

)1/2

µ
=

√√√√1− h2

µa

c = vECI × hECI − µ
rECI
r

=




vECI(2)hECI(3)− vECI(3)hECI(2)− µrECI(1)/r

vECI(3)hECI(1)− vECI(1)hECI(3)− µrECI(2)/r

vECI(1)hECI(2)− vECI(2)hECI(1)− µrECI(3)/r




(A.41)
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A.3.1.3 Eccentric Anomaly, True Anomaly, and Mean Anomaly

Compute Eccentric Anomaly, E0, using Equation (A.42)

E0 = arctan




σ√
a

1− r

a


 = arctan




r

a
√

1− e2
sin(f)

r

a
cos(f) + e


 (A.42)

The Eccentric Anomaly makes use of the σ0 scalar parameter which takes on a

zero value when the object is at periapsis or apoapsis for an elliptic orbit or at any

point in a circular orbit [66], this useful scalar function is given by Equation (A.43)

σ0 =
rTECIvECI√

µ
=
rECI(1)vECI(1) + rECI(2)vECI(2) + rECI(3)vECI(3)√

µ

= e
√
a sin(E0)

(A.43)

Compute Initial True Anomaly, f0 (Quadrants are not an issue [66]), from Equa-

tion (A.44).

f0 = 2 arctan



√

1 + e

1− e tan
(
E0

2

)
 (A.44)

Compute initial Mean Anomaly, M0, from Equation (A.45).

M0 = E0 − e sin(E0) = E0 −
rTECIvECI√

µa
(A.45)

A.3.1.4 Right Ascension of the Ascending Node

The Right Ascension of the Ascending Node, Ω, can be computed from the the

angular velocity vector and magnitude using Equation (A.46).

Ω = arctan

[
−hECI(1)

hECI(2)

]
= arctan

[
rECI(3)vECI(2)− rECI(2)vECI(3)

rECI(3)vECI(1)− rECI(1)vECI(3)

]
(A.46)
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A.3.1.5 Inclination

Inclination can be computed from the angular momentum vector using Equa-

tion (A.47).

i = arccos

[
hECI(3)

h

]
= arccos

[
rECI(1)vECI(2)− rECI(2)vECI(1)

h

]
(A.47)

A.3.1.6 Argument of Perigee

Argument of Perigee can be computed from the eccentricity vector and the cross-

product between the angular momentum vector and the eccentricity vector, Equa-

tion (A.48).

ω = arctan

[
ℵ
0

]

ℵ =
cECI(3)

µe
=
vECI(1)hECI(2)− vECI(2)hECI(1)− rECI(3)/r

µe

0 = îp(3) =
hECI(1)eECI(2)− hECI(2)eECI(1)

µehECI

îp =
hECI
hECI

× cECI
µe

=
1

µehECI
(hECI × cECI)

(A.48)

The argument of perigee can be alternatively computed via use of the argument

of latitude, u, and true anomaly, f , [74], shown in Equation (A.49).

u = arctan




rECI(3)

rECI(2)
hECI(1)

h
− rECI(1)

hECI(2)

h




sin(u) =
rOrbit(3)

r sin(i)

cos(u) =
rOrbit(1)

r
cos(Ω) +

rOrbit(2)

r
sin(Ω)

ω = u− f

(A.49)
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A.3.1.7 Directrix

Using the property of the directrix in the geometry of the conic section, the

semi-latus rectum, p, can be related to eccentricity, scalar distance from the primary

focus, r, and the projection of the scalar distance from the primary focus along the

periapse direction, xOrbit, by Equation (A.50).

p = xOrbite+ r (A.50)

A.3.2 Keplerian Orbital Elements to ECI Cartesian

To generate the Cartesian position and velocity vectors, (rECI ,vECI) associated

with the ECI frame from the orbital elements, a, e, i, ω, Ω, M and the time since

perigee, t− tp, the following procedure is executed.

A.3.2.1 Mean Angular Motion and Mean Anomaly

The mean motion, n, is computed as Equation (A.51). The mean anomaly of the

present position is computed from the Mean Anomaly at Perigee, M0, and the time

since perigree, t− tp, shown by Equation (A.52).

n =

√
µ

a3
=

2π

Orbit Period
(A.51)

M = M0 + n(t− tp) (A.52)

A.3.2.2 Eccentric Anomaly and True Anomaly

Since Eccentric and Mean anomaly are related by M = E − e sin(E), Kepler’s

equation must be solved from a root finding algorithm which Newton’s method works

extremely well for. The initial guess for eccentric anomaly is computed from mean
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anomaly and eccentricity and shown by Equation (A.53).

E0 =





M + e/2 M ≤ π

M − e/2 M > π
(A.53)

Newton’s method is then used to iterate on Eccentric using the Eccentric anomaly

equation and its derivative to compute the update ratio, Equation (A.54). For true

anomaly apply Equation (A.44).

WHILE CONV ERGE = FALSE

ratio =
E − e sin(E)

1− e cos(E)

IF ratio < tol

CONV ERGE = TRUE

ELSE

E = E − ratio

i = i+ 1

END IF

END WHILE

(A.54)

A.3.2.3 Orbit Position Vectors

With eccentric anomaly, Cartesian vector in the orbit frame can be computed for

position and velocity, Equation (A.55). With true anomaly, Cartesian vector in the
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orbit frame can be computed for position and velocity, Equation (A.56).

rOrbit =




x

y

0



Orbit

=




a (cos(E)− e)

a
√

1− e2 sin(E)

0




vOrbit =




ẋ

ẏ

0



Orbit

=




−√µa sin(E)

r√
µa(1− e2) cos(E)

r

0




r = a (1− e cos(E))

(A.55)

rOrbit =




x

y

0



Orbit

=




r cos(f)

r sin(f)

0




vOrbit =




ẋ

ẏ

0



Orbit

=




ṙ cos(f)− rḟ sin(f)

ṙ sin(f) + rḟ cos(f)

0




r =
p

1 + e cos(f)
, p = a

(
1− e2

)

ḟ =
h

r2
=

√
µp

r2
, ṙ =

√
µ

p
e sin(f)

(A.56)

A.3.2.4 Rotation Matrix from Orbit Frame to ECI Frame

Equation (A.57) is the 3-1-3 Direction Cosine Matrix from Cartesian ECI to

Orbital Elements. The Direction Cosine Matrix can also be represented in terms of

the unit vectors chosen to define the principal axes of the local orbit frame shown by
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Equation (A.58).

CECI2Orbit = CωCiCΩ

Cω = Rot [3, ω]

Ci = Rot [1, i]

CΩ = Rot [3,Ω]

(A.57)

CECI2Orbit =




îTe

îTp

îTh




=




[
c

µe

]T

[
h

|h| ×
c

µe

]T

[
h

|h|

]T




(A.58)

With the direction cosine matrix, the orbital frame Cartesian vectors can be

rotated into ECI frame according to Equation (A.59).

rECI = CT
ECI2OrbitrOrbit

vECI = CT
ECI2OrbitvOrbit

(A.59)

The transposed direction cosine matrix can be decomposed into columns which

correspond to the unit vector triad describing the orbital plane,
{
P̂, Q̂,Ŵ

}
, which
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are given by Equation (A.60).

CT
ECI2Orbit =

[
P̂ Q̂ Ŵ

]

P̂ =




cos(ω) cos(Ω)− sin(ω) cos(i) sin(Ω)

cos(ω) sin(Ω) + sin(ω) cos(i) cos(Ω)

sin(ω) sin(i)




Q̂ =




− sin(ω) cos(Ω)− cos(ω) cos(i) sin(Ω)

− sin(ω) sin(Ω) + cos(ω) cos(i) cos(Ω)

cos(ω) sin(i)




Ŵ =




sin(i) sin(Ω)

− sin(i) cos(Ω)

cos(i)




(A.60)

Using the argument of latitude, u = ω + f , in association with the orbital plane

vector in terms of true anomaly allows for the inertial position and velocity vectors

which are given by Equation (A.61).

rECI = r




cos(u) cos(Ω)− sin(u) cos(i) sin(Ω)

cos(u) sin(Ω) + sin(u) cos(i) cos(Ω)

sin(u) sin(i)




vECI = −µ
h




cos(Ω) (sin(u) + e sin(ω)) + sin(Ω) (cos(u) + e cos(ω)) cos(i)

sin(Ω) (sin(u) + e sin(ω))− cos(Ω) (cos(u) + e cos(ω)) cos(i)

− (cos(u) + e cos(ω)) sin(i)




(A.61)
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APPENDIX B

FIRST-ORDER TRANSFORMATION BETWEEN OSCULATING KEPLERIAN

ORBITAL ELEMENTS AND MEAN KEPLERIAN ORBITAL ELEMENTS

This appendix presents Lyddane’s modification to Brouwer’s theory [55] up to

the first-order of the J2 zonal perturbation Hamiltonian. For explicit equations of

Lyddane’s modification up through second-order see Long et al. [65]. The first-

order solution is utilized so that no iterations are needed to convert from osculating

orbital elements to mean orbital element as would be required by including higher-

order effects [78, 79]. The format of the algorithm follows that given by Schaub and

Junkins [66] to reduce clutter, where the transformed-to element space is denoted

with a single prime and the initial space elements possess no superscript. For small

eccentricity one could also use the approach of Born et al. [69], where eccentricity,

argument of perigee, and mean anomaly are replaced with e sin(ω), e cos(ω), and

ω +M , but the long-period terms are neglected.

When transforming between osculating and mean element spaces the modification

made to Brouwer’s γ2 variable is given by Equation (B.1). Other simplifying variables

are given by Equation (B.2). The true anomaly variable for the initial domain

is computed from the eccentric anomaly solution to Kepler’s equation if it is not

already known.

γ2 = \
J2

2

(
R�

a

)2

\ =





−1 Osculating to Mean

+1 Mean to Osculating

(B.1)
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γ′2 =
γ2

η4

a

r
=

1 + e cos(f)

η2

η =
√

1− e2

(B.2)

The new domain’s semi-major axis is then computed from the first-order J2 map-

ping given by Brouwer with the modified γ2 variable as shown by Equation (B.3).

Note that the semi-major axis only contains secular and short-period results.

⇒ a′ = a

{
1 + γ2

[(
3 cos2(i)− 1

)((a
r

)3

− η−3

)

+3
(
1− cos2(i)

)(a
r

)3

cos(2ω + 2f)

]} (B.3)

The long-period and short-period corrections for eccentricity are modified using

Lyddane’s expressions in order to avoid errors when the eccentricity is small. The

modifications are given by Equation (B.4). The short-period results for eccentricity

are given by Equation (B.5) and since the long-period eccentricity and inclination

are related by a scale factor both are given in Equation (B.6). The short-period

results for inclination are given in Equation (B.7). If in the present domain, true

anomaly is not available it must be computed from mean anomaly and eccentricity

either by Newton’s method for Kepler’s equation, Appendix A.3.1.3, or the series or

Bessel function expansions given in Section 4.3.4.

1

e

[(
a

r

)3

− η−3

]
= η−6

[
eη + e (1 + η)−1 + 3 cos(f) + 3e cos2(f) + e2 cos3(f)

]

1

e

[(
a

r

)3

− η−4

]
= η−6

[
e+ 3 cos(f) + 3e cos2(f) + e2 cos3(f)

] (B.4)
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eSP =
η2

2
(γ2eSP1 + γ2eSP2 − γ′2eSP3)

eSP1 =
3 cos2(i)− 1

η6

(
eη +

e

1 + η
+ 3 cos(f) + 3e cos2(f) + e2 cos3(f)

)

eSP2 = 3
1− cos2(i)

η6

(
e+ 3 cos(f) + 3e cos2(f) + e2 cos3(f)

)
cos(2ω + 2f)

eSP3 =
(
1− cos2(i)

)
(3 cos(2ω + f) + cos(2ω + 3f))

(B.5)

eLP =
γ′2eη

2 cos(2ω)

8

(
1− 11 cos2(i)− 40

cos4(i)

1− 5 cos2(i)

)

iLP = − e

η2 tan(i)
eLP

(B.6)

iSP =
1

2
γ′2 cos(i) [3 cos(2ω + 2f) + 3e cos(2ω + f) + e cos(2ω + 3f)] (B.7)

The long and short-period terms of mean anomaly are given by Equations (B.8)

and (B.9).

MLP =
γ′2η

3

8

(
1− 11 cos2(i)− 40 cos4(i)

(
1− 5 cos2(i)

)−1
)

sin(2ω) (B.8)

MSP = −γ
′
2η

3

4e

{
2
(
3 cos2(i)− 1

)((aη
r

)2

+
a

r
+ 1

)
sin(f)

+ 3
(
1− cos2(i)

) [(
−
(
aη

r

)2

− a

r
+ 1

)
sin(2ω + f)

+

((
aη

r

)2

+
a

r
+

1

3

)
sin(2ω + 3f)

]}
(B.9)

The new domain eccentricity and mean anomaly can be computed using from
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Equation (B.10).

e′ cos(M ′) = (e+ eLP + eSP ) cos(M)− e (MLP +MSP ) sin(M)

e′ sin(M ′) = (e+ eLP + eSP ) sin(M) + e (MLP +MSP ) cos(M)

⇒ e′ =
√

(e′ cos(M ′))2 + (e′ sin(M ′))2

⇒M ′ = arctan

{
e′ sin(M ′)

e′ cos(M ′)

}

(B.10)

The long and short-period terms of right ascension of ascending node are given

by Equations (B.11) and (B.12).

ΩLP = −γ
′
2e

2 cos(i)

8

(
11 +

80 cos2(i)

1− 5 cos2(i)
+

200 cos4(i)

(1− 5 cos2(i))2

)
sin(2ω) (B.11)

ΩSP = −γ
′
2 cos(i)

2

[
6 (f −M + e sin(f))− 3 sin(2ω + 2f)− 3e sin(2ω + f)

−e sin(2ω + 3f)
] (B.12)

The long and short-period terms of argument of perigee are given by Equa-

tions (B.13) through (B.16). Note that the first part of short-period term of ar-

gument of perigee and the short-period terms of mean anomaly do differ by a factor

of η.

ωLP = −γ
′
2

16


2 + e2 − 11

(
2 + 3e2

)
cos2(i)

− 40 (2 + 5e2) cos4(i)

1− 5 cos2(i)
− 400e2 cos6(i)

(1− 5 cos2(i))2


 sin(2ω)

(B.13)

ωSP = ωSP1 + ωSP2 (B.14)
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ωSP1 =
γ′2η

2

4e

{
2
(
3 cos2(i)− 1

)((aη
r

)2

+
a

r
+ 1

)
sin(f)

+ 3
(
1− cos2(i)

) [(
−
(
aη

r

)2

− a

r
+ 1

)
sin(2ω + f)

+

((
aη

r

)2

+
a

r
+

1

3

)
sin(2ω + 3f)

]}
(B.15)

ωSP2 =
γ′2
4

{
6
(
5 cos2(i)− 1

)
(f −M + e sin(f))

+
(
3− 5 cos2(i)

)
[3 sin(2ω + 2f) + 3e sin(2ω + f) + e sin(2ω + 3f)]

}

(B.16)

The composite longitude is then computed by Equation (B.17). Note that when

the short-period terms of mean anomaly and the first short-period term of argu-

ment of perigee are added together the result of (η−2 − η−1) /e has eccentricity as a

factor not divisor when simplified so the expression goes to 0/1 since (1− e2) → 1

faster than e → 0 as e → 0, see Brouwer’s remark after his Equation (23) [47],

Equation (B.18) shows the rearrangement effect.

(M ′ + ω′ + Ω′) = M +MLP +MSP + ω + ωLP + ωSP + Ω + ΩLP + ΩSP (B.17)

γ′2
4e

(
η2 − η3

)
=
γ2

4e

(
η−2 − η−1

)

=
γ2

4




(η − 1)
1

e
+ e

η3




(B.18)

The new domain inclination, right ascension of ascending node, and argument of

perigee can be computed using from Equations (B.19) and (B.20). When computing

the transformed argument of perigee, Equations (B.17) and (B.18) are applied to

compute the parenthetical term then the transformed Mean Anomaly solution from

Equation (B.10) and transformed Right Ascension of Ascending Node solution from

268



Equation (B.20) are subtracted out.

sin

(
i′

2

)
sin(Ω′) =

(
sin

(
i

2

)
+

1

2
cos

(
i

2

)
(iSP + iLP )

)
sin(Ω)

+ sin
(
i

2

)
(ΩSP + ΩLP ) cos(Ω)

sin

(
i′

2

)
cos(Ω′) =

(
sin

(
i

2

)
+

1

2
cos

(
i

2

)
(iSP + iLP )

)
cos(Ω)

− sin
(
i

2

)
(ΩSP + ΩLP ) sin(Ω)

(B.19)

⇒ i′ = 2 arcsin





√(
sin

(
i′

2

)
sin(Ω′)

)2

+
(

sin
(
i′

2

)
cos(Ω′)

)2




⇒ Ω′ = arctan





sin

(
i′

2

)
sin(Ω′)

sin

(
i′

2

)
cos(Ω′)





⇒ ω′ = (M ′ + ω′ + Ω′)−M ′ − Ω′

(B.20)

An alternative but similar implementation of Lyddane’s modification to Brouwer’s

theory is given by Long et al. [65]. Both versions were implemented and tested with

differences found to be on the order of 1× 10−9 for each element’s respective units.

The results of the Lyddane conversion between first order elements was also com-

pared to those of Aksnes [58] who presented numerical results as well as explicit

expressions of Izsak’s approach which utilized Hill variables [57] in order to reduce

the complexity of the Brouwer and Lyddane solutions.

For an example of conversion between orbital element space, the Two-Line ele-

ment(TLE) of Hubble Space telescope(HST) was converted from mean to osculating

then back to mean space with the results shown in Table B.1. The element conversion

errors of mean to osculating back to mean (M→O→M) and osculating to mean back

to osculating (O→M→O) are shown in Table B.2. The value of J2 is approximately
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0.00108, when converted to degrees from radians the value is approximately 0.0620.

The tables show that the errors of semi-major axis, eccentricity, right ascension of

ascending node, and inclination angle are below the order of J2. The errors of the

anomalies and argument of perigee are on the order of J2, approximately 0.09 to 0.12

degrees which is 1.5 to 2 times J2.

Table B.1: Keplerian Elements for HST TLE for Day 23 of Year 2011

Parameter
Original Converted Converted

Mean Osculating Mean
Semi-Major Axis (km) 6941.499 6943.690 6941.498

Eccentricity 3.35× 10−4 1.45× 10−3 3.27× 10−4

RAAN (Deg) 238.23 237.79 238.23
Inclination (Deg) 28.47 28.48 28.47

Argument of Perigee (Deg) 30.04 6.530 30.14
True Anomaly (Deg) 330.02 354.46 329.92
Mean Anomaly (Deg) 330.04 354.47 329.94

Table B.2: Conversion Errors of HST TLE for Day 23 of Year 2011

Parameter
M→O→M O→M→O

Error
Semi-Major Axis (km) 0.0034 0.0035

Eccentricity 7.820× 10−6 7.983× 10−6

RAAN (Deg) 2.639× 10−7 1.305× 10−6

Inclination (Deg) 2.069× 10−5 2.083× 10−5

Argument of Perigee (Deg) 0.0993 0.1241
True Anomaly (Deg) 0.0988 0.1167
Mean Anomaly (Deg) 0.0993 0.1167
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APPENDIX C

PARTIAL DERIVATIVES OF FIRST-ORDER MAPPING BETWEEN

OSCULATING AND MEAN KEPLERIAN ELEMENTS

This appendix computes the partial derivatives for the planar orbit considered

in Section 4.3.5. The short-hand variables such as γ2, γ′2, η,
a

r
and variables with

subscripts SP or LP are taken from Appendix B. The traditional nomenclature

of double primes representing mean elements and unprimed variables representing

osculating elements is now implemented.

For the planar example, the partial derivatives of the mapping from mean ele-

ments to osculating semi-major axis are given by Equation (C.1) through (C.3).

∂a

∂a′′
= 1 +

(
γ2 + a′′

∂γ2

∂a′′

)

(
3 cos2(i′′)− 1

)


(
a′′

r′′

)3

− η−3




+3
(
1− cos2(i′′)

)(a′′

r′′

)3

cos(2ω′′ + 2f ′′)




(C.1)

∂a

∂e′′
= a′′γ2



(
3 cos2(i′′)− 1

)

3

(
a′′

r′′

)2 ∂
a′′

r′′

∂e′′
+

3

η4

∂η

∂e′′




+9
(
1− cos2(i′′)

)(a′′

r′′

)2 ∂
a′′

r′′

e′′
cos(2ω′′ + f ′′)




(C.2)

∂a

∂M ′′ = 0 (C.3)

The partial derivatives of the osculating eccentricity with respect to the mean

variables are given in general form by Equation (C.4). The partial derivatives of the
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osculating mean anomaly are given in general form by Equation (C.5). For brevity,

only the general forms of the remaining derivatives are provided in lieu of the explicit

forms as shown for the partial derivatives with respect to mean semi-major axis.

∂e

∂ℵ =
(
d2

1 + d2
2

)−1/2
(
d1
∂d1

∂ℵ + d2
∂d2

∂ℵ

)

d1 = e sin(M) = (e′′ + eLP + eSP ) sin(M ′′) + e′′ (MLP +MSP ) cos(M ′′)

d2 = e cos(M) = (e′′ + eLP + eSP ) cos(M ′′)− e′′ (MLP +MSP ) sin(M ′′)

ℵ = a′′, e′′, or M ′′

(C.4)

∂M

∂ℵ =


1 +

(
d1

d2

)2


−1 (

1

d2

∂d1

∂ℵ −
d1

d2
2

∂d2

∂ℵ

)
(C.5)

The nonzero intermediate partial derivatives of γ2, γ′2, η, and
a′′

r′′
with respect to

the mean variables are given by Equation (C.6).

∂γ2

∂a′′
= −J2R

2
�a
′′−3 ∂η

∂e′′
= −e′′

(
1− e′′2

)−1/2

∂γ′2
∂a′′

= −J2R
2
�a
′′−3η−4 ∂γ′2

∂e′′
= −2\J2R

2
�a
′′−2η−5 ∂η

∂e′′

∂
a′′

r′′

∂e′′
=

cos(f ′′)

η2
+

2e′′ (1 + e′′ cos(f ′′))

η4

(C.6)

For the three-dimensional case partial derivatives, the process is carried out in

exactly the same way. When taking partial derivatives of the argument of perigee

equation, Equation (B.20), one should again note that the addition of the short-

period of mean anomaly and the first short-period of argument of perigee will remove

the eccentricity divisor and it is this result that the partial derivative with respect

to eccentricity should be taken.
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APPENDIX D

ADDITIONAL FIGURES

D.1 From Section 4.3.7.2, Geopotential Perturbed Motion: Osculating

Orbital Element Results

This section presents the osculating orbital element contour and scatter plots

for the HEO RSO subjected to planar geopotential perturbed motion examined in

Section 4.3.7.2. Figure D.1 presents the contour plots of the marginal PDFs com-

puted from the Monte Carlo analysis while Figure D.2 presents the contour plots of

the marginal PDFs computed from the TOV likelihood PDF. Figure 4.57 plots the

scatter plot of the marginal PDFs from the TOV likelihood PDF which were used

to generate the contour figure.
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Figure D.1: HEO RSO Monte Carlo Osculating Orbital Element Marginal PDF
Contour Results
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Figure D.2: HEO RSO TOVLikelihood Osculating Orbital Element Marginal PDF
Contour Results

D.2 From Section 4.3.7.3, Geopotential Perturbed Motion: Mean

Orbital Element Results

This section presents the mean orbital element contour and scatter plots for

the HEO RSO subjected to planar geopotential perturbed motion examined in Sec-

tion 4.3.7.3. Figure D.3 presents the contour plots of the marginal PDFs computed

from the Monte Carlo analysis while Figure D.4 presents the contour plots of the

marginal PDFs computed from the TOV likelihood PDF. Figure D.5 plots the scat-

ter plot of the marginal PDFs from the TOV likelihood PDF which were used to

generate the contour figure.
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Figure D.3: HEO RSO Monte Carlo Mean Orbital Element Marginal PDF Contour
Results
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Figure D.4: HEO RSO TOVLikelihood Mean Orbital Element Marginal PDF Con-
tour Results
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Figure D.5: HEO RSO TOVLikelihood Mean Orbital Element Marginal PDF Color-
Coded Scatter Results

D.3 From Section 4.3.8.2, Three-Dimensional Geopoential Perturbed

Motion: Osculating Keplerian Domain Results

This section presents the remaining osculating marginal PDF contour results

for the three-dimensional simulation of an HST two-line element set as discussed

in Section 4.3.8.2. Figure D.6 plots the TOV likelihood marginal PDF solutions

with respect to orientation angles and Figure D.7 does the same for the Monte

Carlo solution. Comparison of the two figures show the shortened flow in the mean

anomaly and argument of perigee domains as was discussed in the main matter

section, however the shape of the TOV likelihood solution approximates most of the

Monte Carlo solution.
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Figure D.6: Track 1 Osculating Orbital Element Marginal PDFs with respect to
Orientation Angle from TOV Likelihood Solution
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Figure D.7: Track 1 Osculating Orbital Element Marginal PDFs with respect to
Orientation Angle from Monte Carlo Solution

277



D.4 From Section 4.3.8.3, Three-Dimensional Geopotential Perturbed

Motion: Mean Keplerian Domain Results

This section presents the mean marginal PDF contour results for the three-

dimensional simulation of an HST two-line element set as discussed in Section 4.3.8.3.

Figures D.8 through D.13 present the marginal PDF results for the TOV likelihood

and Monte Carlo solutions for with respect to semi-major axis, eccentricity, and

orientation angles.

Figures D.8 and D.9 compare the TOV likelihood and Monte Carlo solution con-

tours for the marginal PDFs with respect to the semi-major axis while Figures D.10

and D.11 compare the solution contours for the marginal PDFs with respect to ec-

centricity, except for the (a, e) PDF already reported. Finally, Figures D.12 and D.13

compare the solution contours for the marginal PDFs remaining after the semi-major

axis and eccentricity combinations. The figures show that the TOV likelihood so-

lutions for mean mean anomaly and argument of perigee possess a shorter flow of

regions of high likelihood, however the regions of high likelihood for the TOV solu-

tion encompass the true mean solution while the Monte Carlo solution possesses a

bifurcated solution for the coordinate variables of right ascension of ascending node,

argument of perigee, and mean anomaly. The bifurcated solution clearly indicated by

the mean anomaly and argument of perigee plots indicates that the apoapsis cannot

be distinguished from the periapsis for the eccentricity value considered.
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Figure D.8: Track 1 Mean Orbital Element Marginal PDFs with respect to Semi-
Major Axis from TOV Likelihood Solution
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Figure D.9: Track 1 Mean Orbital Element Marginal PDFs with respect to Semi-
Major Axis from Monte Carlo Solution
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Figure D.10: Track 1 Mean Orbital Element Marginal PDFs with respect to Eccen-
tricity from TOV Likelihood Solution
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Figure D.11: Track 1 Mean Orbital Element Marginal PDFs with respect to Eccen-
tricity from Monte Carlo Solution
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Figure D.12: Track 1 Mean Orbital Element Marginal PDFs with respect to Orien-
tation Angle from TOV Likelihood Solution
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Figure D.13: Track 1 Mean Orbital Element Marginal PDFs with respect to Orien-
tation Angle from Monte Carlo Solution
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D.5 From Section 4.3.8.4, Three-Dimensional Geopotential Perturbed

Motion: Increased Initial Osculating Eccentricity Results

This section presents the additional contour PDF results for the three-dimensional

simulation of HST with an initial osculating eccentricity increased by an order of

magnitude with the other orbital parameters kept the same as those from the TLE

from Section 4.3.8.4. For comparison purposes, first the TOV solution results for the

particular PDF are shown then the Monte Carlo results for the particular marginal

PDF are shown.

Figures D.14 and D.15 plot the marginal PDF solutions with respect to eccen-

tricity for the TOV likelihood solution and Monte Carlo solution respectively while

Figures D.16 and D.17 repeat the analysis for the orientation angle marginal PDFs

not given with respect to semi-major axis and eccentricity. Figures D.18 through D.23

repeat the results of the osculating analysis for the mean orbital element marginal

PDF solutions of the TOV likelihood and Monte Carlo approaches. When comparing

Figures D.14 through D.23 to their counterparts in the previous section, it is clear

that uncertainty in the direction and magnitude of the eccentricity vector plays a

significant role in being able to estimate the coordinate variables of right ascension

of ascending node, argument of perigee, and mean anomaly.
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Figure D.15: Increased Eccentricity Track 1 Osculating Orbital Element Marginal
PDFs with respect to Eccentricity from Monte Carlo Solution
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Figure D.16: Increased Eccentricity Track 1 Osculating Orbital Element Marginal
PDFs with respect to Orientation Angle from TOV Likelihood Solution
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Figure D.17: Increased Eccentricity Track 1 Osculating Orbital Element Marginal
PDFs with respect to Orientation Angle from Monte Carlo Solution
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Figure D.18: Increased Eccentricity Track 1 Mean Orbital Element Marginal PDFs
with respect to Semi-Major Axis from TOV Likelihood Solution

a" (km)

e"
 

a" (km) vs.e" 

6900 6950 7000

0.005

0.01

0.015

0.02

a" (km)

Ω
" 

(r
ad

)

a" (km) vs.Ω" (rad)

6900 6950 7000

4.06

4.065

4.07

a" (km)

i (
ra

d)
" 

a" (km) vs.i (rad)" 

6900 6950 7000
0.4955

0.496

0.4965

0.497

0.4975

0.498

a" (km)

ω
" 

(r
ad

)

a" (km) vs.ω" (rad)

6900 6950 7000
0

0.2

0.4

0.6

0.8

1

a" (km)

M
" 

(r
ad

)
a" (km) vs.M" (rad)

6900 6950 7000
0.2

0.4

0.6

0.8

1

1.2

Figure D.19: Increased Eccentricity Track 1 Mean Orbital Element Marginal PDFs
with respect to Semi-Major Axis from Monte Carlo Solution
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Figure D.20: Increased Eccentricity Track 1 Mean Orbital Element Marginal PDFs
with respect to Eccentricity from TOV Likelihood Solution
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Figure D.21: Increased Eccentricity Track 1 Mean Orbital Element Marginal PDFs
with respect to Eccentricity from Monte Carlo Solution
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Figure D.22: Increased Eccentricity Track 1 Mean Orbital Element Marginal PDFs
with respect to Orientation Angle from TOV Likelihood Solution
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Figure D.23: Increased Eccentricity Track 1 Mean Orbital Element Marginal PDFs
with respect to Orientation Angle from Monte Carlo Solution
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APPENDIX E

ATTITUDE DETERMINATION FROM Q-METHOD

This appendix presents the q-Method [60,61] of initial attitude determination via

finding the optimal quaternion, qOpt, which maximizes the trace of the direction co-

sine matrix, C, and transpose of the attitude profile matrix, B. The direction cosine

matrix relating the body frame of the spacecraft to the inertial frame is unknown but

the attitude profile matrix can be computed using the body frame vector measure-

ments, b̃i of observed reference stars and the assumed inertial position vector of the

reference stars, r̂i, which is stored in an onboard catalog. The attitude profile matrix

is shown in Equation (E.1) for 1 to n instantaneously available measurements.

B =
n∑

i=1

b̃ir̂
T
i (E.1)

The q-Method then seeks to maximize the produce of qTKq with respect to q

which is done by spectrally decomposing the matrix K and then qOpt corresponds

to the maximum eigenvalue of K. The K matrix is given by Equation (E.2).

K =




B +BT − tr [B] 13×3

n∑

i=1

[
b̃i×

]
r̂i

[
n∑

i=1

[
b̃i×

]
r̂i

]T
tr [B]




(E.2)

The direction cosine matrix, C, can then be estimated from the optimal quater-

nion estimate, qOpt, shown in Equation (E.3).

CEst = 13×3 − 2qScalar [2qV ector×] + 2 [qV ector×] [qV ector×] (E.3)

288


