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ABSTRACT  

In this work, a source term model for estimating the rate of spreading and vaporization 

of LNG on land and sea is introduced. The model takes into account the composition 

changes of the boiling mixture, the varying thermodynamic properties due to preferential 

boiling within the mixture and the effect of boiling on conductive heat transfer. The heat, 

mass and momentum balance equations are derived for continuous and instantaneous 

spills and mixture thermodynamic effects are incorporated. A parameter sensitivity 

analysis was conducted to determine the effect of boiling heat transfer regimes, friction, 

thermal contact/roughness correction parameter and VLE/mixture thermodynamics on 

the pool spreading behavior. The aim was to provide a better understanding of these 

governing phenomena and their relative importance throughout the pool lifetime. The 

spread model was validated against available experimental data for pool spreading on 

concrete and sea. The model is solved using Matlab for two continuous and 

instantaneous spill scenarios and is validated against experimental data on cryogenic 

pool spreading found in literature. 
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NOMENCLATURE 

 

 

A Pool area (m) 

CHF Critical Heat Flux 

Cp   Specific heat Capacity of mixture component (J/kg-K) 

CF   friction coefficient (m/s
2
) 

g   acceleration due to gravity (m/s
2
) 

h   pool height (m) 

hs   Heat Transfer Coefficient (W/m
2
-K) 

k   Thermal Conductivity (W/m-K) 

ΔHvap   latent heat of vaporization (J/kg) 

Lc   Length Scale (m) 

m   LNG mass (kg) 

Nu   Nusselt Number (-) 

ONB   Onset of Nucleate Boiling 

P   Pressure (Pa) 

q   Heat flux (W/m
2
) 

Q   Heat transfer to the pool (W) 

R   Universal Gas Constant (J/K-mol) 

r   radius (m) 

t   time (s) 
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T   temperature (K) 

x   Liquid Mole Fraction (-) 

y   Vapor Mole Fraction (-)  

z   ground depth (m) 

α   Thermal diffusivity (m
2
/s) 

 Friction adjustment constsnt  (-) 

σ    Interfacial tension (N/m
2
) 

ρ   Density (kg/m
3
) 

γ   Ratio of liquid inertia at leading edge to that of pool (-) 

   Viscosity (kg/s·m) 

χ   Thermal contact/ roughness adjustment parameter (-) 

ω  Acentric factor (-) 

 

Subscripts: 

 

a   Ambient temperature 

c   Critical temperature 

CHF   Critical Heat Flux 

cond   Conduction 

conv   Convection 

i   Component Index 

∞   Initial temperature of ground = Temperature of heat sink  

j   Component Index 
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L   Liquid 

long   Long wave radiation from the pool 

min Leidenfrost temperature 

r   Reduced property 

rad   Solar radiation 

s   Surface of substrate 

Sat   Saturated Pressure 

Total   Total Pressure 

V   Vapor 

vf   Vapor Film 

VLE Vapor Liquid Equilibrium 

W Water 



 

viii 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT…………. ......................................................................................................ii 

DEDICATION  ................................................................................................................ iii  

ACKNOWLEDGEMENTS .............................................................................................. iv  

NOMENCLATURE ........................................................................................................... v  

TABLE OF CONTENTS ............................................................................................... viii  

LIST OF FIGURES ............................................................................................................ x  

LIST OF TABLES ......................................................................................................... xiii  

CHAPTER I  INTRODUCTION ....................................................................................... 1 

1.1. Background ........................................................................................................ 1 

1.2. Previous accidents involving LNG .................................................................... 3 

1.2.1. Shipping and transportation of LNG ............................................................ 3 
1.2.2. Land based incidents .................................................................................... 4 

CHAPTER II  BACKGROUND ON POOL SPREADING AND VAPORIZATION ...... 9 

2.1. Introduction ........................................................................................................ 9 
2.2. LNG pool vaporization..................................................................................... 11 

2.2.1. Heat transfer from the ground .................................................................... 11 
2.2.2. Conduction heat transfer ............................................................................ 12 

2.2.3. Boiling regimes for cryogenic liquids ........................................................ 14 
2.2.4. Effect of composition on vaporization rate ................................................ 17 

2.3. LNG pool spread modeling .............................................................................. 20 

CHAPTER III  PREVIOUS EXPERIMENTS ON LNG POOL SPREADING .............. 22 

3.1. Summary of Experiments on liquefied gases ................................................... 22 

CHAPTER IV  CURRENT STATE OF THE ART ........................................................ 29 

4.1. Introduction ...................................................................................................... 29 
4.2. Early spread models ......................................................................................... 29 



 

ix 

 

4.3. PHAST ............................................................................................................. 32 
4.4. Supercritical pool spread model ....................................................................... 33 
4.5. CFD models...................................................................................................... 34 

4.5.1. FLACS by GexCon .................................................................................... 34 

CHAPTER V  METHODOLOGY ................................................................................... 36 

5.1. Introduction ...................................................................................................... 36 
5.2. Governing equations ........................................................................................ 37 

5.2.1. Mass balance .............................................................................................. 38 
5.2.2. Momentum balance .................................................................................... 38 

5.2.3. Heat transfer to the pool and boiling regimes ............................................ 39 

5.2.4. LNG pool/ vapor properties – vapor liquid equilibrium ............................ 44 

5.2.5. Differences between pool spread on land and water .................................. 47 

CHAPTER VI  ANALYSIS OF GOVERNING PHENOMENA .................................... 49 

6.1. Introduction ...................................................................................................... 49 
6.2. Definition of the base case ............................................................................... 50 

6.3. Friction and gravity terms ................................................................................ 51 
6.4. Effect of thermal contact/ roughness ................................................................ 54 

6.5. Heat transfer and boiling mechanism ............................................................... 56 
6.6. Vapor liquid equilibrium (VLE) effects ........................................................... 66 
6.7. Conclusion of sensitivity analysis .................................................................... 72 

CHAPTER VII  MODEL VALIDATION ....................................................................... 74 

7.1. Introduction ...................................................................................................... 74 
7.2. Validation for spills on land ............................................................................. 74 
7.3. Validation for spills on sea ............................................................................... 76 

CHAPTER VIII  CONCLUSION .................................................................................... 77 

CHAPTER IX  FUTURE WORK .................................................................................... 80 

REFERENCES  ................................................................................................................ 81 

 



 

x 

 

LIST OF FIGURES 

 Page 

Figure 1: Release dynamics of LNG .................................................................................. 9 

Figure 2: Event tree for an LNG spill .............................................................................. 10 

Figure 3: Evaporation rate as a function of time for a continuous release of a cryogenic 

 liquid. (Jensen, 1983) ....................................................................................... 13 

Figure 4: Boiling heat flux curve ..................................................................................... 15 

Figure 5: 90 mol% Methane 10mol% Ethane mixture VLE phase envelope .................. 18 

Figure 6: Boiling temperature and vapor composition of 90 mol% methane 10mol% 

 ethane mixture.................................................................................................. 19 

Figure 7: Forces acting on the spreading pool ................................................................. 21 

Figure 8: Previous experiments conducted using LNG ................................................... 22 

Figure 9: Cryogenic spread on land ................................................................................. 37 

Figure 10: Box model ....................................................................................................... 37 

Figure 11: Boiling heat flux curves for LNG components ............................................... 40 

Figure 12: Algorithm for Heat transfer as implemented in the proposed model ............. 44 

Figure 13: Algorithm for thermodynamic effects as implemented in the proposed 

  model ............................................................................................................. 48 

Figure 14: Webber 1991 model with 1-D ideal conduction: gravity and friction 

 comparison ..................................................................................................... 52 

Figure 15: Effect of friction on gravitational driving force.............................................. 53 

Figure 16: The effect of friction on pool radius ............................................................... 54 

Figure 17: Effect of varying thermal contact parameter on pool radius while maintaining 

 frictional effects (Base Case: =3) ................................................................. 55 



 

xi 

 

Figure 18: Effect of varying thermal contact parameter on pool radius while ignoring 

 frictional effects (Base Case: =3) ................................................................. 56 

Figure 19: Effect of boiling heat transfer on pool radius for a continuous spill .............. 59 

Figure 20: Effect of boiling heat transfer on heat flux at center of the pool for a 

 continuous spill .............................................................................................. 60 

Figure 21: Effect of boiling heat transfer on temperature at center of the pool for a 

 continuous spill .............................................................................................. 60 

Figure 22: Effect of boiling on overall heat flux into pool for a continuous spill............ 61 

Figure 23: Effect of boiling heat transfer on pool radius for an instantaneous spill ........ 62 

Figure 24: Effect of boiling heat transfer on heat flux at center of the pool for an 

 instantaneous spill .......................................................................................... 63 

Figure 25: Effect of boiling heat transfer on temperature at center of the pool for an 

 Instantaneous spill .......................................................................................... 63 

Figure 26: Effect of boiling on overall heat flux into pool for a continuous spill............ 64 

Figure 27: Comparing 1-D conduction with varying  parameter to boiling heat 

  transfer ........................................................................................................... 65 

Figure 28: Effect of incorporating VLE effects on pool radius for a continuous spill..... 67 

Figure 29: Effect of incorporating VLE effects on pool composition for a continuous 

 spill ................................................................................................................. 67 

Figure 30: Effect of incorporating VLE effects on pool density for a continuous spill ... 68 

Figure 31: Effect of incorporating VLE effects on pool latent heat for a continuous 

  spill ................................................................................................................ 68 

Figure 32: Effect of incorporating VLE effects on pool radius for an Instantaneous  

 spill ................................................................................................................. 69 

Figure 33: Effect of incorporating VLE effects on pool composition for an Instantaneous 

 spill ................................................................................................................. 70 

Figure 34: Effect of incorporating VLE effects on pool density for an Instantaneous 

  spill ................................................................................................................ 70 



 

xii 

 

Figure 35: Effect of incorporating VLE effects on pool latent heat for an Instantaneous 

 spill ................................................................................................................. 71 

Figure 36: Model validation vs experimental data for a 17 tonne/hr continuous LNG 

 release on concrete ......................................................................................... 75 

Figure 37: Model validation vs experimental data for a 14 tonne/hr continuous LNG 

 release on soil ................................................................................................. 75 

Figure 38: Model validation vs experimental data for a continuous release of 0.15 m3/s 

 of LNG on sea ................................................................................................ 76 
 



 

xiii 

 

LIST OF TABLES 

 Page 

 

 

Table 1: Typical composition of LNG ............................................................................... 2 

Table 2: LNG hazardous properties ................................................................................... 2 

Table 3: Accidents involving maritime transport of LNG from 1995 to 2009  

 (Forsman, 2011) .................................................................................................. 4 

Table 4: Major maritime incidents involving LNG ........................................................... 5 

Table 5: Major land based incidents involving LNG ......................................................... 6 

Table 6: Spills of liquefied gases into bunds .................................................................... 23 

Table 7: Experimental setup for bund experiments.......................................................... 23 

Table 8: Spills of liquefied gases onto water ................................................................... 25 

Table 9: Experimental setup of spills on water ................................................................ 27 

Table 10: LNG properties used in simulation .................................................................. 51 

Table 11: Concrete properties used in simulation ............................................................ 51 

 

 

 



 

 

1 

 

CHAPTER I  

INTRODUCTION  

 

1.1. Background 

Liquefied Natural Gas (LNG) is natural gas that has been cooled down to its liquid state 

at atmospheric pressure. LNG is produced primarily in the Middle East and Russia and is 

then transported all around the world using tankers and continental pipelines. Over the 

last few years Qatar has become a key player in the LNG industry. The liquefaction 

process of natural gas allows a 600 fold reduction in the volume of the gas being 

transported at ambient pressure. The resulting liquid which is mainly composed of 

methane presents some hazardous properties linked to its flammable nature and its 

cryogenic state. Typical composition ranges for LNG and the hazardous properties 

associated with LNG are shown in Tables 1 and 2 respectively. 

 

Upon a release on land or sea, LNG (boiling point = -162°C) will boil vigorously and 

generate a vapor cloud that will disperse. If within the flammable range, the vapor cloud 

may ignite and cause fires and explosions. Although governmental regulations have been 

imposed and new technologies have been designed and incorporated into the design and 

operating procedures of LNG facilities, risks associated with catastrophic events like a 

total loss of containment of an LNG tanker or storage tank must be studied to determine 

the potential impact on the employees, the facility, the public and the environment. 
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Table 1: Typical composition of LNG 

Chemical Chemical Formula Lean Rich 

Methane CH4 99% 87% 

Ethane C2H6 < 1% 10% 

Propane C3H8 > 1% 5 % 

Butane C4H10 > 1% > 1% 

Nitrogen N2 0.1% 1% 

Other Hydrocarbons C5+ Trace Trace 

 

Table 2: LNG hazardous properties 

Properties LNG 

Toxic No 

Carcinogenic No 

Flammable Vapor Yes 

Forms Vapor Clouds Yes 

Asphyxiant Yes 

Extreme Cold Temperature Yes 

Flash point (°C) -188 

Boiling point (°C) -160 

Flammability Range in Air, % LEL = 5.5% and UEL 14% (at 25°C) 

Auto ignition Temperature 
0
C 540 

Behavior if Spilled Evaporates, forming a partly visible clouds 

 

Modeling the spread and vaporization of an LNG pool is a key element in the 

consequence analysis and risk assessment of a possible spill on water or land. This 

represents an important part of the source term (LNG vapor release rate) which is 

subsequently used for vapor dispersion modeling. While atmospheric dispersion of 

flammable vapor has been extensively studied, LNG source term modeling, including 

pool spreading and vaporization has received less attention both experimentally and 

theoretically. 
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In this work, a source term model for estimating the rate of spreading and vaporization 

of LNG and cryogenic mixtures on unconfined land and sea is proposed. The model 

takes into account the composition changes of a boiling liquid mixture, the varying 

thermodynamic properties due to preferential boiling within the mixture and the effect of 

boiling on conductive heat transfer. A parameter sensitivity analysis was conducted to 

determine the effect of boiling heat transfer regimes, friction, thermal contact/roughness 

correction parameter and VLE/mixture thermodynamics on the pool spreading behavior. 

The aim was to provide a better understanding of these governing phenomena and their 

relative importance throughout the pool lifetime. The model was validated against 

available experimental data for pool spreading on concrete and sea.  

 

1.2. Previous accidents involving LNG 

Transportation and handling of LNG in import/export facilities has over 60 years of 

development. Accidents involving LNG often resulted in huge financial and commercial 

impacts; this section provides a summary of the recorded incidents involving LNG. 

 

1.2.1. Shipping and transportation of LNG 

Most of the incidents involving LNG occurred during maritime transport, but there has 

been insufficient data collection to draw conclusions regarding the safety of LNG 

maritime transport. Nonetheless, most of these incidents are not specific to LNG itself 

but are more connected to the practices of the maritime transport industry. Table 3 

summarizes shipping accidents that involved LNG from 1995 to 2009. When compared 
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to oil carriers, LNG tanks seem slightly less incident prone, but when forecasting the 

expected increase in demand and transportation of LNG over the coming decade, this 

may very well change. Some of the more significant incidents are highlighted in Table 4. 

 

1.2.2. Land based incidents 

Most land based incidents involve a vapor release that was somehow ignited resulting in 

a wide variety of consequences. These incidents have highlighted the importance of 

being able to contain LNG vapor from spreading and keeping LNG activities at a safe 

distance from other plant facilities, particularly combustion, compression and air intake 

equipment. Moreover, it shows that released LNG vapor on land will probably not travel 

far before getting ignited. Table 5 highlights the major land based incidents associated 

with LNG. 

 

Table 3: Accidents involving maritime transport of LNG from 1995 to 2009 

(Forsman, 2011) 

Cause Number of 

accidents 

% of 

Total 

Killed/ 

Missing 

LNG Released 

(m
3
) 

Collision 50 26% 0 7 

Contact 8 4% 0 1 

Fire/Explosion 26 13% 29 1 

Foundered 14 7% 24 2 

Hull/ Mchy. Damage 63 32% 0 2 

Miscellaneous 1 1% 0 0 

Wrecked/ Stranded 33 17% 0 1 

Total 195 100% 53 14 
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Table 4: Major maritime incidents involving LNG 

Year Vessel Name  Status Consequence Comment 

1969 Polar Alaska Transportation LNG Vapor 

release 

Violent sloshing of LNG in refrigerated tank broke the membrane 

cargo wall resulting in a release of LNG. Spill was not ignited and 

no fire or explosion was reported. 

1971 Descartes Mechanical 

Problems 

LNG Vapor 

release 

Gas leak from the tank due to a faulty connection between tank 

dome and membrane wall.  

1976 Guayaquil, Ecuador LNG 

Unloading 

> 50 people 

injured 

A short circuit on the unloading tanker ignited LNG vapor. A series 

of explosions ensued, destroying five natural gas tanks and wrecked 

a Shell owned peer for three hours before firefighters were able to 

contain the fire. 

1977 LNG Delta Loading at 

terminal 

1 killed Both primary and secondary valves used in the loading station 

failed upon contact with cryogenic temperatures, resulting in an 

LNG release but no ignition occurred.  

1979 Mostafa Ben Boulaid 

(Algerian tanker)  at 

Point Cove LNG 

terminal (US) 

LNG 

Unloading 

LNG spill 

resulting in 

deck fracture 

Check valve failed during unloading, resulting in an LNG release 

which fractured the deck. The ESD system was activated and water 

spray systems managed to contain the vapor cloud. 

 

  

5
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Table 5: Major land based incidents involving LNG 

Year Place Status Consequences Comment 

1944 Cleveland, 

Ohio 

Construction 

failure 

128 killed, 225 

injured 

LNG storage tanks experienced material failures resulting in overflowing of 

LNG into surrounding dikes. The vapor cloud was ignited. A second tank 

failed after 20 minutes resulting in more LNG release and a longer fire time. It 

is estimated that the pool fire extended to 0.5 miles around failed tank. 

1966 Raunheim

, Germany 

Accidental 

venting 

1 killed, 75 

injured 

LNG was being passed through a vaporizer. The liquid level control loop failed 

resulting in overflow and around 500 kg of LNG was vented out of the 

vaporizer. The vapor cloud drifted towards the control room resulting in a fire 

and explosion. 

1968 Portland, 

US 

Human 

malfunction 

4 killed Natural gas from the inlet lines leaked into an LNG tank through a valve that 

was supposed to be closed off, but the flange used to close the valve had been 

removed for the testing leaving the valve slightly opened. Natural Gas 

accumulated inside the tank got ignited resulting into. 

1973 Staten 

Island, 

NY,US 

Human 

malfunction 

40 killed An LNG storage tank was emptied, warmed and purged of the combustible 

gases using nitrogen, and then filled with fresh re-circulating air. This was not 

done properly and while repairs were being done on the tank, a fire was ignited 

resulting in the tank roof getting fractured and collapsing. The 40 workers 

inside died from asphyxiation. 

1977 Arzew, On terminal  1 killed A terminal worker was frozen to death during loading. A valve rupture sprayed 

6
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Table 5: Major land based incidents involving LNG 

Year Place Status Consequences Comment 

Algeria the worker with LNG. 

1978 Das 

Island, 

UAE 

On terminal  LNG spill A bottom pipe connection of an LNG tank failed resulting in a spill. It was 

stopped by closing the internal valve. The resulting vapor cloud dissipated 

without igniting. 

1983 Bontang, 

Indonesia 

Over 

pressure 

3 killed A blind left in the flare line resulted in the over pressurization of the main 

liquefaction column which was a vertical shell and tube heat exchanger. The 

heat exchanger failed and popped and debris was projected as far as 50m 

killing 3 workers. 

1985 Pinson, 

Alabama 

Loading 

vessel 

6 injured The welding on a patch plate on an aluminum vessel failed during loading. The 

plate was projectile towards the control room, blowing the windows. The 

escaping gas was ignited. 

1988 Everett, 

WA, US 

On terminal Vapor release Operation of LNG transfer was improperly interrupted resulting in a flange 

gasket to blow and 114 m
3
 of LNG were released. The spill was contained and 

a stable atmosphere prevented the vapor cloud from propagating. 

1989 Thurley, 

UK 

Human 

malfunction 

2 workers got 

burned 

Valves were opened for draining out natural gas, but one was left open before 

operation. LNG was released as a high pressure jet burning 2 workers. The 

resulting vapor cloud was ignited 30s into the spill covering an area of 40 by 

25 m. 

7
 

Table 5 Continued 
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Table 5: Major land based incidents involving LNG 

Year Place Status Consequences Comment 

1993 Bontang, 

Indonesia 

Leakage to 

sewer 

system 

Vapor release During a pipe modification project, LNG leaked into the underground sewer 

system. LNG underwent rapid vapor expansions that ruptured the pipes. 

2004 Skikda, 

Algeria 

Explosion 

and fire 

27 killed, 5 

injured 

A leak occurred that was pulled into a high pressure steam boiler. The resulting 

mixture ignited rapidly resulting in an explosive fire and a fireball that 

damaged surrounding LNG facilities, killing 27 people. 
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Table 5 Continued 
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CHAPTER II  

BACKGROUND ON POOL SPREADING AND VAPORIZATION 

 

2.1.Introduction 

 

Figure 1: Release dynamics of LNG 

 

Liquid spills can be classified on the basis of the rate, quantity and duration of the spill 

as follows:  

 Instantaneous spill: all of the liquid is spilled at once or over a very short time 

 Continuous spill: the spill continues for a significant period of time at a finite 

rate. 
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The distinction is made between these scenarios based on a number of factors like the 

size of the spill, the properties of the spilled liquid and the surrounding environmental 

conditions. Figure 1 shows the factors involved in the release dynamics of an LNG spill. 

 

Once a release occurs it will usually follow the event tree shown in Figure 2.  

 

 

Figure 2: Event tree for an LNG spill 

 

A pool will form from an LNG spill, the behavior of the pool and its dynamics depend 

on the release scenario and surrounding conditions. 

 

If immediate ignition occurs to the LNG spill a pool fire will develop. This will pose a 

direct hazard to the surroundings due to direct fire contact and thermal radiation. 



 

 

11 

 

In the case where no immediate ignition occurs, the LNG spill will boil-off generating 

dense gas which is then dispersed by atmospheric turbulence. The cloud will pose 

flammability and explosion hazards for long distances unless it is diluted below its lower 

flammability limit. The extent of the vapor cloud hazard depends on the pool spill rate, 

the pool size and the stability of the surrounding atmosphere.  

 

For LNG spills of significantly long duration, a constant spill rate could results in a 

steady-state pool when the discharge rate into the pool equals the vaporization rate from 

the pool. 

 

2.2.LNG pool vaporization 

When LNG is spilled onto the ground, heat transfer from the substrate will result in an 

immediate boil-off. The spill rate, duration of spill, ambient temperature and ground 

temperature and porosity would determine the LNG boiling regime. 

 

2.2.1. Heat transfer from the ground 

According to various literature sources (Webber (1991); Cavanaugh, Siegell, & 

Steinberg (1994)), conduction from the substrate is the most prevailing mechanism for 

heat transfer to an LNG pool, whereas the heat gain from other sources such as 

atmospheric convection or radiation accounts on average for less than 5% of the overall 

heat transfer to the LNG pool.  
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2.2.2. Conduction heat transfer 

For spills over land, the heat transfer to the pool is generally considered to be transient 

due to conductive cooling of the substrate. 

 

1-D conduction is usually used when modeling heat conduction from the ground. The 

model is based on assuming a uniform semi-infinite medium on which the pool spreads; 

the heat flow rate is given by: 

 

( ) ' '

' 0.5

0

2
( )

R t

cond

r dr
Q

t t



 (1) 

Where r’ is the pool radius at time t’ when the new pool segment first comes into contact 

with fresh ground: 

 
0.5

( )

( )

s Bh T T



 

 (2) 

Nonetheless it is important to remember that since the substrate is being cooled by the 

LNG, a continuous spill would have to eventually reach a maximum evaporation rate, 

Jensen (1983) shows the following behavior. It is understood that at the latter stages of a 

spill, the heat transfer from the soil becomes sufficiently low, eventually allowing for 

heat transfer from the air to become increasingly important. He shows that there is an 

inverse proportionality between the evaporation rate and the square root of time 

according to the following correlation: 

 

s
q

t


 (3) 
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 vap

T c
s

H

 



 
      (4) 

 

A limitation of the above derivation is that it initially results in infinite evaporation rates. 

Nonetheless a correction is applied by integrating the area differentials of the above 

equation: 

 
1 2

8 8 8
...

( 1)
n nQ dA dA dA

ndt n dt dt
   


 (5) 

To achieve adecaying behavior as shown in Figure 3: 

 

Figure 3: Evaporation rate as a function of time for a continuous release of a cryogenic 

liquid. (Jensen, 1983) 

 

The point td in the above graph corresponds to the time when the pool has reached its 

maximum area. These results seem reasonable and the conclusion that the evaporation 

rate would eventually reach a minimum asymptotic value is ok for continuous spills. For 
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Instantaneous spills it also seems reasonable that a similar, yet steeper profile would 

exist for the evaporation rate. 

 
2.2.3. Boiling regimes for cryogenic liquids 

There are three main pool boiling regimes, as shown in Figure 4, which are functions of 

the temperature difference between the LNG and the ground, known as the temperature 

superheat: 

1. Nucleate boiling: The LNG is in direct contact with the substrate and bubbles form 

at distinct intervals. 

2. Transitional boiling: There is enough superheat to support vigorous boiling with 

large distinct bubbles, but not enough to maintain a stable vapor film. At this stage, 

these large bubbles prevent full thermal contact of the fluid with the surface. 

3. Film boiling: There is enough superheat from the substrate to maintain a stable 

vapor film, thus the LNG is separated from the substrate by a vapor film. 
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Figure 4: Boiling heat flux curve  

 

When spreading a cryogenic liquid onto the ground, which initially is at ambient 

temperature, a large temperature difference between the liquid and the ground exists and 

vigorous boiling will occur. This boiling generates vapor bubbles or a vapor film at the 

liquid-ground interface which tends to limit the heat transfer. Three boiling regimes can 

occur depending on the temperature difference between the liquid and the ground: film, 

transition and nucleate. These complex phenomena make the heat transfer process 

during boiling difficult to predict.  

 

Experimental measurement of the boiling curve of cryogenic liquids, such as liquid 

nitrogen (Berenson, 1962) and LNG (Reid & Wang, 1978) are reported in literature. It 

Free

Convection FilmTransitionNucleate

CHF
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ΔTCHF
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   Leidenfrost 
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q
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-2
)
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has also been reported that LNG will boil in the transitional regime if it has a higher 

composition of heavier hydrocarbons, if it with a higher content of heavier components 

tends to boil in the transitional boiling regime (Woodward & Pitblado, 2012). Significant 

work is still to be done in modeling the boiling of cryogenic liquids. Liu et al. (2011) 

developed a methodology using Computational Fluid Dynamics (CFD) to simulate the 

boiling process of liquid nitrogen. This approach is promising and may be extrapolated 

to calculate the boiling curve for cryogenic liquid mixtures like LNG. 

 

As shown in Figure 4, during the initial stages of the spill when the temperature 

superheat is relatively high, the pool will be in the film boiling regime and a thin vapor 

film would be fully developed between the spilled liquid and the substrate over the entire 

heating surface. The superheat will then start to decrease due to the transient cooling of 

the ground; until it reaches the minimum superheat Tmin also known as the Leidenfrost 

temperature, during this period the heat flux will decrease accordingly until it reaches 

the minimum value qmin. Once the superheat temperature becomes lower than Tmin the 

pool will enter into the transitional boiling regime, the transitional boiling regime is 

usually short lived and involves vigorous boiling and relatively large bubbles due to the 

breakup of the film, the heat flux will then start to increase due to the increased contact 

area between the surface and the fluid after the film breakup. The heat flux will increase 

until it reaches a value of maximum heat flux which corresponds to the critical value qc, 

the corresponding temperature is known as the critical superheat and is denoted Tc. As 

the superheat continues to decrease and drops below the critical superheat, nucleate 
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boiling will start and the heat flux will continue decreasing with the superheat 

temperature. During Nucleate boiling, nucleation sites, which are gas or vapor filled 

cavities, appear on the surface of the substrate and develop to allow vapor bubbles to 

form. Nucleation can occur on both a solid surface and in a homogenous liquid. The 

maximum heat flux will occur in the nucleate boiling region, but then decreases sharply 

as the bubbling becomes so rapid that the liquid is prevented from getting enough 

contact time with the substrate, this is where the transitional regime starts.  

 

1/4

min ( ) 0.16 0.24
L pL L

C L

w pw w

C k
T T T

C k





  
            (6) 

 

 
2.2.4. Effect of composition on vaporization rate 

Being a mixture of different volatile components, LNG will exhibit preferential boiling. 

Lighter components will boil off before the heavier ones, resulting in an accumulation of 

the heavier hydrocarbons within the LNG pool. This change in composition will in turn 

affect the thermo-physical properties of the LNG pool as it become enriched with the 

heavier components. It is important to realize that despite methane being the dominant 

component in LNG, the evaporation rate of an LNG mixture will be different than that of 

pure methane, particularly during the later stage of boil-off when the methane 

composition decreases. The vapor liquid equilibrium of a mixture composed of 90 mol% 

methane and 10% ethane is shown in Figure 5. 
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Figure 5: 90 mol% Methane 10mol% Ethane mixture VLE phase envelope 

From the above VLE diagram, it is seen that the dew point is very steep for pure 

methane, while the bubble point is flat. This means that during the initial stages of the 

spill, the vapor will consist almost completely of methane and the liquid boiling point 

temperature will change very slowly as exhibited by the flat bubble point curve. 

Similarly analyzing the other end of the VLE diagram, it is noticeable that the dew point 

becomes flat whereas the bubble point becomes very steep, this means that during the 

later stages of the pool life, the vapor composition will not change while the boiling 

temperature will rapidly increase. These observations have been further verified by 

plotting the boiling temperature and vapor composition of the mixture over time as 

shown in Figure 6 (Conrado & Vesovic, 2000): 
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Figure 6: Boiling temperature and vapor composition of 90 mol% methane 10mol% 

ethane mixture 

As predicted, the boiling temperature of the LNG-like mixture remains unchanged 

during the initial stages and the vaporization rate of the mixture is almost identical to 

that of pure methane.  During the later stages of boiling, and as the LNG becomes 

increasingly ethane rich, the boiling temperature increases steeply as predicted by the 

VLE diagram. Therefore as the temperature driving force decreases towards the end of 

the spill, heat transfer goes from film boiling toe transition boiling stage. This boiling 

regime is due to the increased content of ethane in the LNG after most of the methane 

has boiled off during the early stages of the spill. Not considering preferential boil-off 

would result in underestimating the evaporation time by about 20% (Conrado & 

Vesovic, 2000). Therefore, when modeling LNG, thermodynamic properties that reflect 

the behavior of all the compounds in the mixture should be used rather than those of 

pure methane. 
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The above conclusions were confirmed by Boe (1998), by performing laboratory scale 

experiments using liquefied methane-ethane and methane-propane mixtures on boiling 

water. The results confirmed that the addition of ethane or propane in a predominantly 

methane mixture will affect the boil off rate in a similar manner to the above. Methane 

rich mixtures exhibited high initial boil off rates, by adding methane of propane to a 

97% methane mixture, the boil off rates increased by a factor of 1.5-2. Moreover, the 

same conclusion regarding the breakdown of film boiling due to increased contact 

between the mixture and the substrate which would lead to an enhanced heat flux and 

lower temperature difference. This ultimately results in the breakdown of the continuous 

vapor film. 

 

These conclusions were also observed by Drake et al. (1975) which indicated that LNG 

has a higher boil off rate than pure methane. He conducted a series of laboratory scale 

experiments with mixtures composed of 98% methane and 2%ethane which is very 

similar to that of lean LNG. These results were compared to experiments conducted with 

82-89% methane mixtures containing ethane-propane ratios between 4-5, which is 

similar to the composition of rich LNG.  His results showed that increasing the amount 

of heavier hydrocarbons will lead to faster vaporization, and an increased rate of boiling.  

 

2.3.LNG pool spread modeling 

As the spilled liquid starts spreading, it will go through several flow regimes due to 

changes in the dominant forces governing the spread. The forces governing the pool 
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spreading process are gravity, surface tension, inertia and viscous friction as shown in 

Figure 7. These different regimes are the basis to many of the models that will be 

discussed later. There are three main regimes: 

1. Gravity-Inertia regime: Gravitational forces are equal to inertial forces. 

2. Gravity-viscous regime: Gravitational forces are equal to viscous resistance 

(More applicable for spills on water) 

3. Surface tension regime: Viscous drag forces are equal to the surface tension. 

(More applicable for spills on land, or spills on water during ice formation) 

 

Figure 7: Forces acting on the spreading pool 

 

Each of these regimes could be solved by equating the dominant forces for each regime 

and obtaining an analytical solution. Since the lifetime of an LNG spill is relatively 

short, it will spend the entirety of its lifetime in the gravity inertia regime. 
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CHAPTER III  

PREVIOUS EXPERIMENTS ON LNG POOL SPREADING 

 

3.1.Summary of Experiments on liquefied gases 

Numerous experiments of various scales have been conducted using LNG, these 

experiments are necessary to collect a large database of data that can be used to verify 

models and distinguish among their accuracy and applicability. a comparison of the scale 

of the most important experiments are shown in Figure 8. Tables 6 to 9 provide a 

detailed summary of the experiments and the instrumentation used to collect data. 

 

Figure 8: Previous experiments conducted using LNG  
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Table 6: Spills of liquefied gases into bunds( Puttock, Blackmore, & Colenbrander, 1982) 

Experiment Year Spilled Volume (m
3
) Spill Rate (m

3
/min) Duration (min) No. of tests 

Air Products 1966-1967 Oxygen - 0.04-0.15 30-250 11 

AGA/TRW 1968 LNG 0.2 - 0.2 18 

Gaz de France 1972 LNG Max 3 - - > 40 

Gaz de France 1972 LNG - 0.16 4.5 1 

Battelle/ AGA 1974 LNG 0.4-51 - 0.3-0.5 42 (14 w/ 

Ignition) 

 

  

2
3
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Table 7: Experimental setup for bund experiments 

Experiment Type of Spill Surface Bund Size 

(m
2
) 

Additional Info Instrumentation (Sensors) 

Conc. Temp Meteo. Photo 

Air Products Continuous Soil 1 Water spray used 6 5 4 - 

AGA/TRW Continuous 
- Wet Clay 

- Dry Clay 

- Steel 

2 - - - 3 1 

Gaz de France Instantaneous Soil 9 – 200 Tipping Bucket  - - - - 

Gaz de France Continuous Soil 200 - - - - - 

Battelle/ AGA Instantaneous 
- Wet Soil 

- Dry Soil 

- Polyurethane  

3 – 450 - 36 26 9 - 

  

2
4
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Table 8: Spills of LNG and other gases onto water ( Puttock, Blackmore, & Colenbrander, 1982) 

Experiment Year Spilled Volume (m
3
) Spill Rate (m

3
/min) Duration (min) No. of tests 

Bureau of Mines 

1970 LNG 0.04-0.5 - - 51 

1970 LNG - 0.2-0.3 - 4 

1972 LNG - 0.2-1.3 Max 10 13 (7 useless) 

Esso/API 1971 LNG 0.09-10.2 - 0.1-0.6 17 

Shell (Gadila) 1973 LNG 27-198 2.7-19.8 10 6 

Shell Maplin Sands 

1980 Propane - 2-5 4-8 11 (3 

w/Ignition) 

1980  LNG - 1-5 1.5-10 13 (4 w/ 

Ignition) 

1980 Propane 15-25 - - 3 (1w/Ignition) 

2
5
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Experiment Year Spilled Volume (m
3
) Spill Rate (m

3
/min) Duration (min) No. of tests 

1980 LNG 5-20 - - 7 (3 w/ Ignition) 

China Lake – Avocet 
1978 LNG 4.5 4 - 4 

China Lake – Burro 
1980 LNG 40 12-18 2.2-3.5 8 

China Lake – Coyote 
1981 LNG 3-28 6-19 0.2-2.3 5 (w/Ignition) 

10 RPT tests 

China Lake- 

Frenchman Flat 

1984 Ammonia/ 

LNG 

350 - - - 

 

 

 

 

2
6
 

Table 8 Continued 
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Table 9: Experimental setup of spills on water 

Experiment Type of spill Surface Setup 
Additional 

Info. 

Instrumentation (Sensors) 

Conc Temp Meteo Photo 

Bureau of Mines Instantaneous Water 60 m pond Tipping Bucket 0 0 1 5 

Bureau of Mines Continuous Water 60 m pond - 12 0 1 5 

Bureau of Mines Continuous Water 70 m lake with 

20 m walls 

- 30 0 1 1 

Esso/API Instantaneous Sea From Barge Jet 7 m high, 

30
0
 upwards 

18 2 9 2 

Shell ‘Gadila’ Continuous Sea From Ship Jet 18 m high, 

Moving ship 

0 0 2 3 

Shell Maplin Sands Continuous Water 300 m pond 
3 m above 

200 70 45 7 

2
7
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Experiment Type of spill Surface Setup 
Additional 

Info. 

Instrumentation (Sensors) 

Conc Temp Meteo Photo 

Shell Maplin Sands 
Instantaneous Water surrounded by 

sand 

surface 

Shell Maplin Sands 
Instantaneous Water 

Sinking Barge 

Shell Maplin Sands 
Instantaneous Water 

China Lake – Avocet 
Continuous Water Irregular 

surface for 25 m 

downwind of 

source, them 7 

m elevation 

over 80 m from 

source. 

Jet Submerged 

1 m  into splash 

plate 

11 24 17 1 

China Lake – Burro 
Continuous Water 

90 100 76 4 
China Lake – Coyote 

Continuous Water 

China Lake- 

Frenchman Flat 

Continuous Water 

  

Table 9 Continued 
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CHAPTER IV  

CURRENT STATE OF THE ART 

 

4.1.Introduction 

In the scenario of a spill of a cryogenic liquid on land, the following parameters will 

determine the behavior of the pool spread:  

1. The type and volume of the release, i.e. instantaneous or continuous; 

2. The volatility of the spilled material and its initial temperature (degree of sub-

cooling). 

3. The thermal (temperature, thermal diffusivity, thermal conductivity) and 

mechanical (roughness, porosity) properties of the substrate; 

4. The presence of any bunds or wall to contain the spill. 

A multitude of pool spread models have been developed since the early 70’s, although 

most of them employ the same principles derived for oil spill applications; many have 

been adjusted to account for LNG applications. The following section will discuss some 

of the more widely used models. 

 

4.2.Early spread models 

Earlier models by Hoult (1972) and Fay (1971)  were generally derived from the steady-

state Bernoulli equation assuming axisymmetric spread on water: 
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dr
gh

dt


 (7) 

These models assume that gravity is the only driving force for pool spread, while 

ignoring the effect of friction and preferential boil. It is derived from the balance of the 

liquid inertia and gravitational force assuming the ground is smooth. Although these 

models may seem reasonable for oil spills or other heavy liquids, they cannot be applied 

to cryogenic liquids where the effect of gravity decreases with time. Moreover, the pool 

radius is dependent on another unknown variable which is the average height of the pool. 

 

These models, although used to represent the gravity inertia regime, do not represent a 

pure gravity-inertia regime but rather the gravity-front resistance.  

 

Another early model developed by Raj (1974) was derived by equating the inertial 

resistance forces to gravitational forces as follows: 

 

Inertial resistance:  

 

2
2

2
( )l

d r
F C r h

dt
  

 (8) 
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Gravitational forces:  

 

2

GF rh g 

 (9) 

 

Nonetheless this will yield a similar result to the previously mentioned models by 

reaching the conclusion that spreading is strictly gravity driven 

 

2

2

d r gh

dt Cr


 (10) 

A setback of these modesl involves the improper repersentation of the gravity inertiea 

regime, by including a negative sign for the inertial resistance equation, this resulted in a 

widely used misconception that has been propagated throughout later models (Webber, 

1996). Moreover, a basic counterargument against these approaches has also been that 

they ignore frictional resistance to spreading. These issues were addressed by Webber 

(1991) who expressed inertial forces as the differences between the gravitational drive 

and the resistance as follows: 

 

2

2

4
F

d r gh
C

dt r
 

 (11) 

This effect of gravity was then examined by ABSG & FERC (2004) by comparing 

theBriscoe & Shaw (1980)  model which ignores the effect of friction to that of Webber 

(1991) mentioned above. Reaching the conlusion that frictional effects are much more 

significant for large short duration spills, but their effect declines for longer duration 

spills.  
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4.3.PHAST 

PHAST is a commonly used consequence analysis code, it was developed by DNV and 

includes models for spill discharge, pool formation, pool evaporation, buoyant and dense 

gas dispersion, jet fires, pool fires, BLEVE’s and vapor cloud explosions. 

 

The integral model used by PHAST for pool spreading and vaporization takes the 

following effects into consideration: 

 Spread on land or water 

 Instantaneous or continuous release 

 Interaction with bund walls 

 Heat conduction from substrate 

 Ambient convection for atmosphere 

 Radiation and diffusion effects 

 

PHAST adopts the following equation to model for spreading on land: 

 
min2 ( )

dr
g h h

dt
 

 (12) 

The  model assumes that once the pool reaches its minimum height (h = hmin) , the radius 

becomes constant as dr/dt = 0, ignoring the shrinking effects on the pool induced by 

evaporation, additionally frictional effects are ignored. 
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4.4.Supercritical pool spread model 

Fay (2007) claimed that the above gravity inertia based models are not entirely 

applicable to cryogenics due to their unique thermo-physical properties, the proposed 

model is based on the idea that the vigorous boiling of LNG means that bubbles will 

occupy a significant volume of the overall pool volume, therefore reducing the density. 

This reduction in density will both affect the amount of LNG submerged in water for 

water based spills, and increase the predicted diameter for land based spills. Moreover, 

this supercritical model argues that equating viscous and gravitational effects as done by 

Webber might not necessarily be applicable to LNG as it will eventually ride on a thin 

film of LNG vapor that is at a much lower viscosity than that of water, which then 

enables the treatment of the LNG pool as inviscid flow. According to the model the pool 

volume changes are modeled as follows: 

 

2 2 2( ) ( )
p evap evap

L

L L

dV G G
R u t

dt
 

 
 

 (13) 

The above relation has been derived through an energy balance equation the pool’s 

kinetic energy to the initial potential energy; it argues that gravitational effects should 

not be a parameter for a continuous release since it is overcome by the initial potential 

energy of the release.  The major disadvantage of this model is that it tries to account for 

the mechanical effects of boiling by incorporating bubble volume, but fails to account 

for their heat effects as the vaporization rate is fixed. Moreover, although it accounts for 

density changes due to bubble volumes, the model does not also incorporate similar 

changes due to preferential boiling. 
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4.5.CFD models 

CFD codes have yet to achieve full confidence in dealing with LNG release and 

dispersion modeling. So far only one CFD tool (FLACS) has passed the MEP (model 

evaluation protocol) for the NFPA-59A standard, whereas countries like France and the 

Netherlands have moved away from using CFD for Risk assessment of atmospheric 

dispersion. At the moment, CFD modeling is highly dependent on the user, and different 

users modeling the same scenario could possibly end with varying results. Moreover, 

although CFD could arguably provide a better mathematical accuracy, the computational 

time required compared to integral models is disparaging. 

 

4.5.1. FLACS by GexCon 

The FLACS source term model is based on the shallow layer equations presented by 

Hansen et al. (2007), despite recent enhancements to their code, they still rely heavily on 

shallow water modeling to predict their pool size and evaporation rate. The 2-D shallow 

layer model implemented by FLACS relies on the following coupled momentum and 

heat equations: 

 
, ,

i i
j g i i

j

u u
u F F

t x


 
  

 
 (14) 
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 
 (15) 
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For spills on water, the conduction heat effects used by FLACS attempt to take into 

account the effect of the transition and boiling regimes, it uses the correlations derived 

by Conrado & Vesovic (2000). Moreover, it takes into account the effect of turbulent 

mixing that is expected to accompany LNG spills on sea as derived by Hissong (2007), 

who introduces a turbulence factor to model the instability of the thin film during film 

boiling and the increased contact between the LNG and water due to excessive 

turbulence disturbing the separating thin film.  

 

The above equations are then solved explicitly using a 3
rd

 order Runge-Kutta solver to 

obtain the evaporation and geometrical parameters for the spill. 

 

Despite being tested for liquid hydrogen spills as shown by FLACS literature, this 

shallow layer model has yet to be verified for LNG.  Moreover, FLACS will model LNG 

using an analogue with fixed thermo physical properties, thus ignoring preferential boil 

off and property changes of the spilled LNG throughout the pool lifetime. 
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CHAPTER V  

METHODOLOGY 

 

5.1.Introduction 

In this work, a model is developed that accounts for both the mixture and cryogenic 

natures of LNG. The model takes into account the composition changes of a boiling 

mixture due to preferential boil-off and the effect of different boiling modes on 

conductive heat transfer. The heat, mass and momentum balance equations are derived 

for different spill scenarios and the model is solved using Matlab. 

 

Unlike currently available models, the uniqueness of this model lies in its incorporation 

of these complexities to determine the pool behavior and vaporization rate throughout 

the spill lifetime. Additionally, a purely analytical approach is implemented without 

relying on any empirical constants or adjustments. 

 

As a mixture, LNG will experience preferential boil-off, which in turn will influence the 

mixture density, temperature (and therefore heat transfer driving force), viscosity and 

almost all of the remaining properties as it is continuously changing in composition. 

Moreover, being a boiling liquid, both the mechanical and heat effects will differ 

depending on the boiling regime it is currently in. Once these complexities are 

understood and accounted for, they can then be applied to a wide variety of scenarios 

and conditions. 
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5.2.Governing equations 

A box model approach has been used to model the spill behavior, the basic idea of the 

model is shown in Figures 9 and 10. In this model a circular pool with average height is 

used to predict the behavior of the spill and the height and radius are recalculated for 

each time step after solving the momentum and heat balance equations. 

 

 

Figure 9: Cryogenic spread on land 

 

 

Figure 10: Box model 
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5.2.1. Mass balance 

The volume of the pool is calculated using a mass balance that accounts for the added 

LNG from the source and the vaporized LNG form the pool at each time step.  

 
0

vap

c

m
V V V t


  

 (16) 

The average height of the liquid pool is then calculated by: 

 
2pool

V
h

r


 (17) 

5.2.2. Momentum balance 

The momentum balance is based on a gravity-inertia regime, with the addition of a 

resistance term corresponding to the friction at the base of the pool: 

 

     –  Inertial forces Gravitational forces Friction

 (18) 

The equation describing the spreading rate of the pool is then given by (Webber , 1991): 

 

2

2

1
F

r h
g C

t r


 


 (19) 

The adjustment constant  is a multiplicative constant derived from the self-similar 

solutions of the shallow layer equations for a radial spread of a fixed volume of liquid as 

shown by Webber (2012).  Other models account for this multiplicative difference by 

deriving the ratio of the liquid inertia of the leading edge to that of the pool bulk 

(Briscoe & Shaw (1980) ). A value of 0.25 is used for γ as shown by Webber et al 
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(1987).  The frictional resistance terms were calculated using the correlations provided 

by Webber (1991). 

 

5.2.3. Heat transfer to the pool and boiling regimes 

Equation (19) is coupled to the following equation describing the vaporization rate: 

 vap

dm Q

dt H



 (20) 

 

The heat flux into the pool will be determined by the boiling regime, the behavior of the 

boiling pool will follow the trend shown in Figure 4. The maximum heat flux and critical 

temperature for nucleate boiling can be estimated using the following equation (Conrado 

& Vesovic (2000)): 

 

1/2 1/4
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 (21) 
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 (22) 

 

The minimum heat flux and temperature indicating the transition to film boiling regime 

can also be estimated using the following equation (Kalininet al., 1976; Opschoor, 

1980): 
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1/3
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

 
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    
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Figure 11 shows the boiling heat flux curves for the LNG components. LNG is expected 

to lie somewhere between methane and ethane. No correlations have been developed for 

mixtures.  

 

Figure 11: Boiling heat flux curves for LNG components 

 

The correlation provided by Klimenko (1981) was used to determine the heat flux into 

the pool during the film boiling: 

 

 _ _cond film S film a Lq h T T 

 (24) 
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The heat transfer coefficient for film boiling is expressed as a function of the Nusselt 

number, thermal conductivity of the vapor film and a characteristic length as follows: 

 
_

S Vf

S film

C

Nu k
h

L


 (25) 

The Length scale factor: 
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L
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 



 (26) 

The criteria to determine Laminar or Turbulent flow in the vicinity of the vapor film is 

as follows: 

 

 

8 1/3

1Laminar Region :         10 , 0.19( Pr)SAr Nu Ar f 

 (27) 

 

8 1/3

1Turbulent Region :         10 , 0.19( Pr)SAr Nu Ar f 

 (28) 

Where: 
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 (30) 

Where 1f  and 2f are functions of the thermal properties of the liquid pool, determined as 

follows: 
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 (32) 

The correlation provided by Opschoor (1975) was used to calculate the heat transfer for 

the nucleate regime,  whereas the heat flux for the transitional regime is determined 

using a linear approximation between qCHF and qMin. 

 

The change from transition to nucleate boiling happens at the critical superheat 

corresponding to the TCHF point on Figure 4. Kalinin et al. (1976) proposed the 

following correlation: 
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The condition for nucleate boiling to occur is: 

 
CHFT T  

 (34) 
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A similar condition is applied to determine whether transition boiling occurs by 

determining the minimum temperature required for film boiling. This is calculated using 

the correlation from Kalinin et al. (1976): 

 

1/4

( ) 0.16 0.24
L pL L

Min C L

w pw w

C k
T T T

C k





  
            (35) 

The condition for transition boiling to occur is: 

 
MinT T  

 (36) 

Else film boiling is present. The algorithm used to implement boiling heat transfer is 

shown in Figure 12. 

 

Unlike 1-D conduction, the Drichlet boundary condition used to determine the ground 

temperature is not valid when boiling is considered, as the thermal resistance between 

the ground surface and the liquid pool should be accounted for. A Neumann type 

boundary condition was therefore applied to calculate the ground surface temperature. 

An in-house model was developed under Matlab to account for the change of surface 

temperature based on the heat transfer correlations for the boiling regimes cited above. 

 
0 0 0

t t t t t t

x

x
T T n T T q

k





 
    

 
 (37) 
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Figure 12: Algorithm for Heat transfer as implemented in the proposed model 

 

 

5.2.4. LNG pool/ vapor properties – vapor liquid equilibrium 

The use of pure fluids or constant property analogues to represent LNG may not provide 

an accurate representation of its mixture thermodynamics (Conrado & Vesovic, 2000). 

Varying the thermo physical properties and composition throughout the pool spread 

period have to be accounted for. LNG will behave differently than pure methane, or in 

fact a pure cryogen, as transient changes in the composition may affect the physical 

properties of the mixture. Vapor Liquid Equilibrium (VLE) relations can be used to 

predict such properties and were incorporated in the pool spreading model as follows. 

 

Since the system will always be at low pressure, Raoult’s law was used to calculate the 

partial pressure of each component in the vapor phase. 
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,i i sat i totalx P y P

 (38) 

The saturation properties for each of the pure components were calculated using the 

Antoine Equation. 

 
10log

B
P A

C T
 


 (39) 

Where A, B and C are component specific empirical constants. 

 

The enthalpy of vaporization was determined as the difference between the vapor and 

liquid enthalpies: 

 
Vap V LH H H  

 (40) 

The enthalpy of each of the phases is calculated as the sum of the ideal gas and residual 

enthalpies: 

 

ig residual

phase phase phaseH H H 

 (41) 

For the gas phase, the ideal gas enthalpy was determined using the following mixing 

law: 

 0

( , )

, ,( )

Tsat

ig ig ref T P

V i P i formation i

i T

H x C dT H  
 (42) 

The reference state was taken to be at 298 K and 1 atm. 
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The ideal gas heat capacity of each of the components was determined using the 

Shomate equation: 

 

2 3

2Pi

E
C A B T C T D T

T
       

 (43) 

Where A, B, C, D and E are empirical constants obtained from the NIST Database. 

 

The residual enthalpy of the vapor phase was ignored because the system will be at low 

pressure. 

 

The enthalpy of the liquid phase was determined similar to Equation 23, an ideal 

solution mixing rule was used and the mixing energy was neglected as follows: 

 
, ,

ig res mix

L L L i L i L i L i

i i

H H H x H H x H     
 (44) 

The pure component liquid enthalpy was then determined as follows: 

 0

, ,

Tsat

ig res ig vap

L i i i P i i

T

H H H C dT H   
 (45) 

The pure component residual enthalpy was taken to be equal to the negation of the 

vaporization energy, because the saturated vapor is assumed to behave as an ideal gas at 

the temperature of interest. 

 

The heat of vaporization of the pure components was determined using the Pitzer 

correlation: 
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0.354 0.456

, , ,(7.08(1 ) 10.95(1 )vap

i c i r i r i iH RT T T     

 (46) 

The heat of vaporization of the mixture is then calculated using Equation 40 and used to 

determine the vaporization rate from the spreading pool. 

 

The algorithm used to implement mixture thermodynamics is shown in Figure 13. 

 

 

5.2.5. Differences between pool spread on land and water 

In this work, the major difference between the pool spread models on land and on sea 

involved accounting for the disturbance of the water surface by introducing an effective 

gravitational acceleration parameter g’ as shown by (Webber, 1991):  

 

 
' w l

w

g g
 






 (47) 
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Figure 13: Algorithm for thermodynamic effects as implemented in the proposed model
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CHAPTER VI  

ANALYSIS OF GOVERNING PHENOMENA 

 

6.1.Introduction 

The pool spreading model developed in this work was used to identify the relative 

importance of the phenomena involved in the pool spreading process of a cryogenic 

liquid mixture like LNG. The purpose of this analysis was to gain a better perspective of 

the effect of these phenomena and how their effect varies throughout the lifetime of the 

spreading pool. This should provide a better idea so as to optimize the modeling 

processes and approaches required when conducting a sensitivity analysis. 

 

A base case was defined before conducting the sensitivity analysis. The purpose of this 

Base Case was to be used as a reference simulation. The base case was compared to 

several simulations which included or not the phenomena involved in the pool spreading 

process of a cryogenic liquid mixture.  The base case was selected so as to represent the 

most commonly used approaches in modeling the mechanical and heat effects involved 

in the pool spreading process. Mechanical effects were modeled using a gravity-inertia 

balance, whereas heat effects were modeled using an adjusted simple 1-D conduction.  

 

The effect of the following phenomena was studied in this analysis: 

1. Friction and gravity terms 

2. Thermal contact/ roughness adjustment parameter 
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3. Boiling heat transfer 

4. Mixture thermodynamics 

 

6.2.Definition of the base case 

The Base Case was defined as follows: 

 The liquid spreading is LNG. The properties of the LNG mixture are shown in 

Table 10. 

 LNG spreads on concrete. The physical properties for concrete were extracted from 

Briscoe & Shaw (1980) as shown in Table 11. 

 The pool spreads according to a gravity inertia regime as represented by Webber 

(1991), as shown in Equation 19. 

 1-D conduction is used to represent heat transfer, as shown in equation 49. 

 

( ) ' '

0.5 ' 0.5

0

( ) 2

( ) ( )

r t

a b

vap vap

k T Tdm Q r dr

dt H H t t

 




 
  

 (48) 

The simulations were run for two scenarios: 

 A 1000 m
3
 instantaneous spill. 

 A 10 m
3
/s continuous spill for 100 seconds. 

These scenarios have been adopted from Briscoe and Shaw (1980).   
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Table 10: LNG properties used in simulation 

Density  450 kg/m
3
 

Molecular Weight 16.043 kg/kmol 

Latent Heat of vaporization 8.8 kJ/mol 

Composition 

Methane: 89.9 %, Ethane: 6 %, 

Propane: 2.2 %, Butane: 1.5 %, 

Nitrogen: 0.4 % 

 

 

Table 11: Concrete properties used in simulation 

Density 2300 kg/m
3
 

Specific Heat  961.4 J/kg-K 

Thermal Conductivity  0.92 W/m-K 

Thermal Diffusivity  4.16 x 10
-7 

m
2
/s 

 

 
6.3.Friction and gravity terms 

Frictional effects are an important parameter in the momentum balance implemented in 

many of the currently available models. Yet the applicability of implementing frictional 

effects for boiling liquids has been questioned (Brambilla et al., 2009). Frictional effects 

of boiling cryogenics are usually corrected for by incorporating empirical constants to 

better predict the spreading behavior of LNG. These empirical constants are either  

based on experimental work developed for LNG as is the case with Briscoe & Shaw 

(1980), or based on mathematical derivations for the spread of boiling water as with 
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Webber (1991), which brings their validity and versatility for application into question. 

In this section, the relative importance of frictional effects on the gravitational driving 

force is investigated.  This was done by comparing both terms of the gravity inertia 

regime as shown in Equation 49.  

 

 
22

2

/4 r
dr dtg hd r

dt r h

Gravity Friction

 

 (49) 

 

When compared to the gravitational driving force, the effect of friction is seen to be 

significant towards the later stages of the pool lifetime as shown in Figure 14 . 

 

 

Figure 14: Webber 1991 model with 1-D ideal conduction: gravity and friction 

comparison 
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Therefore, when the momentum balance is coupled with 1-D conduction to model the 

pool behavior, frictional effects are expected to be significant towards the later stages of 

the pool lifetime. 

 

Moreover, adding or removing the frictional term will affect the value of the 

gravitational driving force of the pool as shown in Figure 15. As expected, when friction 

is removed from the gravity inertia balance equation, the gravitational driving force 

increases throughout the pool lifetime. 

 

 

Figure 15: Effect of friction on gravitational driving force 
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in thermal contact with the substrate as shown in Figure 16. Nonetheless, although these 

effects are not overly significant, the addition or removal of friction will completely 

change the pool’s overall behavior, as the addition of friction will result in a smaller pool 

that lasts longer. 

 

 

Figure 16: The effect of friction on pool radius 

 

6.4.Effect of thermal contact/ roughness 

When trying to model the boiling heat transfer observed with LNG using 1-D 

conduction, an empirical constant () has been employed to adjust for perfect thermal 

contact as shown by Briscoe & Shaw (1980) (equation 49) and Jensen (1983) (Equation 

4).  A value of  = 3 has been commonly used based on laboratory scale experiments of 
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liquid Nitrogen on a galvanized Iron plate (Burgess & Zabetakis, 1962). The validity of 

this constant to applications involving different spill scenarios and different substrates 

has not been questioned.  Therefore a sensitivity analysis was conducted to determine 

the effect of this parameter on the pool spread model, Figures 17 and 18 show the effect 

of varying this parameter for the two cases with and without friction. 

 

 

Figure 17: Effect of varying thermal contact parameter on pool radius while maintaining 

frictional effects (Base Case: =3) 
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Figure 18: Effect of varying thermal contact parameter on pool radius while ignoring 

frictional effects (Base Case: =3) 

 

The 1-D conduction model seems to be very sensitive to this parameter which implies 

that perhaps further investigation is required to determine its validity and applicability to 

LNG on different substrates. Better experimental data would be required to increase 

confidence in the applicability of these empirical parameters for LNG spill scenarios. 

 

6.5.Heat transfer and boiling mechanism 

In this section, the base case which assumes 1-D conduction (with  = 3) was compared 

to the pool spread model incorporating the boiling correlations described in Section 2.1 

above. Other effects such as mixture thermodynamics have not been repressed for the 

sake of this comparison to help capture the true effect of implementing different heat 

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Time (s)

R
ad

iu
s 

(m
)

 

 

No Friction  = 1

No Friction  = 2

No Friction  = 3

No Friction  = 6



 

57 

 

transfer mechanisms.  Figure 19 to 27 show the effect of implementing boiling heat 

transfer on the pool spread and heat flux for both a continuous and instantaneous spill. It 

is important to note that frictional effects were ignored when boiling heat transfer 

correlations are used since direct contact between the ground and the spreading pool is 

limited throughout the pool’s lifetime by either a vapor film or bubbling; nonetheless 

they were included in the Base Case. 

 

Due to the high initial superheat, the pool will initially be in the film boiling regime, but 

there are two possible mechanisms that can lead to a change of the boiling regime to 

nucleate boiling. First, the cooling of the substrate may reduce the temperature 

difference between the liquid and the substrate and promote film collapse. Second, 

preferential boiling of the lighter hydrocarbons, will increase the content of heavier 

components in the pool, which would destabilize the film  (Conrado & Vesovic, 2000). 

It is important to recall that although mechanical effects could also promote film 

collapse and the transition between boiling regimes, these effects have not been 

considered as they have not been extensively studied in literature. Instead, film stability 

and transition between boiling regimes is governed solely by heat effects, primarily the 

temperature superheat difference between the substrate and the spreading LNG. 

 

Implementing boiling correlations will results in higher values of the maximum pool 

radius and pool lifetime for both continuous and instantaneous spills, this is because heat 

transfer and subsequently the vaporization rate will be limited by film boiling. The 
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complexity of the boiling process of LNG on land or sea renders its complete description 

difficult. Thus the modeling of the boiling of an LNG mixture requires more theoretical 

and experimental efforts.  Moreover, further work is needed to increase confidence in the 

validity of the correlations used to calculate the heat transfer for the different boiling 

regimes and the values of TCHF or Tmin in the case of an LNG mixture. 

 

For a continuous spill, implementing boiling heat transfer will result in a 50 m difference 

in estimating the maximum pool radius, this difference is maintained throughout the pool 

decay period. Although the difference in pool diameter is not significant during the pool 

development period and 1-D conduction provides a reasonably close estimate using a 

much simpler correlation, the difference becomes important towards the end of the pool 

lifetime, as implementing boiling mechanisms will predict a pool that lasts longer by 

about 60s or 125% longer than that predicted using 1-D conduction. Properly estimating 

the pool lifetime from the source term will have an important effect on predicting 

subsequent effects, particularly in the case of the formation of a vapor cloud. 
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Figure 19: Effect of boiling heat transfer on pool radius for a continuous spill 

 

Moreover, when comparing the heat flux curves as shown in Figures 20 and 22, there is 

an initial order of magnitude in difference between the two models during the very early 

stages of pool contact, this difference decreases with time, but heat flux from 1-D 

conduction remains higher throughout the pool lifetime. In this scenario, the pool will 

remain in film boiling due to its relatively short lifetime. Additionally when comparing 

the ground temperature profiles as shown in Figure 21, implementing the boiling heat 

transfer mechanism will provide a more accurate representation of how the ground 
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Figure 20: Effect of boiling heat transfer on heat flux at center of the pool for a 

continuous spill 

 

 

 
Figure 21: Effect of boiling heat transfer on temperature at center of the pool for a 

continuous spill 
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Figure 22: Effect of boiling on overall heat flux into pool for a continuous spill 
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regimes becomes more significant when considering the larger picture as shown in 

Figure 26 which shows the overall heat flux of the pool instead of the local effect at the 

center of the pool shown in Figure 24. In this case the multiple spikes towards the end of 

the curve shows how different areas of the pool will reach the transition boiling regimes 

at different times due to varying contact times as the pool is spreading.  Moreover, when 

comparing the temperature profiles, the point of film breakup and switch to transitional 

boiling regime is clearly observed and represented by a sudden drop in temperature as 

the liquid is now in direct contact with the ground instead of having an insulating vapor 

layer between them. 

 

 

 

 
Figure 23: Effect of boiling heat transfer on pool radius for an instantaneous spill 
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Figure 24: Effect of boiling heat transfer on heat flux at center of the pool for an 

instantaneous spill 

 

  

 
Figure 25: Effect of boiling heat transfer on temperature at center of the pool for an 

Instantaneous spill 
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Figure 26: Effect of boiling on overall heat flux into pool for a continuous spill 
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heat transfer correlations will, as is the case with any thermo physical model, employ 

empirical parameters at the very basic levels, these parameters have not been 

implemented to adjust the nature of these predictions as is the case with the  parameter. 

This difference in the nature of the boiling heat transfer correlations provides better 

confidence in their applicability to a wider range of spill scenarios on different substrates 

or even involving different cryogens.  

 

 

Figure 27: Comparing 1-D conduction with varying  parameter to boiling heat transfer 
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6.6.Vapor liquid equilibrium (VLE) effects 

Here, the base case was compared to the model incorporating VLE effects. VLE and 

mixture thermodynamics were implemented as described in Section 2.2.4 to determine 

the temperature, thermo physical properties and vapor and liquid compositions 

throughout the pool’s lifetime. The initial composition of the LNG mixture used is 

shown in Table 1. In this comparison, heat transfer effects were modeled using 1-D 

conduction to obtain an absolute effect of mixture thermodynamics on the pool 

spreading process. 

 

As shown by Figure 28 incorporating mixture and thermodynamic effects will not result 

in a significant enhancement to the pool spread model for continuous spills. This is 

primarily due to the continuous supply of fresh LNG into the pool which will maintain a 

high methane content as shown in Figure 29, yet once the continuous spill stops at 100s 

and the effect of preferential boil-off starts being more significant, the pool density and 

latent heat will start to increase due to the higher fractions of heavier hydrocarbons in the 

pool as shown in Figure 30 and 31. This in turn will affect the pool radius and the 

deviation of pool radius from 1-D conduction can be observed to begin after 100s which 

is the end time of the continuous spill as shown in Figure 28.  
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Figure 28: Effect of incorporating VLE effects on pool radius for a continuous spill 
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Figure 30: Effect of incorporating VLE effects on pool density for a continuous spill 

 

 

 

 
Figure 31: Effect of incorporating VLE effects on pool latent heat for a continuous spill 
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Similarly, for instantaneous spills, VLE effects are significant only for the pool decay 

period. Implementing VLE will predict a longer pool lifetime by about 80s or about 

120% longer than using a simple LNG analogue as shown in Figure 32. This is primarily 

due to the immediate effect of preferential boil off on the pool’s composition and thermo 

physical properties as shown in Figures 33to 35 since there is no continuous supply or 

replenishment of the lighter methane as is the case with a continuous spill. The effect of 

incorporating VLE on the pool radius is parallel to the change in the pool composition 

due to preferential boiling. Similarly, the density and the latent heat will increase as the 

fraction of heavier hydrocarbons starts increasing in the pool.  

 

 
Figure 32: Effect of incorporating VLE effects on pool radius for an Instantaneous spill 
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Figure 33: Effect of incorporating VLE effects on pool composition for an Instantaneous 

spill 

 

 
Figure 34: Effect of incorporating VLE effects on pool density for an Instantaneous spill 
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Figure 35: Effect of incorporating VLE effects on pool latent heat for an Instantaneous 

spill 
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6.7.Conclusion of sensitivity analysis 

The following conclusions can be drawn from this sensitivity analysis: 

1. 1-D conduction models were found to be very sensitive to the thermal contact 

correction parameter, which brings into question the versatility of applying 1-D 

conduction to represent heat transfer under different scenarios. Further 

experimental work is required if adjusted 1-D conduction is to be used with 

LNG.  

 

2. Frictional effects within the Base Case seem to have a noticeable effect on the 

pool spreading process and become important during the later stages of the pool 

spread. However, this is not applicable in the case of LNG, as its unique nature 

as a cryogen, prevents the use of conventional frictional terms which may simply 

overestimate the friction as stated by (Brambilla et al., 2009). In this model, the 

use of boiling heat transfer correlations while ignoring frictional effects seem to 

be in reasonable agreement with the Base Case that employs adjustable 

parameters to correct for frictional and heat effects. 

 

3. The model which includes the boiling effects provided results close to  the 

current 1-D conduction model with a correction factor =3. .It provides a better 

representation of the pool boiling behavior, the ground temperature change and 

the transitions between the different boiling regimes during the pool spreading. 
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4. VLE and mixture effects seem to have a negligible effect on the pool spreading 

process during methane rich periods of the pool’s lifetime, but become 

increasingly significant during the methane poor periods as the effect of 

preferential boiling becomes more observed.  Additionally, implementing VLE 

effects will provide a detailed insight on the varying thermo physical properties 

throughout the pool’s lifetime.  
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CHAPTER VII  

MODEL VALIDATION 

 

7.1.Introduction 

When trying to validate the model for spills on land and sea, there are very few well 

instrumented data for medium and large scale experiments in literature. Such lack of 

data presents some limitations when used to validate the complex phenomena involved 

in the pool spreading process. More experimental investigations at significantly larger 

scales on land and sea are necessary to properly validate the existing LNG pool 

spreading models. Nonetheless, two sets of data for land and sea were selected from the 

literature and compared to the full present model incorporating mixture thermodynamics, 

VLE effects and varying boiling heat transfer regimes was validated. 

 

7.2.Validation for spills on land 

Moorehouse and Carpenter (1982) conducted a series of experiments on soil and 

concrete involving continuous releases of LNG at a rate of 17 tonnes/hr on soil and 14 

tonnes/hr on concrete. The model was compared to a set of experiments conducted on 

concrete with thermal conductivity and diffusivity of 1.7 W/m-K and 5x10
-7

 m
2
/s. As 

shown by Figures 36 and 37, the model is able to reproduce the data reasonably well. 

Nonetheless it is important to consider that the measured data is only for the pool 

development stage of the release and is therefore governed primarily by momentum 

effects, and may not be used to properly validate the modelling of heat effects into the 

spreading pool. 
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Figure 36: Model validation vs experimental data for a 17 tonne/hr continuous LNG 

release on concrete 

 

 

Figure 37: Model validation vs experimental data for a 14 tonne/hr continuous LNG 

release on soil 
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7.3.Validation for spills on sea 

The Esso 11 experiments included a continuous release of 0.15 m
3
/s of LNG on sea, the 

experimental data was extracted from Hissong (2007). As shown in Figure 38 the model 

seems to validate reasonably well with the experimental data, yet the validation suffers 

from the same uncertainty as that on land as the experimental data only measures the 

very early stages of pool development. Moreover the availability of only four 

experimental points weakens the credibility of the data to be used for validation 

purposes. 

 

 
Figure 38: Model validation vs experimental data for a continuous release of 0.15 m3/s 

of LNG on sea 
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CHAPTER VIII  

CONCLUSION 

 

In this work, a pool spread model was developed by incorporating boiling heat transfer 

and mixture thermodynamic effects to a gravity inertia momentum balance. The aim was 

to develop an analytical model that represents the unique properties of LNG as 

accurately as possible without relying on any empirical or adjustment parameters.  

 

A sensitivity analysis was conducted to determine the relative importance of boiling heat 

transfer, friction, thermal contact/roughness adjustment parameter and VLE effects on 

the rate of pool spreading and decay. The purpose of the sensitivity analysis was to 

determine the effect of increasing the complexity of the currently available models and 

to analyse the sensitivity of these models to the empirical constants incorporated.  

 

Modelling conduction using boiling heat transfer rather than 1-D conduction seems to 

have a significant effect on pool spreading, particularly towards the later stages of the 

pool spread as these effects start to become increasingly significant. On the other hand, 

implementing VLE and mixture effects into the model seems to have a negligible effect 

when compared to using fixed LNG thermo physical properties for continuous spills, but 

are significant for instantaneous spills. This is due to delayed effect of preferential boil 

off in continuous spills due to the continuous supply of fresh LNG into the pool, unlike 
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the case for an instantaneous spill where the effect of preferential boil off occurs much 

quicker.  

 

The addition of friction to the gravity inertia balance was investigated to better 

understand its relative importance on the mechanical aspects of the pool spread model, 

this is because frictional effects have been ignored in the developed model due to the 

implementation of boiling heat transfer which assumes that the leading edge of the pool 

will always be in film boiling and therefore sliding on a thin frictionless vapour film.  

 

Results show that friction seems to have a noticeable effect on the pool spreading 

process modelled using the Base Case, and will affect the pool lifetime and spread rate, 

particularly towards the later stages of the pool lifetime. This is explained by the fact 

that as the modelled pool spreads faster due to lack of friction, it will get thinner at a 

faster rate and will be in contact with more ground which increases the amount of heat 

conducted into the pool. These two effects will results in a pool with a shorter lifetime 

and a larger maximum diameter. However, this is not applicable then dealing with LNG 

due to its cryogenic nature, and the use of conventional frictional terms as will in fact 

over estimate these frictional effects as shown by (Brambilla et al., 2009).  

 

Finally, the effect of the thermal contact/roughness correction parameter was studied. 

The thermal contact/roughness correction parameter is an empirical parameter that has 

usually been introduced to early spread models such as Briscoe & Shaw (1980) and 
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Jensen (1983) to correct the 1-D conduction to match experimental data for LNG. When 

varied, the 1-D conduction equation was found to be very sensitive to this parameter 

which brings into question its applicability to a wide range of spreading scenarios and 

substrates. 

 

The model was validated against experimental data found in literature. The model seems 

to validate well with the available data, but since all of the data found was only for the 

development region of the pool this brings into question the confidence they provide in 

validating this model. A more reliable set of experimental data are required to properly 

validate and understand the governing phenomena involved in pool spread models. 
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CHAPTER IX  

FUTURE WORK 

 

Further work is needed to understand substrate effects on the boiling behaviour of LNG. 

The effect of surface roughness, porosity, thermal conductivity and other parameters on 

the boiling process needs to be studied to properly determine their effect on bubble 

nucleation and film breakup. Additionally, CFD modelling of these phenomena may be 

required to provide additional insight on the effect of these parameters. Nonetheless, the 

author of this report strongly believes that experimental work, both lab and large scale, is 

crucial to gain a better understanding and develop more accurate correlations when 

dealing with LNG. Although modelling efforts are important, there has been a lack of 

experimentally backed insight during recent years, particularly when it comes to dealing 

with the boiling phenomena of LNG. Experimental work at medium and large scale is 

currently being planned to be conducted at the Ras Laffan Emergency and Safety 

College, which could be a huge step forward to help properly and comprehensively 

validate the model and provide a better understanding of its governing phenomena. 

  



 

81 

 

REFERENCES 

ABSG, & FERC. (2004). Consequence assessment methods for incidents involving 

releases from liquefied natural gas carriers. 

Berenson, P. J. (1962). Experiments on pool-boiling heat transfer. International Journal 

of Heat and Mass Transfer, 5, 985–999. 

Boe, R. (1998). Void fraction measurements in boiling cryogenic mixtures using gamma 

densitometer. International Journal of Heat and Mass Transfer, 41(10), 1167–

1175. 

Brambilla, S., & Manca, D. (2009). Accidents involving liquids: A step ahead in 

modeling pool spreading, evaporation and burning. Journal of Hazardous 

Materials, 161(2-3), 1265–1280. doi:10.1016/j.jhazmat.2008.04.109 

Briscoe, F., & Shaw, P. (1980). Spread and Evaporation of Liquid. Progress in Energy 

and Combustion Science, 6(2), 127–140. 

Burgess, D., & Zabetakis, M. G. (1962). Fire and explosion hazards associated with 

liquefied natural gas (p. 34). Washington, DC: U.S. Dept. of the Interior, Bureau of 

Mines, Report 6099. 

Cavanaugh, T. A., Siegell, J. H., & Steinberg, K. W. (1994). Simulation of Vapor 

Emissions From Liquid Spills. Journal of Hazardous Materials, 38(1), 41–63. 

doi:10.1016/0304-3894(93)E0111-E 

Conrado, C., & Vesovic, V. (2000). The influence of chemical composition on 

vaporisation of LNG and LPG on unconfined water surfaces. Chemical Engineering 

Science, 55(20), 4549–4562. doi:10.1016/S0009-2509(00)00110-X 

Drake, E. M., Jeje, A. A., & Reid, R. C. (1975). Transient boiling of liquefied cryogens 

on a water surface: I. Nitrogen, Methane and Ethane. International Journal of Heat 

and Mass Transfer, 18(12), 1361–1368. Retrieved from 

http://www.sciencedirect.com/science/article/pii/0017931075902495 

Fay, J. A. (1971). Physical processes in the spread of oil on a watersurface. Proceedings 

of  The Joint  Conference  on Prevention  and  Control of  Oil  Spills (p. 463467). 

Fay, J. A. (2007). Spread of large LNG pools on the sea. Journal of Hazardous 

Materials, 140(3), 541–551. doi:10.1016/j.jhazmat.2006.10.024 



 

82 

 

Forsman, B. (2011). North European LNG Infrastructure Project : A Feasibility Study 

for an LNG filling station infrastructure and test of recommendations (p. 20). 

Hansen, O., Melheim, J., & Storvik, I. (2007). CFD-modeling of LNG dispersion 

experiments. AIChE Spring National Meeting, 2007, (April). Retrieved from 

http://www.gexconus.com/doc/olav/LPS_Houston_Hansen_2007.pdf 

Hissong, D. W. (2007). Keys to modeling LNG spills on water. Journal of Hazardous 

Materials, 140(3), 465–477. doi:10.1016/j.jhazmat.2006.10.040 

Hoult, D. (1972). Oil spreading on the sea. Annual Review of Fluid Mechanics, 341(1). 

Retrieved from 

http://www.annualreviews.org/doi/pdf/10.1146/annurev.fl.04.010172.002013 

Jensen, N. O. (1983). On cryogenic liquid pool evaporation. Journal of Hazardous 

Materials, 8(2), 157–163. doi:10.1016/0304-3894(83)80054-5 

Kalinin, E. K., Berlin, I. I., Kostyuk, V. V., & Nosova, E. M. (1976). Heat transfer in 

transition boiling of cryogenic liquids. Advances in Cryogenic Engineering, 21, 

273–277. 

Klimenko, V. V. (1981). Film boiling on a horizontal plate — new correlation. 

International Journal of Heat and Mass Transfer, 24(1), 69–79. doi:10.1016/0017-

9310(81)90094-6 

Liu, Y., Olewski, T., Vechot, L., Gao, X., & Mannan, S. (2011). Modelling of a 

cryogenic liquid pool boiling using CFD code. 14th Annual Symposium, Mary Kay 

O’Connor Process Safety Center “Beyond Regulatory Compliance: Making Safety 

Second Nature” (pp. 512–524). 

Luketa-Hanlin, A. (2006). A review of large-scale LNG spills: Experiments and 

modeling. Journal of Hazardous Materials, 132(2-3), 119–140. 

doi:10.1016/j.jhazmat.2005.10.008 

Moorhouse, J., & Carpenter, R. J. (1986). Factors affecting vapour evolution rates from 

liquefied gas spills. North western Branch Papers, Institution of Chemical 

Engineers, 1, 4.1–18. 

NFPA 59A Standard for the Production, Storage, and Handling of Liquefied Natural Gas 

(LNG) (2009). 

Opschoor, G. (1975). Investigations into the spreading and evaporation of burning 

LNG-spills on water and the heat radiation from LNG-fires on water (No. CTI-

TNO 75-03777, I.O.W.-subproject 4, report 4). Apeldoorn. 



 

83 

 

Opschoor, G. (1980). Spreading and evaporatoin of LNG spills and burning LNG spills 

on water. Journal of Hazardous Materials, 3(3), 249–266. doi:10.1016/0304-

3894(80)85004-7 

Puttock, J. S., Blackmore, D. R., & Colenbrander, G. W. (1982). Field experiments on 

dense gas dispersion. Journal of Hazardous Materials, 6,13–41. 

Raj, and A.S. Kalelkar, (1974) “Assessment Models in Support of the Hazard 

 Assessment Handbook”, U.S. Coast Guard Report No. CG-446-3, Report 

 submitted by Arthur D. Little, Inc., to Department of Transportation, U.S. Coast 

 Guard, Contract No. DOT-CG24655A, January 1974.  

Raj, P. K. (1981). Models for cryogenic liquid spill behavior on land and water. Journal 

of Hazardous Materials, 5(1-2), 111–130. doi:10.1016/0304-3894(81)85009-1 

Reid, R. C., & Wang, R. (1978). The boiling rates of LNG on typical dike floor 

materials. Cryogenics, 18(7), 401–404. doi:http://dx.doi.org/10.1016/0011-

2275(78)90033-4 

Webber, D. M. (1987). “Heat conduction under a spreading pool”, UKAEA Report  

 SRD/HSE R 421.  

Webber, D. M. (1991). Source terms. Journal of Loss Prevention in the Process 

Industries, 4(1), 5–15. doi:10.1016/0950-4230(91)80002-C 

Webber, D. M. (1996). Letter to the editor. Journal of Hazardous Materials, 45(1), 79–

80. doi:10.1016/0304-3894(95)00043-7 

Webber, D. M. (2012). On models of spreading pools. Journal of Loss Prevention in the 

Process Industries, 25, 923–926.  

Woodward, J. L., & Pitblado, R. (2012). LNG Risk Based Safety - Modeling and 

Consequence Analysis (p. 374). Wiley-AIChE. 

 


