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ABSTRACT

The structural colors, produced by leucophore and iridophore cells, are important

for cephalopod camouflage; however, their scattering properties have not been very

well studied. These colors are mainly due to the scattering of the specific small

scatterers inside of the cell. In this work we will summarize the theories and the

numerical methods used to solve both the scattering problems for one scatterer and

a collection of such scatterers. The reflection spectrum of iridophores is shown to

depend on both particle orientation and incident angle of the light. The leucophores

are shown to be a white Lambertian surface. Therefore, starting from the structure

of the cells, we can predict their color appearance in the skin. This work provides

a general framework for the study of the structural color of cephalpods, and can be

applied to many species with different cell structures.
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along ẑ′, and its Stokes vector is defined relative to the meridian plane
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1. INTRODUCTION

Cephalopods have a quick and accurate camouflage ability to match the color,

pattern, and intensity of their background [1]. This ability relies on their highly

sophisticated skin structure, which normally includes chromatohores, iridophores

and leucophores, as shown in Figure 1.1. A chromatophore cell is a collection of

pigmented granules, and its color is due to the selected absorption of the pigments

for different wavelengths. The color of iridophores and leucophores is mainly due

to the scattering of their specific small structures inside of the cell with negligible

absorption effects. As shown in the middle layer of Figure 1.1, an iridophore contains

a collection of layered structures, called iridosomes, which can produce color through

coherent interference [2]. As shown in the bottom layer of Figure 1.1, a leucophore

contains a collection of near-spherical structures, called leucosomes, which usually

have a large refractive index [2]. The motivation for this study is to understand

the physics of the camouflage mechanism from the microscopic cell strctures, which

will benefit both our understanding of the optical principles, and the applications to

biology and engineering.

Although the structural color can be easily observed, their optical properties

have not been well studied. Previous research has tended to oversimplify the system

structures. For a single iridosome, it is usually modeled as a layered film with an

infinite spatial extent, and the multiple scattering between the iridosomes is neglected

[3, 4, 5, 6]. But the actual iridosomes have a wide range of sizes. The thickness of

plates in the iridosome is very thin, around 50− 200nm [7, 8, 9, 10, 11, 12, 13]. But

the length of the iridosome plates can be as large as 200− 300µm and width 50µm

for some species of squid, such as Loligo vulgaris and Alloteuthis subulata [14, 8]

1



Figure 1.1: Electron micrograph of a vertical section in the skin of Octopus vul-
garis (from Froesch and Messenger [7]).The skin layers from top to bottom are chro-
matophore, iridophore, and leucophore. The scale bar is 5µm.

2



Figure 1.2: Modeled cephalpod skin with the same sequence of cells as shown in the
electron micrograph: chromatophore (a), iridophore (b), and leucophore (c)). The
structural color is produced by iridophore (b) and leucophore (c).

3



and Loligo pealeii [15]. However, for some other species, the radius can be as small

as 1µm, such as Octopus dofleini [10, 11] and Octopus vulgaris [7]. Therefore, the

scattering properties of an iridosome with different sizes need to be studied. For

leucophores, they are usually treated as a white Lambertian background without

any microscopic structures [5, 6] . But as shown in Figure 1.1, each leucosome

has a radius around 0.5µm. By studying the scattering from leucosomes, we can

understand how the white Lambertian reflection can be produced.

To understand the structural color, we will conduct an ab initio simulation on

both the leucophore and iridophore cells. The modeled geometry of the cells is based

on the electron micrographs from the literature [7, 10, 11] as shown in Figures 1.2 (b)

and (c). Leucosomes are modeled as spheres, and iridomes are modeled as layered

cylinders with a finite radius. We will study both the single scattering properties of

an iridosome and a leucosome, and the multiple scattering properties of a collection

of iridosomes and leucosomes. Therefore, starting from the structure of their cell,

we can predict their color appearance in the skin. This work will provide a general

framework on the study of the structural color of cephalpods, and can be applied to

many species with different cell structures.

The physics of the structural color depends on both the single and multiple scat-

tering processes. In this work, we will first discuss the theories and the numerical

methods to solve these scattering problems. In Section 2, we will introduce the lan-

guage to describe these scattering processes—the Stokes vector and Mueller matrix

formalism. All our following discussions will be based on this formalism. In Section

3, we will introduce the methods to study the electromagnetic scattering of a sin-

gle scatterer (single scattering); in Section 4, we will discuss the scattering between

a collection of scatterers (multiple scattering). A Monte Calro code to solve this

problem will be developed based on the theory developed in this section. Finally, in

4



Section 5, we will apply these methods to study several examples of the leucophore

and iridophore cells. Conclusions will be provided in Section 6.
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2. STOKES VECTOR AND MUELLER MATRIX FORMALISM

Light scattering is a complex process. To conveniently describe the scattered light

field, we chose a four-dimensional real vector, called the Stokes vector, to represent

it. All the intensity and the polarization information is included in this vector.

Correspondingly, a real 4 × 4 matrix, called the Mueller matrix, is used to connect

the incident Stokes vector and the scattered Stokes vector. Thus, this matrix contains

all the scattering information of a scatterer undergoing elastic scattering [16, 17, 18].

We will use this Stokes vector and Mueller matrix formalism to discuss the scat-

tering problem in this work. Both the mathematical treatment and the numerical

simulation in the following sections are based on this formalism. There are two main

kinds of scattering problems that will be introduced in the next two sections: the

single scattering and multiple scattering problems. The single scattering problem

studies the electromagnetic scattering of a single scatterer, which can be solved by

using Maxwell equations. And the multiple scattering problem studies the incoher-

ent scattering by a collection of particles. The differences in using Stokes vector

and Mueller matrix between solving single and multiple scattering problems will be

discussed in this section [19].

Under this formalism, the scattering and extinction cross sections will be in-

troduced to describe the overall scattering and absorption properties. They are

also important quantities to connect the single and multiple scattering studies. For

spherical particles, the optical theorem is established to connect the extinction cross

section with the forward scattering field. But when the particle is non-spherical, its

extinction cross section could depend on the incident polarized state. In this case, we

will introduce a matrix, called the extinction matrix, to describe this phenomenon

6



Figure 2.1: (a) The radiance is shown along direction Ω̂′, across an area dS with
normal direction Ω̂. θ is the angle between Ω̂ and Ω̂′. (b) The electric field can be
expanded into two components perpendicular (r̂) and parallel (l̂) to the principal
plane: l̂ = eθ, r̂ = −eφ and Ω̂′ = r̂ × l̂.

[20]. Additionally, a generalization of the optical theorem will also be discussed.

2.1 Radiometric Quantities

Several radiometric quantities will be introduced in this section. They connect the

theoretical results with the measured light field. Among these quantities, radiance

is the most fundamental quantity in radiometry, which can describe the angular and

spatial distribution of the measured light field [21].

Radiance Iν is defined as the energy in a specified frequency interval (ν, ν + dν),

across an element of area dS in the direction confined to a solid angle dΩ′, during a

time dt (Figure 2.1(a)):

Iν(Ω
′, r) =

d4Eν
cos θ dνdSdΩ′dt

(2.1)

where r defines the field position; θ is the angle between the surface normal direction

Ω̂ and the radiance direction Ω̂′. Since all our following discussions are for a specific

frequency, we will neglect subscript ν in the notations.

7



Another quantity, irradiance F represents the flux density across an unit area. It

can be obtained as the integral of the radiance over the solid angles of interest:

F =

∫
Ω

I(Ω) cos θdΩ. (2.2)

Although the energy density u is not easy to measure directly, it can be represented

by using radiance [18],

u =
1

c

∫
4π

I(Ω)dΩ. (2.3)

2.2 Description of Light—Stokes Vector

Any electric field vector of a light beam can be expanded into two perpendicular

components: El and Er, which are parallel and perpendicular to a reference plane

across the light beam as shown in Figure 2.1 (b). Each component has its own phase

and magnitude, and normally both El and Er are represented as complex quantities.

To conveniently represent the intensity and polarized state of a beam of light, a real

vector, called the Stokes vector I = (I,Q, U, V )T [16] is defined as:

I =< ElE
∗
l + ErE

∗
r >, (2.4)

Q =< ElE
∗
l − ErE∗r >, (2.5)

U =< ElE
∗
r + ErE

∗
l >, (2.6)

V = i < ElE
∗
r − ErE∗l >, (2.7)

where <> denote a time average; all the 4 components are real, I > 0 and I2−Q2−

U2 − V 2 ≥ 0.

Note that following the definition above, the Stokes vector has dimensions of ir-
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Figure 2.2: (a) The reference frame for light direction Ω̂′ points outward. (b) The
direction for polarized direction 0◦ and 90◦, (c) 45◦ and −45◦, and (d) left and right
circular polarization.

radiance. When discussing the multiple scattering in a random system, the Stokes

vector is generally defined as having dimensions of radiance [19]. More will be dis-

cussed in the next section on the Mueller matrix.

The Stokes vector can be measured straightforwardly [16] as:

I = I0◦ + I90◦ = I45◦ + I−45◦ = Ir + Il, (2.8)

Q = I0◦ − I90◦ , (2.9)

U = I45◦ − I−45◦ , (2.10)

V = IR − IL, (2.11)

where Iθ is the intensity of light polarized in the direction of θ, and it can be ob-

tained by rotating a polarizer; IR,L represents the right and left circularly polarized

components, as shown in Figure 2.2. The reference frame defined in Figure 2.2 was

chosen to be consistent with the one in Figure 2.1 (b).

From the explicit definition of Stokes vector, it is not apparent as to why these

particular 4 components were selected, and they are not compact for mathematical

manipulation. Here we introduce another form of definitions using Pauli matrices,

and in the following sections, we will use them to discuss both the Mueller matrix

9



and extinction matrix.

To represent the Stokes vector using Pauli matrices, we first denote an arbitrary

transformation of the electric field as A. For example, this transformation matrix

could be the rotation matrix, or the scattering amplitude matrix (which will be

introduced later). After the transformation, we will have the following expressions:

(E†A†)(AE) = E†BE, (2.12)

where B = A†A is a Hermitian matrix; the electric field vector E is defined as:

E† = (E∗l , E
∗
r ), E =

 El

Er

 . (2.13)

Since the Pauli matrices and unitary matrix together form a set of complete basis

for a Hermitian matrix, we can expand B as:

B =
1

2

4∑
i=1

σiTr(σiB), (2.14)

where Tr denotes the trace of a matrix, and

σ1 =

 1 0

0 1

 , σ2 =

 1 0

0 −1

 , σ3 =

 0 1

1 0

 , σ4 =

 0 −i

i 0

 . (2.15)

σ1 is the unitary matrix, and σ2,3,4 are the Pauli matrices.

From Eq. 2.12, we will have:

< E†BE >=
1

2

4∑
i=1

Ii Tr(σiB), (2.16)
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and, therefore, we can construct four real quantities to represent the light field:

Ii =< E†σiE >, (2.17)

where Ii corresponds to the ith component of the Stokes vector.

As an example of this definition, we will derive the rotation matrix of the stokes

vector. This results will also be used in Section 4 when discussing multiple scattering

problems. Rotation of E counterclockwise by angle θ, the new electric field can be

obtained by E′ = RE where

R =

 cosθ −sinθ

sinθ cosθ

 (2.18)

To get the rotated Stokes vectors, we will have:

I ′ = E ′†E ′ = I (2.19)

Q′ = E ′†σ2E
′ = E†RTσ2RE = cos2θQ− sin2θU (2.20)

U ′ = E ′†σ3E
′ = E†RTσ3RE = sin2θQ+ cos2θU (2.21)

V ′ = E ′†σ4E
′ = E†RTσ4RE = V, (2.22)

which leads to I′ = L(θ)I, and

L(θ) =



1 0 0 0

0 cos(2θ) − sin(2θ) 0

0 sin(2θ) cos(2θ) 0

0 0 0 1


, (2.23)
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for a counterclockwise rotation of the electric field [16, 22], and for clockwise rotation,

simply replace θ by −θ.

2.3 Properties of a Scatterer—Mueller Matrix

When light is scattered by a particle, the incident field will be transformed into

a scattered field for each different scattering direction. This transformation can be

represented using the scattering amplitude matrix S̃ [16]:

Es = S̃ · E0, (2.24)

where E0 is the incident field, Es is the scattered filed, and S̃ is a 2× 2 matrix,

S̃ =

 S̃11 S̃12

S̃21 S̃22

 . (2.25)

Since the scattering amplitude matrix is generally a complex matrix, it would be

convenient to represent it using a real matrix. Following the approach in the last

section, the transformation of the incident Stokes vector into the scattered Stokes

vector can be denoted using the Mueller matrix,

Is = M̃I0. (2.26)

It can be represented compactly using Pauli matrices [23] as:

M̃ij =
1

2
Tr[σjS̃

†σiS̃]. (2.27)

For each scattering direction, there will be a different Mueller matrix to describe

how the incident light is transformed into the scattered light; therefore, the Mueller
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matrix includes all the information about the elastic scattering of a particle.

Generally a Mueller matrix will have a total 16 non-zero elements, but only 7

of them are independent. For a diagonal scattering amplitude matrix, such as the

scattering of a spheres, or the scattering with a mirror symmetry, the Mueller matrix

can be simplified and can be reduced to only 3 independent elements as follows

[16, 17]:

M̃ =
1

2



|S̃11|2 + |S̃22|2 |S̃11|2 − |S̃22|2 0 0

|S̃11|2 − |S̃22|2 |S̃11|2 + |S̃22|2 0 0

0 0 2Re[S̃11S̃
∗
22] 2Im[S̃11S̃

∗
22]

0 0 −2Im[S̃11S̃
∗
22] 2Re[S̃11S̃

∗
22]


(2.28)

For different scattering processes there could be different forms for the expression

of S. For the scattering over a semi-infinite plates, the reflected and transmitted

waves are both planes waves. We can follow the above definition to get the Mueller

matrix. This will be discussed in section 2.5. For a finite size scatterer, the scattered

filed at the far field is a spherical wave [16], and the scattering amplitude for the

spherical wave S can be represented as:

Es = S̃E0 =
eik(r−z)

−ikr
SE0 (2.29)

Therefore, the Mueller matrix for a spherical wave only differs from that of a total

wave by a dimensionless factor,

M̃ =
1

k2r2
M, (2.30)
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where M can be defined using S just as we used S̃ for M̃:

Mij =
1

2
Tr[σjS

†σiS]. (2.31)

Note that Mueller matrix M has different definitions for a finite size scatterer and

semi-infinite plates.

In multiple scattering studies of small particles described in Section 4, M is used

to transform the radiance rather than irradiance. This was shown starting with

the Maxwell equations in the book by Mishchenko [20], or from a phenomenological

approach as discussed by Preisendorfer [24]. For the studies of semi-infinite plates in

Section 3 and Section 5, we will use M̃ directly, since both the transmitted field and

the reflected field are always plane waves. The studies on semi-infinite plates will be

shown in the last section of this section.

2.4 Generalized Optical Theorem—Extinction Matrix

A cross section is a useful concept to describe the interaction effectiveness of a

scatterer. During the scattering process, the incident energy can be either scattered

or absorpt. The summation of the scattering and the absorption cross sections is

defined as the extinction cross section, that is the total extinguished energy divided

by the incident energy density [16]. As shown in the Mueller matrix, the angular

distribution of the scattered light can be represented by the first element of the

Mueller matrix M11, also called the phase function. Therefore, the scattering cross

section can be obtained by:

Csca =
1

k2

∫
4π

M11dΩ. (2.32)

For a spherical particle, the extinction cross section can be associated with the
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forward scattered field directly through the optical theorem [17],

Cext =
4π

k2
<[S(0)], (2.33)

where the scattering angle θs = 0 denotes the forward direction, and S(0) = S11(0) =

S22(0). Extinction can also be explained from the interference between the forward

scattered field and the incident field. To consider the effect of absorption, we can

define a quantity called the scattering albedo α = Csca/Cext. When there is no

absorption in the particle, we will have α = 1, and for all other cases: α < 1.

For a general non-spherical particle, the extinction cross section would depend

on the incident polarization state. This means that for a different incident Stokes

vectors, there may be a different extinction cross section, and therefore, a matrix K,

called the extinction matrix, is required to fully describe this phenomenon.

If a detector with area D detect the forward scattering of a single particle, the

power P (polarization dependent) incident on the detector would be:

P =

∫∫
D,θ=0

ItotaldS = D I0 −K · I0 +O(r−2), (2.34)

where Itot denotes the Stokes vector of the total field, and K denotes the energy

removed from the forward direction. Similar to the approach used to derive the

Mueller matrix, we can derive the extinction matrix using the Pauli matrices,

Kij =
π

k2
Tr[σj(S

†σi + σiS)]θ=0, (2.35)

where S is the scattering amplitude matrix of a small scatterer (Eq. 2.29). This

extinction matrix is for the scattering of a small scatterer. The extinction matrix of
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semi-infinite plates will be discussed in the next section, where a similar derivation

of K for semi-infinite plates will be provided in detail. Explicitly K can be expressed

[25, 20] as follows:

K =
2π

k2



<[S11 + S22] <[S11 − S22] 0 0

<[S11 − S22] <[S11 + S22] 0 0

0 0 <[S11 + S22] =[S11 − S22]

0 0 −=(S11 − S22) <[S11 + S22]


θs=0

(2.36)

=



Cext Cpol 0 0

Cpol Cext 0 0

0 0 Cext Ccpol

0 0 −Ccpol Cext


. (2.37)

Note the first element of the extinction matrix corresponds to the optical theorem.

Therefore, we have obtained the generalized optical theorem for an arbitrary incident

Stokes vector and for an arbitrary particles. More discussion on the specific extinction

properties of iridosomes will be discussed in Section 5.

2.5 Example on the Semi-infinite Plates

As discussed in Section 1, there are iridosomes with very large aspect ratios. If

these iridosomes could be treated as semi-infinite plates, their simulation would be

much easier. To better understand iridosomes’ scattering properties, it’s useful to

compare their properties with that of semi-infinite plates, and discuss where are the

differences come from.

In this section, we will introduce the Mueller matrix and extinction matrix for

the semi-infinite plate structure. Its Mueller matrix can be introduced as discussed

in section 2.3. But since the scattering from semi-infinite plates is always associated
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Figure 2.3: Reflection and transmission by a plate.

with plane waves, we will derive the extinction matrix for it in detail and and discuss

its differences and similarities with the results for small scatterers. In the next

section, we will introduce an exact method, called the transfer matrix method, to

solve the electromagnetic scattering of semi-infinite plates. In Section 5, we will

discuss the numerical comparison between finite plates and semi-infinite plates.

The reflectivity and trasmissivity of the electric field for multi-layer plates are de-

noted by r,and t. They are generally complex numbers, and are different for different

polarization states. We can decompose the electric field vector in two directions, par-

allel and perpendicular to the principal plane. For each component, Fresnel formulas

(discussed in more detail in the next section) are used to relate the incident and the

reflected or transmitted fields (Figure 2.3) as:

Er = rE0, (2.38)

Et = tE0. (2.39)

Due to conservation of energy we have |Er|2 + |Et|2 = |E0|2 and |r|2 + |t|2 = 1.

The two component vector for electric field, as introduced in section 2.3, is used to

represented the two polarization states of the electric field. Es denotes the scattering

field; Er and Et are the reflected and transmitted field. Note the transmitted field
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is a combination of the forward scattered field and the incident field.

The scattering amplitude matrices for the reflected field, total transmitted field

and the forward scattered field, are defined respectively, so that

Er = S̃rE0, Et = S̃tE
′
0, Ef = S̃fE

′
0, (2.40)

where

S̃r =

 rp 0

0 rs

 , S̃t =

 tpe
−iφ 0

0 tse
−iφ

 , S̃f =

 tpe
−iφ − 1 0

0 tse
−iφ − 1

 .

(2.41)

Here Et and E′0 are chosen at the same position. Since the transmitted field is a

combination of the forward scattered field and the incident field, the forward scat-

tered field can be defined as Ef = Et − eiφE0 = Et − E′0, where the phase factor

φ = niL cos θi, L is the total thickness of the plates, θi is the incident angle, and ni

is the refractive index in the medium.

With these scattering amplitude matrices, Mueller matrices for the reflection,

transmission and the forward scattering can be defined as in Eq. 2.28. However,

for the extinction matrix, we cannot directly use the results for small particles,

because its definition follows the results of the spherical wave at the far field. For

the scattering of semi-infinite plates, both its near field and far field are plane waves.

Therefore, in order to understand their connection, we have to discuss the difference

of these formalisms. In the following, we will derive an extinction efficiency matrix

for the semi-infinite plates, and finally provide a one layer example to show how the

extinction efficiency changes with its thickness.

Extinction is the part of energy removed from the incident and scattered field in
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the forward direction. Similar to the discussion on the extinction from the measure-

ment of a detector (Eq. 2.34), in the forward direction:

It,i = E†tσiEt = (Es + E′0)†σi(Es + E′0) (2.42)

= E
′†
0 σiE

′
0 + E†sσiEs + E†sσiE

′
0 + E

′†
0 σiEs. (2.43)

Here we have neglected the symbol for time average. We can rewrite this equation

using the Mueller matrix:

M̃tI0 = I0 + M̃sI0 − Q̃I0, (2.44)

where the extinction efficiency matrix Q is defined as:

−E†sσiE ′0 − E
′†
0 σiEs = ΣjQ̃ijI0j, (2.45)

and can be explicitly expressed as:

Q̃ij = −1

2
Tr[σj(S̃

†σi + σiS̃)] (2.46)

Since all the fields are plane waves, their integral around a small area in the

forward direction can be obtained by multiplying the field by the area, and eventually

this common factor can be canceled. After integrating around the forward direction

over an area D, we will have:

∫
D

dAM̃t = D +

∫
D

dAM̃s − K̃, (2.47)
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where

K̃ij =

∫
D

dAQ̃ij = −1

2

∫
D

dATr[σj(S̃
†σi + σiS̃)] (2.48)

Along the forward direction Es = Ef , and M̃s = M̃f , we have:

K̃ij = DQ̃ij (2.49)

= −D
2
Tr[σj(S̃

†
fσi + σiS̃f )]θs=0 (2.50)

We can also find the connection between the extinction matrix with the extinction

efficiency matrix for the plates:

Q̃ = 1 + M̃f − M̃t, (2.51)

where Mf and Mt are the Mueller matrices for the forward scattered field and

the total transmitted field, respectively. The expression for extinction efficiency

Q = K/D can be shown explicitly to be:

Q̃ = −



Re[S̃11 + S̃22] Re[S̃11 − S̃22] 0 0

Re[S̃11 − S̃22] Re[S̃11 + S̃22] 0 0

0 0 Re[S̃11 + S̃22] Im[S̃11 − S̃22]

0 0 −Im(S̃11 − S̃22) Re[S̃11 + S̃22]


θs=0

.

(2.52)

We can define three independent parameters: Qext, Qpol and Qcpol, and therefore the
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extinction efficiency matrix can be denoted as,

Q̃ =



Qext Qpol 0 0

Qpol Qext 0 0

0 0 Qext Qcpol

0 0 −Qcpol Qext


. (2.53)

Suppose there is no absorption in the particle, then the extinction efficiency will

be equal to the scattering efficiency. We can derive the scattering efficiency using the

amplitude of the reflected and transmitted field, and discuss the way the extinction

efficiency for unpolarized light changes. The scattering efficiency for unpolarized

incident light can be represented as:

Qs =
|Et − E ′i|2 + |Er|2

|E0|2
(2.54)

=
(|Et|2 + |Er|2) + |E ′i|2 − 2Re(Et · (E ′i)∗)

|E0|2
(2.55)

= 2− 2
Re(Et · (E ′i)∗)
|E0|2

(2.56)

= 2− 2Re(t · e−iφ) (2.57)

Since |t| ≤ 1, we will have −1 ≤ Re(t · e−iφ) ≤ 1, and 0 ≤ Qs ≤ 4. The extinction

efficiency can vary from 0 to 4, but cannot be larger than 4. The behavior of the

extinction efficiency is solely determined by the factor of Re(t ·e−iφ), which indicates

the interference between the incident light and the forward scattered field.

In Section 5, detailed numerical comparison between the semi-infinite and finite

size iridosomes will be given. Here we will consider a single layer plate as an example
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to understand how the extinction efficiency changes with its thickness:

Q̃ext = −Re[S̃11 + S̃22] (2.58)

= 2−Re[tle−iφ + tre
−iφ], (2.59)

where the reflection t can be found using the transfer matrix method, as discussed

in the next section:

t =
t12t21e

iφb

1 + r12r21

, (2.60)

for each polarization component. There are two phase factors defined as φb =

nkd cos θb, φ = kd cos θi, where θb is the refractive angle in the plate; θi is the

incident angle; d is the thickness of the plate.

For normal incidence rp = rs and tp = ts, θb = 0, and the symmetry relation

between r12 and r21, t12 and t21.

t12 =
2n1

n2 + n1

=
2

nr + 1
, (2.61)

t21 =
2n2

n1 + n2

=
2nr
nr + 1

, (2.62)

r12 = ±n2 − n1

n2 + n1

= ±nr − 1

nr + 1
, (2.63)

r21 = r12, (2.64)

for both the l̂ and r̂ components. For the reflectance the plus sign is for the parallel

component and the minus sign is for the perpendicular component.
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Figure 2.4: Extinction efficiency vs size parameter (x = kd) of the plate thickness
with three relative refractive indices nr = 1.1 (Solid), 1.2 (Dashed), and 1.3 (Dotted).

Therefore, the extinction efficiency can be found as:

Q̃ext = 2− 2Re[
4nre

i(φb−φ)

(nr + 1)2 − (nr − 1)2e−2iφb
] (2.65)

= 2Re(1− 4nre
i(nr−1)kd

(nr + 1)2 − (nr − 1)2e−2ikd
) (2.66)

We defined the size parameter x = kd. The variation of the extinction efficiency

with the size parameter for several relative refractive indices is shown in Figure 2.4.

Extinction efficiency is shown as a periodic function of the size parameter.
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3. SINGLE SCATTERINGS METHODS

As discussed in Section 1, there are two main kinds of scatterers in the skin of

cephalopods, namely leucosomes and iridosomes. Leucosomes are highly spherical

and can be modeled as spheres. Iridosomes can be approximately modeled as layered

plates. When light enter the skin, it will be scattered multiple times by numerous

iridosomes and leucosomes. The overall reflectance depends predominantly on how an

individual iridosome or leucosome scatters light. In this section we will introduce the

so-called single scattering methods, which will solve the electromagnetic scattering

problem based on Maxwell equations. The resulting scattering properties, such as

the albedo, the extinction cross section, and the scattering Mueller matrix, will be

used as the input for multiple scattering simulations, which will be the topic of the

next section.

There are three basic shapes for leucosome and iridosome modeling described

in Figure 3.1. The scattering solutions of each of these shapes will be discussed in

this section. Figure 3.1 (a) shows a solid sphere as a model for a leucosome, which

can be solved by using the Lorenz-Mie theory (LMT). Figures 3.1 (b) and (c) are

both multiple layer plates, one with finite radius and another with infinite radius.

Figure 3.1: Three shapes modeled in this study: (a) a single sphere, (b) a finite size
layered plate, and (c) a representation of the semi-infinite plates, which is similar to
(b) but with an infinite radius; gray region denotes the medium.
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Both can be used as approximations for iridosomes depending on their aspect ratio

(a detailed discussion will be provided in Section 5). When the plates have a finite

radius (Figure 3.1 (b)), their scattering properties can be solved by using the Discrete

Dipole Approximation(DDA) method. When their radius is infinite, they become

semi-infinite plates (Figure 3.1 (c)) and their analytical solution can be obtained

through the transfer matrix method (TMM). The application of these methods will

be discussed in Section 5. In this section, we will only briefly discuss the LMT theory

and the DDA method, since for both methods, there are well tested and documented

numerical codes available. We will discuss the TMM in more detail, since will study

several scattering effects based on this method.

Before discussing the theory of the single scattering method, we will summarize

the inputs and the outputs for each method. The inputs are the necessary quantities

required by the these methods in order to produce valid results; the output physical

quantities are the ones we intend to solve for. The input information includes the

shape, size, and refractive index of the scatterer, the refractive index of the medium

(non-absorptive), and the wavelength of the incident light (plane wave). Several

scattering quantities will be calculated, which include the single scattering albedo,

the extinction cross section, and the Mueller Matrix (for each scattering direction),

which are quantities necessary for multiple scattering simulations. There are also

several auxiliary quantities which indicate the characteristics of single scattering

properties. We will frequently use these quantities to analyze and verify the numerical

results. They include the backscattering, scattering, and absorption cross sections (or

efficiencies), and the asymmetry factor (g factor). Note that except for the extinction

cross section (or absorption cross section), all other quantities can be calculated from

the unnormalized phase function.
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3.1 Lorenz-Mie Theory (LMT)

The electromagnetic scattering of a plane wave off a solid sphere can be elegantly

solved by using Lorenz-Mie theory. This solution was independently discovered by

Danish physicist Ludvig Lorenz in 1898 and by German physicist Gustav Mie in

1908 [16]. In this section, we will review the essential treatment of the Lorenz-Mie

theory (LMT). For the numerical simulation, we will use BHMIE code (provided in

Appendix A of Bohren-Huffman’s book [16], and modified by B.T.Draine). This code

has been well documented and tested. For a more detailed history and application

of LMT, please refer to the book by Wolfram Hergert and Thomas Wriedt [26].

Consider a sphere with radius a and refractive index m relative to the background

material (non-absorptive). The wavelength of the incident light in the medium is λ,

and the wavenumber is defined as k = 2π/λ. We will use the size parameter to

represent the size of the sphere, which is defined as x = ka. Size parameter has

a very clear physical meaning—it measures the phase change of the incident light

across the radius of the particles.

In Lorenz-Mie theory, the solutions of the vector wave equation for the electro-

magnetic waves in free space are constructed using the solution of the scalar wave

equations. When the sphere is presented, the internal (inside the sphere) and ex-

ternal (outside the sphere) solutions can be found using the free space results. By

connecting these two sets of solutions using the boundary conditions at the sphere

interface, the final solutions for the sphere scattering can be obtained [16]. Here we

will briefly review these procedures.

From Maxwell equations, the vector wave equations for both the electric and
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magnetic field can be derived as:

∇2E + k2E = 0, (3.1)

∇2H + k2H = 0, (3.2)

where k is the wavenumber in the medium as defined previously.

The solution of these two vector wave equations can be constructed through the

solution of a scalar wave equation as follows:

M = ∇× (rψ), (3.3)

N =
∇×M

k
, (3.4)

where ψ is the solution of the scalar wave equation:

∇2ψ + k2ψ = 0. (3.5)

This scalar wave equation (Eq. 3.5) can be solved by using the separation of

variables method [27]. As we have discussed, the final solution of the scattering by a

solid sphere can be obtained by connecting the internal and external fields using the

boundary conditions. Therefore, we can solve the final scattering amplitude matrix

(as introduced in Section 2) at the far field for every scattering direction:

S1 =
∑
n

2n+ 1

n(n+ 1)
(anπn + bnτn), (3.6)

S2 =
∑
n

2n+ 1

n(n+ 1)
(anτn + bnπn), (3.7)
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where an and bn are defined as:

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
, (3.8)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)
. (3.9)

Here the prime superscript denotes first order differentiation with respect to the

argument of the function, and τn and πn are defined as:

πn =
P 1
n

sin θ
, τn =

dP 1
n

dθ
, (3.10)

where P 1
n is the associated Legendre function of the first kind of degree n and order

1, and θ is the scattering angle relative to the incident direction. To introduce an

and bn, we have used the Riccati-Bessel functions:

ψn(ρ) = ρjn(ρ), ξn(ρ) = ρh(1)
n (ρ), (3.11)

where jn is the spherical Bessel function, and h
(1)
n is the spherical Hankel function of

the first kind.

The solutions of S1 and S2 (Eqs. 3.7 and 3.6) involves the summation over the

index n. An efficient method to determine the maximum number of required terms

(nc) in the summation is provided by Wiscombe [28], where nc is given by

nc = x+ 4x1/3 + 2. (3.12)

Note nc is a function of the size parameter x. More discussion on nc and the stability

of the numerical algorithm can be found in Appendix A of the book by Bohren &

Huffman ([16]).
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Following the discussion in the previous section, the Mueller matrix can be ob-

tained straightforwardly from the scattering amplitude matrix. The expression for

the scattering and extinction cross sections can be represented using an (Eq. 3.8)

and bn (Eq. 3.9):

Csca =
2π

k2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), (3.13)

Cext =
2π

k2

∞∑
n=1

(2n+ 1)Re(an + bn). (3.14)

The extinction efficiency is defined as the ratio of the extinction cross section and

the geometric cross section:

Qext =
Cext
πa2

2

x2

∞∑
n=1

(2n+ 1)Re(an + bn). (3.15)

One of the consequences of the Lorenz-Mie solution is the so called extinction para-

dox:

lim
x→∞

Qext(x,m) = 2, (3.16)

where x is the size parameter, m is the refractive index. This result shows the total

extinction energy, which includes both scattering and absorption energy, is twice of

the energy blocked by the geometric cross section. This gives us the impression that

more energy is removed than the particle receives. The total wave in the forward

direction is a combination of the incident wave and the forward scattered wave. The

paradox can be explained by the interference effect in the forward direction between

these two waves. There will be more discussions on this using plates as example in

Section 5.
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3.2 Discrete Dipole Approximation Method (DDA)

A macroscopic material involves a huge number of molecules on the order of

Avogadro’s constant (NA = 6.02 × 1023). Under incident radiation, each molecule

in the material will undergo forced oscillation and radiate by itself. Its subsequent

radiation will act on all the other molecules, and make every molecule in the material

couple to all the others. The total number of coupling during the scattering process

will be on the order of N2
A — an inordinately large number for any feasible numerical

simulations.

In 1973, Purcell and Pennypacker proposed a plausible way for such a simulation

[29], called the Discrete Dipole Approximation(DDA). They used an effective dipole

which averages over a large number of molecules in a small volume, to replace the

single molecular dipole in the formalism. The total number of effective dipoles (N)

can be greatly reduced from the earlier estimate to a range between 104 and 108

dipoles, which make the numerical simulation feasible for a particle with a reasonable

sizes (the size will be discussed later). For example, Figure 3.2 provides an actual

DDA model for a 5 layer leucosome (shown in Figure 3.1 (b)) with diameter 1µm

and one layer thickness 0.1µm. There are 12 dipoles along this thickness and a total

470580 dipoles for the whole scatterer. This model is used for the simulation in

Section 5.

In 1980s, Draine and Flatau developed a DDA code called DDSCAT [30, 31].

which is widely used. In a later development, the DDSCAT can also be used to

simulate scattering with periodic boundary conditions [32]. For a fairly large particle,

the DDA method still requires a large amount of computer memory and many CPUs.

DDSCAT has been parallelized for particles with random orientations, while for

a single particle the memory requirements restrict it to a size parameter 25 [33].
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Figure 3.2: (a) A DDA model for the finite size plates. (b) An enlarged image of the
region in the red box of (a).

Yurkin and Hoekstra parallelized the DDA method for the computation of both

single particle and random orientations with the size parameter extended to more

than 100 [34]. We will use ADDA for most of our simulations, and use DDSCAT to

calculate the scattering properties of a system with periodic boundary conditions as

discussed in the next section.

Here we will briefly review the DDA theory. As discussed in the beginning of

this section, a particle is discretized into a cubic lattice with N effective dipoles and

an inter-dipole distance d. Each one is an average over all the molecules in a small

volume (V = d3). The effective dipole polarization Pi at lattice size i can be obtained

as:

Eext
j = Einc

j −
∑
k 6=j

ḠjkPk, (3.17)

Pj = ᾱjE
ext
j , (3.18)

where ᾱj is the polarization tensor at site j, Eext
j is the total electric field—it include
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the incident plane wave Einc
j at site j and the induced electric field due to all other

effective dipoles. The induced electric field is described by the interaction matrix

Ḡjk which connects the site j and k. It can be obtained analytically [35]. Following

the notation of Yurkin [34], the interaction matrix can be represented by:

Ḡjk =
exp(ikR)

R

[
k2(Ī− R̂R̂

R2
)− 1− ikR

R2
(Ī− 3

R̂R̂

R2
)

]
, (3.19)

where rj is the vector to the lattice site j, R = rj − rk, R = |R| and (R̂R̂)ij = RiRj.

The polarizability ᾱj is important in connecting the effective dipole and the

macroscopic properties. Its first order approximation can be obtained through the

Clausius-Mossotti (CM) relation [30]:

ᾱCMj =
1

nd

3

4π

ε̄j − 1

ε̄j + 2
, (3.20)

where nd = 1/d3 is the number density of dipoles, and ε̄j is the permittivity tensor

at lattice site j. Several corrections for this polarizability have been introduced, and

can be chosen during the numerical simulation depending on the specific problems

[34].

To solve Eq. 3.18, we can write it into a more compact form:

N∑
k=1

GjkPk = Einc
j , (3.21)

where Gjj = ᾱ−1
j . Since both Einc and G are known, P can be obtained by solving

N linear equations. All the scattering quantities, including the Mueller matrix and

cross sections can be represented using P [34].
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3.3 Transfer Matrix Method (TMM)

For a multiple layer plate with infinite radius, as shown in Figure 3.1 (c), light can

be reflected an infinite number of times between the two interfaces of the plates. To

solve for its overall reflection and transmission, the Transfer Matrix Method (TMM)

provides an efficient way to do this, and can easily be extended to a plate with a

large number of layers [36, 37, 38]. In this section, we will first introduce the transfer

matrices for an interface connecting two materials with different refractive indices,

and then get the transfer matrix for the free propagation between two interfaces.

By combining the transfer matrices for all the interfaces and the spaces between

them, we can get the solution for a plate with an arbitrary number of layers. This

method has been widely used in the study of a photonic lattice [36]. Following the

theory discussed in this section, we developed a numerical code for all the calculations

regarding semi-infinite multiple layer plates.

3.3.1 Fresnel Formulas

The reflection and transmission of the electric field at a dielectric interface can

be solved using the boundary conditions of Maxwell equations, and are summarized

in the following Fresnel Formulas [39]. The reflection and transmission for the par-

allel(p) and perpendicular(s) electric field components can be represented as:

rp =
tan(θi − θt)
tan(θi + θt)

, rs = −sin(θi − θt)
sin(θi + θt)

, (3.22)

tp =
2 sin θt cos θi

sin(θi + θt) cos(θi − θt)
, ts =

2 sin θt cos θi
sin(θi + θt)

, (3.23)

and from Snel’s law of refraction, we have:

sin θi
sin θt

=
n2

n1

, (3.24)
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θi is incident angle in medium 1 with refractive index n1, and θt is the refracted angle

in medium 2 with refractive index n2; the relative refractive index is nr = n2/n1.

For the normal incidence case, θi = θt = 0, the Fresnel formulas can be simplified

to:

rp =
nr − 1

nr + 1
, rs = −nr − 1

nr + 1
, (3.25)

tp =
2

nr + 1
, ts =

2

nr + 1
. (3.26)

Therefore, the reflectivity and transmissivity of the energy flux (irradiance) can

be obtained as:

R =

(
nr − 1

nr + 1

)2

, T =
4nr

(nr + 1)2
, (3.27)

where R + T = 1; energy is conserved.

3.3.2 Scattering Matrix and Transfer Matrix

We have introduced the scattering amplitude matrix in Section 2, which associates

the scattered light with the incident light for either scattered plane waves or spherical

waves. The scattering matrix (S) we are introducing here has the same meaning as

the scattering amplitude matrix for plane waves. With this scattering matrix, we

can solve for the transfer matrix (T), which connects the electric field at the two

boundaries of the system [36].

For the boundary between two materials 1 and 2 shown in Figure 3.3 (a), the

scattering matrix is defined as:

 E
(+)
2

E
(−)
1

 = S21

 E
(+)
1

E
(−)
2

 (3.28)
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Figure 3.3: Incident light are denoted by E
(+)
1 and E

(−)
2 , which can be related to

E
(−)
1 and E

(+)
2 through the scattering matrix T21 for an interface (a), and Tφ2 for a

free space. Transfer matrices are shown in the red box.

There are two incident waves, E
(+)
1 and E

(−)
2 , toward the interface, and another two

waves leaving (scattering away) the interface E
(−)
1 and E

(+)
2 . The scattering matrix

transfers the incident waves into the scattering waves.

For a typical multiple layer system such as the one shown in Figure 3.4, there are

many interfaces— it would be convenient to have a transfer matrix that can associate

the electric field at one side of the system to the other side. We will first introduce

the transfer matrix for both interface and free space, and then show how they are

used to solve the problem efficiently in the next section.

At the interface we just discussed in Figure 3.3 (a), a transfer matrix can be

defined as follows:  E
(+)
2

E
(−)
2

 = T21

 E
(+)
1

E
(−)
1

 . (3.29)

Here we have labeled the subscript ji of the transfer matrix as from material j to

material i, so T21 is the scattering matrix from 1 to 2.

The scattering matrix can be represented directly using the reflection and trans-

mission at the interface from Fresnel’s formulas, and the transfer matrix can be solved
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correspondingly:

S21 =

 t21 r12

r21 t12

 ,T21 =
1

t12

 t21t12 − r21r12 r12

−r21 1

 , (3.30)

where the Fresnel’s formulas are labeled in the same way as the transfer matrix.

To solve a multiple layered system, we need two types of transfer matrices—one

for the interface as we just discussed, and another for the phase change of the wave

propagating through a uniform medium as shown in Figure 3.3 (b). The scattering

and transfer matrices for the second case can be obtained,

Sφ =

 eiφ 0

0 eiφ

 ,Tφ =

 eiφ 0

0 e−iφ

 , (3.31)

where φ = nidi cos θi [39], d is the thickness, ni and θi are the refractive index and

the propagating direction in medium i.

3.3.3 Transfer Matrix Method

From the definition of the transfer matrix, each transfer matrix can transfer the

electric field from one side to the other. Therefore, the net transfer matrix for the

whole multiple layer system, as shown in Figure 3.3 (c), can be obtained by multi-

plying the transfer matrices for each interface with its spacing. After this transfer

matrix is obtained, comparing with Eq. 3.30, both the reflection and transmission

are explicit in the scattering matrix. We will first show the transfer matrix for a

single layer plate, and then extend it to a N layer system.

For a one layer system, N = 1, as shown in Figure 3.4 (a), we will have the
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Figure 3.4: The transfer matrix for a one layer system (a), and a two layer system
(b). Transfer matrices are shown in the red box.

transfer matrix:

T = T12Tφ2T21. (3.32)

This matrix involves the multiplication of three matrices: two for the interfaces,

and one for the phase changes due to the propagation between the two interfaces.

A multiple layer will contains many interfaces and two types of mediums between

interfaces. Following the 2 layer example shown in Figure 3.4 (b), the generalized

result for a N layer system can be obtained as:

T = T12Tφ2T21Tφ1 ...Tφ1T12Tφ2T21 (3.33)

= T
−1/2
φ1

TN
coreT

−1/2
φ1

, (3.34)

where

Tcore =
[
T

1/2
φ1

T12Tφ2T21T
1/2
φ1

]
. (3.35)

If N is not large, the transfer matrix can be obtained by directly multiplication

of each matrix. If N is large, we can provide another efficient way to calculate it.
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This method will be used again to obtain the exact solution for the one dimensional

radiative transfer theory, where N →∞, in the next section. Suppose Tcore can be

diagonalized by a unitary matrix U, so that

U TcoreU
−1 =

 λ1 0

0 λ2

 , (3.36)

where U can be constructed by the eigenvector of Tcore and λi are the corresponding

eigenvalues. Therefore the solution of the transfer matrix would simply be:

T = T
−1/2
φ1

U−1

 λN1 0

0 λN2

 U T
−1/2
φ1

. (3.37)

We denote rtot and ttot as the total reflection and transmission of the electric field

for the whole multiple layer system. Comparing with the expression of Eq 3.30, we

can get the scattering matrix and transfer matrix for the whole system in a similar

form and therefore we can solve rtot and ttot as follows:

rtot = −T(2, 1)/T(2, 2), (3.38)

ttot = T(1, 1)−T(1, 2)T(2, 1)/T(2, 2), (3.39)

where T(i, j) denote the ij-th component of the matrix T. Since both rtot and ttot

are for electric fields, the reflection and the transmission of the energy flux can be

obtained by R = |rt|2 and T = |tt|2, respectively. If there is no absorption in the

system, energy would be conserved: R + T = 1. Note there is no need to consider

the oblique factor cos θi, since for incident, reflected and transmitted waves, they all

have the same factors, and they are canceled out in the expression for either R and
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T , or rtot and ttot.
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4. MULTIPLE SCATTERING METHODS

In Section 3, we have introduced several single scattering methods to study both

iridosomes and leucosomes. Using these methods, various scattering properties can

be calculated. However, in the skin of cephalopods, there are numerous iridophore

and leucophore cells, and each of them can contain hundreds to thousands of iri-

dosomes or leucosomes. After a beam of light enters the skin, the photons can

be scattered many times until being reflected or transmitted out. These collective

scatterings will determine the optical appearance of the skin. Although for differ-

ent species, the size and number density of the iridosomes and leucosomes can vary

significantly, the multiple scattering problem is essential to accurately predict the

color.

In this section we will introduce several methods to solve this multiple scattering

problems for a collection of leucosomes and iridosomes. We will discuss the appli-

cation of these methods in modeling realistic systems in the next section. Both the

leucophore and iridophore cells are modeled as a plane parallel system consisting of

small random positioned scatterers, as shown in Figure 4.1 (a) and (b) for leucosomes

and iridosomes, respectively. The modeled system is statistically uniform, namely,

the scatterers have an equal probability of being located at any position. The system

thickness (Z) and the scatterer number density (nd) can be retrieved from the elec-

tron micrographs of a skin section, which will also be discussed in the next section.

Note both the thickness and the number density must be measured consistently for

the same region of the skin.

A leucosome system is a collection of spheres, as shown in Figure 4.1 (a), so

their orientations doesn’t matter. But iridosomes, as shown in Figure 4.2, can have
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Figure 4.1: (a)A leucosome system, and (b) an iridosome system. The xyz frame
is defined as the system frame for a plane parallel system with thickness Z along ẑ
direction. There is infinite spatial extent in ±x̂ and ±ŷ direction. The particles in
this system can orient in any direction.
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both random and fixed orientations. Therefore, a theory that can solve the multiple

scattering problem for arbitrary oriented particles is required in our study. Vector

radiative transfer theory is well developed for studying this kind of problem. It

takes the single scattering properties as the inputs; and can calculate the angular

distribution of the diffuse polarized reflectance.

In this section, we will first introduce the vector radiative transfer equation

(VRTE) for oriented particles [25, 20], and discuss how it can be reduced to a simpler

form for random oriented or spherical particles [21]. Their different treatments in the

numerical simulations will also be discussed. After that, we will provide several exact

solutions, which include the successive order of scattering solution [18, 40, 19], and

the Monte Carlo solution [41, 42, 43]. (By exact, we mean there is no mathematical

approximation in the formalism.) We will also introduce several approximate solu-

tions, such as the single scattering approximation for an optically thin system [19],

and a one dimensional model to estimate the reflectance [44]. These methods will be

used to test the numerical methods, and estimate the final results before a full scale

simulation is conducted. Both the Monte Carlo method and the one dimensional

model will be widely used in our studies, and will be discussed in more details here.

4.1 Vector Radiative Transfer Equation(VRTE) for Oriented Particles

The VRTE can be used to solve the multiple scattering problem for oriented non-

spherical particles [25, 20]. For oriented particles, they can either orient to a fixed

direction, or have a non-random orientation, as shown in Figures 4.2 (b) and (c). The

scattering process of oriented particles compared with randomly oriented particles

is much more complex. For oriented particles, (1)the scattering phase function will

depend on both the scattering zenith angle and azimuthal angle; (2) the extinction

cross section will be different for different incident polarized states—the extinction
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Figure 4.2: Illustrations of an iridosome system with (a) complete random orienta-
tions, (b) fixed orientations, and (c) partial random/fixed orientations.

matrix then has to be introduced. However, for spherical or random oriented par-

ticles, the phase function depends only on the zenith angle and a scalar extinction

cross section is sufficient. We will show that the theory for oriented particles can be

reduced to the one for random oriented particles.

In this section, I will first introduce the necessary reference frames for the study

of oriented particles, and then introduce the formalism of VRTE. The solutions will

be provided in the next two sections.

4.1.1 Reference Frames

Before we introduce the radiative transfer theory, we will first define the reference

frames used to define the Stokes vector in a multiple scattering system, and the

Mueller matrix for a single scatterer. For both randomly and fixed oriented particles,

we can define the same global reference frame as shown in Figure 4.1, and Figure
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Figure 4.3: Definition of the particle x′y′z′ frame relative to the system xyz frame.
ẑ′ is along the light incident direction Ω̂0, x̂′ is perpendicular to both ẑ′ and the
particle symmetry axis Ω̂a, and ŷ′ is perpendicular to both x̂′ and ẑ′.

4.3. We denote this frame as the system frame or xyz frame. The Stokes vector in

the radiative transfer equation is defined relative to the meridian plane of this frame.

For oriented particles, another reference frame which is fixed to a particle is

required to specify the single scattering Mueller matrix. This system is denoted

as the particle frame or x′y′z′ frame. For particles with an axis of symmetry, e.g.

iridosomes, the relative angle β between the incident direction Ω̂0 and the direction

of the particle symmetry axis Ω̂a can be obtained through [18]:

µ = cos β = Ω̂0 · Ω̂a. (4.1)

Because of the particle’s symmetry, only the results for β ∈ [0, π/2] are necessary.

The direction of the cylinder axis and light propagation in the system frame are
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defined in the following notations:

Ω̂0 = (µ0, φ0) =


√

1− µ2
0 cosφ0√

1− µ2
0 sinφ0

µ0

 , (4.2)

Ω̂a = (µa, φa) =


√

1− µ2
a cosφa√

1− µ2
a sinφa

µa

 , (4.3)

where Ω̂ = (µ, φ) is the direction vector with azimuthal angle φ and direction cosine

µ = cos θ,

To construct the particle reference frame, ẑ′ is along the light propagating di-

rection Ω̂0, x̂′ is perpendicular to the plane determined by Ω̂0 and Ω̂a, and ŷ′ is

perpendicular to both x̂′ and ẑ′ (Figure 4.3):

ẑ′ = Ω̂0, (4.4)

x̂′ =
Ω̂0 × Ω̂a

|Ω̂0 × Ω̂a|
, (4.5)

ŷ′ =
ẑ′ × x̂′

|ẑ′ × x̂′|
. (4.6)

There are some special cases for the definition: if Ω̂0 is parallel to Ω̂a but not parallel

ẑ, we choose x̂′ = ẑ × Ω̂a/|ẑ × Ω̂a|; if all three vectors: Ω̂0, Ω̂a, and ẑ, are parallel

to each other, we just simply choose x̂′ = x̂. Through this definition, the scattering

properties are always symmetric with respect to the ŷ′− ẑ′ plane, which reduces the

single scattering calculation to only the region with azimuthal angle φ′ ∈ [0, π], while

θ′ still in the range [0, π]. Note, even for particles with no symmetry, the particle

frame can still be established in the same way; however, the single scattering Mueller
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matrix needs to be calculated in the full range of θ′, φ′ and β′.

4.1.2 VRTE Formalism

The vector radiative transfer equation (VRTE) for randomly positioned and ar-

bitrarily oriented particles in a homogeneous plane parallel system is given [25] by

−µdI(z, Ω̂)

dz
= β(Ω̂)I(z, Ω̂)−

∫
4π

dΩ′βs(Ω̂
′)P(Ω̂, Ω̂′)I(z, Ω̂′), (4.7)

where nd is the number density, and the extinction coefficient matrix β(Ω̂) = nd(Ω̂)K(Ω̂),

the scattering coefficient βs(Ω̂′) = ndCs(Ω̂′), here K is the extinction matrix and Cs

is the scattering cross section for unpolarized light. The upper boundary of the

plane parallel system is Z while the lower boundary is 0 (Figure 4.1). The boundary

condition is specified by I(0, µ > 0, φ) and I(Z, µ < 0, φ). No surface reflections

are considered in this work. Generally, the scattering coefficient β, phase matrix P

and extinction matrix K all depend on the incident light direction and the particle’s

orientation.

For randomly oriented or spherical particles, the extinction matrix reduces to the

scalar extinction cross section. The solution of the VRTE will be much simplified

which we will shown in section 4.3, and also provide its integral solution along with

several approximate results. In this section, we will formulate the general VRTE for

arbitrarily oriented particles.

Stokes vector I = (I,Q, U, V )T is defined in the meridian plane of the system

frame, while the Mueller matrix, M, is defined relative to the scattering plane in the

particle frame. The phase matrix is defined [21] as:

P(Ω̂, Ω̂′) = L(π − i2)M(µs, φs)L(−i1), (4.8)
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Figure 4.4: Rotations of the Stokes vectors. The incident and scattered Stokes
vectors are defined relative to the meridian planes ẑ − Ω̂′ and ẑ − Ω̂, respectively. i1
and i2 indicate the relative angles between the meridian planes and the scattering
plane Ω̂ − Ω̂′. θs is the scattering angle. Unit vectors l̂ and r̂ denote the parallel
and perpendicular components of the electric field, and they are used to define the
rotation matrix L(θ).
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where µs = cos θs, θs is the scattering angle, and φs is determined in the particle

frame. L(−i1) is the rotation matrix which takes the incident meridian plane to the

scattering plane, and L(π − i2) is the clockwise rotation which takes the scattering

plane to the new meridian plane as shown in Figure 4.4. Recall that the Mueller

matrix M(µs, φs) is defined in the particle frame with incident light along z′ and the

scattered light in the direction (µs, φs). To define the rotation matrix L, the unit

vectors for the parallel (l̂) and perpendicular (r̂) components of the electric field are

defined in Figure 4.4, and r̂ × l̂ is along the light propagating direction Ω̂′.

The phase function used here P = P11 = M = M11 is normalized according to:

∫
4π

dΩ′P (Ω̂, Ω̂′) = 1. (4.9)

The extinction coefficient matrix β for a particle with a mirror symmetry [25]

can be expressed as:

β = ndK =



βext βpol 0 0

βpol βext 0 0

0 0 βext βcpol

0 0 βcpol βext


(4.10)

The extinction coefficient, polarized and circular polarized coefficients are defined as

βext = ndCext, βpol = ndCpol and βcpol = ndCcpol, where Cext,Cpol and Ccpol are the

extinction cross section, the linear polarized and circular polarized cross sections.

The properties of this matrix for an iridosome will be discussed in Section 5. The

extinction matrix K0 is calculated through the forward scattering amplitude matrix

with azimuthal angle φ′ = 0 in the x′y′z′ frame. Generally, the meridian plane of the

Stokes vector defined in the system frame corresponds to an azimuthal angle φ′ 6= 0
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Figure 4.5: Illustration for the rotation of extinction matrix. Light is propagating
along ẑ′, and its Stokes vector is defined relative to the meridian plane ẑ − ẑ′ in the
system frame. This corresponds to an azimuthal angle φ′ in the particle x′y′z′ frame.
Since the extinction matrix is always calculated relative to the x̂′ − ẑ′ plane in the
particle frame. A rotation of the extinction matrix to the ẑ − ẑ′ plane is required in
order to use it in the vector radiative transfer equation.
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in the particle frame (Figure 4.5), we need to perform proper rotations before we can

use this matrix in the radiative transfer simulations:

K(Ω̂) = L(φ′)K0L(−φ′). (4.11)

Therefore, we don’t have to evaluate the extinction matrix for each different meridian

plane in the particle frame.

4.2 Exact Solutions

Several approaches has been developed to study the radiative transfer of oriented

non-spherical particle [45, 46, 47, 48, 49, 50, 51]. In this section, we will first formulate

the successive orders of scattering (SOS) solutions for VRTE [18, 40, 19], and then

we will evaluate the SOS solutions using the Monte Carlo method.

4.2.1 Successive Order of Scattering (SOS) Solution

The formal integral solution for the VRTE (Eq. 4.7) can be found as:

I(z, Ω̂) = T(Ω̂, z, zm(−µ))I(zm(−µ), Ω̂)

+

∫ z

zm(−µ)

dz1

µ
T(Ω, z, z1)

∫
4π

dΩ′βs(Ω̂
′)P(Ω̂, Ω̂′)I(z1, Ω̂

′), (4.12)

where the transmission matrix is defined as:

T(Ω̂, z′′, z′) = exp[−β(Ω̂)(z′′ − z′)/µ] (4.13)

Since the system is homogeneous, the extinction matrix doesn’t depend on positions.

(z′′ − z′)/µ is the distance the light propagates along Ω̂, where Ω̂ = (µ, φ).

To simplify the expression of Eq. 4.12, we introduced a boundary selection func-

tion zm(µ). Through it, the proper boundary in the equation can be determined by
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the direction cosine µ of light propagation:

zm(µ) =

 Z if µ > 0;

0 if µ < 0.
(4.14)

Note that zm(−µ) = Z − zm(µ).

Without this boundary function, Eq. 4.12 has to be separated into two equations

for different boundary conditions as follows:

I(z, Ω̂) = T(Ω̂, z, 0)I(0, Ω̂)

+

∫ z

0

dz1

µ
T(Ω̂, z, z1)

∫
4π

dΩ′βs(Ω̂
′)P(Ω̂, Ω̂′)I(z1, Ω̂

′), µ > 0 (4.15)

I(z, Ω̂) = T(Ω̂, z, Z)I(Z, Ω̂)

+

∫ z

Z

dz1

µ
T(Ω, z, z1)

∫
4π

dΩ′βs(Ω̂
′)P(Ω̂, Ω̂′)I(z1, Ω̂

′). µ < 0 (4.16)

By introducing the boundary function, the solution for the upwelling and down-

welling radiance can be combined together, and we can then expand Eq. 4.12 into a

series of different order terms: Consider a plane wave source at the boundary in the

direction Ω̂0:

I(zm(−µ), Ω̂) = I0δ(Ω̂− Ω̂0), (4.17)

and due to the linearity of the VRTE, the transformation matrix between the incident

Stokes vector and the scattered Stokes vector can be denoted by the effective Mueller

matrix:

I(z, Ω̂) = Meff (z, Ω̂)I0, (4.18)

51



and Meff is the summation of all order of scattering terms:

Meff =
∞∑
n=0

Meff
n , (4.19)

M eff
0 is the direct term which only describes the attenuation of the direct light along

its incident direction:

Meff
0 (z, Ω̂) = T(Ω̂0, z, zm(−µ0))δ(Ω̂− Ω̂0), (4.20)

The diffuse effective Mueller matrix includes the summation of n ≥ 1 terms, as

shown in the next section, which can be calculated numerically for a general phase

matrix. The general n-th order term of the SOS method can be expressed iteratively

as:

Meff
n (z, Ω̂) =

∫ z

zm(−µ)

dzn
µ

T(Ω̂, z, zn)

∫
4π

dΩnβs(Ω̂n)P(Ω̂, Ω̂n)Meff
n−1(zn, Ω̂n) (4.21)

For example, the explicit expression for the first and the second order terms would

be:

Meff
1 (z, Ω̂) =

∫ z

zm(−µ)

dz1

µ
T(Ω̂, z, z1)βs(Ω̂0)P(Ω̂, Ω̂0)T(Ω̂0, z1, zm(−µ0)) (4.22)

Meff
2 (z, Ω̂) =

∫ z

zm(−µ)

dz2

µ
T(Ω̂, z, z2)

∫
4π

dΩ2βs(Ω̂2)P(Ω̂, Ω̂2)

×
∫ z2

zm(−µ2)

dz1

µ2

T(Ω̂2, z2, z1)βs(Ω̂0)P(Ω̂2, Ω̂0)T(Ω̂0, z1, zm(−µ0)) (4.23)

Note that without using the boundary selection function, the first order solution

will have two terms, while the second order solution will have 4 terms, and the n-th

order solution will have 2n terms.
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4.2.2 Monte Carlo Method

Direct integration of the the SOS solution is very complex. It is only feasible for

the simple Rayleigh scattering Mueller matrix. For a system with arbitrary particles,

such as iridosomes and leucosomes, we can only solve the VRTE numerically. In this

section, we will introduce a Monte Carlo method, which can statistically evaluate the

integrations over solid angles and distances in the SOS solution —the integrations will

be replaced by the summation over sampled distances and directions. For randomly

oriented particles —both βpol = 0 and βcpol = 0, our method then reduces to the

standard Monte Carlo method discussed in previous works [41, 42, 43].

As shown in Eq. 4.21, there are two types of integrations, associated with both

the distance and direction. In order to evaluate each terms in the SOS solution, we

need to statistically sample both distance and direction efficiently. The direction and

distance will be sampled in the sequence from the light source to the detector (called

a forward approach). Furthermore, We will associate each sequence of the sampled

directions and distances with a photon package with an initial weight of unity [42].

A part of the weight will be reduced after each sampling, until the final results

are sufficiently converged. In our following examples, incident light is propagating

downwardly with µ0 < 0 from the upper boundary zm(−µ0) = Z (source location),

and the transmitted radiance is evaluated at the lower boundary with µ < 0 and

zm(µ) = 0 (detector location). This can also be seen from the boundary function

Eq. 4.14: zm(µ0) = 0 and zm(−µ) = Z.

To sample the physical length zi for the oriented particle systems, we need to

further study the properties of the transmission matrix (Eq. 4.13). The transmission
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matrix can be simplified as:

T(Ω̂, z′′, z′) = exp(−τ) ·



cosh(pτ) − sinh(pτ) 0 0

− sinh(pτ) cosh(pτ) 0 0

0 0 cos(p′τ) − sin(p′τ)

0 0 sin(p′τ) cos(p′τ)


,

(4.24)

where τ = βext(z
′′ − z′)/µ, is the optical depth for unpolarized light, and p =

βpol/βext = Cpol/Cext, p
′ = βcpol/βext = Ccpol/Cext. τ , p and p′ all depend on the

incident direction Ω̂ and the particles’ orientation. The radiance is attenuated ac-

cording to the transmission function:

T (Ω̂, z′′, z′) = T(Ω̂, z′′, z′)11 = exp(−τ) cosh(pτ),

=
1

2
(exp[−(1 + p)τ ] + exp[−(1− p)τ ]). (4.25)

This function will be used to sample the distance z′′.

For randomly oriented particles, light will not polarize through attenuation. How-

ever, for oriented particles, as shown in Eq. 4.24, light can be polarized due to the

contribution of a non-zero βpol. The degree of polarization for an unpolarized inci-

dent light source is tanh(pτ) , which will approach unity when pτ is very large, and

the longer the propagating path, the more it will be polarized.

The error in the radiance of the direct term, M eff
0 , brought about by neglecting

the contribution of non-zero βpol or p is defined by Tp/Tp=0 − 1 = cosh(pτ) − 1, as

shown in Figure 4.6. For example, for τ = 5, p = 0.05 can lead to a 3% error in

the total radiance transmission; for p = 0.1, a 13% error; and for p = 0.15, a 30%

error. Thus, for an optically thick layer, even very small p can still lead to large
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Figure 4.6: The error on the attenuated direct radiance for neglecting of βpol with
unpolarized light source. Tp=0 = exp(−τ) and Tp = exp(−τ) cosh(pτ). Results for
p = ±0.05,±0.1, and ±0.15 are shown.

error on the radiance of direct light. Generally to have an error less than 10% for the

attenuation of the direct light, we should have |p|τ ≤ 0.44. Since for a plane parallel

system τ = βext∆z/µ, even for small change of ∆z at the zenith angle close to π/2,

there are still large errors. To obtain the total radiance, all the diffuse terms have

to be evaluated numerically, and there is generally no analytical results even for the

first order term.

As examples for this Monte Carlo approach, the first two orders of the solution

(Eqs. 4.22 and 4.23) will be discussed. The examples can be extended to a general

n-th order term. The first order term has only one integration with z1:

Meff
1 (0, Ω̂) =

∫ 0

Z

dz1

µ
T(Ω̂, 0, z1)βs(Ω̂0)P(Ω̂, Ω̂0)T(Ω̂0, z1, Z)), (4.26)

=
µ0

µ

∫ 0

Z

dz1

µ0

T(Ω̂, 0, z1)βs(Ω̂0)P(Ω̂, Ω̂0)T(Ω̂0, z1, Z)). (4.27)

while there are two transmission matrices associated with z1, the left matrix T(Ω̂, 0, z1)

is a function of z1/µ, and the rightmost matrix T(Ω̂0, z1, Z) is a function of z1/µ0.
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T(Ω̂0, z1, Z) is chosen to sample z1/µ0; this is equivalent to propagating a photon

forwardly from the source to the detector.

There are two approaches to sample the zi, one is to use exp(−τ) as in a randomly

oriented system. But since there is a cosh[pτ ] term left in the transmission function,

which will be divergent very fast for a small value of µ. In order to have a stable

algorithm, it’s better to use the full transmission function exp(−τ) cosh(pτ) (Eq.

4.25) as the probability density function. Meanwhile, this function is also the best

probability density function for the importance sampling which has better efficiency

compared with exp(−τ). In Eq. 4.27, since the integration integral for z1 is finite,

the transmission function T needs to be normalized before using it as a probability

density function. A weight function W is defined as (the corresponding parts of

integral are underlined in Eq. 4.27) :

W (Ω̂′, zb, za) = βs(Ω̂
′)

∫ zb

za

dz

µ
T (Ω̂′, z, za)

=
βs
βext

(1− Tm(Ω̂′, zb, za))

(1− p2)
, (4.28)

Tm(Ω̂′, zb, za) =
1 + p

2
exp[−(1− p)βext(zb − za)/µ]

+
1− p

2
exp[−(1 + p)βext(zb − za)/µ], (4.29)

where p = p(Ω̂′), βs = βs(Ω̂
′), and βext = βext(Ω̂

′). α = βs/βext is the scattering

albedo for unpolarized light. When p = 0, W = α(1 − exp[−βext(zb − za)/µ)]),

which is the ratio of the photon package scattered during the attenuation from za to

zb in the direction Ω̂′ according to the Bouguer-Lambert-Beer law. The probability

density function t, and the cumulative probability function tc can be defined by using
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W and Tm as follows:

t(Ω̂′, z, za) =
βs(Ω̂

′)

µ′
T (Ω̂′, z, za)

W (Ω̂′, zb, za)
, (4.30)

tc(Ω̂
′, z, za) =

∫ z

za

dz′t(Ω̂′, z, za) =
1− Tm(Ω̂′, z′, za)

1− Tm(Ω̂′, zb, za)
(4.31)

To sample a distance zi, a random number η is generated, and zi can be inverted

through η = tc(Ω̂
′, zi, za). Meanwhile, the reduced transmission matrix: T̃ = T/T ,

is introduced to remove the bias in the sampling of the distance using only T instead

the whole transmission matrix. Therefore, Meff
1 can be statistically evaluated as:

Meff
1 (0, Ω̂) =

µ0

µ

1

N1

∑
i1

T(Ω̂, 0, zi1)P(Ω̂, Ω̂0)W (Ω̂0, 0, Z)T̃(Ω̂0, zi1, Z), (4.32)

where N1 is the total number of sampled Zi1. In this example, only the position

is sampled. For higher order terms, we have to evaluate both the positions and

directions.

For the second order term, the effective Mueller matrix at the top of the system

can be obtained from Eq. 4.23 as:

Meff
2 (0, Ω̂) =

∫ 0

Z

dz2

µ
T(Ω̂, 0, z2)

∫
4π

dΩ2βs(Ω̂2)P(Ω̂, Ω̂2)

×
∫ z2

zm(−µ2)

dz1

µ2

T(Ω̂2, z2, z1)βs(Ω̂0)P(Ω̂2, Ω̂0)T(Ω̂0, z1, Z). (4.33)

There are two functions associated with each zi and Ωi. To use the Monte Carlo

method in the current formalism, z2 has to be sampled first by using T(Ω̂, 0, z2), since

sampling z1 will always require the value of z2, no matter which probability function

is chosen. This would be equivalent to propagating a photon from the detector to the

source. On the contrary, in order to perform a forward Monte Carlo method, we first

57



reverse the integration order of z2 and z1, and then change the corresponding intervals

to make the integral results the same (Protter and Morrey 1985,p307): z2 ∈ [Z, 0] and

z1 ∈ [zm(−µ2), z2] is changed to z1 ∈ [Z, 0] and z2 ∈ [z1, Z − zm(−µ2)] = [z1, zm(µ2)].

Finally, the order of µ, µ0 and µ2 are rearranged:

Meff
2 (0, Ω̂) =

µ0

µ

∫ 0

Z

dz1

µ0

T(Ω̂, 0, z2)

∫
4π

dΩ2βs(Ω̂2)P(Ω̂, Ω̂2)

×
∫ zm(µ2)

z1

dz2

µ2

T(Ω̂2, z2, z1)βs(Ω̂0)P(Ω̂2, Ω̂0)T(Ω̂0, z1, Z). (4.34)

The corresponding functions and integrals for the sampling are distinguished with

the same number of underlines. In this example, the sampling sequence is z1, Ω2 and

z2. Note, to sample Ω̂2 we choose the rightmost phase function P (Ω̂2, Ω̂0) which is

dependent on Ω̂2. Since the phase function is normalized over 4π solid angles (Eq.

4.9), it can be used as probability density function to sample Ω̂2 directly. Similar to

the reduced transmission matrix, the reduced phase matrix is defined as P̃ = P/P .

Note here P=M , and P̃ = L(π − i2)M̃(µs, φs)L(−i1). Both angles µs and φs can

be sampled through the bivariate function M(µs, φs). Therefore, the second order

effective Mueller matrix Meff
2 can be evaluated statistically as:

Meff
2 (0, Ω̂) =

µ0

µ

1

N2

∑
i2

∑
j2

∑
i1

T(Ω̂, 0, zi2)P(Ω̂, Ω̂j2)W (Ω̂j2, zi1, zm(µj2))

× T̃(Ω̂j2, zi2, zi1)P̃(Ω̂j2, Ω̂0)W (Ω̂0, 0, Z)T̃(Ω̂0, zi1, Z), (4.35)

N2 is the total number of the sampled zi2, Ω̂j2, and zi1. From Eq. 4.28, the

physics of sampling the distance z in this approach is to force a collision within

the boundary of the system, and the corresponding bias is removed by reducing the

photon weight by (1 − Tm) similar to the discussion in [41, 42]. This can save the
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samples which will have no chance of scattering inside the system, and guarantees

that every photon contributes to the detector. Furthermore, an extra factor (1−p2)−1

needs to be considered to make the probability function normalized. Meanwhile, the

oblique factor µ0/µ comes naturally from changing the integral sequence, a physical

interpretation can be found in [42, 52].

To study the structure of the solution terms, and to design an efficient algorithm

to evaluate the higher order terms, we can neglect all the explicit notations for the

summations and the angle and position dependences. According to Eqs. 4.32 and

4.35, M eff
1 and M eff

2 terms can be expressed symbolically as:

Meff
1 =

µ0

µ
TPW T̃, (4.36)

Meff
2 =

µ0

µ
TPW T̃P̃W T̃, (4.37)

and from iteration, the nth order term, M eff
n , can also be expressed as:

Meff
n =

µ0

µ
TPW T̃(P̃W T̃)n−1. (4.38)

The forward time sequences of the scattering and propagation of the photons

corresponding to the multiplication of the terms from right to left. W T̃(P̃W T̃)n−1 is

called the collision part, and TP the estimation part. During the first (n−1) collision

processes, the photon contribution is evaluated through the reduced matrices. After

the last step of the collisions, every sampled photon is directly estimated to the

detector using the full phase matrix and transmission matrix TP.

To improve the efficiency of the Monte Carlo evaluation, an efficient estimation

scheme is developed based on the solution’s structure of the total diffused effective
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Mueller matrix:

Meff =
N∑
1

Meff
n ,

= Meff
1 + Meff

2 + Meff
3 + ...+ Meff

N ,

=
µ0

µ
(TPW T̃ + TPW T̃(P̃W T̃) + ...TPW T̃(P̃W T̃)N−1),

=
µ0

µ
((((..)W T̃P̃ + TP)W T̃P̃ + TP)W T̃P̃ + TP)W T̃. (4.39)

M eff
n is on the order of W n, which is the net photon weight for the corresponding

photon package. N is the highest order of scattering required in this calculation,

and it can be determined when the photon weight W n is small enough. Eq. 4.39

is the summation over all orders of zi and Ω̂i. Note the structure W T̃P̃ + TP,

which corresponds to a virtual photon estimated to the detector through TP, then

another collision is sampled by W T̃P̃ with a new direction, position and photon

weight. This process continues until the photon weight is decreased to a small enough

value. Through this scheme, any photon sample having a N -th order contribution

to the detector will automatically contribute to all the orders n ∈ [1, N ]. Zhai and

et.al. provided an estimation scheme to improve the efficiency of the Monte Carlo

simulation for randomly oriented particles, and provided a detailed algorithm to

implement them [42]. Following our approach based on SOS, we can show a similar

estimation scheme can be developed through the exact combination of different orders

of scattering terms for oriented particles.

4.3 Approximate Solutions

As discussed previously, for spherical and randomly oriented particle, the extinc-

tion matrix will reduce to a scalar quantity, and the VRTE can be simplified. In

this section, we will provide several approximate solution for such a spherical and
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randomly oriented particle system. We will first introduce the single scattering ap-

proximation [18, 19], which works for a system with very thin optical depth, and can

also be used to test the numerical code. Based on this result we will discuss the ex-

act solution of a one dimensional model for the irradiance reflectance estimation [44].

Since this method is highly efficient, before conducting the full scale Monte Carlo

simulations, we will start with this method for leucosomes and randomly oriented

iridosomes.

For randomly oriented particles, instead of using the actual physical distance z,

we can define a dimensionless optical depth τ as

τ =

∫ ∞
z

β(z)dz, (4.40)

where for a plane parallel system in our consideration, the lower limit z ∈ [0, Z].

From this definition, the top surface is τ = 0, and the bottom surface has the

maximum optical depth, denoted by τ = τm. The integral solution of RTE for

randomly oriented particles of a homogeneous system:

I(τ,Ω) = e−(τm(−µ)−τ)/µI(τm(−µ),Ω) +

∫ τm(−µ)

τ

dτ1

µ
e−(τ1−τ)/µω

∫
dΩ1P(Ω,Ω1)I(τ1,Ω1),

(4.41)

where Ω = {µ, φ}. Similar to the boundary function we defined previously, when

µ > 0, τm(−µ) = τm is the lower boundary, and when µ < 0, τm(−µ) = 0 is the

upper boundary. The source term is defined as:

I(τm(−µ),Ω) = F0(Ω0)δ(Ω− Ω0). (4.42)

Through iteration starting from this term, we can get the scattering terms at any
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order.

4.3.1 Single Scattering Approximation

The single scattering approximation will only consider the first order scattering—

the photon will be only scattered once [18, 19]. For a very thin layer, only first order

scattering dominates, and this approximation will be accurate enough to calculate

the reflectance. Based on the integral solution, Eq. 4.41, we can get the direct

(zero-th order) scattering term:

I0(τ,Ω) = e−(τm(−µ0)−τ)/µ0F0(Ω0)δ(Ω− Ω0). (4.43)

This corresponds to the attenuation of the incident light. The next order iteration

will give the first order term:

I1(τ,Ω) =

∫ τm(−µ)

τ

dτ1

µ
e−(τ1−τ)/µω(τ1)P(Ω,Ω0)e−(τm(−µ0)−τ1)/µ0F0(Ω0) (4.44)

Here we only consider the light incident from the top with µ0 < 0 and the reflec-

tion(upwelling radiance) with µ > 0 at optical depth τ , the first order term is:

I1(τ,Ω) =

∫ τm

τ

dτ1

µ
e−(τ1−τ)/µω(τ1)P(Ω,Ω0)eτ1/µ0F0(Ω0), (4.45)

note here µ0 < 0 so τ1/µ0 < 0. Considering the optical depth at τ = 0, we can

integrate the above equation:

I1(0,Ω) =
|µ0|F0

|µ|+ |µ0|
P(Ω,Ω0)(1− exp(−|µ|+ |µ0|

|µ||µ0|
τm)), (4.46)

This result gives the single scattering approximation of the radiance distributions.
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For an optically thin layer, τm << 0, we can further simplify Eq. 4.46 into:

I1(0,Ω) = F0ωP(Ω,Ω0)τm/|µ|. (4.47)

The dependency on the incident angle comes only from the phase matrix. The factor

µ comes with the oblique viewing angle—we get the photon path length proportional

to 1/µ at this viewing angle. Since the radiance is constant through propagation for

each particle on this path, eventually the total radiance will be proportional to 1/µ.

The total reflected irradiance can be obtained by integrating the radiance (phase

function) over the upper hemisphere Ω+:

F+(0) =

∫
Ω+

I(0,Ω)µdΩ (4.48)

= F0ωτmB, (4.49)

where the backscattering ratio B is defined as:

B =

∫
Ω+

P (Ω,Ω0)dΩ. (4.50)

Therefore, the reflectance for the irradiance would be:

R =
F+(0)

F0|µ0|
=

ω

|µ0|
τmB (4.51)

For normal incidence and a non-absorptive system, we have R = τmB, where τm is

the total optical depth of the plane parallel system. This can be used to estimate

the total reflectance of a thin layer system.
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Figure 4.7: (a) Transfer matrix T1 for one layer. The incident irradiance are F+
1 and

F−2 , and the scattered irraidance are F−2 and F+
1 . (b) The transfer matrix for the

whole system with incident irradiance 1, reflection R and transmission T . Transfer
matrices are shown in the red box.

4.3.2 One Dimensional Model

Since the single scattering approximation can be only used in an optically thin

system, here we will provide another treatment to consider an optically thick system.

Kattawar and et.al. provided an exact solution for a one dimensional model [44]. In

this model only the upwelling and downwelling fluxes are considered, and the final

reflectance can be directly associated with the optical depth and the backscattering

properties of the particles:

R =
Bτm

1 +Bτm
. (4.52)

Here, we will provide an alternative approach to prove this result. Based on the

single scattering approximation result, we will derive this equation using the transfer

matrix method introduced in the last section.

Considering a system with total optical depth τm, we can divide this system into

n thin layers each one with optical depth ∆τ = τm/n, and n→∞. The transmission

and reflection of such an one layer can be represented using a transfer matrix (Figure

4.7 (a)). We can solve the total transmission and reflection for the whole system using
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a similar transfer matrix method. Here the energy flux (irradiance) is considered,

not the electric field. Consider two sides of the single layer, denoted by 1 and 2, the

downward and upward irraidance, denoted by (+) and (−). The scattering matrix,

and the transfer matrix are defined as: F−1

F+
2

 = S1

 F+
1

F−2

 ,

 F+
2

F−2

 = T1

 F+
1

F−1

 . (4.53)

The scattering matrix can be obtained similarly as discussed in the last section:

S1 =

 R1 T1

T1 R1

 , (4.54)

where R1 and T1 are the reflection and transmission for a thin layer, which can be

solved using the single approximation results. Based on the scattering matrix, the

transfer matrix can be obtained as:

T1 =
1

T1

 T 2
1 −R2

1 R1

−R1 1

 =
1

1−R1

 1− 2R1 R1

−R1 1

 , (4.55)

where the last step used the fact that energy is conserved, T1 + R1 = 1 for a non-

absorptive system.

Therefore, the transfer matrix for the whole system (Figure 4.7 (b)) becomes:

T = Tn
1 =

1

(1−R1)n

 1− 2R1 R1

−R1 1


n

, (4.56)
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where R1 = ∆τB = Bτm/n. Taking the limit of infinite layers, we can have:

T = lim
n→∞

1

(1−R1)n

 1− 2R1 R1

−R1 1


n

(4.57)

= lim
n→∞

 1− nR1

1−R1

nR1

1−R1

− nR1

1−R1
1 + nR1

1−R1

 (4.58)

=

 1− τmB τmB

−τmB 1 + τmB

 (4.59)

For the whole system, assume the light is only incident from one side of the system

and with irradiance 1. Therefore, the transfer matrix can couple the reflectance R

and transmittance T = 1−R for the system:

 T

0

 = T

 1

R

 , (4.60)

the reflection from this one dimensional model can be solved as:

R =
τmB

1 + τmB
, (4.61)

and this results is consistent with Eq. 4.52.
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5. NUMERICAL STUDIES ON LEUCOPHORES AND IRIDOPHORES ∗

Section 1 introduced the two types of cells: leucophores and iridophoers, which

produce the structural color in the skin of cephalopods. Each cell also contains hun-

dreds to thousands of small scatterers —such as small spherical structures called

leucosomes for leucophores; and small layered structures called iridosomes for iri-

dophores. Using the single scattering methods introduced in Section 3 and the mul-

tiple scattering methods introduced in Section 4, in this section we can investigate

how leucophores and iridophores scatter light.

We will divide this section into two parts: the first dealing with iridophores and

the second dealing with leucophores. In each part, we will first discuss the single

scattering properties of a single scatterer (iridosome or leucosome), and then at the

end we will study their diffuse reflectance with a collection of such scatterers. When

discussing single scattering properties, we will emphasize the iridosomes more than

the leucosomes, since the scattering properties of small spheres has been well studied

[17, 16], but the novel finite layered structure of iridosomes has not been very well

discussed.

From the multiple scattering simulations, we will show that different colors can be

produced by the scatterers with different structures. A Monte Carlo code developed

following the theory in Section 5 will be used to do the simulation.

5.1 Scattering Properties of Iridosomes and Iridophores

As discussed in Section 1 and shown in Figure 1.1, in the skin of cephalopods,

there are many iridophores, and each of them contains numerous iridosomes. They

∗Part of this section is reprinted with permission from M. Gao, Y. You, P. Yang, and G.
W. Kattawar, “Backscattering properties of small layered plates: a model for iridosomes,” Optics
Express 20, 25111-25120 (2012). Copyright 2012 by Optical Society of America.
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can produce iridescent colors, such as green and blue, to further blend the colors pro-

duced by chromatophores, and help cephalopods to better match the background.

Due to the layered structure of iridosomes, they can also produced polarized re-

flectance, which may serve as a channel for intraspecific communication [2]. In this

section, we will first introduce the numerical model of a single iridosome, and then

study various single scattering properties of it. Using these single scattering results

as the input, we will study the multiple scattering properties of a collection of irido-

somes, as a model for iridophores.

The single scattering properties are calculated using the DDA method as dis-

cussed in Section 3. The complete Mueller matrices and phase functions are ob-

tained. The angular width of the reflection peak is found to depend on both the

size parameter and the aspect ratio. The backscattering properties of small lay-

ered plates are studied for various size parameter values with respect to the plate

thickness, plate aspect ratio, number of layers, incident direction, and polarization

states of the incident light. The results are compared with the analytical results for

semi-infinite plates. The criteria for using the reflectance of semi-infinite plates to

approximate the backscattering efficiencies of finite size plates are quantified with

respect to the number of layers, incident angle, and polarization state.

5.1.1 Numerical Model of an Iridosome

An iridosome is modeled as a cylinder with a layered inner structure. Two ex-

amples are shown in Figure 5.1 for both a single-layer and 5-layer plates. Plate

diameter, thickness, and the total cylinder height are respectively denoted by D, d,

and L. The direction of the incident light is at an angle β relative to the symmetry

axis of the iridosome and is shown in Figure 5.1 (a).

The iridosome plate material is found to be a kind of protein, called reflectin,
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Figure 5.1: (a) A single layer plate. (b) A 5-layer plate.

and its refractive index is measured to be 1.591± 0.002 with a negligible dispersion

in the visual spectrum [53, 54]. The material of the ambient tissue and that between

plates are mainly cytoplasm, whose refractive index is close to that of water (nw =

1.33). Thus, the relative refractive index of the plate (nr) is 1.2 in reference to the

cytoplasm. In our model, we choose the same relative refractive index for iridosomes.

To further simplify the modeled structure, we consider ideal multiple-layered plates

in which the optical length of the plates and the spacing between plates are the same,

and therefore the spacing thickness is nrd.

The size parameter is defined as x = 2πd/λ for one layer of the plate, where λ is

the wavelength in the medium. The plate thickness d of iridosomes can range from

50nm to 200nm [7, 8, 9, 10, 11, 12, 13], and, in the visual spectrum, the incident

wavelength λ0 in air is from 0.4 to 0.75µm. Therefore, the size parameter of the

plate thickness in the medium is x = 2πnwd/λ0, and can vary approximately from

0.5 to 5. This size parameter range is used in our simulations in steps of 0.1.

The aspect ratio is defined as a = D/d upon one layer of the plate. For example,

both single-layer and 5-layer plates in Figure 5.1 have the same aspect ratio of 10. A
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range of the aspect ratio from 1 to 20 is chosen for our study. Rather than discussing

the aspect ratio variations among certain cephalopod species, we focus on the aspect

ratio’s influence on the optical properties, from which a particular type of iridisome

can be evaluated later on.

After discussing the single scattering properties of iridosomes, we will study the

multiple scattering properties based on a modeled iridosome as shown in Figure

5.1(b) with 5 layers and each layer thickness d = 100nm; spacing ds = 120nm;

relative refractive index nr = 1.2; and r = 5d (a = 10). A collection of iridosomes

with different orientations are shown to produce different colors.

To calculate the reflectance of a single-layer semi-infinite plate (R1) (Figure 5.2),

Airy’s formula is used for different size parameters, polarization states, and both

normal and oblique incidences [39]:

R1s,p =
4r2

s,psin
2α

(1− r2
s,p)

2 + 4r2
s,psin

2α
, (5.1)

rs =
cos β − nr cos θ

cos β + nr cos θ
, (5.2)

rp =
nr cos β − cos θ

nr cos β + cos θ
, (5.3)

where α = 2πnrd cos β/λ is a phase factor and related to the size parameter by

α = nrx cos β. As shown in Eqs. 5.2 and 5.3, rs and rp are the Fresnel reflectance

formulas for the perpendicular and parallel polarized components relative to the

principal plane defined by the direction of the incident and reflected light, where β is

the incident angle and θ is the refracted angle. The reflectance is a periodic function

of the size parameter x. Our analytical results for an arbitrary number of layers are

derived by using the transfer matrix method as discussed in the last section, and the

resulting reflectance remains a periodic function of the size parameter. Additionally,

70



Figure 5.2: Illustration of the interference of the light reflected from the top and
bottom surfaces of a semi-infinite plate with thickness d and relative refractive index
nr in the principal plane.

the maximum constructive and destructive interferences determine the maximum and

minimum reflection of a semi-infinite plate. As shown in Figure 5.2, the difference

in the optical lengths of the two reflection paths is ∆l = 2nrs1 − s0 = 2nrd cos θ,

where θ is the refracted angle. The phase factor in Eq. 5.4 can be related to the path

difference by α = π∆l under normal incidence. Due to the λ/2 phase shift at the

interface, the condition for maximum constructive interference is ∆l = (m + 1/2)λ,

where m is an integer. Thus, to have maximum constructive interference under

normal incidence, we haveα = π/2 and 3π/2, which corresponds to x = 1.3 and 3.9;

to have maximum destructive interference, we have α = π, which corresponds to

x = 2.6. However, for a finite size system, the reflection maxima and minima deviate

from the prediction of these size parameters, and to compare the difference we will

indicate x = 1.3, 2.6, and 3.9 in the reflection spectrum graphs.

5.1.2 Phase Function of an Iridosome

The phase function P (Ω) describes the angular distribution of scattered light for

an unpolarized light source, where Ω = (θs, φ) is the solid angle for the scattering

direction (Section 2). φ is the azimuthal angle, and θs is the scattering angle between
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Figure 5.3: Phase function P (θs) with aspect ratio a ranging from 1 to 40 for a
single-layer plate under normal incidence and size parameter x = 1.3. The FWHM
of the reflection peaks (∆θ) is indicated as a solid horizontal red bar. The aspect
ratio, a, is shown close to its corresponding curve.

the scattering direction and the incident direction. The phase functions are calculated

with various size parameters, aspect ratios, incident directions, and polarization

states. We will discuss the angular distribution of the reflection peak in the phase

functions, and how it depends on the incident angles.

For a size parameter x = 1.3 the phase functions are shown in Figure 5.3 with dif-

ferent aspect ratios under normal incidence. For convenience in comparing backscat-

tering properties, each phase function is normalized by k2Cg as in Eq. 5.4. Because

the light is at normal incidence on the plates, the phase function is azimuthally sym-

metric. For example, as shown in Figure 5.3, the phase function is symmetric around

θs = 180◦, which corresponds to the direct backscattering direction. The full width

at half maximum (FWHM) of the reflection peaks is denoted by ∆θ and provides

a way to quantify the angular spreading of the reflection. When the aspect ratio a

increases, the reflection peak around θs = 180◦ becomes narrower and ∆θ decreases.
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Figure 5.4: The FWHM of the reflection peak (∆θ) versus the plate thickness size
parameter for a single-layer plate. The aspect ratio is a. Vertical dashed lines are
for size parameters x = 1.3, 2.6, and 3.9.

The FWHM of the reflection peak is shown by the horizontal red solid bar in Figure

5.3. For the aspect ratio from 4 to 40, ∆θ is found to decrease from 73.5◦ to 7.5◦

with an angular resolution of 0.5◦. For an aspect ratio of 1 or 2, no angle corresponds

to the phase function with a value half of that at 180◦, and, therefore, no value for

∆θ exists; the phase function has less variations compared with the one with large

aspect ratio particles.

For size parameters in the range from 0.5 to 5, the values of ∆θ are summarized

in Figure 5.4 with the same 0.5◦ angular resolution. ∆θ decreases as the aspect ratio

increases throughout all the considered size parameters. For aspect ratios a = 1 and

2 and size parameters approximately less than 2.6, no value exists for ∆θ. For size

parameters larger than 2.6 and a = 1, ∆θ can be found between 44◦ to 96◦, and

for a = 2, ∆θ decreases to between 36◦ and 46◦. Furthermore, when a = 4, ∆θ is

between 130◦ and 18.5◦ for size parameters from 0.5 to 5. When a = 40, ∆θ further
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Figure 5.5: Phase functions of the tilted 5-layered structure in the y-z plane, with
incident angle β varying from 0◦ to 30◦ as shown in the legend, incident wavelength
480nm. Aspect ratio a = 10 (a) and a = 5 (b)

.

decreases to between 18.5◦ and 2◦ for the same range of size parameters. For the

plates with a thickness of 5 and a = 40, the reflection peak is at least 2◦ in width.

The spreading becomes less prominent when the aspect ratio is large. However, for

the semi-infinite plates, the reflection is confined to a single direction determined by

Snel’s law. The angular broadening of the reflection can be explained by the ray-

spreading effect [55]. When the angular distribution is considered either for a phase

function or the diffuse reflection of a random system, the influence of the spreading

of the reflection peak needs to be evaluated.

When light is incident with an incident angle β, the reflection peak of the phase

function can be roughly predicted as in the specular reflection direction 180− 2β, as

shown in Figure 5.5. But the magnitude is rapidly decreasing with the increase of β.

And the reflection peak is not located exactly at 180−2β with large incident angles.

When the aspect ratio decreases from 10 to 5, the reflection peaks move further

towards the backward direction. Moreover, when the scattering angle is larger than

40◦, the reflection peak becomes vanishingly small.
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Figure 5.6: (a). A 5 layer iridosome used in our numerical model. (b). A solid
cylinder with the same radius and total height as the iridosome in (a). (c) Angular
distribution diagram for backscattering.

5.1.3 Mueller Matrix of an Iridosome

We have introduced the Mueller matrix in Section 2, which contains all the elastic

scattering information of a scatterer. In this section, the reduced backscattering

Mueller matrices of a five-layer iridosome are compared with a cylinder with the same

radius and total height (Figure 5.6(a) and (b)). We will see the angular distribution

of the Mueller matrix elements are sensitive to particle shapes and structures. Since

the real iridosomes in the skin of cephalopods can have a wide range of shapes and

sizes, and their structure has not been well studied, Mueller matrix imaging [56]

could provide a useful way to classify iridosomes through their scattering patterns

as shown in the following.

The angular distribution of the Mueller matrix is represented using the diagram

in Figure 5.6(c). The size parameter of one layer thickness is x = 1.3; the radius of

the iridosome and cylinder is r = 5d (aspect ratio a = 10). The angular distribution

diagram is shown in Figure 5.6(c), which will be used to represent Mueller matrix

distributions later. The reduced Mueller matrix (elements except m11 are divided by

m11) is used in our discussion.
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Figure 5.7: Angular distribution of the reduced backscattering Mueller matrix with
incident angle β = 0◦, and wavelenth 480nm. (a) 5 layer iridosome, (b) solid cylinder
with the same radius and total height. m11 is plotted on a log scale with the color
bar on the left; the right color bar is for all other reduced elements.

The Muller matrices are compared for three different incident angles, including

β = 0◦, 30◦ and 90◦, as plotted in Figures 5.7, 5.8, and 5.9. The left panel (a) is for

the 5 layer iridosome, and the right panel (b) is for the solid cylinder. The color bar

on the left is for m11 on a log scale, and the color bar on the right is for all the other

reduced Mueller matrix elements with values in the range of [−1, 1]. Observed from

these three figures, the diagonal 2× 2 blocks of the Mueller matrices are symmetric

with respect to the principal plane (y − z plane with φ = 90◦ and 270◦), while the

off-diagonal 2 × 2 blocks are anti-symmetric, namely with the same absolute value

but opposite sign. This is because of the mirror symmetry of the amplitude matrix

on the two sides of the principal plane [17].

The backscattering can be greatly enhanced by interference due to the multilayer

structures. As shown in Figure 5.7, the reflection peak of the phase function m11 of

(a) is approximately 10 times stronger than the peak in (b). The pattern of the other

elements of (a) and (b) are very similar when β = 0◦, since the top view of both
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Figure 5.8: Same as Figure 5.7, but for an incident angle β = 30◦.

Figure 5.9: Same as Figure 5.7, but for an incident angle β = 90◦.
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Figure 5.10: The projected geometric areas (Cg) which are perpendicular to the
incident direction are shown for (a) a single-layer plate and (b) a 5-layer plate.
Incident angle β is from 0◦ to 90◦.

structures are the same. But this phenomenon changes when the incident angle is

increased to β = 90◦, as shown in Figure 5.9, where the two patterns are completely

different: for example, in (a) there is a reflection peak in the center, but in (b) it

splits into two peaks around the center, since now the light is incident on the side

of the iridosome, which sees a totally different structure for the layered iridosome

compared with the smooth surface of solid cylinder. In Figures 5.7 and 5.8, although

they share similar scattering pattern, the scattering maximum and minimum for the

5 layer iridosome in (a) are confined to a much smaller region compared with the

solid cylinder in (b).

5.1.4 Backscattering Efficiency of an Iridosome

In this section we will discuss another important physical quantity , called backscat-

tering efficiency, which characterizes the backscattering properties, and can be used

to estimate the multiple scattering reflection through the one dimensional model we

introduced in Section 4.

As shown in Figure 5.1 (a), the upper solid angle hemisphere Ω+ is defined as the

backscattering region. For unpolarized incident light, the integration of the phase
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function over this region is used to obtain the backscattering efficiency:

Qb =
1

k2Cg

∫
Ω+

P (Ω)dΩ, (5.4)

where k = 2π/λ is the wavenumber, and Cg = πD2 cos β/4+DL sin β is the projected

geometric area of the cylinder. Note that the projected geometric area is perpen-

dicular to the incident direction. Two sets of examples of the projected areas are

shown in Figure 5.10 for both single-layer and 5-layer plates. Furthermore, when the

aspect ratio approaches infinity, the backscattering efficiency becomes equal to the

reflectance of the semi-infinite plate. Therefore, we use the backscattering efficiency

as an indicator to show the reflection deviation of the small plates from that of the

semi-infinite plates.

For a bulk system with random positioned scatterers, Qb can be used to estimate

the diffuse reflectance. Here, the diffuse reflectance is for the irradiance and no an-

gular distribution is present. The diffuse reflectance is important in determining the

optical appearance of the system, such as the color and brightness of the cephalopod

skin. Normally the calculation involves solving a 3-D radiative transfer equation,

but the irradiance reflectance can also be calculated by using the one dimensional

model introduced in Section 4 : if the number density is nd and the system thickness

is L, the diffuse reflectance is Rdiff = CbndL/(1 + CbndL), where Cb = QbCg is the

backscattering cross section. Therefore, the backscattering efficiency of one scatterer

is directly related to the diffuse reflection of a bulk system.

Throughout this section, we will compare the backscattering efficiency with the

reflection of semi-infinite plates. In this way, we can understand how the scattering

properties of a finite structure differs from that of semi-infinite plates. We can also

determine the criterion for using the reflection to approximate the backscattering
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Figure 5.11: Backscattering efficiency Qb versus number of layers for a size parameter
of the plate thickness x = 1.3 with different aspect ratios and under normal incidence.
The reflection for semi-infinite plates is indicated by asterisks.

efficiency, which can be used to study iridosomes with large aspect ratios. Here

we will compare the numerical results for finite plates with the reflectance of the

semi-infinite plates.

The theoretical results for the reflection of the semi-infinite plates can be solved

using the transfer matrix method as discussion in Section 3. The DDA method,

as introduced in Section 3, is used to calculate the single scattering properties of

an iridosome. For multiple layered system, we have to numerically calculate their

reflectance using the TMM.

The backscattering efficiency Qb (Eq. 5.4) is sensitive to the aspect ratio and the

number of layers of an iridosome. As the aspect ratio increases, Qb will undergo a

metamorphosis from a small particle to a semi-infinite layered plate. In Figure 5.11,

Qb is shown for various numbers of layers and aspect ratios at x = 1.3. When the

radius increases, Qb approaches the reflection of the semi-infinite plates (red asterisks
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in the graph) for each number of layers. When a = 1 or 2 and the number of layers

is larger than 1, Qb is much smaller than the reflection of semi-infinite plates. When

a = 4, Qb will decrease as the number of layers increase when the number of layers

is larger than 7. In general for a > 4, as shown in Figure 5.11, adding more layers of

plates into the scattering will increase the backscattering efficiencies as predicted by

the semi-infinite plates. The size effect plays a significant role for small scatterers in

determining the backscattering efficiency. Meanwhile, Qb can be larger than 1 due to

the interference effects of the scattered waves similar to the phenomenon that causes

extinction [17].

For normal incidence, the backscattering efficiency Qb versus the size parameter

for a single-layer and a 5-layer plate is compared with the semi-infinite results in

Figure 5.12. With large aspect ratios, such as a = 20, the backscattering efficiency

can be approximated with great accuracy by using the results from the semi-infinite

plates. When the aspect ratio decreases, two maximum reflection peaks remain

observed, but the positions shift to shorter wavelengths and the values generally

differ more from the semi-infinite results. For example, when a = 1, as shown in

Figure 5.12 (a) and (b), one of the Qb maxima around x = 2.6 becomes the minimum

for the semi-infinite plate. Since the radius of the plates is very small, unlike the

semi-infinite plates, the interference effects between the top and bottom interface of

the plates become unimportant in determining Qb.

To quantify the error of using the semi-infinite results to approximate the backscat-

tering efficiency (Qb), we defined a quantityQerror by comparing the value of the max-

ima between the finite and semi-infinite plates: Qerror = |(Qb,max−Rmax)/(Qb,max +

Rmax)|, where Qb,max is the maximum backscattering efficiency for the finite plates

and Rmax is the maximum reflectance for the semi-infinite plates. A smaller Qerror

means less difference between the maxima of these two kinds of plates, and, as ob-
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Figure 5.12: Backscattering efficiency Qb versus size parameter x = 2πd/λ of the
plate thickness at different aspect ratios under normal incidence. The reflection for
semi-infinite plates is indicated by solid red lines. (a) Results for a single-layer plate.
Each curve is successively moved upward by 0.05. Maximum reflection of the semi-
infinite plates is 0.033 at x = 1.3 and 3.9. (b) Results for 5-layer plate. Each curve
is successively moved upward by 1.0. Maximum reflection of the semi-infinite plates
is 0.52 at x = 1.3 and 3.9. The step for the size parameter in the calculation is 0.1.
Vertical dashed lines are for the interference maxima with size parameter x = 1.3,
2.6, and 3.9.
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served from Figure 5.12, when the maxima are close, the wavelengths for the locations

of those maxima are also close to each other. We choose a Qerror of less than 10%

as an acceptable criterion to use the semi-infinite approximation. Therefore, from

Figure 5.12, for single-layer plates, the aspect ratio must be larger than 4, and for

a 5-layer plate, the aspect ratio must be larger than 8. A larger layer number re-

quires a larger aspect ratio. With an aspect ratio a = 10, for a single-layer plate,

Rmax = 0.033 at both x = 1.3 and 3.9, Qb,max = 0.035 at x = 1.4, and Qerror = 4%;

for a 5-layer plate, Rmax = 0.52 at both x = 1.3 and 3.9, Qb,max = 0.60 at x = 4.0,

and Qerror = 7%. At this aspect ratio, both the single-layer plate and the 5-layer

plate have Qerror < 10% and, therefore, to further study the dependency of backscat-

tering efficiency on the incident angles we use a = 10 for both the single and 5-layer

plates.

The angular dependence of the backscattering efficiency (Qb) can be used to study

the response of different incident polarizations on the small plates backscattering.

The results are shown in Figure 5.13 and Figure 5.14, for angle intervals of 10◦ and

an aspect ratio of 10 for both perpendicular and parallel polarization states. To

have Qerror ≤ 10% for the single-layer plate, we need an incident angle β ≤ 30◦ for a

parallel polarized component, and β ≤ 50◦ for a perpendicular component. However,

for the 5-layer plate to have the same Qerror ≤ 10%, we need β ≤ 10◦ for both

polarizations due to the large fraction of edge compared to the total projected area.

Therefore, the perpendicular component provides a better approximation compared

with the parallel polarized component for both the single-layer and 5-layer results.

The reflectance of semi-infinite plates approaches unity for all size parameters as the

incident angle approaches 90◦. Since the light is incident directly on the edges of

the plates, the backscattering efficiencies is completely different from the reflection,

and we cannot use the reflection of semi-infinite plates to approximate Qb for large
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Figure 5.13: Same as Figure 5.12 but for a single-layer plate with an aspect ratio 10
and varying incident angles β. Incident light is polarized in (a) parallel direction and
(b) perpendicular direction relative to the principal plane. Each curve is successively
moved upward by 0.1. All results are plotted on a linear scale except forβ = 70◦,
80◦, and 90◦ which are plotted on a log scale.
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Figure 5.14: Same as Figure 5.13 but for a five-layer plate. Each curve is successively
moved upward by 1.0.
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incident angles.

The semi-infinite plates will respond differently to different incident polarization

states; the reflectance of the parallel-polarized incident light will vanish at the Brew-

ster angle, leaving the reflected light totally polarized in the direction perpendicular

to the principal plane. As shown in Figure 5.13 and Figure 5.14, we found similar be-

haviors for both the single and 5-layer finite size plates. We compared the maximum

reflectance for each incident angle, and found the minimum value for single-layer

plates to be 0.013 and for 5-layer plates to be 0.06, and both to occur at β = 40◦.

The angle is smaller than the Brewster angle of 50.2◦ for the relative refractive in-

dex nr = 1.2. Moreover, these two values are 37% and 10% of their corresponding

maximum Qb at normal incidence, while for the semi-infinite plates the value of the

minimum reflectance of the parallel polarized light will be zero at the Brewster angle.

This constitutes another prominent difference between finite and semi-infinite plates.

5.1.5 Extinction Matrix of an Iridosome

After we understand the angular distribution of the polarized scattered light. We

need to understand the transmission properties of iridosomes; this is described by the

extinction cross section. As we discussed in Section 2, the extinction cross section

for a non-spherical particle would depend on the incident polarization states, and

we have to use a 4 × 4 extinction matrix to describe it. The extinction matrix can

be related with the transmission properties through a generalized Bouguer-Lambert-

Beer law (Section 4, Eq. 4.24).

Generally, the extinction matrix is a function of the incident wavelength and iri-

dosome orientation. For a spherical particle or the particle with random orientations,

the extinction matrix reduces to a diagonal matrix, specified solely by the extinction

cross section, Cext, for the unpolarized incident light. For non-spherical particles,
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there are two other important elements: Cpol and Ccpol; we will discuss their physical

meanings in what is to follow. In this section, we will also compare the extinction

efficiency matrix Q (with three corresponding elements Qext, Qpol and Qcpol with

the semi-infinite plates for various incident angles. And we will show for large as-

pect ratio iridosomes, their extinction matrix is very close to the semi-infinite plates.

Therefore the results for semi-infinite plates can be used to efficiently estimate the

extinction matrix for finite size plates.

Cpol describe the cross section different between parallel and perpendicular direc-

tion (Section 2). The corresponding extinction cross sections for the incident light

polarized along these parallel(l̂) and perpendicular directions(r̂) are:

Cl = Cext + Cpol, Cr = Cext − Cpol. (5.5)

Ccpol describes the birefringent effect of the scattering by iridosomes. It introduces

a phase difference between the parallel and perpendicular component of the electric

field, φl − φr = −τcpol. Because of this, the circular polarized light field can be

generated through the non-zero U component of the incident Stokes vector, and the

relative amplitude between U and V components will oscillate with the increase of

path length. Meanwhile, both the U and V components will become unimportant

compared with the I and Q components of the forward transmitted light field at

large path lengths, as can be seen from Eq. 4.24 in Section 4.

The forward scattering amplitude matrix of a single layer cylindrical plate is

calculated using the DDA method as discussed in Section 3. After obtaining these

matrices, we use Eq.2.37 to calculate the extinction matrices. The extinction effi-

ciency matrix can thus be determined by dividing the projected geometric area, as

shown in Figure 5.10. The three independent elements, Qext, Qpol and Qcpol for the
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Figure 5.15: Elements of extinction matrix with various incident angles and wave-
lengths for 5 layer iridosome with aspect ratio a = 10 and one layer thickness
d = 100nm; refractive index nr = 1.2 (size parameter x = 1.3).
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Figure 5.16: (a) Qext vs size parameters x with different aspect ratios a = 1, 2, 4, 6,
8, 10, 20 and 40 at incident angle β = 0◦. The results with a = 4, 6, 8, 10, 20 and
40 are almost identical with the theoretical results. The red solid line is the results
of semi-infinite plates at normal incidence. (b) Qext vs size parameters x at different
incident angles from β = 0◦ to 70◦ with aspect ratio a = 40. The red solid line is for
the results of semi-infinite plates with the same range of incident angles. (c) same
as (b) but for Qpol. (d) same as (b) but forQcpol.

same 5 layer iridosomes with aspect ratio a = 10 as discussed in the last section are

shown in Figure 5.15. In our studies, we find both the Cpol and Ccpol are important

at some angle-wavelength range—they can be as high as 20% relative to Cext, and

can’t be simply neglected.

To understand how the extinction matrix elements various with the aspect ratio

a = D/d we chose a series of aspect ratios a = 1, 2, 4, 6, 8, 10, 20, 40 to determine

its influence, and when the finite plates can have a similar extinction matrix as the

semi-infinite plates. The range of the size parameter is chosen in the same way as in
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the last section where x varies from 0.1 to 5. From our results, the finite system with

large aspect ratios can indeed be understood from the results of the semi-infinite

plates, and the extinction is determined solely by the generalized optical theorem in

Section 2.

The incident angle β is relative to the axis of the plates (Figure 5.1). The results

for β ≤ 70◦ are shown in Figure 5.16. For larger incident angles, the extinction

matrices deviates more and more from the semi-infinite results as denoted by the solid

red lines. The analytical results for β = 0 is calculated by using Eq. 2.53 in Section

2, which are almost the same as the results produced by the finites plates. We can

see Qext is smaller than the semi-infinite results for relatively larger size parameters.

For both Qpol and Qcpol, small incident angles produce excellent agreement between

the finite and semi-infinite plates. When incident angle increases, such as up to 60◦

and 70◦, comparing the results with a = 20 and a = 40, the results a=40 has more

oscillations but smaller variations around the analytical results for the semi-infinite

results.

When the aspect ratio a ≤ 4, the extinction efficiency is close to the results of

the semi-infinite plates shown by the red solid line at normal incidence β = 0◦. As

shown by Figure 5.16 (a), the extinction efficiency results for a = 4, 6, 8, 10, 20, 40

overlap to each other. Qpol and Qcpol are always zero for normal incident light.

The dependency of the extinction on the incident angles is shown in Figures 5.16

(b),(c), and (d). For the plates with aspect ratio a = 40, the extinction efficiency

as shown in Figure 5.16 (b) shows the semi-infinite results are almost indentical for

incident angles up to 40◦. When the incident angle increase even up to 70◦, the

semi-infinite results are still close to the finite plates results. Similarly, for polarized

and circular polarized extinction efficiency as shown in Figures 5.16 (c) and (d), the

results of semi-infinite plates remain a good approximation for incident angles up to
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Figure 5.17: Orientation distributions of a collection of iridosomes: (a) random
orientations, and (b) vertical orientations.

40◦. When the angles keep increasing, the results of finite plates start to oscillate

around the semi-infinite results with larger and larger amplitudes.

The DDA results are based on the spherical wave formalism as shown in Section 3.

The agreement with the simulation and the analytical results proves the resemblance

between the plane wave formalism and the spherical wave formalism for thin plates

in calculating the extinction efficiency matrix.

5.1.6 Diffuse Reflection of Iridophores

Here we present our modeling for the skin layers with iridophores, which are

modeled as a collection of iridosomes. The skin layer thickness, and iridosome size

and number density were retrieved from the electron micrograph of Octopus vulgaris

as shown in Figure 1.1. The thickness is about 10µm and the number density of the

iridosomes is around 1/µm3. To solve the light scattering in such a system, we need

the single scattering properties of one iridosome; the same structure of the 5 layer

iridosomes are used as in the previous sections.

Since the iridosome layer is very complex, so we will try to approximate the system

between two limits: a uniform layer with random orientated iridosome (Figure 5.17

(a)), and the layer with iridosome oriented in a vertical direction (Figure 5.17 (b)).

The multiple scattering modeling of these two distributions are also discussed in

Section 4.

For the random orientations, the scattering coefficients are obtained by multiply-
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Figure 5.18: The diffuse reflection vs. incident wavelength (in vacuum) of an iri-
dophore system for (a) random orientations, and (b) vertical orientations.

ing the scattering cross section by the numder density of iridosome (1/µm3). For the

incident angle at 0◦ and 30◦, we get similar reflection spectra, and similar peak lo-

cations, as shown in Figure 5.18(a). For both incident angles, the diffuse reflectance

spectra are similar to each other. Therefore, for a randomly oriented system both

the intensity and color can remain stable with respect to the incident angle.

For the system with a fixed orientation, the scattering coefficients and reflection

spectra all depend on the relative angle between the photon direction and the iri-

dosome orientation. In the Monte Carlo simulation, for each scattering event, we

should select the proper phase function and the scattering coefficient depending on

the direction of the photons relative to the iridsome. As shown in Figure 5.18 (b),

the maximum reflectance shifted to shorter wavelength when incident angle increases;

the color is green at β = 0◦, and becomes bluer at β = 30◦.

The considerations of the dependency of the extinction cross section on both the

incident direction and polarization state are necessary to give accurate Monte Carlo

simulations for fixed orientation particles. The diffuse reflection spectrum of a layer

of iridosomes is found to depend on the incident direction (Figure 5.18 (b)), thus can

be used to predict the color appearance of the animal. The Monte Carlo method can
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enable us to calculate iridosome’s optical response with arbitrary orientation distri-

butions. For the real system, the orientation distribution could be a combination of

random and fixed orientations. And there are many other complexities, like the size

distribution, shape variance and so on, they will be discussed in our future work.

5.2 Scattering Properties of Leucophores

The white leucophore cell is usually located as the bottom layer of the skin of

cephalopods, and it contains numerous transparent granules (leucosomes) with high

refractive index [2]. As a good diffuse reflector, it plays a central role in matching the

environment intensity through its high reflectivity. It provides a perfect background

for the octopus to “paint” colors through the chromatophores and iridophores above

it. They are observed in measurement as a broadband reflector with Lambertian

reflection and no polarization components.

In our model, the leucophore is treated as a collection of solid spheres. From

the electron micrograph of Octopus vulgaris as shown in Figure 1.1, the average

diameter is estimated as 0.5µm (with a standard deviation 0.05µm) is used. For

different species or different body locations on one species, the size of the leucosome

is not necessarily the same, but normally they are on the order of 1µm, which enables

them to maintain a similar optical appearance. The measurement of the refractive

index is not currently available, thus the values from 1.1 to 1.4 relative to water

(1.33) are chosen to study the sensitivity of the results. The total thickness of the

system is chosen as 3µm, and the estimated number density is around 3/µm3, as

shown in Figure 5.19. Both these parameters are retrieved from the same electron

micrograph to guarantee consistency.

The Lorenz-Mie theory (Section 3) is used to obtain the single scattering Mueller

matrix and the extinction cross section. The discussion on the single scattering
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Figure 5.19: A 3d model for a leucophore with number density 3/µm3 and particle
diameter 0.5µm (a) and the corresponding cross sections (b) through different vertical
planes. Through the comparison of these cross sections with the electron micrograph,
it can be estimated that iridosomes have a similar number density as around 3/µm3.

properties of a sphere can be found in [17, 16]. Using these results as input, the

multiple scattering simulations are conducted by using the Monte Carlo method for

randomly oriented particles as discussed in Section 4. The whole system is modeled

as a semi-infinite plate with a finite thickness filled with leucosomes. The effective

Mueller matrix (for the reflection of the whole system) for different wavelengths,

refractive indices, and scattering angles will be calculated.

The diffuse reflectance (irradiance), the angular reflectance (radiance) and the

degree of polarization (DOP =
√
Q2 + U2 + V 2/I) are calculated and shown in Fig-

ures 5.20, 5.21, 5.22 and 5.23 respectively. In our Monte Carlo method, as discussed

in Section 4, we can study the contribution to the reflection with different orders of

scatterings. And we will compare the all orders of scattering results with the results

with only the first order of scattering. As shown in Figure 5.20, the reflectance from

the first order of scattering is much smaller than the all order of scatterings. This

means a leucophore is a strong multiple scattering system, and most of the photons

from the incident light will undergo many scatterings before emergence. We cannot

use the first order of scattering approximation to estimate the reflectance.
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Figure 5.20: Diffuse reflection of the leucophore system for (a) all orders of scatter-
ings, and (b) only the first order of scattering.

Figure 5.21: (a) Color coordinates for the leucophore reflection spectrum. CIE D50
and D65 denote two standard white light. (b) An enlarged graph near the center of
(a).
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Figure 5.22: Angular reflectance(radiance) for all orders of scatterings (a) and for
the first order of scatterings (b), and nr = 1.4.

Although the refractive index is unknown, however, from the reflectance spec-

trum in Figure 5.20 (a), all of them can produce white reflectance—the reflectance

spectrum is quite flat, with a variation less than 20% over the whole visual spec-

trum. (Note the wavelength here is defined in vacuum.) We calculated the color

coordinates of the modeled reflectance spectrum in Figure 5.21 [57], and all of them

are located at the center close to the CIE standard white light [58]. CIE D50 repre-

sents horizontal daylight, and D65 represents noon daylight. The change of refractive

index will mainly change the overall reflectance but not the spectrum. When the

observed reflectance is available, we can compare it with our simulated reflectance

and determine the refractive index of the leucosome.

The angular reflectance and degree of polarization for nr = 1.4 are shown in

Figure 5.22 (a) and Figure 5.23 (b). The angular distributions are with respect

to the scattering angles where 180◦ denotes backscattering, and 0◦ denotes forward

scattering. The angular reflectance represents the radiance distribution with the

incident beam having an irradiance of unity. Therefore, its angular integral can give

the total reflection for irradiance as shown in Figure 5.20. It almost has an an equal

reflection over a wide range of angles from 120◦ to 180◦. This shows that leucophore
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Figure 5.23: Degree of polarization(DOP) for all orders of scatterings (a) and for the
first order of scatterings (b), and nr = 1.4.

is a good Lambertian surface except for scattering angles close to the horizon. Over

the whole backscattering range from θs = 90◦ to 180◦, the degree of polarization

remains negligible.

However, from the comparison with the results for the first order of scatterings

as shown in Figure 5.22 (b) and Figure 5.23, neither effects can be produced without

multiple scatterings. Therefore, We have shown the three key features of a leucophore

system: white, Lambertian, and no polarization, and the importance of the multiple

scattering to produce them.
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6. CONCLUSIONS

As an effort to understand the physics of the structural colors of cephalopods, we

have summarized the numerical methods and provided the ab inio numerical studies

of both leucophores and iridophores. The single scattering properties for the individ-

ual structure inside of both cells are obtained through the Mie theory and the DDA

method. Many of the distinct optical properties are obtained for small structures.

Through the Monte Carlo simulation on the multiple scattering properties, the ef-

fective Mueller matrices for the cells are obtained, and the reflectance spectrum is

discussed.

In Section 2, 3 and 4, we have summarized the concepts and the numerical meth-

ods used to study both iridophores and leucophores, and therefore provide the frame-

work to study the structural color of cephalopods. The single scattering methods

discussed in Section 3 can be used to study the scattering properties of a single

scatterer, and can also be extended to study other shapes. Through these methods

we can obtain the scattering Mueller matrix and all other necessary results for the

multiple scattering simulations as discussed in Section 4.

In Section 5, we studied the backscattering properties of small layered plates as

a model for iridosomes, including the Mueller matrix, phase function, backscattering

efficiency, and extinction matrix. We compared the Mueller matrix for a layered

iridosome with that of a solid cylinder, and observed distinct features for the irido-

somes which were lacking for the solid cylinder. We also shown that the Mueller

matrix imaging can be useful to classify iridosomes with different size, shape and

inner structure. The criteria for using the reflection of the semi-infinite plate to ap-

proximate the backscattering efficiency of small plates are discussed with respect to
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the aspect ratio, number of layers, and incident angle. For plates with small aspect

ratios and large incident angles, the scattering properties must be calculated beyond

the semi-infinite approximation. Furthermore, the backscattering efficiency can be

used to estimate the diffuse reflectance of a random system, and therefore, suggest

its optical appearance.

Further in Section 5, from our Monte Carlo simulations, we have shown for iri-

dophores, the orientations of iridosomes are important for them to produce a proper

reflectance spectrum. With randomly oriented iridosomes, their reflectance spectrum

are stable relative to different incident directions; but with fixed oriented iridosomes,

different incident angles will produce different colors. For leucophores, since leuco-

somes are small spheres, there is no orientation effect. From our numerical results,

we confirmed that leucophores can produce white Lambertian reflectance through

multiple scattering. Through a further investigation on the contribution of different

orders of scattering, the first order of scattering is not sufficient to produce any of

these effects on leucophores.

We have worked on the structural data retrieved from the electron micrographs in

the literature, but there is no corresponding reflectance measurement results we can

compare with. Recently, we have started to collaborate with the Marine Biological

Laboratory (MBL) at Woods Hole, Massachusetts, and to work on more accurate

cell morphology data. Using the numerical methods provided in this work, we can

compare our simulation results with the measured reflectance, and have obtained

consistent results. These numerical approaches have proved to be useful in providing

insights on the physics of the scattering process for both leucophores and iridophores.

Many more systems will be studied following the approaches provided in this work.
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