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ABSTRACT

Wireless sensor networks (WSNs) consist of a large number of sensor nodes, ca-

pable of on-board sensing and data processing, that are employed to observe some

phenomenon of interest. With their desirable properties of flexible deployment, re-

sistance to harsh environment and lower implementation cost, WSNs envisage a

plethora of applications in diverse areas such as industrial process control, battle-

field surveillance, health monitoring, and target localization and tracking. Much of

the sensing and communication paradigm in WSNs involves ensuring power efficient

transmission and finding scalable algorithms that can deliver the desired performance

objectives while minimizing overall energy utilization. Since power is primarily con-

sumed in radio transmissions delivering timing information, clock synchronization

represents an indispensable requirement to boost network lifetime. This dissertation

focuses on deriving efficient estimators and performance bounds for the clock param-

eters in a classical frequentist inference approach as well as in a Bayesian estimation

framework.

A unified approach to the maximum likelihood (ML) estimation of clock offset

is presented for different network delay distributions. This constitutes an analytical

alternative to prior works which rely on a graphical maximization of the likelihood

function. In order to capture the imperfections in node oscillators, which may render

a time-varying nature to the clock offset, a novel Bayesian approach to the clock

offset estimation is proposed by using factor graphs. Message passing using the

max-product algorithm yields an exact expression for the Bayesian inference problem.

This extends the current literature to cases where the clock offset is not deterministic,

but is in fact a random process.
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A natural extension of pairwise synchronization is to develop algorithms for the

more challenging case of network-wide synchronization. Assuming exponentially dis-

tributed random delays, a network-wide clock synchronization algorithm is proposed

using a factor graph representation of the network. Message passing using the max-

product algorithm is adopted to derive the update rules for the proposed iterative

procedure. A closed form solution is obtained for each node’s belief about its clock

offset at each iteration.

Identifying the close connections between the problems of node localization and

clock synchronization, we also address in this dissertation the problem of joint es-

timation of an unknown node’s location and clock parameters by incorporating the

effect of imperfections in node oscillators. In order to alleviate the computational

complexity associated with the optimal maximum a-posteriori estimator, two iter-

ative approaches are proposed as simpler alternatives. The first approach utilizes

an Expectation-Maximization (EM) based algorithm which iteratively estimates the

clock parameters and the location of the unknown node. The EM algorithm is

further simplified by a non-linear processing of the data to obtain a closed form solu-

tion of the location estimation problem using the least squares (LS) approach. The

performance of the estimation algorithms is benchmarked by deriving the Hybrid

Cramér-Rao lower bound (HCRB) on the mean square error (MSE) of the estima-

tors.

We also derive theoretical lower bounds on the MSE of an estimator in a classical

frequentist inference approach as well as in a Bayesian estimation framework when

the likelihood function is an arbitrary member of the exponential family. The lower

bounds not only serve to compare various estimators in our work, but can also be

useful in their own right in parameter estimation theory.
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1. INTRODUCTION

The fundamental problem of communication is that of reproducing at one point

either exactly or approximately a message selected at another point.

-Claude E. Shannon.

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) comprise a large number of inexpensive devices

that are deployed for observing and initial processing of physical or environmental

changes taking place in their vicinity. An on-board sensing equipment enables the

sensors to summarize the useful information to be transmitted to a distant fusion

center (FC), resulting in reduced communication requirements. The FC then ag-

gregates this data to infer the desired information. In addition, these sensor nodes

can also collaborate to accomplish common tasks. Recent technology breakthroughs

in micro-electro-mechanical systems (MEMS) have enabled successful deployment of

large scale WSNs. With their desirable properties of self-organization and meaning-

ful data preprocessing, WSNs are expected to play a pivotal role in future wireless

communications. A typical sensor network is depicted in Fig. 1.1.

WSNs offer several applications in numerous fields. Some of the target applica-

tions identified for WSNs are as follows [9].

1. Health care:

Sensor networks can be useful in monitoring patients’ health, drug administra-

tion in hospitals and keeping track of physiological changes in living organisms.
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A Wireless Sensor 

Network

Source
Sensor Node

Destination

Sink Node

Internet

User

Figure 1.1: A typical wireless sensor network

2. Battlefield Surveillance:

Sensor nodes can be deployed in harsh terrains and challenging environmental

conditions to keep an eye on enemy movements. Their ability to summarize

and transmit useful data can assist military authorities in drawing effective

contingency plans.

3. Industrial Process Control:

A typical application of WSNs is in monitoring the physical changes taking

place in an industrial process. For instance, a sensor network can be deployed

to sense the temperature and pressure of a particular chemical reaction.

4. Target Tracking:

WSNs can also be deployed to observe and sense the movement of a target in
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their vicinity. These observations are then used at the sink nodes to track the

target.

While there are several attractive features of WSNs, deploying a sensor network

to perform designated tasks prompts numerous design challenges. The scarcity of

the energy resources available at a sensor perhaps accounts for the most stringent

constraint. The sensor nodes are generally equipped with meagre power resources and

often have to operate in harsh and unfriendly environmental conditions which render

battery replacement impractical. Hence, it becomes extremely critical to use power

efficiently to prolong the lifetime of sensors. Much of the sensing and communication

paradigm in WSNs involves ensuring power efficient transmission and finding scalable

algorithms that can deliver the desired performance objectives while minimizing the

overall energy utilization. Since power is primarily consumed in radio transmissions

delivering timing information [50], the network lifetime can be boosted by a careful

management of the sleep and wake periods. Therefore, synchronization represents a

fundamental requirement in WSN operation.

1.2 Clock Synchronization in Wireless Sensor Networks

Clock synchronization pertains to establishing a common notion of time across

the whole network. A network remains synchronized as long as the clocks available at

all the sensor nodes have the same offset and their frequency sources run at the same

rate. However, practical sensors with cheap oscillators can drift apart seconds per

day due to many factors such as manufacturing errors, environmental degradations

and aging. This results in sensor nodes losing the notion of a common time scale and

produces an adverse impact on power utilization. Efficient techniques for maintaining

clock synchronization can lower the re-synchronization requests, which, in turn, can

translate to significant energy savings. Clock synchronization has a direct impact on

3



several important WSN operations as described below [58].

1. Optimal Data Fusion:

Sensor nodes are often used to deliver a summary of their observations to FC

where this data is aggregated to infer meaningful information. Clock synchro-

nization is mandatory to ensure optimal fusion of data coming from different

sensors.

2. Efficient Duty Cycling:

Clock synchronization can save energy resources by ensuring a coordinated

wake and sleep operation for sensor nodes. In this way, a node activates its

radio receiver only when it has to participate in the network activity, while

turns it off otherwise.

3. Channel Access Schemes:

Deterministic channel access is based on a firm time agreement between nodes,

so that techniques such as time-division-multiple-access (TDMA) and frequency-

division-multiple-access (FDMA) can be successfully applied.

4. Target Localization and Tracking:

Target localization and tracking are other applications of WSNs in which clock

synchronization is mandatory in order to obtain relevant results.

Clock synchronization has been actively studied over the past several years. Differ-

ent data exchange protocols with varying degrees of accuracy and simplicity have

been proposed that aim to synchronize clocks in a network. Data exchange proto-

cols require the sensor nodes to exchange their timing information with each other

and with the reference nodes. An excellent survey of the prevalent synchronization

protocols is presented in [58]. Two common clock models that relate the clock at a

4



CX(t)

t

α = 1
Ideal

α > 1

α < 1

β

Figure 1.2: Ideal and non-ideal clocks with respect to the reference time t.

particular node X to the reference time t are as follows.

Offset-only Model:

CX(t) = t + β ,

Offset and Skew Model:

CX(t) = αt+ β ,

where α and β, referred to as the clock parameters, denote the clock skew and clock

offset, respectively. The relationship between the ideal and non-ideal clocks with the

reference time t is depicted in Fig. 1.2. An ideal clock has α = 1 and β = 0, and

runs at the same rate as the time t. In practice however, the clocks exhibit non-ideal

behavior due to the factors mentioned above, so that α and β no longer assume ideal

values.

The offset and skew model extends the simpler offset-only model to include the

effects of skew, which is the difference in the frequencies of the clock at node X

and the perfect clock. The inclusion of skew helps to achieve greater accuracy and

also results in a significant reduction of re-synchronization requests. Much of the

5



literature on clock synchronization algorithms aims to obtain reliable estimates of

the clock parameters so that their effects can be compensated and a node can be

synchronized to the network. This dissertation studies both the aforementioned

models for the purpose of clock synchronization.

The earlier approaches to clock synchronization presented data exchange proto-

cols that can be used for communication among sensor nodes. The clock synchro-

nization problem in a WSN offers a natural statistical signal processing framework.

In this dissertation, our emphasis is mostly on using tools from parameter estimation

theory to achieve clock synchronization by estimating the clock parameters. A com-

prehensive review of the prevalent statistical approaches for clock synchronization is

presented below.

1.3 Related Work

A survey of the popular approaches employed for timing synchronization is pre-

sented in [58] and [53]. The one-way message exchange mechanism involves a ref-

erence node broadcasting its timing information to other nodes in a network. The

receiver nodes record the arrival of these messages with respect to their own clock.

After exchanging several time stamps, the nodes estimate their offsets based on

these observations. A particular case is the flooding time synchronization protocol

(FTSP) [40] which uses regression to estimate the clock offset. On the other hand,

through a two-way timing exchange process, adjacent nodes aim to achieve pairwise

synchronization by communicating their timing information with each other. After

a round of N messages, each node estimates its own clock parameters. The timing-

sync protocol for sensor networks (TPSNs) [36] uses this strategy in two phases to

synchronize clocks in a network. The level discovery phase involves a spanning tree

based representation of a WSN while nodes attempt to synchronize with their im-

6



mediate parents using a two-way message exchange process in the synchronization

phase. In receiver-receiver synchronization, nodes collect time stamps sent from a

common broadcasting node and utilize them to adjust their clocks. The reference

broadcast synchronization (RBS) protocol [21] uses reference beacons sent from a

master node to establish a common notion of time across a network. This can have

an appreciable impact on saving power resources at a sensor node.

The two-way message exchange process, used in most of the synchronization

protocols, involves a pair of nodes aiming to estimate their clock parameters by

exchanging their timing information with each other [1]. There is an extensive lit-

erature that makes use of this data exchange process in order to derive expressions

for clock offset and skew estimators. A critical component of the clock synchroniza-

tion problem, which has received widespread interest in recent years, is the accurate

modeling of the random network delays that contaminate the data exchange process.

By considering the clock offset as the cause of time disagreement between sensors,

and assuming exponentially distributed network delays, [30] reported the maximum

likelihood estimator (MLE) for the clock offset while an earlier study [1] stated the

non-uniqueness of the MLE when both the mean of the random delays and the fixed

portion of the overall delay are known [11]. The expressions for both the best linear

unbiased estimator using order statistics (BLUE-OS, [31]) and the minimum variance

unbiased estimator (MVUE, [31]) are derived in [16] under the assumptions of asym-

metric exponentially distributed delays between uplink and downlink. By recasting

the clock parameter estimation problem as a linear program, joint ML estimators

of clock offset and skew have been proposed in [39] for exponentially distributed

network delays. The Gaussian distribution is assumed in [45] and [37] to jointly

estimate the clock offset and skew for known and unknown propagation delay, re-

spectively. A more general assumption is considered in [33,34], where the authors use
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the Gaussian mixture Kalman particle filter to cope with the presence of a general

delay model represented as a mixture of several distributions. Assuming the random

delays to be Gaussian, the two-way data exchange has also been considered for de-

signing clock synchronization algorithms in underwater acoustic networks [66]. The

achievable synchronization performance for a two-way message exchange has been

studied in [56] by deriving Cramér-Rao bounds. In general, the set of candidate

distributions for modeling the network delays includes the Gaussian, exponential,

Gamma [11] and Weibull distributions [3].

A natural extension of pairwise synchronization is to design algorithms for syn-

chronizing sensor nodes across the whole network. Based on clock offset estimates,

the authors in [10] proposed iterative distributed algorithms for establishing network-

wide clock synchronization. A network-wide clock synchronization algorithm is pro-

posed in [57] assuming both clock offset and fixed skew affecting the running behavior

of the oscillators. The main novelty of the aforementioned work resides in exploit-

ing the natural network constraint that the relative clock offsets in network loops

sum to zero. A statistical analysis of the algorithm proposed in [57] is performed

in [27]. The authors in [22] proposed a synchronization algorithm by assuming no

initial clock offsets but time-varying skews among the oscillators in the network. The

proposed algorithm therein aims at synchronization by estimating the logarithm of

the clock skews, starting from measurements affected by Gaussian noise. Extending

the results to a multi-hop sensor network, a distributed heuristic algorithm is pre-

sented in [17] which uses pairwise broadcast synchronization (PBS) for network-wide

synchronization.

An alternative framework for network-wide distributed clock synchronization con-

sists of recasting the problem of agreement on oscillation phases and/or frequencies

as a consensus based recursive model in which only local message passing is re-
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quired among nodes. By assuming a connected network, it is possible to design

efficient distributed algorithms by carefully choosing the update function. Under

this framework, [55] proposed a Laplacian-based algorithm for establishing agree-

ment on oscillation frequencies all over the network based on standard consensus. A

combined agreement over both clock phases and frequencies has been studied in [65],

by making use of state-of-the-art fast consensus techniques. Scalable synchroniza-

tion algorithms for large sensor networks are developed in [28] and [46] inspired

by mathematical biology models justifying synchrony in the biological agents. The

convergence of distributed consensus time synchronization algorithms is investigated

in [63] assuming a Gaussian delay between sensor nodes.

More recently, there has been a focus on the application of graphical models

and message passing to the clock synchronization problem. Both sum-product [38]

and max-product [7] algorithms have been used in designing clock synchronization

algorithms and for clock offset estimation purposes, respectively. Assuming Gaussian

distributed network delays, the authors in [38] proposed the use of the sum-product

algorithm in order to design a network-wide clock synchronization method, where

clock offset is the only cause of time disagreement between sensors (i.e., no skew).

Node localization is an important aspect of several WSN applications that require

location-awareness such as geographical routing, disaster rescue, etc., [23, 24, 44].

There is an extensive literature on location estimation algorithms in WSNs [47, 54].

In general, the range-based localization algorithms utilize the metrics of time of ar-

rival (TOA) [18], time difference of arrival (TDOA) [29] and received signal strength

(RSS) to determine the distance between the unknown node and the anchors. These

distance-based measurements are then used for node localization. Distributed loca-

tion estimation algorithms have also been studied for cooperative and passive sensors

using the above mentioned metrics [25]. Using a hybrid TOA and TDOA approach,
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positioning of multiple target nodes in a cooperative wireless network has been pro-

posed in [26].

Since TOA and TDOA are time-based techniques, synchronization is an impor-

tant prerequisite in node localization as well [49]. The close connection between

the problems of localization and synchronization necessitates a joint estimation ap-

proach. Based on the two-way ranging protocol in IEEE 802.15.4a, a joint localiza-

tion and synchronization algorithm was proposed in [20] using TOA measurements.

Recently, several contributions have studied joint localization and synchronization

from a statistical signal processing viewpoint. Optimal and sub-optimal algorithms

for estimating an unknown node’s position and clock parameters were derived in [67].

The performance of the estimation algorithms developed therein was also compared

with the Cramér-Rao lower bound (CRB). A weighted least squares approach for

joint estimation is devised in [68]. Robust algorithms for joint estimation that are

resistant to target node’s uncertainties were proposed in [62].

1.4 Main Contributions of this Research

Our main contributions in this research are as follows.

• In Section 2, a unified framework for ML estimation of clock offset is presented

when the likelihood function of the observations is Gaussian, exponential or

log-normally distributed [6]. The proposed framework recovers the already

known results for Gaussian and exponentially distributed network delays and

determines the ML estimate in case of log-normal distribution. Hence, the pro-

posed analytical approach represents a simpler alternative, and a more general

derivation of ML estimator, which bypasses the graphical analysis used in [30]

to maximize the likelihood function.

• Since sensor nodes are often deployed in harsh environmental conditions, degra-
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dations arise in quartz crystals over time, introducing temporal variations in

clock parameters. In order to capture these time variations, a Bayesian frame-

work is presented by considering the clock offset as a random Gauss-Markov

process. Bayesian inference is performed using factor graphs and the max-

product algorithm. A novel message passing strategy yields an exact solution

for Gaussian, exponential and log-normally distributed likelihood functions [6].

This extends the current literature to cases where the clock offset may not be

deterministic, but is in fact a random process. An extension of these results

to pairwise broadcast synchronization, where an inactive node synchronizes by

overhearing the communication between two active nodes is also discussed in

Appendix C.

• Section 3 focuses on extending the factor graph approach developed for pair-

wise synchronization in Section 2 to the more challenging case of network-wide

synchronization. Assuming exponentially distributed network delays, graphical

models in conjunction with message passing is used to design a network-wide

clock synchronization algorithm. Specifically, a factor graph representation of

the network is used to design the message exchange rules between sensors,

based on the max-product algorithm. This leads to an iterative update of

the belief, whose maximization gives rise to the expression for the clock offset

estimator. A simulation study is then performed to show that the proposed

algorithm converges in various network topologies of interest [64].

• The idea of time variations in clock parameters is introduced for joint node

localization and clock synchronization in Section 4. By incorporating these

temporal variations in the system model, a joint maximum a-posteriori (MAP)

estimation approach entails high computational load due to the need to in-
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vert large matrices. Since sensor nodes are inexpensive devices with limited

computational power, simpler alternatives are required. Towards this end, an

Expectation-Maximization (EM) based joint localization and time-varying syn-

chronization algorithm is proposed that iteratively determines the time-varying

clock parameters using a Kalman smoother followed by a likelihood maximiza-

tion of the location parameter. In order to alleviate the computational com-

plexity that comes with the two-dimensional likelihood optimization required

for localization, a linearization based least squares (LS) method is presented

which yields a closed form solution and is therefore, a simpler alternative to

the EM algorithm. Moreover, it is observed through numerical simulations

that the performance of the LS based location estimator is fairly close to the

EM algorithm for small to moderate measurement noise errors. Theoretical

lower bounds on the MSE of an estimator are obtained by deriving the Hy-

brid Cramér-Rao bound (HCRB) in our estimation framework. This helps to

compare the performance of the aforementioned estimators [4].

• The performance of an estimator can be gauged by comparing its mean square

error (MSE) performance with the theoretical lower bounds suggested by pa-

rameter estimation theory. In Section 5, we derive lower bounds on the MSE

of an estimator when the likelihood function is an arbitrary member of the ex-

ponential family of distributions in the classical frequentist inference approach

as well as in a Bayesian estimation framework [6]. Hence, these results are

fairly general and can be useful in their own right in parameter estimation

theory, and at the same time serve as a stepping stone towards comparing the

estimators derived in Section 2.
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2. PAIRWISE SYNCHRONIZATION: UNIFIED MAXIMUM LIKELIHOOD

AND BAYESIAN ESTIMATION∗

2.1 Introduction

The ML estimate of the clock offset in case of exponentially distributed network

delays was derived in [30] by using graphical arguments. The minimum variance

unbiased estimate (MVUE) of the clock offset was presented in [16]. Most of the

statistical approaches employed for clock synchronization assume fixed clock offsets.

However, degradations in quartz crystals in sensor nodes due to environmental effects

can give rise to temporal variations in clock parameters. In this section, a Bayesian

approach is proposed to accurately track the time-varying clock offset and keep the

sensor nodes synchronized for longer periods.

2.2 Main Contributions

The main contributions of this work can be summarized as follows.

1. A unified framework for ML estimation of clock offset is presented when the

likelihood function of the observations is Gaussian, exponential or log-normally

distributed. The resulting analytical approach represents a simpler alternative

which bypasses the complex graphical analysis used in [30] to maximize the

likelihood function.

2. A Bayesian solution to the time-varying clock offset estimation problem is

presented by using a factor graph representing the factorization of the global

probability density function.

∗Reprinted with permission from ”A factor graph approach to clock offset estimation in wireless
sensor networks,” Aitzaz Ahmad, Davide Zennaro, Erchin Serpedin, and Lorenzo Vangelista, 2012,
IEEE Transactions on Information Theory, vol. 58, no. 7, pg. 4244-4260, Copyright 2012 by IEEE.
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3. An exact solution to the Bayesian estimation problem is obtained using a novel

message passing strategy. This extends the current literature by incorporating

temporal variations that may arise over time in sensor nodes1.

2.3 System Model

The process of pairwise synchronization between two nodes S and R is illustrated

in Fig. 2.1. At the jth message exchange, node S sends the information about its

current time through a message including time stamp T 1
j . Upon receipt of this

message, node R records the reception time T 2
j according to its own time scale. The

two-way timing message exchange process is completed when node R replies with

a synchronization packet containing time stamps T 2
j and T 3

j , which is received at

time T 4
j by node S with respect to its own clock. After N such messages have

been exchanged between nodes S and R, node S is equipped with time stamps

{T 1
j , T

2
j , T

3
j , T

4
j }Nj=1. The impairments in the signaling mechanism occur due to a

fixed propagation delay, which accounts for the time required by the message to

travel through the transmission medium, and a variable network delay, that arises

due to queuing and other processing delays experienced by the messages during

transmission and reception [21]. By assuming that the respective clocks of nodes

S and R are related by CS(t) = β + CR(t), the two-way timing message exchange

model at the jth instant can be represented as

T 2
j = T 1

j + d+ β +Xj

T 4
j = T 3

j + d− β + Yj , (2.1)

1An extension of these results to pairwise broadcast synchronization where an inactive node syn-
chronizes by over hearing the time-stamps exchanged between active nodes is discussed in Appendix
C [2].
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S T 1

j

T 2

j

T 4

j
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j

d+ β +Xj d− β + Yj

Figure 2.1: A two-way timing message exchange mechanism

where d represents the propagation delay, assumed symmetric in both directions, and

β is the offset of the clock at node S relative to the clock at node R. Xj and Yj are

the independent and identically distributed variable network delays. By defining [1]

Uj
∆
= T 2

j − T 1
j , Vj

∆
= T 4

j − T 3
j ,

the system of equations in (2.1) can be equivalently expressed as

Uj = d+ β +Xj, Vj = d− β + Yj . (2.2)

By further defining

ξ
∆
= d+ β ψ

∆
= d− β , (2.3)

the model in (2.2) can be written as

Uj = ξ +Xj, Vj = ψ + Yj (2.4)

for j = 1, . . . , N . The goal is to determine precise estimates of ξ and ψ using

observations {Uj, Vj}Nj=1. An estimate of β can, in turn, be obtained using (2.3) as
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follows

β =
ξ − ψ

2
. (2.5)

Accurate modeling of the variable delays, Xj and Yj , has been a topic of interest

in recent years. Several distributions have been proposed that aim to capture the

random effects caused by the queuing delays [11]. These distributions include ex-

ponential, gamma, log-normal and Weibull. In addition, the authors in [37] argued

that Xj and Yj might result from contributions of numerous independent random

processes and can, therefore, be assumed Gaussian. The ML estimate of d and β for

the case of exponentially distributed network delay was determined in [30]. Recently,

the minimum variance unbiased estimate (MVUE) of the clock offset under an ex-

ponentially distributed network delay was proposed in [16]. In this work, instead of

working with a specific distribution, a general framework of the clock synchronization

problem is proposed that yields a parameterized solution of the clock offset estima-

tion problem in the classical frequentist inference approach as well in a Bayesian

estimation framework when the likelihood function of the observations, Uj and Vj,

is Gaussian, exponential or log-normally distributed.

In particular, the general notation used when the likelihood function of the ob-

servations U
∆
= [U1, . . . , UN ]

T and V
∆
= [V1, . . . , VN ]

T is Gaussian or log-normally

distributed is given below.

Unconstrained Likelihood:

f(U; ξ) ∝ exp

(

ξ

N
∑

j=1

ηξ(Uj)−Nφξ(ξ)

)

(2.6)

f(V;ψ) ∝ exp

(

ψ

N
∑

j=1

ηψ(Vj)−Nφψ(ψ)

)

, (2.7)

16



where ηξ(Uj) and ηψ(Vj) are sufficient statistics for estimating ξ and ψ, respectively.

The log-partition functions φξ(.) and φψ(.) serve as normalization factors so that

f(U; ξ) and f(V;ψ) are valid probability distributions. The likelihood function is

called ‘unconstrained’ since its domain is independent of the parameters ξ and ψ.

Similarly, the general notation used for an exponentially distributed likelihood

function is given below.

Constrained Likelihood:

f(U; ξ) ∝ exp

(

ξ
N
∑

j=1

ηξ(Uj)−Nφξ(ξ)

)

N
∏

j=1

I(Uj − ξ) (2.8)

f(V;ψ) ∝ exp

(

ψ

N
∑

j=1

ηψ(Vj)−Nφψ(ψ)

)

N
∏

j=1

I(Vj − ψ) , (2.9)

where I(.) is the indicator function and the roles of ηξ(Uj), ηψ(Vj), φξ(.) and φψ(.)

are similar to (2.6) and (2.7). The likelihood function is called constrained since its

domain depends on the parameters ξ and ψ. It must be noted that the likelihood

functions (2.6)-(2.9) are expressed in terms of general exponential family distribu-

tions. This approach helps to keep the exposition sufficiently general and also allows

us to recover the known results for the ML estimation of clock offset for Gaussian

and exponentially distributed likelihood functions [30] [45], and determine the ML

estimator of the clock offset in case of log-normally distributed likelihood function.

The proposed approach will also prove useful in investigating a unified novel frame-

work for clock offset estimation in the Bayesian setting for Gaussian, exponential or

log-normally distributed likelihood functions.

Some key ingredients of the proposed solution for the clock offset estimation

problem, based on the properties of exponential family, can be summarized as follows
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[61].

1. The mean and variance of the sufficient statistic ηξ(Uj) are expressed as

E [ηξ(Uj)] =
∂φξ(ξ)

∂ξ
(2.10)

σ2
ηξ

∆
= Var [ηξ(Uj)] =

∂2φξ(ξ)

∂ξ2
. (2.11)

2. The moment generating function (MGF) of the statistic ηξ(Uj) is given by

Mηξ(h) = exp (φξ(ξ + h)− φξ(ξ)) . (2.12)

3. The non-negativity of the variance σ2
ηξ

in (2.11) implies that the log-partition

function φξ(.) is convex.

4. For Gaussian, exponential and log-normally distributed likelihood functions,

the log-partition function φξ(ξ) can be expressed as a second degree polynomial

given by

φξ(ξ) = aξξ
2 . (2.13)

The coefficient aξ in this approximation can be obtained using the variance of

the statistic ηξ(Uj), which is assumed known. Using (2.11), aξ is given by

aξ =
σ2
ηξ

2
.

If the statistical moment in (2.11) is not available, the empirical moment can

be used.

Similar expressions can also be written for ηψ(Vj), Mηψ(h) and φψ(ψ), respectively.
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2.4 A Unified Maximum Likelihood Estimation Approach

In this section, the ML estimates of β are obtained analytically. This approach

differs from the graphical arguments used to maximize the likelihood in [30]. The

specific cases of unconstrained and constrained likelihood functions are considered

separately. Explicit expressions are provided for ξ only, since the analysis is analogous

for ψ.

2.4.1 Unconstrained Likelihood

Using (2.6) and (2.13), the unconstrained likelihood function for data set U is

given by

f(U; ξ) ∝ exp

(

ξ

N
∑

j=1

ηξ(Uj)−N
σ2
ηξ

2
ξ2

)

. (2.14)

The resulting ML estimate of ξ can be expressed as

ξ̂ML =

∑N
j=1 ηξ(Uj)

Nσ2
ηξ

. (2.15)

Invoking the invariance principle [31], the ML estimator β̂ML for the clock offset is

expressed as

β̂ML =
ξ̂ML − ψ̂ML

2
. (2.16)

2.4.1.1 Gaussian Distributed Likelihood Function

A particular application is the case when the likelihood functions f(Uj; ξ) and

f(Vj;ψ) have a Gaussian distribution i.e., f(Uj; ξ) ∼ N (ξ, σ2
ξ) and f(Vj;ψ) ∼

N (ψ, σ2
ψ) [45]. Therefore,

f(U; ξ) =
1

(2πσ2
ξ )

N
2

exp

(

−
∑N

j=1(Uj − ξ)2

2σ2
ξ

)

, (2.17)
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which can be rearranged as

f(U; ξ) ∝ exp

(

ξ

∑N
j=1Uj

σ2
ξ

− N

2σ2
ξ

ξ2

)

.

By comparing with (2.14), we have

ηξ(Uj) =
Uj
σ2
ξ

, σ2
ηξ

=
1

σ2
ξ

(2.18)

and the ML estimate using (2.15) is given by

ξ̂ML =

∑N
j=1 Uj

N
. (2.19)

The ML estimate for the offset β follows from (2.16), and can be expressed as

β̂ML =

∑N
j=1(Uj − Vj)

2N
. (2.20)

The above estimate coincides with the one reported in [45].

2.4.1.2 Log-Normally Distributed Likelihood Function

When the samples Uj and Vj are log-normally distributed, we have

f (U; ξ) =
1

√

2πσ2
ξ

N
∏

j=1

U−1
j exp

(

−
∑N

j=1(logUj − ξ)2

2σ2
ξ

)

∝ exp

(

ξ

∑N
j=1 logUj

σ2
ξ

− N

2σ2
ξ

ξ2

)

. (2.21)

A comparison with (2.14) yields

ηξ(Uj) =
logUj
σ2
ξ

, σ2
ηξ

=
1

σ2
ξ

.
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The ML estimator for β can obtained from (2.16) using (2.15), and is given by

β̂ML =

∑N
j=1 (logUj − log Vj)

N
. (2.22)

2.4.2 Constrained Likelihood

Using (2.8) and (2.13), the constrained likelihood function for data set U is given

by

f(U; ξ) ∝ exp

(

ξ
N
∑

j=1

ηξ(Uj)−N
σ2
ηξ

2
ξ2

)

N
∏

j=1

I(Uj − ξ) . (2.23)

The resulting ML estimate of ξ can be obtained as

ξ̂ML = arg max
ξ

exp

(

ξ

N
∑

j=1

ηξ(Uj)−N
σ2
ηξ

2
ξ2

)

such that U(1) ≥ ξ , (2.24)

where U(1) denotes first order statistics of the samples Uj . The likelihood maxi-

mization problem (2.24) is strictly concave and the ML estimate can be expressed

as

ξ̂ML = min

(

∑N
j=1 ηξ(Uj)

Nσ2
ηξ

, U(1)

)

. (2.25)

The ML estimator β̂ML for the clock offset, using the invariance principle, is given

by

β̂ML =
ξ̂ML − ψ̂ML

2
. (2.26)
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2.4.2.1 Exponentially Distributed Likelihood Function

For the case when the likelihood functions are exponentially distributed, the

density function of the samples Uj can be written as

f(U; ξ) = λNξ exp

(

−λξ
N
∑

j=1

(Uj − ξ)

)

I(U(1) − ξ) , (2.27)

where λ−1
ξ is the mean of the delays Xj . The density function can be rearranged as

f(U; ξ) ∝ exp (Nλξξ) I(U(1) − ξ) .

Comparing the above formulation with (2.23),

ηξ(Uj) = λξ, σ2
η = 0 . (2.28)

Using (2.25), the ML estimate is given by

ξ̂ML = U(1) . (2.29)

The ML estimate of β follows from (2.26), and can be expressed as

β̂ML =
U(1) − V(1)

2
, (2.30)

which coincides with the one reported in [30], where it is derived using graphical

arguments.
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2.5 Incorporating Temporal Variations: A Factor Graph Approach

The imperfections introduced by environmental conditions in the quartz oscillator

in sensor nodes results in a time-varying clock offset between nodes in a WSN. To

cater for such a temporal variation, a Bayesian approach to the clock synchronization

problem is adopted by representing the a-posteriori density as a factor graph. The

inference is performed on the factor graph by message passing using max-product

algorithm. To ensure completeness, a brief description of factor graphs and the

max-product algorithm is provided below.

A factor graph is a bipartite graph that represents a factorization of a global

function as a product of local functions called factors, each factor being dependent

on a subset of variables. Factor graphs are often used to produce a graphical model

depicting inter-dependencies among a collection of interacting variables. Each factor

is represented by a factor node and each variable has an edge or a half-edge. An

edge connects a particular variable to a factor node only if it is an argument of the

factor expressed by the factor node [35].

Inference can be performed by passing messages (sometimes called beliefs) along

the edges of a factor graph. In particular, max-product algorithm is used to compute

the messages exchanged between variables and factor nodes. These messages can be

summarized as follows [5]

variable to factor node :

mx→f (x) =
∏

h∈n(x)\f

mh→x (x) (2.31)
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factor node to variable :

mf→x (x) = max
\{x}



f (Z)
∏

z∈n(f)\{x}

mz→f (z)



 , (2.32)

where n(x) and n (f) denote the set of neighbors of node x and the set of arguments

of the local function f , respectively. The marginal distributions for each variable can

be obtained by the product of all incoming messages on the variable.

In order to sufficiently capture the temporal variations, the parameters ξ and ψ

are assumed to evolve through a Gauss-Markov process given by

ξk = ξk−1 + wk

ψk = ψk−1 + vk for k = 1, . . . , N ,

where wk and vk are independent and identically distributed (i.i.d) noise variables

such that wk, vk ∼ N (0, σ2). The posterior pdf can be expressed as

f(ξ,ψ|U ,V ) ∝ f(ξ,ψ)f(U ,V |ξ,ψ)

= f(ξ0)

N
∏

k=1

f(ξk|ξk−1)f(ψ0)

N
∏

k=1

f(ψk|ψk−1)

N
∏

k=1

f(Uk|ξk)f(Vk|ψk)

(2.33)

where uniform priors f(ξ0) and f(ψ0) are assumed. Define δkk−1
∆
= f(ξk|ξk−1) ∼

N (ξk−1, σ
2), νkk−1

∆
= f(ψk|ψk−1) ∼ N (ψk−1, σ

2), fk
∆
= f(Uk|ξk), hk ∆

= f(Vk|ψk), where
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Figure 2.2: Factor graph representation of the posterior density (2.33)

the likelihood functions are given by

f(Uk|ξk) ∝ exp

(

ξkηξ(Uk)−
σ2
ηξ,k

2
ξ2k

)

f(Vk|ψk) ∝ exp

(

ψkηψ(Vk)−
σ2
ηψ,k

2
ψ2
k

)

, (2.34)

based on (2.13). The resulting factor graph representation of the posterior pdf is

shown in Fig. 2.2.

Remark 1. Notice that the substitution in (2.3) renders a cycle-free nature to the

factor graph. Therefore, inference by message passing on such a factor graph is

indeed optimal [35].

For the purpose of inference, only the case of constrained likelihood will be con-

sidered, since the case of an unconstrained likelihood is subsumed, as will be shown

shortly. The clock offset estimator β̂N can be obtained from ξ̂N and ψ̂N using (2.5).
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By defining γk
∆
= −σ2

ηξ,k
/2 and νk

∆
= ηξ(Uk), the constrained likelihood function

for the samples Uk can be written as

fk ∝ exp
(

γkξ
2
k + νkξk

)

I(Uk − ξk) . (2.35)

The message passing strategy starts by sending a message from the factor node fN

to the variable ξN . The variable ξN relays this message to the factor node δNN−1. The

factor node computes the product of this message with the factor δNN−1 and sends

the resulting message to the variable ξN−1 after ‘summarizing’ over the variable ξN .

In the max-product algorithm, a ‘max’ function is used as a summary propagation

operator (cf. (2.32)). These messages are computed as follows

mfN→ξN = fN

mξN→δN
N−1

= fN

mδN
N−1→ξN−1

∝ max
ξN

δNN−1 ·mξN→δN
N−1

= max
ξN

1√
2πσ2

exp

(−(ξN − ξN−1)
2

2σ2

)

exp
(

γNξ
2
N + νNξN

)

I(UN − ξN)

which can be rearranged as

mδN
N−1→ξN−1

∝ max
ξN≤UN

exp
(

ANξ
2
N +BNξ

2
N−1 + CNξNξN−1 +DNξN

)

, (2.36)

where

AN
∆
= − 1

2σ2
+ γN , BN

∆
= − 1

2σ2
, CN

∆
=

1

σ2
, DN

∆
= νN . (2.37)

and γN
∆
= −σ2

ηξ,N
/2 and νN

∆
= ηξ(UN). Let ξ̄N be the unconstrained maximizer of
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the exponent in the objective function above. This implies that

ξ̄N = −CNξN−1 +DN

2AN
. (2.38)

Following a line of reasoning similar to Section 2.4.2 , it follows that

ξ̂N = min
(

ξ̄N , UN
)

.

However, ξ̄N depends on ξN−1, which is undetermined at this stage. Hence, we need

to further traverse the chain backwards. Assuming that ξ̄N ≤ UN , ξ̄N from (2.38)

can be plugged back in (2.36) which after some simplification yields

mδN
N−1→ξN−1

∝ exp

{(

BN − C2
N

4AN

)

ξ2N−1 −
CNDN

2AN
ξN−1

}

. (2.39)

The message passed from the variable ξN−1 to the factor node δN−1
N−2 is the product

of the message (2.39) and the message received from the factor node fN−1, i.e.,

mξN−1→δN−1
N−2

= mδN
N−1→ξN−1

·mfN−1→ξN−1
.

Upon receipt of this message, the factor node δN−1
N−2 delivers a product of this message

and the factor δN−1
N−2 to the variable node ξN−2 after maximizing over ξN−1. This

message can be expressed as

mδN−1
N−2→ξN−2

∝ max
ξN−1≤UN−1

δN−1
N−2 ·mξN−1→δN−1

N−2

=max
ξN−1

1√
2πσ2

exp

(

−(ξN−1 − ξN−2)
2

2σ2

)

· exp
{(

BN − C2
N

4AN

)

ξ2N−1 −
CNDN

2AN
ξN−1

}

· exp
(

γN−1ξ
2
N−1 + νN−1ξN−1

)

I(UN−1 − ξN−1) .
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After some algebraic steps, the message above can be compactly represented as

mδN−1
N−2→ξN−2

∝ max
ξN−1≤UN−1

exp(AN−1ξ
2
N−1+

BN−1ξ
2
N−2 + CN−1ξN−1ξN−2 +DN−1ξN−1) , (2.40)

where

AN−1
∆
= − 1

2σ2
+ γN−1 +BN − C2

N

4AN
, BN−1

∆
= − 1

2σ2
,

CN−1
∆
=

1

σ2
, DN−1

∆
= νN−1 −

CNDN

2AN
.

Proceeding as before, the unconstrained maximizer ξ̄N−1 of the objective function

above is given by

ξ̄N−1 = −CN−1ξN−2 +DN−1

2AN−1

and the solution to the maximization problem (2.40) is expressed as

ξ̂N−1 = min
(

ξ̄N−1, UN−1

)

.

Again, ξ̄N−1 depends on ξN−2 and therefore, the solution demands another traversal

backwards on the factor graph representation in Fig. 2.2. By plugging ξ̄N−1 back in

(2.40), it follows that

mδN−1
N−2→ξN−2

∝ exp

{(

BN−1 −
C2
N−1

4AN−1

)

ξ2N−2 −
CN−1DN−1

2AN−1

ξN−2

}

(2.41)
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which has a form similar to (2.39). In general, for i = 1, . . . , N − 1, we can write

AN−i
∆
= − 1

2σ2
+ γN−i +BN−i+1 −

C2
N−i+1

4AN−i+1
, BN−i

∆
= BN ,

CN−i
∆
= CN , DN−i

∆
= νN−i −

CN−i+1DN−i+1

2AN−i+1
, (2.42)

where γN−i
∆
= −σ2

ηξ,N−i
/2, νN−i

∆
= ηξ(UN−i) and

ξ̄N−i = −CN−iξN−i−1 +DN−i

2AN−i
, ξ̂N−i = min

(

ξ̄N−i, UN−i

)

. (2.43)

Using (2.43) with i = N − 1, it follows that

ξ̄1 = −C1ξ0 +D1

2A1
, ξ̂1 = min

(

ξ̄1, U1

)

. (2.44)

Similarly, by observing the form of (2.39) and (2.41), it follows that

mδ10→ξ0 ∝ exp

{(

B1 −
C2

1

4A1

)

ξ20 −
C1D1

2A1
ξ0

}

. (2.45)

The estimate ξ̂0 can be obtained by maximizing the received message in (2.45). It can

be noticed from the structure of the factor graph that this maximization is inherently

unconstrained i.e.,

ξ̂0 = ξ̄0 = max
ξ0

mδ10→ξ0 =
C1D1

4A1B1 − C2
1

. (2.46)

The estimate in (2.46) can now be substituted in (2.44) to yield ξ̄1, which can then

be used to solve for ξ̂1. Clearly, this chain of calculations can be continued using

recursions (2.42) and (2.43).
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Define

gk(x)
∆
= −Ckx+Dk

2Ak
. (2.47)

A key property of the function gk(.), which proves useful in the quest for an exact

solution, can be summarized in the following lemma.

Lemma 1. For real numbers a and b, the function gk(.) defined in (4.2) satisfies

gk (min(a, b)) = min (gk(a), gk(b)) .

Proof. See Appendix A.

With the notation gk(.), the following chain of equalities can be conveniently

written as

ξ̄1 = g1

(

ξ̂0

)

, ξ̂1 = min
(

U1, g1

(

ξ̂0

))

ξ̄2 = g2

(

ξ̂1

)

, ξ̂2 = min
(

U2, g2

(

ξ̂1

))

with

g2

(

ξ̂1

)

= g2

(

min
(

U1, g1

(

ξ̂0

)))

= min
(

g2 (U1) , g2

(

g1

(

ξ̂0

)))

, (2.48)

where (2.48) follows from Lemma 1. The estimate ξ̂2 can be expressed as

ξ̂2 = min
(

U2,min
(

g2 (U1) , g2

(

g1

(

ξ̂0

))))

= min
(

U2, g2 (U1) , g2

(

g1

(

ξ̂0

)))

.
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For m ≥ j, define

Gm
j (.)

∆
= gm (gm−1(. . . gj (.))) . (2.49)

The estimate ξ̂2 can, therefore, be compactly represented as

ξ̂2 = min
(

U2, G
2
2 (U1) , G

2
1

(

ξ̂0

))

.

Hence, one can keep estimating ξ̂k at each stage using this strategy. Note that the

estimator only depends on functions of data and can be readily evaluated.

Generalizing this framework, the analytical expression for the clock offset esti-

mate β̂N is given by the following theorem.

Theorem 1. The state estimates ξ̂N and ψ̂N for the posterior pdf in (2.33) can be

expressed as

ξ̂N = min
(

UN , G
N
N (UN−1) , . . . , G

N
2 (U1) , G

N
1

(

ξ̂0

))

ψ̂N = min
(

VN , G̃
N
N (VN−1) , . . . , G̃

N
2 (V1) , G̃

N
1

(

ψ̂0

))

, (2.50)

where G̃(.) is the counterpart of G(.) in (2.49) defined for ψ. The factor graph based

clock offset estimate (FGE) β̂N is given by

β̂N =
ξ̂N − ψ̂N

2
. (2.51)

Proof. The proof follows from the discussion above and using (2.5).
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2.5.1 Gaussian Distributed Likelihood Function

In this case, we have

f (Uk|ξk) =
1

√

2πσ2
ξ,k

exp

{

−(Uk − ξk)
2

2σ2
ξ,k

}

∝ exp

(

ξkUk
2σ2

ξ,k

− ξ2k
2σ2

ξ,k

)

. (2.52)

The aforementioned Gaussian distribution constitutes an unconstrained likelihood

function, i.e., the domain of the pdf is independent of the unknown parameter ξk. It

is clear from the message passing approach that at each stage k of the factor graph,

the unconstrained maximizer ξ̄k is the actual solution to the likelihood maximization

problem

max
ξk

exp
(

Akξ
2
k +Bkξ

2
k−1 + Ckξkξk−1 +Dkξk

)

i.e., ξ̂k = ξ̄k ∀k = 1, . . . , N . Hence, the unconstrained likelihood maximization prob-

lem is subsumed in the message passing framework for constrained likelihood max-

imization. It follows from Theorem 1 that ξ̂N for Gaussian distributed observations

Uk in (2.52) is given by

ξ̂N = GN
1

(

ξ̂0

)

,

where ξ̂0 and GN
1 (.) are defined in (2.46) and (2.49), respectively. By comparing

(2.52) with (2.35), we have

γk = − 1

2σ2
ξ,k

, νk =
Uk
σ2
ξ,k

, (2.53)
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so that the constants in (2.37) and (2.42) can be easily determined. It follows from

(2.5) and (2.51) that the FGE, β̂N , can be expressed as

β̂N =
GN

1

(

ξ̂0

)

− G̃N
1

(

ψ̂0

)

2
. (2.54)

The behavior of β̂N can be further investigated for the case when the noise vari-

ance σ2 in the Gauss-Markov model goes to zero. Consider

gN(ξ) = −CNξ +DN

2AN
,

where the constants AN , BN , CN and DN are given by (2.37). After some algebraic

steps, we have

gN(ξ) =
σ2
ξξ + σ2UN

σ2
ξ + σ2

.

As σ2 → 0, gN(ξ) → ξ. Similarly, it can be shown that gN−1(ξ) → ξ as σ2 → 0.

Hence, it follows that in the low system noise regime, as σ2 → 0

ξ̂N → ξ̂0 =
C1D1

4A1B1 − C2
1

.

Therefore

β̂N → ξ̂0 − ψ̂0

2
,

which is equal to the ML estimator (2.20).
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2.5.2 Log-Normally Distributed Likelihood Function

The log-normally distributed likelihood function in the Bayesian regime can be

expressed as

f(Uk|ξk) =
1

Ukσξ,k
√
2π

exp

(

−(logUk − ξk)
2

2σ2
ξ,k

)

∝ exp

(

ξk log(Uk)

2σ2
ξ,k

− ξ2k
2σ2

ξ,k

)

. (2.55)

By comparing (2.55) and (2.35), we have

γk = − 1

2σ2
ξ,k

, νk =
logUk
σ2
ξ,k

,

so that the recursively evaluated constants in (2.37) and (2.42) can be easily deter-

mined. Clearly, the only difference here with the Gaussian distribution is a redefini-

tion of νk. The expression of ξ̂N in this case is again

ξ̂N = GN
1

(

ξ̂0

)

,

where GN
1 (.) and ξ̂0 are given by (2.49) and (2.46), respectively. Hence, the FGE β̂N

can be expressed as

β̂N =
GN

1

(

ξ̂0

)

− G̃N
1

(

ψ̂0

)

2
. (2.56)

Again, as the Gauss-Markov system noise σ2 → 0, the above estimator approaches

its ML counterpart (2.22).
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2.5.3 Exponential Distribution

Theorem 1 can also be used to derive a Bayesian estimator ξ̂N for the exponen-

tially distributed network delay case considered in [30]. In this case, we have

f(Uk|ξk) = λξ exp (−λξ(Uk − ξk)) I(Uk − ξk)

∝ exp(λξξk)I(Uk − ξk) , (2.57)

where λ−1
ξ is the mean network delay of Xk. A comparison of (2.57) with (2.35)

reveals that

γk = 0, νk = λξ .

The constants Ak, Bk, Ck and Dk are thus given by

Ak = Bk = − 1

2σ2
, Ck =

1

σ2
, Dk = λξ

for all k = 1, . . . , N . Using Theorem 1 and (2.57), it can be easily verified that

GN
N−i(UN−1−i) = UN−1−i + (i+ 1)λξσ

2 ,

for i ∈ {0, 1, . . . , N − 2}. The estimator ξ̂0 can be evaluated as

ξ̂0 =
C1D1

4A1B1 − C2
1

= +∞ .

This implies that

GN
1 (ξ̂0) = +∞ . (2.58)
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Using (2.58) and Theorem 1, it readily follows that

ξ̂N = min(UN , UN−1 + λξσ
2, UN−2 + 2λξσ

2, . . . , U1 + (N − 1)λξσ
2) . (2.59)

A similar expression can also be written for ψ̂N . The estimate β̂N can be expressed

as

β̂N =
1

2
min(UN , UN−1 + λξσ

2, UN−2 + 2λξσ
2, . . . , U1 + (N − 1)λξσ

2)−
1

2
min(VN , VN−1 + λψσ

2, VN−2 + 2λψσ
2, . . . , V1 + (N − 1)λψσ

2) . (2.60)

As the Gauss-Markov system noise σ2 → 0, (2.60) yields

β̂N → β̂ML =
min (UN , . . . , U1)−min (VN , . . . , V1)

2
,

which is the ML estimator given by (2.30).

2.6 Simulation Results

This section aims to corroborate the theoretical results derived in preceding sec-

tions by conducting simulation studies in various scenarios. The measure of fidelity

used to rate this performance is the MSE of the estimators for β and βN . The

parameter choice is σξ = σψ = 0.1 for both Gaussian and log-normally distributed

likelihoods, while λξ = λψ = 10 for exponentially distributed likelihood functions.

The performance of the estimators is compared by plotting them against the theoret-

ical lower bounds. A general derivation of the lower bounds is presented in Section

5 where their relation with clock offset estimation is also discussed. For a detailed

explanation of the lower bounds, see Section 5.
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Figure 2.3: MSE and bounds for estimating β by using the MLE with log-normal
likelihood.

2.6.1 Log-normal Distribution

The existing approaches in literature only consider the Gaussian and the expo-

nential cases, therefore (2.22) is a new result in the state-of-the-art about clock offset

estimation.

2.6.1.1 Classical Frequentist Inference Approach

Fig. 2.3 shows a comparison between the proposed ML estimator (MLE) (2.22)

in case of a log-normally distributed likelihood (2.21) with MLEs which (wrongly)

assume that the likelihood is Gaussian and exponentially distributed, respectively.

The plot shows that the latter approaches are not robust with respect to the likeli-

hood distribution, and their performance is extremely poor if their assumptions do

not hold. In addition, Fig. 2.3 also shows that the proposed MLE (2.22) is efficient

since it attains the CRB (as well as the CHRB).
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Figure 2.4: MSE and bounds for estimating βN by using FGE with log-normal
likelihood.

2.6.1.2 Bayesian Estimation Framework

Fig. 2.4 plots the MSE of the FGE (2.56) as well as the BCRB and the BCHRB

when the likelihoods are log-normally distributed (2.55), and σ = 10−4. Firstly, it

can be seen that the MSE coincides with the estimation bounds. Secondly, as in the

classical estimation case, if we were to (wrongly) assume a Gaussian or exponential

distribution for the likelihoods (2.34), the resulting FGEs would perform poorly.

This fact is evident in Fig. 2.4 by observing the unboundedness and unpredictability

of the dashed curve (Gaussian assumption for the likelihoods) and the dotted curve

(likelihoods assumed exponentially distributed). This clearly establishes that the

FGE (2.56), obtained assuming log-normally distributed likelihoods, shows a marked

improvement with respect to existing estimators.
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Figure 2.5: MSE and bounds for estimating β by using the MLE with Gaussian and
exponentially distributed likelihood.

2.6.2 Estimator Performance vs Estimation Bounds

It will also be useful to asses the performance of the MLEs in Gaussian and expo-

nential cases derived in Section 2.4 against the various benchmark estimation bounds

derived in Section 5. Similarly, the FGEs for Gaussian and exponential distributions,

proposed in Section 2.5, can also be compared with the Bayesian bounds to study

their MSE performance.

2.6.2.1 Classical Frequentist Inference Approach

Fig. 2.5 shows the performance comparison between the MSE of the MLEs (2.20)

and (2.30) for Gaussian and exponentially distributed likelihood functions against the

CRB and the CHRB, respectively. Firstly, it is evident that in the case of Gaussian

distribution, the CRB and the CHRB coincide. Moreover, the MSE of β̂ML also

coincides with the aforementioned bounds. On the other hand, for an exponentially

distributed likelihood function, due to its lack of regularity, the CRB cannot be
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derived, thus only the CHRB is shown. It can be observed that the MSE of β̂ML

is fairly close to the CHRB, even though it does not coincide with it. From Fig.

2.5 the MSE of the MLEs for the Gaussian and exponential distribution case can

be also compared. In order to ensure a fair comparison, parameters are chosen to

have the same variance of the observations for both distributions. From the MSE

curves, one can infer that the MSE in case of an exponentially distributed likelihood

is lower than the one for a Gaussian distribution as the number of observations N

increases. This behavior is expected since the MSE decays proportionally to 1/N

for a Gaussian distribution, while in the exponential distribution case this decay is

proportional to 1/N2 (see Appendix B).

2.6.2.2 Bayesian Estimation Framework

In Fig. 2.6, the MSE performance of the FGEs β̂N (2.54) and (2.60) is compared

with the BCRB and the BCHRB for σ = 10−4. As in the classical estimation

scenario, it is evident that for Gaussian distributed likelihoods, the MSE using (2.54)

for β̂N coincides with the reported bounds. The MSE of the FGE derived assuming

exponentially distributed likelihoods (2.60) is plotted against the BCHRB as well

in Fig. 2.6. It is clear that the MSE is quite close to the BCHRB, although not

coinciding with it, as exactly was the case in the classical estimation framework.

2.6.3 Comparing Classical Frequentist and Bayesian Frameworks

The estimators proposed in the classical frequentist and the Bayesian frameworks

can also be compared with each other based on their MSE performance as the system

noise decreases. The aim here is to show that the latter approaches the former as

σ → 0.

Fig. 2.7 depicts the MSE for the cases of Gaussian, exponential and log-normal

distribution for the likelihoods with N = 25. In the plot, the horizontal lines rep-
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Figure 2.6: MSE and bounds for estimating βN by using FGE with Gaussian and
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resent the MSEs in the classical framework, obtained with the MLEs, as shown in

(B.1) and (B.2) in Appendix B. It can be observed that, for all the three considered

distributions, the MSE obtained by using the FGE for estimating β approaches the

MSE of the MLEs for σ < 10−3.

2.7 Summary

Based on a two-way timing message exchange scenario, this section proposes a

unified framework for the clock offset estimation problem when the likelihood func-

tion of the observation time stamps is Gaussian, exponential and log-normally dis-

tributed. An analytical approach for the ML estimation of clock offsets is presented.

The results known thus far for Gaussian and exponentially distributed network de-

lays are subsumed in the general approach while the ML estimator is derived when

the likelihood function is log-normally distributed. In order to study the case of a

possibly time-varying clock offset, a Bayesian approach is also studied using factor

graphs. The novel message passing strategy results in an exact solution of the time-

varying clock offset estimation problem. The theoretical findings are corroborated

by simulation studies conducted in various scenarios.
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3. DISTRIBUTED NETWORK-WIDE CLOCK SYNCHRONIZATION

3.1 Introduction

Developing a network-wide synchronization algorithm using message passing on

factor graphs constitutes a natural extension of the Bayesian clock offset estimation

approach for pairwise synchronization outlined in Section 2. A network-wide syn-

chronization algorithm based on belief propagation assuming Gaussian distributed

network delays is proposed in [38]. It was observed by experiments in [48] that the

Minimum Link Delay algorithm proposed in [1] had vastly superior performance,

and this algorithm was later derived independently in [30] assuming exponentially

distributed network delays. Therefore, the assumption of an exponential distribution

seems to be the best suited through experimental observations and it becomes im-

perative to study the network-wide clock synchronization problem in such a case. In

this section, we aim to study network-wide clock synchronization for exponentially

distributed network delays.

3.2 Main Contributions

Our main contributions in this section are as follows.

1. A network-wide clock synchronization algorithm is proposed in case of expo-

nentially distributed network delays by representing the sensor network as a

factor graph. Inference on the factor graph is performed by using max-product

message passing. This yields an iterative update of the belief whose maximiza-

tion provides the clock offset. This also extends the framework in [3] to the

much more challenging case of network-wide synchronization.

2. The proposed algorithm is fully distributed since the clock offset of each node
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is determined at the node itself, instead of centralized processing at a fusion

center.

3. A simulation study is then performed to show that the proposed algorithm

converges in various network topologies of interest.

3.3 System Model

Consider a strictly connected network of N +1 sensor nodes that share a wireless

channel to communicate. Each sensor node bases its notion of time on an internal

oscillator. It is assumed that clock inconsistency between different nodes is due to

the presence of clock offset, so that the time measured by node i, denoted by Ti, can

generally be expressed as [43, 58]

Ti = t+ βi ,

where t is the actual time at the reference node and βi represents the clock offset

of node i, i = 1, . . . , N . Clock offsets are assumed mutually independent and their

prior beliefs, denoted by pi (βi), are considered uniform over the entire real axis. The

clock of node 0 is assumed to provide the reference time to the network, therefore

its clock offset is set to zero, i.e., β0 = 0 and p0 (β0) = δ (β0).

The radio coverage area of each node is assumed circular with a specific radius

so that communication between two nodes is possible if and only if they are in the

coverage area of each other, i.e., their distance is less than the communication radius.

The communication network topology is considered time invariant and described by

the link set L
∆
= {(i, j) : there is a link between nodes i and j}

The focus in this section will be on the message exchange rules between any

two nodes, thus setting the stage for the network-wide synchronization algorithm
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Figure 3.1: Two-way message exchange between nodes i and j.

described in Section 3.4.

3.3.1 Two-Way Message Exchange Mechanism

Assume that nodes i and j are in the coverage area of each other, i.e., (i, j) ∈ L.

The process of two-way message exchange involves sending two messages, one in each

link direction, and is depicted in Fig. 3.1 for the k-th round. The data transmission

is started by node i, which sends a message to node j containing the timestamp

T 1
i,k with respect to the clock of node i. Node j records the time T 2

j,k at which this

message is received, based on its own clock. After a predetermined period of time,

node j replies with a message carrying the timestamps T 2
j,k and T

3
j,k, the latter being

the second message sending timestamp. Finally, node i receives this message at time

T 4
i,k, with respect to its own time scale. Since both nodes need all the timestamps

for processing purposes, we assume that the first message in the (k + 1)-th round

carries inside the timestamp T 4
i,k as well. The message exchange is repeated for

k ∈ [1, . . . , K], while node i finally sends an additional message to node j containing

the timestamp T 4
i,K , so that both nodes have all the timestamps1 .

The message transmission process described above suffers from different types

of fixed and random network delays. A thorough description of such delays can be

1An additional message may not be necessary if piggybacking is adopted.
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found in [21]. In this work, the fixed delay between nodes i and j, denoted by dij,

is considered unknown but symmetric in uplink and downlink transmission. The

random portion of delays in uplink and downlink are asymmetric and are denoted by

Xij,k and Yij,k, respectively. The pair-wise message exchange between nodes i and j

can be expressed as [38]

T 2
j,k = T 1

i,k + βj − βi + dij +Xij,k

T 4
i,k = T 3

j,k + βi − βj + dij + Yij,k . (3.1)

There is an extensive literature about candidate distributions that can accurately

model the random delays Xij,k and Yij,k, based on observing network traffic followed

by data fitting [11]. In this section, the random delays are assumed to be independent

and exponentially distributed with mean 1/λ, λ > 0. This choice is motivated by

the fact that among all distributions with support in [0,+∞) and mean 1/λ, the

exponential distribution has the maximum entropy. The fitness of the exponential

distribution with the network traffic is also experimentally demonstrated in [48],

based on the Minimum Link Delay algorithm proposed in [1] and its later derivation

in [30] assuming exponentially distributed network delays.

By recalling the steps performed in [1], the timestamps are processed to obtain

Uij,k
∆
= T 2

j,k − T 1
i,k = dij + (βj − βi) +Xij,k

Vij,k
∆
= T 4

i,k − T 3
j,k = dij − (βj − βi) + Yij,k . (3.2)

It was shown in [30] that the maximum likelihood estimator (MLE) for the clock

46



offset difference (βj − βi) is given by

Sij
∆
=
Uij,(1) − Vij,(1)

2
, (3.3)

where Uij,(1) and Vij,(1) denote the first order statistics of the data sets {Uij,k}Kk=1

and {Vij,k}Kk=1, respectively. It was proved in [3] that [Uij,(1), Vij,(1)]
T constitutes

a sufficient statistics for estimating (βj − βi), and that (3.3) is also the uniformly

minimum variance unbiased (UMVU) estimator for (βj − βi). Based on the afore-

mentioned properties, it suffices to work with pre-processed data Sij in order to make

the network-wide algorithm computationally sustainable and scalable.

Using the definition of Sij in (3.3) and the system model expressed in (3.2), we

can write

Sij = (βj − βi) + Zij , (3.4)

where Zij
∆
=
(

Xij,(1) − Yij,(1)
)

/2 is a zero mean Laplace random variable with pa-

rameter 1/(2Kλ), i.e., Zij ∼ L (0, 1/(2Kλ)). The factor 1/K comes from comput-

ing the minimum of K independent exponential random variables. Consequently,

Sij ∼ L (βj − βi, 1/(2Kλ)), so that its probability density function (pdf) can be

expressed as

p (Sij|βi, βj) = Kλ exp (−2Kλ|Sij − βj + βi|) . (3.5)

The goal of this work is to infer the value of the clock offset βi for all i, using data

Sij gathered from the message exchanges between pairs of nodes (i, j) ∈ L. Clearly,

an estimator for βi does not depend solely on the data exchanged between nodes i

and j ∈ Ni, with Ni being the set of neighbors of node i. Rather, all nodes in the

network play a role through data exchanges between pairs of neighbors. Inference
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about βi can be obtained by

β̂i
∆
= argmax

βi
pi (βi|S)

where the a-posteriori pdf, pi (βi|S), is given by

pi (βi|S) =
∫

β̃i

p (β|S) dβ̃i (3.6)

where β
∆
= [β1, . . . , βN ], the symbol β̃i denotes the vector composed of all the offset

variables except βi, and S is the (antisymmetric) (N + 1)×(N + 1) matrix composed

of entries Sij given by (3.3) if (i, j) ∈ L and zero otherwise. The next section shows

how the problem of inferring the clock offsets βi is solved via belief propagation on

a suitably defined factor graph.

3.4 The Belief Propagation Algorithm

This section describes the graphical approach adopted to solve the problem of

network-wide clock synchronization and outlines the message exchange rules between

neighboring nodes in order to derive an iterative algorithm for clock offset estimation.

The overall a-posteriori pdf in (3.6) can be factorized using Bayes’ rule and the

independence of the link delays in (3.1) as well as the independence of the clock

offsets, as follows

p (β|S) ∝
∏

(i,j)∈L

hij (βi, βj) ·
N
∏

i=0

pi (βi) , (3.7)

where

hij (βi, βj)
∆
= p (Sij |βi, βj) .
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βj h`j/hj`

h`i/hi`

hij/hji

mβi→hi`

mh`i→βi

mhi`→β`

mβ`→h`i

mhj`→β`
mβ`→h`j

mβj→hj`

mh`j→βj

mβi→hij
mhji→βi

mhij→βj
mβj→hji

Figure 3.2: Example of propagation of messages (3.8) and (3.9) in a factor graph.

The factorization in (3.7) naturally leads to a factor graph representation of the

problem. By representing random variables with circles and factors with squares, a

factor graph such as the one in Fig. 3.2 can be easily obtained [35]. Message passing

on the resulting factor graph is then applied to obtain, either exactly or approx-

imately (depending on whether the graph has cycles), the posterior pdf pi (βi|S),

which can then be maximized to yield the clock offset βi. We use max-product mes-

sage passing algorithm to infer βi in (3.6), primarily due to its greater analytical

tractability in our synchronization problem, as compared to sum-product message

passing algorithm.

In a bipartite graph, belief propagation algorithms require the exchange of mes-

sages both from a variable node to a connected factor node and from a factor node

to a variable node connected to it. In the max-product algorithm, the message

mβi→hi` (βi) sent from the variable node βi to the factor node hi` is given by the

product of the prior pi(βi) and the incoming messages from all factor nodes except
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the l-th one, i.e.,

mβi→hi` (βi) = pi (βi) ·
∏

j∈Ni,j 6=`

mhji→βi (βi) . (3.8)

At the factor node, the marginalization process is performed using the ‘max’ operator,

so that the message mhi`→β` (β`) from the factor node hi` to the variable node β` is

given by

mhi`→β` (β`) = max
βi

[mβi→hi` (βi) hi` (βi, β`)] . (3.9)

Fig. 3.2 also shows an example of message exchange in a factor graph. At node i,

the belief about βi, obtained from all the connected factor nodes as well as the prior,

is given by

bi (βi) = pi (βi)
∏

j∈Ni

mhji→βi (βi) . (3.10)

This belief bi (βi) represents the posterior pdf pi (βi|S) in (3.6). An estimate of βi is

then obtained as

β̂i = argmax
βi

bi (βi) . (3.11)

3.4.1 Message Computation

The message circulation begins with messages sent from the leaf variable nodes.

At the first iteration, denoted by t = 0 in the superscript, for all non-reference nodes,

i.e., i 6= 0, (3.8) is simply equal to the prior, since no messages have arrived from
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neighboring nodes yet. This implies that

m
(0)
βi→hi`

(βi) = pi (βi) ,

while the subsequent message from the factor node hi` to the variable node β` is

given by

m
(0)
hi`→β`

(β`) = max
βi

[

m
(0)
βi→hi`

(βi)hi` (βi, β`)
]

= max
βi

[pi (βi) p (Si`|βi, β`)]

∝ 1 , . (3.12)

where (3.12) follows from (3.5) and the fact that pi (βi) is uniform. On the other

hand, for the reference node i = 0, the message sent by the variable node β0 to the

factor node h0`, ` ∈ N0, can be written as

m
(0)
β0→h0`

(β0) = p0 (β0) = δ (β0) .

The subsequent message from the factor node h0` to the variable node β` can be

expressed as (cf. (3.9))

m
(0)
h0`→β`

(β`) ∝ max
β0

[

m
(0)
β0→h0`

(β0) h0` (β0, β`)
]

∝ max
β0

[δ (β0) p (S0`|β0, β`)]

∝ exp (−2Kλ|β` − S0`|) , (3.13)

where (3.13) follows from (3.5). This implies that the messagem
(0)
h0`→β`

is proportional

to a Laplace pdf with mean S0` and parameter 1/(2Kλ). In other words, at the first
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iteration, the messages coming to the variable node β` from the factor nodes other

than h0`, (i.e., m
(0)
hq`→β`

, with q ∈ N`, q 6= 0) are just constants given by (3.12).

At the second iteration t = 1, the variable node βl uses (3.8) to compute the

message

m
(1)
β`→h`j

(β`) = p` (β`) ·
∏

q∈N`,q 6=j

m
(0)
hq`→β`

(β`)

∝ m
(0)
h0`→β`

(β`) . (3.14)

As a consequence, the message from the factor node h`j to the variable node βj can

be expressed as

m
(1)
h`j→βj

(βj) = max
β`

[

m
(1)
β`→h`j

(β`) h`j (βj, β`)
]

= max
β`

[

m
(0)
h0`→β`

(β`) p (S`j|β`, βj)
]

, (3.15)

where (3.15) follows from (3.7) and (3.14). The following lemma provides a closed

form expression for the message m
(1)
h`j→βj

, and also serves as a stepping stone for the

computation of the generic message sent by a factor node to a variable node at the

general iteration index t.

Lemma 2. The message m
(1)
h`j→βj

is proportional to a Laplace pdf with mean W
(1)
`j

and parameter 1/(2Kλ), i.e.,

m
(1)
h`j→βj

(βj) ∝ exp
(

−2Kλ|βj −W
(1)
`j |
)

. (3.16)

where W
(1)
`j

∆
= S`j + S0` is to be interpreted as the message received by the node β`

from its neighbors except the node βj at iteration t = 1.
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Proof. Using its definition, the message can be written as

m
(1)
h`j→βj

(βj) ∝

max
β`

exp [−2Kλ (|β` − S0`|+ |β` − βj + S`j |)] ,

and the problem reduces to the minimization with respect to β` of the term

ψ (β`) = |β` − S0`|+ |β` − βj + S`j| .

By inspection, it follows that ψ (β`) is a piece-wise linear function on β`, with slopes

−2, when β` ≤ min{S0`, βj − S`j}

0, when min{S0`, βj − S`j} <β` ≤ max{S0`, βj − S`j}

2, when β` > max{S0`, βj − S`j} .

Therefore, choosing any β` inside the interval [min{S0`, βj−S`j},max{S0`, βj−S`j}]

provides the solution (3.16).

At a general iteration t, it is clear that several neighboring nodes of a particular

node i that have updated their beliefs after receiving some communication from

the reference node, either directly or indirectly, will be sending messages similar to

(3.16). Messages from such nodes will be termed as non-constant messages in the

sequel. Hence, it follows that at a general iteration t, (3.8) is a product of a number

of Laplace distributions, taking the form

m
(t)
βi→hi`

(βi) ∝ exp






−2Kλ

r
(t)
i,`

−1
∑

n=1

∣

∣

∣
βi −W

(t)
i` (n)

∣

∣

∣






, (3.17)
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where
(

r
(t)
i,` − 1

)

is the number of neighbors of node i, other than node `, that have

sent non-constant messages at iteration (t − 1). The sequence {W (t)
i` (n)} denotes

the non-constant messages sent by neighbors of node i other than node `. Without

loss of generality, {W (t)
i` (n)}n are assumed sorted in an increasing order, i.e., −∞ <

W
(t)
i` (1) ≤ W

(t)
i` (2) ≤ . . . ≤ W

(t)
i`

(

r
(t)
i,` − 1

)

< +∞. It must be remarked that

{W (t)
i` (n)} are fully determined by data (cf. (3.16) for t = 1).

Using (3.5), (3.7) and (3.17), the message (3.9) at iteration t can be written as

m
(t)
hi`→β`

(β`) =max
βi

[

m
(t)
βi→hi`

(βi)hi` (βi, β`)
]

∝ max
βi

exp

[

− 2Kλ

(

|βi − β` + Si`|+
r
(t)
i,`

−1
∑

n=1

∣

∣

∣
βi −W

(t)
i` (n)

∣

∣

∣

)

]

.

(3.18)

The following lemma provides an approximate closed form expression for the

message m
(t)
hi`→β`

at iteration t.

Lemma 3. The message m
(t)
hi`→β`

can be approximated by a Laplace pdf with mean

Si` + C
(t)
i→` and parameter 1/(2Kλ), and can be expressed as

m
(t)
hi`→β`

(β`)
∼∝ exp

(

−2Kλ
∣

∣

∣
β` −

(

Si` + C
(t)
i→`

)∣

∣

∣

)

, (3.19)

where
∼∝ should be read “approximately proportional to”, and with

C
(t)
i→` =



































W
(t)
i`

(

r
(t)
i,`

2

)

, even r
(t)
i,` ,

1
2

[

W
(t)
i`

(

r
(t)
i,`

−1

2

)

+W
(t)
i`

(

r
(t)
i,`

+1

2

)]

,

odd r
(t)
i,` .

(3.20)
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i

Sνi + C
(t−1)

ν→i

S
ψi +

C (t−
1)ψ

→
i

1

Si` + C
(t)

i→`

Figure 3.3: Example of message circulation between sensor nodes: node i computes
the message to send to the node ` at time t based on the information messages
received at time t − 1 from the nodes γ, ν and ψ and the information-less constant
message received from node δ.

Proof. See Appendix D.

An example of message propagation between sensor nodes is shown in Fig. 3.3,

in which it is assumed that the messages from the variable nodes to the factor nodes

are not actually transmitted as they only serve as intermediate steps for computing

the messages (3.19), which are then exchanged among neighboring nodes. In the

example shown in Fig. 3.3, the sequence {W (t)
i` (n)} is given by

{W (t)
i` (n)} =

{

Sγi + C
(t−1)
γ→i , Sνi + C

(t−1)
ν→i , Sψi + C

(t−1)
ψ→i

}

.

This sequence is then sorted to obtain W
(t)
i` (1), W

(t)
i` (2) and W

(t)
i` (3). The quantity
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C
(t)
i→` is then determined using (3.20). Equation (3.20) essentially requires calculating

the exact or approximate median of {W (t)
i` (n)}, depending on r

(t)
i,` . This explains the

need for sorting this sequence as mentioned earlier.

3.4.2 A Synchronization Algorithm

A synchronization algorithm which bases its functioning on the max-product

message passing procedure described above will now be introduced. It has been

remarked in the previous section that no actual factor nodes are present in the

physical sensor network, and the computation resides entirely in the variable nodes,

being one-to-one mapped to the physical nodes in the WSN. Therefore, the focus for

describing the synchronization algorithm will be on the messages from factor nodes

to variable nodes (3.19) only.

At each iteration, node 0 sends to its neighbors the mean of the distribution

described by (3.13), which is S0` with ` ∈ N0. On the other hand, from iteration 0

onward, the other nodes send no data to its neighbors unless their beliefs are different

from the uniform priors.

At the beginning of step t, node i 6= 0 receives1 r
(t)
i non-constant values Sji +

C
(t−1)
j→i ∀j ∈ Ni (if i is not receiving anything from a particular neighbor j, it will be

assumed that the message m
(t)
hji→βi

is constant, and therefore useless) and it sorts all

these values to obtain a sequence2 {W (t)
i (n)}. It then updates its belief b

(t)
i according

1It must be noted that r
(t)
i,` − 1 refers to the number of neighbors of node i, other than node

`, that send non-constant messsages at iteration t, while r
(t)
i indicates the number of neighbors of

node i that send non constant messages.
2It must be noted that {W (t)

i,` (n)} refers to the sorted sequence of messages received from neigh-

bors of node i, other than node `, at iteration t, while {W (t)
i (n)} indicates the sorted sequence of

messages received from neighbors of node i.
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to (3.10), as

b
(t)
i (βi) = pi (βi) ·

∏

j∈Ni

m
(t)
hji→βi

(βi)

∝ exp



−2Kλ

r
(t)
i
∑

n=1

∣

∣

∣
βi −W

(t)
i (n)

∣

∣

∣



 , (3.21)

where (3.21) is due to the prior pdf pi (βi) being uniform. At this point, by maxi-

mizing the belief (3.21), node i can compute the estimate (3.11) of βi as follows

β̂
(t)
i = argmax

βi
b
(t)
i (βi)

= argmax
βi

exp



−2Kλ

r
(t)
i
∑

n=1

∣

∣

∣
βi −W

(t)
i (n)

∣

∣

∣





=W
(t)
i

(⌈

r
(t)
i

2

⌉)

, (3.22)

where dxe is the smallest integer not less than x. The maximizer has been computed

through techniques similar to those used for proving Lemma 3. Lastly, node i trans-

mits all the messages Si` + C
(t)
i→`, computed according to (3.19) and (3.20), to its

neighboring nodes `.

The update of the estimate using (3.22) is performed until no more relevant data

is available. Formally, β̂
(t)
i is updated according to (3.22) until the first update of

less than ε% is encountered, where ε is the desired error margin. This time instant

is denoted by t∗i at node i, and the estimate β̂
(t)
i is kept unchanged for all t > t∗i .

After this instant, node i stops sending messages to its neighbors. The steps of the

algorithm are summarized in Algorithm 1.

Hence, the aforementioned algorithm computes the clock offset estimates β̂
(t)
i for

each node i in the network. Moreover, it must be emphasized that the algorithm is
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Algorithm 1 Max-Product Algorithm.

F = {0}.
for t from 0 on do

Node i = 0 sends to its neighbors a packet with means S0`, ` ∈ N0, according
to (3.13).
for each node i /∈ F in parallel to node 0 do

Node i computes the belief b
(t)
i (βi) according to (3.21) from data W

(t)
i (n)

received from its neighbors.
Node i computes the estimate β̂∗

i according to (3.22).

if |β̂∗
i − β̂

(t−1)
i |/β̂(t−1)

i > ε then

β̂
(t)
i = β̂∗

i .

Node i transmits all the messages Si`+C
(t)
i→`, computed according to (3.19)

and (3.20), to its neighbors `.
else

β̂
(t)
i = β̂

(t−1)
i

F = F ∪ {i}.
end if

end for

end for

return

completely distributed, since the clock offset of the node i is determined at the node

itself, as opposed to employing a central processing unit to compute all offsets. The

estimator β̂
(t)
i , in general, produces biased estimates of βi. However, it can be shown

that the estimator is unbiased under certain assumptions as follows.

Consider the estimate (3.22) at node i and at time t. Assume that node i has re-

ceived at least one non-constant message from its neighbors; therefore, it is straight-

forward to notice that a πi-long node chain j0, j1, . . . , jπi from the reference node

j0 = 0 to node jπi = i can be identified (see Fig. 3.4). The node chain could also

contain loops. Moreover, here it is assumed that

r
(τ)
jn−1,jn

are even numbers, for all 1 ≤ n ≤ πi and τ ≤ t . (3.23)

This assumption implies that there is an odd number of non-constant messages
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received at every node in the chain, so that the approximation in Lemma 2 becomes

exact. The following discussion establishes a recursive relation for computing the

values W . First, note that

W
(t)
i

(⌈

r
(t)
i

2

⌉)

= Sji + C
(t−1)
j→i for some j ∈ Ni ,

W
(t)
i`

(

r
(t)
i,`

2

)

= Sji + C
(t−1)
j→i for some j ∈ Ni, j 6= ` .

By recursively applying the definition of C
(t)
i→` (3.20), it follows that

W
(t)
i

(⌈

r
(t)
i

2

⌉)

= Sji +W
(t−1)
ji

(

r
(t−1)
j,i

2

)

=

πi
∑

n=1

Sjn−1jn , (3.24)

which means that W
(t)
i

(⌈

r
(t)
i /2

⌉)

is the sum of πi Laplace random variables, each

one being the median of the messages coming from a node’s neighborhood.

Lemma 4. Estimator (3.22) is unbiased for all i and for all t under assumption

(3.23).

Proof. Under assumption (3.23) and recalling (3.4), it holds that

E

[

W
(t)
i

(⌈

r
(t)
i

2

⌉)]

=

πi
∑

n=1

E
[

Sjn−1jn

]

=

πi
∑

n=1

(

βjn − βjn−1

)

= βi .

Given the nature of the clock synchronization problem (due to exponentially dis-

tributed network delays), an iterative expression for the MSE or a linear update
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0

j1 j2 jπi−1

i

Figure 3.4: Node chain representing the information flow from the reference node 0
to node i.

equation for the estimator (3.22) are mathematically intractable. In fact, the com-

putation of the estimator involves ordering operations which renders a non-linear

nature to the estimator, and therefore an eigenvalue-based analysis of convergence

is not possible. We, therefore, use numerical simulations to study the MSE perfor-

mance of the algorithm. It is observed that the estimator exhibits high fidelity under

various network topologies.

3.5 Simulation Results

This section presents numerical simulation results to assess the performance of the

proposed algorithm in structured as well as random topologies. A WSN consisting of

N +1 nodes is considered. The local estimate of clock offset difference (3.3) is based

onK = 4 message exchanges. Results are averaged both with respect to the instances

of the random delays and with respect to the clock offsets, generated uniformly in

the interval [−30, 30]. The algorithm runs for a maximum of 150 iterations but the

update of β̂
(t)
i (3.22) is stopped when estimate updates of less than ε = 5% are

encountered. The fidelity criterion employed is the MSE given by

MSE(t) =

∑N
i=1MSEi(t)

N

MSEi(t) = E

[

(

β̂
(t)
i − βi

)2
]

.
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Figure 3.5: MSE versus t for different values of N with nodes forming a CG topology.

The plots in this section show the MSE in several network topologies for a varying

number of nodes N and the exponential parameter λ.

3.5.1 Varying N

Figs. 3.5 and 3.6 show the averaged MSE incurred in the estimation of the

clock offset versus the number of iterations t in chain graphs (CGs) and mesh grids

(MGs), respectively. The performance is plotted for various values of N and λ = 1.

For the CG and the MG, the averaging of the MSE is performed with respect to both

the values of the random delays and the instances of the clock offsets. For initial

iterations, it can be observed that in both the topologies, the average MSE slightly

decreases with the number of iterations, implying that the information coming from

the reference node is circulating across the network and it is being correctly exploited

by the sensor nodes for clock offset estimation. The MSE abruptly decreases at a
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Figure 3.6: MSE versus t for different values of N with nodes forming a MG topology.

certain number of iterations and then it reaches a floor at t = t∗, where

t∗ ≥ max
i

{t∗i } , (3.25)

The value t∗ depends on the type of graph and the number of nodes N . One of the

purposes of showing the MSE averaged with respect to all the nodes is to ensure

that the estimation process is successfully performed at each sensor node, rather

than picking up a representative node which provides limited information on the

MSE across the whole network. Moreover, while the result in cycle-free graphs is not

surprising, from Fig. 3.6 it can be seen that the proposed algorithm estimates the

clock offset even in loopy graphs.

For the CGs of Fig. 3.5, the reference node is assumed positioned at one of the

two ends of the chain. The plot shows that the MSE decreases to the floor value

after t∗ = N , which is quite expected since for each node in the chain, even the
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farthest one, a meaningful clock offset estimate is only derived after the original

information coming from the reference node has traveled across the whole chain. In

addition, it can be clearly observed that the floor value is increasing with the number

of nodes N . This is due to the fact that when the number of nodes increase in a

chain topology, the message transmitted from the reference node becomes more and

more contaminated with random noise as it traverses through the chain to reach the

farthest node.

Similarly, for the MGs of Fig. 3.6, the reference node is positioned at one corner

of the grid. Also this plot shows that the number of iterations t∗ at which the

MSE decreases to the floor value is dependent on the specific value of N . It can be

easily seen that t∗ = 2
√
N + 1− 1, which is the number of iterations needed by the

information coming from the reference node at one corner to reach the farthest node

lying at the opposite corner of the grid. The dependence of the MSE floor value on

the number of nodes N is also clear in this case: the more nodes the network has,

the higher is the floor value.

Fig. 3.7 depicts a comparison of MSE for CG, MG and random geometric graphs

(RGG) with N = 99. For RGGs, the nodes are assumed uniformly distributed on a

disc of area 1, and a communication radius of ζ = 0.25 is chosen in order to allocate

a considerable number of neighbors, Nneg, for each node, where Nneg = 0.252πN .

The purpose of this plot is to compare the MSE for different graphs keeping the

number of nodes N fixed. The plot clearly shows that the MSE decreases at the

fastest rate when the underlying graph is random geometric. This comes from the

better communication properties of the RGG, since the average number of neighbors

is considerable and the information coming from the reference node can quickly

disseminate across all the nodes in the network. Secondly, as expected, the number

of iterations needed for getting a uniformly precise estimate in the CG is bigger in
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Figure 3.7: Comparison of MSE versus t for different network topologies, with N =
99.

comparison with MG.

3.5.2 Varying λ

Fig. 3.8 shows a comparison of the MSE of the proposed algorithm with the one

in [38] (dashed lines) for a MG by varying the parameter λ of the random delays

distribution, while keeping N = 99. The algorithm in [38] was proposed for Gaussian

noise. The plot shows the comparison when the random delays are exponentially

distributed. It can be observed that our proposed algorithm yields lower MSE for

all values of λ. It can also be seen how the floor value of the MSE decreases as λ

increases. The same observation holds for the CG and the RGG, whose plots are

omitted to keep the discussion concise. To further investigate this dependence, Fig.

3.9 plots the variance of a single Laplace random variable (3.4), 1/(2K2λ2) on the

x-axis, and the average MSE floor value normalized with respect to this variance

on the y-axis for different network topologies. The purpose is to determine if a
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Figure 3.8: MSE versus t for different values of λ with nodes forming an MG topol-
ogy. Solid curves show proposed algorithm, while the dashed curves represent the
algorithm in [38].

relationship exists between the steady state value of the MSE and the variance of a

single Laplace random variable Sij. The plot shows that such a relationship indeed

exists, showing that the variance of the estimator (3.22) can be well approximated

by a proportionality factor times the variance of a single Sij. For instance, for the

chain topology, it can be observed that this proportionality factor is almost equal to

the average (since the MSE is averaged with respect to all the nodes in the network)

of the path lengths between the reference node and each node in the chain, which is
∑N
i=0 i

N+1
= N(N+1)

2(N+1)
= N

2

Following the same reasoning, for MGs the average MSE should take the form
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Figure 3.9: Floor value of the MSE versus Var[S] for different network topologies.

(M =
√
N + 1)

1

N + 1

[

M−1
∑

i=0

i(i+ 1) +
M−2
∑

i=0

(i+M)(M − 1− i)

]

=

1

N + 1

[

(M − 1)M

2

(

1 +
2M − 1

3

)

+

(M − 1)

(

M(M − 1)− M − 2

2
− (M − 2)(2M − 3)

6

)

]

=M − 1 =
√
N + 1− 1 .

On the other hand, it can be observed from Fig. 3.9 that the corresponding value

on the plot is considerably less than
√
N + 1 − 1 = 9. The main reason for this

discrepancy is the multiple routes that the information coming from the reference

node can take, so that the resulting clock offset estimate is not simply the addition

of a number of Laplace random variables, but the ordering operations actually play

66



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

N

A
ve

ra
ge

 N
um

be
r 

of
 e

xc
ha

ng
ed

 p
ac

ke
ts

Number of exchanged packets with λ = 1

 

 

CG
MG
RGG

Figure 3.10: Number of packets exchanged among the nodes in the network versus
N for different network topologies with λ = 1.

an active role in determining the final value of the estimate, reducing the average

floor value of the MSE.

To assess the power consumption of the proposed algorithm, Fig. 3.10 shows the

number of packets exchanged between nodes from the first iteration until the instant

at which the algorithm stops running for all nodes in the network. The so-called

communication overhead is plotted versus N for different network topologies. It can

be observed that the complexity of the algorithm is almost linear in terms of number

of packets exchanged for all three topologies considered, thus making it well suited

for implementation in a real WSN.

3.6 Summary

This section studied the problem of network-wide clock synchronization in a

WSN. Assuming that the variable portion of the link delays is exponentially dis-
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tributed, an iterative factor graph-based algorithm is proposed for network-wide

clock synchronization. The algorithm is completely distributed since the clock offset

of each node is estimated at the node itself, as opposed to a non-distributed architec-

ture where a central unit determines the offsets for all nodes in the sensor network.

The update rules of the proposed algorithm are derived by message passing using

the max-product algorithm. The MSE performance of the algorithm is studied for

structured as well as random network topologies. It is observed that the RGG ex-

hibits faster convergence rates compared to the CG and MG. In order to characterize

the communication overhead of the algorithm, a study of the number of transmitted

packets is also performed. It is observed that the number of packets exchanged in-

crease linearly with the network size, therefore, the algorithm is well suited for clock

synchronization of a sensor network.
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4. JOINT NODE LOCALIZATION AND TIME-VARYING CLOCK

SYNCHRONIZATION

4.1 Introduction

The problems of node localization and clock synchronization are closely tied.

Recently, several contributions have proposed joint estimation approaches for local-

ization and synchronization [62,67,68]. However, a common theme in these contribu-

tions is the assumption of fixed clock parameters. Sensor nodes are often deployed in

harsh environmental conditions which can introduce degradations in the quartz crys-

tals over time. Failure to cope with the temporal variations can result in frequent re-

synchronization requests. Since power is primarily consumed in radio transmissions

delivering timing information [50], exchanging time-stamps for re-synchronization

can quickly drain a sensor’s already meagre energy resources. Accurately tracking

the drifts in clock parameters can boost the network lifetime by minimizing energy

consumption. Recently, several synchronization-only approaches have considered

time-variations in clock parameters in WSNs. A Bayesian approach for clock offset

estimation was presented in [14] and [34], while a factor graph approach was utilized

in [6] to obtain a closed form solution of the clock offset estimator when the likelihood

function of the network delays is Gaussian, exponential or log-normally distributed.

Time-variations in clock skew were incorporated in [22] for clock synchronization.

A Kalman filter based approach was used for tracking clock skew variations in [32].

In this section, we aim to adopt the notion of temporal variation in clock parame-

ters in the realm of joint node localization and clock synchronization in WSNs. We

develop two iterative estimation algorithms which have varying degrees of accuracy

and simplicity. The performance of the estimators is also benchmarked by deriving
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the theoretical lower bounds on the MSE of the estimators.

4.2 Main Contributions

Our main contributions in this section are summarized as follows.

1. In order to ease the computational complexity associated with the MAP estima-

tor, an EM based joint localization and time-varying synchronization algorithm

is proposed that iteratively determines the time-varying clock parameters us-

ing a Kalman smoother followed by a likelihood maximization for the location

estimation.

2. The location estimation process is further simplified by a linearization based

LS method which yields a closed form solution and is therefore, a simpler

alternative to the EM algorithm.

3. The performance of the aforementioned estimators is compared in various sce-

narios by deriving the HCRB in our estimation framework.

The notation used in this section is as follows. Upper (lower) case bold faced

letters denote matrices (vectors). The matrices 0M×N and 1M×1 denote the M ×N

matrix of zeros and theM×1 matrix of ones, respectively. The notations diag(x) and

blkdiag (X,Y ) denote a diagonal matrix with the vector x on its main diagonal and

a block diagonal matrix with matrices X and Y on its main diagonal, respectively.

The operators Tr, ⊗ and � denote the trace of a matrix, the Kronecker product

and the Hadamard product between matrices, respectively. Ex,y [·] stands for the

expectation with respect to the joint distribution f (x,y). The partial derivative of

a function h (x) with respect to x, ∂h(x)
∂x

, is the column vector
[

∂h(x)
∂x1

, . . . , ∂h(x)
∂xN

]T

.
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4.3 System Model

Consider a network composed of N anchor nodes and an unknown node, denoted

as Node X , that needs to be synchronized and localized to the anchors. The loca-

tions of the jth anchor and Node X are given by sj =
[

sjx, s
j
y

]T
and x = [x1, x2]

T ,

respectively. It is assumed that the anchors are synchronized with the same reference

time t and their locations are accurately known. The process of joint localization

and synchronization proceeds by exchanging time-stamps between Node X and the

anchors using a two-way message exchange mechanism as shown in Fig. 4.1.

At the kth message exchange, Node X transmits its current timing information to

the jth anchor through time-stamp Sj,k. The anchor records the time Rj,k at which

this message is received according to its own time scale. After some time has elapsed,

the jth anchor replies at time S̄j,k and transmits a synchronization packet containing

both the time-stamps Rj,k and S̄j,k to Node X. This message is received at time R̄j,k

by Node X according to its own clock. Therefore, after K exchanges with the jth

anchor, Node X is equipped with time-stamps
{

Sj,k, Rj,k, S̄j,k, R̄j,k

}K

k=1
which are to

be used to ascertain its location and clock parameters. In this work, it is assumed

that the clock of Node X is related to the reference time t as follows:

CX (t) = αt+ β ,

where α and β denote the clock skew and clock offset with respect to the reference

time, respectively. Hence, the aforementioned two-way timing exchange process can
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Figure 4.1: A two-way timing message exchange mechanism

be expressed as [15]

Sj,k = α (Rj,k − dj − wj,k) + β

R̄j,k = α
(

S̄j,k + dj + w̄j,k
)

+ β , (4.1)

where the measurement noise errors wj,k and w̄j,k are assumed i.i.d. Gaussian with

zero mean and variance σ2
w. The fixed line-of-sight propagation delay, denoted by dj,

is given by1 dj = ‖x− sj‖. By defining

θ1
∆
=

1

α
, θ2

∆
=
β

α
, (4.2)

we can equivalently express (4.1) as

Rj,k − dj = Sj,kθ1 − θ2 + wj,k

−S̄j,k − dj = −R̄j,kθ1 + θ2 + w̄j,k . (4.3)

1The speed of light constant c is omitted for brevity.

72



By stacking data from all N anchors at the kth message exchange, the system model

in (4.3) can be compactly expressed as

yk − d (x) =Hkθ +wk , (4.4)

where yk =
[

R1,k,−S̄1,k, . . . , RN,k,−S̄N,k
]T
, the parameter vector θ

∆
= [θ1 θ2]

T , mea-

surement noise wk = [w1,k, w̄1,k, . . . , wN,k, w̄N,k], d (x) =
[

d11
T
2×1, . . . , dN1

T
2×1

]T
, and

the 2N × 2 matrix Hk is given by

Hk =

























S1,k −1

−R̄1,k 1

...
...

SN,k −1

−R̄N,k 1

























.

Since sensor nodes are usually deployed in harsh environmental conditions, degra-

dations in quartz oscillators render a time-varying nature to the clock skew and

offset of Node X . Several recent contributions have proposed clock synchronization

schemes by considering temporal variations in the clock parameters [6], [14], [32].

In this work, it is assumed that the variations in the clock parameters induce a

Gauss-Markov evolution model for θ at the kth message exchange, i.e.,

θk = θk−1 + nk , (4.5)

where nk is i.i.d zero mean Gaussian noise such that E
(

nkn
T
k

)

= σ2
nI. This model

helps to capture time variations and also lends mathematical simplicity to gain a

theoretical insight into the problem of joint localization and time-varying clock syn-
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chronization. Using (4.5), the two-way message exchange model (4.4) at the kth

round is now expressed as

yk − d (x) =Hkθk +wk . (4.6)

By collecting data for all k = 1, . . . , K, it follows that

y − d (x)⊗ 1M×1 =HΘ+w , (4.7)

where y =
[

yT1 , . . . ,y
T
K

]T
, Θ =

[

θT1 , . . . , θ
T
K

]T
, w =

[

wT
1 , . . . ,w

T
K

]T
and the matrix

H = diag {H1, . . . ,HK}.

The joint distribution of {y,Θ}, parameterized by x, can be expressed as

f(y,Θ;x) = f (Θ) f (y|Θ;x)

= f (θ0)

K
∏

k=1

f (θk|θk−1)

K
∏

k=1

f (yk|θk;x) . (4.8)

The conditional pdfs f (θk|θk−1) and f (yk|θk;x) are given by

f (θk|θk−1) = C1 exp

(

−(θk − θk−1)
T (θk − θk−1)

2σ2
n

)

(4.9)

f (yk|θk;x) = C2 exp

(

−(yk − d (x)−Hkθk)
T (yk − d (x)−Hkθk)

2σ2
w

)

, (4.10)

where C1 and C2 are constants. Our goal is to jointly estimate ξ =
[

ΘT ,xT
]T

using

the time-stamps
{

Sj,k, Rj,k, S̄j,k, R̄j,k

}K

k=1
as well as the known anchor locations sj ,

for j = 1, . . . , N .
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The joint estimates of Θ and x can be obtained as

{

Θ̂, x̂
}

= argmax
Θ,x

ln f(y,Θ;x) . (4.11)

Solving (4.11) requires inverting large matrices which is computationally demand-

ing. The nodes in a WSN are generally inexpensive devices characterized by limited

capabilities of computation and communication. This computational complexity ne-

cessitates the development of simpler alternative algorithms that lower the compu-

tational burden while maintaining a desired performance level. In the next section,

two iterative methods are explored for joint localization and timing synchronization.

4.4 Iterative Approaches

In this section, two iterative estimation algorithms are proposed which differ

mainly in their approach to determine the location of the unknown node.

4.4.1 The EM Algorithm

The EM algorithm is an iterative method used to determine the ML estimate

of the parameters of a given distribution from incomplete data [19]. The EM algo-

rithm offers a simpler alternative to an otherwise intractable ML estimation problem

by assuming additional unobserved parameters in the underlying distribution. The

ML estimates are then computed by iterating between the Expectation and Maxi-

mization steps. Due to its analytical tractability, the EM algorithm finds numerous

applications in diverse fields [41].

Assuming that the data y is incomplete, the complete data vector is defined as

z
∆
=
[

yT ,ΘT
]T
. The expectation and maximization steps in the EM algorithm can

be described as follows.
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E-Step:

Given an estimate x̂(i) of the unknown node’s location at iteration i, and the observed

data y, determine the likelihood function

Q
(

x, x̂(i)
) ∆
= EΘ|y,x̂(i) [ln f (z;x)] . (4.12)

M-Step:

Obtain an estimate of x at iteration index i+ 1 by maximizing Q
(

x, x̂(i)
)

, i.e.,

x̂(i+1) = argmax
x

Q
(

x, x̂(i)
)

. (4.13)

The E-Step and M-Step are repeated until convergence. After each iteration, we are

guaranteed to converge towards a local maximum [19].

Using (4.8), (4.9) and (4.10), it follows that

ln f (z;x)= C − 1

2σ2
w

K
∑

k=1

(ỹk (x)−Hkθk)
T(ỹk (x)−Hkθk) , (4.14)

where ỹk (x)
∆
= yk − d (x) and the terms that do not depend on x are collected

in the constant C . The likelihood function at the ith iteration, Q
(

x, x̂(i)
)

, can be

evaluated as

Q
(

x, x̂(i)
)

= EΘ|y,x̂(i)

[

− 1

2σ2
w

K
∑

k=1

(ỹk (x)−Hkθk)
T (ỹk (x)−Hkθk)

]

= − 1

2σ2
w

K
∑

k=1

Tr

{

EΘ|y,x̂(i)

[

(ỹk (x)−Hkθk) (ỹk (x)−Hkθk)
T

]}

.

(4.15)
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By defining

θ̂
(i)
k|K

∆
= EΘ|y,x̂(i) [θk] , R̂

(i)
k|K

∆
= EΘ|y,x̂(i)

[

θkθ
T
k

]

,

the likelihood function in (4.15) can be expressed as

Q
(

x, x̂(i)
)

= − 1

2σ2
w

K
∑

k=1

Tr

{

ỹk (x) ỹ
T
k (x) +HkR̂

(i)
k|KH

T
k − ỹk (x) θ̂(i)

T

k|KH
T
k

−Hkθ̂
(i)
k|Kỹ

T
k (x)

}

. (4.16)

After some algebraic steps, (4.16) can be equivalently written as

Q
(

x, x̂(i)
)

= − 1

2σ2
w

K
∑

k=1

Tr

{

HkΣ̂
(i)
k|KH

T
k +

(

ỹk (x)−Hkθ̂
(i)
k|K

)(

ỹk (x)−Hkθ̂
(i)
k|K

)T
}

,

(4.17)

where

Σ̂
(i)
k|K

∆
= R̂

(i)
k|K − θ̂(i)k|Kθ̂

(i)T

k|K .

Given an estimate x̂(i), it can be observed that (4.5) and (4.6) represent a linear

Gaussian model. The minimum mean square error (MMSE) estimator θ̂
(i)
k|K can be

obtained from a standard Kalman smoother. The forward recursion for obtaining

θ̂
(i)
k|k can be expressed as follows [31].

Forward Recursion

Prediction:

θ̂
(i)
k|k−1 = θ̂

(i)
k−1|k−1

Σ̂
(i)
k|k−1 = Σ̂

(i)
k−1|k−1 + σ2

nI (4.18)
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Correction:

κk = Σ̂
(i)
k|k−1H

T
k

(

HkΣ̂
(i)
k|k−1H

T
k + σ2

wI
)

θ̂
(i)
k|k = θ̂

(i)
k|k−1 + κk

(

ỹk
(

x̂(i)
)

−Hkθ̂
(i)
k|k−1

)

Σ̂
(i)
k|k = (I − κkHk) Σ̂

(i)
k|k−1 , (4.19)

where Σ̂
(i)
k|k is the MMSE matrix.

The operation of a smoother is completed by employing a backward sweep that

produces the smoothed estimates θ̂
(i)
k|K and Σ̂

(i)
k|K. The recursions of the Rauch-Tung-

Striebel (RTS) smoother are given as follows [51].

Backward Recursion

Bk−1 = Σ̂
(i)
k−1|k−1Σ̂

(i)−1

k|k−1

θ̂
(i)
k−1|K = θ̂

(i)
k−1|k−1 +Bk−1

(

θ̂
(i)
k|K − θ̂(i)k|k−1

)

Σ̂
(i)
k−1|K = Σ̂

(i)
k−1|k−1 +Bk−1

(

Σ̂
(i)
k|K − Σ̂

(i)
k|k−1

)

BT
k−1 . (4.20)

Remark 2. Intuitively, the backward step yields an improvement in the forward step-

only approach since it uses the entire data sequence to smooth out the estimates of

Θ. This improvement comes at the cost of some additional processing. The extent

of this improvement is quantified through simulations in Section 4.6.

Therefore, the E-step of the EM algorithm (4.12) yields an MMSE (equivalently,

MAP) estimate of θk for k = 1, . . . , K as a by-product while calculating Q
(

x, x̂(i)
)

.

The estimates of α and β can, in turn, be obtained by using the transformation in

(4.2). The resulting estimates are sub-optimal since, in general, the MAP estima-

78



tor does not commute over non-linear transformations. However, the sub-optimal

estimators show good fidelity performance and closely match the theoretical lower

bounds derived in Section 4.5.

The M-step can now be expressed using (4.13) as

x̂(i+1) = argmax
x

−1

2σ2
w

K
∑

k=1

Tr

{

HkΣ̂
(i)
k|KH

T
k +
(

ỹk (x)−Hkθ̂
(i)
k|K

)

(

ỹk (x)−Hkθ̂
(i)
k|K

)T
}

.

After some simplifications, the estimate x̂(i+1) is given as the solution of a 2-D norm

minimization problem

x̂(i+1) = argmin
x

K
∑

k=1

∥

∥

∥
ỹk (x)−Hkθ̂

(i)
k|K

∥

∥

∥

2

. (4.21)

It can be shown using convex optimization techniques that the objective function in

the aforementioned minimization problem is a strictly convex function and hence, has

a unique minimum. However, a closed form solution of the optimization problem in

(4.21) does not exist. The interior point methods can be used to obtain the estimates

x̂(i+1) [12].

The EM algorithm, therefore, provides estimates of Θ and x by alternating be-

tween the E and M-steps, respectively. The algorithm is terminated when the se-

quence x̂(1), x̂(2), x̂(3), . . . converges. The EM algorithm for joint localization and

time-varying clock synchronization of Node X is summarized in Algorithm 2.

4.4.2 The LS estimator

The location estimator in (4.21) requires a costly 2-D norm minimization that may

be computationally infeasible for a sensor node. Therefore, it becomes imperative to
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Algorithm 2 The EM Algorithm

1: Input time-stamps
{

Sj,k, Rj,k, S̄j,k, R̄j,k

}K

k=1
and known anchor locations sj , for

j = 1, . . . , N .
2: Initialize x̂(0).
3: for k = 1, . . . , K do

4: Determine Q
(

x,x(i)
)

in (4.17) using the MMSE estimator θ̂
(i)
k|K from (4.19)

and (4.20).
5: end for

6: Obtain the ML estimate x̂(i+1) by solving the optimization problem (4.21).
7: return

simplify the location estimation method in Section 4.4.1.

Similar to the above discussion, it can be noticed that with an estimate x̂(i)

available at iteration i, the parameters θk evolve according to a linear state space

Gaussian model and can be efficiently estimated by the Kalman smoother described

in Section 4.4.1. Using estimates θ̂k, (4.3) can be expressed at iteration i as

Rj,k − dj = Sj,kθ̂
(i)
1,k − θ̂

(i)
2,k + wj,k (4.22)

−S̄j,k − dj = −R̄j,kθ̂
(i)
1,k + θ̂

(i)
2,k + w̄j,k . (4.23)

Define

t
(i)
j,k

∆
= Rj,k − Sj,kθ̂

(i)
1,k + θ̂

(i)
2,k . (4.24)

Squaring (4.22), yields

‖x− sj‖2 = t
(i)2

j,k − 2t
(i)
j,kwj,k + w2

j,k ,
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which can be re-written as

2sTj x− ‖x‖2 = ‖sj‖2 − t
(i)2

j,k + u
(i)
j,k , (4.25)

where u
(i)
j,k

∆
= 2t

(i)
j,kwj,k − w2

j,k. Similarly, define

t̄
(i)
j,k

∆
= R̄j,kθ̂

(i)
1,k − θ̂

(i)
2,k − S̄j,k . (4.26)

Using t̄
(i)
j,k and squaring (4.23), we have

2sTj x− ‖x‖2 = ‖sj‖2 − t̄
(i)2

j,k + ū
(i)
j,k , (4.27)

where ū
(i)
j,k

∆
= 2t̄

(i)
j,kw̄j,k−w̄2

j,k. By stacking all K observations for the jth anchor, (4.25)

and (4.27) can be written in matrix form as

Ajη = p
(i)
j + u

(i)
j , (4.28)

where

Aj =

























2sTj −1

2sTj −1

...
...

2sTj −1

2sTj −1

























, p
(i)
j =

























‖sj‖2 − t
(i)2

j,1

‖sj‖2 − t̄
(i)2

j,1

...
...

‖sj‖2 − t
(i)2

j,M

‖sj‖2 − t̄
(i)2

j,M

























,

u
(i)
j = [u

(i)
j,1, ū

(i)
j,k, . . . , u

(i)
j,M , ū

(i)
j,M ]T , (4.29)

and η = [xT , ‖x‖2]T . By augmenting data from all N anchor nodes, (4.29) can be
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written as

Aη = p(i) + u(i) , (4.30)

where A = [AT
1 , . . . ,A

T
N ]

T , p(i) = [p
(i)T

1 , . . . ,p
(i)T

N ]T , and u(i) = [u
(i)T

1 , . . . ,u
(i)T

N ]T . It

can be observed that (4.30) represents a linear matrix equation for the estimation of

x.

By neglecting the second order noise terms, w2
j,k and w̄2

j,k, in u
(i) and letting

q(i) = [2t
(i)
1,1, 2t̄

(i)
1,1, . . . , 2t

(i)
1,K , 2t̄

(i)
1,K , . . . , 2t

(i)
N,1, 2t̄

(i)
N,1, . . . , 2t

(i)
N,K , 2t̄

(i)
N,K ]

T ,

the noise covariance matrix Σ
(i)
u can be obtained as

Σ(i)
u ≈ E

[

u(i)u(i)T
]

= E

[

(

q(i) � w̃
) (

q(i) � w̃
)T
]

= σ2
wdiag(q

(i) � q(i)) , (4.31)

where w̃ = [w1,1, w̄1,1, . . . , w1,K , w̄1,K , , . . . , wN,K , w̄N,K]
T .

The LS solution for the estimation of η at iteration i + 1 can now be expressed

as

η̂(i+1) =
(

ATΣ(i)−1

u A
)−1

ATΣ(i)−1

u p(i) . (4.32)

The Kalman smoother stage employed at iteration i yielding the estimates θ̂k, k =

1, . . . , K, can be used to compute Σ
(i)
u and p(i) (cf. (4.29) and (4.31)).

The estimate can be further refined by exploiting the relationship between ele-

ments of η [67]. We have

M̄x̂(i+1) = η̂(i+1) +wLS , (4.33)
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where

M̄ =













1 0

0 1

x̂1 x̂2













and wLS indicates the estimation error in estimating η̂(i+1). The estimates {x̂1, x̂2}

are available from (4.32). Finally the refined LS location estimator x̂(i+1) at iteration

i+ 1 is given by

x̂
(i+1)
LS =

(

M̄TATΣ(i)−1

u AM̄
)−1

M̄TATΣ(i)−1

u Aη̂(i+1)

=
(

M̄TATΣ(i)−1

u AM̄
)−1

M̄TATΣ(i)−1

u p(i) . (4.34)

Remark 3. The LS location estimator in (4.34) is derived by neglecting the second

order measurement noise errors. Since the measurement noise errors are usually

small, it is expected that the performance of the LS estimator will closely match that

of the EM algorithm.

The aforementioned LS-based approach presents a simpler closed form alternative

to the potentially costly 2-D norm minimization problem for location estimation in

Section 4.4.1. The steps of the algorithm are summarized in Algorithm 3.

Algorithm 3 The LS Algorithm

1: Input time-stamps
{

Sj,k, Rj,k, S̄j,k, R̄j,k

}K

k=1
and known anchor locations sj , for

j = 1, . . . , N .
2: Initialize x̂(0).
3: for k = 1, . . . , K do

4: Determine the MMSE estimator θ̂
(i)
k|K from the Kalman smoother in (4.19) and

(4.20).
5: end for

6: Obtain the LS estimate x̂(i+1) using (4.34).
7: return
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4.5 Hybrid Cramér-Rao Bound

The HCRB, proposed in [52], is useful in cases where the complete parameter

vector comprises deterministic as well as random parameters. This fits our estimation

scenario since the location x is deterministic while Θ is a random process.

The HCRB states that the covariance matrix of an estimator ξ̂ is lower bounded

as

E

[

(

ξ̂ − ξ
)(

ξ̂ − ξ
)T
]

� [H(Θ,x)]−1 , (4.35)

where the matrix inequality � is to be interpreted in the positive semi-definite sense.

The 2(M + 1)× 2(M + 1) hybrid information matrix (HIM) is given by

H(Θ,x) = EΘ [F (Θ,x)] + EΘ|x

[

(

∂ ln f (Θ|x)
∂ξ

)(

∂ ln f (Θ|x)
∂ξ

)T
]

, (4.36)

where the Fisher information matrix (FIM) F (Θ,x) is given by

F (Θ,x) = Ey|Θ,x

[

(

∂ ln f (y|Θ,x)
∂ξ

)(

∂ ln f (y|Θ,x)
∂ξ

)T
]

. (4.37)

The HIM can be calculated as shown in the following theorem.

Theorem 2. The sub-matrices in the HIM corresponding to Θ and x can be ex-

pressed respectively as

H11 = blkdiag

(

HT
1 H1

σ2
w

, . . . ,
HT

KHK

σ2
w

)

+Υ (4.38)

H22 =
2K

σ2
w

N
∑

j=1

(x− sj) (x− sj)T

‖x− sj‖2
, (4.39)
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where the tri-diagonal matrix Υ is

Υ =
1

σ2
n

























2I −I 0

−I 2I −I

−I . . .
. . .

. . . −I

0 −I I

























. (4.40)

Similarly, the cross term is given by

H12 = HT
21 =

[

(

HT
1 d

′ (x)

σ2
w

)T

, . . . ,

(

HT
Kd

′ (x)

σ2
w

)T
]T

, (4.41)

where d′ (x) is defined in (E.9).

Proof. See Appendix E.

Using the sub-matrices derived above, the following result is immediate.

Lemma 5. The covariance matrices of estimators Θ̂ and x̂ can be lower bounded as

E

[

(

Θ̂−Θ
)(

Θ̂−Θ
)T
]

� HCRBΘ (4.42)

E

[

(x̂− x) (x̂− x)T
]

� HCRBx , (4.43)

whereHCRBΘ =
(

H11 −H12H
−1
22 H21

)−1
andHCRBx =

(

H22 −H21H
−1
11 H12

)−1
.

Proof. The proof simply follows from Theorem 2 and the inversion properties of a

block matrix .

Lemma 5 can be used to benchmark the estimation performance of the EM and

the LS algorithms discussed in Section 4.4. Two special cases when x or Θ may be

known are described below.
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Corollary 1. In case when the location x may be known, the covariance matrix of

Θ̂ can be lower bounded as

E

[

(

Θ̂−Θ
)(

Θ̂−Θ
)T
]

� H−1
11 . (4.44)

Similarly, if the parameter Θ is known, we have

E

[

(x̂− x) (x̂− x)T
]

� H−1
22 . (4.45)

Using the lower bound for Θ̂ in (4.44), an expression for the corresponding lower

bound on Ψ̂ is given by [31]

E

[

(

Ψ̂−Ψ
)(

Ψ̂−Ψ
)T
]

�

(

∂E [g (Θ)]

∂Θ

)T

HCRBΘ

(

∂E [g (Θ)]

∂Θ

)

, (4.46)

where g (Θ) is the transformation defined in (4.2) and HCRBΘ is given by Lemma

5. Due to the non-linear function g, an exact expression for (4.46) is mathematically

intractable. Hence, we use numerical methods to evaluate the lower bound on Ψ̂.

4.6 Simulation Results

In this section, we present simulation results to corroborate our findings in the

earlier sections. In particular, we compare the relative performance of the estimators

proposed above against the theoretical lower bounds.

4.6.1 Simulation Setup

The anchors are located at (14, 21), (6, -8) and (24, 4). The clock skew is

randomly drawn from [0.998, 1.002] and the offset is drawn randomly from [1, 10].

Unless stated otherwise, the location of Node X is generated by drawing x1 and x2

randomly from [1, 10]. The Gauss-Markov process noise variance σ2
n is set to 10−4.
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The measure of accuracy used to benchmark different estimators is the MSE. The

MSE of the location estimator is given by E
[

(x̂1 − x1)
2 + (x̂2 − x2)

2]. The average

MSEs of α̂ and β̂ are given by

MSEα =
1

K
E

[

(α̂−α)T (α̂−α)
]

MSEβ =
1

K
E

[

(

β̂ − β
)T (

β̂ − β
)

]

.

4.6.2 Convergence Analysis of the EM Algorithm

An important issue in the formulation of the EM algorithm is the impact of the

increasing iterations on the recursive estimate of the location of Node X. In order to

show the updates in the EM algorithm, the simulation results are averaged over 100

realizations of x = (2, 4) with σ2
w = 10−1 and K = 2. Fig. 4.2 shows the updates

in the likelihood function Q
(

x, x̂(i)
)

as a function of x as the number of iterations

i increases. It can be noticed that at each iteration, Q
(

x, x̂(i)
)

is a strictly concave

function and hence, does not present any local maxima. This allows the algorithm

to converge at the solution uniquely. Initially, for i = 1, Q
(

x, x̂(i)
)

is located away

from the actual location x. As i increases, Q
(

x, x̂(i)
)

starts to move towards the left,

finally settling at coordinates (2, 4) at about i = 12. Hence, the plot illustrates the

improvement obtained in estimates of x̂(i) with each iteration of the EM algorithm.

Fig. 4.3 shows the improvement in the recursive estimate x̂(i) as the number of

iterations increases for different values of K. It is observed that the EM algorithm

quickly settles at the true location coordinates in around 12 iterations for K = 2.

Moreover, the convergence is faster with K = 4 compared to K = 2. Hence, the

proposed iterative location estimation algorithm performs efficiently even with few

message exchanges.
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Figure 4.2: The updates of Q
(

x, x̂(i)
)

versus the number of iterations i for i = 1,
i = 4 and i = 12 with number of message exchanges K = 2 and measurement noise
variance σ2

w = 10−1.
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Figure 4.3: Updates of the recursive estimate x̂(i) versus the number of iterations i in
the EM algorithm for K = 2 and K = 4 with measurement noise variance σ2

w = 10−1.
The location coordinates are set to x = (2, 4).

The convergence of the EM algorithm with increasing iterations for the two cases

of forward step-only EM and the backward step EM is also illustrated in Fig. 4.4. It

is evident that the backward step converges at the true locations coordinates in fewer

iterations compared to a forward step-only approach. This is a direct consequence

of the smoothing of the random parameters using a backward sweep. However, this

improvement comes at the cost of additional processing required to carry out the

time-series smoothing.

4.6.3 Backward Step versus Forward Step

It is commonly known that smoothing the time series yields improvements in

the estimator of the random parameters. Fig. 4.5 plots a comparison of the MSE

performance of the estimators of clock skew and offset for the forward step-only

and backward step EM with measurement noise variance σ2
w = 10−1. It is indeed
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Figure 4.4: A comparison of the updates of the recursive estimate x̂(i) with the
iteration i for the forward step-only and backward step EM algorithm for message
exchanges K = 2 and measurement noise variance σ2

w = 10−1.

observed that the backward step approach consistently outperforms the forward-only

step. Moreover, the performance gap increases as the number of message exchanges

K increase. This is intuitively satisfying since a higher value of K ensures that the

smoother has a greater room for improving the estimates by using the complete data

sequence. In addition, it can be observed that the performance improvement of the

backward step is more pronounced for the clock skew α as compared to the offset β

and the MSE incurred in estimating the clock skew is lower than the corresponding

MSE for the offset. The improvement using the backward step suggests that it

would be useful to smooth the estimates of the clock parameters, since it yields

higher accuracy and can result in a reduction of energy spent on exchanging timing

information for re-synchronization. Similar MSE curves are also obtained for the

iterative LS algorithm which are not shown here for brevity.
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Figure 4.5: MSE performance comparison of clock parameters for the forward step-
only and the backward step EM with increasing number of message exchanges K for
measurement noise variance σ2

w = 10−1.

4.6.4 Estimator Performance Analysis

In this section, we present simulation results for comparing the MSE performance

with the theoretical HCRB derived in Section 4.5. The MSE plots are provided for

the estimates of location as well as the clock parameters of the unknown node to

observe the impact of measurement noise and the number of message exchanges.

Fig. 4.6 illustrates the MSE incurred in estimating the location as the variance σ2
w

decreases. It can be observed that the MSE decays with a decrease in σ2
w. Moreover,

the MSE decay also increases as K increases from K = 4 to K = 8. The EM and

the LS algorithm have the same performance for low to moderate noise variances. In

addition, the MSE remains fairly close to the theoretical HCRB but does not attain

it. This could potentially be due to the reason that HCRB is known to be less tight

for the non-random part of the parameters [42].
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Figure 4.6: A comparison of MSE of location estimates versus measurement noise
variance σ2

w for K = 4 and K = 8.

The MSE performance of the skew estimates provided by the EM and LS algo-

rithms is illustrated in Fig. 4.7 as the measurement noise decreases. It is observed

that the proposed estimator has high fidelity and matches closely with the theoret-

ical lower bound provided by HCRB. Moreover, the EM and LS approaches have

similar performance. As expected, the performance improves as more messages are

exchanged so that K increases.

Similarly, Fig. 4.8 depicts the MSE curves for the estimation of clock offset ver-

sus measurement noise for K = 4 and K = 8. In this case, the MSE incurred in

estimation is higher than the corresponding values for skew. However, the MSE

performance is still close to the lower bounds and the gap diminishes as more mes-

sages are exchanged. Similar to the aforementioned observations, the EM and LS

algorithms exhibit similar performance.
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Figure 4.7: A comparison of MSE of skew estimates versus measurement noise vari-
ance σ2

w for K = 4 and K = 8.
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Figure 4.8: A comparison of MSE of offset estimates versus measurement noise
variance σ2

w for K = 4 and K = 8.
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variance σ2

w for K = 4.

4.6.5 LS Estimator Degrades Only at Large Measurement Noise

The LS estimator is obtained by a non-linear processing of the data and ignoring

the second order terms in measurement noise. Hence, we expect to see a perfor-

mance degradation in the LS estimator when σ2
w becomes large. This observation is

illustrated in Fig. 4.9 where the MSE in location estimation is plotted for various

values of σ2
w and K = 4. Performance starts to degrade as σ2

w increases. Since in

practical sensor networks, measurement noise is usually small, the LS approach is a

viable alternative to the potentially costly EM algorithm which requires a 2-D norm

minimization for location estimation in each iteration.

4.7 Summary

The problems of node localization and clock synchronization in a wireless sensor

network are closely tied. In this section, the joint estimation of an unknown node’s
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location and its time-varying clock parameters is considered. Accurately tracking

the temporal variation in the clock parameters can lower the re-synchronization

requirements and result in significant communication savings. The data exchange

with the known anchors follows a two-way message exchange mechanism. In order

to alleviate the computational complexity associated with the MAP estimator, two

iterative approaches are proposed for joint localization and timing synchronization.

The first approach utilizes the EM algorithm which iteratively estimates the unknown

node’s location by considering the clock parameters as hidden variables and estimates

the location as the solution to a 2-D norm minimization. In order to further simplify

the EM algorithm, an LS based location estimation algorithm is presented. This

algorithm results in closed form expressions for the joint estimation problem and is

particularly suited in scenarios where the computational resources come at a high

premium. The MSE of the various estimators is lower bounded by deriving the

HCRB. Simulation results corroborate our theoretical findings and demonstrate the

high accuracy of the iterative algorithms. It is observed that the performance of the

EM and LS algorithms are comparable and hence, LS can be used in low-cost sensor

networks.
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5. CLASSICAL FREQUENTIST AND BAYESIAN BOUNDS FOR

EXPONENTIAL FAMILY DISTRIBUTIONS∗

It is of significant theoretical interest to establish the best achievable estimation

performance by placing lower bounds on an estimator. The placement of a lower

bound also allows us to compare different estimators.

5.1 Main Contributions

Our main contributions in this section are as follows.

1. Theoretical lower bounds on the MSE of an estimator are derived in the classical

frequentist inference approach as well as in the Bayesian estimation framework

by considering the likelihood function as an arbitrary member of the exponen-

tial family of distributions, which constitutes a wide class. Hence, the results

are quite general, and can be used in their own right in parameter estimation

theory.

2. The implications of these results on the MSE of estimators derived in Section

2 are also discussed.

We consider the likelihood function as an arbitrary member of the exponential

family of distributions. In addition, depending on whether the domain of the likeli-

hood depends on the parameter to be estimated, both cases of unconstrained as well

as constrained likelihood functions are discussed to maintain full generality. The

general expressions for the unconstrained and constrained likelihood functions for

observations Z
∆
= [Z1, . . . , ZN ]

T are given by

∗Reprinted with permission from ”A factor graph approach to clock offset estimation in wireless
sensor networks,” Aitzaz Ahmad, Davide Zennaro, Erchin Serpedin, and Lorenzo Vangelista, 2012,
IEEE Transactions on Information Theory, vol. 58, no. 7, pg. 4244-4260, Copyright 2012 by IEEE.
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Unconstrained Likelihood:

f(Z; ρ) ∝ exp

(

ρ

N
∑

j=1

η(Zj)−Nφ(ρ)

)

(5.1)

Constrained Likelihood:

f(Z; ρ) ∝ exp

(

ρ

N
∑

j=1

η(Zj)−Nφ(ρ)

)

N
∏

j=1

I(Zj − ρ) , (5.2)

where ρ is the scalar parameter to be estimated. The goal is to derive lower bounds

on the variance of estimators of ρ.

5.2 Classical Frequentist Bounds

For the case of classical frequentist inference, the Cramér-Rao and the Chapman-

Robbins bounds are considered.

5.2.1 Cramér-Rao Lower Bound

The Cramér-Rao lower bound (CRB) is a lower bound on the variance of an

unbiased estimator of a deterministic parameter [31]. It is useful primarily because

it is relatively simple to compute. However, it relies on certain ‘regularity condi-

tions’ which are not satisfied by constrained likelihood functions when the domain

of the likelihood depends on the unknown parameter (cf. (5.2)). Hence, the CRB is

determined for the case of unconstrained likelihood functions only.

In particular, the CRB states that the variance of an unbiased estimator of ρ is

lower bounded by

Var(ρ̂) ≥ −1

E

[

∂2 ln f(Z;ρ)
∂ρ2

] . (5.3)

Lemma 6. The CRB for ρ in the unconstrained likelihood function in (5.1) is given
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by

Var(ρ̂) ≥ 1

Nσ2
η

(5.4)

where

σ2
η =

∂2φ (ρ)

∂ρ2
.

Proof. The Fisher information for the likelihood function is given by

I(ρ)
∆
= E

[

∂2 ln f (Z; ρ)

∂ρ2

]

= −N ∂2φ (ρ)

∂ρ2

and the proof readily follows.

5.2.2 Chapman-Robbins Bound

The Chapman-Robbins bound (CHRB), proposed in [13], sets a lower bound on

the variance of an estimator of a deterministic parameter. The CHRB does not make

any assumptions on the differentiability of the likelihood function and regularity

conditions that often constrain the use of the CRB, and is substantially tighter

than the CRB in many situations. Hence, the CHRB is employed to determine a

lower bound on the variance of an unbiased estimator of ρ for constrained likelihood

functions.

In general for a parameter ρ, the CHRB is given by

Var(ρ̂) ≥
[

inf
h

1

h2

{

E

(

f(Z; ρ+ h)

f(Z; ρ)

)2

− 1

}]−1

, (5.5)

which can be evaluated as shown below.

Lemma 7. The CHRB for the parameter ρ given the likelihood function (5.2) can
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be expressed as

Var(ρ̂) ≥



inf
h

{

(Mη(h))
−2N · ζN(h)− 1

}

h2





−1

, (5.6)

where Mη(h) is the MGF of the statistic η(Zj) and

ζ(h)
∆
= E [exp (2hη(Zj)) I (Zj − ρ− h)] (5.7)

with the expectation taken with respect to any Zj.

Proof. The ratio of the likelihood functions can be expressed as

f(Z; ρ+ h)

f(Z; ρ)
=
exp

(

(ρ+ h)
∑N

j=1 η(Zj)−Nφ(ρ+ h)
)

∏N
j=1 I(Zj − ρ− h)

exp
(

ρ
∑N

j=1 η(Zj)−Nφ(ρ)
)

∏N
j=1 I(Zj − ρ)

= exp

(

h

N
∑

j=1

η(Zj)−Nφ(ρ+ h) +Nφ(ρ)

)

N
∏

j=1

I(Zj − ρ− h)

= exp

(

h
N
∑

j=1

η(Zj)

)

e(−N(φ(ρ+h)+φ(ρ)))
N
∏

j=1

I(Zj − ρ− h) .

The expectation of the ratio of the likelihood functions can now be calculated as

E

(

f(Z; ρ+ h)

f(Z; ρ)

)2

= E

[

exp

(

2h

N
∑

j=1

η(Zj)

)

exp (−2N(φ(ρ+ h) + φ(ρ)))

N
∏

j=1

I(Zj − ρ− h)

]

= exp (−2N(φ(ρ+ h) + φ(ρ)))E

[

exp

(

2h

N
∑

j=1

η(Zj)

)

N
∏

j=1

I(Zj − ρ− h)

]

=
(

Mη(Z)(h)
)−2N

E

[

exp

(

2h
N
∑

j=1

η(Zj)

)

N
∏

j=1

I(Zj − ρ− h)

]

,
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where it follows from (2.12) that

(

Mη(Z)(h)
)−2N

= exp−2N (φ(ρ+ h)− φ(ρ)) .

Since the samples Zj are i.i.d,

E

[

exp

(

2h

N
∑

j=1

η(Zj)

)

N
∏

j=1

I(Zj − ρ− h)

]

= (E [exp (2hη(Zj))I(Zj − ρ− h)])N .

With ζ(.) defined in the theorem, the proof is complete.

5.3 Bayesian Bounds

The Bayesian Cramér-Rao bound and a Bayesian version of the Chapman-Robbins

bound are derived for the Bayesian paradigm.

5.3.1 Bayesian Cramér-Rao Lower Bound

The Bayesian Cramér-Rao bound (BCRB) is a lower bound on the variance of

an unbiased estimator when the parameter assumes a prior density [60]. It requires

the same regularity conditions to be satisfied as its classical counterpart.

For an estimator ρ̂k of ρk, the BCRB states that the variance of the estima-

tor is bounded below by the lower-right sub-matrix of the inverse of the Bayesian

information matrix, J−1
CR(k) [60], i.e.,

Var (ρ̂k) ≥ J−1
CR(k)

∆
= [J−1

CR(k)]kk . (5.8)
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The Bayesian information matrix is given by

[JCR(k)]ij
∆
= E

[

∂ log f(Zk,ρk)

∂ρi

∂ log f(Zk,ρk)

∂ρj

]

= −E

[

∂2 log f(Zk,ρk)

∂ρi∂ρj

]

,

where the expectation is taken with respect to the joint pdf and

Zk
∆
= [Z1, . . . , Zk]

T

ρk
∆
= [ρ0, ρ1, . . . , ρk]

T

f(Zk|ρk) ∝ exp (η(Zk)ρk − φk(ρk)) . (5.9)

It is assumed that the parameter ρk evolves through a Gauss-Markov model given

by

f(ρk|ρk−1) =
1√
2πσ2

exp

(

−(ρk − ρk−1)
2

2σ2

)

. (5.10)

A recursive formula to evaluate the Bayesian sub-matrix, derived in [59], is given by

JCR(k+1) = −E(2)
CR(k)

(

JCR(k) + E
(1)
CR(k)

)−1

E
(2)
CR(k)+E

(3A)
CR (k)+E

(3B)
CR (k) , (5.11)

where

E
(1)
CR(k)

∆
= E

[

− ∂2

∂ρ2k
log f(ρk+1|ρk)

]

E
(2)
CR(k)

∆
= E

[

− ∂2

∂ρk∂ρk+1
log f(ρk+1|ρk)

]

E
(3A)
CR (k)

∆
= E

[

− ∂2

∂ρ2k+1

log f(ρk+1|ρk)
]

E
(3B)
CR (k)

∆
= E

[

− ∂2

∂ρ2k+1

log f(Zk+1|ρk+1)

]

,
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and the expectation is again with respect to the joint pdf.

Lemma 8. For the Bayesian framework in (5.9) and (5.10), the recursive Bayesian

information matrix in (5.11) is given by

JCR(k + 1) =
(

σ2 + J−1
CR(k)

)−1
+ σ2

ηk
(5.12)

with JCR(0) = 0.

Proof. For the density functions, f(ρk|ρk−1) and f(Zk|ρk) in (5.9), it can be verified

that

E
(1)
CR(k) =

1

σ2
, E

(2)
CR(k) = − 1

σ2
, E

(3A)
CR (k) =

1

σ2
,

and

E
(3B)
CR (k) =

∫ ∫

∂2φk(ρk+1)

∂ρ2k+1

f(ρk+1, Zk+1)dρk+1dZk+1

= σ2
ηk
.

The proof follows by plugging these quantities in (5.11).

5.3.2 Bayesian Chapman-Robbins Bound

A Bayesian version of the Chapman-Robbins bound (BCHRB) can be used to

provide a lower bound on the variance of an estimator of ρk when there are no

regularity assumptions on the likelihood [8].

The BCHRB states that the variance of an estimator ρ̂k of ρk is lower bounded

as

Var(ρ̂k)− [Tk(hk)− 1]−1
hkh

T
k � 0
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with � in the positive semi-definite sense,

Tk(hk)
∆
= E

[

(

f(Zk,ρk + hk)

f(Zk,ρk)

)2
]

,

and hk
∆
= [0, h1, . . . , hk]

T .

Theorem 3. The BCHRB for the parameter ρk can be expressed as

Var(ρ̂k) ≥
1

JCH,k

,

where

JCH,k = inf
hk

Tk(hk)− 1

h2k
,

and

Tk(hk) =

(

k
∏

j=1

M−2
η (hj)Mη(2hj)

)

exp

[

k
∑

j=1

(hj − hj−1)
2

σ2

]

. (5.13)

Proof. We have

Tk(hk)
∆
= E

[

(

f(Zk,ρk + hk)

f(Zk,ρk)

)2
]

=

∫ +∞

−∞

∫ +∞

−∞

(

f(Zk,ρk + hk)

f(Zk,ρk)

)2

f(Zk,ρk)dZkdρk

= S(hk)

∫ +∞

−∞

f(ρk + hk)
2

f(ρk)
dρk ,

where

S(hk)
∆
=

∫ +∞

−∞

(

f(Zk|ρk + hk)

f(Zk|ρk)

)2

f(Zk|ρk)dZk . (5.14)
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Continuing with the calculations

Th(hk) =S(hk)

∫ +∞

−∞

f(ρk + hk)
2

f(ρk)
dρk

=S(hk)

∫ +∞

−∞

f 2(ρ0 + h0)

f(ρ0)

k
∏

j=1

f 2(ρj + hj |ρj−1 + hj−1)

f(ρj |ρj−1)
dρk

=S(hk)

∫ +∞

−∞

k
∏

j=1

f 2(ρj + hj |ρj−1 + hj−1)

f(ρj |ρj−1)
dρk .

Since
f2(ρj+hj |ρj−1+hj−1)

f(ρj |ρj−1)
can be verified to be equal to (j = 1, . . . , k)

1

σ
√
2π

exp

[

−ρ
2
j−1

2σ2
+
ρj + 2(hj − hj−1)

σ2
ρj−1

]

×

exp

[

−(hj − hj−1)
2

σ2

]

exp

[

− ρ2j
2σ2

− 2ρj(hj − hj−1)

σ2

]

it turns out that

∫ +∞

−∞

f 2(ρj + hj |ρj−1 + hj−1)

f(ρj|ρj−1)
dρj−1 = exp

[

(hj − hj−1)
2

σ2

]

and

Tk(hk) = S(hk) exp

[

1

σ2

k
∑

j=1

(hj − hj−1)
2

]

.

It can be easily verified that (5.14) can be written as

S(hk) =

k
∏

j=1

∫ +∞

−∞

(

f(Zj|ρj + hj)

f(Zj|ρj)

)2

f(Zj|ρj)dZj .

Moreover, it can be noted that

(

f(Zj|ρj + hj)

f(Zj|ρj)

)2

= exp [−2 (φρ(ρj + hj)− φρ(ρj))]× exp (2hjηρ(Zj))
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and therefore

∫ +∞

−∞

(

f(Zj|ρj + hj)

f(Zj|ρj)

)2

f(Zj|ρj)dZj =M−2
ηρ (hj)× E [exp (2hjηρ(Zj))] .

Then, since

E [exp (2hjηρ(Zj))] = exp (φρ(ρj + 2hj)− φρ(ρj)) (5.15)

it can be easily seen that

∫ +∞

−∞

(

f(Zj|ρj + hj)

f(Zj|ρj)

)2

f(Zj|ρj)dZj =M−2
ηρ (hj)Mηρ(2hj) ,

thus getting

S(hk) =
k
∏

j=1

M−2
ηρ (hj)Mηρ(2hj) .

5.4 Relation to Clock Offset Estimation

Using (2.5), the following result is immediate.

Proposition 1. The MSE of any estimator of β can be expressed as

MSE
(

β̂
)

=
1

4

(

Var
(

ξ̂
)

+Var
(

ψ̂
))

+
1

4
(bξ − bψ)

2 ,

where bξ and bψ are the biases of the estimators ξ̂ and ψ̂, respectively.

5.4.1 Gaussian Distribution - CRB

If the likelihood function for ξ is Gaussian distributed, then using (2.18) and

(5.4), it is straightforward to see that

MSE
(

β̂
)

≥ σ2
ξ + σ2

ψ

4N
. (5.16)
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As a remark, it is evident in this case that β̂ML (2.20) is efficient in the sense that

its MSE achieves (5.16) with equality (cf. Appendix B).

5.4.2 Exponential Distribution - CHRB

If the likelihood for ξ is exponentially distributed, using (2.12) and (2.28), it can

be easily verified that

Mηξ(U)(h) = 1

and (5.7) becomes

ζ(h) = exp (λξh) ,

so that the statement of the CHRB (5.6) can be rewritten as

Var
(

ξ̂
)

≥
[

inf
h

exp (λξhN)− 1

h2

]−1

=
0.6476

λ2ξN
2
,

and similarly for ψ̂. Using Proposition 1, it follows that

MSE
(

β̂
)

=
1

4

(

Var
(

ξ̂
)

+Var
(

ψ̂
))

+
1

4
(bξ − bψ)

2

≥ 0.162

N2

(

1

λ2ξ
+

1

λ2ψ

)

+
1

4
(bξ − bψ)

2 .
(5.17)

5.4.3 Gaussian Distribution - BCRB

In the Bayesian regime, if the likelihood function for ξ is Gaussian distributed,

by using (2.53) and (5.12), it can be seen that

JCR,ξ (k + 1) =
(

σ2 + J−1
CR,ξ (k)

)−1
+

1

σ2
ξ,k

,
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with JCR,ξ (0) = 0. A similar line of reasoning can be followed to derive an analogous

recursion for JCR,ψ (k). The MSE of β can be now be lower bounded as

Var(β̂k) ≥
1

4

(

1

JCR,ξ (k)
+

1

JCR,ψ (k)

)

. (5.18)

5.4.4 Exponential Distribution - BCHRB

If the likelihood for ξk is exponentially distributed, (5.13) turns out to be

Tk(hk) = exp

(

λξ

N
∑

j=1

hj

)

exp

[

1

σ2

k
∑

j=1

(hj − hj−1)
2

]

.

In fact, we just have to notice that φξ (ξk) is a constant function over ξk and ηξ(Uj) =

λξ, so that (5.15) becomes

E [exp (2hjηξ(Uj))] = exp (λξhj) .

Therefore S(hk) = exp
(

λξ
∑N

j=1 hj

)

.

5.5 Summary

In order to compare various estimators, several lower bounds on the variance of

an estimator have been derived in the classical frequentist inference approach as well

as in the Bayesian estimation framework for likelihood functions which are arbitrary

members of the exponential family, a wide class containing several distributions of

interest.
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6. CONCLUSIONS AND FUTURE WORK

Clock synchronization is an indispensable requirement for several wireless sensor

network operations such as optimal data fusion, efficient duty cycling, target local-

ization and tracking, and deterministic channel access schemes. Since sensors have

inherent constraints of meagre power resources, the clock synchronization algorithms

must be kept simple while maintaining desired accuracy. This dissertation proposes

efficient clock synchronization algorithms in classical as well as Bayesian regimes in

a two-way message exchange mechanism between sensor nodes.

First, a unified ML estimation approach is presented for different network delay

distributions. This constitutes a simpler analytical alternative to the cumbersome

graphical approaches used in prior contributions to maximize the likelihood function

of the observations. An important extension to the existing clock synchronization

approaches is proposed by incorporating the effects of temporal variations in clock

parameters. A factor graph approach is used and inference is performed using the

max-product algorithm. This idea is then extended to the more general and challeng-

ing case of network-wide clock synchronization. A synchronization algorithm using

factor graphs is proposed for network-wide clock synchronization and its performance

is tested for various network topologies of interest. By identifying the close statisti-

cal connections between the problems of node localization and clock synchronization,

two iterative approaches are proposed for jointly estimating an unknown node’s lo-

cation and time-varying clock parameters. Finally, theoretical lower bounds on the

MSE of an estimator are derived in classical as well as Bayesian regimes. These

lower bounds are fairly general and can be useful in their own right in parameter

estimation theory.
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This dissertation opens several avenues for further research. It would be useful

to study the extension of these results for multi-hop sensor networks. In addition,

using statistical sampling approaches, developing synchronization algorithms that do

not assume a specific distribution of the network delays is another idea worth ex-

ploring. The effect of clock skew can also be incorporated in the belief propagation

algorithm for network-wide synchronization. This can result in a reduction in re-

synchronization requests. The problem of joint estimation of a node’s location and

clock parameters can be extended by incorporating the effects of node mobility. Sev-

eral mobility models have been proposed in the literature and it would be interesting

to devise a joint tracking approach for localization and clock synchronization.
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APPENDIX A

PROOF OF LEMMA 1

We first show by induction that Ak < −1/2σ2 ∀k. It is clear from (2.37) that

AN < −1/2σ2. Suppose that Ak+1 < −1/2σ2. Using (2.42), we have

Ak = − 1

2σ2
+ γk +Bk+1 −

C2
k+1

4Ak+1
.

Using the values of constants Bk+1 and Ck+1 and after some algebraic steps, we have

Ak = γk −
1

σ2

(

1 +
1

4σ2Ak+1

)

< γk −
1

σ2

(

1 +
1

4σ2
·
(

−2σ2
)

)

= γk −
1

2σ2

< − 1

2σ2
.

The proof of the lemma follows by noting that −Ck
2Ak

> 0 which implies that gk(.) is a

monotonically increasing function.
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APPENDIX B

MSE EXPRESSIONS FOR ML ESTIMATORS

Gaussian Distribution

If the likelihood for ξ is Gaussian distributed, the MLE is given by (2.19). Since the

variance of the readings Uj is σ
2
ξ and the MLE (2.19) is unbiased, it can be concluded

from (2.16) and Proposition 1 that

MSE
(

β̂ML

)

=
σ2
ξ + σ2

ψ

4N
. (B.1)

Exponential Distribution

If the likelihood for ξ is exponentially distributed, the MLE is given by (2.29). It

can be seen that U(1) is exponentially distributed with parameter λ
′

ξ = λξN , so that

Var
(

ξ̂ML

)

= 1/λ2ξN
2. The bias of the estimator ξ̂ML is bξ,ML

∆
= 1/λξN . Similarly,

Var
(

ψ̂ML

)

= 1/λ2ψN
2 and bψ,ML

∆
= 1/λψN . Therefore, given (2.16) and Proposition

1, it can be concluded that

MSE
(

β̂ML

)

=
0.25

N2

[(

1

λ2ξ
+

1

λ2ψ

)

+

(

1

λξ
− 1

λψ

)2
]

. (B.2)
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APPENDIX C

PAIRWISE BROADCAST SYNCHRONIZATION∗

In this appendix, we show how the results in Section 2 can be easily extended

to the case when an inactive node synchronizes itself by over hearing the message

exchanges taking place between two active nodes. In particular, we provide a much

simpler analytical proof of the ML estimator proposed in [14]. Our proof utilizes

convex optimization techniques and constitutes an alternative to the complex graph-

ical analysis employed in [14] to maximize the likelihood function [2]. In addition,

we provide a Bayesian solution to the clock offset estimation problem for inactive

node synchronization by utilizing the factor graph approach discussed in Section 2.

C.1 A Simple Alternative Proof of Maximum Likelihood Estimation

The message exchange process for the inactive node synchronization is depicted

in Fig. C.1. The mathematical system model describing this message exchange can

be expressed as [14]

Uj
∆
= T 2

j − T 1
j = d+ βr +Xj

Vj
∆
= T 3

j − T 1
j = d+ βo + Yj

Wj
∆
= T 5

j − T 4
j = d+ βo − βr + Zj , (C.1)

where βr and βo denote the clock offsets of nodes r and o, respectively. The network

delays Xj, Yj and Zj are considered i.i.d. exponentially distributed with common

∗Part of this section is reprinted with permission from ”Joint clock offset and skew estimation
for inactive nodes in wireless sensor networks,” Aitzaz Ahmad, Amina Noor, and Erchin Serpedin,
2011, 45th Annual Conference on Information Systems and Sciences (CISS), Copyright 2011 by
IEEE.
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Figure C.1: Message exchange mechanism for inactive node synchronization

mean λ. The likelihood function can be expressed as

L(d, βr, βo) =λ
−3N exp

(

−1

λ

N
∑

j=1

Uj + Vj +Wj − 3d− 2βo

)

· I
(

U(1) − d− βr
)

I
(

V(1) − d− βo
)

I
(

W(1) − d− βo + βr
)

. (C.2)

After using the maximizing value of λ in (C.2), the reduced likelihood function can

be expressed as [14]

L′ = e−3N

(

N
∑

j=1

Uj + Vj +Wj − 3d− 2βo

)−3N

= ·I
(

U(1) − d− βr
)

I
(

V(1) − d− βo
)

I
(

W(1) − d− βo + βr
)

. (C.3)

Instead of solving for the ML estimates using a graphical search of the likelihood

function as done in [14], we show a simple alternative proof using convex optimization

and KKT conditions.

The ML estimation problem can be equivalently represented as an instance of the
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convex optimization problem

(

d̂, β̂r, β̂o

)

= min
d,βr,βo

N
∑

j=1

(Uj + Vj +Wj − 3d− 2βo)

such that U(1) − d− βr ≥ 0, V(1) − d− βo ≥ 0, W(1) − d− βo + βr ≥ 0 .

(C.4)

It can be verified that the optimization problem in (C.4) represents a standard linear

program (LP). The Lagrangian for (C.4) can be expressed as

L =

N
∑

j=1

(Uj + Vj +Wj − 3d− 2βo) +µ1

(

d+ βr − U(1)

)

+ µ2

(

d+ βo − V(1)
)

+ µ3

(

d+ βo − βr −W(1)

)

, (C.5)

where µ1, µ2 and µ3 are the non-negative Lagrange multipliers. The corresponding

KKT conditions can be written as [12]

−3N + µ∗
1 + µ∗

2 + µ∗
3 = 0

µ∗
1 − µ∗

3 = 0

−2N + µ∗
2 + µ∗

3 = 0

µ∗
1

(

d̂+ β̂r − U(1)

)

= 0, µ∗
2

(

d̂+ β̂o − V(1)

)

= 0, µ∗
3

(

d̂+ β̂o − β̂r −W(1)

)

= 0 .

A solution of the above system of equations yields µ∗
1 = µ∗

2 = µ∗
3 = N . This implies

that each of the constraints become active. Solving the system of equations presented
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by the constraints, the ML estimate of the clock offsets is given by













d̂

β̂r

β̂o













=













U(1) +W(1) − V(1)

V(1) −W(1)

2V(1) − U(1) −W(1)













(C.6)

which coincides with the one reported in [14]. The solution in (C.6), therefore, rep-

resents an analytical method to arrive at the ML estimates, bypassing the graphical

arguments in [14].

C.2 Bayesian Estimation

The factor graph approach developed for the pairwise synchronization problem

in Section 2 can also be extended to the case of inactive node synchronization.

Define

ξ = d+ βr, ψ = d+ βo, ζ = d+ βo − βr . (C.7)

By considering ξj, ψj , and ζj as Gauss-Markov random processes at the jth message

exchange, the system model in (C.1) can be represented as

Uj = ξj +Xj , Vj = ψj + Yj, Wj = ζj + Zj . (C.8)

The posterior pdf can be expressed as

f(ξ,ψ, ζ|U ,V ,W ) ∝ f(ξ,ψ)f(U ,V ,W |ξ,ψ, ζ)

= f(ξ0)f(ψ0)f(ζ0)
N
∏

j=1

f(ξj|ξj−1)f(ψj|ψj−1)f(ζj|ζj−1)f(Uj|ξj)f(Vj|ψj)f(Wj|ζj) .

(C.9)

1. Notice the close resemblance between (2.33) and (C.9). This implies that the
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factor graph in this case will have precisely the same structure, just a redefini-

tion of ξj , ψj and ζj.

2. Our message updates based on the max-product algorithm will yield an exact

solution for the case of inactive node synchronization as well.

Therefore, by proceeding exactly as in Section 2.5, the exact solution for the Bayesian

estimate of the clock parameters is given by

ξ̂N = min
(

UN , G
N
N (UN−1) , . . . , G

N
2 (U1) , G

N
1

(

ξ̂0

))

ψ̂N = min
(

VN , G̃
N
N (VN−1) , . . . , G̃

N
2 (V1) , G̃

N
1

(

ψ̂0

))

ζ̂N = min
(

WN , Ḡ
N
N (WN−1) , . . . , Ḡ

N
2 (W1) , Ḡ

N
1

(

ζ̂0

))

. (C.10)

The corresponding estimates of β̂rN and β̂oN can determined from (C.10) using the

transformation in (C.7).
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APPENDIX D

PROOF OF LEMMA 3

To derive the solution of (3.18), assume first that r
(t)
i,` is an even number. Then

there exists an entire interval [ξ1, ξ2] for βi in which the sum of the absolute val-

ues is constant with respect to βi and equal to its minimum. This can be veri-

fied by noticing that since there is an even number of absolute value terms, the

first derivative (wherever it exists) is negative for βi < ξ1, positive for βi > ξ2,

and zero in (ξ1, ξ2). Now, recalling that the {W (t)
i` (n)} are sorted in an increas-

ing order and assuming β` − Si` ≤ W
(t)
i`

(

r
(t)
i,`/2

)

(see Fig. D.1 (a)), it turns out

that ξ1 = max{β` − Si`,W
(t)
i`

(

r
(t)
i,`/2− 1

)

} and ξ2 = W
(t)
i`

(

r
(t)
i,` /2

)

. On the other

hand, if β` − Si` > W
(t)
i`

(

r
(t)
i,` /2

)

, then ξ1 = W
(t)
i`

(

r
(t)
i,`/2

)

and ξ2 = min{β` −

Si`,W
(t)
i`

(

r
(t)
i,`/2 + 1

)

}. In other words, W
(t)
i`

(

r
(t)
i,` /2

)

is always one of the two ex-

tremes of the zero-slope interval [ξ1, ξ2]. Substituting βi = W
(t)
i`

(

r
(t)
i,`/2

)

in (3.18)

leads to

m
(t)
hi`→β`

(β`) ∝ exp

(

−2Kλ

∣

∣

∣

∣

∣

β` − Si` −W
(t)
i`

(

r
(t)
i,`

2

)∣

∣

∣

∣

∣

)

.

The case in which r
(t)
i,` is odd is more involved. In fact, since there is an odd number of

absolute value terms, there is just a point ξ̄ in which the function in (3.18) reaches its

maximum. To determine such a point, first assume β` − Si` < W
(t)
i`

((

r
(t)
i,` − 1

)

/2
)

,

then it is easy to verify that ξ̄ = W
(t)
i`

((

r
(t)
i,` − 1

)

/2
)

. On the other hand, if β` −

Si` > W
(t)
i`

((

r
(t)
i,` + 1

)

/2
)

, then ξ̄ = W
(t)
i`

((

r
(t)
i,` + 1

)

/2
)

. Finally, if β` − Si` ∈

[W
(t)
i`

((

r
(t)
i,` − 1

)

/2
)

,W
(t)
i`

((

r
(t)
i,` + 1

)

/2
)

], then ξ̄ = β` − Si` (see Fig. D.1 (b)).
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Figure D.1: (a) Function proportional to the exponent of (3.18) with r
(t)
i,` = 4 and

β`−Si` ≤W
(t)
i` (2). (b) Function proportional to the exponent of (3.18) with r

(t)
i,` = 5

and β`−Si` ∈ [W
(t)
i` (2) ,W

(t)
i` (3)]. (c) Approximation and real value of the exponent

of g
(t)
i (β`) with r

(t)
i,` = 5.

By summarizing, we have

m
(t)
hi`→β`

(β`) ∝ g
(t)
i (β`) =



































exp

(

−2Kλ

∣

∣

∣

∣

β` − Si` −W
(t)
i`

(

r
(t)
i,`

−1

2

)∣

∣

∣

∣

)

, β` < Si` +W
(t)
i`

(

r
(t)
i,`

−1

2

)

1 , W
(t)
i`

(

r
(t)
i,`

−1

2

)

+ Si` ≤ β` ≤W
(t)
i`

(

r
(t)
i,`

+1

2

)

+ Si`

exp

(

−2Kλ

∣

∣

∣

∣

β` − Si` −W
(t)
i`

(

r
(t)
i,`

+1

2

)∣

∣

∣

∣

)

, β` > Si` +W
(t)
i`

(

r
(t)
i,`

+1

2

)
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The function g
(t)
` (β`) cannot be written as a Laplace distribution. In order to

do so, an approximation is mandatory. The interval in which g
(t)
` (β`) is constant is

ignored and the function is extended by continuity in this region (see Fig. D.1 (c)).

Mathematically,

m
(t)
hi`→β`

(β`) ∝ exp

(

− 2Kλ ·
∣

∣

∣

∣

∣

β` − Si` −
1

2

[

W
(t)
i`

(

r
(t)
i,` − 1

2

)

+W
(t)
i`

(

r
(t)
i,` + 1

2

)]∣

∣

∣

∣

∣

)

.

This concludes the proof.

Remark 4. It is clear that when r
(t)
i,` is even, application of Lemma 3 gives a precise

result. The approximation is applied when r
(t)
i,` is odd. In this case, the accuracy of

the approximation will improve as the value of r
(t)
i,` increases (cf. Fig. D.1). Hence,

the approximation is expected to be better in dense networks.
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APPENDIX E

PROOF OF THEOREM 2

E.1 Computation of EΘ|x

[

(

∂ ln f(Θ|x)
∂ξ

)(

∂ ln f(Θ|x)
∂ξ

)T
]

.

We first compute the second term in (4.36). Since the parameters Θ and x are

statistically independent, it follows that f (Θ|x) = f (Θ). By using the fact that

∂f(Θ)
∂x

= 0, we can write

EΘ|x

[

(

∂ ln f (Θ|x)
∂ξ

)(

∂ ln f (Θ|x)
∂ξ

)T
]

=







EΘ

[

(

∂ ln f(Θ)
∂Θ

)(

∂ ln f(Θ)
∂Θ

)T
]

02M×2

02×2M 02×2







(E.1)

Using (4.8) and (4.9),

ln f (Θ) = ln f (θ0) +

K
∑

k=1

ln f (θk|θk−1)

and it follows that

∂ ln f (Θ)

∂θk
=
nk+1 − nk

σ2
n

, k = 1, . . . , K − 1

∂ ln f (Θ)

∂θK
=

−nK
σ2
n

.

After some algebraic calculations, we have

EΘ

[

(

∂ ln f (Θ)

∂Θ

)(

∂ ln f (Θ)

∂Θ

)T
]

= Υ , (E.2)
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where Υ is defined in (4.40).

E.2 Computation of EΘ [F (Θ,x)]

The FIM can be partitioned as

F (Θ,x) =







F11 F12

F21 F22






,

where

F11 = Ey|Θ,x

[

(

∂ ln f (y|Θ,x)
∂Θ

)(

∂ ln f (y|Θ,x)
∂Θ

)T
]

F12 = Ey|Θ,x

[

(

∂ ln f (y|Θ,x)
∂Θ

)(

∂ ln f (y|Θ,x)
∂x

)T
]

F21 = Ey|Θ,x

[

(

∂ ln f (y|Θ,x)
∂x

)(

∂ ln f (y|Θ,x)
∂Θ

)T
]

F22 = Ey|Θ,x

[

(

∂ ln f (y|Θ,x)
∂x

)(

∂ ln f (y|Θ,x)
∂x

)T
]

. (E.3)

E.2.0.1 Sub-matrix EΘ (F11)

The sub-matrix F11 can be computed more readily by using the alternative ex-

pression

F11 = Ey|Θ,x

[

−∂
2 ln f (y|Θ,x)
∂Θ∂ΘT

]

. (E.4)

It follows from the i.i.d nature of the network delays that

∂2 ln f (y|Θ,x)
∂Θ∂ΘT

=
K
∑

k=1

∂2 ln f (yk|θk,x)
∂Θ∂ΘT

, (E.5)
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where using (4.10)

ln f (yk|θk,x)∝ −(yk− d (x)−Hkθk)
T(yk− d (x)−Hkθk)

2σ2
w

and

f ′
k

∆
=

ln f (yk|θk,x)
∂θk

=
HT

k (yk − d (x))−HT
kHθk

σ2
w

. (E.6)

This implies that

ln f (yk|θk,x)
∂Θ

= [0T2×1, . . . , f
T
k

′
, . . . , 0T2×1]

T

∂2 ln f (yk|θk,x)
∂Θ∂ΘT

= blkdiag

(

02×2, . . . ,
HT

kHk

σ2
w

, . . . , 02×2

)

.

Collecting all terms from (E.5) followed by the expectation in (E.4), it follows that

EΘ [F11] = blkdiag

(

HT
1 H1

σ2
w

, . . . ,
HT

KHK

σ2
w

)

. (E.7)

E.2.0.2 Sub-matrix EΘ (F22)

Using the fact that

∂ ‖x− sj‖
∂x

=
x− sj

‖x− sj‖
(E.8)

we can write

d′ (x)
∆
=
∂d (x)

∂x
=

[

x− s1
‖x− s1‖

,
x− s1

‖x− s1‖
, . . . ,

x− sN
‖x− sN‖

,
x− sN

‖x− sN‖

]T

. (E.9)
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By defining

d′
k

∆
=

ln f (yk|θk,x)
∂x

=
d′T (x) (yk − d (x)−Hkθk)

σ2
w

, (E.10)

the matrix F22 in (E.3) is given by

F22 =

K
∑

k=1

Ey|Θ,x

[

d′
kd

′T
k

σ4
w

]

=
2M

σ2
w

N
∑

j=1

d′T (x)d′ (x) (E.11)

which after some simplification yields (4.39).

E.2.0.3 The sub-matrix EΘ [F12]

The sub-matrix F12 in (E.3) can be computed by using (E.6) and (E.10). After

matrix multiplication and taking expectation with respect to Ey,Θ, EΘ [F12] can be

expressed as

EΘ [F12] =

[

(

HT
1 d

′ (x)

σ2
w

)T

, . . . ,

(

HT
Kd

′ (x)

σ2
w

)T
]T

(E.12)

= EΘ

[

F T
21

]

. (E.13)

The mathematical details in computing (E.12) are omitted for brevity. The proof of

the theorem follows from the sub-matrices calculated above.
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