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ABSTRACT 

 

This dissertation investigates the distribution and transmission systems reliability 

and economic impact of energy storage and renewable energy integration. The 

reliability and economy evaluation framework is presented. Novel operation strategies 

of energy storage and renewable energy are proposed. The method for optimizing the 

energy storage sizing and operation strategy in order to achieve optimal reliability and 

economy level is developed. 

The objectives of the movement towards the smart grid include making the power 

systems more reliable and economically efficient. The rapid development of the large 

scale energy storage technology makes it an excellent candidate in achieving these 

goals. A novel Model Predictive Control (MPC)-based operation strategy is proposed 

to optimally manage the charging and discharging operation of energy storage in order 

to minimize the energy purchasing cost for a distribution system load aggregator in 

power markets. Different operation strategies of energy storage have different 

reliability and economic impact on power systems. Simulation results illustrate the 

importance of the energy storage operation strategies. A hybrid operation strategy 

which combines the MPC-based operation strategy and the standby backup operation 

strategy is proposed to flexibly adjust the reliability and economic improvement 
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brought by energy storage. A particle swarm optimization approach is developed to 

determine the optimal energy storage sizing and operation strategy while maximizing 

reliability and economic improvement. A reliability and economy assessment 

framework based on sequential Monte Carlo method integrated with the operation 

strategies is proposed. The impact on the transmission systems reliability brought by 

energy storage and renewable energy with the proposed operation strategies is 

investigated. Case studies are conducted to demonstrate the effectiveness of the 

proposed operation strategies, optimization approach, and the reliability and economy 

evaluation framework. Insights into how energy storage and renewable energy affect 

power system reliability and economy are obtained.
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NOMENCLATURE 

 

C(k) Power charged to energy storage in period k 

CMax Energy storage maximum charging power limit 

D(k) Power discharged from energy storage in period k 

DMax Energy storage maximum discharging power limit 

L(k) Load in current period k 

Lf(k) Forecasted load in future period k 

P(k) Energy price for period k 

Pf(k) Forecasted energy price for future period k 

R(k) Utilized renewable energy in period k 

Rf (k) Forecasted renewable energy utilization in period k 

RMax(k) Available renewable energy in period k 

Rf,Max(k) Forecasted available renewable energy in period k 

U(k) Energy purchased in power market for period k 

Uf (k) Energy planned to be purchased in future period k 

SOC(k) State of charge level at the end of period k 

SOCMin Energy storage minimum state of charge level 

SOCMax Energy storage maximum state of charge level 
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ηc Energy storage charging efficiency 

ηd Energy storage discharging efficiency 
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1. INTRODUCTIONi 

1.1 Energy Storage Technologies 

The U.S. electric power grid and national grids in other countries such as China 

are being transformed into a more reliable, secure, and efficient smart grid. Within this 

smart gird, many technologies are included. Large scale energy storage is one of them.  

Many large scale energy storage technologies are being investigated. Currently, 

compressed air energy storage (CAES) is one of the energy storage technologies 

receiving significant attention. A 115 MW CAES demonstration power plant placed in 

service in the early 1990s has proven to be effective [1]. CAES systems could to be 

practical in a power range from above 100 MW up to several thousand MW.  

The most common form of energy storage in use today is based on lead-acid 

batteries. This energy storage technology has been utilized in data centers to support 

the Internet and communications centers for higher reliability. The total consumption 

of lead-acid batteries in the United States reported in 2008 is $2.9 billion per year and 

is growing at an annual rate of 8%. 

The utilization of Lithium-ion battery is growing rapidly. The possibility of 

lithium-ion batteries for high-power transportation applications has contributed to the 

sales in the United States to $1billion in 2007, with expected growth rates of 50–60% 

per year.  
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There are many other energy storage technologies in use for electric backup power 

applications. These technologies are also being investigated and some of them are 

being deployed for utility-scale applications. For example, the sodium sulfur battery 

has been widely used in Japanese utilities and is being investigated and deployed in the 

United States recently.  

1.2 Benefits of Deploying Energy Storage Technologies 

There are many benefits to deploy energy storage technologies into the grid. 

Energy storage can: 

1. Improve grid optimization for power production 

2. Facilitate power systems balancing variable renewable energy sources such as 

wind and solar power 

3. Help the integration of plug-in hybrid electric vehicle (PHEV) 

4. Defer investments in transmission and distribution infrastructure to meet peak 

loads 

5. Provide ancillary services directly to grid/market operators 

Energy storage can be utilized as a generation, transmission, distribution, or 

end-user resource depending upon its principal application and the contributing 

institution. 
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1.3 Research Objectives and Approaches 

1.3.1 Scheduling and Operation in Distribution Systems with Energy Storage 

Electric power systems are operated on the basis of real-time balancing of supply 

and demand without large-scale electric energy storage (EES) capabilities. With the 

objective of transformation towards a more reliable, secure, and efficient smart grid, 

and with the recent rapid development of EES technologies, feasible applications of 

EES in power systems have started to be investigated [1]-[2]. The major benefits of 

EES include electric energy time-shift, power supply capacity, and transmission 

congestion relief, [3]. The type and amount of benefits of EES depend on how it is 

operated. The problem of scheduling and operation for a distribution system with 

energy storage focuses on how a load aggregator who participates in the day-ahead 

market and the real-time balancing market should utilize the energy storage to schedule 

its energy purchase in day-ahead market and operate in real-time market. The objective 

is to save energy purchasing cost in the market environment. 

Among the research efforts towards energy cost savings by utilizing storage, 

reference [4] discusses the optimal demand-side response to electricity spot prices for 

storage-type customers (e.g. municipal water plants); Authors in [5] report on an 

experiment on the real-time pricing based control of thermal storage to save cost; 

researchers in [6] investigate the economics of sodium sulfur batteries for the 
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application of energy arbitrage in New York state's electricity market. Besides 

operating storage on the demand side, reference [7] discusses the potential of using 

storage to increase profit of wind power in the day-ahead market and balancing market. 

Research work reported in [8] proposed a Model Predictive Control (MPC)-based 

method to solve the dispatch problem with intermittent resources using the short-term 

wind power and load forecasts. Several forecasting techniques for predicting short term 

electricity price [9]-[13] and load [14]-[16] are presented. Good short-term (e.g. within 

24 hours) price and load forecasts are available. By applying a MPC-based approach, 

the potential of taking advantage of these forecast technologies to better manage the 

energy cost of a load aggregator with EES in a market mechanism consists of 

day-ahead market and real-time balancing market is explored. As the price and load 

forecasts are crucial for this operation strategy, the impact of the forecast uncertainties 

is investigated. 

1.3.2 Distribution Systems Reliability and Economic Improvement with Energy 

Storage 

Large scale energy storage does not just help reduce energy purchasing cost. It can 

also be utilized to improve distribution systems reliability. Several papers in the 

literature have reported on the effect of EES on improving reliability. Reference [17] 

explores the feasibility of installation of battery storage plant to enhance power system 
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reliability and security. Reference [18] describes an analytical approach to evaluate 

reliability improvement by using EES as a backup storage and determine the size of the 

storage to meet a specified reliability target. Reference [19] presents a reliability 

cost/worth evaluation method that can incorporate the impacts of wind energy and 

energy storage utilization in electric power systems. 

Previous efforts have been either for the reliability impact of EES integration, or 

on its economic benefits. Comparatively not much has been done to emphasize the 

relationship between reliability and economy impact of EES. However, reliability 

impact and economic benefits are tightly related. Especially with the operational 

flexibility of energy storage, different operation strategies could bring different 

reliability impact and economic benefits. For load aggregator of distribution system 

integrated with EES, it is important to know the reliability and economy impact of the 

implemented EES operation strategies. Then proper EES operation strategies can be 

chosen and implemented to achieve desired reliability and economy improvement 

goals. A Model Predictive Control (MPC)-based operation strategy to improve 

distribution system economy and reliability is proposed. The reliability and economic 

impact of the proposed MPC-base operation strategy and standby backup operation 

strategy for EES is evaluated and compared. Then a hybrid operation strategy to 

balance reliability improvement and economy improvement is proposed and evaluated. 
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1.3.3 Adequacy and Economy Analysis of Distribution Systems with Energy Storage 

and Renewable Energy 

Renewable Energy Resources (RER) such as wind and solar energy are the key to 

reduce pollutants produced by conventional fossil fuel power plants, carbon dioxide 

emissions and energy purchasing cost associated with rising fuel price. Although the 

potential benefits of RER are significant, many major challenges need to be conquered 

first. One of the major challenges is the reliability impact caused by intermittent RER 

such as wind power. This problem could be ignored earlier because the integrated RER 

were only a very small percentage (e.g., 3%) of the total generation. The intermittent 

property of RER does not have a notable reliability impact on systems which are 

mainly supported by conventional fossil fuel generations. With expected greater 

penetration of RER (e.g., 20% wind power), their reliability impact can no longer be 

ignored. A comprehensive reliability analysis considering the impact of high RER 

penetration is required.  

An efficient method of reliability analysis of electric power systems with 

time-dependent sources, such as photovoltaic and wind generation is presented in [20], 

in which the reliability impact of fluctuating characteristics of unconventional 

generation units is studied. Reference [21] investigates the reliability effects on a 

composite generation and transmission system associated with the addition of 
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large-scale wind energy conversion systems using the state sampling Monte Carlo 

simulation technique, where the wind speed correlation is considered. The work in [22] 

presents a reliability analysis framework which includes both the deterministic and 

probabilistic approaches for bulk power system adequacy and security assessment 

when wind power is added. Considerable work has been done on RER integration in 

transmission systems. Reliability impact of RER integrated in distribution systems is 

also studied by researchers. In [23], the authors investigate the system reliability 

benefits of adding wind turbine generation as an alternative supply in a rural 

distribution system. In [24], both Monte Carlo simulation and analytical methods are 

used to assess distribution system adequacy including wind-based distribution 

generation units, with implementation of the islanding mode of operation in the 

assessment.  

With a rapid development of Electric Energy Storage (EES) technologies, and 

their operational flexibility, interest in integrating both RER and EES into power 

systems to improve systems reliability and economy has been growing. A reliability 

cost/worth evaluation method that can incorporate the impact of wind energy and EES 

utilization in electric power systems is presented in [25]. Research in [26] evaluates 

system reliability considering wind and hydro power coordination, where hydro 

facilities with energy storage capability are utilized to alleviate the impact of wind 
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power fluctuations and also improve the system adequacy. A methodology for the 

operation of a hybrid plant with wind power and hydrogen storage to maximize 

economic benefits (i.e., maximizing profits) in a market environment is presented in 

[7].  

With the operational flexibility of EES, different EES operation strategies could 

bring different sets of reliability impact and economic benefits. To solve this problem, 

a novel Model Predictive Control (MPC)-based operation strategy for distribution 

system load aggregator is proposed to improve the economy of system by minimizing 

energy purchasing cost in power market with the utilization of price, load, and 

renewable energy forecasts. An islanding operation with power supplies from RER and 

EES is implemented to enhance distribution system reliability. In order to accurately 

assess the reliability and economic impact brought by proposed operation strategies, an 

assessment framework based on sequential Monte Carlo simulation approach is 

presented. 

1.3.4 Multi-objective Design of Energy Storage in Distribution Systems 

The objective of energy storage employment is to help build a more reliable and 

efficient smart grid. The major benefits of energy storage include electric energy 

time-shift, frequency regulation and transmission congestion relief. Energy storage can 

help achieve many goals. Among these goals, we focus on two of the most important 
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objectives which are reliability and economy.  

Some researchers have investigated the effect of energy storage on improving 

reliability. Researchers in [27] explore the feasibility of installation of battery storage 

plant to enhance power system reliability and security. A reliability cost/worth 

evaluation method that can incorporate the impacts of wind energy and energy storage 

utilization in electric power systems is presented in [19]. 

Among the research efforts towards achieving higher economic benefits by 

utilizing energy storage, [4] discusses the optimal demand-side response to electricity 

spot prices for storage-type customers. Authors in [5] reports on an experiment on the 

real-time pricing based control of thermal storage to save cost.  

The energy storage sizing problems are also being investigated. Reference [18] 

describes an analytical approach to evaluate reliability improvement by using energy 

storage as a backup storage and determine the size of the storage, which includes the 

capacity and power rate, to meet a specified reliability target.  

Reliability impact and economic benefits are tightly related when considering 

energy storage integration. Especially with the operational flexibility of energy storage, 

different operation strategies could bring different reliability impact and economic 

benefits. For load aggregator of distribution system integrated with energy storage, it is 

important to know the reliability and economy impact of the implemented energy 
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storage operation strategies. Then proper energy storage operation strategies can be 

chosen and implemented to achieve desired reliability and economy improvement 

goals.  

However majority of research done on energy storage design problems mainly 

considers the impact of energy storage capacity and power rate. The impact of energy 

storage operation strategy is ignored or not considered as a major factor. Our work 

demonstrates the significant impact of energy storage operation strategy on reliability 

level and economic benefits. A modified particle swarm optimization approach is 

proposed for the designing the problem of energy storage in distribution systems, 

where not only the energy storage capacity and power rate are determined but also the 

energy storage operation strategy. 

1.4 Impact on Transmission System Reliability 

By implementing the proposed operation strategies, the energy storage devices and 

renewable energy resources integrated in distribution systems are mainly for reducing 

energy purchasing cost and improving distribution system reliability. However the 

utilization of energy storage and renewable energy in distribution systems could have 

an impact on the transmission system reliability. It is necessary to evaluate this impact 

in order to assess the value of the energy storage and renewable energy integration. 

With the quantified value of the energy storage and renewable energy integration, 
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system operator could then determine the proper compensations or incentives for the 

load aggregator. These compensations and incentives could increase the revenue 

streams for the high cost energy storage devices and encourage larger scale of energy 

storage exploration. Evaluating the reliability impact is also beneficial for the system 

operator to understand the relationship between the energy storage and renewable 

energy expansion, and reliability improvement. These insights could be helpful in the 

mid-term or long-term planning in order to maintain and improve system reliability. 

1.5 Organization of the Dissertation 

This dissertation is organized as follows. A brief background of the large scale 

energy storage technologies and its benefits to power systems is presented in Section 1. 

The main research objectives and proposed approaches are also included in Section 1. 

From Section 2 to Section 5, each section describes in details one research objective 

and its approaches. Section 2 describes the optimal scheduling and operation strategy 

for a distribution system integrated with energy storage devices in order to save energy 

purchasing cost in power markets. Section 3 discusses the important impacts of energy 

storage operation strategy on power system reliability and economic performance. 

Reliability and economy of distribution systems integrated not only energy storage but 

also renewable energy is investigated in Section 4. Section 5 presents a particle swarm 

based optimization framework for energy storage design problem. The impact on 
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transmission system reliability brought by the integration of energy storage and 

renewable energy is investigated in Section 6. The conclusions and outlook are given 

in Section 7. References are attached at the end. 
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2. OPTIMAL SCHEDULING AND OPERATION OF LOAD AGGREGATOR 

WITH ELECTRIC ENERGY STORAGE IN POWER MARKETS* 

2.1 Introduction 

Electric power systems are operated on the basis of real-time balancing of supply 

and demand without large-scale electric energy storage (EES) capabilities. With the 

objective of transformation towards a more reliable, secure, and efficient smart grid, 

and with the recent rapid development of EES technologies, feasible applications of 

EES in power systems have started to be investigated [1]-[2]. The major benefits of 

EES include electric energy time-shift, power supply capacity, and transmission 

congestion relief, etc.[3]. The types and amount of benefits of EES depend on how it is 

operated. This section models the EES as operated by a load aggregator that 

participates in the day-ahead market and the real-time balancing market. The focus of 

is on the energy cost savings. 

Among the research efforts towards energy cost savings by utilizing storage, 

authors in [4] discuss the optimal demand-side response to electricity spot prices for 

                                                 
* © 2010 IEEE. Reprinted, with permission, from Yixing Xu, Le Xie and Chanan 
Singh, “Optimal Scheduling and Operation of Load Aggregator With Electric Energy 
Storage In Power Markets,” Proc. North American Power Symposium, Sept. 2010. © 
2011 IEEE. Reprinted, with permission, from Yixing Xu, Le Xie and Chanan Singh, 
“Optimal Scheduling and Operation of Load Aggregators with Electric Energy Storage 
Facing Price and Demand Uncertainties,” Proc. North American Power Symposium, 

Sept. 2011. 
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storage-type customers (e.g. municipal water plants); Reference[5] reports on an 

experiment on the real-time pricing based control of thermal storage to save cost; 

Research work [6] investigates the economics of sodium sulfur batteries for the 

application of energy arbitrage in New York state's electricity market. Besides 

operating storage on the demand side, Researchers in [7] discuss the potential of using 

storage to increase profit of wind power in the day-ahead market and balancing market. 

Research work reported in [8] proposed a Model Predictive Control (MPC)-based 

method to solve the dispatch problem with intermittent resources using the short-term 

wind power and load forecasts. Several forecasting techniques for predicting short term 

electricity price [9]-[13] and load [14]-[16] are presented. Good short-term (e.g. within 

24 hours) price and load forecasts are available. In this work, by applying a 

MPC-based method, the potential of taking advantage of these forecast technologies to 

better manage the energy cost of a load aggregator with EES in a market mechanism 

consists of day-ahead market and real-time balancing market is explored. In the 

presented MPC-based approach, the most updated price and load forecast information 

is integrated in the decision making process. 
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2.2.1 Distribution Systems with Energy Storage 

The load aggregator provides power to its customers (i.e. load) in a distribution 

network. The demand is assumed to be price inelastic. It also operates an EES located 

within the same distribution network. The topology of the system is simplified as in 

Figure 1. The distributed loads are modeled into one lumped load. Load in each period, 

L(k),is price inelastic. The charging C(k) and discharging D(k) operations of the EES 

are determined by the load aggregator. The summation of the load and the EES power 

charging and discharging is the imported power U(k) from the power market, delivered 

from the external grid. The load aggregator’s objective is to minimize its energy cost 

by optimally scheduling the imported power in the day-ahead market and determining 

the imported power during operation in the real-time balancing market. 

2.2.2 Day-ahead and Real-time Power Markets Model 

The power market share simplified as the following day-ahead market model and 

real-time balancing market model. The market models are similar to the models in [7]. 

 

2.2 Energy Cost Saving with Energy Storage in Distribution Systems  
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Figure 1 Electric energy storage integrated in the distribution system. 

 

In the day-ahead market, the load aggregator submits its offers to import power 

to meet its demands for each period in the next day. After the closure of the day-ahead 

market, system operator will determine which offers are accepted and work out the 

market clearing price for each period of the next day. All the load aggregator’s offers 

are assumed to be cleared by the market and its bidding is assumed not affecting the 

market clearing price. In the day-ahead market, the energy cost for each period in the 

next day is 

)()( kPkUsch   (2.1) 

Where Usch(k) is the amount of power scheduled to be imported in the day-ahead 

market for the period k in the next day, P(k) is the actual day-ahead market clearing 

price for the period k in the next day. The total energy cost for a day is the sum of 

energy cost of each period in the day. 
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The amount of imported power scheduled by load aggregator is based on their 

prediction of the load and price, and EES characteristics in each period of the next day. 

The details of how the load aggregator optimally schedules its imported power are 

presented in Section 2.3.1.  

The prediction is not perfectly accurate. During the real time operation, based on 

the actual load and price, load aggregator might decide to adjust its actual imported 

power to minimize energy cost while meet the actual load. The discrepancies between 

day-ahead scheduled imported power and actual imported power are settled in the 

real-time balancing market. The balancing cost for each period is 

)()]()([( kPkUkU balancingschactual   (2.2) 

where Uactual(k) is the actual imported power in period k during real-time operation, 

Pbalancing(k) is the imbalance cost due to up regulation or down regulation of generators. 

The balancing cost for a day is the sum of the cost for each period in the day. The 

real-time balancing market is simplified by introducing two penalty factors pup and 

pdown for up regulation and down regulation. The imbalance cost in period k is 

expressed as the penalty factor times the day-ahead market price for the same period k 










)()()(
)()(),(

)(
kUkUifkPp

kUkUifkPp
kP

schactualdown

schactualup
balancing

，
 (2.3) 

where pup ≥1and pdown ≤1. 

The imbalance Uactual(k)−Usch(k) is based on the scheduled imported power in the 
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day-ahead market, actual price and load, real-time forecasted price and load in the 

future periods, and EES characteristics. The details of how the load aggregator 

optimally determines the actual imported power during real-time operation is presented 

in Section2.3.2. 

The total energy cost is the sum of the day-ahead cost plus the real-time 

balancing cost. This is the objective function load aggregator tries to minimize. 

2.2.3 Imported Power Model 

The load is assumed to be price inelastic which needs to be met all the time. 

However, the charging and discharging behavior of the EES are fully controllable 

within its physical limits. Both load and EES are in the same distribution system, thus 

load and the charging and discharging behavior of the EES are combined together as 

the imported power for the load aggregator. The imported power is elastic to some 

extent because of the flexibility of the EES charging and discharging operation. Load 

aggregator is assumed to be net power importer. Thus 

0)( kUactual  (2.4) 

0)( kUsch  (2.5) 

2.2.4 Electric Energy Storage Model 

EES is modeled by its energy storage capacity, charging power limit, discharging 

power limit, charging efficiency, discharging efficiency, available periods, initial 
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storage level and final storage level. The storage level has to be equal or below its 

capacity. The charging and discharging power have to be within their limits. Power 

loss during discharging and charging operations are considered in its charging and 

discharging efficiencies. The storage is only available for operation during the 

specified available periods. Most of the EES technologies such as sodium sulfur 

batteries and flywheels are stationary and could be operated all the time after 

installation. However some EES such as PHEVs are not stationary, and are only 

available for operation during some specific periods (e.g. from 8AM to 6PM when 

plugged in charging stations). The operation of EES needs to meet the initial and final 

storage level constraints. For example, the energy stored in PHEVs’ batteries must be 

higher than certain level before leaving charging station. The storage level at the end of 

each period is determined by the previous period storage level and the charging and 

discharging operation during this period, it is expressed as 

)()()1()( kDkCkXkX c    (2.6) 

where C(k) is the power charged to EES, D(k) is the power discharged from EES, X(k) 

is the energy storage level at the end of period k. All three variables needs to be within 

its operation limits, expressed as 

)()(0 kCkC Max  (2.7) 

)()(0 kDkD Max  (2.8) 
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)()()( kXkXkX MaxMin   (2.9) 

When the EES is not available, Cmax(k), Dmax(k), Xmin(k) and Xmax(k)are all zeros. 

2.3 Scheduling and Operation with Energy Storage 

2.3.1 Optimal Scheduling in the Day-ahead Market 

In the day-ahead market, the objective of the load aggregator is to schedule the 

imported power for each period in the next day at the least cost. As the day-ahead 

market clearing price P(k) is unknown before submitting its offers, and the actual load 

L(k) during real-time operation is also uncertain, day-ahead predicted price )(ˆ kP  and 

load )(ˆ kL  are used for day-ahead scheduling. There are several forecasting 

techniques for predicting electricity price and load. The focus here is on how to use the 

predicted price and load for optimal scheduling instead of how to predict them.  

The objective function of the day-ahead market optimal scheduling problem can 

be formulated as a linear programming problem which minimizes the energy cost in 

the day-ahead market based on price and load forecast 

)(ˆ)(.
1k

kPkUMin
K

sch 


 (2.10) 

Subject to the constraints (5)-(9) and  

)()()(ˆ)( kDkCkLkU csch   (2.11) 

where K is the total number of periods in the next day. After submitting its schedule to 

the system operator, the market clearing price is worked out. The actual energy cost in 
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day-ahead market can be calculated as 

)()(
1k

kPkU
K

sch 


 (2.12) 

The forecasted day-ahead market price and load play an important role in the 

minimizing the total energy cost. If it can be perfectly forecasted, the load aggregator 

could optimally operate its EES to take advantage of the low prices periods by 

importing more power and storing it while reducing the imported power during the 

high price periods by supporting the load with the stored energy. 

2.3.2 Optimal Operation in the Real-time Balancing Market 

Day-ahead forecasted price and load are not perfectly accurate, the discrepancies 

of scheduled imported power in the day-ahead market and actual imported power 

during operation are settled in the real-time balancing market. A MPC-based method is 

proposed to determine the optimal real-time operation. 

The basic approach of MPC is that a finite–horizon optimization problem 

determining the series of optimal control operations is solved before each control step, 

but only the first control operation is implemented. A predictive model is used to 

estimate the state space trajectory over the prediction horizon, with the initial state 

being the actual state of the system. After implementing the first control operation, the 

system updates the actual state of the system and the future states using the predictive 

model. Then the optimal control routine is repeated to determine the next step’s 
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optimal operation. This method of receding-horizon strategy has been successfully 

applied in the real world, such as in chemical process industry. Applying the above 

MPC-based approach, balancing cost minimization problem with uncertain price and 

load at period i can be implemented as follows 

1) Obtain the actual load and price in the current period i. 

2) Select a receding optimization horizon N periods (e.g. 24 hours). Use a 

load and price forecast model to obtain the most updated load and price 

forecast for the future periods from i+1 to i+N. 

3) Solve the balancing cost minimization problem, which is a linear 

programming problem, formulated as 

)(ˆ)]()([

)()]()([.

1k
kPkUkU

iPiUiUMin

balancing

Ni

i
schactual

balancingschactual

 







 (2.13) 
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The first part [ ( )( ) ( )]actual sch balancingP iU i U i  is the balancing cost of the 

current period i, its actual load L(i)and actual imbalance cost Pbalancing(k)is 

known. The second part )(ˆ)]()([
1k

kPkUkU balancing

Ni

i
schactual 


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 is the 

balancing cost of the following periods i+1 to i+N. Its load )(ˆ kL and price 

ˆ ( )balancingP k are real-time forecasted values. The solution of this 
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optimization problem gives an optimal operation schedule for the periods 

from i to i+N. 

4) Implement the first period operation of the above solution, which is the 

period i to determine how the EES should be operated and the actual 

imported power Uactual(i). 

5) Update the EES storage level state, move to the next period, then repeat 

the algorithm from step 1. 

The actual imbalance cost is simplified as the day-ahead price multiplied by a 

penalty factor. Thus both actual imbalance cost Pbalancing(k)and forecasted imbalance 

cost )(ˆ kPbalancing are expressed as 

,,,1, 

,
)()()(

)()(),(

)(ˆ)(

Niiik

kUkUifkPp

kUkUifkPp
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，  (2.14) 

The short-term (e.g. next 2-3 hours) forecast is more accurate than the relatively 

longer term (e.g. 23-24 hours) forecast. Thus, by using this MPC-based method, the 

most updated price and load forecast could be effectively integrated into the operation 

decision making process to minimize the balancing cost. 
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2.4 Case Studies 

2.4.1 Case I: Stationary Energy Storage 

In this case, the proposed method is applied to a load aggregator with a 

stationary EES. Both the day-ahead scheduling periods and real-time receding 

optimization horizon are 24 hours. Each hour is considered as a period. 

The forecasted and actual day-ahead market clearing price is shown in Figure 2. 

The penalty factors        pup=1.2 and  pdown=0.8. The day-ahead forecasted load 

and actual load during real-time operation are shown in Figure 3. The actual load curve 

has the peak load at 10MW. 

 

 

Figure 2 The forecasted and actual day-ahead market clearing price. 
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Figure 3 Day-ahead forecasted load and actual load. 

 

The parameters of the EES are shown in Table 1. “Initial storage level” means 

the storage level at the beginning of 0AM. “Final storage level” means the storage 

level at the end of 11PM. 

 

Table 1 Energy Storage Parameters 

Capacity(MWh) 10 
Charging Power Limit(MW) 1 
Discharging Power Limit(MW) 1 
Charging Efficiency 0.95 
Discharging Efficiency 0.95 
Available Periods 24/7 
Initial storage level(MWh) 3 
Final storage level(MWh) 3 

 

The energy costs of the following scenarios are simulated and compared:  
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1) Load aggregator does not have EES. It schedules its import power in the 

day-ahead market based on perfect load and price forecast. 

2) Load aggregator operates EES. It uses the proposed method to schedule 

its imported power in the day-ahead market based on perfect load and 

price forecast. 

3) Load aggregator does not have EES. It schedules its imported power in 

the day-ahead market based on not perfect day-ahead load and price 

forecast. The discrepancies during real-time operation are settled in 

balancing market. 

4) Load aggregator operates EES. It uses the proposed method to schedule 

its imported power in the day-ahead market and operate in the real-time 

balancing market based on not perfect day-ahead and real-time load and 

price forecast. 

The day-ahead and real-time forecast uncertainties in scenario 3 and 4 are set to be 

equal. The simulation results are shown in Table 2. 
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Table 2 Case I Cost Comparison 

 

Scenario 1 

No EES/ 

Perfect 

forecast 

Scenario 2 

EES/ 

Perfect 

forecast 

Scenario 3 

No EES/ 

Not 

perfect 

forecast 

Scenario 4 

EES/ 

Not perfect 

forecast 

Day-ahead market 

cost($) 
12958 12605 13280 12943 

Real-time balancing 

market cost($) 
0 0 -187 -275 

Total cost($) 12958 12605 13093 12668 

 

The results in Table 2 show the cost savings the optimal scheduling and 

operation methods can bring, and the importance of the forecast accuracy. The 

negative cost in the real-time balancing market means the load aggregator over 

estimated the load in the day-ahead market, surplus power is sold during real-time 

operation. By comparing the cost difference caused by imperfect forecast, it also 

suggests that the proposed method is more robust to forecast uncertainty. 

Figure 4 shows the difference of the day-ahead scheduled imported power 

between scenario 1 and 2. Generally, more energy is imported during the low price 

periods and less energy is imported in the high price periods. As the load correlates 

with price to some extent, the imported power curve is leveled to some extent.  
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Figure 4 Day-ahead scheduled imported power comparison. 

 

Figure 5 shows the day-ahead scheduled storage level variation based on the 

perfect forecasted day-ahead market price of scenario 2. EES is generally charged 

during the low price periods and discharged during high price periods. 

Figure 6 shows the difference of the scheduled and actual imported power of 

scenario 4. The optimal real-time operations do not necessarily follow the day-ahead 

schedule. 
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Figure 5 Day-ahead scheduled storage level variation based on the forecasted 

day-ahead market price of scenario 2. 

 

Figure 6 The comparison of scheduled imported power in day-ahead market and actual 

imported power during real-time operation in scenario 4. 
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2.4.2 Case II: Mobile Energy Storage 

In case II, V2G (vehicle to grid) capable PHEVs’ batteries are utilized as the 

EES which can be charged and discharged according to control signals from the load 

aggregator. The PHEVs are assumed to be plugged in the charging stations located in 

the load aggregator’s distribution network where other commercial activities also 

reside in. Load aggregator is assumed to have certain contracts with the PHEVs parked 

in the charging stations which allow it to operate the PHEVs’ batteries when they are 

plugged in. The topology of the distribution network could be simplified as in Figure 1. 

All the individual PHEVs are combined and modeled as one EES. The load aggregator 

can operate the batteries as they wish, but need to ensure that before the PHEVs leave 

the charging station, the stored energy has to be above certain required level. The 

proposed methods are applied to help load aggregator optimally operate these PHEVs’ 

batteries to minimize its energy cost. The PHEV battery parameters used in the 

simulation are shown in Table 3. While we recognize that studying the inherent 

uncertainty of PHEVs’ availability at any given time is an important future research 

direction, here in this work we assume that 50 PHEVs are available for operation from 

8AM to 6PM in the simulation day. 
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Table 3  PHEV Battery Parameters 

Capacity(kWh) 5.2 
Charging Power Limit(kW) 2 
Discharging Power Limit(kW) 2 
Charging Efficiency 0.95 
Discharging Efficiency 0.95 
Availabile Periods 8AM to 6PM 
Initial storage level(kWh) 1 
Final storage level(kWh) 5 

 

A load curve of an aggregation of commercial activities is used. A price curve 

with large variation is used to show the volatile behavior of the electricity price in 

downtown load centers. The load without PHEVs and price curves are shown in Figure 

7. 

 

 

Figure 7  Load without PHEVs and price curves. 
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The costs of the following two scenarios are compared: 

1) Perfect day-ahead price and load forecast is assumed. The PHEVs are 

immediately charged when plugged in until reaching the required storage 

level. Load aggregator does not utilize the PHEVs’ batteries to reduce its 

energy cost. 

2) Perfect day-ahead price and load forecast is assumed. The load 

aggregator uses the proposed method to optimally schedule the imported 

power in the day-ahead market and operate the PHEVs’ batteries to 

reduce its energy cost while ensuring the required energy storage level 

before PHEVs’ leaving charging stations. 

Figure 8 compares the imported power of scenario 1, scenario 2 and the load 

curve without PHEVs. In scenario 1, the imported power jumped up from 8am to 1pm, 

because the PHEVs are being charged during those periods. In scenario 2, PHEVs’ 

charging and discharging operations are determined by load aggregator to manage its 

energy cost. Figure 9 shows the storage level variation in scenario 1 and scenario 2. In 

scenario 1, the storage level climbs up to the required level and stays there for the rest 

of the available periods. In scenario 2, the batteries are generally charged when the 

price is low and discharged to support the load when the price is high. 

 



 

 

33 

 

 

Figure 8  Imported power comparison between scenario 1 and scenario 2 with load 

curve without PHEVs. 

 

Figure 9  Average storage level of each PHEV in Scenario 1 and Scenario 2. 

 

The cost comparison is shown in Table 4. The results in Table 4 show the cost 

savings by optimal scheduling the imported power and operating the PHEVs’ batteries. 
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Table 4  Case II Cost Comparison 

 

Scenario 1 

Charging 

immediately/ 

Perfect forecast 

Scenario 2 

Optimal charging and 

discharging/ 

Perfect forecast 

Day-ahead market 

cost($) 
189.12 183.43 

 

In the day-ahead market, a load aggregator can use the proposed method to 

schedule the imported power in each period of the next day with day-ahead forecasted 

price and load. During real-time operation, the discrepancies caused by the forecast 

errors are compensated in the real-time balancing market. The load aggregator can use 

the proposed MPC-based method to optimally determine its actual imported power in 

balancing market and EES operations during real-time operation. The proposed 

MPC-based method integrates the most updated price and load forecast data over a 

receding horizon to achieve the optimal operation.  

Simulations of a load aggregator with stationary storage and PHEVs’ batteries 

demonstrate the energy cost savings. The energy cost savings is optimal if the forecast 

is perfect.  

For the proposed MPC-based operation strategy, forecasts are a crucial part. The 

following section discusses the impact brought by the accuracy of the forecasts. 
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2.5 Scheduling and Operation Facing Price and Demand Uncertainties 

Competitive electricity markets have been established and operated in many 

regions in America. Load serving entities (load aggregators) participate in the 

wholesale electricity market to purchase electric energy to serve their customers. In 

order to meet the demand while minimizing energy purchasing cost, load aggregator 

needs to predict the price and load to determine transactions in power markets. 

Accurate price and load forecasts are crucial for achieving the goal of minimizing cost 

while meeting demand. However, with increasing penetration of renewable energy 

resources such as wind power, the electricity price becomes more unpredictable. 

Renewable distributed generation (DG) technologies suitable for residential use, such 

as solar panel roof, are being gradually adopted by residential customers and with these 

DGs, the load is partially offset. Although the penetration of such distributed 

generation is relatively small, load forecast accuracy could be affected by the 

unpredictable generation from renewable DGs. As a result, load aggregator is facing a 

higher level of price and load uncertainties. 

Load aggregators may suffer high electricity cost facing high levels of price and 

load uncertainties. The MPC-based strategy and two other strategies are evaluated 

using the proposed simulation method. Their performances under different levels of 

price and load uncertainties are compared to demonstrate the advantages of the 
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proposed strategy. 

2.5.1 Comparison of Different Operation Strategies 

In order to compare the forecast accuracy impact under different operation 

strategies, three operation strategies are presented first.  

Strategy 1 is for distribution System without EES. As discussed before, for a 

distribution system without EES, when the load is determined by customers and is 

inelastic, the scheduling and operation strategy has very limited flexibility. The 

strategy for this situation is as follows. 

In the day-ahead market, the load aggregator schedules the imported power 

according the load forecast for the next day, as in following equation 

ˆ( ) ( )
sch da

LU k k  (2.15) 

where ˆ ( )daL k  is the day-ahead forecasted load in period k in the next day. 

The electricity cost in day-ahead market is 
24

k 1
( ) ( )sch daU k P k



  (2.16) 

where ( )daP k  is the day-ahead market clearing price for period k, each period is 

considered as an hour here.  

As load forecast is not perfect, in order to satisfy the load during operation, load 

aggregator needs to turn to real-time market to purchase more power when the load is 

higher than forecasted and sell excess power when day-ahead scheduled power is more 
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than actual needed. Thus we get 

( ) ( )
actual actual

U k L k  (2.17) 

where ( )actualL k  is the actual load in period k. 

The electricity cost in real-time market is calculated as 

24

k 1
[( ( ) ( )] ( )actual sch rtU k U k P k



   (2.18) 

where ( )rtP k  is the actual real-time market energy price. 

Strategy 2 is for distribution system with EES. With EES the scheduling and 

operation strategy is more flexible. Because of this flexibility, strategies could be 

different from each other. Strategy 2 and MPC-based strategy presented later both 

utilize EES, but their approaches to its utilization are different. The details of strategy 2 

are as follows. 

In the day-ahead market, the load aggregator utilizes EES to minimize electricity 

cost according the day-ahead forecasted load and energy price.  

The objective function of day-ahead optimal scheduling problem can be 

formulated as 

24

k 1

ˆ. ( ) ( )sch daMin U k P k


  (2.19) 

Subject to operation constraints and 

ˆ( ) ( ) ( ) ( )sch da cU k L k C k D k    (2.20) 

where ˆ ( )daP k  is the predicted day-ahead energy price before the final market 

clearing price is computed. After submitting its schedule to system operator, market 
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clearing price is worked out. The actual electricity cost in day-ahead market can be 

calculated as 

24

k 1
( ) ( )sch daU k P k



  (2.21) 

By using this day-ahead scheduling method, load aggregator can optimally 

operate EES to take advantage of the low price periods by importing more energy and 

storing it while reducing the imported power during high price periods by supporting 

the load with the stored energy. 

During real-time operation, the load aggregator needs to settle any discrepancy in 

real-time market. The principle of strategy 2 during operation is that in each operation 

period EES is utilized to minimize the mismatch between day-ahead scheduled 

imported power and actual imported power, [( ( ) ( )]
actual sch

U k U k . Only when EES 

reaches its operation limits including power charging/discharging limit or energy 

storage capacity limit, load aggregator turns to real-time market to settle the remaining 

mismatch. In this way, the scheduled imported power and actual imported power can 

match with each other for most of the periods.  

In day-ahead scheduling, strategy 3 or the MPC-based strategy is the same as 

strategy 2. In the real-time operation stage, MPC-based strategy utilizes the real-time 

updated price and load forecasts to determine optimal operations. 
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2.5.2 Day-ahead Price and Real-time Price Model 

In day-ahead market, load aggregator schedules imported power according to the 

predicted day-ahead price. As day-ahead price is relatively stable and predictable, the 

actual day-ahead price is assumed to be the same as the predicted energy price.   

However, energy price in day-ahead market and real-time market could be very 

different, especially under high price uncertainty. Three real-time market energy price 

curves are constructed to represent three different levels of price uncertainty. The 

method for constructing these curves is as following. One real-time market energy 

price curve is first constructed. The maximum price deviation from day-ahead market 

is set to be 5%, where maximum price deviation is defined as the largest mismatch 

between day-ahead market energy price and real-time market energy price in the same 

period divided by real-time market energy price. This curve represents low price 

uncertainty. The second price curve is constructed by increasing the price deviation 

from the first price curve, such that the maximum price deviation is 15%. This curve 

represents medium price uncertainty. The same procedure is applied to construct the 

third curve in which the maximum price deviation is 30%. This one represents high 

price uncertainty. The day-ahead market energy price and real-time market energy 

price with three different levels of price uncertainty are shown in Figure 10. In 

simulation, the same day-ahead price and corresponding real-time price are utilized for 
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each price uncertainty level. 

2.5.3 Day-ahead Forecasted Load and Actual Load Model 

In day-ahead market, day-ahead forecasted load is used for load aggregator to 

determine the imported power for each period in the next day.  

Compared with energy price, load can be more accurately predicted according 

the past experience. Three load curves are constructed to represent three different 

levels of load uncertainty. The method for constructing these curves is the same as for 

the real-time price curves. The maximum load deviation for low load uncertainty is 

2%, for medium load uncertainty is 5%, and for high load uncertainty is 10%. 

Maximum load deviation is defined as the largest mismatch between day-ahead 

forecasted load and actual load in the same period divided by the actual load. These 

three load curves are shown in Figure 11 with the day-ahead forecasted load. Similar to 

the price model, the same day-ahead load forecast and corresponding actual load curve 

are utilized for each load uncertainty level in simulation. 
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Figure 10  Day-ahead market energy price and real-time market 

energy price with three different levels of price uncertainty. 

 

 

Figure 11  Day-ahead forecasted load and actual load with three 

different levels of load uncertainty. 

 

2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

120

140

160

Time (hour)

P
ri
c
e
 (

D
o
lla

rs
/M

W
h
)

 

 

Day-ahead Market Energy Price

Real-time Market Energy Price with Low Uncertainty

Real-time Market Energy Price with Medium Uncertainty

Real-time Market Energy Price with High Uncertainty

2 4 6 8 10 12 14 16 18 20 22 24
4

5

6

7

8

9

10

11

12

Time (hour)

L
o
a
d
 (

M
W

)

 

 

Day-ahead Forecasted Load

Actual Load with Low Uncertainty

Actual Load with Medium Uncertainty

Actual Load with High Uncertainty



 

 

42 

 

2.5.4 Real-time Price and Load Forecasts Model 

Many publications have dealt with the price forecast and load forecast 

methodologies. These techniques could be used in the strategies presented in this work. 

However, as the focus is on the scheduling and operation strategies, a simplified 

real-time price and load forecasts model is presented and used for simulation instead. 

Real-time price forecasts are generated as follows. 

,max( )ˆ ( ) (1 ( ) )
rt rt P PkP k P E k R    (2.22) 

where ˆ ( )
rt

P k  is the forecasted price for a future period k,  ,max ( )PE k  is the maximum 

price forecast error percentage for future period k, PR  is a random number with a 

uniform distribution from -1 to +1. This price forecast model simulates the forecast 

errors and controls the forecast errors within a certain range, ,max ( )PE k . Real-time 

load forecast is generated using the same method as in the following equation 

,max
ˆ ( ) ( ) )( ) (1

actualactual L L
L k E k Rk L     (2.23) 

Given the fact that price and load forecasts tend to be more accurate for 

near-term such as within the following 3 hours, and less accurate for relatively longer 

term, such as 20 hours from the current period, this characteristic is modeled by 

linearly increasing the maximum forecast error ( ,max ( )
P

E k  for price forecast and 

,max ( )
L

E k   for load forecast) as the forecast range increases. An example of maximum 

real-time price and load forecasts errors in the next 24 hours is shown in Figure 12. 
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The hour on x axis is the time from current period, not the absolute hour. For example, 

in Figure 12, the maximum load forecast error in the last period, the 24th period, are 

±5%. It means the load forecast error for the period which is 24 hours in the future 

from the current period will be within the range of ±5%. 

 

 

Figure 12  Price and load forecasts error boundaries for the next 24 hours. 

 

As the real-time market energy price and actual load for current period is known, 

the forecasts errors in current period are zeros. If the maximum forecast error for the 

ending period ( ,max (24)
P

E  and ,max (24)
L

E  in Figure 12) is also known, the maximum 

forecast errors for each period could be calculated. 
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2.5.5 Case Studies Considering Forecasts Uncertainties 

The above three scheduling and operation strategies are implemented in case 

studies. Each strategy is applied to a distribution system facing different levels of price 

and load uncertainties. Three levels of load uncertainty and three levels of price 

uncertainty constructed previously are applied. A price uncertainty level matches with 

a load uncertainty level to form a price and load uncertainty scenario. Thus there are a 

total of 9 scenarios of different price and load uncertainties. 

In MPC-based operation strategy, the real-time price and load maximum forecast 

errors for the 24th hour from current hour are set to be the load uncertainty and price 

uncertainty of the corresponding price and load uncertainties scenario respectively to 

emulate that real-time forecast accuracy is related to the price and load uncertainties. 

The higher the uncertainties the harder it is to forecast accurately. The EES parameters 

used in case studies are shown in Table 5,which are similar to the parameters of a 

sodium-sulfur batteries system [1].  

 

Table 5  EES Parameters 

Minimum energy storage level (MWh) 2 
Maximum energy storage level (MWh) 12 
Maximum charging/discharging power limit (MW) 2.5 
Charging/discharging efficiency 95% 
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Simulation results are shown in the following. With strategy 1, the actual 

imported power during real-time operation is shown in Figure 13 with day-ahead 

scheduled imported power. 

 

 

Figure 13  Day-ahead scheduled imported power and actual imported power with 

strategy 1. 

 

As there is no EES for a flexible operation, the actual imported power is identical 

to the actual load. The mismatches between scheduled and actual imported power are 

settled in real-time market. The real-time market energy price and real-time energy 

cost for load aggregator are shown in Figure 14. 
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imported power are shown in Figure 15. Real-time energy cost and real-time EES 

operations are shown in Figure 16.  

With this strategy, EES is utilized to minimize the mismatches between 

scheduled and actual imported power. Thus for many periods, scheduled and actual 

imported power are the same. However, when EES reaches its operation limits, such as 

reaching capacity limit in hour 7, or reaching discharging power limit in hour 13, 

scheduled and actual imported power mismatch cannot be totally compensated by EES. 

In this situation, the remaining mismatch is settled in real-time market. Positive energy 

cost means load aggregator needs to purchase more energy, while negative energy cost 

means load aggregator sells excess power back the real-time market. 
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Figure 14  Real-time market energy price and real-time energy cost for strategy 1. 

 

Figure 15  Day-ahead scheduled imported power and actual imported 

 power with strategy 2. 
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Figure 16  Real-time energy cost and real-time EES operations with strategy 2. 

 

The operations of the proposed MPC-based strategy under high price and load 

uncertainties scenario are illustrated below to show its characteristics. With 

MPC-based strategy, day-ahead scheduled imported power and actual imported power 

are shown in Figure 17. Figure 18 shows the real-time market electricity cost and 

real-time EES operations. Compared with strategy 2, MPC-based strategy actively 

participates in real-market to manage electricity cost by utilizing the flexible control of 

EES. 
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Figure 17  Day-ahead scheduled imported power and actual imported power with 

MPC-based strategy. 

 

Table 6 shows the day-ahead electricity cost for three strategies. Strategy 2 and 

strategy 3 choose the same day-ahead scheduling method, thus their day-ahead 

electricity costs are the same. Because of the flexible operation of EES, the day-ahead 

electricity cost with strategy 2 and strategy 3 is less than strategy 1. As the same 

day-ahead price and load forecasts are used for all scenarios, the day-ahead electricity 

cost for each strategy under all 9 levels of price and load uncertainties are the same. 

Table 6 shows the real-time electricity cost of three strategies facing 9 different levels 

of price and load uncertainty scenarios respectively. 
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Figure 18  Real-time electricity cost and real-time EES operations with 

MPC-based strategy. 

 

It can be observed in Table 7 that the real-time electricity cost with strategy 1 

increases sharply with the increase of price and load uncertainties. That is because 

without EES, load aggregator has to purchase energy at any real-time market price 

to meet load when day-ahead scheduled imported power falls short.  

With strategy 2, the real-time electricity cost is less than with strategy 1 when 

load uncertainty is low. However when load uncertainty becomes higher, real-time 

electricity cost with strategy 2 is even higher than with strategy 1. That is because 

during real-time operation, strategy 2 only minimizes the mismatch between 
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while not considering the mismatches in future periods which could be large enough 

to cause much more real-time electricity cost. Despite of this, the total cost 

combining day-ahead and real-time electricity cost with strategy 2 is still less than 

that with strategy 1 as the cost savings in day-ahead market is much greater than 

with strategy 1.  

 

Table 6 Price and Load Uncertainties Scenarios 

 Strategy 1 Strategy 2 MPC-based 
Strategy 

Day-ahead Electricity cost  
(Thousand Dollars) 15.935 15.295 15.295 

 

Table 7 Real-Time Electricity Cost ($) For Strategy 1, Strategy 2 and MPC-Based 

Strategy 

 Low Load 
Uncertainty (2%) 

Medium Load 
Uncertainty (5%) 

High Load 
Uncertainty (10%) 

Low Price 
Uncertainty 

(5%) 

Strategy 1: 145 
Strategy 2: 136 
MPC-based: 117 

Strategy 1: 362 
Strategy 2: 391 
MPC-based: 335 

Strategy 1: 725 
Strategy 2: 788 
MPC-based: 698 

Medium Price 
Uncertainty 

(15%) 

Strategy 1: 156 
Strategy 2: 146 
MPC-based: 2.8 

Strategy 1: 389 
Strategy 2: 413 
MPC-based: 236 

Strategy 1: 778 
Strategy 2: 837 
MPC-based: 625 

High Price 
Uncertainty 

(30%) 

Strategy 1: 171 
Strategy 2: 162 
MPC-based: -255 

Strategy 1: 429 
Strategy 2: 446 
MPC-based: 3 

Strategy 1: 857 
Strategy 2: 911 
MPC-based: 432 

 

Real-time electricity cost with MPC-based strategy is much lower than that with 



 

 

52 

 

the other two strategies. MPC-based strategy reduces the cost by determining the 

operation in current period while considering the operations in the following periods 

with the most updated price and load forecasts. In Table 7, facing high price 

uncertainty and low load uncertainty, the real-time electricity cost turns out to be 

negative. This is caused by load aggregator selling more energy surplus during high 

price periods and make up the needed energy during low price periods. It is the same 

reason for that the real-time cost decreases with the increase of price uncertainty while 

fixing load uncertainty. High price uncertainty is favored by load aggregator with 

MPC-based strategy as there are more opportunities for energy arbitrage utilizing EES. 

2.6 Summary 

In competitive power markets, with increasing penetration of variable renewable 

energy resources such as wind power, electricity price becomes more uncertain. In 

distribution systems, adoption of renewable distributed generation technologies adds 

another dimension of uncertainty in load forecast. Facing these higher price and load 

uncertainties, it becomes more challenging for load aggregators to manage their 

electricity cost. Within this context, a Model Predictive Control (MPC)-based 

scheduling and operation strategy is proposed for the load aggregator with electric 

energy storage (EES) to manage electricity cost in day-ahead and real-time power 

markets with different levels of price and load uncertainties. Price and load forecasts 
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are actively integrated into the scheduling and operation decision making process to 

determine the optimal operation. Two other strategies are also discussed and studied 

for comparison. Case studies demonstrate better performance of the proposed 

MPC-based strategy compared to the other two strategies facing different levels of 

price and load uncertainties. The MPC-based strategy is also shown to be robust with 

the increase of price and load uncertainties. The benefit of energy arbitrage with 

MPC-based strategy is also illustrated. 

With this MPC-based strategy, load aggregators schedule purchase of power in 

the day-ahead market with day-ahead price and load forecasts. Then during real-time 

operation, real-time price and load forecasts are updated constantly in each period. By 

utilizing these forecasts, load aggregator optimally adjusts its operations to reduce 

real-time electricity cost.  

Case studies show that with the increase of price and load uncertainties, 

MPC-based strategy can manage the electricity cost much better than the other two 

strategies. With the other two strategies, electricity cost increases sharply with the 

increase of price and load uncertainties. MPC-based strategy is more robust with the 

increase of price and load uncertainties.  

Another advantage of MPC-based strategy is that with the increase of price 

uncertainty while fixing load uncertainty, real-time electricity cost could be even 
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reduced. This is due to the fact that there are more opportunities for energy arbitrage. 
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3. DISTRIBUTION SYSTEMS RELIABILITY AND ECONOMIC 

IMPROVEMENT WITH DIFFERENT ELECTRIC ENERGY STORAGE 

OPERATION STRATEGIES* 

3.1 Introduction 

Electric power systems have been operated, in the past, on the basis of real-time 

balancing of supply and demand without large-scale electric energy storage (EES) 

capabilities. The objective of smart grid deployment is to make current grid more 

reliable, secure, and efficient. With the recent rapid development of EES technologies, 

many feasible applications of EES in power systems have been investigated [1]-[2]. 

The major benefits of EES include electric energy time-shift, frequency regulation and 

transmission congestion relief. The focus in this section is on the reliability and 

economy improvement by utilizing EES.  

Several papers in the literature have reported on the effect of EES on improving 

reliability. Reference [17] explores the feasibility of installation of battery storage plant 

to enhance power system reliability and security. Reference [18] describes an 

analytical approach to evaluate reliability improvement by using EES as a backup 

storage and determine the size of the storage to meet a specified reliability target. 
                                                 
* © 2011 IEEE. Reprinted, with permission, from Yixing Xu and Chanan Singh, 
“Distribution Systems Reliability and Economic Improvement with Different Electric 
Energy Storage Operation Strategies,” IEEE Power & Energy Society General Meeting, 

July 2011. 
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Reference [19] presents a reliability cost/worth evaluation method that can incorporate 

the impacts of wind energy and energy storage utilization in electric power systems. 

Among the research efforts towards energy cost savings by utilizing EES, [4] 

discusses the optimal demand-side response to electricity spot prices for storage-type 

customers (e.g. municipal water plants).  

Previous efforts have been either for the reliability impact of EES integration, or 

on its economic benefits. Comparatively not much has been done to emphasize the 

relationship between reliability and economy impact by EES. However, reliability 

impact and economic benefits are tightly related. Especially with the operational 

flexibility of energy storage, different operation strategies could bring different 

reliability impact and economic benefits. For load aggregator of distribution system 

integrated with EES, it is important to know the reliability and economy impact of the 

implemented EES operation strategies. Then proper EES operation strategies can be 

chosen and implemented to achieve desired reliability and economy improvement 

goals. A Model Predictive Control (MPC)-based operation strategy to improve 

distribution system economy and reliability is proposed. The reliability and economic 

impact of the proposed MPC-base operation strategy and standby backup operation 

strategy for EES is evaluated and compared. Then a hybrid operation strategy to 

balance reliability improvement and economy improvement is proposed and evaluated. 
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Because of the unique features of EES such as inter-temporal and energy limited 

characteristics, conventional reliability evaluation method cannot accurately capture 

the reliability and economy impact brought by EES, especially when advanced 

operation strategies are implemented. A sequential Monte Carlo method integrated 

with EES operation strategies for reliability and economic evaluation is presented. 

3.2 System Description 

3.2.1 Segmented Distribution System Integrated with Electric Energy Storage 

The load aggregator provides electric energy to its customers in a distribution 

system. The objective of the load aggregator is to serve its customers reliably and 

economically.  

Electric energy storage (EES) devices integrated in the distribution system could 

be utilized to improve system reliability and economy. As most distribution systems 

are radial, the focus is on considering such distribution systems. Figure 19 shows an 

example of a radial distribution system integrated with EES, where “X” represents 

protective devices such as circuit breaks and reclosers. The transformers and all the 

generation and transmission systems are represented as the external grid, through 

which the electric energy is delivered to the distribution system.  

 



 

 

58 

 

 

Figure 19  Schematic diagram of a radial distribution system integrated with energy 

storage. 

 

A distribution system consists of components such as wires, circuit breakers, 

reclosers, etc. A group of components can be modeled into one segment if the entry 

component is a protective device such as a switch or a recloser. The entry protective 

device is the only protective device of this segment of grouped components. In this 

way, the distribution system is modeled by segments instead of components. The 

rationale behind this segment modeling [28] is that if there is a component failure 

downstream of a protective device and within its protection zone, the protection zone 

will be isolated and all the customers in that protection zone will lose power supply. 

Even if there are distributed generations or energy storage devices integrated into this 

segment, once a component failure occurs within this segment, the power supply from 

theses energy resources is cut off. For example, in Figure 19, the components of the 
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distribution are grouped into 4 segments according to the location of protective 

devices. If a component failure occurs in segment 4, the protective devices isolate this 

segment, external grid power cannot be supplied to this segment, the power supply 

from EES is also cut off, so the load demand in this segment cannot be met and a loss 

of load event occurs.  

The external grid is considered in either success state or failure state. The 

external grid is in success state when power could be supplied from external grid to 

distribution system. It is assumed that whenever power could be supplied to 

distribution system from external grid, there is enough power to meet the load inside 

distribution system. The external grid is in failure state when no power could be 

supplied to distribution system.  

3.2.2 Modes of Operation 

In a radial distribution system without distributed generation (DG) or EES, if a 

component failure occurs within a segment, the segment is isolated. Grid power cannot 

be supplied to the load within this segment and the segments downstream. The load 

demand in all these segments cannot be met. However, when DG or EES are 

integrated, if a component failure occurs within a segment, the segment is still isolated 

but the downstream segments can utilize power supply from integrated DG or EES to 

support its load. In this case, the loss of load event might be avoided if there is enough 
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power from these energy resources. In Figure 19, when segment 2 fails and is isolated, 

as there is no DG or EES integrated in segment 3, there is no power supply for its load. 

Instead, power from EES can be used to supply the load within segment 4.  

To summarize the above discussion, when there is a failure within a segment, all 

the power supply for this segment is cut off. When there is no failure within a segment, 

there are two modes of operation, grid connected mode and islanding mode. In the grid 

connected mode, the external grid is in success state grid power can be supplied to this 

radial distribution system and there is no failure within any upstream segment. Thus 

the grid power can go through all the upstream segments and reach the studied 

segment. In the islanding mode, at least one failure occurs in upstream segments or the 

external grid is in failure state. Thus grid power cannot be supplied to the segment 

under study. If there are no DGs and EES integrated in the studied segment, load in 

this segment cannot be met. If there are DGs and EES integrated in the studied 

segment, power from DGs and EES is utilized to support its load. Loss of load might 

be avoided or loss of energy is minimized.  

3.3 Reliability and Economic Impact of Different EES Operation Strategies 

The operation of electric energy storage (EES) is very flexible and behaves very 

different from either generation or load. When energy stored in EES is discharged to 

provide power for load, EES behaves similar to generation. When EES is charged with 
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power from distribution system, it consumes power and behaves like a load. EES can 

be flexibly controlled to act as generation, load or simply standby according to the 

needs of load aggregator. Thus different EES operation strategies could be 

implemented to improve distribution system reliability and economy. In this section, a 

standby backup operation strategy, a Model Predictive Control (MPC)-base operation 

strategy and a hybrid operation strategy are presented. The reliability and economy 

improvement of these operation strategies are evaluated and compared.  

3.3.1 Standby Backup Operation Strategy 

One of the purposes of utilizing EES is to improve system reliability. One 

commonly used operation strategy is utilizing EES as a standby backup energy 

resource. The standby backup operation strategy is implemented as follows. 

In islanding mode, power from external grid cannot reach the studied segment. 

EES integrated in this segment is discharged to sustain the service in this segment. The 

objective is to avoid a loss of load event or minimize the loss of energy. When the load 

is less than the maximum discharging rate of EES, EES discharges at the load level to 

meet the load demand and avoid a loss of load event until the energy storage level 

reaches its lower limit when no power can be discharged. When the load is higher than 

the EES maximum discharging rate, EES discharges at its highest discharging rate to 

minimize loss of energy until reaching the energy storage lower limit. 
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When the system is restored and the segment is back to the grid connected mode, 

EES is immediately charged until it reaches its energy storage upper limit and then is 

put as standby to prepare for the next system failure.  

When a failure occurs inside the segment, EES cannot be operated, load cannot 

be met.  

3.3.2 MPC-based Operation Strategy 

Another purpose of utilizing EES is to improve the economy of the system. The 

economy of the system is considered as the energy cost for load aggregator to provide 

electric energy to its customers. A MPC-based operation strategy which maximizes the 

economic benefit by minimizing energy cost is proposed. This operation strategy is 

implemented during grid connected mode. In the MPC-based operation strategy, short 

term forecasts of energy price and load are utilized to determine the optimal operation. 

Power market modeling and energy storage modeling are introduced first before 

further description of the MPC-based operation strategy. 

The power market is simplified as a real time power market model. During each 

market period (e.g. an hour), load aggregator determine how much energy it needs to 

purchase from power market, then submits its offer to get that amount of energy. The 

market clearing mechanism determines the energy price for each period. Load 

aggregator is assumed to be a price taker who cannot affect the clearing price 
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determined by the market. The energy cost for period k is 

)()( kPkU   (3.1) 

where U(k) is the amount of energy purchased in power market in period k, P(k) is the 

market clearing price in period k. As load aggregator can only purchase energy, we 

have 

0)( kU  (3.2) 

The total energy cost for the period i and the following N periods is  

)()(
k

kPkU
Ni

i





 (3.3) 

No specific energy storage technology is addressed. Rather the energy storage 

unit is modeled as a set of parameters and operation limits. Energy storage is modeled 

by its energy storage capacity, charging power limit, discharging power limit, charging 

efficiency, discharging efficiency. The storage level has to be equal or below its 

capacity. The charging and discharging power have to be within their limits. Power 

loss during discharging and charging operations are considered in its charging and 

discharging efficiencies. The storage level at the end of each period is determined by 

the previous period storage level and the charging/discharging operation during this 

period, it is expressed as 

)()()1()( kDkCkXkX c    (3.4) 

where C(k) is the power charged to energy storage, D(k) is the power discharged from 
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energy storage, X(k) is the energy storage level at the end of period k, c is the 

charging efficiency. All three variables need to be within their operation limits, 

expressed as 

MaxCkC  )(0  (3.5) 

MaxDkD  )(0  (3.6) 

)()()( kXkXkX MaxMin   (3.7) 

 

The basic approach of MPC is that a finite–horizon optimization problem 

determining the series of optimal control operations is solved before each control step, 

but only the first control operation is implemented. A predictive model is used to 

estimate the state space trajectory over the prediction horizon, with the initial state 

being the actual state of the system. After implementing the first control operation, the 

system updates the actual state of the system and the future states using the predictive 

model. Then the optimal control routine is repeated to determine optimal operation for 

the next step. This method of receding-horizon strategy has been successfully applied 

in the real world, such as in chemical process industry. Applying the above 

MPC-based approach, energy cost minimization problem at period i can be 

implemented as follows 

1) Obtain the actual load and price in the current period i. 
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2) Select a receding optimization horizon N periods (e.g. 24 hours). Use load and 

price forecast tools to obtain the most updated load and price forecasts for the 

future periods from i+1 to i+N. 

3) Solve the energy cost minimization problem, which is a linear programming 

problem, formulated as: 

)(ˆ)()()(.
1k

kPkUiPiUMin
Ni

i






  (3.8) 

Subject to operation constraints and 

),()()()( iDiCiLiU d  (3.9) 

NiikkDkCkLkU d  ,,1),()()(ˆ)(   (3.10) 

The first part )()( iPiU  is the energy cost in the current period i. Its actual load L(i) 

and energy price P(k) are known. The second part )(ˆ)(
1k

kPkU
Ni

i

 




 is the total energy 

cost of the following periods from i+1 to i+N. Its load )(ˆ kL      and energy price 

)(ˆ kP               are forecasted values. The solution of this optimization 

problem gives an optimal operation schedule for EES from periods i to i+N. 

4) Implement the first period’s operation of the above solution, which is the period i 

to determine how the energy storage should be operated and the amount of energy 

U (i) needs to be purchased. 
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5) Update the energy storage level state, move to the next period, and then repeat the 

algorithm from step 1. 

Several forecasting techniques for predicting short term electricity price and load  

have been presented by researchers. Good short-term (e.g. within 24 hours) price and 

load forecasts are available. The very short-term (e.g. next 2-3 hours) forecast is more 

accurate than the relatively longer term (e.g. 23-24 hours) forecast. Thus, by using this 

MPC-based method, after each control step, the price and load forecast are updated 

according the newest prediction. Then the most updated and accurate price and load 

forecast could be effectively integrated into the operation to minimize the energy cost. 

 The proposed MPC-based control method is implemented in grid connected 

operation mode. Then in the islanding mode, the EES operation is the same as in the 

standby backup operation strategy. EES is discharged to sustain the service in this 

segment to avoid a loss of load event or minimize the loss of energy, within operation 

limits. In failure mode, the load in the segment cannot be met. 

3.3.3 Reliability and Economic Analysis Methods 

In reliability analysis, a power system is considered to be operating in either 

success state or failure state. A system is considered operating in success state when it 

has enough generation to serve the load. When there is not sufficient generation to 

meet the load demand, and loss of load occurs, the system is in failure state. Loss of 
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load expectation (LOLE) and loss of energy expectation (LOEE) are the reliability 

indices. 

For a system with EES, when EES is discharged to provide power, the 

discharged power is included in generation. When EES is charged to restore energy 

storage level, the charging power is included in load. When EES is neither charged nor 

discharged, it does not affect the system. Energy storage could behave like generation, 

load, or standby according to its actual operation. Monte Carlo simulation is used to 

model the complexity introduced by the storage and its sequential nature. 

There are two types of Monte Carlo simulation methods, non-sequential and 

sequential methods. In the non-sequential methods, in each period random sampling on 

state space is performed to determine system state. The sampling in each period is 

independent from the sampling in other periods. The chronological characteristic of the 

system is thus not captured. The inter-temporal characteristic of EES is, however, a 

key factor for system reliability level which cannot be ignored. When EES is 

discharged to provide power, it is similar to generation. But one major difference is the 

energy stored in EES is limited. The energy EES can provide in this period is 

determined not only by its discharging rate but also the previous discharging operation 

and the scheduled discharging operation in the future periods. Non-sequential cannot 

chronologically model the inter-temporal characteristic of EES, thus it cannot be used 
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for reliability analysis in our approach. 

Sequential Monte Carlo simulation can capture the chronological characteristic 

of the system. Thus it can capture the inter-temporal characteristic of EES. Also it can 

capture the actual operation of EES as generation, load or standby. Specified EES 

operation strategies can be integrated into the simulation. Sequential Monte Carlo 

Simulation has to be utilized for reliability analysis.  

In the sequential Monte Carlo Simulation, time horizon is divided into periods 

(hourly). Once the component simulation is done, the operation mode of each segment 

during each period is determined. The success or failure state of each segment is 

evaluated according to their operation mode.  

When the segment is in grid connected mode, the load is compared with the total 

available generation capacity which consists of the available generation capacity from 

external grid and EES when EES is integrated into the studied segment. Here the 

generation capacity of EES is the energy EES could supply in this period. It is 

determined by the minimum of the discharging rate and available energy which can be 

discharged. If the total generation capacity is not sufficient for the load, the system is 

identified as in failure state, if the total generation capacity can serve the load, it is in 

success state. After evaluating the segment state in the studied period, corresponding 

EES operation strategies are implemented. EES energy storage level is updated 
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accordingly.  

When the segment is in islanding mode, the load is compared with the generation 

capacity from EES, if there is EES connected to the studied segment. The system is in 

failure state if the generation capacity from EES cannot serve the load. If the 

generation capacity can cover the load, it is in success state. With reliability evaluation 

finished, specified EES operation strategies are implemented and the EES energy 

storage level is updated. 

After reliability evaluation and operation for each segment, the process moves to 

the next period and start another round of evaluation and operation. Energy cost in the 

period is calculated by multiplying the imported energy and energy price in the studied 

period. Energy cost is recorded for economic analysis. Simulation stops when 

maximum number of simulation years is reached or the probability of system in failure 

state converges.  

3.3.4 Reliability and Economic Analysis of Standby Backup Operation Strategy and 

MPC-based Operation Strategy 

The purpose of the standby backup operation strategy and MPC-based operation 

strategy is to improve distribution system reliability and economy. In order to 

meaningfully compare the reliability and economic improvement of these two 

operation strategies, three cases are studied.  
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The first case is the base case for purposes of comparison. Figure 20 shows the 

distribution system under study which is a modified practical radial distribution 

system. The radial distribution system could be grouped into two segments. In the first 

case, EES is not integrated into the distribution system. 

In the second case, EES is integrated into the same distribution system at node 

28 in segment 2. Standby backup operation strategy for EES is implemented.  

In the third case, as in case two, the same EES is integrated into the same 

distribution at node 28 in segment. The difference is in this case, proposed MPC-based 

operation strategy is implemented.  

Reliability and economy of the three cases are analyzed using sequential Monte 

Carlo simulation integrated with specified EES operation strategies. The parameters 

and operation limits of the integrated EES are shown in Table 8. 

The up state and down state of all the components in the distribution system and 

external grid are simulated using exponential distribution with their own failure rates 

and repair rates. Once the history of the state of each component is generated, the state 

of each segment is determined. 
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Figure 20  Modified practical radial distribution system with electric energy storage 

integrated in segment 2. 

 

IEEE-RTS load data is used to generate sequential load data. The peak load of 

the distribution system is 8MW. Segment 1 shares 50% of the load, and segment 2 

shares the other 50%  
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Table 8 Electric Energy Storage Parameters 

Capacity (MWh) 14 
Charging Power Limit (MW) 4 
Discharging Power Limit (MW) 4 
Charging Efficiency 0.95 
Discharging Efficiency 0.95 
Lower Capacity Limit (MWh) 1 
Upper Capacity Limit (MWh) 13 

 

Figure 21 shows the energy price in each period in a day. Energy price is set to 

be the same on each day. In MPC-based operation, forecast tools are needed to obtain 

the forecasted energy price and load. The actual forecasts are not perfect. However, as 

the focus is the reliability and economic analysis instead of forecasting techniques, the 

forecasts are assumed to be accurate for simplification.  

 

Figure 21  Energy price in each hour in a day. 
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Table 9 shows the reliability and economy indices of the three cases. . Standby 

backup operation strategy improves the system reliability the most. LOLE and LOEE 

are reduced compared to the base case and MPC-base operation strategy. The energy 

cost for case 2 is higher than the energy cost in case 1 because in case 2 more energy is 

purchased to charge EES to serve the load during the islanding mode. MPC-base 

operation strategy improves the economy the most by actively utilizing EES to 

participate in power market to save energy cost. Comparing to the base case and 

standby backup operation strategy, even though there are more energy purchased 

annually, the total energy cost is still less because of the energy cost saving during the 

grid connected mode.  

 

Table 9  Reliability and Economy Indices of Three Cases 

Case # LOLE (hr/year) 
LOEE 

(MWh/year) 

Cost  

(Million 

Dollars/year) 

Case 1 
w/o EES 48.04 226.14 3.435 

Case 2 
Standby backup 40.43 73.43 3.462 

Case 3 
MPC-based 47.85 226.08 3.150 

 

It can be seen from the simulation results that even with the same EES in the 

same distribution system, different EES operation strategies could have very different 
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reliability and economy impact on the distribution system. The operator of the EES 

could choose which operation strategy to implement according to its objectives. 

Standby backup operation strategy could most improve distribution system reliability 

but not have much effect on economic improvement, while MPC-base operation 

strategy can greatly improve economy but fall short on reliability improvement. A 

hybrid control method which combines the two operation strategies to balance the 

reliability and economy improvement is proposed.  

3.3.5 Hybrid Operation Strategy 

The basic idea of this hybrid operation strategy is conceptually dividing the EES 

device storage capacity into two portions. One portion of EES is implemented with 

standby backup operation strategy, while the other portion is implemented with 

MPC-based operation strategy. In this way, the standby backup portion maintains a 

certain specified energy storage level to prepare for the failure event. In this way, when 

segment transits from grid connected mode to islanding mode, there is always a 

guaranteed amount of energy stored in EES to provide power to the load, as long as the 

energy storage level is restored after previous discharging operation. Meanwhile, the 

MPC-based portion is taking the advantage of the EES control flexibility to minimize 

energy cost. With a certain EES storage capacity, if the standby backup portion 

increases, the MPC-base portion decreases. Accordingly the reliability of the system is 
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further improved but the economic benefit is reduced. There is a tradeoff between 

reliability and economic improvement. This hybrid operation strategy provides a 

flexible control option for load aggregator to choose the percentage of each portion 

according to their reliability and economic objectives. The reliability and economic 

improvement for a set of percentage settings for each portion using the proposed 

hybrid operation strategy is evaluated. The same EES and distribution system as in 

previous case studies are used for meaningful comparison.  

Table 10 shows the reliability and economic improvement results for each 

percentage setting. Figure 22 shows the tradeoff curve between reliability 

improvement and economy improvement. Here LOEE is used as the reliability 

indicator. With this curve, load aggregator and EES could choose the corresponding 

percentage for each portion to achieve their reliability and economy goals.  
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Table 10 Reliability and Economic Indices Using Hybrid Operation Strategy for 

Different Percentage Settings 

Standby backup 

operation 

strategy portion 

(%) 

MPC-based 

operation 

strategy 

portion  

(%) 

LOLE 

(hr/year) 

LOEE 

(MWh/year) 

Cost  

(Million 

Dollars/year) 

100 0 40.43 73.432 3.462 
90 10 40.43  73.461 3.416 
80 20 40.43 73.478 3.369 
70 30 40.43 73.495 3.322 
60 40 40.43 73.709 3.293 
50 50 40.53 74.280 3.270 
40 60 40.54 74.900 3.248 
30 70 42.80 83.899 3.216 
20 80 47.28 107.581 3.207 
10 90 47.85 178.680 3.173 
0 100 47.85 226.079 3.150 
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Figure 22 Trade-off Curve between LOEE and Energy Cost. 

 

In Figure 22, there is a turning point when increasing standby backup operation 

strategy portion to 60%. After that percentage, LOEE is almost not reduced any 

further. This is because the standby backup energy storage can only be used to reduce 

LOEE during islanding mode. When segment 2 is in failure mode, energy storage 

cannot be discharged to support load. LOEE during these failure events is not reduced. 

When standby backup operation strategy portion increases to a certain point, 60% in 

this study, LOEE introduced during segment 2 operating in the islanding mode is 

reduced to near zero. However LOEE introduced during segment 2 in failure modes 

cannot be reduced. The reliability improvement is saturated. If further reliability 
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improvement is needed, one option is to integrate another EES in segment 1.  

Different types of customers desire different reliability and economic benefits. 

Normally for residential customers, the service interruption damage cost is low and 

acceptable. Thus their requirement for reliability level is relatively low but the energy 

savings might be attractive and more. For other types of customers, such as industry 

and commercial customers, the interruption of power supply could lead to huge 

financial loss. Higher reliability level for them are more desirable rather than energy 

cost saving. Load aggregator could use the proposed hybrid operation strategy to 

improve system reliability and economy according their customer needs. 

3.4 A  Modified MPC-based Operation Strategy 

The flowchart of the MPC-based operation strategy is illustrated in Figure 23. 

MPC-based operation strategy can take into account what will happen in the 

future to optimize its current operation. In the islanding mode, the energy storage 

operation is the same as in the standby backup operation strategy. Energy storage is 

discharged to support the load. An operation simulation with the proposed MPC-based 

operation strategy in grid connected mode is presented in Figure 24. In the simulation, 

a single segment distribution system is studied. The forecasts are assumed to be 

perfect. The peak load is 4MW, the energy storage capacity is 8MWh, 

charging/discharging power limit is 4MW, charging/discharging efficiency is 90%. 
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Figure 23  MPC-based operation strategy flowchart. 
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Figure 24  MPC-based operation strategy simulation. 

 

It can be observed in Figure 24 that the energy storage is generally charged when 

the price is low and discharged when the energy price is high. Also the energy storage 

SOC is increasing before the high energy price periods, and decreasing when the 

energy price is high. There is a strong correlation between load demand and energy 

price. Normally the energy price is high when the load is high. Meanwhile the system’s 

reserve margin decreases when the load increases. When the load is high the system 

becomes more vulnerable to any generation outage. System is less reliable when the 

load is high. Thus there is a stronger need for more backup power source available 

during the peak load periods to ensure reliability. However, by utilizing the 

MPC-based operation strategy, the SOC is low during the peak energy price periods 
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which coupled with peak load and less reliable system. Low energy storage SOC limits 

its capability of providing backup power supply to improve distribution system 

reliability. In order to solve this problem, a Modified MPC-based operation strategy is 

proposed to improve both reliability level and economic benefits.  

The basic idea of this Modified MPC-based operation strategy is that at each 

point a portion of the energy storage capacity is utilized as a standby backup power 

source, the other potion is utilized to manage energy cost using the MPC-based 

approach. Through this approach, the standby backup portion always reserves some 

amount of energy to prepare for the failure event. When segment transits from grid 

connected mode to islanding mode, the reserved energy stored in energy storage can be 

discharged to prevent a loss of load event or reduce energy not served. Meanwhile, the 

other portion is able to take advantage of the energy storage control flexibility to 

reduce energy cost. With a certain energy storage capacity, if the standby backup 

portion increases, the portion for energy cost management decreases. Accordingly the 

reliability of the system is improved, but the energy cost saving is reduced. There is a 

tradeoff between reliability and energy cost saving. In order to better utilize limited 

energy storage capacity, the potion for standby backup power source is adjusted as 

needed in each period. During peak load periods, system is less reliable. Thus a larger 

portion of energy storage is assigned for the purpose of standby backup power source. 
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On the other hand, during non-peak load periods, system is more reliable. The loss of 

load probability during non peak load periods is very small. Accordingly, a smaller 

portion of energy storage is required as standby backup power source; a larger portion 

of energy storage can be used to reduce the energy cost. The previously presented 

MPC-based operation strategy can be modified as follows. 

1) In step one, not only the current load and energy price needs to be obtained, but 

also the required energy storage SOC level for standby backup operation strategy 

in the current period needs to be determined. 

2) In step two, besides load and price forecasts, the required energy storage SOC level 

for standby backup power source in the future periods also needs to be forecasted. 

3) In step three, the objective function stays the same. But the following constraints 

are added for required energy storage SOC level. 

SOC(k) ≥ SOCreq(k) 

4) Step four and five remain unchanged. 

There could be different ways of determining what should be the SOC level of 

energy storage dedicated to standby backup power source in order to ensure system 

reliability. The load profile could be used as the indicator for determining the 

percentage. The SOC level of energy storage using standby backup operation strategy 

is proportional to the load. Thus the required energy storage SOC levels in future 
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periods can be forecasted according to the load forecast. 

The Modified MPC-based operation strategy is illustrated through simulation. 

The parameters for the simulation are the same as in the previous MPC-based 

operation strategy simulation. The required energy storage SOC level is set to support 

50% of the load for one hour when power supply from external grid is interrupted. This 

load could be considered as the critical load. The simulation results are shown in 

Figure 25. In Figure 25, it can be seen that at any time, if there is a power supply 

interruption, there is always enough energy stored to support the critical load for an 

hour. During peak load hours (hour 14 to 16), there is more store energy available for 

backup power source. Compared to the MPC-based operation strategy, where there is 

no energy stored during these hours for supporting the load in the event of power 

supply interruption, the reliability of the system is improved. However, there is a 

trade-off between reliability and cost saving. With the MPC-based operation strategy, 

the energy cost is 5.21 thousand dollars for this day; on the other hand with the 

Modified MPC-based operation strategy, the cost is 5.30 thousand dollars, a 1.7% 

increase. Load aggregator can flexibly adjust the portion for standby backup operation 

strategy to achieve the desired balance of reliability improvement and energy cost 

saving. 
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Figure 25  Modified MPC-based operation strategy simulation. 

 

3.5 Summary 

In this section, the distribution system reliability and economy improvement 

brought by EES integration is studied. Because of the operation flexibility of EES, it 

can be controlled in different ways to affect the distribution systems. Different 

operation strategies have different reliability and economic impact on the system, even 

with the same EES. The reliability and economy of radial distribution system 

integrated with EES are assessed. Three operation strategies, standby backup operation 

strategy, MPC-base operation strategy, and hybrid operation strategy, are presented. 

Standby backup operation strategy improves system reliability the most but falls short 
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on economic improvement. The proposed novel MPC-based operation strategy can 

maximize distribution system economy but could not improve reliability as much as 

the standby backup operation strategy. Hybrid operation strategy combines the standby 

backup operation strategy and MPC-based operation strategy to balance the reliability 

and economic improvement. The reliability and economic analysis of distribution 

system integrated with EES using proposed operation strategies illustrates the 

effectiveness of the proposed methods. These operation strategies provide load 

aggregator options to achieve its reliability and economy improvement goals. 
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4. ADEQUACY AND ECONOMY ANALYSIS OF DISTRIBUTION SYSTEMS 

INTEGRATED WITH ELECTRIC ENERGY STORAGE AND RENEWABLE 

ENERGY RESOURCES* 

4.1 Introduction 

Renewable Energy Resources (RER) such as wind and solar energy are the key 

to reduce pollutants produced by conventional fossil fuel power plants, carbon dioxide 

emissions and energy purchasing cost associated with rising fuel price. Public 

awareness of the need to protect the environment and achieve energy independence 

and sustainability encourages the governments, research agencies and industrial 

companies to make greater efforts in integrating more RER into the existing 

transmission and distribution systems. Although the potential benefits of RER are 

significant, many major challenges need to be conquered first. One of the major 

challenges is the reliability impact caused by intermittent RER such as wind power. 

This problem could be ignored earlier because the integrated RER were only a very 

small percentage (e.g., 3%) of the total generation. The intermittent property of RER 

does not have a notable reliability impact on systems which are mainly supported by 

                                                 
*© 2011 IEEE. Reprinted, with permission, from Yixing Xu and Chanan Singh, 
“Adequacy and Economy Analysis of Distribution Systems Integrated with Electric 
Energy Storage and Renewable Energy Resources,” IEEE Transactions on Power 

Systems, 2012. 
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conventional fossil fuel generations. With expected greater penetration of RER (e.g., 

20% wind power), their reliability impact can no longer be ignored. A comprehensive 

reliability analysis considering the impact of high RER penetration is required.  

An efficient method of reliability analysis of electric power systems with 

time-dependent sources, such as photovoltaic and wind generation is presented in [20], 

in which the reliability impact of fluctuating characteristics of unconventional 

generation units is studied. Reference [21] investigates the reliability effects on a 

composite generation and transmission system associated with the addition of 

large-scale wind energy conversion systems using the state sampling Monte Carlo 

simulation technique, where the wind speed correlation is considered. The work in [22] 

presents a reliability analysis framework which includes both the deterministic and 

probabilistic approaches for bulk power system adequacy and security assessment 

when wind power is added. Considerable work has been done on RER integration in 

transmission systems. Reliability impact of RER integrated in distribution systems is 

also studied by researchers. In [23], the authors investigate the system reliability 

benefits of adding wind turbine generation as an alternative supply in a rural 

distribution system. In [24], both Monte Carlo simulation and analytical methods are 

used to assess distribution system adequacy including wind-based distribution 

generation units, with implementation of the islanding mode of operation in the 
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assessment. 

With a rapid development of Electric Energy Storage (EES) technologies, and 

their operational flexibility, interest in integrating both RER and EES into power 

systems to improve systems reliability and economy has been growing. A reliability 

cost/worth evaluation method that can incorporate the impact of wind energy and EES 

utilization in electric power systems is presented in [25]. Research in [26] evaluates 

system reliability considering wind and hydro power coordination, where hydro 

facilities with energy storage capability are utilized to alleviate the impact of wind 

power fluctuations and also improve the system adequacy. A methodology for the 

operation of a hybrid plant with wind power and hydrogen storage to maximize 

economic benefits (i.e., maximizing profits) in a market environment is presented in 

[7]. 

Previous reported work has been on either the reliability impact of RER and EES 

integration, or on economic benefits of the integration. However, reliability impact and 

economic benefits are tightly related. Especially with the operational flexibility of 

EES, different EES operation strategies could bring different sets of reliability impact 

and economic benefits.  

In this section, a novel Model Predictive Control (MPC)-based operation strategy 

for distribution system load aggregator is proposed to improve the economy of system 
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by minimizing energy purchasing cost in power market with the utilization of price, 

load, and renewable energy forecasts. An islanding operation with power supplies from 

RER and EES is implemented to enhance distribution system reliability. In order to 

accurately assess the reliability and economic impact brought by proposed operation 

strategies, an assessment framework based on sequential Monte Carlo simulation 

approach is presented.  

4.2 Distribution System Integrated with Energy Storage and Renewable Energy 

A distribution system integrated with distributed RER (e.g., wind-based 

distributed generation) and EES is shown in Figure 26. Load aggregator of a 

distribution system participates in the wholesale power markets to purchase electric 

energy to serve its customers in the distribution system. Meanwhile, load aggregator is 

also assumed to operate the RER and EES integrated in its served distribution system. 

Renewable energy generation can be controlled by curtailing available renewable 

energy output. EES devices are operated by determining the charging/discharging 

operations. It is assumed that electric energy price is determined by the markets and 

load is determined by customers, which is inelastic to price. The objective of the load 

aggregator is to serve its customers with reliable power supply while minimizing the 

electric energy purchasing cost in power markets. The goals are to propose novel 

operation strategies to enhance reliability and economy, and present a comprehensive 
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framework for assessing both reliability and economy.  

 

 

Figure 26  Schematic diagram of a radial distribution system integrated with wind 

turbines and electric energy storage. 

 

As most distribution systems are operated radial, the focus here is considering 

radial distribution system with RER and EES integrated. Figure 26 shows an example 

of a radial distribution system with RER and EES integrated, where “X” sign 

represents protective devices such as circuit breakers and reclosers. The following 

assumptions are used in the study of the system. Only the active power is considered. 

Voltage levels are assumed to be properly regulated. This assumption is normally 

acceptable in adequacy analysis for planning purposes. If the impact of voltage cannot 

be ignored, a more detailed distribution system AC power flow could be used instead. 

Power output from RER is considered constant within a period.  
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4.3 Operation Strategies 

4.3.1 Modes of Operation 

A distribution system consists of components such as wires, circuit breakers and 

reclosers. A group of components can be modeled as one segment if the entry 

component is a protective device such as a switch or a recloser and the entry protective 

device is the only protective device of this segment. In this way, the distribution 

system is modeled by segments instead of components. The rationale behind this 

segment modeling is that if a component failure occurs downstream of a protective 

device and within its protection zone, the protection zone will be isolated and all the 

customers in that protection zone will lose power supply. Even if there are other power 

sources such as RER or EES integrated into this segment, once a component failure 

occurs within this segment, the power supply from all energy resources is cut off. For 

example, in Figure 26, the components of the distribution system are grouped into 4 

segments according to the location of protective devices. If a component failure occurs 

in segment 2, the protective devices isolate this segment, external grid power cannot be 

supplied to this segment, the power supply from wind turbines is also cut off, the load 

demand in this segment cannot be met and a loss of load event occurs.  

In a radial distribution system without distributed generation (DG) such as RER, 

if a component failure occurs within a segment, the segment is isolated and grid power 
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cannot be supplied to the load within this segment and the segments downstream. 

However, when DG or EES is integrated, if a component failure occurs within a 

segment, the segment is still isolated but the downstream segments can utilize power 

from DG or EES integrated to support their load. In this case, the loss of load event 

might be avoided if there is enough power from these alternate energy resources. 

Following the previous example, when segment 2 is isolated, as there is no DG or EES 

integrated in segment 3, there is no power supply for its load. Instead, power from 

wind turbines and EES can be used to supply the load within segment 4.  

To summarize the above discussion, when there is a failure within a segment, all 

the power supply for this segment is cut off. When there is no failure within a segment, 

there are two modes of operation, grid connected mode and islanding mode. In grid 

connected mode, the transformers connecting transmission system and distribution are 

up, the external grid is capable of delivering sufficient energy. Thus grid power can be 

supplied to this radial distribution system and no failure occurs within any upstream 

segment. Thus the power from external grid can go through all the upstream segments 

and reach the studied segment. In islanding mode, at least one failure occurs in 

upstream segments, or the transformers are down, or the external grid is unable to 

deliver sufficient energy to this distribution system caused by outage. Thus power from 

external grid cannot be supplied to the segment under study. Power from the DG and 
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EES integrated in this segment is utilized to support the load. The identification of 

operation modes is not limited for radial system. Operation mode of segment in 

non-radial system can also be identified through more complicated evaluation 

considering the distribution system topology. 

4.3.2 Operations in Grid Connected Mode and Islanding Mode 

EES operation strategies affect the reliability and economic performance of a 

distribution system. This part presents the proposed operation strategies in different 

operating modes.  

Operation Strategy in Grid Connected Mode: In grid connected mode, the power 

from external grid, RER and EES can all be utilized to serve the load. The objective of 

the load aggregator is to minimize its energy purchasing cost in power market while 

meeting the demand. The allocating of power supplies is crucial in determining the 

energy purchasing cost.  

With more and more accurate methods developed for load forecasting, renewable 

energy forecasting, and energy price forecasting, EES can utilize these forecasts to 

reduce the energy purchasing cost. A Model Predictive Control (MPC)-based operation 

strategy is proposed to minimize the energy purchasing cost by optimally coordinating 

the energy purchase from the power market, EES charging/discharging operation, and 

utilization of RER. In the MPC-based operation strategy, short term forecasts of load, 
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available renewable energy and energy price, are utilized to determine the operation. 

Power market modeling and EES modeling are introduced first before further 

describing of the proposed operation strategy. 

The power market here is simplified as a real time power market model. During 

each market period (e.g. an hour), load aggregator determines how much energy it 

needs to purchase from the market, then submits its offer to get that needed amount of 

energy. The market clearing mechanism determines the energy price for each period. 

Load aggregator is assumed to be a price taker whose transactions do not affect the 

clearing price determined by the market. The energy purchasing cost for N periods 

starting from period i +1 is 

( ) ( )
i N

k=i+1

U k P k


  (4.1) 

With the proposed operation strategy, no specific EES technology is addressed. 

Rather the EES unit is modeled by its operation limits which include EES maximum 

and minimum state of charge level, charging/discharging power limit, 

charging/discharging efficiency. The energy storage state of charge level at any time 

has to be within its minimum and maximum range. This range is considered as the 

effective capacity. The charging and discharging rates have to be within the power 

limits. Power losses during charging/discharging operations are considered in its 

charging/discharging efficiencies. The state of charge at the end of each period is 
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determined by the previous period state of charge level and the charging/discharging 

operation during this period, it is expressed as 

( ) ( 1) ( ) ( )cSOC k SOC k C k D k      (4.2) 

All EES operation variables are within their operation limits. 

The basic approach of MPC is that a finite–horizon optimization problem 

determining the series of optimal control operations is solved before each control step, 

but only the first control operation is implemented. After implementing the first control 

step, the system updates the actual state of the system and the future states using a 

predictive model. Then the control routine is repeated to determine the next step’s 

operation. Applying the above MPC approach, energy purchasing cost minimization 

problem with forecasted, load, available renewable energy and price at period i can be 

implemented as follows: 

1) Obtain the actual load, available renewable energy and price in the current 

period i. 

2) Select a receding optimization horizon of N periods (e.g. 24 hours). Use 

load, renewable energy and price forecast models to obtain the most 

updated load, renewable energy and price forecasts for the next N periods, 

from period i+1 to i+N. 

3) Solve the optimization problem, formulated as follows. 
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Objective: Minimizing energy purchasing cost from period i to i+N 

. ( ) ( ) ( ) ( )
i N

f f
k=i+1

Min U i P i U k P k


       (4.3) 

The first part ( ) ( )U i P i is the energy purchasing cost of the current period i. The second 

part ( ) ( )
i N

f f
k=i+1

U k P k


  is the predicted total energy purchasing cost of the following 

periods from i+1 to i+N. ( )U i and Uf (k) are the decision variables to be solved.  

Constraints: 

i. EES operation constraints 

0 ≤ C(k) ≤ CMax    (4.4) 

0 ≤ D(k) ≤ DMax    (4.5) 

SOCMin≤SOC(k) ≤SOCMax    (4.6) 

Where k=i,i+1,…,i+N. The charging and discharging operations of EES are to be 

solved. The maximum charging and discharging rates are constant. As one hour is 

considered as one period, the charging energy equal to C(k)multiplied by 1 hour. 

For convenience C(k)is used interchangeably as charging rate and energy charged 

in one hour. D(k)is treated in the same way. 

ii. Available renewable energy constraints 

0≤  R(i) ≤ RMax(i)    (4.7) 

0≤  Rf(k) ≤ Rf,Max(k)    (4.8) 
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where k = i+1,…, i+N. The utilized renewable energy is equal to or less than the 

available renewable energy. Extra energy not utilized is dumped in ways such as 

adjusting the wind turbines’ blade pitch, so wind turbines do not generate the 

maximum power they can in that period. Utilized renewable energy for current 

period and future period are to be solved. 

iii. Power balance constraints 

U(i) + R(i) = L(i) + C(i) −ηdD(i)    (4.9) 

Uf(k) + Rf(k) = Lf(k) + C(k) −ηdD(k)    (4.10) 

Where k = i+1,…,i+N. Load, available renewable energy, and price in current 

period i are the actual values and known. While load, available renewable energy, 

and price in future periods are predicted using forecast models, thus are given 

parameters for the optimization problem. The solution of this optimization problem 

gives an optimal operation schedule for EES charging/discharging operation, 

energy purchase and renewable energy utilization from period i to i+N.  

4) Implement the first period’s operation of the solved operation schedule, 

which is the current period i. 

5) Update the EES state of charge level, move to the next period, and repeat 

the algorithm from step 1. 

The solved operation schedule is optimal with respect to the given forecast. The 
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accuracy of forecast will affect the optimality of the solution because of the difference 

between the forecast and the actual values. We have assumed the forecast to be perfect 

but if information on characteristics of forecast uncertainty were available, it could be 

incorporated in the determination of the schedule. The short-term (e.g. next 2-3 hours) 

forecast is more accurate than the relatively longer term (e.g. 23-24 hours) forecast. By 

using this MPC-based operation strategy, load, renewable energy and price forecasts 

are updated according to the newest information after each operation step. Then the 

most updated forecasts could be effectively integrated into the operation decision 

making process to minimize the energy purchasing cost. By taking into consideration 

what the future load, renewable energy and price will be, better operation for current 

period can be determined. 24 hours horizon is chosen as the optimization horizon 

considering the 24 hours cycling period of load variation, renewable energy variation 

and energy price variation. Because of the increasing forecast uncertainty into future 

periods, different choice of optimization horizon such as 12 hours, could lead to 

different operation schedule. More detailed information about the forecast uncertainty 

could be used to determine the optimal optimization horizon.  

The integration of RER and EES itself could reduce energy purchasing cost. 

However, the proposed MPC approach optimally determines from which power 

sources (RER, EES or external grid) to get power supplies to support the load, how 
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much energy should be supplied by each selected power source, and chronological 

operations such as whether the renewable energy generated in this period should be 

used up now or stored for future use to avoid high energy price, and at which period 

EES should be discharged in order to release more storage capacity for storing lower 

priced energy in the coming periods. These operation decisions provided by the MPC 

approach could reduce energy purchasing cost even more than simply integrating RER 

and EES. The proposed MPC operation strategy reduces the energy purchasing cost by 

better coordinating the power supply from different power sources and energy usage 

along the time line. 

Operation Strategy in Islanding Mode: In islanding mode, avoiding and 

minimizing load curtailment is the objective. The available renewable energy is first 

utilized to serve the load. If it is not enough to cover the load, the energy stored in EES 

is discharged to avoid or minimize load curtailment. Only when the load demand is 

met, and there is renewable energy surplus, the extra energy is stored in EES for future 

usage without violating EES operation limits. The extra energy which cannot be stored 

in EES is then dumped.  

4.4 Reliability and Economy Assessment Framework 

The proposed reliability and economy assessment framework is based on 

Sequential Monte Carlo Simulation. During operation, EES sometimes serves as 
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generation providing power to the load and sometimes it is charged acting as a load. 

Current EES state of charge level at a point in time is determined by the previous 

operations. The utilization of energy from EES in the current period is determined by 

both its current state of charge level and planed utilization in the future. Because of 

these unique chronological characteristics of EES, its impact on system reliability and 

economy is best captured using sequential Monte Carlo method, in which its specific 

operation strategies are integrated. The assessment flowchart is shown in Figure 27. 

Details of the assessment framework are presented as follows.  

4.4.1 Distribution System Reliability Analysis 

In adequacy analysis, a power system is considered to be operating in either 

success state or failure state. A system is considered operating in success state when it 

has enough generation capacity to serve the load. When generation capacity is not 

sufficient to meet the load demand and loss of load occurs, the system is in failure 

state. The probabilities and durations associated with the system residing in success 

and failure states and energy not served during failure states are the adequacy indices 

for reliability analysis.  

For a distribution system modeled in terms of segments, a modified reliability 

analysis is presented to evaluate the reliability of the system in more details. In the 

modified analysis, besides evaluating the reliability of the distribution system, each 
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segment of the distribution system is also evaluated. The determination of segment 

state is explained later. After the states of the segments are determined, the system 

state is then determined as following: the system is in success state if all the segments 

are in success state; the system is in failure state if any segment is in failure state. By 

performing the modified reliability analysis, reliability indices for each segment and 

the whole system can be obtained. The different reliability levels of segments caused 

by network topology, RER and EES can be evaluated. 

4.4.2 Segment State Determination and Operation 

In the assessment framework, time horizon is divided into periods (hourly). Once 

the component simulation is done, up or down state of each component in the 

distribution system is determined. Information of distribution system topology is 

needed with the component state information to determine segment operation mode. 

Then the success or failure state of each segment could be evaluated considering their 

operation mode.  

Under grid connected mode, the load is compared with the total power supply 

which consists of the available power from external grid, RER and EES. If the total 

power supply is not sufficient for the load, the system is identified as in failure state. If 

the total power supply can serve the load, it is in success state. After evaluating the 

segment state, MPC-based operation strategy is implemented using the most updated 
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system state, and load, renewable energy, price forecasts. EES state of charge is then 

updated accordingly after each operation.  

Under islanding mode, the load is compared with the total power supply which 

only consists of RER and EES. The system is in failure state if the total power supply 

cannot serve the load. If the power supply can cover the load, it is in success state. 

With the state determination finished, islanding mode operation is implemented.EES 

state of charge is then updated accordingly.  

If there is a failure within a segment, this segment is in failure state. No 

operation is performed until the failure is removed. 

After state determination and operation for the current period, the process moves 

to the next period and starts another round of state determination and operation. 

Simulation stops when the specified maximum number of simulation years is reached 

or the probability of system in failure state converges. Considering there is generation 

integrated in the distribution system and the objective of comparing the available 

generation with the load, adequacy analysis indices, Loss of Load Expectation (LOLE) 

and Expected Energy Not Served (EENS) are calculated as the reliability indices. 

Other common distribution system indices, such as SAIFI and SAIDI, could also be 

calculated if needed. 
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Figure 27  Proposed reliability and economy assessment framework flowchart. 

 

4.4.3 Distribution System Economy Analysis 

Annual energy purchasing cost and customer interruption cost are used as the 
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economic indices. Hourly energy purchasing cost is calculated according to the actual 

operation. Then annual energy purchasing cost is the sum of hourly energy costs in a 

year. We focus on the cost during operation. Thus the investment cost of RER and EES 

are not included in the economic indices, but it can be included if desired. If the 

optimal capacity of RER and sizing of EES are to be solved, the investment cost 

should be considered.  

Customer interruption cost is the damage cost to customers caused by the power 

delivery interruption. When a service interruption occurs, the normal activities of 

customers in the distribution system could be affected and bear certain interruption 

cost. According to the nature of their activities, customers are grouped into 7 sectors, 

large user, industrial, commercial, agriculture, residential, government and institution, 

and office and buildings. Postal surveys have been conducted to estimate the customer 

interruption cost [29[]. The survey data has been analyzed to provide Sector Customer 

Damage Function (SCDF). Customer damage cost is related to the type of customer 

and the duration of the interruption. As only limited interruption cost data is available, 

logarithmic interpolation and linear extrapolation can be used to calculate the cost 

within and outside the provided cost data. Composite Customer Damage functions 

(CCDF) are used to evaluate the interruption cost of mix types of customers. SCDF is 

used to construct CCDF using following equation 
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1

n

i i

i

CCDF k SCDF


  (4.11) 

where 
i

k  is the per unit energy consumption of customer sector i, SCDFi is the sector 

customer damage function of customer i, n is the number of customer sectors. SCDF 

gives the customer damage cost for each sector, while CCDF gives the total customer 

damage cost for a mix of customer types.  

For an unreliable system, its annual energy purchasing cost might be low. But it 

does not mean this system is more economically efficient. It is because larger amount 

of energy could not be purchased and delivered to the distribution system due to 

frequent and long duration service interruptions. By evaluating the customer 

interruption cost at the same time, a more complete picture of the system economy can 

be obtained. 

4.5 Case Studies 

A modified practical radial distribution system integrated with wind turbines and 

EES, as shown in Figure 28, is studied. A step-down transformer is connecting the 

external grid and the distribution system. The components of the distribution system 

are grouped into two segments. Wind turbines and EES are integrated in segment 2 at 

node 28. The integration node could be determined by the network topology and the 

capability of handling required power injection. Node 28 is assumed to be able to 
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accommodate the power injection. Other suitable nodes could also be chosen. If the 

transformer has a fault or external grid fails to deliver sufficient energy because of 

outage, power could not be delivered to the distribution system. Thus in this reliability 

analysis, the transformer and external grid are considered as one component, with 

Mean Time To Failure (MTTF) of 1440 hours and Mean Time To Repair (MTTR) of 6 

hours.  

A series of cases are studied to investigate the reliability and economic impacts 

from integration of EES and wind turbines. Table 11 shows the studied 12 sets of EES 

effective capacity and power limit. The charging/discharging round efficiency is set to 

be 90%. EES is assumed to be perfectly reliable. 
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Figure 28 Modified practical radial distribution system with wind turbines and EES 

integrated in segment 2. 

 

Table 11 Electric Energy Storage Parameters in Case Studies 

 

Capacity
(MWh) 

Power 
limit 

(MW) 

Capacity
(MWh) 

Power 
limit 

(MW) 

Capacity 
(MWh) 

Power limit 
(MW) 

5 1 10 1 15 1 
5 2 10 2 15 2 
5 2.5 10 2.5 15 2.5 
5 5 10 5 15 5 
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Six sets of Wind Turbine Generation (WTG) capacities are studied. They are 

1MW, 2MW, 4MW, 6MW, 8MW and 12MW. Historical wind power output data is 

used [30].1MW capacity wind turbine’s MTTF is 720hrs and the MTTR is 30hrs. 

Other WTG capacities are obtained by utilizing multiple 1MW wind turbines. The 

reliability indices for other capacities are also calculated accordingly.  

A case is formed by matching an EES unit, which includes its capacity and 

power limit characteristics, with a WTG capacity. Thus 72 (12×6=72) cases are formed 

and studied. A base case with no EES and WTG is also studied for comparison. In each 

case study, LOLE, EENS, energy purchasing cost, customer interruption cost of each 

segment and the system are obtained.  

When implementing the proposed MPC-based operation strategy, forecast tools 

are needed to obtain the price, load, and wind power forecasts. The actual forecasts are 

not perfect. The effect of inaccurate forecasts is investigated in research work [31]. 

The peak load of the distribution system is 8MW. IEEE-RTS load profile is used as the 

chronological load profile. Segment 1 and segment 2 each share 50% of the total 

system load. The MTTF of both segments is 1440 hours and the MTTR is 1 hour. The 

hourly energy price profile used in the case study is shown in Table 12. Customer 

interruption cost of three customer mixes representing high commercial activities, high 

industry activities and high residential activities respectively are studied. The 
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percentages of each customer sector for the three mixes are shown in Table 13. 

 

Table 12  Electric Energy Price 

 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Price 

($/MWh) 
50 48 46 43 40 45 70 90 80 110 120 80 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Price($/M

Wh) 
90 125 100 95 80 88 90 80 80 70 70 60 

 

Table 13 Customer Sector Percentage for Each Customer Mix 

 

 Commercial (%) Industry (%) Residential (%) 
High Commercial Mix 80 10 10 

High Industry Mix 10 80 10 
High Residential Mix 10 10 80 

 

Table 14 Base Case Reliability Indices 

 LOLE (hours/year) EENS (MWh/year) 
Segment 1 42.79 84.02 
Segment 2 48.32 142.01 

System 48.32 226.04 

 

 

 

 



 

 

110 

 

Table 15 Base Case Economy Indices (Million $/Year ) 

 

Segment 1 
Customer 
Damage 

Cost 

Segment 2 
Customer 

Damage Cost 

System Customer 
Damage Cost 

Energy 
Purchasing 

Cost 

High 
Commercial Mix 0.761 1.262 2.023 

3.435 High Industrial 
Mix 0.584 0.990 1.574 

High Residential 
Mix 0.268 0.439 0.707 

 

 

Base case without EES and WTG, and seventy-two cases with different matching 

of EES and WTG capacity were studied. For reasons of space limitations, only selected 

results are presented here. Base case results are shown in Table 14 and Table 15. In 

Table 14, the LOLE for the system is exactly the same as LOLE for segment 2. It is 

caused by this particular distribution system configuration, where segment 2 is in 

series with segment 1 and downstream. For other configurations, LOLE are not 

necessarily the same for both system and one segment. Selected results of system with 

EES and WTG are shown in Table 16 and Table 17.The results demonstrate the 

reliability and economic improvement brought by the EES and WTG integration, and 

the proposed operation strategies. They also provide insights on how EES capacity, 

power limit and WTG capacity affect reliability and economy. These results could also 

be helpful in determining the proper EES capacity, power limit and WTG capacity to 
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achieve desired reliability level and economy benefit. 

 

 

Figure 29  System LOLE when EES power limit is 1MW and 5MW. 

 

Results show that increasing EES capacity, power limit, or WTG capacity can all 

enhance reliability, save energy cost and reduce customer interruption cost. However, 

the impact each factor has on reliability and economy depends on the situation. It can 

be observed from Figure 29 that only when EES power limit increases to a higher level 

(5MW), the increase in EES capacity can effectively improve system LOLE. That is 

because when power limit is low (1MW), it becomes the bottle neck preventing 

sufficient power discharged to support the load even when there is abundant energy 

0 2 4 6 8 10 12
15

20

25

30

35

40

45

50

55

Wind Tubines Generation Capacity(MW)

L
O

L
E

(h
o
u
rs

/y
e
a
r)

 

 

Capacity:5MWh;Power:1MW

Capacity:10MWh;Power:1MW

Capacity:15MWh;Power:1MW

Capacity:5MWh;Power:5MW

Capacity:10MWh;Power:5MW

Capacity:15MWh;Power:5MW



 

 

112 

 

stored. The potential of large EES capacity is not utilized. Meanwhile, with the EES 

power limit of 5MW, the LOLE improvement tends to saturate when increasing EES 

capacity from 10MWh to 15 MWh compared with the increase from 5MWh to 10 

MWh. This means with EES capacity of 10MWh and power limit of 5MW, a large 

portion of loss of load events could be avoided. Only a small additional portion of 

more rare and sever loss of load events would be eliminated with the additional 5MWh 

EES capacity. When the LOLE improvement will reach saturation with the increase of 

EES capacity is affected by the specific load level and segments failure rate. The 

proper matching of EES capacity and power limit is very important in the effectiveness 

of reliability improvement. 

Reliability improvement for both segments is shown in Figure 30. With the increase of 

WTG capacity, reliability level of segment 2 is improved much faster than segment 1 

when increasing WTG capacity to 6MW. After increasing WTG capacity over 6MW, 

the reliability of segment 2 is still improving faster but not as significant as when the 

WTG capacity below 6MW. This result implies the possibility of reliability 

differentiation by integrating proper size of WTG and EES into the segments which 

need reliability improvement. 
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Table 16 Reliability Indices of System with EES and WTG 

Electric Energy Storage 
WTG 

Capacity 
(MW) 

 
LOLE 
(hrs/yr) 

EENS 
(MWh/yr) 

Energy 
Capacity 
(MWh) 

Power 
(MW) 

5 1 1 
Segment 1 42.71 73.95 
Segment 2 48.06 120.56 

System 48.06 194.51 

5 1 4 
Segment 1 42.30 57.92 
Segment 2 46.14 91.86 

System 47.65 149.78 

5 2.5 1 
Segment 1 42.67 73.22 
Segment 2 46.59 116.57 

System 48.02 189.79 

5 2.5 4 
Segment 1 40.78 57.53 
Segment 2 43.05 89.50 

System 46.13 147.02 

10 1 1 
Segment 1 42.71 70.59 
Segment 2 48.06 114.92 

System 48.06 185.51 

10 1 4 
Segment 1 41.94 54.68 
Segment 2 45.46 86.45 

System 47.29 141.13 

10 5 1 
Segment 1 39.10 67.94 
Segment 2 40.63 105.19 

System 44.45 173.13 

10 5 4 
Segment 1 36.57 52.68 
Segment 2 37.44 80.49 

System 41.92 133.17 
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Figure 30  Segment 1 and Segment 2 LOLE when fixing EES capacity at 5MWh and 

power limit at 1MW. 

 

Figure 31 shows the energy purchasing cost with EES capacity of 5MWh and 

15MWh. The energy cost with EES having 15MWh capacity and 1MW power limit is 

higher than that with EES having 5MWh capacity and 2MW power limit. This 

phenomenon implies the importance of proper matching of EES capacity and power 

limit in order to achieve desired economic benefits. Customer interruption cost for high 

commercial mix system with EES capacity of 15MWh is shown in Figure 32. There is 

a sharp interruption cost reduction when increasing EES power limit from 1MW to 

2MW. 
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Figure 31 Energy purchasing cost when EES capacity is 15MWh and 5MWh. 

 

Figure 32 System customer interruption cost for high commercial mix system when 

fixing EES capacity at 15WMh. 
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However, the reduction is very limited when increasing power limit beyond 

2MW. This result suggests the nonlinear and saturation effect when utilizing EES to 

improve system economy. 

4.6 Summary 

The integration of Renewable Energy Resources (RER) into an existing 

distribution system is an important topic in dealing with energy challenge the world is 

facing. With rapid development of Electric Energy Storage (EES) technologies, there 

is a growing interest in integrating both EES and RER into power systems to improve 

their reliability and economy. The adequacy and economy of distribution systems 

integrated with both EES and RER are assessed. A novel Model Predictive Control 

(MPC)-based operation strategy is presented to minimize distribution system energy 

purchasing cost by coordinating multiple power supplies from EES, RER and external 

grid. An islanding operation is implemented to improve the distribution system 

reliability and reduce customer interruption cost. A reliability and economy assessment 

framework based on sequential Monte Carlo method integrated with the MPC-based 

operation and islanding operation is proposed. Case studies are conducted to 

demonstrate the reliability and economy improvement by implementing the proposed 

operation strategies together with integration of EES and RER, and also investigate 

how EES capacity, power limit, and wind turbine generation capacity affect system 
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reliability and economy. 
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5. MULTI-OBJECTIVE DESIGN OF ENERGY STORAGE IN DISTRIBUTION 

SYSTEMS BASED ON MODIFIED PARTICLE SWARM OPTIMIZATION* 

5.1 Introduction 

With the recent rapid development of energy storage technologies, the 

conventional power systems which have been operated, in the past, on the basis of 

real-time balancing of supply and demand are evolving towards using such 

technologies. Many feasible applications of energy storage in power systems have been 

investigated. The objective of energy storage employment is to help build a more 

reliable and efficient smart grid. The major benefits of energy storage include electric 

energy time-shift, frequency regulation and transmission congestion relief. Energy 

storage can help achieve many goals. Here, we focus on the objectives of reliability 

and economy.  

Among the research efforts towards achieving higher economic benefits by 

utilizing energy storage, [4] discusses the optimal demand-side response to electricity 

spot prices for storage-type customers. Authors in [5] reports on an experiment on the 

real-time pricing based control of thermal storage to save cost.  
                                                 
*© 2012 IEEE. Reprinted, with permission, from Yixing Xu and Chanan Singh, 
“Multi-Objective Design of Energy Storage in Distribution Systems Based on 
Modified Particle Swarm Optimization,” Proc. IEEE Power & Energy Society General 

Meeting, July 2012. 
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The energy storage sizing problems are also being investigated. Reference [18] 

describes an analytical approach to evaluate reliability improvement by using energy 

storage as a backup storage and determine the size of the storage, which includes the 

capacity and power rate, to meet a specified reliability target.  

Reliability impact and economic benefits are tightly related when considering 

energy storage integration. Especially with the operational flexibility of energy storage, 

different operation strategies could bring different reliability impact and economic 

benefits. For load aggregator of distribution system integrated with energy storage, it is 

important to know the reliability and economy impact of the implemented energy 

storage operation strategies. Then proper energy storage operation strategies can be 

chosen and implemented to achieve desired reliability and economy improvement 

goals.  

However majority of research done on energy storage design problems mainly 

consider the impact of energy storage capacity and power rate. The impact of energy 

storage operation strategy is ignored or not considered as a major factor. This work 

demonstrates the significant impact of energy storage operation strategy on reliability 

level and economic benefits. A modified particle swarm optimization approach is 

proposed for the designing the problem of energy storage in distribution systems, 

where not only the energy storage capacity and power rate are determined but also the 
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energy storage operation strategy. 

5.2 System Description 

5.2.1 Energy Storage Integrated in Distribution System 

In a market environment, the load aggregator purchases electric energy from 

wholesale market and delivers the purchased electric energy to its customers in the 

distribution system. The objective of the load aggregator is to serve its customers 

reliably and economically.  

With the integration of energy storage devices in the distribution system, they 

could be utilized to improve distribution system reliability and economy. As most 

distribution systems are radial, the focus here is on considering such distribution 

systems. However, the proposed method can be applied to other distribution systems 

with different configurations. Figure 33 shows an example of a radial distribution 

system integrated with energy storage, where “X” represents protective devices such as 

circuit breakers and reclosers. The transformers and all the generation and transmission 

systems are represented as the external grid, through which the electric energy is 

delivered to the distribution system.  
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Figure 33 A radial distribution system integrated with energy storage. 

 

A distribution system consists of components such as wires, circuit breakers, 

reclosers, etc. A group of components can be modeled into one segment if the entry 

component is a protective device such as a switch or a recloser. The entry protective 

device is the only protective device of this segment of grouped components. In this 

way, the distribution system is modeled by segments instead of components. The 

rationale behind this segment modeling is that if there is a component failure 

downstream of a protective device and within its protection zone, the protection zone 

will be isolated and all the customers in that protection zone will lose power supply. 

Even if there are distributed generators or energy storage devices integrated into this 

segment, once a component failure occurs within this segment, the power supply from 

theses energy resources is cut off. The external grid is considered in either success 

state or failure state. The external grid is in success state when sufficient power could 
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be supplied from external grid to distribution system. Otherwise it is considered as in 

failure state, which could be caused by outage events with the external grid. 

5.2.2 Modes of Operation 

In a radial distribution system without distributed generation (DG) or energy 

storage, if a component failure occurs within a segment, the segment is isolated. Grid 

power cannot be supplied to the load within this segment and the segments 

downstream. The load demand in all these segments cannot be met. However, when 

DG or energy storage are integrated, if a component failure occurs within a segment, 

the segment is still isolated but the downstream segments can utilize power supply 

from integrated DG or energy storage to support its load. In this case, the loss of load 

event might be avoided if there is enough power from these energy resources. In 

Figure 33, when segment 2 fails and is isolated, as there is no DG or energy storage 

integrated in segment 3, there is no power supply for its load. Instead, power from 

energy storage can be used to supply the load within segment 4.  

To summarize the above discussion, when there is a failure within a segment, all 

the power supply for this segment is cut off. When there is no failure within a segment, 

there are two modes of operation, grid connected mode and islanding mode. In the grid 

connected mode, if the external grid is in success state grid power can be supplied to 

this radial distribution system and there is no failure within any upstream segment. 
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Thus the grid power can go through all the upstream segments and reach the studied 

segment. In the islanding mode, at least one failure occurs in upstream segments or the 

external grid is in failure state. Thus grid power cannot be supplied to the segment 

under study. If there are no DGs and energy storage is integrated in the studied 

segment, load in this segment cannot be met. If there are DGs and energy storage is 

integrated in the studied segment, power from DGs and energy storage is utilized to 

support its load. Loss of load might be avoided or loss of energy is minimized.  

5.3 Energy Storage Operation Strategies 

The operation of energy storage is very flexible and behaves very different from 

either generation or load. Energy storage can be flexibly operated to act as generation, 

load or simply standby according to the needs of load aggregator. How energy storage 

is operated has a major impact on distribution system reliability level and economic 

benefits. In this section, a standby backup operation strategy, a Model Predictive 

Control (MPC)-base operation strategy and a hybrid operation strategy are presented. 

Approach for the reliability and economy improvement evaluation of these operation 

strategies is discussed.  

5.3.1 Standby Backup Operation Strategy 

One commonly used operation strategy is utilizing energy storage as a standby 

backup energy resource. The standby backup operation strategy is implemented as 
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follows. 

In islanding mode, power from external grid cannot reach the studied segment. 

Energy storage integrated in this segment is discharged to sustain the service in this 

segment. The objective is to avoid a loss of load event or minimize the unserved 

energy within its operation constraints including energy storage capacity limits and 

power rate limits.  

When the system is restored and the segment is back to the grid connected mode, 

energy storage is immediately being charged until it reaches its energy storage upper 

limit and then stand by to prepare for the next failure.  

5.3.2 MPC-based Operation Strategy 

The presented MPC-based operation strategy minimizes the energy purchasing 

cost. This operation strategy is implemented in grid connected mode. With this 

strategy, short term forecasts of energy price and load are utilized to determine the 

optimal operation schedule. Power market modeling and energy storage modeling are 

briefly introduced first before further description of the MPC-based operation strategy. 

The power market is simplified as a real time power market model. However, 

this strategy can also be implemented in other market structures. During each market 

period (e.g. an hour), load aggregator determine how much energy it needs to purchase 

from power market, then submits its offer to get that amount of energy. The market 
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clearing mechanism determines the energy price for each period. Load aggregator is 

assumed to be a price taker who cannot affect the clearing price determined by the 

market. The energy cost for period k is 

)()( kPkU   (5.1) 

Where U(k) is the amount of energy purchased in power market in period k, P(k) is the 

market clearing price in period k. Assume load aggregator can only purchase energy, 

we have 

0)( kU  (5.2) 

The total energy cost for the period i and the following N periods is  

)()(
k

kPkU
Ni

i





 (5.3) 

The energy storage unit is modeled as a set of parameters and operation limits. 

Energy storage is modeled by its energy storage capacity, charging power limit, 

discharging power limit, charging efficiency, discharging efficiency. The energy 

storage state of charge (SOC) at the end of each period is determined by the previous 

period SOC and the charging/discharging operation during current period, it is 

expressed as 

( ) ( 1) ( ) ( )cSOC k SOC k C k D k      (5.4) 

where C(k) is the power charged to energy storage, D(k) is the power discharged 

from energy storage,    SOC(k) is the SOC at the end of period k, c is the charging 
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efficiency. All three variables need to be within their operation limits, expressed as 

MaxCkC  )(0  (5.5) 

MaxDkD  )(0  (5.6) 

( )( ) ( )Min MaxSOC SOC k SOCk k   (5.7) 

The basic approach of MPC is that a finite–horizon optimization problem 

determining the series of optimal control operations is solved before each control step, 

but only the first control operation is implemented. A predictive model is used to 

estimate the state space trajectory over the prediction horizon, with the initial state 

being the actual state of the system. After implementing the first operation, the system 

updates the actual state of the system and the future states using the predictive model. 

Then the optimal control routine is repeated to determine optimal operation for the 

next step. Applying the above MPC-based approach, energy cost minimization 

problem at period i can be implemented as follows 

1) Obtain the actual load and price in the current period i. 

2) Select a receding optimization horizon N periods (e.g. 24 hours). Use load and 

price forecast tools to obtain the most updated load and price forecasts for the 

future periods from i+1 to i+N. 

3) Solve the energy purchasing cost minimization problem, which is a linear 

programming problem, formulated as: 
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,,,1,  (7),-(5) (4),(2), s.t. Niiik     

),()()()( iDiCiLiU d  (5.9) 

NiikkDkCkLkU d  ,,1),()()(ˆ)(   (5.10) 

The first part )()( iPiU  is the energy cost in the current period i. Its actual load L(i) 

and energy price             P(k) are known. The second part )(ˆ)(
1k

kPkU
Ni

i

 




 is 

the total energy cost of the following periods from i+1 to i+N. Its load )(ˆ kL

     and energy price )(ˆ kP               are forecasted values. The solution of 

this optimization problem gives an optimal operation schedule for energy storage 

from periods i to i+N. 

5) Implement the first period’s operation of the above solution, which is the 

period i to determine how the energy storage should be operated and the 

amount of energy U (i) needs to be purchased. 

6) Update the energy storage level state, move to the next period, and then repeat 

the algorithm from step 1. 

Several forecasting techniques for predicting short term electricity priceand load 

have been presented by researchers. Good short-term (e.g. within 24 hours) price and 

load forecasts are available. The very short-term (e.g. next 2-3 hours) forecast is more 

accurate than the relatively longer term (e.g. 23-24 hours) forecast. Thus, by using this 
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MPC-based method, after each control step, the price and load forecast are updated 

according to the newest forecast. Then the most updated and accurate price and load 

forecast could be effectively integrated into the operation to minimize the energy 

purchasing cost. 

 The proposed MPC-based control method is implemented in grid connected 

operation mode. Then in the islanding mode, the energy storage is operated to sustain 

the service in this segment to avoid a loss of load event or minimize the unserved 

energy within operation limits.  

5.3.3 Hybrid Operation Strategy 

The standby backup operation strategy can significantly improve reliability level, 

as the energy storage generally holds maximum amount of energy to support the load 

when an islanding occurs. The loss of load events and unserved energy can be 

effectively reduced. The MPC-based operation strategy can significantly improve the 

economic benefits by reducing energy purchasing cost, as energy storage is actively 

utilized to store energy when the energy price is low and to discharge energy when the 

energy price is high. The basic idea of the hybrid operation strategy is conceptually 

dividing the energy storage device storage capacity into two portions. One portion of 

the energy storage is implemented with the standby backup operation strategy, while 

the other portion is implemented with the MPC-based operation strategy. The standby 
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backup portion maintains a certain specified energy storage level to prepare for the 

failure event, which helps improve reliability. The MPC-based portion is taking the 

advantage of the energy storage operation flexibility to minimize energy cost, which 

contributes to the economic benefits. With a certain energy storage capacity, if the 

standby backup portion, expressed as B%, increases, the MPC-based portion, 

(100%−B%), decreases. Accordingly, the reliability of the system is further improved 

but the economic benefit is reduced, and vice versa. Through this operation strategy, a 

flexible tradeoff between reliability and economic improvements is achieved. The 

feasible range for B% is from 0% to 100%. When B% equals to 0%, it is a pure 

MPC-based operation strategy; when B% equals to 100%, it is a pure standby backup 

operation strategy; when B% is in between, it is a hybrid operation strategy mixed with 

the MPC-based and the standby back operation strategy. Thus B% could be used as a 

parameter representing which energy storage operation strategy is implemented. This 

operation strategy parameter is as important as the other energy storage parameters 

such as energy storage capacity and power rate when it comes to the impact on 

distribution system reliability and economy. 

5.3.4 Reliability and Economy Evaluation 

With a given set of energy storage parameters including operation strategy 

parameter, energy storage capacity and power limit, etc, its impact on distribution 
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system reliability and economy could be evaluated. 

In reliability evaluation, a power system is considered to be operating in either 

success state or failure state. A system is considered operating in success state when it 

has enough generation to serve the load. When there is not sufficient generation to 

meet the load demand, and loss of load occurs, the system is in failure state. Loss of 

Load Expectation (LOLE) and Expected Energy not Served (EENS) are chosen as the 

reliability indices. In economy evaluation, the annual energy purchasing cost for load 

aggregator is used as the economy index.  

In order to capture the inter-temporal characteristic of energy storage which has a 

key impact on distribution system reliability and economy, Sequential Monte Carlo 

Simulation is used for reliability and economy evaluation.  

5.4 Problem Formulation 

The objective of the energy storage design is to simultaneously optimize multiple 

objectives including reliability and economy by choosing the optimal energy storage 

parameters subject to the constraints for a specific distribution system. In this work, the 

design variables of energy storage include not only the energy storage capacity and 

power, but also the operation strategy, which is a major contribution of this research 

work. Other design variables such as charging/discharging efficiency could also be 

included. 



 

 

131 

 

5.4.1 Energy Storage Design Objectives 

Objective 1: Reliability 

One of the purposes of utilizing energy storage is to improve distribution system 

reliability. Reliability indices such as LOLE and EENS could be used to measure the 

reliability performance. These reliability indices are provided through the previously 

discussed reliability and economy evaluation using Sequential Monte Carlo 

Simulation. 

Objective 2: Cost 

The improvement of reliability normally comes with higher economic cost. Here, 

two sources of cost are considered. One is the annual energy purchasing cost, and the 

other is the annual energy storage cost. Annual energy purchasing cost is obtained 

through the reliability and economy evaluation. Annual energy storage cost is 

computed as the sum of the annual operation and maintenance cost, annualized total 

capital cost, and annualized replacement cost [32]. 

The annual operation and maintenance cost, OMC, is 

f Max
OMC OM C   (5.11) 

where OMf is the annual operation and maintenance cost per kW.  

The total capital cost for energy storage, TCC, consists of three components: the 

total (power) cost of power electronic rectifiers/inverters, the total (energy) cost for 
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storage units, and the cost for the balance of plant. 

The total cost for the power electronics, PCS, is 

PCS = PCSU ∙ CMax (5.12) 

where PCSU is the cost for power electronics per kW. 

The total cost of storage units, SUC, is 

SUC = SUCU ∙ SOCmax (5.13) 

where SUCU is the storage unit cost per kWh. 

The total cost for the balance of plant, BOP, is 

BOP = BOPU ∙ SOCmax (5.14) 

where BOPU is the cost for the balance of plant per kWh. 

The TCC is calculated as 

TCC = PCS + SUC + BOP (5.15) 

The annualized capital cost, AC, is 

AC = TCC ∙ CRF (5.16) 

where CRF is capital recovery factor, expressed as 

(1 )

(1 ) 1

y

r r

y

r

i i
CRF

i




 
 (5.17) 

where ir is the annual interest, y is the lifetime of energy storage (year). 

The annualized energy storage replacement cost, ARC, is 

2[(1 ) (1 ) ]r r

Max r r
ARC SOC F i i CRF

 
         (5.18) 
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where F is the future value of replacement cost per kWh, r is the replacement period 

(year). 

At last, the annual energy storage cost, AEC, is calculated 

AEC = OMC + AC + ARC (5.19) 

5.4.2 Energy Storage Design Constraints 

A set of technical and operational constraints need to be satisfied when 

considering energy storage design. 

Energy storage technology constraints: Due the current energy storage 

technologies development, the choices of available energy storage are limited. 

Normally, for a specific energy storage technology, such as Sodium Sulfur battery, 

there are limits on how large the capacity and power rate can be built. The design 

choices of energy capacity and power rate should be within the feasible range.   

Power flow and other operational constraints: During operation, power flow 

should be balanced. Energy storage operations should be within the operational limits. 

These constraints are implemented in the reliability and economy evaluation process. 

Energy storage operation strategy, which is represented by the operation strategy 

parameter, B%, is within the range from 0% to 100%.   

5.5 Modified Particle Swarm Optimization Approach 

Particle Swarm Optimization (PSO) is a population-based stochastic 
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optimization procedure originated from the ideas of swarm intelligence and field of 

evolutionary computation. It is being used in diverse optimization problems including 

power systems optimization, such as economic dispatch [33]. 

In this work, a constrained multi-objective particle swarm optimization approach 

is proposed to solve the energy storage design problem. Unlike single objective 

optimization, the optimal solutions of the multi-objective optimization are a set of 

non-denominated solutions. These solutions form a Pareto front which provides 

flexible choice of tradeoff among multiple objectives for decision maker. 

The decision variables include energy storage capacity, power rate, and operation 

strategy. The solution candidate can be represented as 

1 2 3
[ , , ]i i i ix x x x  (5.20) 

where 
1 2 3
, ,i i ix x x represents energy storage capacity, power rate, and operation strategy 

parameter respectively. i is the number of the particle. i1,i2,i3 represents the 1st, 2nd, 

and 3rd design variables of the ith particle. Each design variable is constrained within 

its design limit. 

5.5.1 Optimization Procedure 

The modified multi-objective particle swarm optimization procedure is implemented 

as follows: 
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1)   Determine the design variables constraints, which include the upper and lower 

bound of energy storage capacity, power rate, and operation strategy parameter. 

2)   Initialize the first population of particles and their velocity by random 

generation within design variables constraints. 

3)   Evaluation the predetermined objective values (i.e. reliability and economy) 

for each particle in the population. 

4)   Select the personal best, pbest, through the personal best selection procedure 

described later. 

5)   Select the global best, gbest, through the global best selection procedure 

described later. 

6)   Update the member velocity vof each individual particle 

d d d d

d

i i 1 1 i i

2 2 d i

N

v = wv

i = 1, , ; d = 1,2,3

(t +1) (t)+c r [pbest - x (t)]

+c r [gbest - x (t)],  (5.21) 

The parameters  ,c1, andc2 (0< <1.2, 0< c1<2, 0< c2<2) are user-supplied 

coefficients. r1, andr2 (0<r1<1, 0<r2<1) are random values regenerated for each 

velocity update.vid(t) is the velocity of the dth design variable of the ith particle at 

time t. pbestid is the dth design variable of the ith particle’s personal best solution. 

gbestd is the dth design variable of the global best solution. N is the total number 

of particles. d is the number of design variables.  
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7)   Update the member position (design variable) of each particle 

d d di i i

N

= v

i = 1, , ; d = 1,2,3

x (t +1) x (t)+ (t +1),
 (5.22) 

8) Add turbulence factor into the current position. 

1
d d dTi i i

N

=

i = 1, , ; d = 1,2,3

Rx (t +1) x (t )+ x (t +1), 
 (5.23) 

where RT is a random value as the turbulence factor used to enhance the solution 

diversity. 

9)   Check the feasibility of the design variables for each particle. If the design 

variables are out of the boundaries, the design variables are corrected to the 

nearest boundary values. 

10)  Increase the iteration by one. Stop the optimization and output Pareto front if 

the stopping criterion is reached (e.g. maximum number of iterations). Or go to 

step 3) to start another round of iteration. 

5.5.2 Personal Best and Global Best 

In step 4, personal best solution of a particle needs to be selected. This personal 

best selection procedure is implemented as follows. For each particle, there is a 

memory space for storing only one personal best solution. Thus N particles correspond 

to N personal best solutions. In the first iteration, each personal best memory is empty 

and then is filled in with the corresponding particle from the first population. After the 
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first iteration, the personal best memory is not empty. Each personal best is then 

compared with the newly updated particle. If the newly updated particle is not 

dominated by the personal best in the memory, the newly updated particle replaces the 

personal best in the memory. And then used as the pbest for updating velocity. 

In step 5, global best solution of the population needs to be selected. The 

procedure is as follows. First, an initial size of the global best solutions archive is 

determined. This global best archive is used to store all the non-dominated solutions 

from the population. For each iteration, the personal best solution for each particle is 

added to the global best archive if any of the following criterions is met: 1) The archive 

is empty; 2) The personal best is not dominated by any solution in the archive. After 

adding all the personal best solutions meeting the previous criterions, the solutions in 

the global best archive is checked to eliminate any solution which is dominated by any 

other solution. This process is to maintain that all the solutions in the global best 

archive are non-dominated. The initial size of the global best archive is increased if 

more qualified solutions are to be added. After updating the global best archive, a 

solution in the archive is randomly selected as the gbest for updating velocity. When 

the iteration process is stopped, the solutions in the global best archive are outputted to 

provide the Pareto front for decision makers. 
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5.6 Case Studies 

The proposed methodology is applied to the energy storage design problem in a 

modified practical distribution system, shown in Figure 34, where energy storage is 

integrated in segment 2. The objectives considered in this case study are ENNS as the 

reliability index, and the total annual cost as the economy index, which is the sum of 

the annual energy purchasing cost and energy storage cost. IEEE-RTS load profile is 

applied. Electric energy price profile is shown in Table 12. The price and load 

forecasts are assumed to be perfect. The energy storage design constraints and 

parameters, distribution system parameters, and particle swarm optimization 

parameters are listed in Table 17. 
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Figure 34  Modified practical radial distribution system with energy storage 

integrated in segment 2. 
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Table 17 Case Study Parameters [34][35] 

Energy storage capacity 0 to 30MWh 
Energy storage power rate 0 to 4MW 
Energy storage operation parameter 0% to 100% 
Energy storage efficiency 90% 
Energy storage technology Sodium Sulfur 
Energy storage unit cost for power electronics ($/kW) 1000 
Energy storage unit cost for storage units ($/kWh) 500 
Energy storage fixed O&M cost ($/kW) 20 
Energy storage unit cost for balance of plant ($/kWh) 0 
Energy storage financing interest rate 5% 
Energy storage Lifetime (year) 15 
Energy storage replacement times of lifetime 0 
Distribution system peak load (MW) 8 
External supply: Mean Time To Failure (MTTF) (hours): 1440 
External supply: Mean Time To Repair (MTTR) (hours): 8 
Segment 1: Mean Time To Failure (MTTF) (hours): 720 
Segment 1: Mean Time To Repair (MTTR) (hours): 4 
Segment 1: Shared load percentage 50% 
Segment 2: Mean Time To Failure (MTTF) (hours): 720 
Segment 2: Mean Time To Repair (MTTR) (hours): 4 
Segment 2: Shared load percentage 50% 
PSO:   1 
PSO: c1, c2 1,1 
PSO: Rt [-0.02,0.02] 
PSO: Number of Particles 25 
PSO: Maximum number of iterations 100 

 

After implementing the proposed approach on the studied system, the Pareto 

front is generated and displayed in Figure 35. 
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Figure 35  Pareto front with the tradeoff between EENS and total annual cost. 

 

With the Pareto front, the decision makers could have the knowledge of what 

level of reliability improvement and economic benefits can be achieved through energy 

storage optimal design. After the desired level of reliability and cost are determined, 

corresponding energy storage capacity and power sizing, and operation strategy can be 

determined. Depending on the specific energy storage technology considered, if the 

energy storage capacities and power rates are only available at discrete level, the 

nearest discrete level of capacity and power could be chosen as the feasible design. A 

list of design examples is presented in Table 18. Design #1 to #10 are Pareto optimal 

designs selected from solutions shown in Figure 35. Design #11 is a dominated design 

for comparison.  
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Table 18 Energy Storage Design Solution Examples 

 Objectives Energy Storage Design 

# 
EENS 

(MWh/yr) 
Cost (M$/yr) 

Capacity 
(MWh) 

Power 
(MW) 

Operation 
Parameter 

1 610 3.41 0.00 0.00 - 
2 547 3.85 5.71 1.92 73% 
3 541 3.89 7.99 1.85 45% 
4 394 4.99 30.00 4.00 48% 
5 377 5.08 30.00 4.00 69% 
6 365 5.18 30.00 4.00 86% 
7 354 5.34 30.00 4.00 100% 
8 570 3.69 4.64 1.06 43% 
9 565 3.71 4.52 0.89 87% 
10 434 4.69 20.21 2.54 100% 
11 437 4.89 30 4.00 10% 

 

As shown in Table 18, one possible design (#1) is simply not having energy 

storage. In this way, cost is low due to no investment in energy storage, but the 

reliability is suffering. Design #2 and #3 give similar reliability and cost tradeoff, 

however the designs are quite different. Design #3 has a much higher energy storage 

capacity. While design #2 has a much higher operation parameter, which means a 

larger portion of energy storage is operated with standby backup strategy. This result 

illustrates the importance of the matching of the energy storage design variables. 

Design #4, #5, #6, and #7 all choose the same highest energy storage capacity 

(30MWh) and power (4MW). However, the operation strategies are very different. The 

same energy storage operated with different strategies leads to very different reliability 
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level and economic benefits. The energy storage capacity and power of Design #8 are 

higher than those of Design #9. Accordingly, the annual energy storage cost of Design 

#8 is higher than that of #9, which is part of the total cost. However, this does not 

necessarily mean the total cost of Design #8 is higher than Design #9. Design #8 

utilizes a lower portion with standby backup operation strategy and a higher portion 

with MPC-based operation strategy, which reduces the energy purchasing cost. 

Because of the different operation strategies implemented, the total cost of Design #8 

with more expensive energy storage is actually less than the total cost of Design #9. 

Design #11 is not a Pareto optimal design. Compared to Design #10, which is a Pareto 

optimal design, design #11 has a better energy storage capacity and power. But 

because #10 has a better matching of energy storage and operation strategy, both 

EENS and cost are less than those with design #11. These observations demonstrate 

the importance of operation strategy consideration when designing energy storage. 

5.7 Summary 

The objectives of the movement toward the smart grid include making the power 

systems more reliable and economically efficient. The rapid development of the large 

scale energy storage technology, such as sodium sulfur batteries, makes it an excellent 

candidate in achieving the goals of the smart grid. This section presented a modified 

multi-objective particle swarm optimization approach to solve the energy storage 
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design problem in distribution systems. A Pareto front is provided by the proposed 

approach for decision makers to determine the desired tradeoff between multiple 

objectives. Within the energy storage design variables, not only the conventionally 

considered energy storage capacity and power rate are included, but also the energy 

storage operation strategy. Three energy storage operation strategies are presented and 

their impacts on reliability and economy are illustrated. A case study is performed to 

demonstrate the effectiveness of the proposed approach. Insights based on the case 

study results are discussed.  

In this section, three energy storage operation strategies, which are standby 

backup strategy, MPC-based strategy and hybrid strategy, are presented. A parameter 

is proposed to represent the energy storage operation strategy in energy storage design 

process. The importance of energy storage operation strategy in reliability 

improvement and economic benefits is demonstrated. A modified multi-objective 

particle swarm optimization approach is proposed to solve the energy storage design 

problem which not only includes energy storage capacity and power rate, but also the 

operation strategy. The case study results demonstrate the effectiveness of the 

proposed approach in providing a Pareto front of the multi-objective optimization 

problem. Insights on the importance of the proper matching of the energy storage 

design variables and the impact of energy storage operation strategy are illustrated. 
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6. THE IMPACT ON POWER SYSTEMS WITH THE INTEGRATION OF 

ENERGY STORAGE AND RENEWABLE ENERGY* 

6.1 Introduction 

Renewable energy and energy storage integrated in the distribution systems 

could help reduce energy purchasing cost for the distribution system load aggregators 

and improve the distribution system reliability. As discussed in the previous sections, 

the load aggregator who operates energy storage and renewable energy within its 

distribution system focuses on improving its own economic and reliability level. The 

proposed operation strategies only consider the optimal objectives for the distribution 

systems. In a market environment, individual load aggregators should focus on 

maximizing their own benefits which include economic and reliability benefits. 

However, as an interconnected power system, each distribution systems is connected to 

the transmission system. The operation strategies each distribution system load 

aggregator implements could also affect the performance of the overall power systems. 

In this section, we investigate the impact on the whole power systems, which includes 

transmission systems, generation systems and distribution systems, brought by the 

                                                 
*Part of the material in this section is reprinted from “Adequacy and Economy Analysis 
of Distribution Systems Integrated with Electric Energy Storage and Renewable 
Energy Resources” by Yixing Xu and Chanan Singh, IEEE Transactions on Power 

Systems. © 2012 IEEE. 
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integrated energy storage and renewable energy. The quantification of the impact is 

essential for evaluating the integration project and determining the proper 

compensations or incentives for the load aggregator. This value for power system 

could also contribute to the justification of the energy storage and renewable energy 

investment. 

6.2 System Configuration 

The investigated power system includes distribution system, transmission system 

and generation system. The distribution systems are discussed in previous Section 4. 

Energy storage and renewable energy are integrated within a distribution system. The 

load aggregator of that distribution system operates the energy storage devices and 

renewable energy production. It also participates in the power markets to manage its 

energy purchase. As proposed in Section 4, a novel Model Predictive Control (MPC) – 

based operation strategy is implemented to reduce energy purchasing cost and improve 

reliability by optimally coordinating the power supplies from energy storage, 

renewable energy, and external grid through the timeline. IEEE-RTS 24 Bus System 

[36] is used for this study, as shown in Figure 36.The failure of generators and 

transmission lines are considered. The transmission lines capacities are also considered. 

Optimal Power Flow Calculation is performed using MatPower 4.0 [37].  

The energy storage devices and renewable energy resources are integrated at bus 
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18 in this study, other buses could also be chosen. The load aggregator at bus18 

operates with the MPC-base strategy to maximize its own benefits. The electric energy 

price profile is shown in Table 12. Only during the event of loss of load in the power 

system, energy storage and renewable energy could be utilized to support the whole 

power system’s demand instead of only the demand in its distribution system. In this 

way, energy storage and renewable energy could also benefit the power system even it 

is mainly utilized as a distribution system resource.  

6.3 Operation Strategies 

The distribution system integrated with the energy storage devices and renewable 

energy resources at bus 18 is operated with the previously proposed MPC-base strategy 

in Section 4. The summary of the MPC-based operation strategy is as follows. 

Operation Strategy in Grid Connected Mode: In grid connected mode, the power 

from external grid, renewable energy and energy storage can all be utilized to serve the 

load. The objective of the load aggregator is to minimize its energy purchasing cost in 

power market while meeting the demand.  
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Figure 36 IEEE Reliability Test System. 
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The energy purchasing cost minimization problem with forecasted, load, 

available renewable energy and price at period i can be implemented as follows: 

1) Obtain the actual load, available renewable energy and price in the current 

period i. 

2) Select a receding optimization horizon of N periods (e.g. 24 hours). Use 

load, renewable energy and price forecast models to obtain the most 

updated load, renewable energy and price forecasts for the next N periods, 

from period i+1 to i+N.  

3) Solve the optimization problem, formulated as follows. 

Objective: Minimizing energy purchasing cost from period i to i+N 

. ( ) ( ) ( ) ( )
i N

f f
k=i+1

Min U i P i U k P k


       (6.1) 

The first part ( ) ( )U i P i  is the energy purchasing cost of the current period i. The 

second part ( ) ( )
i N

f f
k=i+1

U k P k


 is the predicted total energy purchasing cost of the 

following periods from i+1 to i+N. ( )U i and Uf (k) are the decision variables to 

be solved.  

Constraints: 

i. EES operation constraints 

0 ≤ C(k) ≤ CMax    (6.2) 

0 ≤ D(k) ≤ DMax    (6.3) 
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SOCMin≤SOC(k) ≤SOCMax    (6.4) 

where k=i,i+1,…,i+N. The charging and discharging operations of EES are to 

be solved. The maximum charging and discharging rates are constant. As one 

hour is considered as one period in this paper, the charging energy equal to C(k) 

multiplied by 1 hour. For convenience C(k) is used interchangeably as charging 

rate and energy charged in one hour. D(k) is treated in the same way. 

ii. Available renewable energy constraints 

0≤ R(i) ≤ RMax(i)    (6.5) 

0≤ Rf(k) ≤ Rf,Max(k)    (6.6) 

where k = i+1,…, i+N. The utilized renewable energy is equal to or less than the 

available renewable energy. Extra energy not utilized is dumped in ways such as 

adjusting the wind turbines’ blade pitch, so wind turbines do not generate the 

maximum power they can in that period. Utilized renewable energy for current 

period and future period are to be solved. 

iii. Power balance constraints 

U(i) + R(i) = L(i) + C(i) −ηdD(i)    (6.7) 

Uf(k) + Rf(k) = Lf(k) + C(k) −ηdD(k)    (6.8) 

where k = i+1,…,i+N. Load, available renewable energy, and price in current 

period i are the actual values and known. While load, available renewable 
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energy, and price in future periods are predicted using forecast models, thus are 

given parameters for the optimization problem. The solution of this optimization 

problem gives an optimal operation schedule for EES charging/discharging 

operation, energy purchase and renewable energy utilization from period i to 

i+N.  

4) Implement the first period’s operation of the solved operation schedule, 

which is the current period i. 

5) Update the EES state of charge level, move to the next period, and repeat 

the algorithm from step 1. 

Operation Strategy in Islanding Mode: In islanding mode, avoiding and 

minimizing load curtailment is the objective. The available renewable energy is first 

utilized to serve the load. If it is not enough to cover the load, the energy stored in EES 

is discharged to avoid or minimize load curtailment. Only when the load demand is 

met, and there is renewable energy surplus, the extra energy is stored in EES for future 

usage without violating EES operation limits. The extra energy which cannot be stored 

in EES is then dumped. 

Operation Strategy during Loss of Load Events: Beside operation strategies in 

previous two modes. One more operation strategy is implemented. This operation is 

only conducted when there is a loss of load event wherever in the power system. In this 
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situation, avoiding this loss of load event of the system is the priority. The energy 

storage will discharge to its limit until it can prevent a loss of load event. The 

renewable energy will be fully utilized to support the load. With the extra power from 

energy storage and renewable energy resources, the frequency and duration of the loss 

of load events could be reduced. The unserved energy of the power system could also 

be reduced. During the loss of load event, the energy storage and renewable energy is 

temporarily utilized as a whole power system’s resource instead of just the distribution 

system’s resource. 

6.4 Reliability and Economy Evaluation 

Considering the impact of the operation strategy of the energy storage and 

renewable energy, the reliability and economy evaluation method is based on 

Sequential Monte Carlo Simulation.  

In adequacy analysis, a power system is considered to be operating in either 

success state or failure state. A system is considered operating in success state when it 

has enough generation capacity to serve the load considering the transmission lines 

capacities. When generation capacity is not sufficient to meet the load demand or the 

power cannot be delivered to meet the load due to transmission lines congestions and 

the loss of load occurs, the system is in failure state. According to the proposed 

operation strategies, the power from energy storage and renewable energy resource 
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could be utilized to support the load of the power system in the situation of insufficient 

generation. The probabilities and durations associated with the system residing in 

success and failure states and energy not served during failure states are the adequacy 

indices for reliability analysis. Loss of Load Expectation (LOLE) and Expected Energy 

Not Served (EENS) are calculated as the reliability indices. Other common distribution 

system indicescould also be calculated if needed. 

6.5 Case Studies 

The IEEE RTS Test System, as shown in Figure 36, is studied. Hourly load 

profile from the test system is used. Considering that the expected growing load 

demand could lead to a less reliable power system. The load profile is scaled to 120% 

and 140% of the original load profile to simulate the growing load demand. Energy 

storage devices and wind turbines are integrated at bus 18. A base case without any 

energy storage device and wind turbine is studied first. The scenarios with only energy 

storage are then studied. The results are shown in Table 19. 

From the simulation results, it can be observed that energy storage integrated in 

the distribution system is improving the overall system’s reliability even though the 

energy storage is mainly utilized to benefit the distribution system itself. A more 

detailed scenarios study is conducted. The capacity and power of the simulated energy 

storage devices are listed in Table 20. The simulated Wind Turbines Generation (WTG) 
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capacities are 2MW, 5MW, 10MW, 20MW, 30MW, 40MW and 50MW. 

 

Table 19 Reliability Indices without Wind Turbines 

Load 
Energy Storage 

LOLP EENS 
(103MW) Capacity 

(MWh) 
Power 
(MW) 

1.2 × RTS Load 0 0 2.0719% 31.84 
1.2 × RTS Load 40 10 1.9803% 31.10 
1.4 × RTS Load 0 0 13.484% 316.31 
1.4 × RTS Load 40 10 13.164% 314.22 

 

Table 20 Capacity and Power of the Energy Storage Devices 

Energy Storage 
Power 
(MW) 

Capacity 
(MWh) 

20 40 
30 40 
40 40 
10 80 
20 80 
40 80 
60 80 
80 80 

 

Each energy storage device will match with a WTG capacity to form a scenario. 

The simulated load scale is 120% and 140% of the original load profile. The 

simulation results are displayed from Table 21 to Table 24. 
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Table 21 LOLP with 120% Load Scale 

Energy Storage 
WTG Capacity (MW) 

2 5 10 20 30 40 50 
Power (MW) Capacity (MWh) 

20 40 1.8773% 1.8773% 1.8773% 1.8544% 1.8201% 1.8086% 1.7972% 

30 40 1.8201% 1.8201% 1.8201% 1.7972% 1.7857% 1.7743% 1.7628% 

40 40 1.7399% 1.7285% 1.7170% 1.6941% 1.6827% 1.6712% 1.6598% 

10 80 1.9460% 1.9345% 1.9002% 1.8773% 1.8429% 1.8086% 1.7857% 

20 80 1.8544% 1.8544% 1.8429% 1.8086% 1.7743% 1.7743% 1.7628% 

40 80 1.7170% 1.7170% 1.6941% 1.6827% 1.6712% 1.6598% 1.6369% 

60 80 1.6026% 1.6026% 1.6026% 1.5797% 1.5453% 1.5453% 1.5224% 

80 80 1.5453% 1.5110% 1.4881% 1.4766% 1.4309% 1.4309% 1.4194% 
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Table 22 EENS (103MWh) with 120% Load Scale 

Energy Storage 
WTG Capacity (MW) 

2 5 10 20 30 40 50 
Power (MW) Capacity (MWh) 

20 40 30.84 30.75 30.66 30.44 30.19 30.13 29.99 

30 40 30.64 30.55 30.47 30.23 30.05 29.97 29.84 

40 40 30.32 30.23 30.10 29.88 29.70 29.60 29.46 

10 80 30.57 30.50 30.38 30.19 30.06 29.86 29.76 

20 80 30.35 30.29 30.26 29.99 29.77 29.74 29.68 

40 80 30.23 30.15 30.00 29.80 29.62 29.52 29.33 

60 80 29.66 29.58 29.49 29.26 28.95 28.92 28.69 

80 80 29.29 29.04 28.78 28.62 28.17 28.14 27.97 

 

In Table 21 and Table 22, it can be noticed that the system is still relatively reliable 

with LOLP from 1.4% to 1.9%. When the energy storage has 20MW power and 

40MWh capacity, the expansion of WTG from 2MW to 10MW does not improve 

LOLP. That is because in the loss of load event, the added WTG is too small to cover 

the generation inadequacy. 
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Table 23  LOLP with 140% Load Scale 

Energy Storage 
WTG Capacity (MW) 

2 5 10 20 30 40 50 Power 

(MW) 

Capacity 

(MWh) 

20 40 12.935% 12.901% 12.866% 12.740% 12.626% 12.523% 12.374% 

30 40 12.763% 12.717% 12.637% 12.523% 12.420% 12.294% 12.157% 

40 40 12.500% 12.454% 12.397% 12.283% 12.179% 12.065% 11.928% 

10 80 12.981% 12.969% 12.901% 12.706% 12.626% 12.534% 12.454% 

20 80 12.866% 12.821% 12.786% 12.649% 12.511% 12.386% 12.225% 

40 80 12.374% 12.328% 12.283% 12.145% 12.042% 11.939% 11.813% 

60 80 11.985% 11.939% 11.870% 11.756% 11.619% 11.527% 11.390% 

80 80 11.573% 11.550% 11.481% 11.344% 11.218% 11.115% 11.035% 

 

However, the added WTG reduces the energy not served from 30.84GWh to 

30.66GWh.In Table 23 and Table 24, with a much larger load demand, the system has 

a LOLP from 11% to 13%. Compared with the results of 120% load scale, the same 

expansion of energy storage and WTG could reduce more loss of load events.The same 

phenomenon can also be observed for EENS. 
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Table 24 EENS (103MWh) with 140% Load Scale 

Energy Storage 
WTG Capacity (MW) 

2 5 10 20 30 40 50 Power 

(MW) 

Capacity 

(MWh) 

20 40 313.86 313.71 313.35 312.55 311.97 311.44 310.85 

30 40 313.48 313.27 312.76 311.98 311.35 310.68 310.05 

40 40 312.65 312.41 312.02 311.22 310.55 309.90 309.25 

10 80 312.98 312.88 312.57 311.73 311.38 310.94 310.66 

20 80 312.97 312.83 312.50 311.66 311.12 310.58 309.97 

40 80 312.10 311.92 311.51 310.67 310.04 309.39 308.78 

60 80 310.30 310.02 309.48 308.57 307.69 306.98 306.24 

80 80 307.67 307.52 307.01 305.81 304.87 304.14 303.71 

 

For example, in Table 22, when increase energy storage capacity from 40MWh 

to 80MWh, power from 20MW to 80MW and WTG from 2MW to 50MW, the 

reduction of EENS is only 2.87MWh (30.84−27.97). In Table 24, the same expansion 

leads to an EENS reduction of 10.15MWh (313.86−303.71). The reliability 

improvement is more effective when the system is less reliable. 

6.6 Summary 

The proposed operation strategies in Section 4 are to serve the distribution 
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system integrated with energy storage and renewable energy. However, the operations 

of the distribution system have an impact on the whole power system’s reliability level. 

This section investigates this impact on the system reliability. The simulation results 

demonstrate the reliability impact on the power system. Considering that the objective 

of the MPC-based operation strategy is to serve the distribution system, the reliability 

improvement for the whole power system is a positive external impact. The evaluation 

of this reliability impact could be utilized to quantify the benefits of the energy storage 

and renewable energy which are mainly utilized as the distribution system resources. 

The quantified benefits for the power system could be utilized to better value the 

integration of energy storage and renewable energy. Proper compensations or 

incentives to the energy storage and renewable energy resources owners could later be 

determined by the system operators.  
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7. CONCLUSIONS AND OUTLOOK 

 

With the recent rapid development of energy storage technologies, expected large 

penetration of renewable energy sources, and the movement toward a more reliable and 

efficient smart grid, many technical challenges need to be solved. This dissertation 

focuses on the operation strategies, evaluation methods and optimization framework 

related to the integration of energy storage and renewable energy which could be 

utilized to make the electric grid more reliable and efficient. Several important topics 

in this research arena are investigated. 

 In the past, electric power systems are basically operated on the basis of 

real-time balancing of supply and demand. Now, with the relatively more 

affordable large scale energy storage devices available, the conventional 

operation strategies should be revisited. In a market environment, a distribution 

system load aggregator with energy storage devices needs to understand how to 

optimally operate them. In Section 2, a method for determining the optimal 

scheduling and operation of a load aggregator with energy storage in power 

markets is presented. Load aggregators could use this method to minimize its 

energy purchasing cost in power markets. This method takes in the price and 

load forecasts as its input to determine what should be the optimal operation in 
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the current period. With real-time updated forecasts, its operations are also 

adjusted to be optimal. Simulations are performed to demonstrate the 

effectiveness of the method and the robustness while facing price and load 

uncertainties. 

 Energy storage has its unique characteristics. It could either be utilized as a 

generation when the grid needs more energy to support the demand, or behave 

like a load when being charged. When should the energy storage devices be 

charged and discharged needs to be carefully investigated during operation. Not 

only could the energy storage sizing which includes energy storage capacity 

and power rate affect the power system reliability and economy, but also its 

operation strategies. Different energy storage operation strategies could have 

significant impacts on power systems even the size of the energy storage 

remains the same. In Section 3, three energy storage operation strategies are 

presented and their impact on power system reliability and economy are 

investigated. Simulation results shows how different the impacts are with 

different energy storage operation strategies. A hybrid operation strategy is 

proposed to flexibly adjust the reliability and economy impact brought by 

energy storage. The load aggregates could utilize this operation strategy to 

achieve and adjust their desired reliability and economy level with the same 
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energy storage devices installed. 

 The renewable energy penetration is increasing with the expectation to reach 

more than 20% of the total generation. Energy storage could be utilized to 

facilitate the integration of renewable energy. In Section 4, a novel Model 

Predictive Control (MPC) based operation strategy is proposed to optimally 

coordinate the power supplies from renewable energy, energy storage and 

external grid in order to minimize energy purchasing cost. A reliability and 

economy evaluation framework integrated with the proposed operation 

strategies is also presented. Case studies results demonstrate the benefits of the 

proposed operation strategies and also provide insights on how energy storage 

capacity, power limit and wind turbine generation capacity impact reliability 

and economy. 

 Utility scale energy storage devices are still a high cost investment. During the 

planning stage of energy storage installation and expansion, an optimization 

framework needs to be developed to determine the sizing of energy storage and 

its value to the power systems. In Section 5, a modified multi-objective particle 

swarm optimization approach is proposed to solve the energy storage design 

problem which not only includes energy storage capacity and power rate, but 

also the operation strategy. The case study results demonstrate the effectiveness 



 

 

163 

 

of the proposed approach in providing a Pareto front of the multi-objective 

optimization problem. Insights on the importance of the proper matching of the 

energy storage design variables and the impact of energy storage operation 

strategy are illustrated.  

 Energy storage devices and renewable energy resources integrated in the 

distribution systems have an impact on the transmission system reliability. This 

impact is evaluated in Section 6. With the reliability impact quantified, the 

system operators could determine the proper compensations and incentives for 

the load aggregator. This value could contribute to the justification of the 

energy storage and renewable energy investment.  

The proposed MPC-based operation strategy and hybrid operation strategy utilize 

renewable energy forecast, electric energy price forecast, and load forecast. The 

accuracy of these forecasts is important to the effectiveness of these strategies. With 

the development of the more accurate forecast techniques and algorithms, these 

operation strategies could be more beneficial to the power systems. Meanwhile, large 

scale stochastic optimization methods could be utilized to deal with the forecast 

uncertainties. The proposed energy storage sizing and operation strategy optimization 

framework needs to perform reliability and economy evaluation based on Monte Carlo 

Simulation. More efficient and accurate reliability and economy evaluation methods 
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could in turn improve the efficiency of the optimization process. In order to cover the 

high investment cost, more revenue streams and benefits besides energy purchasing 

cost savings and reliability improvement needs to be investigated. The possible 

applications include frequency regulation, spinning reserve and transmission 

congestion relief, etc. These applications could be included in the proposed 

multi-objective particle swarm optimization framework to evaluate the investment and 

determine the energy storage sizing and operation strategy. With the understanding of 

the reliability impact on the transmission systems brought by the energy storage and 

renewable energy integrated in the distribution systems, system operators could more 

efficiently plan for the future demand growth with the utilization of these resources.  



 

 

165 

 

REFERENCES 

 

[1]  US DOE Electricity Advisory Committee, "Bottling electricity: storage as a 

strategic tool for managing variability and capacity concerns in the modern grid," 

US DOE Electricity Advisory Committee, Dec. 2008. 

[2]  US DOE Electricity Advisory Committee, "Smart grid: enabler of the new energy 

economy," US DOE Electricity Advisory Committee, Dec. 2008. 

[3]  J. Eyer and G. Corey, "Energy storage for the electricity grid: benefits and market 

potential assessment guide," Sandia National Laboratories, Albuquerque, NM and 

Livermore, CA, Feb. 2010.  

[4]  B. Daryanian, R. E. Bohn, and R. D. Tabors, "Optimal demand-side response to 

electricity spot prices for storage-type customers," Power Engineering Review, 

IEEE, vol. 9,no. 8, pp. 36-36, 1989. 

[5]  B. Daryanian, R. E. Bohn, and R. D. Tabors, "An experiment in real time pricing 

for control of electric thermal storage systems," IEEE Trans. Power Syst.,vol. 

6,no. 4, pp. 1356-1365, Nov. 1991. 

[6]  R. Walawalkar, J. Apt, and R. Mancini, "Economics of electric energy storage for 

energy arbitrage and regulation in New York," Energy Policy, vol. 35,no. 4, pp. 

2558-2568, Apr. 2007. 

[7]  M. Korpas and A. T. Holen, "Operation planning of hydrogen storage connected 

to wind power operating in a power market," IEEE Trans. Energy Conversion,  

vol. 21,no. 3, pp. 742-749, Sept. 2006. 



 

 

166 

 

[8]  L. Xie and M. D. Ilic, "Model predictive economic/environmental dispatch of 

power systems with intermittent resources," Proc. IEEE PES General Meeting, 

Calgary, Canada, Jul. 2009. 

[9]  J. Zhang and C. Cheng, "Day-ahead electricity price forecasting using artificial 

intelligence", Proc.Electric Power Conference, Vancouver, Canada, Oct. 2008. 

[10] N. Amjady and F. Keynia, "Day-ahead price forecasting of electricity markets by 

mutual information technique and cascaded neuro-evolutionary algorithm,"  

IEEE Trans. Power Syst., vol. 24,no. 1, pp. 306-318, 2009. 

[11] A. M. Gonzalez, A. M. S. Roque, and J. Garcia-Gonzalez, "Modeling and 

forecasting electricity prices with input/output hidden Markov models," IEEE 

Trans. Power Syst., vol. 20,no. 1, pp. 13-24, 2005. 

[12] T. Niimura, "Forecasting techniques for deregulated electricity market prices", 

Proc. PES General Meeting, Montreal, Canada, Jul. 2006. 

[13] F. J. Nogales, J. Contreras, A. J. Conejo, and R. Espinola, "Forecasting next-day 

electricity prices by time series models," IEEE Power Engineering Review, vol. 

22,no. 3, pp. 58-58, 2002. 

[14] Z. H. Osman, M. L. Awad, and T. K. Mahmoud, "Neural network based approach 

for short-term load forecasting", Proc.Power Systems Conference and Exposition, 

Seattle, USA, Mar.2009. 

[15] K. Y. Lee, Y. T. Cha, and J. H. Park, "Short-term load forecasting using an 

artificial neural network," IEEE Trans. Power Syst., vol. 7,no. 1, pp. 124-132, 

1992. 



 

 

167 

 

[16] J. W. Taylor and R. Buizza, "Neural network load forecasting with weather 

ensemble predictions," IEEE Trans. Power Syst., vol. 17,no. 3, pp. 626-632, 2002. 

[17] W. R. Lachs and D. Sutanto, "Battery storage plant within large load centres," 

IEEE Trans. Power Syst., vol. 7,no. 2, pp. 762-767, 1992. 

[18] J. Mitra, "Reliability-based sizing of backup storage," IEEE Trans. Power 

Syst.,vol. 25,no. 2, pp. 1198-1199, 2010. 

[19] B. Bagen and R. Billinton, "Reliability cost/worth associated with wind energy 

and energy storage utilization in electric power systems," Proc.Probabilistic 

Methods Applied to Power Systems, Rincón, Puerto Rico, May. 2008. 

[20] C. Singh and Y. Kim, "An efficient technique for reliability analysis of power 

systems including time dependent sources," IEEE Trans. Power Syst.,vol. 3,no. 3, 

pp. 1090-1096, 1988 

[21] R. Billinton, G. Yi, and R. Karki, "Composite system adequacy assessment 

incorporating large-scale wind energy conversion systems considering wind speed 

correlation," IEEE Trans. Power Syst.,vol. 24,no. 3, pp. 1375-1382, 2009. 

[22] F. Vallee, J. Lobry, and O. Deblecker, "System reliability assessment method for 

wind power integration," IEEE Trans. Power Syst.,vol. 23,no. 3, pp. 1288-1297, 

2008. 

[23] P. Wang and R. Billinton, "Reliability benefit analysis of adding WTG in a 

distribution system," IEEE Power Engineering Review,vol. 21,no. 5, pp. 62-62, 

2001. 



 

 

168 

 

[24] Y. M. Atwa, E. F. El-Saadany, and A. C. Guise, "Supply adequacy assessment of 

distribution system including wind-based DG during different modes of 

operation," IEEE Trans. Power Syst.,vol. 25,no. 1, pp. 78-86, 2010. 

[25] B. Bagen and R. Billinton, "Reliability cost/worth associated with wind energy 

and energy storage utilization in electric power systems," Proc.Probabilistic 

Methods Applied to Power Systems, 2008. 

[26] R. Karki, H. Po, and R. Billinton, "Reliability evaluation considering wind and 

hydro power coordination," IEEE Trans. Power Syst., vol. 25,no. 2, pp. 685-693, 

2010. 

[27] W. R. Lachs and D. Sutanto, "Battery storage plant within large load centres," 

IEEE Trans. Power Syst., vol. 7,no. 2, pp. 762-767, 1992. 

[28] A. Pregelj, M. Begovic, and A. Rohatgi, "Recloser allocation for improved 

reliability of DG-enhanced distribution networks," IEEE Trans. Power Syst.,vol. 

21,no. 3, pp. 1442-1449, 2006. 

[29] R. Billinton and R. N. Allan, “Reliability evaluation of power systems,” 2nd ed. 

New York: Plenum Press, 1996. 

[30] North American Electric Reliability Corporation. (2009, Apr.). Accommodating 

High Levels of Variable Generation. [Online]. Available: 

http://www.nerc.com/files/IVGTF_Report_041609.pdf 

[31] Y. Xu, L. Xie, C. Singh, "Optimal scheduling and operation of load aggregators 

with electric energy storage facing price and demand uncertainties," Proc. North 

American Power Symposium, Boston, Sep. 2011. 

http://www.nerc.com/files/IVGTF_Report_041609.pdf


 

 

169 

 

[32] P., Poonpun, W. Jewell, "Analysis of the cost per kilowatt hour to store 

electricity," IEEE Trans. Energy Conversion, vol.23, no.2, pp.529-534, Jun. 2008. 

[33] L. Wang, C. Singh, "Balancing risk and cost in fuzzy economic dispatch 

including wind power penetration based on particle swarm optimization," Electric 

Power Systems Research, Volume 78, Issue 8, pp. 1361-1368, Aug. 2008. 

[34] S. M. Schoenung and W. V. Hassenzahl, “Long- vs. short-term energy storage 

technologies analysis: a life-cycle cost study,” Sandia Natl. Lab., Albuquerque, 

NM, Sandia Rep. SAND2003-2783, 2003. 

[35] Energy Information Administration (2006). Annual energy outlook 2006 with 

projection to 2030. [Online]. Available: http://www.eia.doe.gov/oiaf/aeo/ 

[36] IEEE RTS Task Force of APM Subcommittee, “IEEE reliability test system,” 

IEEE Power App. Syst., vol. PAS-98, no. 6, pp. 2047–2054,Nov./Dec. 1979. 

[37] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, "MATPOWER 

steady-state operations, planning and analysis tools for power systems research 

and education," IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12-19, Feb. 2011.  

 
 

 

http://www.eia.doe.gov/oiaf/aeo/



