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ABSTRACT 

 This dissertation presents dynamic reactive power control of isolated power 

systems. Isolated systems include MicroGrids in islanded mode, shipboard power 

systems operating offshore, or any other power system operating in islanded mode 

intentionally or due to a fault. Isolated power systems experience fast transients due to 

lack of an infinite bus capable of dictating the voltage and frequency reference. This 

dissertation only focuses on reactive control of islanded MicroGrids and AC/DC 

shipboard power systems. The problem is tackled using a Model Predictive Control 

(MPC) method, which uses a simplified model of the system to predict the voltage 

behavior of the system in future. The MPC method minimizes the voltage deviation of 

the predicted bus voltage; therefore, it is inherently robust and stable. In other words, 

this method can easily predict the behavior of the system and take necessary control 

actions to avoid instability. Further, this method is capable of reaching a smooth voltage 

profile and rejecting possible disturbances in the system. The studied MicroGrids in this 

dissertation integrate intermittent distributed energy resources such as wind and solar 

generators. These non-dispatchable sources add to the uncertainty of the system and 

make voltage and reactive control more challenging. The model predictive controller 

uses the capability of these sources and coordinates them dynamically to achieve the 

voltage goals of the controller. The MPC controller is implemented online in a closed 

control loop, which means it is self-correcting with the feedback it receives from the 

system. 
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NOMENCLATURE 

DER Distributed Energy Resource 

DFIG                           Doubly Fed Induction Generator 

DG Distributed Generator 

MILP                           Mixed Integer Linear Programming 

MIQP                          Mixed Integer Quadratic Programming 

MLD Mixed Logical Dynamics 

MPC Model Predictive Control 

PWA                           Piecewise Affine System 

SPS Shipboard Power System 

STATCOM                 STAtic synchronous COMpensator 

SVC                            Static Var Compensator 

VVC Volt/Var Control 
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1 INTRODUCTION 

An isolated power system is typically a small system that has no possibility of 

support from an interconnected neighboring system due to a fault or intentional islanded 

operation. Isolated systems commonly have limited generation capacity from local 

distributed generators with small inertia. Due to minimal or non-existent transmission 

system, isolated systems are more vulnerable to disturbances than stiff distribution 

systems. These systems can easily move from one state to another due to load or 

generation changes. Due to these distinguishing features, the power management 

procedures of conventional terrestrial power systems cannot be effectively used for 

isolated power systems. With these key traits in mind, it is desirable to develop a 

dynamic power management scheme that accounts for the following criteria: economics, 

reliability, security, and survivability. Dynamic is emphasized because system dynamics 

or transients are very important when it comes to isolated power systems since load 

demand is comparable to generation capacity. 

The main objective of a dynamic power management scheme is to ensure continuous 

power supply for electric loads with optimal utilization of power sources, thereby 

enhancing system reliability and survivability. Dynamic power management strategy for 

an isolated power system should include the following control modules that should work 

together as needed to supply power to the loads: dynamic source management (economic 

dispatch and unit commitment), dynamic phase/load balancing and grid management, 

dynamic voltage and reactive power control, dynamic demand side management. 
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However, the proposed work in this dissertation only addresses dynamic reactive 

control.   

The objective of this dissertation is to develop a dynamic reactive power control 

strategy for Volt/Var optimization of isolated systems. Volt/Var Optimization (VVO) or 

generally Volt/Var Control (VVC) is concerned with coordinating the sources and sinks 

of reactive power to achieve a smooth and stable voltage profile. Generally speaking, 

bus voltage is coupled with reactive power in power systems. Therefore, coordinating 

reactive power generation and consumption is helpful in keeping the bus voltages within 

limits. 

Load behavior as a response to voltage variation in a distribution system is very 

important in volt/Var studies. Load studies show that typically about 50% of the loads in 

a distribution system are motor loads. Motor loads in a conventional distribution system 

are often a combination of industrial, residential and commercial motors [1]. The 

remaining loads in the distribution system are typically constant power loads which can 

be electronics, motor drives, etc. (about 20%), discharge lighting CFLs (about 10%) and 

constant impedance loads which can be incandescent lighting, ranges, irons, etc. (about 

20%). The behavior of each of these load types in response to voltage changes is 

predictable. Discharge lighting usually turns off when voltage drops below 70 to 80%. 

Adjustable speed drives temporarily shut down when the voltage level drops below 90% 

and constant-impedance loads draw less active power from the network as the bus 

voltage drops. Large industrial motors have contactors that turn the motor off when 

voltage drops to about 75% and small motors such as those used in air-conditioning 
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which do not have electromagnetic contacts may stall, drawing large levels of current 

from the power system when voltage sags to 70% or less.  

In the stall condition, the motor continues to draw a large amount of current until it trips 

the over current protection, which may take from 10 seconds up to a few minutes. 

The amount of motor load has a significant impact on voltage stability of the isolated 

distribution system. Small motors that do not disconnect are more problematic due to 

stall at low voltage levels. Especially, low-inertia small motors that stall faster drag 

down system voltage.  Unfortunately, the new high-efficiency AC motors have 

remarkably low inertia.  

In the past, the induction motor’s speed slowed down slightly when its terminal 

voltage dropped which resulted in a reduction in the total motor load. This reduction in 

speed had a "healing" effect for the system when a voltage drop occurred in the system. 

However, the new generation of adjustable speed drives, still supply the same voltage 

and frequency to the motor even when the distribution bus voltage drops and thus 

eliminate some of the inherent self-healing effect in the distribution system. 

It is necessary to understand and classify the power quality problems in a power 

system to be able to solve the problem [2]. There are different classifications for power 

quality issues in distribution systems.  Each of these classifications uses a specific 

property to categorize the problem. Some standards classify the events as "steady-state" 

or "non-steady-state" phenomena. Other standards such as ANSI C84.1 use the duration 

of the event as the key factor for classification. Other guidelines such as IEEE-519 use 
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the wave shape of each event to classify power quality problems. Finally, standards such 

as IEC use the frequency range of the event for the classification.  

IEC presents the following list of phenomena causing electromagnetic disturbances:  

 Conducted low-frequency phenomena 

1. Harmonics, interharmonics 

2. Signaling voltage 

3. Voltage imbalance 

4. Power frequency variations 

5. Induced low-frequency voltages 

6. DC components in AC networks 

7. Voltage fluctuations 

8. Voltage dips 

 Radiated low-frequency phenomena 

1. Electric fields 

2. Magnetic fields 

 Conducted high-frequency phenomena 

1. Unidirectional transients 

2. Induced continuous wave (CW) voltages or currents 

3. Oscillatory transients 

 Radiated high-frequency phenomena 

1. Magnetic fields 

2. Electric fields 
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3. Electromagnetic field 

4. Steady-state waves 

5. Transients 

 Electrostatic discharge phenomena (ESD) 

 Nuclear electromagnetic pulse (NEMP) 

Although all the mentioned phenomena are considered as power quality issues, the 

power system industry usually classifies power quality events according to their 

magnitude and duration. A sample classification table of power quality issues based on 

magnitude and duration of the event is shown in Figure 1-1. 

 

 

Figure 1-1 Magnitude-duration plot for classification of power quality events  [2] 

 

There are nine different regions in the voltage-magnitude plot shown in Figure 1-1 

and various standards give different names to events in each of these regions. 
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Classification based on the voltage magnitude divides power quality events into three 

regions: 

 interruption: voltage magnitude is zero   

 Under-voltage: voltage magnitude is below its nominal value by a certain 

percent  

 Over-voltage: voltage magnitude is above its nominal value by a certain 

percent 

Based on the duration of the event, these events are split into four regions, namely, 

very short, short, long, and very long. The borders in this plot are somewhat arbitrary 

and the user can set them according to the system requirements or the standard that is 

used.  

1.1 Isolated Power Systems 

This dissertation presents a generic study of power management for the integrated 

isolated power systems. Some examples of isolated power systems include MicroGrids, 

shipboard power systems, offshore oil platforms, and power systems of the physical 

islands [3],[4],[5],[6],[7]. This dissertation only focuses on shipboard power systems and 

MicroGrids. However, the developed method can be easily extended to control voltage 

and reactive power of other types of isolated power systems.  

It is worth mentioning that MicroGrids and all-electric AC/DC shipboard power 

systems have some similarities in topology and behavior. Thus, offshore shipboard 

power systems can be considered as a class of MicroGrids operating in the islanded 
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mode. However, while the structure of these systems is quite similar, different operation 

and performance criteria differentiates them from one another. In the next part, we will 

discuss these systems and their specifications in more detail. 

1.1.1 Integrated Shipboard Power Systems 

A Shipboard Power System (SPS) provides electrical power to propulsion motors 

and loads in all-electric ships. The SPS uses a power management scheme that enables 

the use of high energy weapons such as advanced sensors, railguns, and lasers and 

allows operators to optimize system operation which leads to cost savings and efficiency 

while maintaining survivability of the system [5],[8].  

An SPS may experience several events that can cause transient disturbances, such as, 

lightning strikes, faults, pulsed loads and damage to the system [9]. To the date of this 

dissertation, many schemes have been proposed for all-electric shipboard power 

systems. The latest scheme, which is of more interest, is an AC/DC scheme with high 

voltage AC generation and DC zonal distribution. In this scheme, the generation is AC 

typically from synchronous generators and the distribution system is composed of 

several DC zones [8]. The AC voltage is rectified to DC at the connection point with the 

DC zones.  The zonal scheme has the advantage of mitigating faults within one zone and 

keeping other zones operational when faults occur, thus it increases system survivability 

[5]. In this scheme, loads are typically connected to the system inside the distribution 

zones. However, some loads such as propulsion motors, power installations and high 

power pulsed weapons are usually directly connected to the AC supplies. Figure 1-2 

shows an example of an AC/DC zonal SPS. 



 

8 
 

 

The number and size of generators depend on the design but usually the system has 

some Main Turbine Generators (MTG) and some Auxiliary Turbine Generators (ATG). 

MTG are typically large synchronous generators and ATGs are smaller and faster 

synchronous generators. For example, one SPS design of a war cruise ship uses two 

MTGs of 36MW and two ATGs of 4MW [10].  Propulsion motors, high power weapons, 

radars, and air conditioners, are the typical loads in the SPS. These loads usually have 

different priorities defined by the operator based on the mission. The energy 

management unit disconnects the low priority loads during overload, supply shortage, or 

damage in the system.  

This dissertation only focuses on voltage and reactive power control of the AC/DC 

zonal SPS; however, other SPS designs can be analyzed and controlled with a similar 

method. In this work, reactive power control of the SPS is approached through 

optimizing the setpoints of the reactive compensators and generators in the system while 

considering the specific limits of the shipboard generators and compensators. 
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Figure 1-2 A notional zonal AC/DC shipboard power system 

 
 

1.1.2 MicroGrids 

Several issues are increasingly challenging security, reliability, and quality of 

conventional utility power systems, namely, aging of transmission/distribution 

infrastructure, changes in customer needs, additional stress due to deregulation, the need 

to connect non-traditional generation (i.e. renewable sources), and demand for a more 

reliable/resilient power delivery infrastructure and introduction of Plugged in Hybrid 

Electric Vehicle (PHEV). Incremental changes to grid infrastructure will not achieve the 
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demanded reliability; therefore, power system researchers are currently exploring new 

infrastructures and operational concepts. 

High penetration of renewable energy devices to the grid can significantly change 

the structure of the existing grid. For example, due to the environmental and technical 

advantages of local power generation, some large power plants will soon be 

disconnected from the grid and the distributed generators will take their place. However, 

these sources are intermittent and not dispatchable and have different characteristics than 

the conventional generators. 

A new power system concept that is under extensive study and will possibly replace 

the current structure in the future is the concept of MicroGrid. A MicroGrid is defined as 

an aggregation of loads and generation. The generators in MicroGrids are usually 

consisted of microturbines, wind generators, fuel cells, photovoltaic sources, 

reciprocating engines, or any other power sources depending on the application. 

MicroGrids can also be designed to have the ability to use the waste heat from the 

generators as an energy resource for environment heating to improve overall efficiency. 

 To the upper system, which is the main grid, a MicroGrid is a controllable electrical 

load that can be controlled to act as a constant load. Further, It can demand more power 

when electricity is cheaper, and also can be controlled at zero power demand or isolated 

mode during the intervals of system stress. This flexibility helps the utilities to operate 

the system more efficiently, increase the reliability of the system and potentially reduce 

the total cost of distribution.   
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 MicroGrids require an Energy Management System (EMS) to make decisions 

regarding the best use of the generators for producing electric power and heat, and the 

operating mode of the system. These decisions are made based on many factors 

including the environmental factors, the price of electric power, the cost of generation of 

each source of energy, and many other considerations [11]. The EMS should be able to 

control the MicroGrid during all operating modes, namely, connected to the grid, 

islanded mode (isolated mode), and the ride-through between grid connected and 

islanded mode. 

To summarize, MicroGrids provide thermal and electrical needs at enhanced 

reliability with reduced emissions. They are also designed to have improved power 

quality (controlling voltage), and lower costs of energy supply then conventional power 

systems.  

According to the MicroGrid whitepaper from the U.S. Department of Energy, 

MicroGrids can be grouped into a number of different classes as shown in Table 1[12].  

A MicroGrid can operate in three modes:  

 Partial Baseload, where DGs provide baseload power to a portion of the site 

loads and the main grid provides supplemental/back-up power 

 Full Baseload (Island), where DGs provide baseload power to all site loads and 

the main grid provides back-up power when needed 

 Back-up/Peaking, where the main grid provides power to all site loads and DGs 

provide back-up power when needed 

Components of a MicroGrid typically consist of: 
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1) DER: small scale power generation technologies typically (3kW-10MW) and are 

used to provide an alternative/enhancement to the traditional power system. 

There are two types: Distributed Generation (DG) - small sources of energy 

located near the point of use) and Distributed Storage (DS). Micro turbines, wind 

turbines, PV arrays, reciprocating internal combustion engines with generator, 

and Combined Heat and Power (CHP) are typical DG units. Typical DS units are 

batteries, fuel cells, super capacitors, and flywheels.  

2) Interconnection Switch: Ties the point of common connection between the 

MicroGrid and the grid. This switch consolidates various types of 

power/switching functions into one system with a digital signal processor: 

metering, power switching, protective relaying, and communications. Grid 

conditions are measured on both the MicroGrid and the utility sides of the switch 

to determine operational conditions 

3) Energy Management System: EMS is designed to safely operate the MicroGrid 

in any mode. In islanded mode, the EMS should provide a reference for 

voltage/frequency since the reference signal form the grid is not available 

anymore. Voltage control is necessary for local reliability and stability. 

Frequency during islanded-mode varies freely if none of the DG units 

dominantly forces a base frequency for the system. Thus, EMS assigns one of the 

DG units to control to dynamically balance real power and dictate the frequency. 

This DG unit, which is called the master generator, must provide/absorb 
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instantaneous real/reactive power difference between generation and loads and 

protect the internal MicroGrid.  

Although, MicroGrids have the potential to solve many of the existing problems in 

distribution systems, designing them to be able to operate in grid connected mode, the 

islanded mode and the ride through between these modes has technical challenges in 

control, protection and power quality. This dissertation is only focusing the power 

quality and voltage issues of islanded MicroGrids. 

 

Table 1 MicroGrid characteristics for different classes 
 

Simple (class I) 
Master Control 

(class II) 

Peer-to-Peer 

Control (Class III) 

 

 

Specific 

MicroGrid 

Characteristics for 

different classes 

 Master control system to 

both meet the loads and 

provide voltage and 

frequency support to the 

MicroGrid. 

 Generators located in 

central power plant 

 Master control system to 

both meet the loads and 

provide voltage and 

frequency support to the 

MicroGrid. 

 Generators distributed 

among buildings (separate 

buses) 

 No master control 

exists 

 Local control at 

each generator’s 

location 

maintaining 

voltage and 

frequency stability 

 

Common 

MicroGrid 

Characteristics 

 Multiple generators serve loads in multiple locations. 

 The generators and facilities are connected by a distribution grid which is 

interconnected with utility-owned area electrical power system. 

 Event detection and response control are included 
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Figure 1-3 shows an example of a distribution system with divided into several 

MicroGrids. 

 

 

Figure 1-3 An example of possible hierarchical structure of MicroGrids 

Figure 1-4 shows a sample of an AC/DC MicroGrid. 
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Figure 1-4 An example of a zonal AC/DC MicroGrid [13] 

 

During the short time since the invention of the concept, MicroGrid testbed facilities 

with different energy sources have been built in different locations such as in the United 

States, Japan, Canada, and Europe [14]. Those examples vary quite differently from case 

to case. For example, the CERTS MicroGrid in the United States is a test site based on 

the class III MicroGrid concept. The renewable energy sources have not been installed 

into it up to date [15]. The Aichi MicroGrid project in Japan utilized renewable energy 

sources, battery storage and the capability for heat supply [16, 17]. The EU MicroGrid 

projects also built up couples of test sites with different topologies [18].  
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The focus of this work is on control of distribution MicroGrids integrating renewable 

energy sources. Reactive power control will be approached by optimizing the setpoints 

of the reactive compensators and possibly the dispatchable generators. A good survey of 

the current topologies and implementations of distribution MicroGrid could be found in 

[19],[20]. 

The conventional control methods usually do not include the dynamics of the system 

and average values of power, voltage and current are usually used in system studies. 

However, these methods are not efficient for isolated power systems such as shipboard 

power system or the autonomous MicroGrid because of the following reasons: 

 Since the size of the system is small, changes in the loads and capacitor banks 

have significant impact on the system 

 The system is tightly coupled with relatively large dynamic loads and limited 

generator inertia. Thus changes in loads can lead to large voltage and frequency 

deviations 

 Changes in the system applied by the reactive controller may result in 

unacceptable transients which may lead to relay tripping and isolation of the 

DG’s in the system which is not desirable 

On the other hand, the demand for high quality power is increasing in the past 

decades. Thus, voltage regulation methods with real-time voltage control capability and 

fast transient response are playing a more and more important role in the distribution 

level [1]. The current efforts for dynamic voltage control and reactive compensation 

could be divided into two categories, i.e., is adding dynamic power electronics devices 
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for voltage control in distribution level and designing dynamic control schemes which 

are capable of controlling the devices dynamically. 

The SVC, static synchronous compensator (STATCOM), SC, and DER are some of 

the devices in the distribution level that are capable of performing as dynamic reactive 

power compensators. A typical SVC is made of a thyristor-controlled reactor and a 

capacitor bank or banks in which each capacitor can be switched on or off individually. 

A STATCOM is a voltage source converter with a capacitor on the DC side and 

connected in parallel on the AC side to the power system. STATCOM is placed in the 

system to control power flow and improve the transient stability of the power system. 

The percentage of penetration of DERs has significantly increased in the past few 

decades. There are several types of DERs currently operating in the distribution system: 

micro-turbines, industrial gas turbines, fuel cells, reciprocating engine generators, PVs, 

wind turbines, etc. Most of these DERs are operated as active power sources, but they 

have great potential for local voltage regulation by generating or absorbing reactive 

power for two reasons. First, DERs are usually connected to the power system through a 

power electronics interface, which is easily capable of injecting reactive power to the 

system, by simple modifications in the control scheme. Second, the distributed location 

of DER is ideally suited for voltage regulation.  



 

18 
 

 

2 LITERATURE REVIEW OF REACTIVE POWER CONTROL METHODS OF 

DISTRIBUTION SYSTEMS 

2.1 Introduction 

Various solution techniques exist in the literature that address the VVC problem of 

the distribution systems. These techniques range from fully analytical techniques that try 

to model the distribution system and the problem formulation as rigorously as possible, 

to fully heuristic techniques that rely upon the engineering judgments of utility 

engineers. Each methodology has its own advantages and disadvantages that are 

associated with the structure of the system under study. Also time span of the problem 

plays an important role on the effectiveness of the solution technique applied. During the 

planning stage, time is not an issue which justifies using time-consuming techniques 

with large computational intensities that yield exact solutions. At the operation stage, 

however, the time period required for convergence of the solutions is of greatest 

importance, and is a limiting factor for selecting the appropriate solution technique. 

Also, some of these solution techniques result in finding the local minimum, while 

others lead to global minima. It should be noted that in distribution systems, a local 

minimum is not necessarily a disadvantage, since often times it is very satisfactory to 

find a feasible solution, which can be reached, in the minimum number of network 

switching operations. Naturally, a higher number of control variables might need to be 

applied in order to reach the global minimum. This may result in a set of network 

switching operations too large for practical operational purposes [21]. 
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In general, the solution techniques for solving the VVC problem can be broadly 

classified as follows. 

2.2 Network Model Based Techniques 

These techniques require a detailed mathematical model of the distribution system, 

and can be divided into three categories based on the mathematical approach adopted to 

solve the optimization problem. 

2.2.1 Calculus Based Techniques 

In these techniques, the relationship between the control variables and the objective 

function is explicitly derived using mathematical formulation. In most cases, the solution 

for minimizing the objective function is derived by solving a linear set of equations or a 

closed form mathematical equation. Clearly, the efficiency of these techniques is 

inversely affected by an increase in the size of the problem. Simplifying assumptions are 

often necessary to make the solution feasible for larger scale systems. 

2.2.2 Explicit Enumeration Techniques 

From a mere mathematical standpoint, exhaustive search of the problem space for all 

the possible solutions is the simplest of all the approaches. While this class of techniques 

is sufficiently efficient for a small-scale problem with a few number of control variables, 

it drastically loses efficiency as the dimensions of the power system and the optimization 

problem increase. A modified version of this technique uses an oriented descent search 

in the negative direction of the gradient of the objective function.  
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2.2.3 Analytical Optimization Techniques 

Various mathematical programming approaches can be adopted to solve the VVC 

problem. Depending on the nature of the problem formulation, these techniques range 

from nonlinear programming methods to mixed-integer nonlinear programming, integer 

programming or dynamic programming methods. Systematic search algorithms such as 

the branch-and-bound and dynamic programming are considerably more effective than 

enumerative techniques since they only look at the feasible solutions and not possible 

solutions. This way, they drastically reduce the search space. However, these techniques 

still suffer from the curse of dimensionality as the dimensions of the optimization 

problem increase. This specifically poses a major problem for online applications where 

a solution is required during the operation of the system within a window of a few 

minutes to a few hours. Simplified formulation of the optimization problem, for instance 

linearizing the objective function and/or the constraints, or decomposing the problem 

into multiple smaller sub-problems, can prove helpful, although at the price of obtaining 

a sub-optimal solution.  

2.2.4 Meta-heuristics Optimization Techniques  

During the past few years, meta-heuristic optimization techniques such as simulated 

annealing (SA) [22], Tabu Search (TS) [23], Genetic Algorithms (GA) [24], Particle 

Swarm Optimization (PSO) [25], and Ant Colony Optimization (ACO) [22] have been 

successfully employed for solving optimization problems where the combinatorial 

solution is difficult or impractical to solve. These are techniques that are based on 
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evolutionary algorithms, social concepts or other physical and biological phenomena that 

can iteratively solve complicated multi-variable multi-objective optimization problems, 

such as the VVC problem. These techniques do not need any rigorous mathematical 

formulation of the problem, which is a big advantage. Moreover, there are various 

methods to prevent these techniques from being trapped in the local minima, so that they 

converge to the global minimum and the near-optimal solution. However, each of these 

techniques has several parameters associated with it that have crucial impacts on its 

performance. Unfortunately, there are no definitive rules for selecting these parameters 

and they are often derived based on trial and error, or from experience. 

2.3 Rule Base Techniques 

These techniques are based on a set of heuristic rules for switching capacitors and 

regulating transformers in order to minimize the objective functions while meeting the 

inequality constraints. As opposed to the previous category of techniques, these methods 

are independent of a detailed system model, and are often characterized by simplifying 

assumptions and rules of thumb; however, they achieve this by making approximations 

and therefore they do not always lead to an optimal solution. Such techniques can be 

very effective for radial distribution systems with few lateral branches, but as the 

dimensions of the system increase or the structure of the system becomes a meshed 

network, their efficiency is reduced. In these cases, there is often a need for combining 

the rule base technique with other analytical approaches to develop a hybrid approach. 
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2.4 Intelligent Techniques 

Intelligent neural network based techniques are another alternative for solving the 

VVC problem. They rely on the data available on the system in terms of measurements, 

and as opposed to the previous techniques they do not require expert knowledge or the 

system model, as their parameters can be initialized randomly before being trained using 

the system data. However, the major challenge in using these techniques is associated 

with training the neural network and selecting its design parameters, which are often 

chosen based on trial and error or based on experience. 

2.5 Model Predictive Control (MPC) 

To the knowledge of the author, Beccuti et al. [26], [18] were the first group that 

used Model Predictive Control (MPC) method for voltage control. They used MPC for 

voltage stability of transmission systems during emergency voltage condition. They used 

a small-scale test system with three On-Load Tap Changers (OLTC) and three capacitor 

banks as control inputs to demonstrate the efficiency of their method in avoiding voltage 

collapse. They demonstrated that MPC was able to keep the voltages stable and stabilize 

the transmission system during emergency voltage conditions while other methods result 

in instability.  Zima et al. [27], further explored this method by simplifying the algorithm 

and allowing relatively fast optimization computations, while keeping an accurate 

tracking of the nonlinear behavior of the system. The major difference between this 

method and previous methods was that the authors simplified the problem formulation to 

be able to solve it in real time for larger scale systems. In addition, Gong et. al. [28], [29] 

proposed a two-stage model predictive control (MPC) strategy for alleviating voltage 
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collapse. In their method, the second stage used an MPC using trajectory sensitivities 

proposed by Hiskens et. al. in [30].  The MPC resulted in a linear Programming (LP) 

since binary or integer inputs were not considered in the system design.  

As MPC showed promising results, researcher started using the MPC method to 

solve various control, management, and protection problems in power system. For 

example, Jin et al. [31] used MPC for protection coordination of power systems. They 

presented an approach to determine a real-time system protection scheme to prevent 

voltage instability and maintain a desired amount of post-transient voltage stability 

margin after a contingency using reactive power control. In addition, Kienast [32] 

studied the reliability and analyzed the efficiency of MPC for control of power systems. 

Table 2 summarizes some of the key advantages and disadvantages of the solution 

techniques for the VVC problem.   

2.6 Traditional Problem: Capacitor Placement and Sizing 

This section briefly reviews the historic origin of reactive power control in power 

systems. Reactive power control of distribution systems was first addressed by 

considering shunt capacitors only [33],[34],[35],[36]. The early research focused on 

radial distribution systems and the objective was to find the number, locations, sizes, and 

types (i.e., fixed or switched) of capacitors to be installed along the feeders and laterals, 

in order to minimize power and energy losses, the number of capacitor installations, the 

number of capacitor switching actions, and/or the capital investment required for 

capacitors. The acceptable upper and lower limits for node voltages were the main 

constraints for the optimization problem. 
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Table 2 Comparison of the available techniques for solving the VVC problem 
Methodology Advantages Disadvantages 
Calculus Based   Is simple and straightforward 

 Normally does not require 
iterations, so no convergence 
issues 

 Often uses major approximations in order to 
simplify the equations 

 Is largely dependent on the accuracy of the 
mathematical model used for the power system 

 Is not easy to implement for large systems with 
many control variables 

Explicit 
Enumeration 

 Does not require a mathematical 
model of the power system 

 Is problem independent 
 Always guaranteed to reach the 

local optimal solution 

 Is not easy to implement for large systems with 
many control variables 

 Might take a very long time to find the solution; 
therefore, might not be suitable for online 
applications 

Analytical 
Optimization 

 Is mathematically proven 
 If converges, the solution will be 

the truly optimal solution 
 Considers the feasible solutions 

which reduce the problem space 

 Can easily suffer from the curse of dimensionality 
 In majority of cases, is not easy to solve 
 Often times needs to make simplifying assumptions 

in order to ensure convergence 

Meta-heuristic 
Optimization  

 Often deals efficiently with large 
scale problems 

 Does not necessarily make 
simplifying assumptions 

 Sometimes can be tuned and 
modified to converge to global 
minimum 

 Is not proven mathematically 
 Convergence might take too long for online 

applications 
 Many problem-dependent design parameters must 

be set by the user, which are crucial to the 
convergence of the solution 

Heuristic Rule-
Based  

 Is easy to understand and 
interpret by utility engineers and 
technicians 

 Does not require an explicit 
mathematical model for the 
power system 

 Is difficult to implement for large scale systems 
with many control variables 

 Is largely problem-dependent and once designed 
for one system, cannot be readily applied to other 
systems 

Neural 
Network Based  

 Does not require an explicit 
mathematical model for the 
power system 

 Can be trained offline without 
any expert knowledge 

 With enough data in the form of 
system measurements, can be 
trained to truly reflect the 
dynamics of every system 

 Is difficult to implement for large scale power 
systems with many control variables 

 Requires considerable learning time for the neural 
network to converge and accurately model the 
problem 

 Depends on design parameters that are problem-
dependent and are often derived based on trial and 
error 

Model 
Predictive 
Method 

 Predicts the behavior of system 
in future and chooses the best 
solution 

 Can easily avoid instability 
 Can find optimal solution in 

presence of discrete control 
actions such as capacitor banks 

 Requires a model of the system 
 May result in too much control action 
 Weight factors have to be defined by user 
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Initial solutions were based on closed form mathematical formula [37]. Later, 

mathematical optimization based approaches were introduced such as mixed-integer [38] 

and dynamic programming [39], [40], [41]. The main challenge for solving the 

optimization algorithm was the size of the problem and the consequent curse of 

dimensionality. In order to resolve this, many authors attempted to break the original 

problem into multiple smaller size sub-problems. For instance, Lee and Grainger [42] 

proposed a set of three sequential sub-problems for determining the optimum capacitor 

bank sizes, the optimum switching time of the capacitors and their optimum locations 

independently. The problem started from a set of proper initial conditions and the three 

sub-problems were solved one by one by solving linear mathematical equations 

assuming at each stage that the other two unknowns are specified. Baran and Wu [38] 

decomposed the problem into two sub-problems: a master problem which was used to 

determine the locations of the capacitors through integer programming, and a slave 

problem which was called by the master problem to determine the size and type of the 

capacitors using heuristics.  

Others, such as Hsu and Yang [43] solved the dynamic programming problem offline 

for finding the truly optimal capacitor switching scenarios for various load patterns in 

the system. They then used an artificial neural network to cluster the load patterns into 

different classes. In the online stage of the application, the forecasted load pattern was 

read and its nearest clusters were retrieved. Then by averaging the associated switching 

scenario in the cluster, a capacitor-switching schedule for the load pattern under study 

was retrieved from the database. 
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Simplifying assumptions have been made in the literature; for instance, using only 

fixed capacitors [39] or fixed capacitors that could only be switched on or off [41], to 

make the problem solvable. However, with the assumption that the number of capacitors 

in the system is small enough, Kaplan [44] used an explicit enumeration approach where 

all the feeder branches were scanned in an attempt to place the smallest standard size 

capacitor bank at consecutive nodes moving along the branch towards the substation. At 

the time this paper was published in 1984, the proposed scheme was in use at the Central 

Illinois Public Service Company.  

In a different attempt to further simplify the previously proposed methods, Salama 

and Chikhani [45] proposed a simplified network model where the capacitor sizes were 

represented by dependent current sources located at the branch connected buses. The 

solution of this equivalent circuit using the Gauss-Seidel iteration method would yield 

the values of the voltages at any bus. The compensation levels and the capacitor 

locations were then directly solved for knowing the obtained voltages and using the 

equations derived in [46].  

Meta-heuristic optimization techniques have also been used for solving the capacitor 

allocation problem. Chiang et al. [47], [48] applied simulated annealing to find the near-

optimal capacitor sizing and locations based on a set of allowed search space derived 

through heuristics and engineering judgment.  

Sundhararajan and Pahwa [49] used genetic algorithms for solving the problem. 

Similar to [48], they considered various discrete load levels for the distribution system. 

However, sensitivity analysis was done in order to select locations which had maximum 
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impact on the system real power losses with respect to the nodal reactive power. The 

relationship between the incremental losses and the Jacobian matrix of the system was 

expressed [50] as shown in (2-1). 
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21  (2-1) 

where J1 and J2 are the related sub-matrices of the inverse Jacobian matrix, and the 

derivatives of the system losses with respect to the voltage angles and magnitudes of the 

system nodes can be directly calculated at any operating point. Once the sensitivity 

analysis is applied and the buses with highest factors are selected as the candidate 

locations, a GA based approach was used to determine the sizes, locations, types and 

number of the shunt capacitors. For this purpose, each genome in the GA program is 

selected as a string of Nc×NL variables, where Nc and NL denote the possible capacitor 

locations and possible load levels respectively. Later, Kim and You [51] adopted a 

similar approach but used integer strings instead of binary strings in order to save 

processing time. In their study they used length mutation operator to randomly change 

the length of the genes in order to account for the unknown number of the capacitors 

installed [51]. 

The concept of sensitivity analysis in [49] was also adopted by Huang et al. [23] who 

used Tabu search (TS) to find the number/location/sizing/control of fixed and switched 

capacitors, and showed faster convergence than simulated annealing. However, it should 

be noted that the sensitivity analysis based initialization adopted in [49], [23] was 

performed for the base case conditions, i.e. with no capacitors added to the system. This 
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could at times lead to solutions with poor quality. Gallego et al. [52] proposed a new 

initialization method to find more efficient initial configurations. Similar to [23], they 

proposed a method based on Tabu search; however, as opposed to the previous methods 

with single sensitivity analysis, they proposed an iterative sensitivity based algorithm 

that would include all the capacitors installed at the previous steps of the algorithm. This 

way, a larger set of buses would appear in the initial configuration, which would lead to 

more diversity in the search space and superior results in terms of quality and cost of the 

solutions [52]. 

In addition, Ramakrishna and Rao [53] proposed a fuzzy logic based system for 

controlling discrete switched capacitors. Two parallel Fuzzy Inference System (FIS) rule 

bases were designed to control the bus voltages and reduce the losses. Typical fuzzy 

rules for the corresponding rule bases were developed as: 

Rule n: If ΔVi/ΔQj is An and If Load is Bn, Then Switched Capacitor Size ΔQj is 
Cn, 

 
Rule m: If ΔPi/ΔQj is Am and If Load is Bm, Then Switched Capacitor Size ΔQj is 
Cm, 

(2-2)

where the voltage sensitivity factors ΔVi/ΔQj and power loss sensitivity factors ΔPi/ΔQj 

are obtained from the load flow solution. The parameters A, B and C in (2-2) denote the 

fuzzy sets associated with the input and output variables. The two fuzzy rule bases are 

iterated back and forth until it could be ensured that all the voltage constraints are met 

and the power losses are minimized. 
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2.7 Present Status of Reactive Power Control Methods of Isolated Power Systems  

Reactive power control is a fundamental issue in isolated power system since there is 

usually no “infinite bus” capable of keeping voltage and frequency constant and 

satisfying the reactive power needs of the loads. In addition, due to the small size of the 

system changes in the loads usually significantly impact the system and can cause 

voltage and frequency deviations. Further, frequent generator termination and restarts 

due to energy saving and generator output power change due to the non-dispatchable 

characteristics of the renewable energy sources cause the system to operate far from 

optimal operating point. In addition, presence of pulsed loads with significant magnitude 

in the system causes increased disturbance levels in the system compared to the 

terrestrial power system, which increases the need for VVC consequently. 

 Some examples of isolated power systems are the MicroGrids and shipboard power 

systems. Both of these systems should be able to operate in both isolated mode and 

connected to the grid mode. In next part, we will discuss these systems in more detail. 

2.7.1 Present Status of Reactive Control of Electric Shipboard Power system 

Continuity of power in all operating conditions is vital to the operation of shipboard 

power system. One of the functionalities in power management of the shipboard power 

system is reactive power control. Reactive power control is a fundamental issue in 

shipboard power systems because of many reasons. Reactive power control is a 

fundamental issue in all electric shipboard power systems due to the existence of large 

magnetic pulsed loads such as magnetic weapons that need power supply for a short 
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period of time, startup and shutdown of the generators and the absence of an infinite bus 

in the system. Due to these issues and complexity of shipboard power systems, power 

quality problems from abnormal distortions in voltage and frequency to black-outs are 

not unusual even in the most recent shipboard plants [54]. Jonasson and Soder [54] 

report the answers of the ship owners to a questionnaire regarding power quality issues 

and blackouts in the shipboard power system. The issues studied include, black outs, 

abnormal changes in voltage and frequency, voltage dips, electromagnetic fields, 

electrostatic discharges, voltage flickers, transients, harmonics and three phase 

unbalance. The following reasons cause the need for a new VVC scheme for shipboard 

power systems. 

2.7.1.1 Lack of infinite bus and small generator inertia 

When operating in offshore, the SPS is an isolated power system meaning that it 

does not have power support from any other system. Thus, the generators and the energy 

storage devices in the system are the only sources of power in the SPS. The generators in 

an SPS are small compared to those in terrestrial systems and therefore have smaller 

inertia. Hence, the shaft of the generator may not be able to follow when abrupt changes 

occur in the system, which in turn results in frequency and voltage fluctuations. 

It should also be noted that the shipboard power system is tightly coupled with 

generators placed close to the loads. Hence, some papers suggest that modeling of the 

system for reactive power control requires integrating higher order models of generators 

and loads and constant voltage and frequency models are not sufficient for such studies 

[55]. However, integration of dynamics should be done carefully since too detailed 
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models may increase the convergence time of the algorithm while they might not 

necessarily make the simulation more accurate.  

2.7.1.2 Generator start-up and shut down 

Due to limited amount of fuel in the SPS, usually the power management scheme 

tries to keep as many generators as possible off. Typically, an extra generator starts up 

only if more than 80% of current generation is consumed by the loads for a duration of 

more than 30 seconds. Hence, when the load decreases in the system, the power 

management scheme starts shutting down the generators. Typically, the power 

management system starts shutting down the generators from the largest possible 

generator since larger generators consume more fuel than the smaller ones.  

Although these startups and shutdowns help with energy saving in the system, they 

cause significant disturbance in the system, which is specific to the SPS. This 

disturbance can start from voltage or frequency fluctuations and lead into tripping of the 

relays. Relay trips may isolate part of the system or in severe cases may cause cascaded 

tripping and result in a total blackout [56]. Quaia [57] studied some sample case studies 

of such voltage and frequency deviations due to startup and shutdown of generators. 

This paper shows a case study where the shutdown of a generator causes underfrequncy 

and since there is not enough time for load shedding, the protective relays of the 

generators trip which results in a general blackout in the system. 
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2.7.1.3 Pulsed loads 

Some high-energy weapons in SPS need a large amount of power for a short period. 

These pulsed loads are usually vital and with high priority since their operation help with 

survival of the system. Thus, in some operating conditions, the generators should be 

started up or loads should be shed from the system to supply these load. These changes 

in the system cause transient dynamics in the system. The power management system 

should decide which load to shed and which generator to start. If unsuitable control 

actions are taken such as shedding a load where it is not needed, the system may 

experience huge voltage deviations and fluctuations in the frequency which may result in 

not only the load not being supplied but also relay trips and isolation of part of the 

system or total blackout.   

Arcidiacono et al. [55] studied some sample case studies of voltage and frequency 

deviation in the system as a result of a pulsed load getting energized. This paper shows 

that when a pulsed load gets energized, a frequency drop occurs on one of the main 

generators and voltage distortion occurs at the connection point of the pulsed load.  

With all that being said, in most of the existing shipboard power systems, 

Coordination between power station control and propulsion management, to match 

demand and generation of reactive power is poor [58]. Currently, studies are being 

performed on voltage and reactive control of the next generation shipboard power 

systems to overcome this issue.    

The possible control inputs for reactive power control in a shipboard power system 

are reactive compensators, load shedding and generators. Static filters are also 
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sometimes placed in the system to help with voltage control. This work mainly focuses 

on controlling the reactive compensators and the gas generators to achieve voltage and 

reactive power control.   

Since the length of the lines is short in a ship and hence the total loss in the lines is 

negligible, although possible, but it is not practical to consider loss minimization as the 

objective function. Better candidates for the objective function are minimizing 

deviations of voltage, power factor or Vars. In this work we will use voltage deviations 

in the objective function which means that the optimization tries to minimize the 

deviations of the voltage from its nominal value.  

2.7.2 Present Status of Reactive Control of MicroGrids 

Considering that reactive power control of renewable energy sources individually is 

a challenging problem, reactive power control of the MicroGrid integrating wind and 

photovoltaic sources has many challenges. Generally speaking, significant integration of 

DERs in the MicroGrid can affect the frequency, angle and voltage stability of the 

system [59], [60]. Wind and PV energy sources are sometimes referred to as negative 

loads since they are intermittent and not dispatchable. These energy sources are usually 

operated at the maximum power point tracking to reach the highest efficiency [61].  

Abrupt changes in the wind energy resource can lead to sudden loss of production 

causing frequency excursions which may result in dynamically unstable situations if 

these frequency fluctuations cause the frequency relay to trip [59]. Similar issues occur 

for the PV source when it starts operating in the morning time or during the cloudy 

weather conditions. Thus, the capacity of these sources for active and reactive 
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production changes depending on the weather. Therefore, the controller should be able 

to adjust the limits dynamically to use this capacity to the best. 

Chowdhury et al. [62] studied the challenge of operating a wind power plant within a 

MicroGrid. They presented some case studies on a system with one doubly fed induction 

wind generator. The results showed that if there is no rotor speed control or pitch angle 

control of the wind generator or a STATCOM is not present in the system, the voltage of 

the point of common coupling (PCC) bus and frequency of the system drops 

significantly. They also compared the results of no control case with the cases where 

pitch angle control, inertia control, and STATCOM are present and showed stability 

improvement in the latter cases. It can be concluded from their study that MicroGrids 

integrating renewable sources need an advanced voltage control scheme. 

Laaksonen et al. [63] studied a MicroGrid integrating battery storage and a 

Photovoltaic energy source. The battery inverter with fast response was considered to act 

as the master generator to control voltage and frequency when operating the MicroGrid 

in islanded mode. The operation of the MicroGrid after islanding was studied in the case 

studies and the significant voltage and frequency changes were demonstrated when the 

MicroGrid intentionally or unintentionally starts operating in isolated mode. These 

changes are due to either lack of external frequency reference or power shortage in the 

isolated system after the MicroGrid gets disconnected from the main grid.   

Another challenge occurs when the MicroGrid has to operate in the islanded mode 

intentionally or due to a fault. In this case, the infinite bus and the references of voltage 

and frequency from the grid are not present anymore.  Therefore, a suitably sized DG 
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unit with fast dynamic response has to perform as the master generator and the other 

DGs perform as PQ source in the islanded case. The voltage setpoint of the master 

generator and the reactive power setpoints of the PQ control mode sources are possible 

control inputs for reactive power control. So, the DG has the ability to enhance the 

power quality as well as the reliability of the system  [61]. 

In some MicroGrid designs, the buses have the same voltage level with no 

transformers between the buses. Hence, in these designs tap changers may not be added 

for voltage control. Thus, capacitor banks or power electronics compensators are usually 

added close to the load buses in the design stage for voltage support. These capacitor 

banks along with the D-STATCOM, if present, are possible control inputs for reactive 

power control in a MicroGrid. In addition, as mentioned before, the DG units can be 

used to inject reactive power at their connection point to the system. The energy storage 

units with power electronics interface to the MicroGrid can also be used as a possible 

candidate for reactive control. In this work, we only use compensators and DGs for 

voltage control and assume that no storage is present in the system. 

The classic methods for voltage profiling and studying the impact of the DG on the 

system usually incorporate the use of load flow analysis. However, classic methods do 

not give a realistic impression of where and when overvoltage and undervoltage occurs 

in the system, because these methods are based on some selected combinations of 

consumer loads and DG power productions [59]. Therefore, dynamic modeling of 

MicroGrids with relative amount of detail, gives better information of the dynamic 
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behavior of the system, which is more accurate and more efficient for reactive power 

control than static models.  

Dynamics behavior and transients of MicroGrids consisting of multiple DGs and the 

effect of power electronics interfaces on MicroGrids are studied in [64],[4],[65]. Katiraei 

et al. [4] presented a good study on the dynamic behavior of MicroGrids after 

preplanned and unintentional islanding. The Studied MicroGrid included two DG units 

and the time constant of the DG units were far apart. Hence, the DG units studied in this 

paper did not exhibit any dynamic interaction during transients. The results 

demonstrated that if the DG unit is interfaced to the grid through fast power electronics 

circuits instead of governor and exciter control, the MicroGrid can maintain angle 

stability due to fast active power control and can enhance voltage quality due to fast 

reactive power control.  The transient under and overvoltage were not studied in this 

paper, and the focus was on active and reactive power interactions of the DG units in 

different working conditions.  In a later work, Katiraei and Iravani [65] studied some 

local power management strategies for MicroGrids with electronically interfaced DG 

units. They used a systematic method to develop a small signal model of the MicroGrid 

and the system was analyzed using an eigenvalue approach. They proposed a power 

management scheme for controlling the MicroGrid and showed that utilizing a power 

management scheme to control the electronically interfaced DGs has a significant impact 

on the dynamics of the system especially in islanded mode. Majumder et al. [65] further 

explored the effect of power electronics interfaces and DG units on the MicroGrid. They 

used two voltage source converters connected to ideal DC sources as DG units in their 
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study. They proposed using a local control method consisting of two modes to control 

the DGs in a MicroGrid. When the DGs are working below their available power limits, 

the system is working in mode 1 and once the DGs reach their available power limits, 

the system is marked as working in mode 2.  Considering two operating modes makes 

power sharing between the DGs easier for the energy management system. They authors 

performed case studies on islanding and resynchronization of MicroGrid, variable power 

supply from the grid, fluctuations in the frequency and voltage of the utility, and 

fluctuations in the DC MicroGrid voltage, and reported frequency deviations in some of 

the case studies. 

Capacitor placement and Volt/Var optimization of MicroGrids has been studied in 

[66],[67],[68],[69]. Al-Askari et al. [66] used genetic algorithm to solve a capacitor 

allocation problem for the MicroGrid operating in the islanded mode. They formulated 

the problem to minimize the total power loss in the MicroGrid and to minimize the total 

cost of capacitor banks. The genetic chromosome assigned a four digit binary value to 

each power system bus corresponding to the size of shunt capacitor at that specific bus. 

Then, the genetic algorithm tried to find the optimal location and optimal number of 

capacitor banks in each bus. It is questionable whether isolated systems need a different 

capacitor placement strategy than conventional distribution systems. However, using the 

same strategy for the same system may lead to different placement results in islanded 

and grid-connected mode. 

Ghadimi and Rastegar [67] formulated the reactive power control of MicroGrids 

subject to power flow equations and constraints of the system. They used a small signal 
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model of small islanded MicroGrids integrating inverter interfaced distributed generation 

(DG) units. They used an active management strategy of the distribution system with 

three control levels. These three layers include Distribution Management System 

(DMS), MicroGrid Management System (MMS), and Local Controllers (LC) with 

communication ability with each other. They formulated reactive power control problem 

to minimize the total loss of the system subject to load flow information and inequality 

constraints of the system and used MATLAB’s optimization toolbox to solve the 

problem. They performed some case studies on a MicroGrid integrating two DG units 

and used reactive generation capacity of these units as control input. In a case study, a 

fault occurred in the system which results in the islanding of the MicroGrid with two DG 

units and the proposed scheme optimizes the reactive power flow of the isolated system 

using the DGs.     

Madureira and Lopes [68] studied reactive power control of a system including 

multiple MicroGrids, a diesel generator, a wind generator, a hydro unit and a combined 

heat and power unit. They selected the objective function to minimize the power losses 

in the system subject to the limits of the MicroGrids. They used capacitor banks, 

position of tap changers, and reactive power injection capacity of the DG units as control 

input for reactive control and solved the problem with particle swarm intelligence based 

algorithm. Same authors further proceeded the work by adding the concept of “Micro-

Generation shedding” in [69]. In this paper, the amount of Micro-Generation shedding is 

added to the objective function of [68]. The solution methodology in this paper is similar 

to [68]. In an interesting case study, they showed that in a sunny day where the PV 
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sources generate more power than the total load, Micro-Generation shedding results in 

lower power loss in the system.  

2.7.3 Shortcomings of the Current Reactive Control Methods and Motivation for New 

Methods 

To summarize, the following issues and limits in the current MicroGrid triggers the 

need for a need reactive power control scheme: 

 Changes in non-dispatchable sources (Abrupt changes in wind, solar in the 

morning) 

 No infinite bus in the isolated operation 

 Ride through between the grid connected and isolated mode 

 DG limits 

Current formulations of reactive power control do not consider the dynamics of the 

system. The problem is usually formulated locally or as an optimization problem with 

load flow equations as constraints. However, average system studies are not efficient for 

the islanded power system because: 

 The islanded power system is more vulnerable to changes in voltage and the 

changes can be sharp  

 The capacity of renewable sources change in time depending on many factors 

such as weather change 

 Assigning the control inputs and setpoints dynamically can help reduce the 

overall loss in the power system while keeping the voltages within limits 
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 Adding a control horizon to the optimization can help the controller to determine 

and eliminate possible voltage breakdowns in the system 

 Some control actions may result in unacceptable transient response in the 

islanded power system and the average methods do not reflect the transient 

For the shipboard power systems, the following issues are not addressed by current 

reactive power control methods. 

 Lack of infinite bus and small generator inertia 

 Generator start-up and shut down 

 Pulsed loads 

2.8 Summary 

This section presented a literature review of voltage and reactive power control 

methods. Further, it summarized the advantages and disadvantages of each of these 

methods. In addition, it presented the current status of reactive power control of 

shipboard power systems and MicroGrids and listed the shortcomings of current 

approaches.  
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3 DYNAMIC REACTIVE POWER CONTROL OF ISOLATED POWER SYSTEMS 

3.1 Introduction 

Reactive power control is a large-scale optimization problem with real, discrete, and 

binary variables [70]. The objective reactive power control is to achieve an adequate 

voltage profile while satisfying the operational constraints. Minimizing the active loss is 

an alternative goal for reactive power control as well which is sometimes included 

directly in the objective function or achieved indirectly by smoothing the voltage profile. 

Volt, Var, Power factor, losses or a combination of them are possible candidates for the 

objective function of the VVC and tap changer position, setpoint of switchable shunt 

capacitor banks and reactive power setpoint of compensators and DGs are possible 

candidates for control input.  

One of the main difficulties remaining in the industry is solving the mixed integer 

VVC problem which includes binary, integer, and discrete variables [70]. In addition, 

the mathematical model of a power system is nonlinear with unknown convexity. 

Therefore, a major challenge of volt/Var control is to formulate VVC in a form that 

could be solved with existing optimization methods.  Thus, system equations are usually 

linearized if model based control methods are used or heuristic and intelligent methods 

may be applied if linearization is not possible. 

Several approaches have been used to solve the reactive power control problem 

using classical or intelligent optimization methods as discussed in section 2. Some of 

these approaches have been successfully implemented on the industrial distribution 

system. These methods are targeting the conventional distribution system. Nevertheless, 
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they provide the necessary background for volt/Var control of the isolated power 

systems. The current solution methods for VVC problem were discussed in section 2.   

3.2 Problem Formulation of Dynamic Reactive Power Control of Isolated Power 

Systems  

The focus of this work is on reactive power control of distribution MicroGrid and 

shipboard power system. In this section, the specifications of these two systems and the 

assumptions used to solve the reactive control problem are discussed in more detail. 

3.2.1 Assumptions, Issues, and Problems 

In the studied distribution MicroGrid, the DER units are a combination of wind 

generator, photovoltaic generator and diesel synchronous generator. The renewable 

DERs are interfaced to the system through power electronics inverters. It is assumed that 

the local controller of the units is designed such that each of the AC/DC interface 

inverters of DERs is able to inject active and reactive power to the system with some 

limitations.  

As mentioned in the last section, solar and wind energy sources are affected by 

climate, environment, time and many other factors with strong randomness. Therefore, 

the operation of the system integrating distributed wind and solar energy sources has 

great uncertainties. This can result in a challenge to the safety, reliability and economical 

efficiency of the power system. So it is necessary to assess power quality challenges of 

the distributed wind-solar power generating system before starting to formulate the 

problem [71]. 
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 Some characteristics of wind and solar energy are listed below:  

a) Wind: 

 Wind is variable and uncertain and has limited dispatchability  

 Wind peak output power is not usually coincident with the peak load  

 Wind is an energy resource and not a capacity resource 

b) Solar: 

Solar DER has almost the same limits as the wind DER and if a storage unit is not 

available in the system, it is not dispatchable [72]. In addition, solar DER may introduce 

sharp changes to the system that can result in voltage ringing effect.  

 The problem that is solved in this dissertation is the global voltage control and 

optimization problem of the isolated power system. However, the control method has 

two layers of control, i.e., local and global control layers. The local control layer is 

consisted of the local control of each DER unit that controls the reactive power output of 

that specific unit, and the local controllers of the power electronics compensators that 

regulates their reactive output to the give setpoint. It is assumed that the local control is 

already designed and operating efficiently throughout this dissertation. The global 

control layer, which is the focus of this dissertation, is a centralized voltage and reactive 

power controller, which sends the control setpoints to each unit in a timely manner.  

As mentioned, the focus of this work is on the centralized control layer. However, 

local and droop controllers are present in the system to adjust the final resulting setpoint 

of the general controller and assure the stability of the system.   
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One assumption in this research is that the studied systems do not have energy 

storage or has limited energy storage. Storage devices are added in systems with high 

penetration of renewable sources for active and reactive support. The price of energy 

storage is high and therefore it is desirable to have limited or no energy storage if 

possible [73], [74]. Even if they are present in the system, it is not desirable to turn 

battery storage devices on and off frequently for reactive control due to battery aging. In 

addition, a new reactive control scheme can reduce the need for energy storage devices 

for reactive support.  

 Another assumption in this research is that there is always a backup synchronous 

generator available in the MicroGrid which is capable of acting as the master generator 

and regulating the voltage and frequency in the system while the system is operating in 

the islanded mode. Although it is possible to use other DERs or even storage devices as 

the master generator in the MicroGrid [75], those cases are not studied in this 

dissertation. 

Accurate modeling of the dynamics of the loads is critical in this study, since 

changes in the loads are the main cause of voltage drop in the nearby buses.  The 

dynamic loads are modeled with relative restoring time constants. The non-dynamic 

loads in the system are considered to be constant power or constant impedance loads. 

Plugged in Hybrid Electric Vehicle (PEHV) loads, which are short-term loads, could 

also be modeled as dynamic or static loads depending on the dynamics of the charger.  

Reactive power compensators are also present in the system and need to be included 

in the model. Reactive compensators include capacitor banks or power electronics 



 

45 
 

 

compensators such as SVC or STATCOM. Modeling the dynamics of power electronics 

compensators is not necessary since they have short response time comparing to 

dynamics of the power system.  

The control inputs in this problem are capacitor bank switches, dynamic 

compensator setpoints and the voltage and reactive power setpoint of DERs. The goal of 

the controller is to keep the voltage of the load buses close to their nominal voltage. 

Further, an AC/DC zonal shipboard power system is another plant that will be studied in 

this work. The system includes generators, a high voltage AC system and DC 

distribution zones that supply power to AC and DC loads.  

The sources in the system are synchronous generators connected to gas turbines. 

Synchronous generators are classified as Main Turbine Generators (MTG) and Auxiliary 

Turbine Generators (ATG) and the MTGs are typically significantly larger than the 

ATGs. It is assumed that one of the generators, typically one of the MTGs, is operating 

as the master generator and is responsible for regulating the voltage and frequency and 

all the other generators are operating in PQ control mode.  

The generalized reactive power controller is responsible for setting the generator 

voltage and reactive power setpoints. Thus, the voltage setpoint of the master generator 

and reactive power setpoint of PQ control mode generators are the main control inputs 

for reactive control, which are assigned by the generalized reactive power controller. 

Shipboard power system may also include dynamic reactive compensators in some 

of the buses close to loads depending on the initial system design. Setpoints of dynamic 
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compensators if they are present in the system are additional control inputs of the 

problem.  

The loads are classified as vital or non-vital loads based on the importance of their 

functionality to the survival of the ship. The propulsion motor in this system is an 

induction motor, which can either be modeled as a dynamic load or as a constant power 

load depending on the operating mode of the motor. The system also includes pulsed 

loads, which are electromagnetic weapons that need supply for a short period of time.  

The loads in the SPS could be static or dynamic. The dynamic loads need to be modeled 

with their relative time constant. The static loads can be modeled as constant power or 

constant impedance loads. 

The reactive power control problem can be decoupled by cutting the system into 

smaller pieces at DC capacitors since no reactive power is transmitted through a DC 

capacitor. Therefore, the high voltage AC system sees the DC distribution zones as AC 

loads. However, inside the zones the voltage control problem can be formulated as a 

local control problem. Power electronics devices are used to control the voltage in the 

DC distribution zones. Cascaded power electronics devices can help with voltage control 

in this level since if the output voltage of the rectifier drops, the next level converter may 

still be able to compensate and achieve the necessary output voltage by adjusting its duty 

cycle. The local voltage control problem inside the zones is not the focus of this 

dissertation and will be discussed briefly.  

Similar to the MicroGrid case, since power loss in the system is not significant, the 

main goal of the controller is to keep the voltage of the load buses close to their nominal 
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voltage. Thus, the objective function should be chosen to minimize the voltage deviation 

of the critical buses from their nominal voltage.  

Since the system is operating offshore, the VVC formulation should include 

dynamics of the sources and loads. However, including the full dynamics of the 

components may result in the problem to be cumbersome for the optimization software 

to solve which typically results in several numerical errors or unfeasible conditions. 

Thus, mathematical model of the shipboard power system may need to be simplified and 

linearized in order to be able to solve the optimization problem using the classic 

optimization methods.  

Although shipboard power systems are distribution systems, unlike terrestrial power 

systems the general structure of the system includes generators and loads at a short 

distance from each other. Hence, the reactive power control scheme of shipboard power 

system includes some constraints of the generators as well. Similar to the conventional 

distribution systems, the reactive control power includes compensator and line limits in 

the formulation.  

Due to limited amount of fuel in the SPS, usually the power management scheme 

tries to keep as many generators as possible off and an extra generator starts up only if 

more than 80% of current generation is consumed. Hence, when the load decreases in 

the system, the power management scheme starts shutting down the generators. Startup 

and Shut down of generators cause disturbance in the system and naturally moves the 

system out of optimality. Therefore reactive power optimization should be performed 

after each disturbance is mitigated.  
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Throughout this dissertation, it is assumed that the active power dispatch problem is 

already solved. In other words, the governors and active power loops of the DERs are 

controlling the device locally and a dispatch is determining the active power setpoint of 

the devices in the system. Hence, this dissertation is only addressing the reactive power 

control problem, which determines the reactive setpoints and voltage reference setpoint 

of the components in the system.  

Further, it is assumed that the DERs are capable of meeting the active power needs 

of the loads during all operating conditions. This means that the system is capable of 

maintaining the frequency stability during all operating conditions. It is also assumed 

that the frequency of the system is very close to 60 Hz during all operating conditions of 

the controller. This assumption is reasonable since power systems are designed to 

operate within a rather strict frequency range. If the frequency deviates beyond that 

limit, the frequency relay gets triggered and isolates the system. In addition, reactive 

power control is usually performed as a response to regular system changes or after a 

fault has been cleared or after a reconfiguration has been performed in the power system. 

Thus, its main objective does not involve dealing with severe frequency stability issues 

in the power system. 

Throughout this dissertation, it is assumed that the voltages V, the currents I and the 

apparent power S can be represented by phasors. The voltage V for example may be 

written as follows. 

ܸ ൌ ௠ܸ݁ఋ ൌ ௗܸ ൅ ݆ ௤ܸ 
(3-1)
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where the absolute value (or magnitude) of the voltage is ௠ܸ ൌ |ܸ|, the angle is ߜ ൌ

arg	ሺܸሻ, and the direct and quadrature components are  ௗܸ ൌ Ըሼܸሽ and ௤ܸ ൌ 	ॎሼܸሽ, 

respectively. Also, variables and parameters are normalized using the per-unit system in 

all the equations in this dissertation unless mentioned otherwise. 

The assumption in using the phasor of voltage and current is that the frequency of the 

power system remains very close to the nominal frequency even during voltage 

disturbances.  

3.2.2 Background on Discrete-Time Hybrid Modeling 

Hybrid systems are heterogeneous systems that include continuous and discrete 

variables such as finite state machines, if-then-else rules, on/off switches. In general, 

hybrid systems switch between different operating modes and each mode is governed by 

a set of dynamic equations. Mode transitions may be triggered by certain variables of the 

system crossing predefined thresholds, at certain time periods, or by external inputs to 

the system [18]. 

Power systems are good examples of hybrid systems. In power systems, many 

control variables such as load shedding and capacitor switching are discrete inputs.  In 

addition, secondary controllers such as under load tap changers incorporate thresholds, 

logic and finite state machines. Further, saturation of some components such as active 

voltage regulators of the synchronous generators, which protect the generator from 

overheating, could be considered as a hybrid behavior. However, power systems are 

typically nonlinear systems while the general hybrid system framework is typically 
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developed for piecewise linear systems. Thus, mathematical manipulations are necessary 

to derive linear models for the power system.  Piecewise linear models are a stage 

between linear and nonlinear models where the system is typically modeled by several 

linear models in different operating regions. 

ቊ
ௗ

ௗ௧
ݔ ൌ ݔܣ ൅ ݑܤ

ݕ ൌ ݔܥ ൅ ݑܦ
                                          ቊ

ௗ

ௗ௧
ݔ ൌ ݂ሺݔ, ,ݑ ሻݐ

ݕ ൌ ݃ሺݔ, ,ݑ ሻݐ
 

Linear systems           Hybrid systems        Nonlinear systems 
(3-2)

In the next part, three typical discrete-time linear frameworks for hybrid systems will 

be presented: Discrete Hybrid Automata (DHA), Mixed Logical Dynamical (MLD) 

systems and PieceWise Affine (PWA) systems.  

3.2.2.1 Piecewise affine systems  

Polyhedral piecewise affine systems [76], [77] partition the state-space into 

polyhedral and assign an set of affine state space equations to each polyhedron.  

ሺ݇ݔ ൅ 1ሻ ൌ ሺ݇ሻݔ௝ሺ௞ሻܣ ൅ ሺ݇ሻݑ௝ሺ௞ሻܤ ൅ ௝݂ሺ௞ሻ 

ሺ݇ሻݕ ൌ ሺ݇ሻݔ௝ሺ௞ሻܥ ൅ ሺ݇ሻݑ௝ሺ௞ሻሺ݇ሻܦ ൅ ݃௝ሺ௞ሻ 

With j(k) such that ൤
ሺ݇ሻݔ
ሺ݇ሻ൨ݑ ∈ ௝࣪ሺ௞ሻ 

(3-3)

where ݇߳Գ is the discrete time instant, ݔ ∈ ߯ is the continuous states of the system, 

ݑ ∈ ܷare the inputs and ݕ ∈ ܻare the outputs and j(k) is the mode of the system and 

௝࣪ሺ௞ሻ is a polyhedral of the form ௝࣪ሺ௞ሻ: ሺ݇ሻݔ௝ሺ௞ሻܪ ൅ ሺ݇ሻݑ௝ሺ௞ሻሺ݇ሻܬ ൑  ௝ሺ௞ሻ. The followingܭ

lemma defines well-posedness for PWA functions. 
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Lemma: Let Σܹܲܣ be a PWA model. If ሼ ௝࣪ሽ௝∈௃ is a polyhedral partition of ߯ ൈ ࣯ , 

then Σܹܲܣ is well-posed.  

PWA model can approximate nonlinear and discontinuous dynamics arbitrarily well 

as shown in Figure 3-1. 

 

Figure 3-1 PWA model 

  

3.2.2.2 Discrete hybrid automata 

One design procedure for hybrid systems is to divide the system into two hierarchical 

layers, considering the continuous controllers in the lower level controlling the 

subsystems and the discrete controllers supervising in the higher level. Discrete Hybrid 

Automata (DHA) [18] is an interconnection of a Finite State Machine (FSM) which 

provides the discrete part providing the discrete part and a Switched Affine System 

(SAS) which providing the continuous part of the system. Two connecting elements are 

required for the interaction between these two parts, namely, The Event Generator (EG) 

and the Mode Selector (MS). The Event Generator extracts binary signals from the 

continuous dynamics of the system. These binary signals and other exogenous binary 

inputs trigger switches of the Finite State Machine states. The Mode Selector combines 
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all binary variables of the system to determine the operating mode of the system and 

based on the mode it selects the corresponding continuous dynamic from the Switched 

Affine System (SAS) [18]. 

3.2.2.2.1 Switched affine system 

 A Switched Affine System is a set of affine systems operating together. The 

switched affine system can be presented as follows. 

ሺ݇ݔ ൅ 1ሻ ൌ ௥ሺ݇ሻݔ௜ሺ݇ሻܣ ൅ ௥ሺ݇ሻݑ௜ሺ݇ሻܤ ൅ ௜݂ሺ݇ሻ 

௥ሺ݇ሻݕ ൌ ௥ሺ݇ሻݔ௜ሺ݇ሻܥ ൅ ௥ሺ݇ሻݑ௜ሺ݇ሻܦ ൅ ݃௜ሺ݇ሻ (3-4)

where ݇ ∈ Գ଴ is the discrete time-instant, ݔ௥ ∈ ߯௥ ⊆ Թ௡ೝ is the real state, ݑ௥ ∈ ࣯௥ ⊆

Թ௠ೝ is the exogenous real input,  ݕ௥ ∈ ௥ܻ ⊆ Թ௣ೝ is the real output, 

ሼܣ௜, ,௜ܤ ௜݂ , ,௜ܥ ,௜ܦ ݃௜ሽ௜∈ூ is a set of matrixes with appropriate dimensions that describe the 

system in each mode, and ݅ ∈ ܫ ⊂ Գ is the  mode of the system which is an input and 

selects the appropriate matrixes and chooses the output.  

The state-update equation can be rewritten as a difference equation + if-then-else 

conditions as follows. 

ଵሺ݇ሻݖ ൌ ቄܣଵሺ݇ሻݔ௥ሺ݇ሻ ൅ ௥ሺ݇ሻݑଵሺ݇ሻܤ ൅ ଵ݂ሺ݇ሻ ݅ሺ݇ሻ ൌ 1
0															 otherwise

⋮
 

௦ሺ݇ሻݖ ൌ ቄܣ௦ሺ݇ሻݔ௥ሺ݇ሻ ൅ ௥ሺ݇ሻݑ௦ሺ݇ሻܤ ൅ ௦݂ሺ݇ሻ						݅ሺ݇ሻ ൌ ݏ
0																																																																		otherwise

 

௥ሺ݇ݔ ൅ 1ሻ ൌ෍ݖ௜ሺ݇ሻ
௦

௜ୀଵ

 

(3-5)
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3.2.2.2.3 Finite state machine 

A finite state machine or automaton is a discrete dynamic process, which evolves 

according to a binary state update function.  A finite state machine is generally described 

as follows. 

௕ሺ݇ݔ ൅ 1ሻ ൌ ௕݂ሺݔ௕ሺ݇ሻ, ,௕ሺ݇ሻݑ  ௘ሺ݇ሻሻߜ

௕ሺ݇ሻݕ ൌ ݃௕ሺݔ௕ሺ݇ሻ, ,௕ሺ݇ሻݑ ௘ሺ݇ሻሻ (3-7)ߜ

where ݔ௕ ∈ ߯௕ ⊆ ሼ0,1ሽ௡್ is the binary state, ݑ௕ ∈ ܷ௕ ⊆ ሼ0,1ሽ௠್ the exogenous binary 

input, ݕ௕ ∈ ௕ܻ ⊆ ሼ0,1ሽ௉್ the binary output, ߜ௘ is the binary event, and ஻݂: ߯௕ ൈ ࣯௕ ൈ

ࣞ ⟶ ߯௕, ݃஻: ߯௕ ൈ ࣯௕ ൈ ࣞ ⟶ ௕ܻ are the deterministic binary functions. 

Mode Selector (MS): The binary state, ݔ௕, the binary input, ݑ௕, and the event ߜ௘ selects 

the mode of the system through the binary function ெ݂: ߯௕ ൈ ࣯௕ ൈ ࣞ ⟶  which is ܫ

therefore called Mode Selector. The output of the mode selector which is called the 

active mode is as follows. 

݅ሺ݇ሻ ൌ ௕݂ሺݔ௕ሺ݇ሻ, ,௕ሺ݇ሻݑ  ௘ሺ݇ሻሻߜ

Naturally, the mode of the system changes when ݅ሺ݇ሻ changes from the pervious time 

instant. 

Definition: Assuming ݔ ൌ ቂ
௥ݔ
௕ݔ
ቃ , ݑ ൌ ቂ

௥ݑ
௕ݑ
ቃ , ݕ ൌ ቂ

௥ݕ
௕ݕ
ቃ, a DHA is well-posed on ߯, ܷ, ܻ, 

if for any initial condition ݔሺ0ሻ ∈ ߯ and for all inputs ݑሺ0ሻ ∈ ܷ, the state trajectory, 

ሺ݇ሻݔ ∈ ߯ and the output trajectory, ݕሺ݇ሻ ∈ ܻ are uniquely defined for all ݇ ∈ Գ଴. Figure 

3-3 shows the general structure of discrete hybrid automata. 
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ሺ݇ݔ ൅ 1ሻ ൌ ሺ݇ሻݔሺ݇ሻܣ ൅ ሺ݇ሻݑଵܤ ൅ ሺ݇ሻߜଶܤ ൅  ሺ݇ሻݖଷܤ

ሺ݇ሻݕ ൌ ሺ݇ሻݔሺ݇ሻܥ ൅ ሺ݇ሻݑଵܦ ൅ ሺ݇ሻߜଶܦ ൅  ሺ݇ሻݖଷܦ

ሺ݇ሻߜଶܧ ൅ ሺ݇ሻݖଷܧ ൑ ሺ݇ሻݔସܧ ൅ ሺ݇ሻݑଵܧ ൅  ହܧ

(3-8)

where ݇߳Գ is the discrete time instant, ݔ ∈ ߯ is the continuous states of the system, 

ݑ ∈ ܷare the inputs and ݕ ∈ ܻare the outputs,  ߜ ∈ ሼ0,1ሽ௡ഃ are the binary variable and  

ݖ ∈ Թ௡೥ are auxiliary continuous variables which are introduced while translating PWA 

functions into linear inequalities. The general MLD form presented in (3-8) contains all 

constraints on states, inputs, outputs and auxiliary variables and all the state space 

equations of the system. It should be noted that the equality equations, which include the 

dynamics of the system in discrete form, are linear equations. However, the nonlinearity 

is hidden in the integrality constraints on the binary variables. A combination of a binary 

state ݔ௕, binary input  ݑ௕, and binary variable ߜ is called a mode. If for a given 

ሺݔ௕, ,௕ݑ ௥ݔ ሻ, there exists aߜ ∈ ߯௥,	ݑ௥ ∈ ௥ܷ and ݖ ∈ Թ௡೥ such that the inequality in (3-8) 

holds, the mode is called feasible; else it is infeasible [79], [18]. An MLD representation 

of a system is Well-posedness if the following Lemma holds. 

Lemma: If for every given pair ݔሺ݇ሻ ∈ ߯ and ݑሺ݇ሻ ∈ ܷ, the values of ߜሺ݇ሻ and ݖሺ݇ሻ 

are uniquely defined by the inequality in (3-8), the MLD model is well-posed. 

All the MLDs in this dissertation are considered to be well-posed. It should be noted 

that this assumption is not restrictive and is always satisfied when real physical plants 

are described in the MLD form [79]. It should also be noted that automata, propositional 

logic, if . . . then . . . else statements, and PWA functions can all be described in MLD 

form. However, nonlinear functions such as network equations in power systems cannot 
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models may include thresholds on states, inputs and internal variables. Also, they may 

include binary states that are part of a finite state machine or an automaton. Thus, all of 

the aforementioned hybrid system models are equivalent and several programs exist for 

systematical transforming to each other [80], [18].  

Despite of being equivalent, each of these modeling frameworks has their specific 

benefits. DHAs models have separate blocks and are easily understandable by the user, 

which makes it more convenient for user interface. MLD models are suitable for online 

optimal control and PWA models are suitable offline optimal control [81], to design 

observers for hybrid systems [82], and to perform analysis tasks.   

As mentioned earlier, direct modeling of hybrid systems in MLD or PWA form is 

usually excruciating. Researchers at ETHZ University developed a program called 

HYbrid Systems DEscription Language (Hysdel) [83] which allows the designer to 

describe a hybrid system on a textual basis. This is very similar to DHA models and 

describes the hybrid system in blocks. They also developed a compiler that converts the 

input text to PWA and MLD forms, which is basically transforming DHA hybrid system 

to PWA and MLD. The Hysdel language has been used to develop most of the models in 

this dissertation. 

 Example1: 

ሺ݇ݔ ൅ 1ሻ ൌ ൜
ሺ݇ሻݔ ൅ ሺ݇ሻݑ ݂݅ ሻݐሺݔ ൒ 0
െݔሺ݇ሻ ൅ ሺ݇ሻݑ ݂݅ ሻݐሺݔ ൏ 0

 
(3-9)
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In this case the constraint ݔሺ݇ሻ ൒ 0	could be assigned to an auxiliary binary variable, 

δሺkሻ . Therefore, when this switch is on the system is in one state and when it is off the 

system is in another state. 

ሾδሺ݇ሻ ൌ 1ሿ ↔ ሾݔሺ݇ሻ ൒ 0ሿ 
(3-10)

According to [79] we have the following general equation.  

ሾ݂ሺݔሻ ൒ 0ሿ ↔ 	 ሾδ ൌ 1ሿ  is true if and only if  ൜
݂ሺݔሻ ൑ ሺ1ܯ െ ሻߜ

݂ሺݔሻ ൒ ߝ ൅ ሺ݉ െ ߜሻߝ
 

(3-11)

where, M and m are the maximum (or supremum) and minimum (or infimum) or ݂ሺݔሻ 

Thus, assuming that the Maximum and minimum of the x(k) are +10 and -10  (M=+10 

and m=-10), (3-10) is equivalent to the following two inequalities. 

െmδሺ݇ሻ ൑ xሺ݇ሻ െ m 

െሺܯ ൅ εሻδሺ݇ሻ ൑ െݔሺ݇ሻ െ ε (3-12)

Then the system’s differential equation (3-9) could be rewritten in the following unique 

form. 

ሺ݇ݔ ൅ 1ሻ ൌ 2δሺ݇ሻݔሺ݇ሻ െ ሺ݇ሻݔ ൅  ሺ݇ሻݑ
(3-13)

Defining the auxiliary variable	ݖሺ݇ሻ ൌ δሺ݇ሻݔሺ݇ሻ, we have the following equations. 
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ݖ ሺ݇ሻ ൑ ߜܯ ሺ݇ሻ 

ݖ ሺ݇ሻ ൒ ߜ݉ ሺ݇ሻ 

ݖ ሺ݇ሻ ൑ ሺ݇ሻݔ െ ݉ሺ1 െ ߜ ሺ݇ሻሻ 

ݖ ሺ݇ሻ ൒ ሺ݇ሻݔ െܯሺ1 െ ߜ ሺ݇ሻሻ 

(3-14)

 Example 2: 

Consider the following piecewise linear system from [79]. 

࢞ሺ݇ ൅ 1ሻ ൌ 0.8 ൤
cos αሺ݇ሻ െ sin αሺ݇ሻ
sin αሺ݇ሻ cos αሺ݇ሻ ൨ ࢞

ሺ݇ሻ ൅ ቂ0
1
ቃ  ሺ݇ሻݑ

ሺ݇ሻݕ ൌ ሾ1 0ሿ ࢞ሺ݇ሻ 
(3-15)

where, 

αሺݐሻ ൌ ൞

ߨ
3

݂݅ ሾ1 0ሿݔሺ݇ሻ ൒ 0

െ
ߨ
3
																		݂݅			ሾ1			0ሿݔሺ݇ሻ ൏ 0

 

࢞ሺ݇ሻ 	∈ ሾെ10		10ሿ ൈ ሾെ10		10ሿ 

ሺ݇ሻݑ ∈ ሾെ1 1ሿ 

(3-16)

Using auxiliary variables ࢠሺkሻ ∈ Թସ and δ ∈ ሼ0,1ሽ such that ሾδሺkሻ ൌ 1ሿ ↔ ൣሾ1	0ሿxሺkሻ ൒

0 equation (3-15) can be rewritten as follows. 

ሺ݇ݔ ൅ 1ሻ ൌ 	 ሾܫ				ܫሿݖሺ݇ሻ 

Thus in this case we have the following equations for the system in the two cases. 
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࢞ሺ݇ ൅ 1ሻ ൌ ቂ 0.4 െ	0.69
0.69 0.4

ቃ ࢞ሺ݇ሻ ൅ ቂ0
1
ቃ ሺ݇ሻݑ ↔ ൣሾ1 0ሿxሺkሻ ൒ 0൧ 

࢞ሺ݇ ൅ 1ሻ ൌ ቂ 0.4 0.69	
െ0.69 0.4

ቃ ࢞ሺ݇ሻ ൅ ቂ0
1
ቃ ሺ݇ሻݑ 					↔ ൣሾ1	0ሿxሺkሻ ൏ 0൧ 

 

(3-17)

where, 

૚࡭ ൌ ቂ 0.4 െ 0.69
0.69 0.4

ቃ 

૛࡭ ൌ ቂ 0.4 0.69	
െ0.69 0.4

ቃ 
(3-18)

Using the MLD approach discussed earlier,  

ଵሺ݇ሻݖ ൑  ଵሺ݇ሻߜܯ

ଵሺ݇ሻݖ ൒  ଵሺ݇ሻߜ݉

ଵሺ݇ሻݖ ൑ ૚࢞ሺ݇ሻ࡭ ൅ ሺ݇ሻݑ૚࡮ െ ݉ሺ1 െ  ଵሺ݇ሻሻߜ

ଵሺ݇ሻݖ ൒ ૚࢞ሺ݇ሻ࡭ ൅ ሺ݇ሻݑ૚࡮ െ ሺ1ܯ െ  ଵሺ݇ሻሻߜ

(3-19)

Expanding in the matrix form, results in the following. 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

10
െ10 െ ߳
െܯ
െܯ
ܯ
ܯ
ܯ
ܯ
െܯ
െܯ
0
0
0
0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሺ݇ሻࢾ ൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
		0 0
			0 0
ܫ		 		0
െܫ 0
	0		 ܫ
		0 െܫ
ܫ	 		0
	ܯ	 0
െܫ ܫ
		0 െܫ
0 0
0 0
0 0
0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሺ݇ሻࢠ ൑

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
0
0
0
0
0
ܤ
െܤ
ܤ
െܤ
0
0
1
െ1ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

࢛ሺ݇ሻ ൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10
െ10
0
0
0
0
ଵܣ
െܣଵ
ଶܣ
െܣଶ
ܫ
െܫ
0
0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

࢞ሺ݇ሻ ൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10
െ߳
0
ܯ
ܯ
ܯ
ܯ
ܯ
0
0
ܰ
ܰ
1
1 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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where ߳ is a small positive scalar, ܤ ൌ ሾ0		1ሿ், ܯ ൌ ൫1 ൅ √3൯ሾ1		1ሿ் ൅ ܰ ,ܤ ൌ

10ሾ1		1ሿ், and ܣଵ, ߙ ଶ are obtained from (3-15) by settingܣ ൌ 	గ
ଷ
	, െ గ

ଷ
  respectively.   

3.2.3 Background on the optimization of hybrid systems 

An optimization problem could be expressed in the following general form. 

minక ଴݂ሺߦሻ 

Subj. to ௜݂ሺߦሻ ൑ 0 , ݅ ൌ 1,… , ݊௙ (3-20)

where	ξ is the optimization variable which can be defined in the general form of ξ ≜

൤
ξ୰
ξୠ
൨. The general form contains the real-valued part ξ୰ and the integer-valued part ξୠ. 

The optimization problem tries to find a vector ξ∗ that minimizes the objective function 

଴݂ሺߦሻ such that the inequality constraints fi(ߦ) ≤ 0 hold. 

A point ߦ is called feasible if it satisfies all the constraints fi(ߦ) and the optimization 

problem (3-20) is called feasible if there exists at least one feasible point in the input 

domain. The set of all feasible inputs is referred to as the feasible set.  The optimal value 

  .of the problem (3-20) is defined as follows ∗ܬ

∗ܬ ൌ inf	ሼ ଴݂ሺߦሻ | ଴݂ሺߦሻ ൑ 0; ݅ ൌ 1,… , ݊௙ ሽ 
(3-21)

The solution to the optimization problem from the feasible set of inputs,ߦ∗, is 

referred to as the optimizer. The optimizer is called a local optimizer if it minimizes the 

cost function in a subset of the feasible set and a global optimizer if it minimizes the cost 

for the whole feasible set.  
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If the objective function and the inequality constraints in optimization problem 

(3-20) are convex and no binary variables are present in the optimization variable the 

problem is referred to as a convex optimization problem. In a convex optimization 

problem the feasible set is convex, and any locally optimal point is also globally optimal. 

If the objective function and constraints of the optimization problem (3-20) are 

linear, the problem is referred to as a Mixed Integer Linear Programming (MILP) 

problem, which can be expressed as follows. 

 

minక  ்ߦܥ

Subj. to ߦܩ ൑ ݃  

(3-22)

where G is a matrix and c and g are row vectors. Although the objective function and 

constraints are linear, the optimization problem is not convex due to the existence of 

integer variables. Thus locally optimal points are not necessarily globally optimal. 

Further, MILPs are NP-hard which means the solution time grows exponentially with the 

number of binary variables [84].   

Several algorithms have been proposed to solve MILP problems including branch 

and bound, cutting plane, decomposition and logic-based methods. Details of these 

algorithms could be found in [85]. Obviously, if the optimization vector ߦ contains only 

real and no integer components, problem (3-22) reduces to a Linear Program (LP), 

which is convex which means a local minimize to the problem is in fact the global 

minimize and the problem can be solved in polynomial time. Similarly, the Mixed 

Integer Quadratic Programming (MIQP) problem can be formulated as follows.  
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minక
1
2
ߦ்ܳߦ ൅  ்ߦܥ

Subj. to ߦܩ ൑ ݃	 

ξ ≜ ൤
ξ୰
ξୠ
൨ , ξ୰ ∈ Թ௡೎ , ξୠ ∈ ሼ0,1ሽ୬ౚ   

(3-23) 
 
 
(3-24) 

where Q is a weight matrix. 

Mixed integer programming problems are classified in general as NP-hard, which 

means that with the available algorithms in the worst case, the solution time grows 

exponentially with the number of integer variables [84]. 

In this dissertation, the objective function is defined to penalize the predicted 

evolution of the state, control input and output over the finite horizon N using a norm. 

Also the weight matrices and Q are always defined to be full column rank matrices. The 

prediction is performed using the MLD model of the system at every time-step within 

the prediction horizon which means the MLD model is augmented for N steps to predict 

the behavior of the system ahead of time.  

If the MIQP problem is solved subject to the MLD model of the system the 

optimization vector can be written as follows. 

ߦ ൌ ሾ࢛ሺ0ሻ, 	 … , ࢛ሺܰ െ 1ሻ, ,ሺ0ሻࢾ … , ሺܰࢾ െ 1ሻ, ,ሺ0ሻࢠ … , ሺܰࢠ െ 1ሻሿ் 
(3-25)

where ࢛, ,ࢾ  .are the vectors of continuous, discrete and auxiliary variables, respectively ࢠ

As can be seen in (3-25), the optimization vector includes discrete and continuous 

variables. 
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The control input at time-instant k is obtained by minimizing the objective function 

subject to the evolution of the MLD model and its mixed-integer linear inequality 

constraints. This yields to Constrained Finite Time Optimal Control (CFTOC) problem 

which can be expressed as follows. 

ܷ∗ ሺ݇ሻ ൌ argmin ,ሺ݇ሻݔ൫ܬ ሺ݇ሻ൯ݑ  

Subject to MLD model (3-26)

Furthermore, additional integrality constraints are present on the binary  variables 

and on binary inputs. Solving this problem yields a sequence of optimal control inputs 

ܷ∗ ሺ݇ሻ ൌ ሾݑሺ݇ሻ, … , ሺ݇ݑ ൅ ܰ െ 1ሻሿ். If a linear norm is used in the cost function of 

(3-31), the CFTOC problem leads to solving an MILP and if a quadratic norm is used, it 

leads to solving MIQP, respectively. 

Several algorithms have been proposed and applied successfully to medium and 

large size application MIQP problems [86], the four major ones being:  

 Cutting plane methods, where new constraints (cuts) are generated and added to 

reduce the feasible domain until the optimal solution is found  

 Decomposition methods, where the mathematical structure of the models is 

exploited via variable partitioning, duality, and relaxation methods 

 Logic-based methods, where disjunctive constraints or symbolic inference 

techniques are utilized, which can be expressed in terms of binary variables 

 Branch and bound (B&B) methods, where the 0-1 combinations are explored 

through a binary tree, the feasible region is partitioned into sub-domains 
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systematically, and valid upper and lower bounds are generated at different levels 

of the binary tree.  

More details and analysis of the multi of multi-parametric programming for MILPs 

and MIQPs could be found in [87],[88],[89]. In this dissertation, branch and bound 

method is used for solving the MILP/MIQP problem and will be discussed in more detail 

in section 3.3.1. 

3.2.4 Dynamic Reactive Power Control of Power Systems  

The objective of reactive power control is to minimize losses and to keep the bus 

voltages within limits while satisfying all system constraints. As mentioned earlier, 

cables are usually short in isolated power systems; therefore, minimizing loss is not be 

the best option as the objective function in these systems. In this case, a better candidate 

is the sum of voltage deviations of critical buses in the system. It should be noted that 

when the total voltage deviation is minimized, the total loss of the system is minimized 

indirectly. Reactive power control of an isolated power system can be formulated in the 

following general form. 

min	௨ሺ଴,..ேିଵሻ,࣌ሺ଴,…,ேିଵሻ ,ሺ࢞ሺ݇ሻܬ ࢛ሺ݇ሻ, ݇ሻ (3-27)
ሶሺ݇ሻݔ ൌ ݂ሺ࢞ሺ݇ሻ, ࢛ሺ݇ሻ, ݇ሻ (3-28)

݃ሺ࢞ሺ݇ሻ, ࢛ሺ݇ሻ, ࣌ሺ݇ሻ, ݇ሻ ൌ 0 (3-29)
݄ሺ࢞ሺ݇ሻ, ࢛ሺ݇ሻ, ݇ሻ ൑ 0 (3-30)

 

The cost function given by (3-27)  can be chosen to minimize the voltage deviation of 

the buses that are more likely to have voltage drop, i.e., load buses. In this problem, the 

cost function is chosen to minimize the voltage deviation over a prediction horizon on N. 
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The prediction horizon and step size is chosen by the operator to cover the slowest 

dynamic of the system and not to exceed the maximum possible computation time for 

online control. Hence, assuming the current time instant as t0, the voltages of the critical 

buses of the system should be predicted over the horizon of N to calculate the cost 

function. The control action should also be included in the cost function to reduce the 

possibility of having too much control action which may result in actuator aging and 

damage in the system. Thus, the objective function (3-27) could be written as follows. 

,ሺ࢞ܬ ࢛, ݇ሻ ൌ 	෍

ە
ۖ
۔

ۖ
ۓ
ቐ෍ฮ ௜ܸሺ݇ ൅ ଴ሻݐ|଴ݐ െ ௜ܸ

ே௢௠ฮ
ሼଵ,ஶሽ

௜∈ே೟

ቑ ൅ ⋯

…൅ ૚∆࢜ሺ݇ሻ‖ሼଵ,ஶሽࢃ‖ ൅ ૛∆࣌ሺ݇ሻ‖ሼଵ,ஶሽۙࢃ‖
ۖ
ۘ

ۖ
ۗேିଵ

௞ୀ଴

 

 
 

(3-31)

In (3-31),	 ௧ܰ is the set of the buses which are more important for voltage control, i.e., 

the buses that are close to the loads, N is the horizon of the optimization, W1 and W2 are 

user definable input weight matrices and ௜ܸሺ݇ ൅  ଴ሻ is the phasor of estimated voltageݐ|଴ݐ

of bus i at the time ݐ଴+k based on the bus voltage measurement at time ݐ଴.  

As shown in (3-28) and (3-29), the optimization problem is subject to the following 

simplified and discretized differential algebraic equations. 

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	 ൅ Δݐ ൬
െ1

௏ܶ
ଵሺ݇ሻݔ ൅ ோܸ௘௙,஽ீଵሺ݇ሻ൰ 

ଵܸሺ݇ሻ ൌ ஽ܸீଵሺ݇ሻ ൌ
1

௏ܶ
 ଵሺ݇ሻݔ

(3-32)
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௜ሺ݇ݔ	 ൅ 1ሻ ൌ ௜ሺ݇ሻݔ ൅ Δݐ ቆ
െ1

ொܶ,௜
௜ሺ݇ሻݔ ൅ ܳோ௘௙,஽ீ௜ሺ݇ሻቇ 

ܳ஽ீ		௜ሺ݇ሻ ൌ
1

ொܶ,௜
݅					,			௜ሺ݇ሻݔ	 ൌ 2,… , ஽ܰீ 

(3-33)

௝ሺ݇ݔ ൅ 1ሻ ൌ ௝ሺ݇ሻݔ െ Δݐ ൭
௝ሺ݇ሻݔ

௤ܶ	௝
൅ ܳ௅଴	௝ሺܸ௕ೞሺ݇ሻ െ ܸ௕೟ሺ݇ሻሻ൱ 

ܳ௅	௝ሺ݇ሻ ൌ ቆ
௫ೕሺ௞ሻ

்೜	ೕ
൅ ܳ௅଴	௝ቀܸ௕೟ሺ݇ሻቁቇ		 , ݆ ൌ ஽ܰீ ൅ 1,… , ஽ܰீ ൅ ஽ܰ௅	  

(3-34)

 
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(3-35)

where ஽ܰீis the number of DGs and ஽ܰ௅ is the number of dynamic loads. The DAE 

equations (3-32) through (3-35) are simplified DAE equations of the sources and loads 

and the network equations of the system. Equation (3-32) represents the dynamics of the 

master generator; (3-33) the dynamics of PQ controlled DERs and (3-34) the dynamics 

of the loads and (3-34) are the network equations. In (3-36), ∑ܳ௡ሺ݇ሻ is the sum of the 

reactive power injected and withdrawn from bus n as follows. 
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෍ܳ௡ሺ݇ሻ ൌ ቌ ෍ ܳ஽ீ	௜ሺ݇ሻ

ேವಸ	೙

௜ୀଵ

ቍ ൅ ቌ෍ܳ஼௖ሺ݇ሻ

ே೎	೙

௖ୀଵ

ቍ െ ቌ෍ ܳ௅	௝ሺ݇ሻ

ேವಽ	೙

௝ୀଵ

ቍ

െ ቌ෍ܳ௅	௣ሺ݇ሻ

ேಽ	೙

௣ୀଵ

ቍ 

(3-36)

where, ஽ܰீ	௞,	 ௖ܰ	௡, ஽ܰ௅	௡,	 ௅ܰ	௡ are the number of DGs, compensators, dynamic loads and 

static loads connected to bus n respectively. Figure 3-4 shows the injection and 

withdrawal of reactive power to and from bus n.  

 

Figure 3-4 Injection and withdrawal of reactive power from bus n 

 

The simplified nonlinear system equations should be converted to the MLD form 

following the procedure depicted in Figure 3-5. 
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Figure 3-5 Converting the system to MLD form 

 

Equations (3-29) and (3-30) include the bus voltage limits, compensator limits, cable 

thermal limits and power equality of the system given by following equations:   

௕ܸ௠௜௡ ൑ | ௕ܸሺ݇ሻ| ൑ ௕ܸ ெ௔௫ ܾ ൌ 1,… . , ஻ܰ௨௦ 
ܳ௖	௠௜௡ሺ݇ሻ ൑ ܳ௖ሺ݇ሻ ൑ ܳ௖	ெ௔௫ሺ݇ሻ ܿ ൌ 1,… , ௖ܰ௢௠௣ 

|௖௟ሺ݇ሻܫ| ൑ ݈ܿ																	ெ௔௫	௖௟ܫ ൌ 1,… , ௖ܰ௟ 

 
(3-37)

where NBus is the number of buses, NComp is the number of compensators and Ncl is the 

number of the cables, | ௕ܸሺ݇ሻ| is the voltage magnitude of bus b at time ݇, ܳ௖ሺ݇ሻ reactive 

power setpoint of compensator c at time ݇ and |ܫ௖௟ሺ݇ሻ| is the current of cable cl at time k. 

The thermal rating of an overhead line is the maximum current that the line can handle 

without overheating and it is highly dependent on the conductor and insulator materials 

and the working condition.  

Figure 3-6 shows the prediction of the voltages in the system using the model (3-32) 

through (3-35). This figure shows the predicted voltage profile of two buses in the 

system over a horizon of N with step time of k. The objective of model predictive control 

is to select a control sequence force the voltage to follow the reference voltage profile. In 

the voltage and reactive control of the isolated power system, the main goal is to make 
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the bus voltages achieve the nominal voltage value which is usually constant and equal 

to 1 per unit.  

 

Figure 3-6 Prediction of the voltage profile of buses in the system for MPC 

 

Hypothetically, if the system has only one control input, the control sequences 

discussed in Figure 3-6 may look like Figure 3-7. 



 

72 
 

 

 

Figure 3-7 Sequence of control inputs 

 

By combining Figure 3-6 and Figure 3-7 Sequence of control inputsFigure 3-7, 

Figure 3-8 show the concept of model predictive control with a discrete prediction of 

voltage over the horizon N.  

 

Figure 3-8 General concept of model predictive control 
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Each step of the time horizon is subject to one set of MLD equations.  For example 

the step 19 of the time horizon of an example system is subject to the following MLD 

equations.  

|     #1|   Numeric value|         Element-wise inequality 6x1|                                  umin < u_19 < umax| 
|     #2|   Numeric value|   Equality constraint (derived) 1x1|                                  u_19(3) in [0 1 2]| 
|     #3|   Numeric value|         Element-wise inequality 4x1|                                  xmin < x_19 < xmax| 
|     #4|   Numeric value|         Element-wise inequality 4x1|                                  xmin < x_20 < xmax| 
|     #5|   Numeric value|         Element-wise inequality 2x1|                                  ymin < y_19 < ymax| 
|     #6|   Numeric value|                 Equality constraint 2x1|   x_20 == A*x_19 + B1*u_19 + B2*d_19 + B3*z_19 + B5| 
|     #7|   Numeric value|                 Equality constraint 1x1|   y_19 == C*x_19 + D1*u_19 + D2*d_19 + D3*z_19 + D5| 
|     #8|   Numeric value|         Element-wise inequality 6x1|        E2*d_19 + E3*z_19 <= E1*u_19 + E4*z_19 + E_5| 
|     #9|   Numeric value|         Element-wise inequality 6x1|                              MLD.zl < z_19 < MLD.zu| 
|    #10|   Numeric value|         Element-wise inequality 6x1|                                  umin < u_18 < umax| 
|    #11|   Numeric value|   Equality constraint (derived) 1x1|                                  u_18(3) in [0 1 2]| 
|    #12|   Numeric value|         Element-wise inequality 4x1|                                  xmin < x_18 < xmax| 
|    #13|   Numeric value|         Element-wise inequality 2x1|                                  ymin < y_18 < ymax| 

 

 

Thus, the MLD equations are repeated N times in the constraints of the optimizations 

with N being the time horizon of the optimization. Thus, the MLD constraints are 

augments to the number of step times in the time horizon. This process replaces the 

difference equations with chained algebraic equations with each step depending on the 

pervious step, which makes it understandable for the optimization software. The concept 

of augmenting MLD constraints at each step time is shown in Figure 3-9.   

 

 

Figure 3-9 MLD constraints of the optimization problem at each step time 
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In (3-28), x(k) is the vector of the state space variables as follows. 
 

࢞ሺ݇ሻ ൌ ቂݔଵሺ݇ሻ… …௜ሺ݇ሻ	஽ீݔ …௅೜௝ሺ݇ሻݔ ቃ
் 

݅ ൌ 2,… , ஽ܰீ  ,  ݆ ൌ 1,… , ௅ܰ௢௔ௗ 

 
(3-38)

where NDG is the number of DGs and NLoad is the number of loads, ݔଵሺ݇ሻ is the state 

variable of the master generator which is numbered as the first DG, ݔ஽ீ	௜ሺ݇ሻ is the state 

variable of the i'th DG, ݔ௅೜௝ is the reactive power state variable of j’th load.  

 In (3-28), the control variables in the v(k) vector can include voltage and reactive 

power of generators, Generated reactive power of compensators. Some or all of these 

inputs may be used in the reactive power control based on the studied power system and 

based on the needs. Thus, v(k) which is the vector of continuous control inputs is defined 

as follows. 

࢜ሺ݇ሻ ൌ ൣ	 ோܸ௘௙,஽ீଵ ሺ݇ሻ ܳோ௘௙,஽ீ ௜ሺ݇ሻ… ܳ௖ ሺ݇ሻ… ൧ ் 
݅ ൌ 2,… , ஽ܰீ  ,  ܿ ൌ 1,… , ஼ܰ௢௠௣ 

 
(3-39)

where ோܸ௘௙,஽ீଵ	ሺ݇ሻ is the reference voltage of the master generator and	ܳோ௘௙,஽ீ	௜ሺ݇ሻ is 

the reference reactive power injection of i’th DG, ܳ௖	ሺ݇ሻ is the reactive power reference 

of c’th dynamic compensator if dynamic compensators are present in the system. ࣌ሺ݇ሻ is 

the vector of the discrete control inputs to the system, i.e., ࣌ሺ݇ሻ ൌ ଵߪൣ  ேೞೢ൧ whereߪ…

NSW is the number of controllable discrete inputs in the power system. The augmented 

control vector u(k)  is defined as the augmented vector of discrete control and 

continuous control inputs, i.e. u(k)=	ሾ	࢜ሺ݇ሻ	࣌ሺ݇ሻሿ. Figure 3-10 shows the process of 

calculation of the objective function in (3-31). 
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Network equation

Objective function

V1(k)

Pi(k), Qi(k)

PLj(k), QLj(k)

Master generator

1ሺ݇ݔ ൅ 1ሻ ൌ 1ሺ݇ሻݔ	 ൅ Δݐ ൬
െ1
ܸܶ

1ሺ݇ሻݔ ൅ ܸܴ ݂݁ 1ሺ݇ሻ൰ܩܦ,

PQ mode DGs

Dynamic loads

ሺ݇݅ݔ ൅ 1ሻ ൌ ሺ݇ሻ݅ݔ ൅ Δݐ ቆ
െ1
ܶܳ ,݅

ሺ݇ሻ݅ݔ ൅ ݂݁ݎܳ ݅ܩܦ, ሺ݇ሻቇ

ݔ݆ ሺ݇ ൅ 1ሻ ൌ ݔ݆ ሺ݇ሻ െ Δݐ ൭
ݔ݆ ሺ݇ሻ

݆	ݍܶ
൅ 0ܮܳ ݆ ሺܸܾݏሺ݇ሻ െ ሺ݇ሻሻ൱ݐܾܸ

i=1,…, num of PQ DGs

j=1,…, num of dynamic loads
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Figure 3-10 Process of calculation of the objective function 
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 In the next part we will discuss how we derived the simplified differential equations 

defined by (3-28), the algebraic equations defined by (3-29). The differential constraints 

of the system expressed in (3-28) include the dynamics of the generators and the loads in 

the power system. These equations are usually expressed in continuous time domain and 

then discretized and linearized. First of all, we discuss the dynamics of the sources in 

time domain. Then we will discuss how we simplified and discretized the equations for 

reactive power control. 

3.2.4.1 Sources 

 Generators should be modeled with appropriate amount of detail for the study. For 

synchronous generators, the model should include automatic voltage regulator, exciter, 

turbine and governor [90], [91]. Model of the synchronous generator can be significantly 

simplified by neglecting stator dynamics and the decrease in accuracy of the model is 

negligible with such simplification. Hence, neglecting generators stator dynamic is very 

common in the literature [91].  Following equations model the synchronous generator 

rotor dynamics and exciter dynamics in continuous time domain. 
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ௗܶ௢௜
ᇱ ሻݐ௤௜ሺܧ݀

ݐ݀
ൌ 	െܧ௤௜

ᇱ ሺݐሻ െ ሺܺௗ௜ െ ܺௗ௜
ᇱ ሻܫௗ௜ሺݐሻ ൅  ሻݐ௙ௗ௜ሺܧ

௤ܶ௢௜
ᇱ ሻݐௗ௜ሺܧ݀

ݐ݀
ൌ 	െܧௗ௜

ᇱ ሺݐሻ െ ൫ܺ௤௜ െ ܺ௤௜
ᇱ ൯ܫ௤௜ሺݐሻ 

ሻݐ௜ሺߜ݀
ݐ݀

ൌ ߱௜ሺݐሻ െ ߱௦ 

ܪ2
߱௦

݀߱௜ሺݐሻ
ݐ݀

ൌ ெܶ௜ሺݐሻ െ ሻݐௗ௜ሺܫሻݐௗ௜ሺܧ െ ሻݐ௤௜ሺܫሻݐ௤௜ሺܧ െ ൫ܺ௤௜
ᇱ െ ܺௗ௜

ᇱ ൯ܫௗ௜ሺݐሻܫ௤௜ሺݐሻ

െ ሻݐ௜ሺ߱௜ሺܦ െ ߱௦ሻ 

ாܶ௜
ሻݐ௙ௗ௜ሺܧ݀

ݐ݀
ൌ െቀܭா௜ ൅ ܵா௜൫ܧ௙ௗ௜൯ቁܧ௙ௗ௜ሺݐሻ ൅ ோܸ௜ሺݐሻ 

ிܶ௜
݀ ௙ܴ௜ሺݐሻ
ݐ݀

ൌ െ ௙ܴ௜ሺݐሻ ൅
ி௜ܭ
ிܶ௜
 ሻݐ௙ௗ௜ሺܧ

஺ܶ௜
݀ ோܸ௜ሺݐሻ
ݐ݀

ൌ െ ோܸ௜ሺݐሻ ൅ ஺௜ܭ ௙ܴ௜ሺݐሻ െ	
ி௜ܭ஺௜ܭ

ிܶ௜
ሻݐ௙ௗ௜ሺܧ ൅ ஺௜ሺܭ ௥ܸ௘௙௜ െ ௜ܸሺݐሻሻ 

(3-40)

ߜ :	rotor angle (radian) 

߱ :	rotor speed (radian per second) 

 exciter voltage on stator base (p.u.)	௙ௗ௜:ܧ

 .quadrature (direct) axis transient voltage (p.u.) :(ሖௗܧ) ሖ௤ܧ

 stator q-axis(d-axis) component of currents (p.u.)	ௗ௜ሻ:ܫ௤௜ሺܫ

௜ܸ ,  .bus voltage magnitude and angle respectively	௜:ߠ

ܺௗ௜, ܺௗ௜
ᇱ:	direct axis synchronous, transient and sub-transient reactance (p.u.) 

respectively. 

ܺ௤௜, ܺ௤௜
ᇱ:	quadrature axis synchronous, transient and sub-transient reactance (p.u.) 

respectively. 
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ௗܶ௢
ᇱ:	direct axis open circuit transient and sub-transient time constants (seconds) 

respectively. 

௤ܶ௢
ᇱ:	quadrature axis open circuit transient and sub-transient time constants (seconds) 

respectively 

Also ܵா,	 ிܶ, ܭா are the exciter gains. 

Stator algebraic equations are written as follows. 
 

ௗܧ
ᇱ ሺݐሻ െ 	ܸሺݐሻsinሺߜሺݐሻ െ ሻሻݐሺߠ െ ܴ௦ܫௗሺݐሻ ൅ ܺ௤ᇱ ሻݐ௤ሺܫ ൌ 0 

௤ᇱܧ ሺݐሻ െ 	ܸሺݐሻcosሺߜሺݐሻ െ ሻሻݐሺߠ െ ܴ௦ܫ௤ሺݐሻ ൅ ܺௗ
ᇱ ሻݐௗሺܫ ൌ 0 

(3-41)

where ܴ௦is the stator resistance. In order to derive the network equations, we have to 

compute the generated active and reactive power of the generator. The generated active 

power equations are as follows. 

௚ܲ௘௡,௜ሺ ௜ܸሻ ൌ ሻݐௗ௜ሺܫ ௜ܸሺݐሻ sinሺߜ௜ሺݐሻ െ ሻሻݐ௜ሺߠ ൅ ሻݐ௤௜ሺܫ ௜ܸ ሺݐሻcosሺߜ௜ሺݐሻ െ ሻሻݐ௜ሺߠ ,

݅ ൌ 1,… ,݉ (3-42)

where  ߠ௜ is the phase of bus i. The generated reactive power by this generator is 

calculated as follows. 

ܳ௚௘௡,௜ሺ ௜ܸሻ ൌ 	 ሻݐௗ௜ሺܫ ௜ܸሺݐሻ cosሺߜ௜ሺݐሻ െ ሻሻݐ௜ሺߠ െ ሻݐ௤௜ሺܫ ௜ܸ ሺݐሻsinሺߜ௜ሺݐሻ െ ሻሻݐ௜ሺߠ ,

݅ ൌ 1,… ,݉ (3-43)

Generators have some physical constraints on the amount of reactive power that they 

can produce or consume. The reactive capability limits of the generator should be 

considered in dynamic reactive control studies. The continuous reactive power output 
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capability is limited by three constraints [90]:  the armature current limit, the field 

current limit, and the end-region heating limit.    

Although the model presented in (3-40) to (3-43) may be used as the plant model in 

reactive studies, using this model as the prediction model makes the computational time 

of the optimization too long. Thus, the full model may not be used for prediction and 

simplifications should be applied. We used system identification methods to achieve a 

simple model of the component that can be used in the prediction model in this research. 

Since mainly the output voltage of the master generator is important in volt/Var studies, 

the model should describe the change in output voltage as a result of a change in the 

input voltage reference. Hence, an input-output model with the reference voltage as the 

input and estimates the output voltage is enough as the prediction model. In this 

research, a first order model which is derived based on the step response of the voltage is 

used as the prediction model for the master generator. 

஽ܸீ ଵሺݏሻ

ோܸ௘௙,஽ீଵሺݏሻ
ൌ

1

௏ܶݏ ൅ 1
 

(3-44)

where ௏ܶ is the time constant which is identified with system identification. For the 

master DG, the simplified state space equations can be derived by transferring (3-44) 

into the state space form as follows. 

ሻݐሶଵሺݔ ൌ
െ1

௏ܶ
ሻݐଵሺݔ ൅ ோܸ௘௙,஽ீଵሺ݇ሻ 

஽ܸீଵሺݐሻ ൌ
1

௏ܶ
 ሻݐଵሺݔ

(3-45)
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If more accuracy is needed, especially for small systems with limited number of DGs, a 

2nd order model could be used to estimate the voltage. The general form of the 2nd order 

model is as follows. 

஽ܸீ	ଵሺݏሻ

ோܸ௘௙,஽ீଵሺݏሻ
ൌ

߱ଶ

ଶݏ ൅ ݏ߱ߦ2 ൅ ߱ଶ 
(3-46)

The discretization can be performed using the following formula. 

݀
ݐ݀
࢞ሺݐሻ ൌ

࢞ሺ݇ ൅ 1ሻ െ ࢞ሺ݇ሻ
ݐ∆

 
(3-47)

 Example: 

The master generator state space equation (3-48) can be discretized using (3-47) as 

follows. 

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	 ൅ Δݐ ൬
െ1

௏ܶ
ଵሺ݇ሻݔ ൅ ோܸ௘௙,஽ீଵሺ݇ሻ൰ 

(3-48)

Figure 3-11 shows the actual generator voltage response and the estimated voltage 

using 1st and 2nd order models for a step of 0.05 p.u. in the reference voltage of the 

synchronous generator. 
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Figure 3-11 Actual synchronous generator voltage and estimated voltage using 1st and 
2nd order models 

 

As can be seen in Figure 3-11, the actual response of the generator is smaller than the 

reference due to saturation and system dynamics; however, the identified model can be 

adjusted by adding an extra gain on the identified model. Figure 3-12 shows the 

schematic diagram of a typical controller for DFIG wind generator. 

 

 
Figure 3-12 Schematic diagram of conventional control of DFIG wind generator 
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The dynamic equations are obtained from Newton’s equations of motion for each 

mass (rotational speed) and shaft (torsion or twist angle) [92]. 

௧ܪ2
݀߱௧ሺݐሻ
ݐ݀

ൌ ௧ܲ

߱௧
െ ௦ܶ௛ሺݐሻ 

1
߱௘௟஻

ሻݐ௧௪ሺߠ݀
ݐ݀

ൌ ߱௧ሺݐሻ െ ߱௥ሺݐሻ 

௚ܪ2
݀߱௥ሺݐሻ
ݐ݀

ൌ ௦ܶ௛ሺݐሻ െ ௘ܶሺݐሻ 

(3-49)

(3-50)

(3-51)

where ωt and ωr (p.u.) are the turbine and generator speeds, respectively; θtw (rad) is the 

shaft twist angle; Ht and Hg (sec) are the turbine and generator inertias, ωelB (rad/s) is the 

electrical base speed, Pt (p.u.) is the turbine input power, and Tsh and Te (p.u.) are the 

shaft and generator torques which are defined as follows. 

௦ܶ௛ሺݐሻ ൌ ሻݐ௧௪ሺߠ݇ ൅ ܿ ൬
ሻݐ௧௪ሺߠ݀
ݐ݀

൰

௘ܶሺݐሻ ൌ ቆ
݁́௤௦ሺݐሻ
߱௦

ቇ ݅௤௦ሺݐሻ ൅ ൬
݁́଴ௗ௦ሺݐሻ
߱௦

൰ ݅ௗ௦ሺݐሻ 
(3-52)

where k (p.u./el.rad) and c (p.u.s/el.rad) are the shaft stiffness and damping coefficients. 

In this dissertation, the dynamic equations of the DFIG are described in the dq frame 

with the d-axis leading. First, following variables are defined. 
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݁́௤௦ሺݐሻ ൌ  ௠௥௥߱௦߰ௗ௥ܭ

݁́ௗ௦ሺݐሻ ൌ െܭ௠௥௥߱௦߰௤௥  

௦ሖܮ ൌ ௦௦ܮ െ	
௠ܮ

ଶ

௥௥ܮ
	

௘ܶ ൌ
௥௥ܮ
ܴ௥

 

(3-53)

where ߰௤௥ and ߰ௗ௥ (p.u.) are the rotor q- and d fluxes, Rr (p.u.) is the rotor resistance, 

Kmrr = Lm/Lrr and Lss, Lrr, and Lm (p.u.) are the stator, rotor, and mutual inductances, 

respectively. 

For balanced and unsaturated conditions, the corresponding p.u. DFIG model is as 

follows. 

߱௦ܮ௦ሖ

߱௘௟

݀݅௤௦ሺݐሻ
ݐ݀

ൌ െܴଵ݅௤௦ሺݐሻ ൅ ߱௦ܮ௦ሖ ݅ௗ௦ሺݐሻ ൅
߱௥
߱௦

݁́௤௦ሺݐሻ െ
1

௥ܶ߱௦
݁́ௗ௦ሺݐሻ െ ሻݐ௤௦ሺݒ

൅  ሻݐ௤௥ሺݒ௠௥ܭ

߱௦ܮ௦ሖ

߱௘௟

݀݅ௗ௦ሺݐሻ
ݐ݀

ൌ െܴଵ݅ௗ௦ሺݐሻ െ ߱௦ܮ௦ሖ ݅௤௦ሺݐሻ ൅
߱௥
߱௦

݁́ௗ௦ሺݐሻ ൅
1

௥ܶ߱௦
݁́௤௦ሺݐሻ െ ሻݐௗ௦ሺݒ

൅  ሻݐௗ௥ሺݒ௠௥ܭ

1
߱௘௟

݀݁́௤௦ሺݐሻ
ݐ݀

ൌ ܴଶ݅ௗ௦ሺݐሻ 	െ
1

௥ܶ߱௦
݁́௤௦ሺݐሻ ൅ ൬1 െ

߱௥
߱௦
൰ ݁́ௗ௦ሺݐሻ െ  ሻݐௗ௥ሺݒ௠௥௥ܭ

1
߱௘௟

݀݁́ௗ௦ሺݐሻ
ݐ݀

ൌ െܴଶ݅௤௦ሺݐሻ ൅ ൬1 െ
߱௥
߱௦
൰ ݁́௤௦ሺݐሻ െ

1

௥ܶ߱௦
݁́ௗ௦ሺݐሻ െ  ሻݐ௤௥ሺݒ௠௥௥ܭ

 
(3-54) 
 
 
(3-55) 
 
 
(3-56) 
 
 
(3-57) 

where iqs and ids (p.u.) are the stator q- and d-axis currents, ωs (p.u.) is the synchronous 

speed, ωel = ωelB ωs, Rs (p.u.) is the stator resistance, and R1 = Rs + R2 and ܴଶ ൌ ௠௥௥ܭ
ଶ ܴ௥. 
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The generator dynamic equations could be divided into three parts: stator electrical 

(3-54), (3-55); rotor electrical (3-56), (3-57) and rotor mechanical (3-51). Similar to 

synchronous generator, stator transients are neglected without losing accuracy [90]. The 

ac voltage of the rotor-side converter is dependent on the control objectives of the wind 

generator. The grid side converter is responsible for controlling the capacitor voltage 

which is equivalent to sending the maximum active power to the grid and also reactive 

power control. The controller is usually designed in the converter dq-axis with 

decoupled control on real and reactive power. The rotor side control is not of interest in 

this dissertation and more details could be found in [93].  

The active and reactive power sharing between the wind generator and the network 

could be written as follows. 

௚ܲ௥௜ௗሺݐሻ ൌ
௦ܸሺݐሻ ௕ܸሺݐሻsinሺߛ௘ሺݐሻ െ ሻሻݐ௕ሺߛ

ܺ௘
 

ܳ௚௥௜ௗሺݐሻ ൌ
௦ܸ
ଶሺݐሻ െ ௦ܸሺݐሻ ௕ܸሺݐሻcos	ሺߛ௘ሺݐሻ െ ሻሻݐ௕ሺߛ

ܺ௘
 

(3-58)

Figure 3-13 shows schematic diagram of a typical controller of photovoltaic source [94], 

[95]. 
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Figure 3-13 Schematic diagram of conventional control of photovoltaic source 

 

The photovoltaic source may be modeled as a current source. In the ideal condition the 

following equation holds for the output current [96].  

ሻݐሺܫ ൌ ௣௩,௖௘௟௟ܫ െ ଴,௖௘௟௟ܫ ൤exp ൬
ܸݍ
ܽ݇ܶ

൰ െ 1൨
ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ

ூ೏

 
(3-59)

where Ipv,cell is the current generated by the incident light which is directly proportional 

to the Sun irradiation, Id is the Shockley diode equation, I0,cell is the reverse saturation or 

leakage current of the diode, q is the electron charge which is equal to 1.60217646 × 

10−19 C), k is the Boltzmann constant which is equal to 1.3806503 × 10−23 J/K, T is the 

temperature of the p–n junction in Kelvin, and a is the diode ideality constant. 

 The same system identification approach as in (3-44) shall be used to limit the 

number of dynamic equations for the prediction model. However, since the PV and wind 

sources are controlled in PQ mode, the dynamic response of reactive power output of the 

source to changes in reactive power setpoint is required for the prediction model.  
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ܳ஽ீ ௜ሺݏሻ

ܳோ௘௙,஽ீ	௜ሺݏሻ
ൌ

1

ொܶ,௜ ݏ ൅ 1
 

(3-60)

where ொܶ,௜ is the time constant which is identified with system identification and 

ܳோ௘௙,஽ீ	௜ሺݏሻ is the reactive power reference and ܳ஽ீ	௜ሺݏሻ is the reactive output of i’th 

DG in frequency domain.  

For the other DGs in the system, the simplified state space equations are as follows. 

݀
ݐ݀
ሻݐ௜ሺݔ	 ൌ

െ1

ொܶ,௜
ሻݐ௜ሺݔ ൅ ܳோ௘௙,஽ீ௜ሺݐሻ 

ܳ஽ீ,௜ሺݐሻ ൌ
1

ொܶ,௜
 				ሻݐ௜ሺݔ	

(3-61)

By simplifying the differential equations, the state space vector of the system presented 

in (3-38) will change to the following. Figure 3-14 shows the reactive response of a wind 

DG and the estimated reactive power using system identification when a step in reactive 

power setpoint is applied to the DG at t=0.6s. The time constant, ொܶ, for this case is 0.06 

seconds.  

 

Figure 3-14 Reactive response of a wind DG and the estimated reactive power 
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࢞ሺݐሻ ൌ ሾݔଵሺݐሻ… …ሻݐ௜ሺݔ …ሻݐ௅೜௝ሺݔ ሿ 

݅ ൌ 2,… , ஽ܰீ௦ , ݆ ൌ 1,… , ௅ܰ௢௔ௗ 
(3-62)

where ݔଵ	is the state of the master generator, ݔ௜’s are states of the other sources and 

 .are the states of the loads	௅೜௝ݔ

3.2.4.2 Loads 

The power consumed by most of the loads in a power system is voltage dependent. 

Hence, the load admittance varies dynamically with the voltage which means that when 

the voltage decreases the consumed power of most of the loads decrease. However, after 

the disturbance, internal controllers of the most of the loads like thermostats of electrical 

heating and power electronics converters which regulate the rotational speed of 

machines restore the power demand of the load. The new power demand usually settles 

usually below or equal to the pre-disturbance level. This self restoring behavior of the 

load can be described using second order differential equations as described in [73], 

[97], [98]. One set of equations model the active power and another set model the 

reactive power of the load [99].  

ሻݐ௝ሺ	௅ುݔ݀
ݐ݀

ൌ െ
௅ುݔ ௝ሺݐሻ

௉ܶ	௝
൅ ௅ܲ଴ ௝ሺܸ௔ೞሺݐሻ െ ܸ௔೟ሺݐሻሻ 

௅ܲ	௝ሺݐሻ ൌ ൭
ሻݐ௝ሺ	௅ುݔ

௉ܶ	௝
൅ ௅ܲ଴	௝ሺܸ௔೟ሺݐሻሻ൱ 

(3-63)

In (3-63), ݔ௅ು	௝ሺݐሻ  is an internal state variable which models the load recovery 

dynamic of the j’th load with the time constant Tpj. The instantaneous voltage 
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dependency is expressed by Vat and the steady-state voltage dependency is given by Vas. 

In this model, the actual active power PL can be considered as an output, the absolute 

value of the load voltage V is the input and PL0 j  is the rated active power of the load. 

Similarly, the load model for the reactive power is defined as follows. 

ሻݐ௝ሺ	௅೜ݔ݀

ݐ݀
ൌ െ

௅೜ݔ ௝ሺݐሻ

௤ܶ	௝
൅ ܳ௅଴ ௝ሺܸ௕ೞሺݐሻ െ ܸ௕೟ሺݐሻሻ 

ܳ௅	௝ሺݐሻ ൌ ൭
ሻݐ௅೜ሺݔ

௤ܶ	௝
൅ ܳ௅଴	௝ሺܸ௕೟ሺݐሻሻ൱ 

(3-64)

where QL0 j  is the rated reactive power of the of the j’th load and ܳ௅	௝ሺݐሻ is the actual 

reactive power of the j’th load at time t  and Tq j is the load reactive recovery time 

constant of the j’th load.  Figure 3-15 shows the currents and the voltages of the load. 

 

Figure 3-15 Load current and voltage 

 

Linearizing (3-64) around the operating point of the system yields to the following. 

ሻݐ௝ሺ	௅೜ݔ݀

ݐ݀
ൌ െ

ሻݐ௝ሺ	௅೜ݔ

௤ܶ	௝
൅ ܳ௅଴ ௝ሾܾ௦ሺܸ∗ሺݐሻሻ௕ೞିଵ െ ܾ௧ሺܸ∗ሺݐሻሻ௕೟ିଵሿ	ܸሺݐሻ 

(3-65)
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where, ܸ∗ is the operating voltage of the bus connected to the j’th load. Mathematical 

manipulation of (3-65) yields the following linear transfer function. 

∆ܳ௅	௝ ൌ ܳ௅଴ ቆ
ܥ ൅ ௤ܶ ௝ݏܦ

௤ܶ	௝ݏ ൅ 1
ቇ∆ܸ 

(3-66)

where the matrices ܥ and ܦ are defined as follows. 

ܥ ൌ ܾ௦ ൬
ܸ∗

଴ܸ
൰
௕ೞିଵ

, ܦ ൌ ܾ௧ ൬
ܸ∗

଴ܸ
൰
௕೟ିଵ

 
(3-67)

where ଴ܸ is the nominal bus voltage and ܸ∗ is the operation point of the bus voltage. 

It is important to take into account the high reactive power consumed by the motor in 

the startup [100]. In such a case, the rating of the upstream equipment may need to be 

rated higher than the steady-state condition and some adaptation should be performed on 

the controller to alleviate the voltage drop as much as possible [101]. The amount of the 

voltage dip caused by motor startup is directly related to reactive power need of the 

motor load during startup. The typical value of the power factor for motors under 1000 

HP is about 0.20 [102]. The locked rotor kVA per HP is defined for each NEMA code 

letter (Appendix A) which can be used to determine the expected startup reactive power 

need of the motor [103]. 

In addition, large squirrel-cage induction motors and industrial synchronous motors 

draw several times their full load current from the supply causing a power factor in the 

range of 0.15–0.30 lagging during their startup. The actual shape and magnitude of the 

staring current curve depends on the voltage at the motor terminals, the motor design, 

and the characteristic of the load which is connected to the motor [104]. 
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3.2.4.3 Network equations for balanced microgrid 

The algebraic equations include the network equations of the power system. Network 

equations can be expressed in either power balance or current balance form. The current 

balance from is more common in software packages. Figure 3-16 shows the connection 

of synchronous generator to the rest of the network.  

 

 

Figure 3-16 Connection of synchronous generators and the rest of the network 

 

 In this section, we derive the network equations for balanced and unbalanced 

networks. If the net apparent power injection into the bus n is defined as Sn=Sgn-Sdn , we 

can express Sn as follows. 

)()()( * tItVtS nnn   
(3-68)

where Vn is the phasor of the voltage of the bus Vn(t)=|Vn(t)|n  assuming that the 

voltages are balanced. Ik is net of the injected current into the bus n which can be 

expressed as follows. 
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)()(
1

tVYtI j

N

j
njn 



  
(3-69)

where, Ynj are the admittance matrix elements and Vj ’s are voltages of the buses. 

Substitution of (3-69) into (3-68) yields to the following equation. 

)()()()()( *

1

*

*

1

tVYtVtVYtVtS j

N

j
njnj

N

j
njnn 











  

(3-70)

If the system is balanced, Ynj which is a complex number can be expressed as 

Ynj=Gnj+jBnj where Gnj is the real part and Bnj is the imaginary part of the admittance 

matrix element Ynj. Given that Sn(t) =Pn(t)+jQn(t), we can express (3-70) as two 

equations, one for the real power, Pn, and one for the reactive power, Qn(t), as follows: 

 

 











N

j
jnnjjnnjjnn

N

j
jnnjjnnjjnn

ttBttGtVtVtQ

ttBttGtVtVtP

1

1

))()(cos())()(sin()()()(

))()(sin())()(cos()()()(




 

(3-71)

The two equations of (3-71) are referred to as power flow equations. Obviously, 

power flow equations are nonlinear, thus, they need to be linearized in order to be used 

in the hybrid control scheme. The power flow equations are very complex and are 

functions of many variables. Thus piecewise linear approximations of any one variable 

will depend on the value of the other variables. Thus, we seek to simplify the equations 

based on some observation of the power system. 

The resistance of the cables in power system is usually significantly less than the 

reactance and the x/r ratio is often between 2 and 10. Further, in most of shipboard 
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power system and MicroGrid applications, the cables are fairly short. Also, angle 

difference between buses in power systems is directly coupled with the active power 

flow of the system. Usually, the difference between the voltage angle of the adjacent 

buses which are connected by a cable is less than 10-15 degrees [105]. It is extremely 

rare to ever see such angular separation exceed 30 degrees. Figure 3-17 confirms this 

observation for a MicroGrid which encounters heavy loading and loads changes. As can 

be seen in Figure 3-17, most of the angles are small and do not experience significant 

changes during different load conditions of the MicroGrid.  

  

Figure 3-17 Bus angles for a MicroGrid for a case-study with changing loads 
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This observation can help us to eliminate the trigonometric functions in (3-71) 

considering the fact that the angular difference across the cables only appears as the 

argument of the trigonometric functions sine and cosine.  

3.2.4.4 Network equations for unbalanced microgrid 

 Single phase load connected to the buses of the power system or distributed along 

the lines are the main reason of imbalance in the distribution system. Further, single-

phase loads may vary significantly during different times of the day or week, or season 

[106]. Also, operation of fuses may cause a significant amount of load to be 

disconnected from the system and substantially increase system imbalance. Large 

voltage imbalance (>3%) results in high ripple currents on the dc bus of the three-phase 

inverter-based DERs. These ripples in the current may have a degrading effect on the 

inverter and the energy sources [106]. It should also be noted that most rotating 

equipments, specifically generators, are designed to operate with no more than as 

specified current imbalance (ANSI/NEMA MG 1- 2006). Further, imbalances in the 

distribution system or load imbalance can cause negative sequence currents. Three-phase 

DERs and motors have limited negative sequence capability and may be damaged by 

imbalanced load conditions but the damage can be minimized by the use of a negative 

sequence current relay. The maximum allowed continuous voltage unbalance in the 

distribution system is 5% according to NEMA MG1. 

It should also be mentioned that in power systems, most voltage unbalance 

conditions are due to magnitude inequalities while the phase-angles are equal (120° or 

2π/3) or nearly equal [1]. If the voltage unbalance is in this category and the inequalities 
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in the magnitudes is less than 1%, the DER with an inverter interface can compensate for 

the voltage unbalance by providing different amounts of reactive power on each phase. 

This local control scheme is beyond the scope of this dissertation and the interested and 

the interested reader is referred to [1] for more information. 

The objective function and power flow equations of the formulation in previous section 

should be changed for the unbalanced power system.  

,ሺ࢞ܬ ࢛, ݇ሻ ൌ 	෍ ቐ෍ ൜ฮ ௜ܸ
஺ሺ݇ ൅ ଴ሻݐ|଴ݐ െ ௜ܸ

ே௢௠ฮ
ሼଵ,ଶ,ஶሽ

௜∈ே೟

ேିଵ

௞ୀ଴

൅ ฮ ௜ܸ
஻ሺ݇ ൅ ଴ሻݐ|଴ݐ െ ௜ܸ

ே௢௠ฮ
ሼଵ,ଶ,ஶሽ

൅ ฮ ௜ܸ
஼ሺ݇ ൅ ଴ሻݐ|଴ݐ െ ௜ܸ

ே௢௠ฮ
ሼଵ,ଶ,ஶሽ ቅ ൅ ૚∆࢜ሺ݇ሻ‖ሼଵ,ଶ,ஶሽࢃ‖

൅  ૛∆࣌ሺ݇ሻ‖ሼଵ,ଶ,ஶሽቑࢃ‖

 
 
(3-72)

where ௜ܸ
஺ሺ݇ ൅ ଴ሻ, ௜ܸݐ|଴ݐ

஻ሺ݇ ൅ ଴ሻ, ௜ܸݐ|଴ݐ
஼ሺ݇ ൅  ଴ሻ are the predicted voltage of phaseݐ|଴ݐ

A, B and C of bus i, respectively. 

The problem is solved subject to differential equations of the sources and loads 

(3-32), (3-33), (3-34), and the constraints of the system (3-37) and the network 

equations. The network equations for the unbalanced system are solved in an iteration 

fashion and each iteration is as follows. A ladder iterative technique can be used to solve 

the unbalanced power flow [107] , [108]. The power flow equations are as follows for 

two adjacent nodes. 

࡯࡮࡭ࢂ
ሺ݇ሻ࢔ ൌ ࢚ࢇ ࢉ࢈ࢇࢂ

ሺ݇ሻ࢓ ൅ ࢚࢈ ࢉ࢈ࢇࡵ
ሺ݇ሻ࢓  

ࢉ࢈ࢇࡵ	
ሺ݇ሻ࢔ ൌ ࢚ࢉ ࢉ࢈ࢇࢂ

ሺ݇ሻ࢓ ൅ ࢚ࢊ ࢉ࢈ࢇࡵ
ሺ݇ሻ࢓  (3-73)
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Figure 3-18 shows the structure of two adjacent nodes n, m in the power system. 

 

Figure 3-18 A series feeder component 

 

In this formulation the loads and PQ generators should be converted to current as 

follows.  

ሺ݇ሻ࢏ࡵ	 ൌ ൬
ሺ݇ሻ࢏ࡿ
ሺ݇ሻ࢏ࢂ

൰
∗

 
(3-74)

The interested reader is referred to [107] for more information about the iterative 

distribution power flow. Figure 3-19 shows the process of calculation of the objective 

function in this case. 
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1ሺ݇ݔ ൅ 1ሻ ൌ 1ሺ݇ሻݔ	 ൅ Δݐ ൬
െ1
ܸܶ

1ሺ݇ሻݔ ൅ ܸܴ ݂݁ 1ሺ݇ሻ൰ܩܦ,

ሺ݇݅ݔ ൅ 1ሻ ൌ ሺ݇ሻ݅ݔ ൅ Δݐ ቆ
െ1
ܶܳ ,݅

ሺ݇ሻ݅ݔ ൅ ݂݁ݎܳ ሺ݇ሻቇ݅ܩܦ,

ݔ݆ ሺ݇ ൅ 1ሻ ൌ ݔ݆ ሺ݇ሻ െ Δݐ ൭
ݔ݆ ሺ݇ሻ

݆	ݍܶ
൅ 0ܮܳ ݆ ሺܸܾݏሺ݇ሻ െ ሺ݇ሻሻ൱ݐܾܸ

ࡿࡵ ሺ݇ሻ࢏ ൌ ቆ
ܲ݅ ሺ݇ሻ ൅ ݆ ݅ܳሺ݇ሻ

ܸ݊ ሺ݇ሻ
ቇ
∗

 

ࡸࡵ ࢐ሺ݇ሻ ൌ ቆ
݆ܮܲ ሺ݇ሻ ൅ ݆ܮ݆ܳ ሺ݇ሻ

ܸ݉ ሺ݇ሻ
ቇ
∗

 

 

Figure 3-19 Process of calculation of the objective function 
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In the next part, we will discuss modeling of all the elements in the unbalanced 

power systems, which are used in the unbalanced power flow.  

3.2.4.4.1 Lines 

The series impedance of a line section l is represented by a 3×3 matrix [109], [107]: 

࢒ࢆ ൌ ൥
௔௔,௟ݖ ௔௕,௟ݖ ௔௖,௟ݖ
௔௕,௟ݖ ௕௕,௟ݖ ௕௖,௟ݖ
௔௖,௟ݖ ௕௖,௟ݖ ௖௖,௟ݖ

൩ 
(3-75)

3.2.4.4.2 Loads 

Loads in power system can be modeled as constant current, constant power and 

constant impedance and either one can be Y-connected or Δ-connected. Assuming that 

load Li is connected to bus i, Vi is the three-phase voltage in bus i, ILi is three phase load 

current, then following load models can be used in the distribution power flow [108]: 

1) Grounded-Y, constant power load 

ሺ݇ሻ࢏ࡸࡵ ൌ ൬
ሺ݇ሻ࢏ࡸࡿ
ሺ݇ሻ࢏ࢂ

൰
∗

 
(3-76)

where, 

 

ሺ݇ሻ࢏ࡸࡿ ൌ ቎
ܵ௔,௅௜ሺ݇ሻ 0 0

0 ܵ௕,௅௜ሺ݇ሻ 0
0 0 ܵ௖,௅௜ሺ݇ሻ

቏ (3-77)

2) Grounded-Y, constant current load 
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ሺ݇ሻ࢏ࡸࡵ ൌ ሾܫ௔,௅௜ ௕,௅௜ܫ  ௖,௅௜ሿ்ܫ
(3-78)

3) Grounded-Y, constant impedance load 

ሺ݇ሻ࢏ࡸࡵ ൌ  ሺ݇ሻ࢏ࢂ࢏ࡸࢅ
(3-79)

where, 

 

࢏ࡸࢅ ൌ ቎
௔,௅௜ݕ 0 0
0 ௕,௅௜ݕ 0
0 0 ௖,௅௜ݕ

቏ (3-80)

4) Ungrounded-Δ, constant power 

ሺ݇ሻ࢏ࡸࡵ ൌ ሺ࢑ሻሻି૚൧࢏ࢂࢀሺ࢏࢖࢖ࡸࡿൣ்ࢀ
∗
 

(3-81)

where, 

ࢀ ൌ ൥
1 െ1 0
0 1 െ1
െ1 0 1

൩ , ሺ݇ሻ࢏࢖࢖ࡸࡿ ൌ ቎
ܵ௔,௅௜ሺ݇ሻ 0 0

0 ܵ௕,௅௜ሺ݇ሻ 0
0 0 ܵ௖,௅௜ሺ݇ሻ

቏ 
(3-82)

5) Ungrounded-Δ, constant current 

ሺ݇ሻ࢏ࡸࡵ ൌ  ሺ݇ሻ࢏࢖࢖ࡸࡵ்ܶ
(3-83)

where  ࢏࢖࢖ࡸࡵሺ݇ሻ ൌ ሾܫ௔௕,௅௜ሺ݇ሻ ௕௖,௅௜ሺ݇ሻܫ  .௖௔,௅௜ሺ݇ሻሿ்ܫ

6) Ungrounded-Δ, constant impedance 

ሺ݇ሻ࢏࢖࢖ࡸࡵ ൌ ሾܫ௔௕,௅௜ሺ݇ሻ ௕௖,௅௜ሺ݇ሻܫ  ௖௔,௅௜ሺ݇ሻሿ்ܫ
(3-84)

where, 
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power load, except that the current is being injected into the bus instead of being drawn 

from the bus. However, if the unit is in PV mode, the connected bus is modeled as a PV 

bus. In this case, if the computed reactive power generation is out of the reactive 

generation limits of the unit, then the node can no longer be modeled as a PV bus. Thus, 

the unit acts as a PQ unit and the reactive power generation of the unit is set to the 

maximum limit. 

The unbalanced power flow (3-73) needs to be solved iteratively until the voltages 

and currents converge to the solution. The iterative power flow takes a large amount of 

computation time even for the static system analysis. Further, the power flow should be 

solved by the optimization and control algorithm. Thus, we seek to find a linear relation 

between the variables of the power system and the bus voltages. The linear relation can 

be introduced by sweeping each of the power system variables in their complete possible 

range. The sweeping of the parameters can be performed individually which means for 

example ஽ܸீଵሺ݇ሻ can be swept from 0.95 to 1.05 and the sensitivity of the bus voltages 

of the system are calculated to a change in ஽ܸீଵሺ݇ሻ. If for example the linearization 

yields to two sections for ஽ܸீଵሺ݇ሻ for a bus voltage of bus m, then we have the following 

two equations. 

ሾ0.95 0.95 0.95ሿ் ൏ ૚ሺ݇ሻࡳࡰࢂ ൏ ሾ1.02 1.02 1.02 ሿ் → ሺ݇ሻ࢓ࢂ

ൌ ଵ,௠࢖
ଵ ૚ሺ݇ሻࡳࡰࢂ	 ൅ ݇ 

ሾ1.02 1.02 1.02ሿ் ൏ ૚ሺ݇ሻࡳࡰࢂ ൏ ሾ1.05	 1.05	 1.05	ሿ் 	→ ሺ݇ሻ࢓ࢂ	

ൌ ଵ,௠࢖
ଶ ૚ሺ݇ሻࡳࡰࢂ	 ൅ ݇ 

(3-86)
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  Next, ࡳࡰࢂ૚ሺ݇ሻ is fixed to a value inside one section and another parameter is swept 

within its range. This method has an inherent error since the parameters are not changing 

together. Also, the number of sections can increase fast since each section can get 

divided multiple times for the next parameter sweeps. The user can decide the accuracy 

of estimation of the voltages by limiting the total number of sections in each step. 

Another method is to sweep the parameters all together and try to find the sections 

based on the bus voltages. Then a hybrid identification method like the one presented 

[111] can be used to determine the clusters and the linear regressors. This method 

usually yields to results that are more accurate especially if the number of clusters is 

chosen reasonable based on experience with the system. We will discuss the hybrid 

linear identification method for piecewise linearization with more detail in the next 

section.  

Both of these linearization methods can take several hours depending on the size of 

the system and number of the variables but the whole process is performed offline. Once 

the linear relation is driven, it can be used in the reactive power optimization to calculate 

the cost function.     

|ሺ݇ሻ࢓ࢂ| ൌ ଵ,௠࢖
ூ೔ |૚ሺ݇ሻࡳࡰࢂ|	 ൅ ෍൫࢖௜,௠

ூ೔ ሺ݇ሻ൯࢏		ࡳࡰࡽ

ேವಸ

௜ୀଶ

൅෍൬࢖௝ାேವಸ,௠
ூ೔ ࢐ሺ݇ሻ൰	ࡸࡽ

ேವಽ

௝ୀଵ

൅෍൫࢖௩௖ାேವಸାேವಽ,௠
ூ೔ ሺ݇ሻ൯ࢉࡽ	

ே಴

௖ୀଵ

൅ ேವಸାேವಽାே಴ାଵ,௠࢖
ூ೔  

(3-87)

where ࢖௜,௠
ூ೔  is a regressor matrix. 
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௜,௠࢖
ூ೔ ൌ

ۏ
ێ
ێ
௜,௠݌ۍ

ூ೔,஺ 0 0

0 ௜,௠݌
ூ೔,஻ 0

0 0 ௜,௠݌
ூ೔,஼
ے
ۑ
ۑ
ې
 

|ሺ݇ሻ࢓ࢂ| ൌ ቎
௠ܸ
஺ሺ݇ሻ

௠ܸ
஻ሺ݇ሻ

௠ܸ
஼ሺ݇ሻ

቏, |ࡳࡰࢂ૚ሺ݇ሻ| ൌ ቎
஽ܸீଵ

஺ሺ݇ሻ

஽ܸீଵ
஻ሺ݇ሻ

஽ܸீଵ
஼ሺ݇ሻ

቏, 

ሺ݇ሻ࢏	ࡳࡰࡽ ൌ ቎
ܳ஽ீ	௜

஺ሺ݇ሻ

ܳ஽ீ	௜
஻ሺ݇ሻ

ܳ஽ீ	௜
஼ሺ݇ሻ

቏, ࡸࡽ	࢐ሺ݇ሻ ൌ ൦

ܳ௅	௝
஺ሺ݇ሻ

	ܳ௅	௝	஻ሺ݇ሻ

ܳ௅	௝
஼ሺ݇ሻ

൪ 

(3-88)

It is not necessary to estimate the bus angle to calculate the objective function of the 

optimization problem. However, the bus voltage angle is required in order to calculate 

the line current to make sure the current does not pass the maximum current limit. 

Distribution systems are usually initially designed with a large enough line current 

margins. Thus, the line currents usually do not pass the maximum line ampacity during 

normal operation of the system with no faults. However, as the demand for power 

increases in time, more loads get connected to the distribution system and this increase 

in loading puts more stress on some of the lines. Therefore, it is necessary for the 

volt/Var controller to make sure that the current of those specific lines do not pass the 

ampacity of the line and preferably VVC should try to reduce the stress on the line. 

Thus, to reduce the computation time of the VVC controller, it is not necessary to 

estimate all the bus voltage angles of the power system. The bus voltage angle of the 

buses that are connected to the stressed lines can be estimated with the same linear 

approximation presented for the bus voltage magnitude. The only difference is that the 
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bus angle is usually coupled with the active power of the loads and generators and has 

small coupling with bus voltage magnitude.                                                                                                   

3.2.5 Piecewise Linearization 

 The voltages of the buses in the system can be derived following the piecewise 

linearization technique discussed in [111]. Figure 3-21 depicts the piecewise 

linearization algorithm which starts with classification of data points into s modes [112]. 

Then a min squared error algorithm is used to estimate linear hyperplanes that fits the 

data points.  The number of modes, s, is provided as an estimate by the user based on the 

data points to achieve maximum accuracy. The algorithm presented in [111] estimates 

the regions, ߯௜’s with linear borders.  

The state space equations of the power system could be presented in the piecewise linear 

form as follows. 

࢞ሺ݇ ൅ 1ሻ ൌ

ە
ۖ
۔

ۖ
ۓ
૚࢞࡭ ሺ݇ሻ ൅ ଵ࡮ ࢛ሺ݇ሻ if ࢞ሺ݇ሻ, ࢛ሺ݇ሻ ∈ ߯ଵ

⋮

૚࢞࡭ ሺ݇ሻ ൅ ௦࡮ ࢛ሺ݇ሻ if ࢞ሺ݇ሻ, ࢛ሺ݇ሻ ∈ ߯௦

 
(3-89)

Equation (3-89) is referred to as piecewise linear dynamic equations of the system. The 

general piece-wise linear time-invariant dynamic system can be described as follows 

[79]. 
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࢞ሺ݇ ൅ 1ሻ ൌ ൝
								 ૚࢞ሺ݇ሻ࡭ ൅ ૚࢛ሺ݇ሻ࡮ ݂݅ ଵሺ݇ሻߜ ൌ 1

⋮
								 ሺ݇ሻ࢙࢞࡭ ൅ ሺ݇ሻ࢛࢙࡮ ݂݅ ௦ሺ݇ሻߜ ൌ 1

 
(3-90)

where ߜ௜ሺ݇ሻ ∈ ሼ0,1ሽ, are 0-1 variables which satisfy the following exclusive-or 

condition.  

⨁௜ୀଵ
௦ ሾߜ௜ሺ݇ሻ ൌ 1ሿ 

(3-91)

Assuming ࣝ is a bonded polytope, system (3-90) is completely well-posed if and only if 

ࣝ can be partitioned into s non-overlapping parts such that the union of the partitions is 

equal to ࣝ as follows.  

ࣝ௜ ∩ ௝ࣝ ൌ ∅, ∀݅ ് ݆ 

∪௜ୀଵ
௦ ࣝ௜=ࣝ  (3-92)

Note that assuming that ࣝ is bounded polytope is not restrictive for power systems 

because continuous inputs and states are usually bounded by physical reasons in a power 

system, and logical input/state components are intrinsically bounded. The ߜ௜’s are 

defined as follows. 

ሾߜ௜ሺ݇ሻ ൌ 1ሿ ↔ ൤ቂ
ݔ
ቃݑ ߳ ࣝ௜൨ (3-93)

Several nonlinear models can be approximated by a model of the form (3-90), 

although this approximation capability is limited for computational reasons by the 

number s of logical variables. 
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Knowing that the sets ࣝ௜ are polytopes of the form ࣝ௜ ൌ ቄቂ
ݔ
ቃݑ : ௜ܵ

௝ݔ ൅ ܴ௜
௝ݑ ൐ ௜ܶ

௝ቅ, (3-93) 

could be rewritten as follows. 

ሾߜ௜ሺ݇ሻ ൌ 0ሿ ↔ሧൣ ௜ܵݔ ൅ ܴ௜
௝ݑ ൐ ௜ܶ

௝൧

௡೔

௝ୀଵ

 
(3-94)

where ௜ܵ
௝denotes the jth row of ௜ܵ. Equation (3-94) is not easy to solve; however, solving 

this equation is equivalent to solving (3-91) and (3-92). 

௜ܵݔሺ݇ሻ ൅ ܴ௜ ሺ݇ሻݑ െ ௜ܶ ൑ ௜ܯ
∗ሾ1 െ  ௜ሺ݇ሻሿߜ

෍ߜ௜ሺ݇ሻ ൌ 1

௦

௜ୀଵ

 (3-95)

where, ܯ௜
∗ ≜ Max	௫∈ࣝ		 ௜ܵݔሺ݇ሻ ൅ ܴ௜ ሺ݇ሻݑ െ ௜ܶ . Equation (3-90) can be rewritten as 

follows. 

࢞ሺ݇ ൅ 1ሻ ൌ෍ሾ࢞࢏࡭ሺ݇ሻ ൅ ሺ݇ሻሿ࢛࢏࡮
௦

௜ୀଵ

 ௜ሺ݇ሻߜ
(3-96)

Equation (3-96) is nonlinear and involves multiplication between logical variables, 

states, inputs.  However, we can translate (3-96) into equivalent mixed-integer linear 

inequalities. We can start by the following change of variables. 

࢞ሺ݇ ൅ 1ሻ ൌ ∑ ሺ݇ሻ࢏ࢠ
௦
௜ୀଵ ሺ݇ሻ࢏ࢠ   ,       ൌ ሾ࢞࢏࡭ሺ݇ሻ ൅  ௜ሺ݇ሻߜሺ݇ሻሿ࢛࢏࡮

(3-97)

And let’s define the following min and Max ݉ ൌ ሾ݉ଵ … 	݉௡ሿ், ܯ ൌ ሾܯଵ …  ௡ሿ்ܯ	

vectors as follows. 
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௝ܯ ≜ Max	௜ୀଵ,..,ୱ ቄMax ൣ௫௨൧ఢ ࣝ ௜ܣ
௝ݔ ൅ ௜ܤ

௝ݑቅ  

௝݉ ≜ min	௜ୀଵ,..,ୱ ቄMax	ൣ௫௨൧ఢ	ࣝ ௜ܣ
௝ݔ ൅ ௜ܤ

௝ݑቅ 
(3-98)

M and m are finite numbers which can be calculated or estimated. Thus, (3-96) is 

equivalent to the following set of equations. 

௜ሺ݇ሻݖ ൑  ௜ሺ݇ሻߜܯ

௜ሺ݇ሻݖ ൒  ௜ሺ݇ሻߜ݉

௜ሺ݇ሻݖ ൑ ሺ݇ሻݔ௜ܣ ൅ ሺ݇ሻݑ௜ܤ െ ݉ሺ1 െ  ௜ሺ݇ሻሻߜ

௜ሺ݇ሻݖ ൒ ሺ݇ሻݔ௜ܣ ൅ ሺ݇ሻݑ௜ܤ െ ሺ1ܯ െ  ௜ሺ݇ሻሻߜ

(3-99)

3.2.5.1  Example 1 – 2 bus system 

This example is formulating the MPC problem for a simple system with one source and 

one load depicted in  Figure 3-22.  

121212 jBGY 
refV

11,QP 22 ,QP

 

CQ

I

 

Figure 3-22 Studies on a simple system 

  

The objective function of voltage control for this system is as follows. 
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,ሺ࢞ܬ ࢛, ݇ሻ ൌ 	෍ ቄ‖ ଶܸሺ݇ ൅ ሻݐ|ݐ െ ଶܸ
ே௢௠‖ሼଵ,ஶሽ	 ൅ ฮ ଵܹ∆ݒ௥௘௙ሺ݇ሻฮሼଵ,ஶሽቅ

ேିଵ

௞ୀ଴

 
 
 
(3-100)

In addition, the optimization problem is subject to the following simplified differential 

algebraic equations. In this example we discretized the system assuming that the step 

time of the system is 1. Assuming that the system has two working conditions only, the 

DAE equations of the system can be written as follows. In the first operating condition, 

load 2 is not connected to the system. The system equations in this case are as follows. 

ଵሺ݇ݔ ൅ 1ሻ ൌ
െ1

௏ܶ
ଵሺ݇ሻݔ ൅  ௥௘௙ሺ݇ሻݒ

ଵܸሺ݇ሻ ൌ
1

௏ܶ
 ଵሺ݇ሻݔ

(3-101)

 

 ))()(cos())()(sin()()(

)()()(

))()(sin())()(cos()()()(

2112211212

1

21122112121

kkBkkGkVkV

kQkQk

kkBkkGkVkVkP

C












 (3-102)

In the second operating condition, the equations could be written as follows. 

ଵሺ݇ݔ ൅ 1ሻ ൌ
െ1

௏ܶ
ଵሺ݇ሻݔ ൅  ௥௘௙ሺ݇ሻݒ

ଵܸሺ݇ሻ ൌ
1

௏ܶ
 ଵሺ݇ሻݔ

(3-103)

 

 ))()(cos())()(sin()()(

)()()()(

))()(sin())()(cos()()()()(

2112211212

21

211221121221

kkBkkGkVkV

kQkQkQk

kkBkkGkVkVkPkP

C












 

(3-104)
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Using the auxiliary variable	δሺ݇ሻ, we have the following equations for the two modes of 

the system. 

ሾδሺ݇ሻ ൌ 0ሿ ↔ ቐ
ଵሺ݇ݔ ൅ 1ሻ ൌ ܽଵݔଵሺ݇ሻ ൅ ܾଵݒ௥௘௙ሺ݇ሻ

ଵܸሺ݇ሻ ൌ ܿଵଵݔଵሺ݇ሻ ൅ ܿଵଶߪሺ݇ሻ

ଶܸሺ݇ሻ ൌ ݀ଵଵݔଵሺ݇ሻ ൅ ݀ଵଶߪሺ݇ሻ
 

(3-105)

ሾδሺ݇ሻ ൌ 1ሿ ↔ ቐ
ଵሺ݇ݔ ൅ 1ሻ ൌ ܽଶݔଵሺ݇ሻ ൅ ܾଶݒ௥௘௙ሺ݇ሻ

ଵܸሺ݇ሻ ൌ ܿଶଵݔଵሺ݇ሻ ൅ ܿଶଶߪሺ݇ሻ

ଶܸሺ݇ሻ ൌ ݀ଶଵݔଵሺ݇ሻ ൅ ݀ଶଶߪሺ݇ሻ
 

(3-106)

In this case the differential equation of the system does not change which means, 

ܽଵ ൌ ܽଶ and ܾଵ ൌ ܾଶ. This means that the system could be written in the following form. 

ଵሺ݇ݔ ൅ 1ሻ ൌ ܽଵݔଵሺ݇ሻ ൅ ܾଵݒ௥௘௙ሺ݇ሻ 

ଵܸሺ݇ሻ ൌ ሺܿଵଵݔଵሺ݇ሻ ൅ ܿଵଶߪሺ݇ሻሻሺ1 െ δሺ݇ሻሻ ൅ ሺܿଶଵݔଵሺ݇ሻ ൅ ܿଶଶߪሺ݇ሻሻδሺ݇ሻ 

ଶܸሺ݇ሻ ൌ ൫݀ଵଵݔଵሺ݇ሻ ൅ ݀ଵଶߪሺ݇ሻ൯ሺ1 െ δሺ݇ሻሻ ൅ ൫݀ଶଵݔଵሺ݇ሻ ൅ ݀ଶଶߪሺ݇ሻ൯δሺ݇ሻ 

(3-107)

It should be noted that δሺ݇ሻ is an auxiliary variable that models the two working 

conditions of the system and not a switch controlled by the user. However, ߪሺ݇ሻ is a 

switch controlled by the user and is a discrete input to the system. The only continuous 

control input in this case is the ݒ௥௘௙ሺ݇ሻ of the master generator. 

In this case, the problem is subject to the following inequality constraints. 

0.95 ൑ | ௕ܸሺ݇ሻ| ൑ 1.05 ܾ ൌ 1,2 
| ଵܸሺ݇ሻ െ ଶܸሺ݇ሻ|

|ܼ௖௟|
ൌ |ሺ݇ሻܫ| ൑ 1  

 
(3-108)

The load parameters of this system are presented in Table 4. 
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Table 4 Load and capacitor parameters of the 2 bus system 
Parameter Value 

P1 500 kW 
Q1 300 kVar 

P2 400 kW 
Q2 100 kVar 
Qc 150kVar 

 

The system parameters are given in Table 5.  

Table 5 Parameters of the 2 bus system  
Parameter Value Parameter Value 

a1 -0.33 c22 0 
b1 2 d11 2.95 

c11 3 d12 0.0241 
c12   0 d21 2.95 
c21 3 d22 0.0225 

 

Figure 3-23 depicts the voltage of the buses in the system. Figure 3-24 shows the control 

inputs to the system. 

 

 



 

111 
 

 

 

Figure 3-23 Bus voltages of the simple 2 bus system 
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Figure 3-24 Control inputs to the simple 2 bus system 

 

3.2.5.2 Example 2 - IEEE 4 bus system with no capacitor banks 

 The IEEE 4 bus system shown in Figure 3-25 was studied in this example as a 

simple test system for the dynamic reactive power control. This system was consisted of 

a synchronous DG connected to bus 1 which was considered as the master generator. In 

addition, a wind DG was connected to bus 4 which was controlled as a PQ generator. 

Two capacitor banks were connected to bus 4 for reactive voltage support. It is assumed 

that the capacitor banks are disconnected in example 2.  
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Figure 3-25 Control inputs to the simple 4 bus system 

 

The differential equations in the predictive model include differential equations of the 

DGs and the dynamic load. Thus, the simplified state space equations include three state 

variables for this system. The state space model of the components is presented as 

follows. 

DG equations: 

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	 ൅ Δݐ ൬
െ1

௏ܶ
ଵሺ݇ሻݔ ൅ ோܸ௘௙ሺ݇ሻ൰ 

| ଵܸሺ݇ሻ| ൌ
1

௏ܶ
 ଵሺ݇ሻݔ

 
(3-109)

ଶሺ݇ݔ ൅ 1ሻ ൌ ଶሺ݇ሻݔ ൅ Δݐ ቆ
െ1

ொܶ,ଶ
ଶሺ݇ሻݔ ൅ ܳோ௘௙,஽ீଶሺ݇ሻቇ 

ܳ஽ீଶሺ݇ሻ ൌ
1

ொܶ,ଶ
 ଶሺ݇ሻݔ	

 
(3-110)

Dynamic load: 

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ െ Δݐ ൭
ଷሺ݇ሻݔ

௤ܶ,ଷ
൅ ܳ௅଴൫ ସܸ

௕ೞሺ݇ሻ െ ସܸ
௕೟ሺ݇ሻ൯൱ 

 
(3-111)
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ܳ௅ሺ݇ሻ ൌ ൭
ଷሺ݇ሻݔ

௤ܶ,ଷ
൅ ܳ௅଴ ቀ ସܸ

௕೟ሺ݇ሻቁ൱ 

The network equations could be written in the following general form. 

෍ ௡ܲሺ݇ሻ ൌ෍| ௡ܸሺ݇ሻ|ห ௝ܸሺ݇ሻห ቀܩ௞௝cos൫ߠ௡ െ ௝൯ߠ ൅ ௡ߠ௡௝sin൫ܤ െ ௝൯ቁߠ

ସ

௝ୀଵ

 

෍ܳ௡ሺ݇ሻ ൌ෍| ௡ܸሺ݇ሻ|ห ௝ܸሺ݇ሻห ቀܩ௞௝sin൫ߠ௡ െ ௝൯ߠ െ ௡ߠ௡௝cos൫ܤ െ ௝൯ቁߠ

ସ

௝ୀଵ

 

 
(3-112)

The network equations (3-112) can be expanded for this system as follows. 

For bus 2: 

0 ൌ | ଵܸሺ݇ሻ|| ଶܸሺ݇ሻ|ሺܩଵଶ cosሺߠଶ െ ଵሻߠ ൅ ଵଶܤ sinሺߠଶ െ ଵሻሻߠ

൅ | ଶܸሺ݇ሻ|| ଷܸሺ݇ሻ|ሺܩଶଷ cosሺߠଶ െ ଷሻߠ ൅ ଶଷܤ sinሺߠଶ െ  ଷሻሻߠ

0 ൌ | ଵܸሺ݇ሻ|| ଶܸሺ݇ሻ|ሺܩଵଶ sinሺߠଶ െ ଵሻߠ െ ଵଶܤ cosሺߠଶ െ ଵሻሻߠ

൅ | ଶܸሺ݇ሻ|| ଷܸሺ݇ሻ|ሺܩଶଷ sinሺߠଶ െ ଷሻߠ െ ଶଷܤ cosሺߠଶ െ  ଷሻሻߠ

 
(3-113)

For bus 3:  

0 ൌ | ଷܸሺ݇ሻ|| ଶܸሺ݇ሻ|ሺܩଶଷ cosሺߠଷ െ ଶሻߠ ൅ ଶଷܤ sinሺߠଷ െ ଶሻሻߠ

൅ | ଷܸሺ݇ሻ|| ସܸሺ݇ሻ|ሺܩଷସ cosሺߠଷ െ ସሻߠ ൅ ଶଷܤ sinሺߠଶ െ  ଷሻሻߠ

0 ൌ | ଷܸሺ݇ሻ|| ଶܸሺ݇ሻ|ሺܩଶଷ sinሺߠଷ െ ଶሻߠ െ ଶଷܤ cosሺߠଷ െ ଶሻሻߠ

൅ | ଷܸሺ݇ሻ|| ସܸሺ݇ሻ|ሺܩଷସ sinሺߠଷ െ ସሻߠ െ ଷସܤ cosሺߠଷ െ  ସሻሻߠ

 
(3-114)

For bus 4: 
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௟ܲሺ݇ሻ ൌ | ସܸሺ݇ሻ|| ଷܸሺ݇ሻ|ሺܩଷସ cosሺߠସ െ ଷሻߠ ൅ ଷସܤ sinሺߠସ െ  ଷሻሻߠ

ܳ௟ሺ݇ሻ ൅ ܳ஽ீଶሺ݇ሻ ൌ | ସܸሺ݇ሻ|| ଷܸሺ݇ሻ|ሺܩଷସ sinሺߠସ െ ଷሻߠ െ ଷସܤ cosሺߠସ െ  ଷሻሻߠ

 
(3-115)

The network equations could be simplified with basic mathematical manipulations as 

follows. 

| ଶܸሺ݇ሻ| ൌ
െ| ସܸሺ݇ሻ|ሺܩଷସ sinሺߠଷ െ ସሻߠ െ ଷସܤ cosሺߠଷ െ ସሻሻߠ

ሺܩଶଷ sinሺߠଷ െ ଶሻߠ െ ଶଷܤ cosሺߠଷ െ ଶሻሻߠ
 

| ଷܸሺ݇ሻ| ൌ
െ| ଵܸሺ݇ሻ|ሺܩଵଶ sinሺߠଶ െ ଵሻߠ െ ଵଶܤ cosሺߠଶ െ ଵሻሻߠ

ሺܩଶଷ sinሺߠଶ െ ଷሻߠ െ ଶଷܤ cosሺߠଶ െ ଷሻሻߠ
 

| ସܸሺ݇ሻ| ൌ
ܳ௅ሺ݇ሻ ൅ ܳ஽ீଶሺ݇ሻ

| ଷܸሺ݇ሻ|ሺܩଷସ sinሺߠସ െ ଷሻߠ െ ଷସܤ cosሺߠସ െ ଷሻሻߠ
 

 
(3-116)

Linearizing the network equations results in the following set of equations. 

| ଶܸሺ݇ሻ| ൌ | ସܸሺ݇ሻ|	
െሺܩଷସ sinሺߠଷ െ ସሻߠ െ ଷସܤ cosሺߠଷ െ ସሻሻߠ
ሺܩଶଷ sinሺߠଷ െ ଶሻߠ െ ଶଷܤ cosሺߠଷ െ ଶሻሻߠ

 

| ଷܸሺ݇ሻ| ൌ | ଵܸሺ݇ሻ|	
െሺܩଵଶ sinሺߠଶ െ ଵሻߠ െ ଵଶܤ cosሺߠଶ െ ଵሻሻߠ
ሺܩଶଷ sinሺߠଶ െ ଷሻߠ െ ଶଷܤ cosሺߠଶ െ ଷሻሻߠ

 

| ସܸሺ݇ሻ| ൌ
1

| ଷܸሺ݇ሻ|
	

ܳ௅ሺ݇ሻ ൅ ܳ஽ீଶሺ݇ሻ
ሺܩଷସ sinሺߠସ െ ଷሻߠ െ ଷସܤ cosሺߠସ െ ଷሻሻߠ

 

 
(3-117)

Plugging in (3-111) in (3-117) results in the following. 
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| ଶܸሺ݇ሻ| ൌ | ସܸሺ݇ሻ|	
െሺܩଷସ sinሺߠଷ െ ସሻߠ െ ଷସܤ cosሺߠଷ െ ସሻሻߠ
ሺܩଶଷ sinሺߠଷ െ ଶሻߠ െ ଶଷܤ cosሺߠଷ െ ଶሻሻߠ

 

| ଷܸሺ݇ሻ| ൌ
1

௏ܶ
ଵሺ݇ሻݔ

െሺܩଵଶ sinሺߠଶ െ ଵሻߠ െ ଵଶܤ cosሺߠଶ െ ଵሻሻߠ
ሺܩଶଷ sinሺߠଶ െ ଷሻߠ െ ଶଷܤ cosሺߠଶ െ ଷሻሻߠ

 

| ସܸሺ݇ሻ| ൌ
1

| ଷܸሺ݇ሻ|
	
ቆ
ଷሺ݇ሻݔ

௤ܶ,ଷ
൅ ܳ௅଴ቀ| ସܸ|௕೟ሺ݇ሻቁቇ ൅

1
ொܶ,ଶ
ଶሺ݇ሻݔ	

ሺܩଷସ sinሺߠସ െ ଷሻߠ െ ଷସܤ cosሺߠସ െ ଷሻሻߠ
 

 
(3-118)

The regions ߯௜ are defined with polytopes in the general form of ࡴሾݔଵ	ݔଶ	ݔଷሿ் ൑  .ࡷ

Assuming four regions for the system, the following linear equations describe the 

voltages in the system.  

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	 ൅ Δݐ ൬
െ1

௏ܶ
ଵሺ݇ሻݔ ൅ ோܸ௘௙ሺ݇ሻ൰ 

ଶሺ݇ݔ ൅ 1ሻ ൌ ଶሺ݇ሻݔ ൅ Δݐ ቆ
െ1

ொܶ,ଶ
ଶሺ݇ሻݔ ൅ ܳோ௘௙,஽ீଶሺ݇ሻቇ 

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ െ Δݐ ൭
ଷሺ݇ሻݔ

௤ܶ,ଷ
൅ ܳ௅଴ሺ| ସܸ|௕ೞሺ݇ሻ െ | ସܸ|௕೟ሺ݇ሻሻ൱ 

| ଵܸሺ݇ሻ| ൌ
1

௏ܶ
 ଵሺ݇ሻݔ

| ଶܸሺ݇ሻ| ൌ | ସܸሺ݇ሻ|	
െሺܩଷସ sinሺߠଷ െ ସሻߠ െ ଷସܤ cosሺߠଷ െ ସሻሻߠ
ሺܩଶଷ sinሺߠଷ െ ଶሻߠ െ ଶଷܤ cosሺߠଷ െ ଶሻሻߠ

 

| ଷܸሺ݇ሻ| ൌ
1

௏ܶ
ଵሺ݇ሻݔ

െሺܩଵଶ sinሺߠଶ െ ଵሻߠ െ ଵଶܤ cosሺߠଶ െ ଵሻሻߠ
ሺܩଶଷ sinሺߠଶ െ ଷሻߠ െ ଶଷܤ cosሺߠଶ െ ଷሻሻߠ

 

| ସܸሺ݇ሻ| ൌ
1

| ଷܸሺ݇ሻ|
	
ቆ
ଷሺ݇ሻݔ

௤ܶ,ଷ
൅ ܳ௅଴ቀ| ସܸ|௕೟ሺ݇ሻቁቇ ൅

1
ொܶ,ଶ
ଶሺ݇ሻݔ	

ሺܩଷସ sinሺߠସ െ ଷሻߠ െ ଷସܤ cosሺߠସ െ ଷሻሻߠ
 

(3-119)
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This set of equations could be written in the following general form for each mode of the 

system. 

߯௜:	ࡴ௜ሾݔଵ	ݔଶ	ݔଷሿ் ൑ ௜ࡷ →

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ ܽଵ௜ݔଵሺ݇ሻ ൅ ܾଵ௜ ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ ܽଶ௜ݔଶሺ݇ሻ ൅ ܾଶ௜ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ܽଷ௜ݔଷሺ݇ሻ ൅ ݀ଵ௜
| ଵܸሺ݇ሻ| ൌ ܿଵ௜ݔଵሺ݇ሻ

| ଶܸሺ݇ሻ| ൌ ܿଶ௜ݔଷሺ݇ሻ ൅ ܿଷ௜ݔଶሺ݇ሻ ൅ ݁ଵ௜
| ଷܸሺ݇ሻ| ൌ ܿସ௜ݔଵሺ݇ሻ

| ସܸሺ݇ሻ| ൌ ܿହ௜ݔଷሺ݇ሻ ൅ ܿ଺௜ݔଶሺ݇ሻ ൅ ݁ଶ௜

 

(3-120)

Four modes are considered for the linearized system.  

1st mode: 

	߯ଵ:	ߪଵ& ൝൥
3.19 0 0
െ3.316 0 0
0													83								0

൩ ሾݔଵ ଶݔ ଷሿ்ݔ ൑ ቂ1
1
ቃൡ

→

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	0.33	 ൅ 0.2	 ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ െ0.66	ݔଶሺ݇ሻ ൅ 0.2ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ0.9328 ൅ 	0.0280
| ଵܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	3.33
| ଶܸሺ݇ሻ| ൌ 0.122	 ସܸሺ݇ሻ
| ଷܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	0.168

| ସܸሺ݇ሻ| ൌ െ0.0070ݔଷሺ݇ሻ

 

(3-121)

 
2nd mode: 
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	߯ଶ: 	&ଵߪ~ ൝൥
3.19 0 0
െ3.316 0 0
0													83								0

൩ ሾݔଵ ଶݔ ଷሿ்ݔ ൑ ൥
െ1
െ1
െ1

൩ൡ

→

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	0.33	 ൅ 0.2	 ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ െ0.66	ݔଶሺ݇ሻ ൅ 0.2ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ0.9328 ൅ 	0.0224
| ଵܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	3.33
| ଶܸሺ݇ሻ| ൌ 0.122	 ସܸሺ݇ሻ
| ଷܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	0.168

| ସܸሺ݇ሻ| ൌ െ0.0078ݔଷሺ݇ሻ

 

(3-122)

 
3rd mode: 
 

	߯ଷ:	ߪଵ& ൝൥
3.19 0 0
െ3.316 0 0
0													83								0

൩ ሾݔଵ ଶݔ ଷሿ்ݔ ൑ ൥
1
1
1
൩ൡ

→

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	0.33	 ൅ 0.2	 ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ െ0.66	ݔଶሺ݇ሻ ൅ 0.2ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ0.9328 ൅ 	0.0280
| ଵܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	3.33
| ଶܸሺ݇ሻ| ൌ 0.093	 ସܸሺ݇ሻ
| ଷܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	0.294
| ସܸሺ݇ሻ| ൌ െ0.007ݔଷሺ݇ሻ

 

(3-123)

4th mode: 
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	χସ:	~σଵ& ൝൥
3.19			 0 0
െ3.316 0 0
0													83								0

൩ ሾݔଵ ଶݔ ଷሿ୘ݔ ൑ ൥
െ1
െ1
െ1

൩ൡ

→

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	0.33	 ൅ 0.2	 ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ െ0.66	ݔଶሺ݇ሻ ൅ 0.2ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ0.9328 ൅ 	0.0224
| ଵܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	3.33
| ଶܸሺ݇ሻ| ൌ 0.093	 ସܸሺ݇ሻ
| ଷܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	0.294

| ସܸሺ݇ሻ| ൌ െ0.0079ݔଷሺ݇ሻ

 

 

 

(3-124) 

where σଵ is an auxillary state switch which represents the system operating with load 

profile 1 where only load one is connected to the system and ~σଵ represents the system 

operating in load profile 2 where load 1 and load 2 are both connected to the system.    

Further, Auxiliary binary switches ߜଵ through ߜସ are assigned to hyperplanes ߯ଵ 

through ߯ସ respectively. This assignment of the auxiliary variables can be shown as 

follows. 

ሾߜଵ ൌ 1ሿ → ߯ଵ 

ሾߜଶ ൌ 1ሿ → ߯ଶ 

ሾߜଷ ൌ 1ሿ → ߯ଷ 

ሾߜସ ൌ 1ሿ → ߯ସ 

(3-125)

 We can start by the following change of variables. 

࢞ሺ݇ ൅ 1ሻ ൌ ∑ ሺ݇ሻ࢏ࢠ
ସ
௜ୀଵ ሺ݇ሻ࢏ࢠ   ,       ൌ ሾ࢞࢏࡭ሺ݇ሻ ൅  ௜ሺ݇ሻߜሺ݇ሻሿ࢛࢏࡮

(3-126)

where the state vector is presented as follows. 
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࢞ሺ݇ሻ ൌ ሾݔଵሺ݇ሻ	ݔଶሺ݇ሻ	ݔଷሺ݇ሻ |Vଵሺkሻ| |Vଶሺkሻ| |Vଷሺkሻ| |Vସሺkሻ|ሿ் 
(3-127)

Further, the control input vector is presented as follows. 

࢛ሺ݇ሻ ൌ ൣ ோܸ௘௙ሺ݇ሻ ܳோ௘௙,஽ீଶሺ݇ሻ൧
்
 

(3-128)

And let’s define the following min and Max ࢓ ൌ ሾ݉ଵ … 	݉௡ሿ், ࡹ ൌ ሾܯଵ …  ௡ሿ்ܯ	

vectors as follows. 

௝ܯ ≜ Max	௜ୀଵ,..,ସ ቄMax ൣ௫௨൧ఢ ࣝ ࢏࡭
࢐࢞ ൅ ࢏࡮

࢐࢛ቅ  

௝݉ ≜ min	௜ୀଵ,..,ସ ቄMax	ൣ௫௨൧ఢ	ࣝ ࢏࡭
࢐࢞ ൅ ࢏࡮

࢐࢛ቅ 
(3-129)

M and m are finite numbers which can be calculated or estimated. Thus, (3-96) is 

equivalent to the following set of equations. In this case the supremum of the state 

variables is 1 and the infimum is -1 as follows.  

௝ܯ ≜ ሾ 1 1 1 1ሿ்  j=1,..,4 

௝݉ ≜ ሾെ1 െ 1 െ 1 െ 1ሿ୘  j=1,..,4 (3-130)

The vector of auxiliary variables ࢠሺ݇ሻ can be defined as follows. 

ሺ݇ሻࢠ ൌ ሾࢠ૚ሺ݇ሻ ૛ሺ݇ሻࢠ ૜ሺ݇ሻࢠ  ૝ሺ݇ሻሿࢠ
(3-131)

The vector of auxiliary mode selectors, ࢾሺ݇ሻ, can be written as follows. 

ሺ݇ሻࢾ ൌ ሾߜଵሺ݇ሻ ଶሺ݇ሻߜ ଷሺ݇ሻߜ  ସሺ݇ሻሿߜ
(3-132)

Further, the MLD form can be presented as follows. 
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ሺ݇ሻ࢏ࢠ ൑  ௜ሺ݇ሻߜࡹ

ሺ݇ሻ࢏ࢠ ൒  ௜ሺ݇ሻߜ࢓

ሺ݇ሻ࢏ࢠ ൑ ሺ݇ሻ࢞࢏࡭ ൅ ሺ݇ሻ࢛࢏࡮ ൅࢓ሺ1 െ  ௜ሺ݇ሻሻߜ

ሺ݇ሻ࢏ࢠ ൒ ሺ݇ሻ࢞࢏࡭ ൅ ሺ݇ሻ࢛࢏࡮ െࡹሺ1 െ  ௜ሺ݇ሻሻߜ

(3-133)

Thus, by enumerating i=1,…,4, the MLD model of the system is presented in the 

matrix form as follows. 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െࡹ			૙		૙		૙
૙ െࡹ		૙		૙
૙	૙ െࡹ	૙
૙	૙	૙ െࡹ
૙		૙		૙		࢓
૙		࢓		૙		૙
૙		૙		࢓		૙
૙		૙		૙		࢓
૙		૙		૙		࢓
૙		࢓		૙		૙
૙		૙		࢓		૙
	૙			૙		૙		࢓
	૙	૙	૙	ࡹ
૙	ࡹ	૙	૙
૙		૙	ࡹ	૙
૙		૙		૙	ࡹ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሺ݇ሻࢾ ൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
૙	૙	૙	ࡵ
૙	ࡵ	૙	૙
૙	૙	ࡵ	૙
૙	૙	૙	ࡵ
െࡵ	૙	૙	૙	
૙ െ ૙	૙	ࡵ
૙	૙ െ ૙	ࡵ
૙	૙	૙ െ ࡵ
	૙	૙	૙	ࡵ
૙	ࡵ	૙		૙
૙	૙	ࡵ	૙
૙	૙	૙	ࡵ
െࡵ	૙	૙	૙
૙ െ ૙	૙	ࡵ
૙	૙ െ ૙	ࡵ
૙	૙	૙ െ ےࡵ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሺ݇ሻࢠ ൑

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
	૙		
૙	
૙	
૙	
	૙		
	૙		
	૙		
	૙	
૚࡮	
૛࡮
૜࡮
૝࡮
૚࡮–
૚࡮–
૚࡮–
ے૚࡮–

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

࢛ሺ݇ሻ ൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
૙	
૙
૙
૙
૙
૙
૙
૙
૚࡭
૛࡭
૜࡭
૝࡭
െ࡭૚
െ࡭૚
െ࡭૚
െ࡭૚ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

࢞ሺ݇ሻ ൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
૙	
૙	
૙
૙
૙
૙
૙
૙
࢓
࢓
࢓
࢓
ࡹ
ࡹ
ࡹ
ےࡹ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (3-134)

The following conditions also hold for the auxiliary mode selectors. 

ሾߜଵ ൌ 1ሿ → ሾߜଶ ൌ 0ሿ, ሾߜଵ ൌ 1ሿ → ሾߜଷ ൌ 0ሿ , ሾߜଵ ൌ 1ሿ → ሾߜସ ൌ 0ሿ 

ሾߜଶ ൌ 1ሿ → ሾߜଵ ൌ 0ሿ, ሾߜଶ ൌ 1ሿ → ሾߜଷ ൌ 0ሿ	, ሾߜଶ ൌ 1ሿ → ሾߜସ ൌ 0ሿ 

ሾߜଷ ൌ 1ሿ → ሾߜଵ ൌ 0ሿ, ሾߜଷ ൌ 1ሿ → ሾߜଶ ൌ 0ሿ	, ሾߜଷ ൌ 1ሿ → ሾߜସ ൌ 0ሿ 

ሾߜସ ൌ 1ሿ → ሾߜଵ ൌ 0ሿ, ሾߜସ ൌ 1ሿ → ሾߜଶ ൌ 0ሿ , ሾߜସ ൌ 1ሿ → ሾߜଷ ൌ 0ሿ 

(3-135)
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 Equations (3-135) can be transformed to the following inequality form. 

ଵߜ െ ሺ1 െ ଶሻߜ ൑ ଵߜ										,0 െ ሺ1 െ ଷሻߜ ൑ 0, ଵߜ െ ሺ1 െ ସሻߜ ൑ 0 

ଶߜ െ ሺ1 െ ଵሻߜ ൑ 0	, ଶߜ െ ሺ1 െ ଷሻߜ ൑ 0, ଶߜ െ ሺ1 െ ସሻߜ ൑ 0 

ଷߜ െ ሺ1 െ ଵሻߜ ൑ 0	, ଷߜ െ ሺ1 െ ଶሻߜ ൑ 0, ଷߜ െ ሺ1 െ ସሻߜ ൑ 0 

ସߜ െ ሺ1 െ ଵሻߜ ൑ 0	, ସߜ െ ሺ1 െ ଶሻߜ ൑ 0, ସߜ െ ሺ1 െ ଷሻߜ ൑ 0 

(3-136)

Table 6 presents the load parameters for the 4 bus system. 

Table 6 Load parameters of the 4 bus system 
Parameter Value 

ଵܲ 2.70 MW 
Q1 1.300 MVar 

P2 2.7 MW 
Q2 1.3 MVar 

Qc1 and Qc2 500kVar 

 

3.2.5.3 Example 3 - IEEE 4 bus system with capacitor banks  

This example uses the same system as example 2, however, the system has a descrete 

input in the form of a capacitor bank in this case. The linear system equations are as 

follows. 
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߯௜:	ࡴ௜ሾݔଵ	ݔଶ	ݔଷሿ் ൑ ௜ࡷ

→

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ 	ܽଵ௜ݔଵሺ݇ሻ ൅ ܾଵ௜ ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ ܽଶ௜ݔଶሺ݇ሻ ൅ ܾଶ௜ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ܽଷ௜ݔଷሺ݇ሻ ൅ ݀ଵ௜
| ଵܸሺ݇ሻ| ൌ ܿଵ௜ݔଵሺ݇ሻ

| ଶܸሺ݇ሻ| ൌ ܿଶ௜ݔଷሺ݇ሻ ൅ ܿଷ௜ݔଶሺ݇ሻ ൅ ݁ଵ௜
| ଷܸሺ݇ሻ| ൌ ܿସ௜ݔଵሺ݇ሻ ൅ ܾଷ௜ߪ௖	ሺ݇ሻ

| ସܸሺ݇ሻ| ൌ ܿହ௜ݔଷሺ݇ሻ ൅ ܿ଺௜ݔଶሺ݇ሻ ൅ ܾସ௜ߪ௖ ሺ݇ሻ ൅ ݁ଶ௜

 

(3-137)

Four modes are considered for the linearized system.  

1st mode: 

	߯ଵ:	ߪଵ& ൝൥
3.19 0 0
െ3.316 0 0
0													83								0

൩ ሾݔଵ ଶݔ ଷሿ்ݔ ൑ ቂ1
1
ቃൡ

→

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	0.33	 ൅ 0.2	 ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ െ0.66	ݔଶሺ݇ሻ ൅ 0.2ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ0.9328 ൅ 	0.0280
| ଵܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	3.33
| ଶܸሺ݇ሻ| ൌ 0.122	 ସܸሺ݇ሻ

| ଷܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	0.168 ൅ ሺ݇ሻ	௖ߪ
| ସܸሺ݇ሻ| ൌ െ0.0070ݔଷሺ݇ሻ ൅ ௖ߪ ሺ݇ሻ

 

(3-138)

 
2nd mode: 
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	߯ଶ: 	&ଵߪ~ ൝൥
3.19 0 0
െ3.316 0 0
0													83								0

൩ ሾݔଵ ଶݔ ଷሿ்ݔ ൑ ൥
െ1
െ1
െ1

൩ൡ

→

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	0.33	 ൅ 0.2	 ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ െ0.66	ݔଶሺ݇ሻ ൅ 0.2ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ0.9328 ൅ 	0.0224
| ଵܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	3.33
| ଶܸሺ݇ሻ| ൌ 0.122	 ସܸሺ݇ሻ

| ଷܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	0.168 ൅ ሺ݇ሻ	௖ߪ
| ସܸሺ݇ሻ| ൌ െ0.0078ݔଷሺ݇ሻ ൅ ௖ߪ ሺ݇ሻ

 

(3-139)

 
3rd mode: 
 

	߯ଷ:	ߪଵ& ൝൥
3.19 0 0
െ3.316 0 0
0													83								0

൩ ሾݔଵ ଶݔ ଷሿ்ݔ ൑ ൥
1
1
1
൩ൡ

→

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	0.33	 ൅ 0.2	 ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ െ0.66	ݔଶሺ݇ሻ ൅ 0.2ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ0.9328 ൅ 	0.0280
| ଵܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	3.33
| ଶܸሺ݇ሻ| ൌ 0.093	 ସܸሺ݇ሻ

| ଷܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	0.294 ൅ ሺ݇ሻ	௖ߪ
| ସܸሺ݇ሻ| ൌ െ0.007ݔଷሺ݇ሻ ൅ ௖ߪ ሺ݇ሻ

 

(3-140)

4th mode: 
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	χସ:	~σଵ& ൝൥
3.19			 0 0
െ3.316 0 0
0													83								0

൩ ሾݔଵ ଶݔ ଷሿ୘ݔ ൑ ൥
െ1
െ1
െ1

൩ൡ

→

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	0.33	 ൅ 0.2	 ோܸ௘௙ሺ݇ሻ
ଶሺ݇ݔ ൅ 1ሻ ൌ െ0.66	ݔଶሺ݇ሻ ൅ 0.2ܳோ௘௙,஽ீଶሺ݇ሻ

ଷሺ݇ݔ ൅ 1ሻ ൌ ଷሺ݇ሻݔ0.9328 ൅ 	0.0224
| ଵܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	3.33
| ଶܸሺ݇ሻ| ൌ 0.093	 ସܸሺ݇ሻ

| ଷܸሺ݇ሻ| ൌ ଵሺ݇ሻݔ	0.294 ൅ ሺ݇ሻ	௖ߪ
| ସܸሺ݇ሻ| ൌ െ0.0079ݔଷሺ݇ሻ ൅ ௖ߪ ሺ݇ሻ

 

 

 

(3-141) 

where σଵ is an auxillary state switch which represents the system operating with load 

profile 1 where only load one is connected to the system and ~σଵ represents the system 

operating in load profile 2 where load 1 and load 2 are both connected to the system.    

Further, Auxiliary binary switches ߜଵ through ߜସ are assigned to hyperplanes ߯ଵ 

through ߯ସ respectively. This assignment of the auxiliary variables can be shown as 

follows. 

ሾߜଵ ൌ 1ሿ → ߯ଵ 

ሾߜଶ ൌ 1ሿ → ߯ଶ 

ሾߜଷ ൌ 1ሿ → ߯ଷ 

ሾߜସ ൌ 1ሿ → ߯ସ 

(3-142)

We can start by the following change of variables. 

࢞ሺ݇ ൅ 1ሻ ൌ ∑ ሺ݇ሻ࢏ࢠ
ସ
௜ୀଵ ሺ݇ሻ࢏ࢠ   ,       ൌ ሾ࢞࢏࡭ሺ݇ሻ ൅  ௜ሺ݇ሻߜሺ݇ሻሿ࢛࢏࡮

(3-143)

where the state vector is presented as follows. 
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࢞ሺ݇ሻ ൌ ሾݔଵሺ݇ሻ	ݔଶሺ݇ሻ	ݔଷሺ݇ሻ |Vଵሺkሻ| |Vଶሺkሻ| |Vଷሺkሻ| |Vସሺkሻ|ሿ் 
(3-144)

Further, the control input vector which is consisted of the continuous vector and the 

discrete vector is presented as follows. 

࢛ሺ݇ሻ ൌ ൣ	 ோܸ௘௙ሺ݇ሻ ܳோ௘௙,஽ீଶሺ݇ሻ ௖ሺ݇ሻ൧ߪ
்
 

(3-145)

The continuous control vector is as follows. 

࢜ሺ݇ሻ ൌ ൣ ோܸ௘௙ሺ݇ሻ ܳோ௘௙,஽ீଶሺ݇ሻ ൧
்
 

(3-146)

The discrete control vector is as follows. 

࣌ሺ݇ሻ ൌ ሾ ௖ߪ ሺ݇ሻሿ் 
(3-147)

And let’s define the following min and Max ࢓ ൌ ሾ݉ଵ … 	݉௡ሿ், ࡹ ൌ ሾܯଵ …  ௡ሿ்ܯ	

vectors as follows. 

௝ܯ ≜ Max	௜ୀଵ,..,ସ ቄMax ൣ௫௨൧ఢ ࣝ ࢏࡭
࢐࢞ ൅ ࢏࡮

࢐࢛ቅ  

௝݉ ≜ min	௜ୀଵ,..,ସ ቄMax	ൣ௫௨൧ఢ	ࣝ ࢏࡭
࢐࢞ ൅ ࢏࡮

࢐࢛ቅ 
(3-148)

M and m are finite numbers which can be calculated or estimated. Thus, (3-96) is 

equivalent to the following set of equations. In this case, the supremum of the state 

variables is 1 and the infimum is -1 as follows.  

௝ܯ ≜ ሾ 1 1 1 1ሿ்  j=1,..,4 

௝݉ ≜ ሾെ1 െ 1 െ 1 െ 1ሿ୘  j=1,..,4 (3-149)
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The vector of auxiliary variables ࢠሺ݇ሻ can be defined as follows. 

ሺ݇ሻࢠ ൌ ሾࢠ૚ሺ݇ሻ ૛ሺ݇ሻࢠ ૜ሺ݇ሻࢠ  ૝ሺ݇ሻሿࢠ
(3-150)

The vector of auxiliary mode selectors, ࢾሺ݇ሻ, can be written as follows. 

ሺ݇ሻࢾ ൌ ሾߜଵሺ݇ሻ ଶሺ݇ሻߜ ଷሺ݇ሻߜ  ସሺ݇ሻሿߜ
(3-151)

Further, the MLD form could be presented as follows. 

ሺ݇ሻ࢏ࢠ ൑  ௜ሺ݇ሻߜࡹ

ሺ݇ሻ࢏ࢠ ൒  ௜ሺ݇ሻߜ࢓

ሺ݇ሻ࢏ࢠ ൑ ሺ݇ሻ࢞࢏࡭ ൅ ሺ݇ሻ࢛࢏࡮ ൅࢓ሺ1 െ  ௜ሺ݇ሻሻߜ

ሺ݇ሻ࢏ࢠ ൒ ሺ݇ሻ࢞࢏࡭ ൅ ሺ݇ሻ࢛࢏࡮ െࡹሺ1 െ  ௜ሺ݇ሻሻߜ

(3-152)

Thus, by enumerating i=1,…,4, the MLD model of the system is presented in the matrix 

form as follows. 
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ێ
ێ
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ێ
ێ
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ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െࡹ			૙		૙		૙
૙ െࡹ		૙		૙
૙	૙ െࡹ	૙
૙	૙	૙ െࡹ
૙		૙		૙		࢓
૙		࢓		૙		૙
૙		૙		࢓		૙
૙		૙		૙		࢓
૙		૙		૙		࢓
૙		࢓		૙		૙
૙		૙		࢓		૙
	૙			૙		૙		࢓
	૙	૙	૙	ࡹ
૙	ࡹ	૙	૙
૙		૙	ࡹ	૙
૙		૙		૙	ࡹ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሺ݇ሻࢾ ൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
૙	૙	૙	ࡵ
૙	ࡵ	૙	૙
૙	૙	ࡵ	૙
૙	૙	૙	ࡵ
െࡵ	૙	૙	૙	
૙ െ ૙	૙	ࡵ
૙	૙ െ ૙	ࡵ
૙	૙	૙ െ ࡵ
	૙	૙	૙	ࡵ
૙	ࡵ	૙		૙
૙	૙	ࡵ	૙
૙	૙	૙	ࡵ
െࡵ	૙	૙	૙
૙ െ ૙	૙	ࡵ
૙	૙ െ ૙	ࡵ
૙	૙	૙ െ ےࡵ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሺ݇ሻࢠ ൑

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
	૙		
૙	
૙	
૙	
	૙		
	૙		
	૙		
	૙	
૚ሖ࡮	

૛ሖ࡮

૜ሖ࡮

૝ሖ࡮

૚ሖ࡮–

૚ሖ࡮–

૚ሖ࡮–

૚ሖ࡮– ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

࢛ሺ݇ሻ ൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
૙	
૙
૙
૙
૙
૙
૙
૙
૚࡭
૛࡭
૜࡭
૝࡭
െ࡭૚
െ࡭૚
െ࡭૚
െ࡭૚ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

࢞ሺ݇ሻ ൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
૙	
૙	
૙
૙
૙
૙
૙
૙
࢓
࢓
࢓
࢓
ࡹ
ࡹ
ࡹ
ےࡹ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (3-153)

The following conditions also hold for the auxiliary mode selectors. 

ሾߜଵ ൌ 1ሿ → ሾߜଶ ൌ 0ሿ, ሾߜଵ ൌ 1ሿ → ሾߜଷ ൌ 0ሿ , ሾߜଵ ൌ 1ሿ → ሾߜସ ൌ 0ሿ 

ሾߜଶ ൌ 1ሿ → ሾߜଵ ൌ 0ሿ, ሾߜଶ ൌ 1ሿ → ሾߜଷ ൌ 0ሿ	, ሾߜଶ ൌ 1ሿ → ሾߜସ ൌ 0ሿ 

ሾߜଷ ൌ 1ሿ → ሾߜଵ ൌ 0ሿ, ሾߜଷ ൌ 1ሿ → ሾߜଶ ൌ 0ሿ	, ሾߜଷ ൌ 1ሿ → ሾߜସ ൌ 0ሿ 

ሾߜସ ൌ 1ሿ → ሾߜଵ ൌ 0ሿ, ሾߜସ ൌ 1ሿ → ሾߜଶ ൌ 0ሿ , ሾߜସ ൌ 1ሿ → ሾߜଷ ൌ 0ሿ 

(3-154)

 Equations (3-135) can be transformed to the following inequality form. 

ଵߜ െ ሺ1 െ ଶሻߜ ൑ ଵߜ										,0 െ ሺ1 െ ଷሻߜ ൑ 0, ଵߜ െ ሺ1 െ ସሻߜ ൑ 0 

ଶߜ െ ሺ1 െ ଵሻߜ ൑ 0	, ଶߜ െ ሺ1 െ ଷሻߜ ൑ 0, ଶߜ െ ሺ1 െ ସሻߜ ൑ 0 

ଷߜ െ ሺ1 െ ଵሻߜ ൑ 0	, ଷߜ െ ሺ1 െ ଶሻߜ ൑ 0, ଷߜ െ ሺ1 െ ସሻߜ ൑ 0 

ସߜ െ ሺ1 െ ଵሻߜ ൑ 0	, ସߜ െ ሺ1 െ ଶሻߜ ൑ 0, ସߜ െ ሺ1 െ ଷሻߜ ൑ 0 

(3-155)
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The objective function for this system is chosen as follows.   

,ሺ࢞ܬ ࢛, ݇ሻ ൌ 	෍ ቊ
‖ ସܸሺ݇ ൅ ଴ሻݐ|଴ݐ െ ସܸ

ே௢௠‖ሼଵ,ஶሽ …
…൅ ૚∆࢜ሺ݇ሻ‖ሼଵ,ஶሽࢃ‖ ൅ ૛∆࣌ሺ݇ሻ‖ሼଵ,ஶሽࢃ‖

ቋ

ேିଵ

௞ୀ଴

 
 
(3-156)

As mentioned in the earlier section u(k)=	ሾ	࢜ሺ݇ሻ	࣌ሺ݇ሻሿ and Vସ
୒୭୫ is the nominal voltage 

of bus 4. 

 In this problem, only voltage of bus 4 was included in the objective function because 

bus 4 was the main that caused voltage changes in the system, i.e., bus 4 was the only 

bus that had uncontrollable changes in the load and generation. In other words, bus 4 

experienced load changes based on customer demand and reactive power generation of 

the wind generators changes due to the weather condition.  

Six case studies were studied for this system as follows. 

3.2.5.3.1 Case-study 1 – one wind generator 

 In this case study one wind turbine with generation capacity of 1 KVA was 

connected to bus 4. The synchronous generator in this case study had the capacity of 5.5 

KVA. An abrupt load change occurred at t= 6s, where load 2 was connected to the 

system. This change was a relatively large change comparing to the inertia of the 

synchronous generator. An active load scheme was designed to control the frequency 

and supply the active power to the load in timely manner. The active controller is not the 

focus of this dissertation. In addition, wind speed changed from 15 m/s to 5 m/s at t=10s 

and changed back to normal speed of 15m/s at t=18s. This change in the wind speed 
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resulted in a reduction in reactive power capacity of the wind generator, which means 

that other reactive sources in the system should be used to compensate the voltage drop.  

 The dynamic reactive controller was designed using the MPC discussed in earlier 

sections for the objective function (3-156) and the MLD form presented in (3-153). 

Figure 3-26 shows the voltage profile of the system and Figure 3-27 shows the control 

inputs. 

 

Figure 3-26 Bus voltages of the system for 1 wind generator case 
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Figure 3-27 Control inputs to the system for 1 wind generator case 
 

As can be seen in Figure 3-27, the MPC sent the control signal to the capacitor bank for 
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reactive consumer in the studied system, compensation of the reactive power in bus 4 

consequently resulted in a smooth voltage profile in the whole system. 

 At t=10s, the wind speed changed to 5m/s which resulted in a drop in reactive power 

capacity of the wind generator, therefore, the MPC controller connected the second 

capacitor bank to the system to compensate for the reactive power production at bus 4. 

When the wind speed changed back to the normal speed, the wind generator took a few 

seconds to get back to normal production capacity. When the wind generator got back to 

the normal reactive capacity, the MPC controller disconnected one capacitor bank from 

the system and used the reactive power production capacity of the wind generator to 

compensate for reactive power need in the system.  

3.2.5.3.2 Case-study 2 – two wind generators 

 In this case study two wind turbines with generation capacity of 1 KVA each, were 

connected to bus 4. The synchronous generator in this case study had the capacity of 4.5 

KVA. The load change and wind change profile was similar to case study 1. Figure 3-28 

shows the voltage profile of the system and Figure 3-29 shows the control inputs to the 

system for this case study.  

 

 

 



 

133 
 

 

  
Figure 3-28 Bus voltages of the system for 2 wind generator case 
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Figure 3-29 Control inputs to the system for 2 wind generator case 

 

Although in this case the reactive production was significantly smaller than case study 1 

because the percentage of penetration of wind was higher in the system, the MPC 

reactive controller was still capable of keeping the bus voltages within limits by 
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3.2.5.3.3 Case-study 3 – three wind generators 

 In this case study three wind turbines with generation capacity of 1 KVA each, were 

connected to bus 4. The synchronous generator in this case study had the capacity of 3.5 

KVA. The load change and wind change profile were similar to case study 1. Figure 

3-30 shows the voltage profile of the system and Figure 3-31shows the control inputs to 

the system for this case-study. 

 

 

Figure 3-30 Control inputs to the system for 3 wind generator case 

5 10 15 20 25
0.9

1

1.1

Time(s)

V
re

f(
p.

u.
)

5 10 15 20 25

0

0.1

0.2

Time(s)

Q
w

(p
.u

.)

5 10 15 20 25
0

1

2

Time(s)

Q
c(

p.
u.

)



 

136 
 

 

 

 

Figure 3-31 Bus voltages of the system for 3 wind generator case 

 

 In this case the reactive production was significantly smaller than case-study 1 and 
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adjusting the control inputs. 

5 10 15 20 25
0.5

1

Time(s)

V
1(

p.
u.

)

5 10 15 20 25
0.5

1

Time(s)

V
2(

p.
u.

)

5 10 15 20 25
0.5

1

Time(s)

V
3(

p.
u.

)

5 10 15 20 25
0.5

1

Time(s)

V
4(

p.
u.

)



 

137 
 

 

3.2.5.3.4 Case-study 4 – one wind generator with half load 

 In this case study one wind turbine with generation capacity of 1 KVA was 

connected to bus 4 and the synchronous generator connected to bus 1 had the capacity of 

5.5 KVA. In this case study only load 1 was connected to the system all through the 25 

seconds of operation. The wind speed changed from 15 m/s to 5 m/s at t=6s and returned 

back to normal speed of 15 m/s at t=18s. The MPC controller tried to eliminate the effect 

of reduction of the reactive power capacity of the wind generator.  

 In this case not only the reactive power controller should keep the voltages above the 

lower voltage limit but also should make sure that the control action does not result in 

overvoltage in the system. As can be seen in Figure 3-32 and Figure 3-33, the MPC 

controller was capable of keeping the bus voltages within voltage limits. In addition, as 

can be seen in the results, after the wind speed got back to normal speed, the controller 

decided to disconnect the capacitor bank earlier comparing to case-study 1 because the 

total consumption of reactive power in the system was smaller in this case than case-

study 1. 
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Figure 3-32 Control inputs to the system for 1 wind generator case 
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Figure 3-33 Bus voltages of the system for 1 wind generator case 
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Figure 3-34 Control inputs to the system for 2 wind generator case 
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Figure 3-35 Bus voltages of the system for 2 wind generator case 
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 The wind and load profile in this case-study is similar to case-study 4. However the 

wind energy penetration is higher in the system. As can be seen in Figure 3-36 and 

Figure 3-37, the MPC controller was still capable of keeping the voltages within limits in 

this case.  

 

 
Figure 3-36 Control inputs to the system for 3 wind generator case 
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Figure 3-37 Bus voltages of the system for 3 wind generator case 
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3.3 Model Predictive Control Based Reactive Power Control of Isolated Power 

Systems  

In this section, the basic concepts and methodologies needed to solve the hybrid 

control problem formulated in the section 3.2 will be provided. The section starts with a 

brief description of Model Predictive Control (MPC) of power system, which leads to a 

mixed integer linear or quadratic programming. Then Mixed Integer Linear 

Programming (MILP) and Mixed Integer Quadratic Programming (MIQP) are briefly 

discussed. 

Model is traditionally referred to differential or difference equations derived from the 

physical or circuit dynamics of the studied system. These equations describe the system 

as a smooth linear or nonlinear function. Hence, most of the control system theories have 

been developed for smooth dynamic systems. However, in most of the cases, the real 

system includes logic such as on-off switches and the model of the system is not smooth. 

In a power system for example, capacitor banks and tap changers are logic inputs to the 

system. Therefore, in most applications including power systems, control of the logic 

inputs is performed using heuristic rules derived based on operator’s experience of the 

physical system. Although these rules achieve the minimum requirements for some of 

the applications, they are not efficient all the times and can get troublesome especially 

when the system goes through fast mode changes. Therefore, the relatively new concept 

of hybrid systems and hybrid control has been introduced in the literature for this class 

of systems [79]. Obviously, the hybrid model of the system is needed for model 
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predictive control. In the next section, some typical methods to model a hybrid system 

will be discussed.    

3.3.1 Model Predictive Control of Hybrid Systems Described in the MLD Form 

MPC can easily solve problems with multiple inputs and outputs and state, input and 

output constraint. In addition, most of the hybrid models including MLD and PWA can 

be used as prediction models for MPC. This is an interesting feature, which makes MPC 

a good candidate for hybrid control problems.  More details about the MPC formulation 

using MLD models can be found in [79].  

MPC works based on a receding horizon policy which means a sequence of future 

control actions is chosen based on the prediction of the future behavior of the system and 

these control actions are applied to the system until future measurements are available. 

When new measurements are available, a new control sequence is calculated over the 

shifted horizon and replaces the previous one. This means that the receding horizon 

combines the constrained optimal control, which is an open loop procedure with a 

receding horizon policy, which provides the feedback to the controller and closes the 

control loop. More details about MPC could be found in [113],[114],[115]. The flow 

chart of MPC controller is depicted in Figure 3-38. 
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Figure 3-38 Flowchart of the MPC controller 

 

The control sequence is calculated using an optimization which is a Mixed Integer 

Quadratic Programming (MIQP) or Mixed Integer Linear Programming (MILP) due to 

presence of integer variables in the system. The problem is solved over a finite or 

infinite horizon of time using the current state of the plant as initial state. Solving the 

problem over infinite horizon achieves best overall controller performance, however, in 

majority of the cases a finite horizon is chosen to limit the calculation time.  In this 

work, a branch and bound algorithm is used to solve the MIQP problem. The branch and 

bound algorithm is presented to the extent needed for this dissertation. More details and 

full explanation about branch and bound can be found in [116].  
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The optimization problems stemming from MLD systems exhibit some predictable 

structural properties. For example, some blocks of constraints are repeated over the 

optimization vector due to the evolution of the studied system over the optimization time 

horizon. Thus, an efficient B&B algorithm can be designed tailored to the problem 

structure to reduce the amount of computation. The number of relaxed QPs (Quadratic 

Programs) that have to be solved during B&B gives a measure of complexity of a 

solution method for an MIQP. Although this number only gives a rough measure of 

complexity since it does not take complexity of the single QPs into account, it often 

reflects the time required to find a solution. 

The main idea of branch and bound method lies in the fact that QP sub-problems are 

relatively easy to solve. In other words, the key concepts in branch and bound are:  

 Separation of the original MIQP problem into QP sub-problems 

 Relaxation of the integrality constraints (3-24), meaning that the integer variables 

are allowed to span the interval [0, 1].  

The optimal solutions to the sub-problems represent lower bounds of the optimal 

value of the original MIQP problem [85]. A graphical representation of relaxation and 

separation concepts in B&B algorithms for an MIQP with three integers is shown in 

Figure 3-39. 
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Figure 3-39 The binary tree for a MIQP with 3 integer variables. Each node is marked 
with the corresponding vector [116]  ࢐ࣈ 

 

A binary tree consists of nodes and branches and one node of the tree is chosen as 

the root. Each node except the root has a unique father, which is the predecessor node 

towards the root. Each node including the root can have subsequent nodes called 

children and a node without children is called a leave. A tree, where each node except 

the leaves has exactly k children is called a k-ary tree. The depth of a node is the number 

its predecessors towards the root. The q-th level of a tree is the set of all nodes with 

depth q. The length of a tree is the maximum depth over all its nodes. 

A full k-ary tree of length N is a k-ary tree with ݇ே leaves, each at depth N. The tree 

obtained from a node ߥ by deleting the branch to its father and taking ߥ as root of a new 

tree is the subtree of node ߥ. 

An MIQP problem can be represented as a tree. Let ߦ ∈ ሼ0,1ሽ௡೏ be a vector having 

the same dimension as the vector of binary variables xd, and let the symbol * mean that 

the corresponding entry of ߦ is relaxed and spans the interval [0, 1]. The original MIQP 
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of (3-23) where all integrality constraints are relaxed is associated to the interval [0, 1] 

with the following. 

௕ߦ ଴ ൌ ሾ∗ ∗ … ∗ሿᇣᇧᇤᇧᇥ
௡೏ ௧௜௠௘௦

 
(3-157)

The vector ߦ௕	଴ is assigned to the root of a k-ary tree. The separation of the original 

MIQP or any sub-problem into relaxed QPs is done by setting selected integer variables 

to 0 or 1. The resulting new QP problems are assigned to the children of the node. 

Separating the root [* * … *] to two new sub-problems results in the following. 

௕ߦ ଵ= [* , 0 , * , …, *] 

௕ߦ ଶ= [* , 1 , * , … , *] (3-158)

Figure 3-40 shows the separation of the root on the second variable. 

 

 

Figure 3-40 Separation of the roots on the second variable  [116] 

 

Each child is represented by a vector ߦ௝, ߦ௝ ∈ ሼ∗ ,0,1ሽ௡೏ and if the i-th component ߦ௝
௜ ൌ 0 

(or ߦ௝
௜ ൌ 1), then the QP corresponding to that node is solved by setting the i-th integer 

variable to 0 (or 1). If ߦ௝
௜ ൌ∗, then the i-th integer variable of ߦ௝ is regarded as free within 

[0, 1] in the corresponding QP. 
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 The branch and bound algorithm to solve MIQP can be summarized as follows. 

Algorithm 1- Branch and Bound [117]: 

1. Initialize a list of sub-problems for the original MIQP problem. Set 

fopt = +∞ and xopt = [∞, . . . ,∞] 

2. If the list of sub-problems is empty, terminate the algorithm and send fopt and xopt 

to output. If fopt = +∞, send an error message that the MIQP is infeasible. 

3. Select one sub-problem in the list of sub-problems to become the current problem 

and remove it from the list of sub-problems. 

4. Relax the current problem, solve it, and denote its solution as fR and its optimizer 

as xR. (Relaxation) 

5. If the current problem is infeasible go to step 2.  

    Else if ோ݂ ൒ ௢݂௣௧, go to step 2 

    Else if xR satisfies the integer constraints and ோ݂ ൑ ௢݂௣௧, then update the current 

best solution by setting  fopt = fR and xopt = xR  and go to step 2. (fathoming) 

6. Generate two new sub-problems from the current problem, add them to the list of 

sub-problems, and go to step 2. (Separation) 

 

The performance of a B&B algorithm depends largely on steps 6 and 3. Separation in 

step 6 is performed by setting one binary variable to its two possible values. The chosen 

binary variable is called branching variable and its selection method defines the 

branching rule. The strategy of selecting the next current node in step 3 is called tree 

exploring strategy. A good B&B algorithm quickly fathoms large subtrees and avoids 
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formation of numerous sub-problems. The most common choices for the branching rule 

and the tree exploring strategy are presented in [117].  

In this work, the outside first tree exploring strategy is used to solve the MIQP 

problem. The outside first strategy is tailored for optimal control problems using MLD 

systems where the values of binary variables ߜሺ݇ሻ occasionally change over the time 

horizon, N. The integer optimization vector ߦௗ in (3-24) contains samples of ߜሺ݇ሻ taken 

at different time instants. 

ௗߦ ൌ ሾߜሺ݇ሻ, ሺ݇ߜ ൅ 1ሻ, … , ሺ݇ߜ ൅ ݊ௗ െ 1ሻሿ 
(3-159)

Typically, the binary variables ߜሺ݇ሻ	are associated with inequality conditions on 

continuous states x(k) such as the following.  

ሾߜሺ݇ሻ ൌ 0ሿ ↔ ሾݔሺ݇ሻ ൑  ଴ሿݔ
(3-160)

The continuous states,	ݔሺ݇ሻ, usually have to satisfy dynamic equations. Therefore, 

their inertia prevents frequent switches of the binary indicator variable ߜሺ݇ሻ. This 

observation can be incorporated to make the B&B more efficient.  In other words, the 

B&B algorithm should try to solve the QPs where the binary switch does not change 

prior to the other cases. However, a limited number of switchings should not be imposed 

over the prediction horizon since, although unlikely, an arbitrary number of switches 

might indeed occur. Therefore, the concept of guaranteed switches is introduced here to 

solve the problem. 
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3.3.1.1 Guaranteed switches definition 

Given a subproblem given by ߦ, let I be the ordered m-tuple collecting the indices i 

for which ߦ௜ ്∗,  

ܫ               ≜ ሾ݅ଵ	݅ଶ, … , ݅௠ሿ such that ߦ௜ೕ ്∗ 		∀ ௝݅ and ݅ଵ ൏ ݅ଶ ൏ ⋯ ൏ ݅௠ 

The number of guaranteed switches, D, is defined as the number of indices ݅௤ in I 

such that ߦ௜೜ ്    .௜೜శభ  [116]ߦ

Example: 

Assume ߦ ൌ ሾ0,0,∗ ,1,∗,∗ ,1,0,0,∗ሿ. With the introduced notation, I = [1, 2, 4, 7, 8, 9], 

and D = 2. The outside first tree exploring strategy solves a QP in each column of Table 

7 before moving on to the next column. 

Table 7 Classification of sub-problems according to guaranteed switches in the binary 
variables for nd = 3  [116] 

Column -1, 
Original 
problem 

Column 0, no 
guaranteed 
switches 

Column 1, 1 
guaranteed 

switch 

Column 2, 2 
guaranteed 
switches 

[* * *] [0 0 0] 
[0 0 *] 
[0 * *] 
[1 1 1] 
[1 1 *] 
[1 * *] 

[0 0 1] 
[0 1 1] 
[1 1 0] 
[1 0 0] 
[0 1 *] 
[1 0 *] 

[0 1 0] 
[1 0 1] 

 

 

The order of the QPs in each column is arbitrary.  Figure 3-41 shows the order that 

outside first strategy uses for exploration of the 3 binary tree. As can be seen in Figure 

3-41 and Table 7, the MIQP tree is explored from the outside to the inside.  
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Figure 3-41 Order of solving problems in the outside first strategy, assuming the “first 
free variable" branching rule  [116] 

 

Algorithm 2- Branch and Bound with outside first tree exploring strategy  [116] 

1. Initialize a list of sub-problems from the original MIQP problem. Set 

௢݂௣௧ ൌ ൅∞  and  ݔ௢௣௧ ൌ ሾ∞, … ,∞ሿ 

2. If the list of sub-problems is empty, terminate the algorithm and send fopt and xopt 

to output. If ௢݂௣௧ ൌ ൅∞, the MIQP problem is infeasible. 

3. Determine ݇௢ as the minimum number of guaranteed switches among the 

problems in the list of sub-problems. Select one problem with ݇௢ guaranteed 

switches to become the current problem and remove it from the list of sub-

problems. 

4. Relax the current problem, solve it, and denote its solution as fR and its optimizer 

as xR. 

5. If the current problem is infeasible go to step 2. 

    Else if ோ݂ ൒ ௢݂௣௧ go to step 2. 
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     Else if xR satisfies the integer constraints and ோ݂ ൑ ௢݂௣௧ update the current best 

solution by setting ோ݂ ൌ ௢݂௣௧ and ݔ௢௣௧ ൌ  .ோݔ

6. Generate two new sub-problems from the current problem, determine their 

guaranteed switches, add them to the list of sub-problems, and go to step 2. 

 

The hard restrictions on computation time due to time-step severely limit the chances 

to find a global minimizer to (3-23),(3-24), especially for large power system analysis 

problems with many binary variables. Therefore, the MIQP optimization method should 

aim at providing sufficient suboptimal solutions. Thus, the method changes the problem 

to choosing and solving the problems in the MIQP tree that are most likely to yield to a 

sub-optimal point close to the global minimum. Adding a maximum number of 

guaranteed switches, kmax, to the outside first tree exploration strategy allows for 

selecting and solving the QPs that are most promising in giving good suboptimal 

solutions. Bemporad and Morari [79] proved that for MPC problems using MLD 

stability is not altered by local minima, even though MPC controller’s rate of 

convergence deteriorates. 

The block diagram of the proposed model predictive controller based on MLD model 

of the MicroGrid is presented in  Figure 3-42. 
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 Figure 3-42 Block diagram of MPC for the MicroGrid 

 
Summarizing the formulation of this section, the volt/Var optimization problem for 

the unbalanced system using the MLD model can be described as follows. 

,ሺ࢞ܬ ࢛, ݇ሻ ൌ 	෍ ቐ෍ ൜ฮ ௜ܸ
஺ሺ݇ ൅ ଴ሻݐ|଴ݐ െ ௜ܸ

ே௢௠ฮ
ሼଵ,ஶሽ

௜∈ே೟

ேିଵ

௞ୀ଴

൅ ฮ ௜ܸ
஻ሺ݇ ൅ ଴ሻݐ|଴ݐ െ ௜ܸ

ே௢௠ฮ
ሼଵ,ஶሽ

൅ ฮ ௜ܸ
஼ሺ݇ ൅ ଴ሻݐ|଴ݐ െ ௜ܸ

ே௢௠ฮ
ሼଵ,ஶሽ ቅ ൅ ૚∆࢛ሺ݇ሻ‖ሼଵ,ஶሽࢃ‖

൅  ૛∆࣌ሺ݇ሻ‖ሼଵ,ஶሽቑࢃ‖

Subj. to 

ە
ۖۖ
۔

ۖۖ
ۓ
ሺ݇ݔ ൅ ଴ሻݐ|1 ൌ ଴ሻݐ|ሺ݇ݔܣ ൅ ሺ݇ሻݑଵܤ ൅ ଴ሻݐ|ሺ݇ߜଶܤ	 ൅ ଴ሻݐ|ሺ݇ݖଷܤ

଴ሻݐ|ሺ݇ݕ ൌ ሺ݇ሻݔܥ ൅ ሺ݇ሻݑଵܦ ൅ ሺ݇ሻߜଶܦ ൅ ଴ሻݐ|ሺ݇ݖଷܦ
଴ሻݐ|ሺ݇ߜଶܧ ൅ ሺ݇ሻݖଷܧ ൑ ଴ሻݐ|ሺ݇ݔସܧ ൅ ଴ሻݐ|ሺ݇ݑଵܧ ൅ ହܧ

௕ܸ௠௜௡ ൑ | ௕ܸሺ݇ሻ| ൑ ௕ܸ	ெ௔௫								ܾ ൌ 1,… . , ஻ܰ௨௦

ܳ௖	௠௜௡ ൑ ܳ௖ሺ݇ሻ ൑ ܳ௖	ெ௔௫										ܿ ൌ 1,… , ௖ܰ௢௠௣

|௖௟ሺ݇ሻܫ| ൑ ௖௟ܫ ெ௔௫ ݈ܿ ൌ 1,… , ௖ܰ௟

 

(3-161)

3.4 Performance Analysis of the MPC Controller 

As mentioned earlier the system presented in the MLD form is equivalent of PWA 

systems and the proof of this can be found in the appendix of [118]. Thus the 
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performance of MPC controlling a system presented in PWA platform which is easier to 

present for the general case is presented here. The PWA system is described in the 

following general form. 

ሺ݇ݔ ൅ 1ሻ ൌ ሺ݇ሻݔ௜ܣ ൅ ሺ݇ሻݑ௜ܤ ൅ ௜݂ 

ሺ݇ሻݕ ൌ ሺ݇ሻݔ௜ܥ ൅ ሺ݇ሻݑ௜ܦ ൅ ݃௜ (3-162)

where ݑሺ݇ሻ ∈ Թ୫ is the control input to the system and ݔሺ݇ሻ ∈ Թ୬ is the state of the 

system. A Lyapanov function with the following general structure is used to prove the 

stability of the MPC controller. 

ܸሺݔ௖ሻ ൌ ௖்ݔ ௜ܲሺݔ௖ሻ ௖ݔ  
(3-163)

where xc is the equilibrium point of the system and ௜ܲ satisfies the following conditions.  

௜ܲ ∶ ௜ࣲ → Թ௡ ∀݅ ∈  ߇

∀݅ ∈ ∋௫೎݌ݑܵ → ߇ ೔ࣲ
ெ௔௫ሺߣ| ௜ܲሺݔ௖ሻሻ| ൏ ൅∞ 

∀݅ ∈ ∋௫೎݌ݑܵ → ߇ ೔ࣲ
௠௜௡ሺߣ| ௜ܲሺݔ௖ሻሻ| ൏ ൅∞ 

(3-164)

Possible choices of matrices ௜ܲሺݔ௖ሻ to guarantee the requirements on the eigenvalues 

are  

 Continuous functions on ௜ࣲ if ௜ࣲ is bounded 

 Constant matrices if ௜ࣲ is unbounded 

 It should be mentioned that as shown in [119], the ܸሺݔ௖ሻ can be discontinuous 

around the cell boundaries as long as the number of cells is finite. This is especially 
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helpful when dealing with piecewise systems. The following theorem presents the 

requirements for the system to be stable. 

Theorem: Assume that the cardinality of the set ߇ is finite. Let X0 be a set of initial 

states, the equilibrium xc = 0 of the PWA system presented in (3-162)  is exponentially 

stable on X0 if there exists a function ܸሺݔ௖ሻ as in (3-163) which results in a negative 

forward difference  as follows. 

∆ܸሺ݇ ൅ 1, ݇ሻ ൌ ௖்ሺ݇ݔ ൅ 1ሻ ௜ܲ൫ݔ௖ሺ݇ ൅ 1ሻ൯ݔ௖ ሺ݇ ൅ 1ሻ

െ ௖்ሺ݇ሻݔ ௜ܲ൫ݔ௖ሺ݇ሻ൯ݔ௖ ሺ݇ሻ ൏ 0  (3-165)

where i is the index for the condition ݔ௖ሺ݇ሻ ∈ ௜ࣲ.  

This theorem basically means that if a lyapanov energy function can be found that is 

dissipative over the time horizon of the controller, then the system is exponentially 

stable. 

Following [119] and assuming that the eigenvalues of the system are bounded for 

each of ௜ܲ൫ݔ௖ሺ݇ሻ൯ matrixes and assuming that the set ߇ is cardinal there exist constants 

,ߙ ߚ ൐ 0 such that 

ܫߙ ൏ ௜ܲ൫ݔ௖ሺ݇ሻ൯ ൏ ܫߚ , ∀݅ ∈  ߇
(3-166)

Further, there exist an arbitrarily small ߛ such that, 

ܸ൫ݔ௖ሺ݇ ൅ 1ሻ൯ െ ܸ൫ݔ௖ሺ݇ሻ൯ ൑ 	െߛ ௖ሺ݇ሻݔ௖்ሺ݇ሻݔ ൑ െ
ߛ
ߚ
௖்ሺ݇ሻݔ ௜ܲ൫ݔ௖ሺ݇ሻ൯ݔ௖ሺ݇ሻ

ൌ െ
ߛ
ߚ
ܸሺݔ௖ሺ݇ሻሻ		 

(3-167)
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Since the constant can be chosen arbitrarily small, ߛ can be chosen such that  

0 ൏ 1 െ ఊ

ఉ
൏ 1. Thus, 

∀݇ ∈ Գା 		→ 	ܸ൫ݔ௖ሺ݇ሻ൯ ൑ ൬1 െ
ߛ
ߚ
൰
௞

ܸ൫ݔ௖ሺ0ሻ൯  
(3-168)

Which directly results in the following. 

∀݇ ∈ Գା 		→ ௖ሺ݇ሻ‖ଶݔ‖ ൑ ൬1 െ
ߛ
ߚ
൰
௞
௖ሺ0ሻ‖ଶݔ‖  

(3-169)

Equation (3-169) limits the norm of evolution of system trajectory based on the norm 

of the starting point.  

The second part of our performance analysis of MPC deals with disturbance 

attenuation of the ܪஶ platform. To begin with, the so called PWQ stability should be 

defined. The following class of lyapanov functions can be used to prove the stability of 

the continuous-time PWA systems without logic states [120].  

௖ݔ∀ ∈ ௜ࣲ → ௜ܲሺݔ௖ሻ ൌ ௜ܲ 
(3-170)

Using lyapanov functions of the class (3-170) results in the so-called Piecewise 

Quadratic (PWQ) stability. This result can be easily extended to systems with logic 

states.  

Given a real number ߛ ൐ 0, the exogenous signal ߱ is attenuated by ߛ if starting 

form a state x0  satisfying C(x0) = 0 for each integer ܰ ൒ 0 and for ever ߱ ∈

݈ଶሺሾ0, ܰሿ, Թ௠ሻ െ ሼ0ሽ it holds 
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෍‖ݖሺ݇ሻ‖ଶ ൏

ே

௞ୀ଴

ଶ෍‖߱ሺ݇ሻ‖ଶߛ
ே

௞ୀ଴

 
(3-171)

Following [118], some preliminary facts on the ܪஶ norm of a PWA system for 

which the origin is PWQ stable can be established. 

Lemma: Assume that the given system is PWQ stable and set C(x0) = 0. Then, the 

ߛ∀ ஶ constraint is satisfiedܪ ൐   ଴ whereߛ

଴ߛ ൌ ൫ܥሚଶ̅ߛଶ ൅ ෩ଶܦ ൯
ଵ
ଶ (3-172)

where, 

ሚܥ :ൌ Sup௜∈௶ฮܥ௖,௜ฮ   , ܦ෩ :ൌ Sup௜∈௶‖ܦ௜‖ 

:ߛ ൌ ௅തభାሺ௅തభ
మାସ௅തതതതమ ሻభ/మ

ଶ
:തଶܮ ,    ൌ

௅భ	௉ത

ఙ
 

ଵ:ൌܮ Sup௜∈௶ฮܣ௖,௜ฮฮܤ௖,௜ฮ    ܮଵ:ൌ Sup௜∈௶ฮܤ௖,௜ฮ
ଶ
  തܲ: ൌ Sup௜∈௶‖ ௜ܲ‖  

(3-173)

The proof of this lemma could be found in [118]. 

Lemma: Consider an initial state x(0) such that C(x(0))=0. If there exists a function 	

ܸሺݔ௖ሻ ൌ ௖்ݔ ௜ܲሺݔ௖ሻ	ݔ௖				∀ݔ௖ ∈ ௜ࣲ satisfying the dissipative inequality (3-165), then the 

 ஶ performance condition (3-171) is satisfied and the PWA system is exponentiallyܪ

stable. 

The proof of this lemma which gives a measure for performance ܪஶ control of PWA 

systems could be found in [118].  
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3.5 Summary 

This section discussed the problem formulation of dynamic reactive power control of 

the isolated power system. First, a simplified model of the system for reactive control 

was presented. Then, the model was linearzied in a piecewise linear form and the 

resulting linear model was discretized. The piecewise linear model was unified in the 

MLD form and the MLD model was used as a prediction model in reactive control. 
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4 MODEL PREDICTIVE BASED REACTIVE POWER CONTROL OF 

SHIPBOARD POWER SYSTEMS 

4.1 Introduction 

 As discussed earlier, the AC/DC shipboard power system is consisted of AC 

generators and DC distribution zones. The DC zones add to system redundancy and 

reliability. The general Volt/Var control for an SPS may take a long time to converge. In 

order to shorten convergence time, the general voltage control problem should be 

divided into smaller scale sub-problems. It is commonly known that the only active 

power can be transmitted over DC links. Thus, the reactive power control can be 

decoupled into smaller scale problems by cutting the system at the DC links. Decoupling 

the Volt/Var control into smaller problems is beneficial since the   

 The high voltage AC system includes the synchronous generators, propulsion 

motors, and potentially high power pulsed AC loads. The high voltage AC system treats 

the DC zones as AC loads connected to the AC bus. The AC system also may include 

reactive power compensators placed close to loads at design stage. The voltage control 

scheme in this work, solves the voltage control problem of the AC system dynamically 

and sends reference voltage of generators and reactive power setpoints of compensators 

to these components. The optimization problem minimizes the voltage deviation of 

specific buses in the system, which are more vulnerable to voltage drop by setting the 

optimal control inputs.     

The voltage control of the each DC zone is solved separately and locally in this work. 

Thus, each distribution zone is able to keep the voltage autonomously. The Zone is 
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composed of DC/DC converters, Inverters, DC and AC loads. The converters and 

inverters are the main components that can be used for voltage control inside the zones. 

Obviously, the rectifier can also be used to control the voltage level of the main DC 

buses of the system. The control scheme is local and the components are coordinated to 

keep the voltages of the buses within limits.  

4.2 Implementation and Simulation Results 

The sample SPS used in this paper for the case-studies is depicted in Figure 4-1.  The 

system is composed of two synchronous generators, two zones and one propulsion 

motor. The objective function for the studied SPS is as follows. 

,ሺ࢞ܬ ࢛, ݇ሻ ൌ 	෍ ෍ ฮ ௜ܸሺ݇ ൅ ሻݐ|ݐ െ ௜ܸ
ே௢௠ฮ

ଶ
௜∈ሼହ,଺,଻,଼ሽ

ேିଵ

௞ୀ଴

൅  ૚∆࢛ሺ݇ሻ‖ଶࢃ‖
(4-1) 

The control inputs to the system are reference voltages of generators ( ௥ܸ௘௙ଵ, ௥ܸ௘௙ଶ) 

and the reactive power setpoint of the dynamic compensator (ܳ௖). Thus, the control input 

vector is as follows. 

࢛ሺ݇ሻ ൌ ൣ ௥ܸ௘௙ଵ, ௥ܸ௘௙ଶ, ܳ௖൧ 
(4-2)
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Figure 4-1 Schematic diagram of a notional all electric shipboard power system 
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The system has one master generator which is the main generator (MTG) and one 

distributed synchronous generator which is the auxiliary generator (ATG) in this case.   

The propulsion motor, two zones and the pulsed load are modeled as dynamic loads.  

Since the system had one master generator, one distributed generator, and three dynamic 

loads, the number of the states of the system was five. 

Figure 4-2 shows the high level schematic diagram of the notional shipboard power 

system. 

 

Figure 4-2 High level schematic diagram of a notional all electric shipboard power 
system 

 

For the master DG, the simplified state space equations are as follows. 

ሻݐሶଵሺݔ ൌ
െ1

௏ܶ
ሺݐሻ ൅ ௥ܸ௘௙ 

௢ܸ௨௧ሺݐሻ ൌ
1

௏ܶ
 ሻݐଵሺݔ

(4-3)

For the other DG in the system, the simplified state space equations are as follows. 
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݀
ݐ݀
ሻݐଶሺݔ	 ൌ

െ1

ொܶ,ଶ
ሻݐଶሺݔ ൅ ܳ௥௘௙,ଶ 

ܳ௢௨௧,ଶሺݐሻ ൌ
1

ொܶ,ଶ
 ሻݐଶሺݔ	

(4-4)

Similarly, following (3-65) for the dynamic loads in the system, the linearized state 

space equations are as follows. 

݀
ݐ݀
௝ݔ	 ൌ

െ1

௤ܶ,௝
௝ݔ ൅ ቆܦ௝ െ

௝ܥ

௤ܶ,௝
ଶቇ ௞ܸ , 

݆ ൌ 5,6,7		, ݇ ൌ 4,7,8 

ܳ௅,௝ ൌ ܳ௅଴,௝ ቆ
1

௤ܶ,௝
௝ݔ	 ൅

௝ܥ
௤ܶ,௝
	 ௞ܸቇ 

(4-5)

where ௞ܸ’s are the voltage of the buses with the loads connected to them. Following the 

linearization technique discussed in [111], piecewise linear equations of the system are 

derived as follows.  

࢞ሺ݇ ൅ 1ሻ ൌ ൝
૚࢞ሺ݇ሻ࡭ ൅ ૚࢛ሺ݇ሻ࡮ ݂݅ ଵሺ݇ሻߜ ൌ 1

⋮
ሺ݇ሻ࢙࢞࡭ ൅ ሺ݇ሻ࢛࢙࡮ ݂݅ ௦ሺ݇ሻߜ ൌ 1

 
(4-6)

The bus voltages could be described in compact form as follows. 

ࢂ ൌ ൝
૚࢞ሺ݇ሻ࡯ ൅ ૚࢛ሺ݇ሻࡰ ݂݅ ଵሺ݇ሻߜ ൌ 1

⋮
ሺ݇ሻ࢙࢞࡯ ൅ ሺ݇ሻ࢛࢙ࡰ ݂݅ ௦ሺ݇ሻߜ ൌ 1

 
(4-7)

where ܸ is the vector of the voltages that are used in the optimization formulation. 

Increasing the number of sets makes the prediction of voltage more accurate; however, 

the optimization algorithm takes more time to converge to the global minimum. 
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The input weight matrix is defined as ܅ଵ ൌ ሾ0.1, 0.1,0.01ሿ which is designed to 

penalize the reactive power compensator less than the generators since providing 

reactive power by the reactive compensators is less costly.   

The voltage, current and reactive power constraints of the SPS are given by 

following equations. 

௕ܸ௠௜௡ ൑ | ௕ܸሺ݇ሻ| ൑ ௕ܸ ெ௔௫ ܾ ൌ 3,4 
ܳ௖	௠௜௡ ൑ ܳ௖ሺ݇ሻ ൑ ܳ௖	ெ௔௫  

|௖௟ሺ݇ሻܫ| ൑ ௖௟ܫ ெ௔௫ ݈ܿ ൌ 1,… , 4 

 
(4-8)

where NBus is the number of buses, NComp is the number of compensators and Ncl is the 

number of the cables, | ௕ܸሺ݇ሻ| is the voltage magnitude of bus b at time ݇, ܳ௖ሺ݇ሻ reactive 

power setpoint of compensator c at time ݇ and |ܫ௖௟ሺ݇ሻ| is the current of cable cl at time k.  

The nonlinear SPS model with all details is implemented in SIMULINK and is 

considered as the actual power system. The measurements are taken from this power 

system and send as feedback to the model predictive controller. The MPC uses the MLD 

model achieved from HYSDEL compiler as the prediction model and performs the 

optimization over the horizon 10 seconds using the feedback of the system as the initial 

state. Solving the optimization problem results in the optimal control sequence, which is 

sent to the generators and the compensator of the SPS. The parameters of the generators 

are presented in Table 8. 
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Table 8 Generator parameters of the notional SPS 
Generator Parameters Exciter Parameters 

 MTG ATG MTG/ATG 

VgI-I 13.8kV 13.8kV Tc 0s 

Pg 36 MW 4 MW Tb 0s 
pfg 0.8 0.8 Ka 400pu 
F 60 Hz 60 Hz Te 0.02s 
Ra 0.010Ω 0.199Ω Va,max 14.5pu 
Xp 0.17 0.18 Va,min 14.5pu (neg) 
Xd 1.55 1.25 Vr, max 6.03pu 
Xd' 0.22 0.24 Vr,min 5.43pu (neg) 
Xd'' 0.14 0.17 kf 0.03pu 
Tdo' 8.95s 4.11s Tf 1s 
Tdo'' 0.036s 0.023s Te 0.8s 
Xq 0.76 0.62 Ke 1pu 
Xq' N.A N.A kc 0.2pu 
Xq'' 0.20 0.26 kd 0.38pu 
Tqo' N.A N.A SE(VE1) 0.1pu 
Tqo'' 0.12 s 0.061s   

H 1.49s 1.06s   

 

The load and line parameters are summarized in Table 9 an the line lengths are 

presented in Table 10. 

 

Table 9 Load and line parameters of the notional SPS 
Load parameters Value  Load parameters Value 

௅ܲ଴ିூெ	 36 MW bt 2 
ܳ௅଴ିூெ	 9 MVar T୯ି୍୑  5s 

௅ܲ଴ି௭ଵ	, ௅ܲ଴ି௭ଶ	 4e6 MW T୯ି୸ଵ ,T୯ି୸ଶ  3s 
ܳ௅଴ି௭ଵ	, ܳ௅଴ି௭ଶ	 1.8e6 MVar T୯ି୔୳୪ୱୣ  3s 

bs 1   
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Table 10 AC line length of the notional SPS 
AC Line  Line length 
Line 1 50m 
Line 2 20m 
Line 3 20m 
Line 4  30m 

 

Three voltage control case studies have been studied for the system.  

4.2.1 Case-study 1- No Dynamic Compensator 

In this case study, the SPS did not include a dynamic reactive compensator. A pulsed 

load was connected to bus 4 at t=2s for a duration of 2 seconds. It was assumed that the 

MPC knows the exact time of operation of the pulsed load. As can be seen in Figure 4-3, 

the MPC controller tried to compensate for the voltage drop by simultaneously boosting 

the excitation of the MTG and ATG generators. However, Figure 4-4 shows that the 

voltages of bus 3 and bus 4 dropped below the minimum acceptable level. In addition, 

overly boosting of the excitation of the synchronous generators resulted in a high voltage 

ripple on all the AC buses in the system and overcurrent of generator. This phenomenon 

deteriorates the electrical circuits of the generator. However, the controller  could not 

avoid this condition since it needed to keep the system stable.    
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Figure 4-3 Control inputs to the SPS – Case study 1 
 

 
Figure 4-4 Bus voltages of the SPS – Case study 1 
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4.2.2 Case-study 2 – Dynamic Compensator 

In this case-study, a pulsed load connected to bus gets energized at t=2s which 

applies a significant disturbance to the system. As can be seen in Figure 4-5, the global 

MPC controller tried to mitigate the effect of the disturbance on the voltages of the 

system by increasing the reference voltage of the master generator, increasing the 

reactive power setpoint of the PQ controlled generator, and increasing the reactive power 

setpoint of the dynamic compensator. As can be seen in Figure 4-6, SPS bus voltages 

stay within 5% limit and shows only small deviations.  These voltage deviation satisfies 

the voltage requirements of section 4.6 of IEEE standard [121] for shipboard power 

system.  

 

 
 Figure 4-5 Control inputs to the SPS – Case study 2 
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 Figure 4-6 Bus voltages of the SPS – Case study 2 

 

4.2.3 Case-study 3- Propulsion motor speed change 

In this case-study, the speed of the propulsion motor changes from 2/3 of the 

nominal speed to the full nominal speed at t=9s. The inrush current that the induction 

motor is drawing from the system causes a disturbance in the system. This disturbance 

can be modeled as a pulse of reactive power drawn from the system, which causes 

voltage drop.  The global MPC controller tries to mitigate the effect of the disturbance 

on the voltages of the system. The controller reacts to the voltage drop in 0.2 seconds. 

The bus voltages are depicted in Figure 4-7. 
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Figure 4-7 Bus voltages of the SPS – Case study 3 

 

The control inputs generated by the MPC controller are shown in  Figure 4-8. The 

controller increased the voltage reference of the master generator, increased the reactive 

power injection by the PQ generator, and increased the reactive injection by the D-

STATCOM to achieve the reactive power control goals. 
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 Figure 4-8 Control inputs to the SPS – Case study 3 

 

4.3 Local Control of DC Distribution Zones 

In this section, the structure of the DC distribution zone is discussed first. Then local 

voltage control scheme of the DC zone is discussed briefly. As mentioned before, 

voltage control of each DC zone is a sub-problem to the global voltage control problem 

and is solved locally.   

The DC distribution zones are composed on DC/DC converters, Inverters, AC and 

DC loads. The loads can be vital and non-vital depending on the importance of their 

functionality. Vital loads typically have two possible paths to get energized. This 
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redundancy helps the system to keep the vital loads energized if one of the paths 

experience fault. The general structure of a DC zone is depicted in Figure 4-9. Each zone 

has a rectifier which supplies DC power to the zone. The rectifier, converter and the 

inverter are coordinated together to keep the voltage of the load at the nominal level.  

 

 

4.4 Summary 

This section discussed reactive power and voltage control of the SPS. The problem 

was formulated considering the dynamics of the SPS. MATLAB and CPLEX were used 

to implement the method. Finally, some case-studies were presented to show the 

effectiveness of the algorithm. Effectiveness of the methods was studied in presence of 

pulsed dynamic loads and changes in the propulsion of the ship.  
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   Figure 4-9 Block diagram of local controller to control the voltage of DC zones  
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5 MODEL PREDICTIVE BASED REACTIVE POWER CONTROL OF 

MICROGRIDS 

5.1 Introduction 

Voltage control is crucial in operation of the MicroGrid and the utility is responsible 

to keep the voltage at the receiving end of the distribution line within the acceptable 

range. The ANSI C84.1 standard specifies a guideline for the acceptable range by 

dividing it into emergency and normal operating ranges. The system may operate in the 

emergency range only for a short amount of time. Thus, the normal operating range is 

the focus for system operation. The ANSI C84.1 service voltage ranges are shown in 

Table 11.  

Table 11 ANSI C84.1 voltage range for 120v [122] 
 

Service 

Min 
Max 

Range A  (Normal) 
-5% +5% 

Range B  (Emergency) 
-8.3% +5.8% 

 

 It should be noted that since the distribution system is usually radial, the service 

voltage is the main feeder voltage minus the losses on the transformers and lines in 

absence of DERs. Thus, the utility usually controls the service voltage by controlling the 

feeder voltage and sometimes by switching on load tap changers and switched capacitor 

banks. However, when the DERs are present in the system, the operator can also use 
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them to control the voltage especially when the DERs are interfaced to the system using 

power electronics. Further, in a system that may have to operate in islanded mode such 

as a MicroGrid, controlling the feeder voltage directly through the main grid is no longer 

possible. Thus, the DERs, reactive power compensators, and tap changers are the only 

voltage control inputs to the system in the islanded mode. A number of publications are 

available in the literature that discuss the challenges and benefits of using inverter-based 

DERs for voltage support [123],[124].  

5.2 Photovoltaic Source 

 With an annual growth rate of 25-35%, photovoltaic sources are among the fastest 

growing energy sources over the past decade. Prior to 1999, the primary market for PV 

source was in off-grid applications. However, over 80% of the recent market for the PV 

source is for grid-connected applications where the source is connected to a strong grid 

or an isolated grid as a distributed generator [125]. As the use of PV sources continues to 

expand, research on potential benefits and risks that the PV source introduces on the 

stability and operation of the electricity grid grows as well.  

The impact of the PV on the voltage of the grid is directly related to its penetration level. 

Generally, the PVs can be classified into three categories for voltage control based on 

their penetration level in the grid: 

1) At a low PV penetration level of 5% or less, the inverters generally do not have a 

significant impact on the feeder’s voltage regulation  

2) At medium PV penetration levels which is around 10%, inverter voltage support 

can help reduce the size of the voltage support capacitors by nearly 40% 



 

177 
 

 

3) At high PV penetration levels (30% – 50%), PV inverters may be able to entirely 

replace voltage support capacitors 

At higher penetration levels, inverter-connected PV generation takes over the place 

of conventional generation. In order to match the performance of the conventional 

generators, inverters have to be able to exchange reactive power with the grid. Certain 

changes in control and protection schemes may need to be performed to adapt the PV for 

voltage control. Inverter ratings may need to be increased to allow more significant 

impact on voltage control and the operation of inverters has to be coordinated to take full 

advantage of the available reactive power capabilities of the inverters [126]. The 

coordination can be performed using local methods such as the methods presented in 

[127],[128] or through a global optimal control scheme that sends the reactive setpoints 

to the inverters dynamically.  

Solving the global optimization problem gives the setpoint of the reactive power Q 

of the units in the MicroGrid. The setpoints are used in control of the DG unit or to 

determine the injection by the reactive compensators. The DG units also have their own 

droop control which fine tunes the reactive setpoint to keep the voltage within limits. 

The droop control is needed for voltage stability and local reliability and to avoid 

voltage and reactive power oscillations. It also eliminates the effect of small errors in the 

setpoint [61].  The mentioned DG control structure is shown in Figure 5-1. 
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ratings are represented by a vector with magnitude S, the generated active power by the 

PV cells are denoted by Ppv.  

 The semicircle with radius S shows the inverter’s possible operation range. 

Obviously, the feasible reactive range of the inverter is limited by the amount of 

generated active power.  Reactive power limits are shown by -Qlimit and Qlimit which 

shows that the inverter is capable of absorbing and injecting reactive power, 

respectively. Thus, theoretically the inverter is able to use its full rated power for 

reactive compensation when the generated real power is zero and cannot supply any 

reactive power when the full rating is used for generation of active power [126].  One 

method to overcome this drawback is to keep some reactive capability by over-sizing the 

inverter by 10-20%. The incentives for the DER operator to provide reactive power are 

increasing and maybe it becomes equal to the incentive of providing active power [1]. 

 

 

Figure 5-2 Reactive power generation limits by the PV inverter [126] 
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5.3 DFIG Wind Generator 

 DFIGs have become very common in wind power industry in the past decade. As 

explained before DFIGs need smaller converter than their rated power and are able to 

operate in variable-speed. Variable speed operation makes it possible to increase annual 

power production by 5% [130]. 

 The stator of the DFIG is directly connected to the gird while the rotor is connected 

to the gird through a power electronics converter. The DFIG always supplies electric 

power to the grid from its stator and exchanges power with the grid from its rotor. The 

rotor power usually does not exceed 25% of the total generator power. The converter of 

the DFIG needs to be rated to handle rotor power and the excitation of the generator 

[131]. Thus, the converter rating is usually around 25% of the rated power of the 

generator, which results in lower component cost.   

 Squirrel cage induction generators were very common in wind industry two decades 

ago and they are still present. However, DFIGs and permanent magnet generators are 

taking their place due to some major advantages. These advantages include ability of 

DFIGs to control reactive power and voltage [132] and the potential to control active and 

reactive power independently through control of torque and rotor excitation current 

[133]. 

Although the grid requirements usually require the DFIGs to be reactive neutral, they 

can be used for reactive power control in some circumstances. The operating conditions 

of the DFIG can be classified into two categories based on the power grid they are 

connected to. These categories are as follows [134]:  
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 When DFIG is connected to strong power system the voltage is usually set to 1 

PU. In this case, the DFIG does not exchange reactive power with the grid. 

 When DFIG is connected to a weak power system, which suffers from 

fluctuating voltages, the DFIG can be used to produce or absorb reactive power 

for voltage control. 

 In the latter case, a PI controller can be added per customers request [135] to produce 

the reference signal of reactive power from the voltage error at the generator bus [136]. 

This type of control scheme controls reactive power locally and helps with grid voltage 

support. However, the results are not globally optimal due to the local nature of the 

control scheme. 

 The current grid code requires the wind farm to be reactive neutral and limits the 

control of reactive power absorption and generation through the wind farm to 10% of the 

maximum power [15]. However, it is beneficial to use reactive power capabilities of the 

DFIG generators for voltage compensation in weak power grid such as the MicroGrid. In 

MicroGrids for example, the grid side converter may be overdesigned to be able to inject 

or absorb 25-30% reactive power to the grid. Overdesigning the converter can be 

beneficial to overcome voltage fluctuations during fault condition. 

 Based on current grid code, the total time from the occurrence of a fault until 

establishment of normal voltage may not take more than 10 seconds [15]. Long voltage 

drops below 60-80% after a fault usually indicated that the turbine has accelerated too 

much that the power system cannot take it back to normal speed. The current control 

scheme performs a fast reduction of active power and a fast increase in reactive power to 
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overcome this situation. This scenario shows that overdesigning the converter can be 

helpful to post-fault voltage drops since more reactive power could be generated with 

less decrease in active power generation. Thus post-fault voltage compensation takes 

shorter time.  

5.4 Connecting DERs to the Grid 

Recent surveys show that the interconnection concerns from the electric utility point 

of view include reliability of the existing grid, the safety of electric power system 

personnel, and quality control. Thus, universal technical standards that permit 

standardized grid interconnection of the DERs while maintaining power system stability 

and worker safety is important in the MicroGrid design. The Institute of Electrical and 

Electronic Engineers (IEEE) presented a universal interconnection standard in winter of 

1999 which is currently called IEEE P1547 standard [137]. The IEEE P1547 standard 

presents a uniform design standard for interconnection of DERs of 10 MVA or smaller 

with electric power systems. The requirements relevant to performance, operation, 

testing, safety, and maintenance of the interconnection are also included in the standard. 

Currently, the states of California, Texas, New York, and others have also set forth their 

own DER interconnection requirements [138]. 

The reactive power requirements of the MicroGrid during the islanded mode are 

important to consider in the design stage. DERs and compensators should be able to 

provide real and reactive requirements of the loads at an acceptable voltage level in the 

islanded mode operation of the MicroGrid. The reactive power requirements of the load 

during islanded mode operation and the reactive power resources should be studied in 



 

183 
 

 

the design stage. Particularly, reactive power resources need to be sufficient not only to 

provide steady-state reactive power demands, but also to provide dynamic reactive 

power demands, such as those related to motor starting within islanded MicroGrid. 

There needs to be sufficient reactive power resources available when operating induction 

machines or some inverter-based loads. Synchronous generators can typically provide 

rated power at 0.8 lagging power factor. Thus, it is important to include other sources of 

reactive power (e.g. capacitors) when designing the island system if the load’s reactive 

requirements are far greater than the rating. Otherwise, the MicroGrid may not be able to 

provide the full-rated real power and that the generator’s operation may be degraded 

[137]. 

In the local control scheme, the reactive power sharing operates under the following 

control method. The system reactive load level is provided to all of the generators 

operating on the common isolated bus. Then, each generator adjusts its own reactive 

power output to match the system-average reactive load. This is a closed-loop control 

method that is usually implemented with a proportional, integral, derivative (PID) 

algorithm, which results in more even control with less required readjustment to 

maintain satisfactory results. Unlike droop control, voltage control of the islanded 

system can be maintained by a control algorithm that corrects for low or high system 

voltage. The voltage-correction feedback is applied to all of the generators to maintain 

the desired system voltage. 

Reactive power sharing requires that the system reactive power average be 

communicated to all generators. This is commonly achieved using an analog control 
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signal or digital control communication. In this approach, specifics of the equipment, 

interfaces, and available communications protocols may present challenges [106]. 

The protection devices placed at the interconnection of the DER to the power system 

measure the effective voltage and the fundamental frequency of the phase-to-phase 

voltages and if the measured voltage is in a range given in Table 12, the DER should 

stop energizing the area within the clearing time as indicated in the table. Clearing time 

is the maximum allowed time between the start of the abnormal condition and the DER 

disconnection from the system. For DERs smaller than or equal to 30 kW, the clearing 

time and voltage setpoint could be field adjustable or fixed. However, the voltage set 

points should be field adjustable for the DERs greater than 30 kW. The voltages shall be 

detected at either the PCC or the point of DER connection when any of the following 

conditions exist: 

a) The aggregate capacity of DER systems connected to a single PCC is less than or 

equal to 30 kW, 

b) The interconnection equipment is certified to pass a non-islanding test for the 

system to which it is to be connected, 

c) The aggregate DER capacity is less than 50% of the total Local EPS minimum 

annual integrated electrical demand for a 15 minute time period, and export of real or 

reactive power by the DER to the area is not permitted [139]. 

It should be mentioned that the numbers mentioned in Table 12 are subject to change 

for isolated power systems. Isolated power systems typically have less strict 

requirements on voltage levels than grid connected systems [106]. The requirements for 
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isolated systems may vary from one system to another and are usually defined during 

system design. 

Table 12 Requested fault clearing time for isolated power systems 
Voltage range (% of 

base voltagea) 
Clearing time(s) 

V<50 0.16 

50<V<88 2.00 

110<V<120 1.00 

V>120 0.16 

 

Placement of the DGs requires extensive studies on the MicroGrid. The weakest bus 

searching [140] is a simple method for DG placement. This method tries to maximize the 

loadability of a distribution system by placing a single DG at the weakest bus of the 

system. However, methods such as weakest bus or the largest load bus may not always 

lead to the best location for loss reduction and are not effective for placement of multiple 

DGs. Thus, an optimization problem to minimize the total cost and the active power loss 

should be solved in most cases. Optimal distributed generation (DG) placement [141] is 

usually formulated as a mixed integer nonlinear programming problem aiming at 

minimizing the total cost or the total active power loss. The optimal placement problem 

has been solved by a variety of optimization and search methods in the literature 

including repetitive load flow [142], the weakest bus searching [140], particle swarm 

intelligence [143], genetic algorithm [144], and linear programming [145].  
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5.5 Implementation and Simulation Results 

As mentioned earlier, direct modeling of hybrid systems in MLD form is usually 

time consuming. In this work, HYbrid Systems DEscription Language (HYSDEL) [83] 

was used to derive the MLD form of the system. This program has a compiler that 

converts the textual description of the system to the MLD form. The MLD model of the 

system is then used as the prediction model in the MPC scheme. The MPT toolbox was 

used to solve the optimization problem. The MPT toolbox uses a branch and bound 

algorithm to solve the multi-parametric programming. Solving the multi-parametric 

problem leads to solving LP or QP problem and efficient solvers exist for these 

problems. CPLEX 12.2 engine was used to solve the MIQP.  

5.5.1 Studies on an 11 bus MicroGrid 

One MicroGrid studied in this work is depicted in Figure 5-3. The system was 

composed of four Distributed Generators (DGs), 11 buses, and some dynamic and static 

loads. The DGs were consisted of one diesel generator, 2 wind generators, and one solar 

generator. Two reactive power compensators were also present in the system which will 

be discussed more in the case-studies. 
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 Figure 5-3 Schematic diagram of the studied MicroGrid  

 

Parameters of the sources are presented in Table 13. 

Table 13 Source parameters of the 11 bus MicroGrid 

Diesel Quantity Wind & Solar Quantity 

VgI-I 575V VgI-I (wind) 575V 
Pg 1MW Pg (wind) 0.4 MW 
pfg 0.8 Vs 400 V 
f 60 Hz  Vr 1975 V 

Ra 0.199Ω F 60 Hz 
Xp 0.18 Rs 0.023 (p.u.) 
Xd 1.25 Ls 0.18 (p.u.) 
Xd' 0.24 Rr 0.016 (p.u.) 
Xd'' 0.17 Lr 0.16 (p.u.) 
Tdo' 4.11s Lm 2.9 (p.u.) 
Tdo'' 0.023s H 0.685 (p.u.) 
Xq 0.62 f (wind) 0.01 (p.u.) 
Xq' N.A Poles 3 
Xq'' 0.26   
Tqo' N.A VgI-I (solar) 575V 

Tqo'' 0.061s Pg (solar) 0.4 MW 

H 1.06s f (solar) 60 Hz 
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The objective function for reactive power control of the MicroGrid shown in  Figure 5-3 

was chosen as follows. 
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(5-1) 

Control inputs to the system were the reference voltage of synchronous diesel 

generator ( ௥ܸ௘௙), reactive power setpoints of the DGs, and the reactive power setpoint of 

the dynamic compensator (ܳ௖ଵ, ܳ௖ଶ). Thus, the control input vectors were as follows for 

the case where power electronics compensators were placed in the MicroGrid. 

࢜ሺ݇ሻ ൌ ൣ ௥ܸ௘௙, ܳௐଵ, ܳௐଶ, ܳ௉௏ , ܳ௖ଵ, ܳ௖ଶ൧
்
, ࣌ሺ݇ሻ ൌ ሾ0,0ሿ் (5-2) 

For the case studies where capacitor banks were placed in the system the control input 

vectors were as follows. 

࢜ሺ݇ሻ ൌ ൣ ௥ܸ௘௙, ܳௐଵ, ܳௐଶ, ܳ௉௏൧
்
, ࣌ሺ݇ሻ ൌ ሾܳ௖ଵ, ܳ௖ଶሿ் (5-3) 

Since the system had four distributed generators, and two dynamic loads, the number 

of the states of the system was six. For the master DG, the simplified state space 

equations were as follows. 

ሻݐሶଵሺݔ ൌ
െ1

௏ܶ
ሻݐଵሺݔ ൅ ௥ܸ௘௙ሺݐሻ 

ଵܸሺݐሻ ൌ
1

௏ܶ
 ሻݐଵሺݔ

(5-4)
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For the other DGs in the system, the simplified state space equations were as follows. 

݀
ݐ݀
ሻݐ௜ሺݔ	 ൌ

െ1

ொܶ,௜
ሻݐ௜ሺݔ ൅ ܳ௥௘௙,௜ሺݐሻ 

ܳ஽ீ,௜ሺݐሻ ൌ
1

ொܶ,௜
݅					,				ሻݐ௜ሺݔ	 ൌ 2,3,4 

(5-5)

Similarly, following (3-65) for the dynamic loads in the system, the linearized state 

space equations were as follows. 

݀
ݐ݀
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െ1
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ଶቇ ௞ܸሺݐሻ , 

݆ ൌ 5,6,7		, ݇ ൌ 4,7,8 

ܳ௅,௝ሺݐሻ ൌ ܳ௅଴,௝ ቆ
1

௤ܶ,௝
ሻݐ௝ሺݔ	 ൅

௝ܥ
௤ܶ,௝
	 ௞ܸሺݐሻቇ 

(5-6)

where ௞ܸ’s are the voltage of the buses with the loads connected to them. Following the 

linearization technique discussed in [111], piecewise linear equations of the system were 

derived as follows.  

࢞ሺ݇ ൅ 1ሻ ൌ ൝
૚࢞ሺ݇ሻ࡭ ൅ ૚࢛ሺ݇ሻ࡮ ݂݅ ଵሺ݇ሻߜ ൌ 1

⋮
ሺ݇ሻ࢙࢞࡭ ൅ ሺ݇ሻ࢛࢙࡮ ݂݅ ௦ሺ݇ሻߜ ൌ 1

 
(5-7)

The bus voltages can be described in compact form as follows. 

ࢂ ൌ ൝
૚࢞ሺ݇ሻ࡯ ൅ ૚࢛ሺ݇ሻࡰ ݂݅ ଵሺ݇ሻߜ ൌ 1

⋮
ሺ݇ሻ࢙࢞࡯ ൅ ሺ݇ሻ࢛࢙ࡰ ݂݅ ௦ሺ݇ሻߜ ൌ 1

 
(5-8)
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where ܸ is the vector of the voltages that are used in the optimization formulation. 

Increasing the number of sets makes the prediction of voltage more accurate; however, 

the optimization algorithm takes more time to converge to the global minimum. 

The voltage, current and reactive power constraints of the SPS are given by 

following equations. 

௕ܸ௠௜௡ ൑ | ௕ܸሺ݇ሻ| ൑ ௕ܸ ெ௔௫ ܾ ൌ 3,4 
ܳ௖	௠௜௡ ൑ ܳ௖ሺ݇ሻ ൑ ܳ௖ ெ௔௫ ܿ ൌ 1,2  
|௖௟ሺ݇ሻܫ| ൑ ௖௟ܫ ெ௔௫ ݈ܿ ൌ 1,… , 4 

 
(5-9)

 

where NBus is the number of buses, NComp is the number of compensators and Ncl is the 

number of the cables, | ௕ܸሺ݇ሻ| is the voltage magnitude of bus b at time ݇, ܳ௖ሺ݇ሻ reactive 

power setpoint of compensator c at time ݇ and |ܫ௖௟ሺ݇ሻ| is the current of cable cl at time k.  

A partial sample of the MLD model of the MicroGrid is presented in Table 14. 

Table 14  Sample of the MLD model for the studied MicroGrid 

No Constraint type Description 

1 Eq. 7x1 x_2 == A*x_1 + B1*u_1 + B2*d_1 + 
B3*z_1 + B5 

2 Eq. 7x1 y_1 == C*x_1 + D1*u_1 + D2*d_1 + 
D3*z_1 + D5 

3 Ineq. 20x1 E2*d_1 + E3*z_1 <= E1*u_1 + E4*z_1 + 
E_5 

4 Ineq. 20x1 MLD.zl < z_1 < MLD.zu 

5 Ineq. 12x1 umin < u_0 < umax 

6 Eq. 1x1 u_0(5) in [0 0.2 0.3] 
7 Eq. 1x1 u_0(6) in [0 0.2 0.3] 
8 Ineq. 12x1 xmin < x_0 < xmax 
9 Ineq. 12x1 ymin < y_0 < ymax 

… … … 
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The photovoltaic source was controlled using an MPPT algorithm. The controller of 

the wind generator was also designed to send the maximum active power to the system 

and the reactive power was regulated through an external PID. Details of the MPPT and 

local controller are beyond the scope of this dissertation.  

The loads are modeled in the prediction model as dynamic loads and the MLD model 

of the system was derived with the approach discussed in the paper for a horizon of 12 

time steps ahead and each time step is 0.2 seconds. The input weight matrix was defined 

as ࢃ૚ ൌ ሾ0.1, 0.01,0.01,0.01ሿ ,	ࢃ૛ ൌ ሾ15,15ሿ which was designed to penalize the 

reactive power compensator less than the generators since providing reactive power by 

the reactive compensators is less costly.   

The studied MicroGrid with all details was implemented in SIMULINK and was 

considered as the actual power system. The measurements were taken from this power 

system and sent as feedback to the model predictive controller. The MPC used the MLD 

model achieved from HYSDEL compiler as the prediction model and performed the 

optimization over the horizon N using the feedback of the system as the initial state. 

Solving the optimization problem resulted in the optimal control sequence, which was 

sent to the sources and the compensators of the MicroGrid.  

The load and line parameters of the studied MicroGrid are summarized in Table 15. 
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Table 15 Load and line parameters of the 11 bus MicroGrid 

Symbol Quantity Symbol Quantity 

PL0-1 0.1 MW QL-4 0.03 MVar 
QL0-1 0.2 MVar PL-5 0.1 p.u. 
PL0-2 0.1 MW QL-5 0  
QL0-2 0.1 MVar PL-6 0.02 p.u. 
PL0-3 0.1 MW QL-6 0.07 p.u. 
QL0-3 0.1 MVar PL-7 0.1 p.u. 
bs1-3 1 QL-7 0  
bt1-3 2 PL-8 0.10 MW 
Tq1-3 3sec QL-8 0 MVar 
PL 10 0.05 MW PL-9 0.2 MW 

QL 10 0.2 MVar QL-9 0.1 MVar 

PL 11 0.2 MW QL 11 0 MVar 

PL-4 0.05 MW   

 

5.5.1.1 Case-study 1 

In this case-study, loads 7,10 got connected at t=2s in the sample MicroGrid shown 

in  Figure 5-3. These loads remained connected until t=3.2s where load 7 was 

disconnected but load 10 stayed connected to the system. In this case study, capacitor 

banks were considered as reactive power compensators and were connected to bus 6,7.   

In this case study, capacitor banks were considered as reactive power compensators and 

were connected to bus 6,7. Two capacitor banks rated 150 kVar were connected to bus 6 

and two capacitor banks each rated at 100 kVar were connected to bus 7. The time 

horizon was selected as 12 and the step time was considered to be 0.2s. The prediction 

model was implemented in HYSDEL which transfers the model to MLD form. The 
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MLD was used as prediction model and the optimization was performed using CPLEX 

12.2.  

The optimization problem led to solving a Mixed Integer Quadratic Programming 

(MIQP) problem since norm 2 was used in the objective function. The voltages of the 

load buses are shown in Figure 5-4 and the control inputs are depicted in  Figure 5-5. As 

can be seen in the figure, the dynamic reactive controller responded faster to the change 

in the load and results in smoother voltage profile. The active and reactive power 

tracking of the wind generator 1 and the PV source are depicted in Figure 5-6 and Figure 

5-7 respectively.  

 

Figure 5-4 RMS voltage of bus 5,6,7,8 – MPC (solid line), Local Control (dashed line) 
in case study 1 
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As can be seen in Figure 5-5, the controller adjusted the reactive power coordination 

by decreasing the voltage reference of the master generator, decreasing the reactive 

power setpoint of wind generators and the solar generator, and adding two capacitor 

banks at the connection point of capacitor 2. After one the loads gets energized, the 

controller responds by disconnecting one capacitor at the connection point of capacitor 2 

and connecting two capacitors at the connection point of capacitor 1. These changes add 

up to the best compensation that results in the voltages to stay within limits. Figure 5-6 

and Figure 5-7 show how one wind generator and one solar generator responded to the 

reactive power setpoint change. 

 

 

 Figure 5-5 Control inputs to the MicroGrid in case study 1 
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Figure 5-6 Active and reactive response of wind generator 1 for case study 1 (solid line), 

control inputs (dotted line) 
 

 
Figure 5-7 Active and reactive response of the PV source for case study 1 (solid line) – 

control inputs (dotted line) 
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5.5.1.2 Case-study 2: 

In this case-study, the same load change pattern as case-study 1 occurred in the 

system. However, STATCOMs were used for reactive power compensation instead of 

capacitor banks. The problem formulation was the same as case-study 1. The voltage of 

the load buses are shown in  Figure 5-8 and the control inputs are depicted in  Figure 

5-9. The results demonstrate that the dynamic reactive controller successfully kept the 

system close to nominal voltage; however, the local control scheme was unable to satisfy 

system voltage constraints in this case. 

 
 Figure 5-8 Voltage of Bus 5,6,7,8 – MPC (solid line), Local Control (dashed line) in 

case study 2 
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 Figure 5-9 Control inputs to the MicroGrid in case study 2 

 
 

Since the reactive demand decreased at t=2s, the controller had to decrease the reactive 

power injection to the system. As can be seen in Figure 5-9, the controller responded to 

the load change by decreasing the reactive injection of one wind generator, decreasing 

the reactive power injection of the solar generator, slightly increasing the reactive power 

injection of the D-STATCOM 1, and slightly increasing the reference voltage of the 

master generator.  These changes added up to keep all the bus voltages within limits 

after the load change at t=2s. After one load was energized again, the controller 

responded by increasing the reactive injection of one wind generator, solar generator, 

and DSTATCOM 2. The controller also slightly decreased the voltage setpoint of the 

master generator, and the reactive setpoint of DSTATCOM 1. These changes added up 

to keeping the MicroGrid bus voltages within desired limits.  
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5.5.1.3 Case-study 3 

As mentioned earlier renewable energy sources are intermittent and the amount of 

power production varies due to climate changes. The effect of changes in production of 

active and reactive power on the sample MicroGrid shown in  Figure 5-3 is studied in 

this case-study. 

 In this case-study, capacitor banks were connected to bus 6,7 as reactive power 

compensator instead of D-STATCOMS. The wind generator 1 stopped the production of 

reactive power at t=2.2s due to changes in weather condition and then went back to 

normal operation at t=3.2s.  Further, wind generator 2 stopped production of reactive 

power at t=3.2s and remained in the same condition until t=6s. 

Similar to case-study 1, the optimization problem yielded to solving an MIQP 

problem since norm 2 was used in the objective function. The voltage of the load buses 

are shown in  Figure 5-10 and the control inputs are depicted in  Figure 5-11. The results 

demonstrate that the controller used alternative reactive capabilities of the system to 

achieve smooth voltage profile when one of the sources was unavailable. 

 



 

199 
 

 

 
 Figure 5-10 RMS voltage of Bus 5,6,7,8 in case study 3 

 
 

As can be seen in Figure 5-11, wind generator 1 was not able to inject reactive power 

to the system from t=2.2s until t=3.2s.Therefore, the reactive power controller had to 

increase the reactive injection by connecting two capacitor banks at the connection point 

of capacitor 1. Since capacitor bank reactive injection is quantized, the controller had to 

decrease the reactive injection of wind generator to coordinate the reactive power to 

maintain the bus voltages within limits. At t=3.2s wind generator 2 lost its capability to 

produce reactive power. The dynamic reactive controller increased the reactive injection 

of solar source, wind generator 1 and disconnected the capacitor banks at connection 

point of capacitor 1 to compensate for the loss of reactive generation.     
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 Figure 5-11 Control inputs to the MicroGrid in case study 3 

 

5.5.1.4 Case-study 4 

In this case-study, the same generation changes as case-study 3 occurred in the 

system. However, D-STATCOMs were used for reactive power compensation instead of 

capacitor banks. The problem formulation was the same as case-study 3, and the 

optimization problem led into solving a QP problem.  The voltage of the load buses are 

shown in  Figure 5-12 and the control inputs are depicted in  Figure 5-13. Similar to 

case-study 3, the dynamic reactive controller used alternative reactive capabilities of the 

system to achieve smooth voltage profile when one reactive power source was 

unavailable. 
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 Figure 5-12 RMS voltage of Bus 5,6,7,8 in case study 4 

 

As can be seen in  Figure 5-13, wind generator 1 lost its capability to produce 

reactive power at t=2.2s. Therefore, the dynamic reactive controller had to increase the 

reactive power injection of the solar source and the voltage reference of the master 

generator. These changes alone would cause overvoltage in some buses in the system. 

Therefore, the reactive controller had to decrease the reactive injection of wind generator 

2 and the D-STATCOMs. At t=3.2s, wind generator 2 lost its capability to produce 

reactive power. Therefore, the dynamic reactive controller increased the reactive 

injection of both reactive compensators as well as wind generator 1. In this case, the 

reactive controller had to slightly decrease the reactive injection of the solar source. As 

can be seen in Figure 5-12, these controller was able to maintain bus voltages within 

limits taking these control actions.  
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 Figure 5-13 Control inputs to the MicroGrid in case study 4 

 

5.5.2 Studies on IEEE 34 node MicroGrid 

Figure 5-14 shows a MicroGrid based designed based on the IEEE34 node. The 

system is divided into three zones and each zone contains a DER. The system was 

designed such that the DERs were capable of providing active and reactive power to the 

loads when the MicroGrid was operating in islanded mode. Two capacitor banks were 

used as switched capacitor banks in the case-study which means that the general 

controller was capable of connecting and disconnecting them. 
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Figure 5-14 MicroGrid based on the IEEE 34 node feeder 
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The distributed loads of the MicroGrid are listed in Table 16. The spot loads of the 

MicroGrid are shown in Table 17. Source parameters of the MicroGrid shown in Figure 

5-14 is are listed in Table 18. 

 

 
Table 16 Distributed loads of the IEEE 34 node system 

Node Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 
A B Model kW kVAr kW kVAr kW kVAr 

802 806 Y-PQ 0 0 30 15 25 14 
808 810 Y-I 0 0 16 8 0 0 
818 820 Y-Z 34 17 0 0 0 0 
820 822 Y-PQ 135 70 0 0 0 0 
816 824 D-I 0 0 5 2 0 0 
824 826 Y-I 0 0 40 20 0 0 
824 828 Y-PQ 0 0 0 0 4 2 
828 830 Y-PQ 7 3 0 0 0 0 
854 856 Y-PQ 0 0 4 2 0 0 
832 858 D-Z 7 3 2 1 6 3 
858 864 Y-PQ 2 1 0 0 0 0 
858 834 D-PQ 4 2 15 8 13 7 
834 860 D-Z 16 8 20 10 110 55 
860 836 D-PQ 30 15 10 6 42 22 
836 840 D-I 18 9 22 11 0 0 
862 838 Y-PQ 0 0 28 14 0 0 
842 844 Y-PQ 9 5 0 0 0 0 
844 846 Y-PQ 0 0 25 12 20 11 
846 848 Y-PQ 0 0 23 11 0 0 

Total     262 133 240 120 220 114 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

205 
 

 

Table 17 Spot loads of the IEEE 34 node system 
Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 

  Model kW kVAr kW kVAr kW kVAr 
860 Y-PQ 20 16 20 16 20 16 
840 Y-I 9 7 9 7 9 7 
844 Y-Z 135 105 135 105 135 105 
848 D-PQ 20 16 20 16 20 16 
890 D-I 150 75 150 75 150 75 
830 D-Z 10 5 10 5 25 10 

Total   344 224 344 224 359 229 
 
 
 

Table 18 Source parameters of the IEEE 34 node system 

Diesel Quantity Wind  Quantity 

VgI-I 13.8 kV VgI-I  575V 
Pg 1MW Pg  0.75 MW 
pfg 0.85 Vs 575 V 

f 60 Hz  Vr 1975 V 
Ra 0.199Ω F 60 Hz 
Xp 0.18 Rs 0.023 (p.u.) 
Xd 1.305 Ls 0.18 (p.u.) 
Xd' 0.296 Rr 0.016 (p.u.) 
Xd'' 0.252 Lr 0.16 (p.u.) 
Tdo' 1.01s Lm 2.9 (p.u.) 
Tdo'' 0.053s H 0.685 (p.u.) 
Xq 0.474 f  0.01 (p.u.) 
Xq' N.A Poles 3 
Xq'' 0.243   
Tqo' N.A   

Tqo'' 0.061s Pg (solar) 0.4 MW 

H 1.06s f (solar) 60 Hz 

 

 

The result of steady state load flow of the MicroGrid when the diesel generator was off 
and the MicroGrid was connected to the main grid is shown in Table 19 and Table 20. 
The result of steady state load flow of the MicroGrid when it was operating in the 
islanded mode is shown in  

Table 21 and  

Table 22. 
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Table 19 Power flow of the system when connected to the grid and the Diesel generator 
is off – Bus voltages 

Voltage Voltage Angle 

Bus A B C A B C 

800 1.05 1.05 1.05 0.00 -118.97 119.96 

802 1.05 1.05 1.05 -0.07 -119.04 119.89 

806 1.05 1.05 1.05 -0.11 -119.08 119.85 

808 1.04 1.04 1.04 -0.93 -119.88 119.01 

810 1.04 1.04 1.04 -0.93 -119.88 119.01 

812 1.02 1.03 1.03 -1.90 -120.84 118.02 

814 1.01 1.02 1.02 -2.68 -121.62 117.21 

850 1.01 1.02 1.02 -2.68 -121.62 117.21 

816 1.01 1.02 1.02 -2.69 -121.63 117.20 

818 1.01 1.02 1.02 -2.68 -121.63 117.20 

820 1.01 1.02 1.01 -2.55 -121.63 117.07 

822 1.01 1.02 1.01 -2.53 -121.63 117.05 

824 1.01 1.01 1.01 -2.99 -121.92 116.95 

826 1.01 1.01 1.01 -2.99 -121.92 116.95 

828 1.01 1.01 1.01 -3.04 -121.97 116.90 

830 0.99 0.99 0.99 -4.31 -123.24 115.72 

854 0.99 0.99 0.99 -4.35 -123.28 115.69 

856 0.99 0.99 0.99 -4.35 -123.28 115.69 

852 0.95 0.95 0.95 -6.74 -125.67 113.48 

832 0.95 0.95 0.95 -6.74 -125.67 113.48 

888 1.05 1.05 1.05 -14.36 -133.23 106.13 

890 0.90 0.90 0.90 -18.56 -137.42 102.08 

858 0.95 0.95 0.95 -7.04 -125.97 113.20 

864 0.95 0.95 0.95 -7.04 -125.97 113.20 

834 0.95 0.95 0.95 -7.39 -126.33 112.87 

842 0.95 0.95 0.95 -7.42 -126.35 112.85 

844 0.95 0.95 0.95 -7.55 -126.48 112.73 

846 0.95 0.95 0.95 -7.82 -126.74 112.47 

848 0.95 0.95 0.95 -7.86 -126.78 112.43 

860 0.95 0.95 0.95 -7.40 -126.33 112.87 

836 0.95 0.95 0.95 -7.41 -126.34 112.87 

862 0.95 0.95 0.95 -7.41 -126.34 112.87 

838 0.95 0.95 0.95 -7.41 -126.34 112.87 

840 0.95 0.95 0.95 -7.41 -126.34 112.87 
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Table 20 Power flow of the system when connected to the grid and the Diesel generator 
is off – Line currents 

Current 
From Bus To Bus A B C 

800 802 29.88 29.33 28.85 
802 806 29.88 29.33 28.85 
806 808 29.88 27.54 27.37 
808 810 29.88 27.54 27.37 
808 812 29.88 26.61 27.37 
812 814 29.88 26.61 27.37 
814 850 29.88 26.61 27.37 
850 816 29.81 26.71 27.03 
816 818 10.59 0.00 0.00 
818 820 9.53 0.00 0.00 
820 822 9.53 0.00 0.00 
816 824 20.68 26.43 27.03 
824 826 0.00 1.25 0.00 
824 828 65.64 69.29 71.24 
828 830 65.25 69.29 71.24 
830 854 63.61 67.64 68.75 
854 856 0.00 0.12 0.00 
854 852 63.61 67.42 68.75 
852 832 63.61 67.42 68.75 
832 888 21.61 21.60 21.58 
888 890 21.61 21.60 21.58 
832 858 21.61 21.60 21.58 
858 864 0.06 0.00 0.00 
858 834 48.63 52.05 53.03 
834 842 87.94 89.61 88.21 
842 844 87.54 89.61 88.21 
844 846 67.04 67.91 66.88 
846 848 67.04 67.91 66.88 
834 860 4.63 5.36 4.30 
860 836 4.63 5.36 4.30 
836 862 0.00 1.66 0.00 
862 838 0.00 1.66 0.00 
836 840 2.34 2.45 1.81 
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Table 21 Power flow of the system isolated from the grid – Bus voltages 
Voltage Voltage angle 

Bus A B C A B C 

800 1.05 1.05 1.06 0.00 -119.66 121.06 

802 1.05 1.05 1.06 0.00 -119.66 121.06 

806 1.05 1.05 1.06 0.00 -119.66 121.06 

808 1.05 1.05 1.06 0.03 -119.64 121.06 

810 1.05 1.05 1.06 0.03 -119.64 121.06 

812 1.05 1.05 1.06 0.08 -119.61 121.06 

814 1.05 1.06 1.06 0.12 -119.59 121.06 

850 1.05 1.06 1.06 0.12 -119.59 121.06 

816 1.05 1.06 1.06 0.10 -119.60 121.04 

818 1.05 1.06 1.06 0.11 -119.60 121.04 

820 1.05 1.06 1.05 0.24 -119.60 120.91 

822 1.05 1.06 1.05 0.25 -119.60 120.89 

824 1.05 1.05 1.05 -0.30 -120.02 120.67 

826 1.05 1.05 1.05 -0.30 -120.02 120.67 

828 1.04 1.05 1.05 -0.35 -120.08 120.62 

830 1.02 1.02 1.02 -1.68 -121.49 119.31 

854 1.02 1.02 1.02 -1.72 -121.52 119.28 

856 1.02 1.02 1.02 -1.72 -121.53 119.28 

852 0.98 0.98 0.98 -4.24 -124.19 116.80 

832 0.98 0.98 0.98 -4.24 -124.19 116.80 

888 1.07 1.07 1.08 -11.59 -131.84 109.26 

890 0.93 0.93 0.93 -15.64 -136.05 105.08 

858 0.98 0.98 0.98 -4.56 -124.53 116.48 

864 0.98 0.98 0.98 -4.56 -124.53 116.48 

834 0.97 0.97 0.98 -4.94 -124.93 116.11 

842 0.97 0.97 0.98 -4.97 -124.96 116.08 

844 0.97 0.97 0.98 -5.09 -125.09 115.96 

846 0.97 0.97 0.97 -5.35 -125.36 115.69 

848 0.97 0.97 0.97 -5.39 -125.40 115.66 

860 0.97 0.97 0.98 -4.95 -124.94 116.10 

836 0.97 0.97 0.98 -4.95 -124.94 116.10 

862 0.97 0.97 0.98 -4.95 -124.94 116.10 

838 0.97 0.97 0.98 -4.95 -124.94 116.10 

840 0.97 0.97 0.98 -4.95 -124.94 116.10 
 

 



 

209 
 

 

Table 22 Power flow of the system isolated from the grid – Line currents  
Current 

From Bus To Bus A B C 
800 802 0.00 0.00 0.00 

802 806 0.00 0.00 0.00 

806 808 0.00 1.93 1.66 

808 810 0.00 1.93 1.66 

808 812 0.00 0.00 0.00 

812 814 0.00 2.96 1.66 

814 850 0.00 2.96 1.66 

850 816 53.12 49.85 50.81 

816 818 10.90 0.00 0.00 

818 820 9.81 0.00 0.00 

820 822 4.36 0.00 0.00 

816 824 4.36 0.00 0.00 

824 826 0.00 1.28 0.00 

824 828 82.28 85.96 88.37 

828 830 81.87 85.96 88.37 

830 854 80.15 84.23 85.80 

854 856 0.00 0.12 0.00 

854 852 80.15 84.00 85.80 

852 832 80.15 84.00 85.80 

832 888 25.86 25.81 25.84 

888 890 25.86 25.81 25.84 

832 858 58.79 62.43 63.76 

858 864 0.06 0.00 0.00 

858 834 88.85 90.35 89.14 

834 842 88.85 90.35 89.14 

842 844 88.85 90.35 89.14 

844 846 88.44 90.35 89.14 

846 848 67.72 68.47 67.60 

834 860 4.68 5.41 4.34 

860 836 2.89 4.79 1.83 

836 862 0.00 1.67 0.00 

862 838 0.00 1.67 0.00 

836 840 2.36 2.47 1.83 
 

 



 

210 
 

 

The objective function for reactive power control of the MicroGrid shown in Figure 

5-14 was chosen as follows.  
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(5-10)

where ௜ܸ
஺ሺ݇ ൅ ሻ, ௜ܸݐ|ݐ

஻ሺ݇ ൅ ሻ, ௜ܸݐ|ݐ
஼ሺ݇ ൅  ሻ are the predicted voltage of phase A, Bݐ|ݐ

and C of bus i, respectively. 

The control inputs to the system were the reference voltage of synchronous diesel 

generator ( ௥ܸ௘௙), and reactive power setpoints of the DGs and the switched capacitors 

(ܳ௖ଵ, ܳ௖ଶ). Thus, the control input vectors were defined as follows. 

࢜ሺ݇ሻ ൌ ൣ ௥ܸ௘௙, ܳௐଵ, ܳௐଶ ൧
்
, ࣌ሺ݇ሻ ൌ ሾܳ௖ଵ, ܳ௖ଶሿ் 

(5-11)

Since the system had three distributed generators, and one dynamic load, the number 

of the states of the system was four. So the optimization problem was solved subject to 

the following simplified differential algebraic equations. 

ଵሺ݇ݔ ൅ 1ሻ ൌ ଵሺ݇ሻݔ	 ൅ Δݐ ൬
െ1

௏ܶ
ଵሺ݇ሻݔ ൅  ௥௘௙ሺ݇ሻ൰ݒ

ଵܸሺ݇ሻ ൌ
1

௏ܶ
 ଵሺ݇ሻݔ

(5-12)
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௜ሺ݇ݔ	 ൅ 1ሻ ൌ ௜ሺ݇ሻݔ ൅ Δݐ ቆ
െ1

ொܶ,௜
௜ሺ݇ሻݔ ൅ ܳ௥௘௙,௜ሺ݇ሻቇ 

ܳ஽ீ,௜ሺ݇ሻ ൌ
1

ொܶ,௜
݅					,			௜ሺ݇ሻݔ	 ൌ 2,3 

(5-13)

ସሺ݇ݔ ൅ 1ሻ ൌ ସሺ݇ሻݔ െ Δݐ ൭
ସሺ݇ሻݔ

௤ܶ
൅ ܳ௅଴ሺܸ௕ೞሺ݇ሻ െ ܸ௕೟ሺ݇ሻሻ൱ 

ܳ௅ሺ݇ሻ ൌ ൭
ସሺ݇ሻݔ

௤ܶ
൅ ܳ௅଴ቀܸ௕೟ሺ݇ሻቁ൱		 

(5-14)

࡯࡮࡭ࢂ
࢔ ൌ ࢚ࢇ ࢉ࢈ࢇࢂ

࢓ ൅ ࢚࢈ ࢉ࢈ࢇࡵ
࢓  

ࢉ࢈ࢇࡵ	
࢔ ൌ ࢚ࢉ ࢉ࢈ࢇࢂ

࢓ ൅ ࢚ࢊ ࢉ࢈ࢇࡵ
࢓  

(5-15)

௕ܸ௠௜௡ ൑ | ௕ܸሺ݇ሻ| ൑ ௕ܸ ெ௔௫ ܾ ൌ 1,… . , ஻ܰ௨௦ 
| ௠ܸሺ݇ሻ െ ௡ܸሺ݇ሻ|

|ܼ௖௟|
ൌ |௖௟ሺ݇ሻܫ| ൑ ௖௟ܫ ெ௔௫ ݈ܿ ൌ 1,… , ௖ܰ௟ 

 
(5-16)

Following the linearization technique discussed in [111], system state space 

equations were derived in the piecewise linear form as follows.  

࢞ሺ݇ ൅ 1ሻ ൌ ൝
૚࢞ሺ݇ሻ࡭ ൅ ૚࢛ሺ݇ሻ࡮ ݂݅ ଵሺ݇ሻߜ ൌ 1

⋮
ሺ݇ሻ࢙࢞࡭ ൅ ሺ݇ሻ࢛࢙࡮ ݂݅ ௦ሺ݇ሻߜ ൌ 1

 
(5-17)

The bus voltages can be described in compact form as follows. 

ࢂ ൌ ൝
૚࢞ሺ݇ሻ࡯ ൅ ૚࢛ሺ݇ሻࡰ ݂݅ ଵሺ݇ሻߜ ൌ 1

⋮
ሺ݇ሻ࢙࢞࡯ ൅ ሺ݇ሻ࢛࢙ࡰ ݂݅ ௦ሺ݇ሻߜ ൌ 1

 
(5-18)

where ܸ is the vector of the voltages that are used in the optimization formulation and it 

includes the voltage of all three buses in the system. Increasing the number of sets makes 



 

212 
 

 

the prediction of voltage more accurate; however, the optimization algorithm takes more 

time to converge to the global minimum.  

5.5.2.1 Case-study 1: Load change with local control 

Sharp load changes during islanded operation can cause instability and oscillatory 

voltage in the MicroGrid. Further, the on load tap changers are not fast enough to avoid 

the effect of sharp load changes efficiently.  

This case-study is demonstrating the effect of sharp load change in the islanded 

MicroGrid with local voltage control and fixed capacitors.  The exciter of the master 

generator usually damps the voltage oscillations in time if the relays do not operate and 

isolate the system any further. However, if the protection relays are triggered the system 

may experience a blackout. Figure 5-15 and Figure 5-16 show the voltage oscillations 

resulting from the load change in the system.    
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Figure 5-15 Bus voltages with fixed capacitor – case study 1 
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Figure 5-16 Bus voltages with fixed capacitor - case study 1 
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both of the loads were energized again at t=5.5s. The generalized MPC controller tried to 

reduce the effect of the load change in the system by sending optimal control inputs to 

the system. The assumption in this case-study was that the MPC controller does not have 

a prediction of the exact time of load change. Therefore, after the load status changed, it 

took 0.2 seconds for the controller to send the updated control inputs to the system.  As 

can be seen in Figure 5-17 and Figure 5-18, the MPC controller was able to keep the 

voltages within the limits by adjusting the control input.  

Each of loads 1 and 2 are approximately 25% of the system’s total load. Given that 

the load change was significantly large in this case-study and the system was operating 

in islanded mode, the bus voltage experience a spike immediately after the voltage 

change. This transient behavior is acceptable with current requirements presented in 

IEEE Standard for isolated power systems [106]. The IEEE Std 1547.4 mentions that the 

under-voltage tripping time are 0.16s for voltage less than 50% and 2s for voltages less 

than 88%. In this case-study, the variations in the voltage beyond the 12% limit occurred 

for less than 0.2 seconds, which is acceptable according to IEEE 1547.4 Standard for 

isolated power systems and does not cause relays to trip. 
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Figure 5-17 Bus voltages with MPC – case study 2 
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Figure 5-18 Bus voltages with MPC – case study 2 
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should be noted that disconnecting the capacitor banks alone would have resulted in an 

overvoltage in the system. On the other hand, the controller could not keep the bus 

voltages within limits without turning the capacitor banks off.    

 
Figure 5-19 Control inputs to the MicroGrid generated by MPC – case study 2 
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5.5.2.3 Case –study 3: Wind change 

In this case-study, the wind speed changed to 60% of rated speed from t=4s to t=15s. 

The variations in wind speed resulted in variation in the output power of the wind 

generator.  Wind speed variations may affect the stability of the system as well as the 

voltage level of the load buses. The model predictive control had an estimate of the wind 

variation, which is provided by the user based on the weather forecast. This forecast 

does not need to be exactly accurate and the reactive controller can operate as long as it 

can estimate the reactive power injection capacity of the wind sources. The controller 

had to determine what percentage of the output power may be assigned to reactive power 

generation based on the total generated power of the wind generator. The reactive power 

generation limit of the wind generator was tighter in this case, so reactive power had to 

be provided by other sources of reactive power in the system.  

The bus voltages of some buses in the system are shown in Figure 5-20and Figure 

5-21. The system also experiences a temporary fault at t=8.5s which results in a glitch in 

bus voltages. 
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Figure 5-20 Bus voltages of MicroGrid – case study 3 
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Figure 5-21 Bus voltages of the MicroGrid – case study 3 

 

As can be seen in Figure 5-22, the reactive controller lowered the reactive power 

reference of the wind generators and increased the voltage setpoint of the master 

generator.  Increasing the voltage setpoint of the master generator resulted in a bus 

voltage increase in all the buses of the microgrid. This is a wasteful method to keep bus 

voltage within limits and it puts stress on the diesel generator. However, in this case, the 

controller does not have access to any other local reactive injectors.  

5 10 15 20 25

0.6

0.8

1

1.2

Time(s)

V
82

4(
p.

u.
)

5 10 15 20 25

0.6

0.8

1

1.2

Time(s)

V
85

0(
p.

u.
)

5 10 15 20 25

0.6

0.8

1

1.2

Time(s)

V
82

2(
p.

u.
)

5 10 15 20 25

0.6

0.8

1

1.2

Time(s)

V
80

0(
p.

u.
)



 

222 
 

 

 
Figure 5-22 Control inputs to the MicroGrid generated by MPC – case study 3 
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Figure 5-23 Active and reactive power generation of the wind generators – case study 3 
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startup. This is normal in most induction motor startups in heavily loaded power 

systems. 

Figure 5-24, Figure 5-25 shows the bus voltages dropped below the requirement 

during motor startup. This drop did not make the system go unstable or the relays to trip. 

However, this voltage drop can result in flickering lights in the distribution system.  

 

 
Figure 5-24 Bus voltages of MicroGrid – case study 4 
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Figure 5-25 Bus voltages of MicroGrid – case study 4 
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there were no additional reactive capabilities in the system to inject reactive power 

locally.  

 
Figure 5-26 Control inputs to the MicroGrid – case study 4 
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a demand response contract with the utility. The induction motor connected to bus 840 

started operating at t=2s and drew the starting current for about one second. The MPC 

controller used the available control inputs to achieve the voltage goals. The control 

signals generated by the MPC controller are depicted in Figure 5-27. As can be seen in 

Figure 5-28 and Figure 5-29, the MPC controller used the demand response load to 

reduce the reactive power consumption of the whole system, which resulted in less 

voltage drop in the buses comparing to case-study 4.  

Compared to case-study 5, in this case the controller also disconnected the demand-

response load during the startup period of the motor. The demand-response load was 

disconnected when QDR=1 and connected when QDR=0 Disconnecting the demand-

response load resulted in a less voltage drop in the buses in the system. The voltage of 

some buses are depicted in Figure 5-28, Figure 5-29.  
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Figure 5-27 Control inputs to the MicroGrid – case study 5 
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Figure 5-28 Bus voltages of MicroGrid – case study 5 
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Figure 5-29 Bus voltages of MicroGrid – case study 5 
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that compared to case-study 4 and 5, the controller was more successful in keeping the 

voltage close to required level during motor startup. During the transient condition, the 

system experienced voltage spikes and voltage drops. As mentioned earlier, the present 

requirements in IEEE Std 1547.4 [106] for under-voltage tripping time are 0.16 s for 

voltage less than 50% and 2 s for voltages less than 88%. The variations in the voltage 

beyond the 12% limit occurred for less than 0.2 seconds, which is acceptable according 

to IEEE 1547.4 Standard for isolated power systems and does not cause relays to trip. 

Some bus voltages remained outside the 5% limit for around one second.  

As can be seen in Figure 5-32, the MPC controller increased the reference voltage of 

the master generator, disconnected the DR load, and connected the capacitor bank to be 

able to provide enough reactive power for the induction motor startup. 
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Figure 5-30 Bus voltages of MicroGrid – case study 6 
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Figure 5-31 Bus voltages of MicroGrid – case study 6 
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Figure 5-32 Control inputs to the MicroGrid – case study 6 
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drew the starting current for about one second. A non-sensitive load with demand 

response contract with the utility was connected to bus 890.  

In this case-study, when the demand response load was disconnected from the 

system, the PQ generators in the system had higher reactive power production capacity, 

since less active power was being consumed by the loads in the system. Thus, the MPC 

controller adjusted the reactive power production limit of the wind generators. Figure 

5-33 shows how the reactive power controller increased the reactive power production 

setpoint of the wind generator to achieve the voltage requirements. Similar to the 

previous case-study, the reactive power controller increased the voltage reference of the 

master generator and disconnected the demand-response load. As can be seen in Figure 

5-34 and Figure 5-35, the MPC controller was able to maintain the voltage within limits 

in this case with proper adjustment and demand-response load. In this case the system 

only experiences voltage drop and voltage spike for short periods of time. The light 

flickering in the distribution system is not visible in that short duration. Compared to 

case-study 4,5, and 6, the controller performed better in case-study since it had more 

flexibility in terms of control inputs to achieve the required criteria.  
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Figure 5-33 Control inputs to the MicroGrid – case study 7 
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Figure 5-34 Bus voltages of MicroGrid – case study 7 
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Figure 5-35 Bus voltages of MicroGrid – case study 7 
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The assumption in this case-study was that the MPC controller did not have a prediction 

of the exact time of load change. Therefore, after the load changed, it took 0.3 seconds 

for the controller to send the updated control inputs to the system since the step time of 

the control algorithm was set to 0.3s.  As can be seen in Figure 5-37 and Figure 5-38, the 

MPC controller was able to keep the voltages within the limits by adjusting the control 

inputs.  In this case-study, to reduce the losses in the system and to reduce the peak 

power, the reference voltage setpoint was chosen equal to 0.96 p.u. The wind profile in 

this case-study is shown in Figure 5-36. 

 

 

Figure 5-36 Wind profile 
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Figure 5-37 Bus voltages with MPC – case study 8 
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Figure 5-38 Bus voltages with MPC – case study 8 
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additional demand for reactive support. The designed controller responded by increasing 

the reactive injection of both wind generators. The controller also increased the voltage 

reference of the master generator for a short period of time. These changes in the control 

input resulted in the voltages of the system to stay within the 5% limits except for a very 

short period as can be seen in Figure 5-37 and Figure 5-38. 

 
Figure 5-39 Control inputs to the MicroGrid generated by MPC – case study 8 

 
 
 
 

1 2 3 4 5 6 7 8
0.9

1

1.1

Time(s)

V
re

f(
p.

u.
)

1 2 3 4 5 6 7 8
-0.2

0

0.2

Time(s)

Q
w

1(
p.

u.
)

1 2 3 4 5 6 7 8
-0.2

0

0.2

Time(s)

Q
w

2(
p.

u.
)

1 2 3 4 5 6 7 8
0

0.5

1

Time(s)

Q
c1

1 2 3 4 5 6 7 8
0

0.5

1

Time(s)

Q
c2



 

243 
 

 

5.5.2.9 Case –study 9: Controller failure due to capacitor bank malfunction 

This case-study is demonstrating the effect of malfunction of the actuators of the 

components on the performance the MPC controller during sharp load changes in the 

system. Load 2 which was connected to node 844 got disconnected from the system at 

t=2.5s. Further, load 1 which was connected to node 890 got disconnected at t=3.5s and 

both of the loads were energized again at t=5.5s. The generalized MPC controller tried to 

reduce the effect of the load change in the system by sending optimal control inputs to 

the system. The assumption in this case-study was that the MPC controller does not have 

a prediction of the exact time of load change. Therefore, after the load changed, it took 

0.2 seconds for the controller to send the updated control inputs to the system.  After the 

load change at t=3.5s, the controller tried to disconnect the capacitor banks one by one to 

coordinate the reactive power in the system. However, the actuators of the capacitor 

banks malfunctioned, which resulted in the capacitor banks to remain connected to the 

system. As a result the MicroGrid buses experienced an overvoltage for a few seconds as 

can be seen in Figure 5-40 and Figure 5-41. This overvoltage can be destructive to the 

system and cause insulation damaging.  



 

244 
 

 

 
Figure 5-40 Bus voltages with MPC – case study 9 
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Figure 5-41 Bus voltages with MPC – case study 9 

 
The control inputs to the system in case-study 9 are depicted in Figure 5-42. 
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Figure 5-42 Control inputs to the MicroGrid generated by MPC – case study 9 

 

5.5.2.10 Case –study 10: Failure due communication delay 

This case-study is demonstrating the effect of communication delay on the 

performance the MPC controller during sharp load changes in the system. Load 2, 

connected to node 844, got disconnected from the system at t=2.5s. Further, load 1 

connected to node 890, got disconnected at t=3.5s. Both of these loads were energized 

again at t=5.5s. The generalized MPC controller tried to reduce the effect of the load 

change in the system by sending optimal control inputs to the system. After the load 

change at t=3.5s, the controller tried to disconnect the capacitor banks one by one to 

1 2 3 4 5 6 7 8
0.9

1

1.1

Time(s)
V

re
f(

p.
u.

)

1 2 3 4 5 6 7 8
-0.2

0

0.2

Time(s)

Q
w

1(
p.

u.
)

1 2 3 4 5 6 7 8
-0.2

0

0.2

Time(s)

Q
w

2(
p.

u.
)

1 2 3 4 5 6 7 8
0

0.5

1

Time(s)

Q
c1

1 2 3 4 5 6 7 8
0

0.5

1

Time(s)

Q
c2



 

247 
 

 

coordinate the reactive power in the system. However, the communication between the 

centralized controller and the capacitor banks experienced 1 second delay. This 

communication delay resulted in an overvoltage for around one second and an abnormal 

behavior in the system voltages as can be seen in Figure 5-43and Figure 5-44. In 

addition, the controller tried to connect the capacitor banks back to the system after the 

load change at t=5.5s. The system experienced the same communication delay for one 

second resulting in an undervoltage in the system buses for one second.  

 
Figure 5-43 Bus voltages with MPC – case study 10 
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Figure 5-44 Bus voltages with MPC – case study 10 

 

The control inputs to the system in case-study 10 are depicted in Figure 5-45. 
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Figure 5-45 Control inputs to the MicroGrid generated by MPC – case study 10 
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6 CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This dissertation presented a dynamic reactive control approach to control isolated 

power systems. Isolated power systems are vulnerable to changes in loads or generation 

and can easily get unstable. The reactive power control problem is a nonlinear problem 

integrating discrete inputs. This work proposed using model predictive control for 

reactive control of isolated systems. The system was linearized using a piecewise linear 

approach. Then the piecewise linear model was unified in the MLD framework. 

Replacing the nonlinearities by piecewise linear approximation introduces very small 

modeling error. The modeling error hardly manifests itself in the control experiments 

thus proving the usefulness of the MLD modeling approach. This dissertation showed 

that the bus voltages can be stabilized by an MPC controller using only nominal control 

moves. Tuning of the MPC controller is straightforward and systematic. The MPC 

controller can effectively use discrete inputs such as capacitor banks and 

Demand/Response loads as well as continuous inputs such as setpoint of dynamic 

reactive compensators and DGs to achieve smooth bus voltage profile. 

The study in this dissertation concludes that if the communication and control 

infrastructure is available, MPC based reactive power control is viable option. MPC 

requires a model of the system to be able to predict the behavior of the system ahead of 

time; however, the model can be as simple as reactive power balance equations. The 

study in this dissertation used a simplified reactive power flow model in MPC and the 

simplified model achieved satisfactory results.  
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The author believes that in scope of 10-20 years, model predictive methods replace 

the current control scheme of power systems not only in reactive control but also in 

protection, and active power dispatch. The inherent robustness and reliability of MPC 

controllers can adequately deal with the changing structure of power systems. To 

achieve this goal, communication and control infrastructures of power systems need to 

be improved. In addition, accurate measurements of power system in certain buses 

should be available. With current trend in development of smart-grid and adding smart-

meters to power systems, these measurements will be available to the operator in the 

distribution systems of the next decade. 

6.2 Future Research 

This dissertation only focused on dynamic reactive control of power systems. The 

major assumption in this dissertation was that the active power loop is already designed 

and works cooperatively with the reactive power control loop. Active and reactive power 

control loops are usually studied separately in power systems. It is interesting to design a 

dynamic active control loop using model predictive control and try to operate the two 

loops together. Further, it is interesting to try design a controller that can control active 

and reactive power together using one loop. 

A challenge that the design in this dissertation faced was that the MPC resulted in 

too much control action in some cases. To the knowledge of the author, MPC usually 

results in more control action than other control methods. It is interesting to investigate 

methods to penalize control action over a long horizon of time. Penalizing the control 

action over a long horizon can help MPC to avoid too much control action. Another 
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challenge that this work experience was that from a control point of view the model 

complexity was unnecessarily increased when a large number of binary variables were 

associated with the approximations. As a result, the computation time for solving the 

underlying MILP or MIQP problems became relatively large. The method used in this 

dissertation was to limit the number of sectors in the piecewise linear system. In other 

words, the piecewise linear system was limited to a small number of pieces. Other 

methods can be further investigated to address the computation time increase. Since 

most current designs and testbeds of MicroGrids and shipboard power systems do not 

include an On-Load Tap Changer (OLTC), this dissertation did not focus on OLTCs. 

Adding OLTCs as a control input to the control problem can be further investigated.  

It is common in industry that the utility desired to pick a sub-optimal solution to the 

reactive problem at the cost of not making too many changes in the system. In other 

words, sometimes utilities prefer to only change the status of one component and 

achieve a suboptimal solution. This approach slows down the aging of components in 

the system. This dissertation did not focus on such an approach; however, the method 

presented in this dissertation can be easily expanded to include such constraints.  

 



 

253 
 

 

REFERENCES 

[1] J. D. Kueck, D. T. Rizy, F. Li, Y. Xu, H. Li, S. Adhikari, and P. Irminger, "Local 

dynamic reactive power for correction of system voltage problems," Oak Ridge 

National Laboratory, ORNL/TM-2008/174, 2008. 

[2] E. Fuchs and M. Masoum, Power Quality in Power Systems and Electrical 

Machines Academic Press, 2008. 

[3] C. J. Dafis, "An observability formulation for nonlinear power systems modeled 

as differential algebraic systems," Ph.D. dissertation, Dept. Elect. Eng., Drexel 

University, 2005. 

[4] F. Katiraei and M. R. Iravani, "Power management strategies for a Microgrid 

with multiple distributed generation units," IEEE Trans. Power Syst., vol. 21, pp. 

1821-1831, Nov. 2006. 

[5] K. L. Butler, N. D. R. Sarma, and V. Ragendra Prasad, "Network reconfiguration 

for service restoration in shipboard power distribution systems," IEEE Trans. 

Power Syst., vol. 16, pp. 653-661, Nov. 2001. 

[6] G. Gates, D. Shipp, and W. Vilcheck, "Electrical distribution system analysis for 

off-shore oil production facilities," in Proc. Annual Petroleum and Chemical 

Industry Conf., 1998, pp. 129-137. 

[7] F. McNamara, "Optimising unit commitment in an island power system," in 

Proc. IEE Colloquium on Effective Response of a Public Electricity Network to 

Independent Generators, 1993, pp. 1-7. 



 

254 
 

 

[8] W. Wei, W. Daifeng, A. Arapostathis, and K. Davey, "Optimal power generation 

scheduling of a shipboard power system," in Proc. IEEE Elect. Ship Tech. Symp., 

2007, pp. 519-522. 

[9] S. Kulkarni and S. Santoso, "Estimating transient response of simple AC and DC 

shipboard power systems to pulse load operations," in Proc. IEEE Conf. Electric 

Ship Technologies Symp., 2009, pp. 73-78. 

[10] C. Yan, G. K. Venayagamoorthy, and K. Corzine, "AIS-based coordinated and 

adaptive control of generator excitation systems for an electric ship," IEEE 

Trans. Indust. Electron., vol. 59, pp. 3102-3112, Aug. 2012. 

[11] J. D. Kueck, R. H. Staunton, S. D. Labinov, and B. J. Kirby, "Microgrid energy 

management system," Oak Ridge National Laboratory, P500-03-091F, 2003. 

[12] J. Stevens, "Characterization of microgrids in the United States," Sandia National 

Laboratories,  Vienna, Virginia, 2005. 

[13] D. Salomonsson, "Modeling, control and protection of low-voltage DC 

Microgrids," Ph.D. dissertation, Dept. Elect. Eng., KTH University, Stockholm, 

2008. 

[14] M. Innorta, P. Marannino, G. P. Granelli, M. Montagna, and A. Silvestri, 

"Security constrained dynamic dispatch of real power for thermal groups," IEEE 

Trans. Power Syst., vol. 3, pp. 774-781, May 1988. 

[15] Eltra, "Specifications for connecting wind farms to the transmission network," 

Eltra doc. no. 74174, 2000, available at: 

http://www.offshorecenter.dk/log/bibliotek/Specifications-Eltra.pdf. 



 

255 
 

 

[16] S. Morozumi, "Micro-grid demonstration projects in Japan," in Proc. Power 

Conversion Conf., 2007, pp. 635-642. 

[17] T. Funabashi and R. Yokoyama, "Microgrid field test experiences in Japan," in 

Proc. IEEE Power Eng. Soc. General Meeting, 2006, p. 2 pp. 

[18] T. Geyer, "Low complexity model predictive control in power electronics and 

power systems," Ph.D. dissertation, Dept. Elect. Eng., ETH Zurich University, 

2005. 

[19] M. Barnes, "An evaluation of Microgrid structures and their relative merits," in 

Proc. IET Power Conv., 2007, pp. 1-34. 

[20] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, "Microgrids - an 

overview of ongoing research, development, and demonstration projects," IEEE 

Power & Energy Mag., vol. 5, pp. 78-94, 2007. 

[21] I. Roytelman, B. K. Wee, and R. L. Lugtu, "Volt/Var control algorithm for 

modern distribution management system," IEEE Trans. Power Syst., vol. 10, pp. 

1454-1460, Aug. 1995. 

[22] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard, Metaheuristics for hard 

optimization: Methods and case studies, 1 ed. Berlin, Germany: Springer-Verlag, 

2006. 

[23] Y. C. Huang, H. T. Yang, and C. L. Huang, "Solving the capacitor placement 

problem in a radial distribution system using tabu search approach," IEEE Trans. 

Power Syst., vol. 4, pp. 1868-1873, Nov. 1996. 



 

256 
 

 

[24] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine 

Learning, 1 ed. Boston, MA: Addison-Wesley Professional, 1989. 

[25] Y. d. Valle, S. Mohagheghi, J. C. Hernandez-Mejia, G. K. Venayagamoorthy, 

and R. G. Harley, "Particle swarm optimization- basic concepts, variants and 

applications in power system," IEEE Trans. Evol. Comput., vol. 12, pp. 171 - 

195, Apr. 2008. 

[26] A. G. Beccuti, T. Geyer, and M. Morari, "A hybrid system approach to power 

systems voltage control," in Proc. IEEE Conf. Decision and Control, Seville, 

Spain, 2005, pp. 6774-6779. 

[27] M. Zima and G. Anderson, "Model predictive control employing trajectory 

sensitivities for power systems applications," in Proc. IEEE Conf. on Decision 

and Control, and the Europ. Control Conf., Seville, Spain, 2005, pp. 4452-4456. 

[28] B. Gong and I. A. Hiskens, "Two-stage model predictive control for voltage 

collapse prevention " in Proc. North Amer. Power Symp., 2008, pp. 1-7. 

[29] B. Gong and A. Pinheiro, "Online voltage collapse prevention through optimal 

load shedding and dynamic generation control," in Proc. Power Energy 

Engineering Conf., 2010, pp. 1-6. 

[30] I. A. Hiskens and M. A. Pai, "Trajectory sensitivity analysis of hybrid systems," 

IEEE Trans. Circuits Systems I: Fundamental Theory Appl., vol. 47, pp. 204 - 

220, Feb. 2000. 



 

257 
 

 

[31] L. Jin, R. kumar, and N. Elia, "Model predictive control-based real-time power 

system protection schemes," IEEE Trans. Power Syst., vol. 25, pp. 988-998, May 

2010. 

[32] P. Kienast, "Optimal overload response in electric power systems applying model 

predictive control," M.S. thesis, Dept. Elect. Eng., ETH Zurich University, 2007. 

[33] M. Maxwell, "The economic application of capacitors to distribution feeders," 

Trans. Am. Inst. Electr. Eng. Part 3, vol. 79, pp. 353-359, Apr. 1960. 

[34] R. F. Cook, "Optimizing the application of shunt capacitors for reactive-volt-

ampere control and loss reduction," Trans. Am. Inst. Electr. Eng. Part 3, vol. 80, 

pp. 430-444, Aug. 1961. 

[35] R. F. Cook, "Calculating loss reduction afforded by shunt capacitor application," 

IEEE Trans. Power App. Syst., vol. 83, pp. 1227-1230, Dec. 1964. 

[36] J. V. Schmill, "Optimum size and location of shunt capacitors on distribution 

feeders," IEEE Trans. Power App. Syst., vol. 84, pp. 825-832, Sept. 1965. 

[37] N. E. Chang, "Locating shunt capacitors on primary feeder for voltage control 

and loss reduction," IEEE Trans. Power App. Syst., vol. 88, pp. 1574-1577, Oct. 

1969. 

[38] M. E. Baran and F. F. Wu, "Optimal capacitor placement on radial distribution 

system," IEEE Trans. Power Del., vol. 4, pp. 725-734, Jan. 1989. 

[39] H. Durán, "Optimum number, location, and size of shunt capacitors in radial 

distribution feeders- a dynamic programming approach," IEEE Trans. Power 

App. Syst., vol. 87, pp. 1769-1774, Sept. 1968. 



 

258 
 

 

[40] M. Ponnavaikko and K. S. P. Rao, "Optimal choice of fixed and switched shunt 

capacitors on radial distributors by the method of local variations," IEEE Trans. 

Power App. Syst., vol. 102, pp. 1607-1615, June 1983. 

[41] Y. Y. Hsu and H. C. Kuo, "Dispatch of capacitors on distribution system using 

dynamic programming," IEE Proc. Gen., Transm. and Distrib., vol. 140, pp. 

433-438, Nov. 1993. 

[42] S. H. Lee and J. J. Grainger, "Optimum placement of fixed and switched 

capacitors on primary distribution feeders," IEEE Trans. Power App. Syst., vol. 

100, pp. 345-352, Jan. 1981. 

[43] Y. Y. Hsu and C. C. Yang, "A hybrid artificial neural network dynamic 

programming approach for feeder capacitor scheduling," IEEE Trans. Power 

Syst., vol. 9, pp. 1069-1075, May 1994. 

[44] M. Kaplan, "Optimization of number, location, size, control type and control 

settings of shunt capacitors on radial distribution feeders," IEEE Trans. Power 

App. Syst., vol. 103, pp. 2569-2663, Sept. 1984. 

[45] M. M. A. Salama and A. Y. Chikhani, "A simplified network approach to the Var 

control problem for radial distribution systems," IEEE Trans. Power Del., vol. 8, 

pp. 1529-1535, July 1993. 

[46] M. M. A. Salama, E. A. A. Mansour, A. Y. Chikhani, and R. Hackam, "Control 

of reactive power in distribution system with an end-load and varying load 

condition," IEEE Trans. Power App. Syst., vol. 104, pp. 941-947, Apr. 1985. 



 

259 
 

 

[47] H. D. Chiang, J. C. Wang, O. Cockings, and H. D. Shin, "Optimal capacitors 

placements in distribution systems- Part I: a new formulation of the overall 

problem," IEEE Trans. Power Del., vol. 5, pp. 634-642, Apr. 1990. 

[48] H. D. Chiang, J.C. Wang, O. Cockings, and H.D. Shin, "Optimal capacitor 

placements in distribution systems- part II: solution algorithms and numerical 

results," IEEE Trans. Power Del., vol. 5, pp. 643-649, Apr. 1990. 

[49] S. Sundhararajan and A. Pahwa, "Optimal selection of capacitors for radial 

distribution systems using a genetic algorithm," IEEE Trans. Power Syst., vol. 9, 

pp. 1499-1505, Aug. 1994. 

[50] H. H. Happ, "Optimal Power Dispatch," IEEE Trans. Power App. Syst., vol. 93, 

pp. 820-830, May/June 1974. 

[51] K. H. Kim and S. K. You, "Voltage profile improvement by capacitor placement 

and control in unbalanced distribution systems using GA," in Proc. IEEE Power 

Eng. Soc. Summer Meeting, Alberta, Canada, 1999, pp. 800-805. 

[52] R. A. Gallego, A. J. Monticelli, and R. Romero, "Optimal capacitor placement in 

radial distribution networks," IEEE Trans. Power Syst., vol. 16, pp. 630-637, 

Nov. 2001. 

[53] G. Ramakrishna and N. D. Rao, "A fuzzy logic framework for control of 

switched capacitors in distribution systems," in Proc. Canadian Conf. Elect. & 

Comp. Eng., Montreal, Canada, 1995, pp. 676-679. 



 

260 
 

 

[54] I. Jonasson and L. Soder, "Power quality on ships. A questionnaire evaluation 

concerning island power system," in Proc. 9th Int. Conf. Harmonics and Quality 

of Power, 2000, pp. 639-644. 

[55] V. Arcidiacono, S. Castellan, R. Menis, and G. Sulligoi, "Integrated voltage and 

reactive power control for all electric ship power systems," in Proc. Int. Sym.on 

Power Electronics, Elect. Drives, Autom. and Motion, 2006, pp. 878-882. 

[56] M. Steurer, M. Andrus, J. Langston, L. Qi, S. Suryanarayanan, S. Woodruff, and 

P. F. Ribeiro, "Investigating the impact of pulsed power charging demands on 

shipboard power quality," in Proc. IEEE Elect. Ship Tech. Symp., 2007, pp. 315-

321. 

[57] S. Quaia, "All electric ship power stations: Dynamic coordination between 

controls and protections," in Proc. 43rd Int. Universities Power Eng. Conf., 

2008, pp. 1-5. 

[58] V. Arcidiacono, R. Menis, and G. Sulligoi, "Improving power quality in all 

electric ships using a voltage and VAR integrated regulator," in Proc. IEEE 

Elect. Ship Tech. Symp., 2007, pp. 322-327. 

[59] N. D. Hatziargyriou and A. P. Sakis Meliopoulos, "Distributed energy sources: 

technical challenges," in Proc. IEEE Power Eng. Soc. Winter Meeting, 2002, pp. 

1017-1022. 

[60] R. J. Konopinski, P. Vijayan, and V. Ajjarapu, "Extended reactive capability of 

dfig wind parks for enhanced system performance," IEEE Trans. Power Syst., 

vol. 24, pp. 1346-1355, Aug. 2009. 



 

261 
 

 

[61] P. Piagi and R. H. Lasseter, "Autonomous control of microgrids," in Proc. IEEE 

Power Eng. Soc. Gen. Meeting, 2006. 

[62] B. H. Chowdhury, H. T. Ma, and N. Ardeshna, "The challenge of operating wind 

power plants within a microgrid framework," in Proc. Power and Energy Conf., 

Illinois, 2010, pp. 93-98. 

[63] H. Laaksonen, P. Saari, and R. Komulainen, "Voltage and frequency control of 

inverter based weak LV network microgrid," in Proc. Int. Conf. on Future Power 

Syst., 2005. 

[64] F. Katiraei, M. R. Iravani, and P. W. Lehn, "Micro-grid autonomous operation 

during and subsequent to islanding process," IEEE Trans. Power Del., vol. 20, 

pp. 248-257, Jan. 2005. 

[65] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, "Power management and 

power flow control with back-to-back converters in a utility connected 

microgrid," IEEE Trans. Power Syst., vol. 25, pp. 821 - 834, May 2010. 

[66] S. A. Al-Askari, S. J. Ranade, and J. Mitra, "Designing a sufficient reactive 

power supply scheme to multi islands in a microgrid," in Proc. IEEE Power Eng. 

Soc. General Meeting, 2006. 

[67] A. A. Ghadimi and H. Rastegar, "Optimal control and management of distributed 

generation units in an islanded MicroGrid," in Proc. IEEE Symp. Integration of 

Wide-Scale Renewable Resources Into the Power Delivery Syst., 2009, pp. 1-7. 



 

262 
 

 

[68] A. G. Madureira and J. A. P. Lopes, "Voltage and reactive power control in MV 

networks integrating microgrids," in Proc. Int. Conf. Renewable Energy Power 

Quality Seville, Spain, 2007. 

[69] A. G. Madureira and J. A. Pecas Lopes, "Coordinated voltage support in 

distribution networks with distributed generation and microgrids," IET 

Renewable Power Gen., vol. 3, pp. 439-454, Dec. 2009. 

[70] J. R. O. Soto, C. R. R. Domellas, and D. M. Falcao, "Optimal reactive power 

dispatch using a hybrid formulation: genetic algorithms and interior point," in 

Proc. IEEE Power Tech, Porto, 2001. 

[71] L. Min, W. Jie, Z. Jun, and G. La-Mei, "Power dispatching of distributed wind-

Solar power generation hybrid system based on genetic algorithm," in Proc. 

Inter. Conf. Power Electronics Systems and Applications, 2009, pp. 1-4. 

[72] B. M. Nickell. Wind Dispatchability and Storage Interconnected Grid 

Perspective. [On-line] Energy Efficiency & Renewable Energy available at 

http://www.austinenergy.com/About%20Us/Newsroom/Reports/taskForce/tfWind

Dispatchability.pdf.  

[73] D. Karlsson and D. J. Hill, "Modelling and identification of nonlinear dynamic 

loads in power systems," IEEE Trans. Power Syst., vol. 9, pp. 157–166, Feb. 

1994. 

[74] R. Lasseter and M. Erickson, "Integration of battery-based energy storage 

element in the CERTS Microgrid," University of Wisconsin-Madison, DE-FC02-

06CH11350, 2009. 



 

263 
 

 

[75] H. Laaksonen and K. Kauhaniemi, "Fault type and location detection in islanded 

microgrid with different control methods based converters," in Proc. 19th Int. 

Conf.  Electr. Distribution, 2007. 

[76] E. D. Sontag, "Nonlinear regulation: The piecewise linear approach," IEEE 

Trans. Autom. Control, pp. 346-358, Apr. 1981. 

[77] W. P. M. H. Heemels, B. D. Schutter, and A. Bemporad, "Equivalence of hybrid 

dynamical models," Automatica, pp. 1085-1091, July 2001. 

[78] A. Bemporad, "Model predictive control of hybrid systems," 1st HYCON PhD 

School on Hybrid Systems, July 19-22 2005. 

[79] A. Bemporad and M. Morari, "Control of systems integrating logic, dynamics, 

and constraints," Automatica, vol. 35, pp. 407-427, March 1999. 

[80] A. Bemporad, "An efficient technique for translating mixed logical dynamical 

systems into piecewise affine systems," in Proc. 41st IEEE Conf. Decision and 

Control, Las Vegas, NV, 2002. 

[81] F. Borrelli, Constrained Optimal Control of Linear and Hybrid Systems: 

Springer, 2003. 

[82] G. Ferrari-Trecate, D. Mignone, and M. Morari, "Moving horizon estimation for 

hybrid systems," IEEE Trans. Autom. Control, vol. 47, pp. 1663-1676, Oct. 

2002. 

[83] F. D. Torrisi and A. Bemporad, "HYSDEL - A tool for generating computational 

hybrid models for analysis and synthesis problems," IEEE Trans. Control Syst. 

Tech., pp. 235-249, March 2004. 



 

264 
 

 

[84] R. Raman and I. E. Grossmann, "Relation between MILP modeling and logical 

inference for chemical process synthesis," Computers and Chemical 

Engineering, vol. 15, pp. 73-84, 1991. 

[85] C. A. Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals and 

Applications (Topics in Chemical Engineering): Oxford University Press, 1995. 

[86] R. Fletcher and S. Leyffer, "Numerical experience with lower bounds for MIQP 

branch-and-bound," SIAM Journal on Optimization, vol. 8, pp. 604-616, 1998. 

[87] V. Dua and E. N. Pistikopoulos, "An algorithm for the solution of 

multiparametric mixed integer linear programming problems," Annals of 

Operations-Research, pp. 123-139, 2000. 

[88] V. Dua, N. A. Bozinis, and E. N. Pistikopoulos, "A multiparametric 

programming approach for mixed-integer quadratic engineering problems," 

Computers and Chemical Engineering, vol. 26, pp. 715-733, May 2002. 

[89] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari, "Dynamic programming for 

constrained optimal control of discrete-time linear hybrid systems," Automatica, 

vol. 41, pp. 1709-1721, June 2005. 

[90] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control. 

New York: McGraw-Hill, 1994. 

[91] P. Sauer and M. A. Pai, Power System Dynamics and Stability: Prentice-Hall, 

1998. 



 

265 
 

 

[92] J. G. Slootweg, "Wind power modelling and impact on power systems 

dynamics," Ph.D. dissertation, Dept. Elect. Eng., Delft Univ. Technol., Delft, The 

Netherlands, 2003. 

[93] R. S. Pena, "Vector control strategies for a doubly-fed induction generator driven 

by a wind turbine," Ph.D. dissertation, Dept. Elect. Eng., Univ. Nottingham, 

Nottingham, U.K., 1996. 

[94] F. Blaabjerg, Z. Chen, and S. B. Kjaer, "Power electronics as efficient interface 

in dispersed power generation systems," IEEE Trans. Power Electron., vol. 19, 

pp. 1184-1194, Sept. 2004. 

[95] F. Blaabjerg, F. lov, R. Teodorescu, and Z. Chen, "Power electronics in 

renewable energy systems," in Proc. IEEE Power Elec. Motion Conf., Portoroz, 

Slovenia, 2006. 

[96] M. G. Villalva, J. R. Gazoli, and E. R. Filho, "Comprehensive approach to 

modeling and simulation of photovoltaic arrays," IEEE Trans. Power Electron., 

vol. 24, pp. 1198-1208, May 2009. 

[97] C. Lin, Y. Chen, C. Chiou, C. Huang, H. Chiang, J. Wang, and L. Fekih-Ahmed, 

"Dynamic load models in power systems using the measurement approach," 

IEEE Trans. Power Syst., vol. 8, pp. 309-315, Feb. 1993. 

[98] Y. Liang, R. Fischl, A. DeVito, and S. C. Readinger, "Dynamic reactive load 

model," IEEE Trans. Power Syst., vol. 13, pp. 1365-1372, Nov. 1998. 

[99] I. R. Navarro, "Dynamic load models for power systems," Ph.D. dissertation, 

Dept. Elect. Eng., Lund University, Sweden, 2002. 



 

266 
 

 

[100] A. J. Wigington, "A comparison of induction motor starting methods being 

powered by a diesel-generator set," M.S. Thesis, Dept. Elect. Eng., University of 

Nebraska at Lincoln, 2010. 

[101] J. Kay, R. Paes, J. Seggewiss, and R. Ellis, "Methods for the control of large 

medium-voltage motors: application considerations and guidelines," IEEE Trans. 

Indust. Appl., vol. 36, pp. 1688--1696, 1999. 

[102] IEEE Recommended Practice for Industrial and Commercial Power Systems 

Analysis, IEEE Standard 399-1997, Aug. 1998 

[103] S. J. Chapman, Electric Machinery Fundamentals, 4 ed. New York: NY: 

McGraw-Hill, 2005. 

[104] R. Natarajan, Power System Capacitors (Power Engineering (Willis)), 1 ed.: 

CRC Press, 2005. 

[105] S. Khushalani, J. M. Solanki, and N. N. Schulz, "Development of three-phase 

unbalanced power flow using PV and PQ models for distributed generation and 

study of the impact of DG models," IEEE Trans. Power Syst., vol. 22, pp. 1019-

1025, Aug. 2007. 

[106] IEEE Guide for design, operation, and integration of distributed resource island 

systems with electric power Systems, IEEE Standard 1547.4™-2011, 2011 

[107] W. H. Kersting, Distribution System Modeling and Analysis, 2 ed.: CRC Press, 

2006. 



 

267 
 

 

[108] Y. Zhu and K. Tomsovic, "Adaptive power flow method for distribution systems 

with dispersed generation," IEEE Trans. Power Del., vol. 17, pp. 822 - 827, July 

2002. 

[109] C. S. Cheng and D. Shirmohammadi, "A three-phase power flow method for 

real-time distribution system analysis," IEEE Trans. Power Syst., vol. 10, pp. 

671-679, May 1995. 

[110] M. E. Baran and E. A. Staton, "Distribution transformer models for branch 

current based feeder analysis," IEEE Trans. Power Syst., vol. 12, pp. 698-703, 

May 1997. 

[111] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, "A clustering 

technique for the identification of piecewise affine and hybrid systems," 

Automatica, vol. 39, pp. 205-217, 2003. 

[112] G. Ferrari-Trecate, "Identification algorithms for hybrid systems," 1st HYCON 

PhD School on Hybrid Systems, July 19-22 2005. 

[113] C. E. Garcia, D. M. Prett, and M. Morari, "Model predictive control: theory and 

practice - a survey," Automatica, vol. 25, pp. 335-348, May 1989. 

[114] D. Q. Mayne, "Constrained model predictive control: stability and optimality," 

Automatica, vol. 36, pp. 789-814, June 2000. 

[115] J. M. Maciejowski, Predictive Control: Prentice Hall, 2002. 

[116] S. Boyd and L. Vandenberghe, Convex Optimization: Cambridge University 

Press, 2004. 



 

268 
 

 

[117] D. Mignone, "Control and estimation of hybrid systems with mathematical 

optimization," Ph.D. dissertation, Dept. Elect. Eng., ETH Zurich University, 

2002. 

[118] G. F. Ferrari-Trecate, F. A. Cuzzola, and M. Morari, "Lagrange stability and 

performance analysis of discrete-time piecewise affine systems with logic states," 

Inter. Jour. Control, vol. 76, pp. 1585-1598, 2003. 

[119] G. Ferrari-Trecate, F. A. Cuzzola, D. Mignone, and M. Morari, "Analysis of 

discrete-time piecewise affine and hybrid systems," Automatica, vol. 38, pp. 

2139-2146, Dec. 2002. 

[120] M. Johansson and A. Rantzer, "Computation of piecewise quadratic lyapunov 

functions for hybrid systems," IEEE Trans. Autom. Control, vol. 43, pp. 555-559, 

Apr. 1998. 

[121] IEEE Recommended Practice for Electrical Installations on Shipboard, IEEE 

Standard 45, 2002 

[122] T. Short, Electric Power Distribution Handbook, 1 ed.: CRC Press, 2003. 

[123] J. D. Kueck, B. J. Kirby, L. M. Tolbert, and D. T. Rizy, "Voltage regulation - 

Tapping Distributed Energy Resources," Public Utilities Fortnightly, Sept. 2004. 

[124] Y. Xu, D. T. Rizy, F. LI, and J. D. Kueck, "Dynamic voltage regulation using 

distributed energy resources," in Proc. Inter. Conf. Electrical Distribution, 2007. 

[125] R. McMonagle, "The potential of solar PV in Ontario," The Canadian Solar 

Industries Association,  V2.1, Jan. 30, 2006. 



 

269 
 

 

[126] E. Liu and J. Bebic, "Distribution systems voltage performance analysis for high-

penetration photovoltaics," Subcontract Report , NREL/SR-581-42298, 2008. 

[127] H. Yu, J. Pan, and A. Xiang, "A multi-function grid-connected PV system with 

reactive power compensation for the grid," Elsevier Solar Energy Journal, vol. 

79, pp. 101-106, 2005. 

[128] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, "Local control of reactive 

power by distributed photovoltaic generators," in Proc. IEEE Inter. Conf. Smart 

Grid Communications, Gaithersburg, MD, 2010, pp. 79-84. 

[129] C. Whitaker, J. Newmiller, M. Ropp, and B. Norris, "Distributed photovoltaic 

systems design and technology requirements," Sandia national lab, SAND2008-

0946 P, 2008. 

[130] "OptiSpeed, Vestas converter system, General Edition," Item no. 947543.R0 - 

Class 1, Ringkobing, Denmark. 

[131] I. Cadirci and M. Ermis, "Double-output induction generator operating at 

subsynchronous and supersynchronous speeds: steady-state performance 

optimization and wind-energy recovery," IEE Proc. B. Electric Power Appl., vol. 

139, pp. 429-442, 1992. 

[132] V. Akhmatov, "Modelling of variable-speed wind turbines with doubly-fed 

induction generators in short-term stability investigations," in Proc. 3rd Int. 

Workshop Transmission Networks for Offshore Wind Farms, Stockholm, 

Sweden, 2002, pp. 1–23. 



 

270 
 

 

[133] L. Zhang, C. Watthanasarn, and W. Shepher, "Application of a matrix converter 

for the power control of a variable-speed wind-turbine driving a doubly-fed 

induction generator," in Proc. 23rd Int. Conf. Indust. Electr., Control and 

Instrument., 1997, pp. 906 - 911. 

[134] V. Akhmatov, "Analysis of dynamic behaviour of electric power systems with 

large amount of wind power," Ph.D. dissertation, Dept. Elect. Eng., Technical 

University of Denmark, Lyngby, 2003. 

[135] G. W. Energy, "Patented VAR Control Technology," GE Wind Energy, General 

Electric Company, GEA-13345 (05/02 5M), 2002. 

[136] V. Akhmatov, "Variable speed wind turbines with doubly-fed induction 

generators Part II: power system stability," Wind Engineering, vol. 26, pp. 171-

188, July 2002. 

[137] IEEE Standard for interconnecting distributed resources with electric power 

systems, IEEE Standard 1547, 2008 

[138] D. L. Hornak and N. H. Joe, "Distributed generation interconnections: protection, 

monitoring, and control opportunities," Basler Electric Company, available at: 

www.basler.com/downloads/disgen_interc2.pdf. 

[139] N. R. Friedman, "Distributed energy resources interconnection systems: 

technology review and research needs," National Renewable Energy Laboratory, 

NREL/SR-560-32459, 2002. 



 

271 
 

 

[140] N. Mithulannthan and T.Oo, "Distributed generation placement to maximize the 

loadability of a distribution system," Inter. Journal Electr. Eng. Education, vol. 

2, pp. 107–118, 2006. 

[141] W. Prommee and W. Ongsakul, "Optimal multiple distributed generation 

placement in microgrid system by improved reinitialized social structures particle 

swarm optimization," Euro. Trans. Electr. Power, vol. 21, pp. 489–504, May 

2011. 

[142] P. Mahat, W. Ongsakul, and T. Kerdchuen, "Optimal placement of wind turbine 

DG in primary distribution system for real power loss reduction," Environ. 

Sciences Division Publ., March 2006. 

[143] W. Kuersuk and W. Ongsakul, "Optimal placement of distributed generation 

using particle swarm optimization," in Proc. Australian Universities Power Eng. 

Conf., Victoria, Australia, 2006. 

[144] H. Hedayati and S. Nabaviniaki, "A new method for placement of DG unit in 

distribution networks," in Proc. IEEE Power Syst. Conf. and Exp., Atlanta, 

Georgia, 2006. 

[145] A. Keane and M. O. Malley, "Optimal allocation of embedded generation on 

distribution networks," IEEE Trans. Power Syst., vol. 3, pp. 1640–1646, Aug. 

2005. 

 

  



 

272 
 

 

 APPENDIX A  

The NEMA Codes by letter grade are reproduced here for convenience from 

(NEMA, 2007) and (NEMA, 2009) in Tables 5 and 6. 

Table 5: NEMA Letter Code Typical Characteristics (NEMA Standards Publication 
Condensed MG 1-2007) 
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Table 6: NEMA Code Letter Locked-Rotor kVA (NEMA, 2009) 
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APPENDIX B  

IEEE 34 Node Test Feeder 
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Overhead Line Configurations (Config.)

Config. Phasing Phase Neutral Spacing ID

ACSR ACSR

300 B A C N  1/0  1/0 500

301 B A C N #2  6/1 #2  6/1 500

302 A N #4  6/1 #4  6/1 510

303 B N #4  6/1 #4  6/1 510

304 B N #2  6/1 #2  6/1 510  
 

Line Segment Data

Node A Node B Length(ft.) Config.

800 802 2580 300

802 806 1730 300

806 808 32230 300

808 810 5804 303

808 812 37500 300

812 814 29730 300

814 850 10 301

816 818 1710 302

816 824 10210 301

818 820 48150 302

820 822 13740 302

824 826 3030 303

824 828 840 301

828 830 20440 301

830 854 520 301

832 858 4900 301

832 888 0 XFM-1

834 860 2020 301

834 842 280 301

836 840 860 301

836 862 280 301

842 844 1350 301

844 846 3640 301

846 848 530 301

850 816 310 301

852 832 10 301

854 856 23330 303

854 852 36830 301

858 864 1620 302

858 834 5830 301

860 836 2680 301

862 838 4860 304

888 890 10560 300
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Transformer Data

kVA kV-high kV-low R - % X - %

Substation: 2500 69 - D 24.9 -Gr. W 1 8

XFM -1 500 24.9 - Gr.W 4.16 - Gr. W 1.9 4.08

Spot Loads

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4

Model kW kVAr kW kVAr kW kVAr

860 Y-PQ 20 16 20 16 20 16

840 Y-I 9 7 9 7 9 7

844 Y-Z 135 105 135 105 135 105

848 D-PQ 20 16 20 16 20 16

890 D-I 150 75 150 75 150 75

830 D-Z 10 5 10 5 25 10

Total 344 224 344 224 359 229

Distributed Loads

Node Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3

A B Model kW kVAr kW kVAr kW kVAr

802 806 Y-PQ 0 0 30 15 25 14

808 810 Y-I 0 0 16 8 0 0

818 820 Y-Z 34 17 0 0 0 0

820 822 Y-PQ 135 70 0 0 0 0

816 824 D-I 0 0 5 2 0 0

824 826 Y-I 0 0 40 20 0 0

824 828 Y-PQ 0 0 0 0 4 2

828 830 Y-PQ 7 3 0 0 0 0

854 856 Y-PQ 0 0 4 2 0 0

832 858 D-Z 7 3 2 1 6 3

858 864 Y-PQ 2 1 0 0 0 0

858 834 D-PQ 4 2 15 8 13 7

834 860 D-Z 16 8 20 10 110 55

860 836 D-PQ 30 15 10 6 42 22

836 840 D-I 18 9 22 11 0 0

862 838 Y-PQ 0 0 28 14 0 0

842 844 Y-PQ 9 5 0 0 0 0

844 846 Y-PQ 0 0 25 12 20 11

846 848 Y-PQ 0 0 23 11 0 0

Total 262 133 240 120 220 114
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Shunt Capacitors

Node Ph-A Ph-B Ph-C

kVAr kVAr kVAr

844 100 100 100

848 150 150 150

Total 250 250 250

Regulator Data

Regulator ID: 1

Line Segment: 814 - 850

Location: 814

Phases: A - B -C

Connection: 3-Ph,LG

Monitoring Phase: A-B-C

Bandwidth: 2.0 volts

PT Ratio: 120

Primary CT Rating: 100

Compensator Settings: Ph-A Ph-B Ph-C

R - Setting: 2.7 2.7 2.7

X - Setting: 1.6 1.6 1.6

Volltage Level: 122 122 122

Regulator ID: 2

Line Segment: 852 - 832

Location: 852

Phases: A - B -C

Connection: 3-Ph,LG

Monitoring Phase: A-B-C

Bandwidth: 2.0 volts

PT Ratio: 120

Primary CT Rating: 100

Compensator Settings: Ph-A Ph-B Ph-C

R - Setting: 2.5 2.5 2.5

X - Setting: 1.5 1.5 1.5

Volltage Level: 124 124 124
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IEEE 34 Node Test Feeder 
Impedances 

 
Configuration 300: 
  
--------- Z & B Matrices Before Changes --------- 
 
           Z (R +jX) in ohms per mile 
 1.3368  1.3343   0.2101  0.5779   0.2130  0.5015 
                  1.3238  1.3569   0.2066  0.4591 
                                   1.3294  1.3471 
          B in micro Siemens per mile 
            5.3350   -1.5313   -0.9943 
                      5.0979   -0.6212 
                                4.8880 
Configuration 301: 
  
           Z (R +jX) in ohms per mile 
 1.9300  1.4115   0.2327  0.6442   0.2359  0.5691 
                  1.9157  1.4281   0.2288  0.5238 
                                   1.9219  1.4209 
          B in micro Siemens per mile 
            5.1207   -1.4364   -0.9402 
                      4.9055   -0.5951 
                                4.7154 
 
Configuration 302: 
  
           Z (R +jX) in ohms per mile 
 2.7995  1.4855   0.0000  0.0000   0.0000  0.0000 
                  0.0000  0.0000   0.0000  0.0000 
                                   0.0000  0.0000 
          B in micro Siemens per mile 
            4.2251    0.0000    0.0000 
                      0.0000    0.0000 
                                0.0000 
 
Configuration 303: 
  
           Z (R +jX) in ohms per mile 
 0.0000  0.0000   0.0000  0.0000   0.0000  0.0000 
                  2.7995  1.4855   0.0000  0.0000 
                                   0.0000  0.0000 
          B in micro Siemens per mile 
            0.0000    0.0000    0.0000 
                      4.2251    0.0000 
                                0.0000 
 
Configuration 304: 
  
          Z (R +jX) in ohms per mile 
0.0000  0.0000   0.0000  0.0000   0.0000  0.0000 
                 1.9217  1.4212   0.0000  0.0000 
                                  0.0000  0.0000 
         B in micro Siemens per mile 
           0.0000    0.0000    0.0000 
                     4.3637    0.0000 
                               0.0000 
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Power Flow Results 
 
                                                                        
                                                                           
 -  R A D I A L  F L O W  S U M M A R Y - DATE:  6-24-2004 AT 16:34:11 HOURS --- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
 SYSTEM        PHASE             PHASE             PHASE             TOTAL 
 INPUT -------(A)-------|-------(B)-------|-------(C)-------|------------------ 
 kW   :       759.136   |       666.663   |       617.072   |      2042.872 
 kVAr :       171.727   |        90.137   |        28.394   |       290.258 
 kVA  :       778.318   |       672.729   |       617.725   |      2063.389 
 PF   :        .9754    |        .9910    |        .9989    |        .9901 
   
 LOAD  --(A-N)----(A-B)-|--(B-N)----(B-C)-|--(C-N)----(C-A)-|---WYE-----DELTA-- 
 kW   :   359.9    246.4|   339.3    243.3|   221.8    359.0|   921.0    848.8 
  TOT :       606.322   |       582.662   |       580.840   |      1769.824 
                        |                 |                 | 
 kVAr :   230.9    128.7|   216.9    128.7|   161.8    184.6|   609.6    441.9 
  TOT :       359.531   |       345.609   |       346.407   |      1051.547 
                        |                 |                 | 
 kVA  :   427.6    278.0|   402.7    275.3|   274.6    403.7|  1104.5    957.0 
  TOT :       704.903   |       677.452   |       676.293   |      2058.647 
                        |                 |                 | 
 PF   :   .8417    .8864|   .8425    .8840|   .8078    .8894|   .8339    .8870 
  TOT :        .8601    |        .8601    |        .8589    |        .8597 
   
 LOSSES ------(A)-------|-------(B)-------|-------(C)-------|------------------ 
 kW   :       114.836   |        80.389   |        77.824   |       273.049 
 kVAr :        14.200   |        10.989   |         9.810   |        34.999 
 kVA  :       115.711   |        81.137   |        78.440   |       275.283 
 
 CAPAC --(A-N)----(A-B)-|--(B-N)----(B-C)-|--(C-N)----(C-A)-|---WYE-----DELTA-- 
 R-kVA:   250.0       .0|   250.0       .0|   250.0       .0|   750.0       .0 
  TOT :       250.000   |       250.000   |       250.000   |       750.000 
                        |                 |                 | 
 A-kVA:   265.7       .0|   264.8       .0|   265.9       .0|   796.3       .0 
  TOT :       265.658   |       264.760   |       265.869   |       796.287 
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 --- V O L T A G E   P R O F I L E  ---- DATE:  6-24-2004 AT 16:34:18 HOURS ---- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
 NODE  |   MAG       ANGLE  |    MAG       ANGLE  |    MAG       ANGLE |mi.to SR 
 ------------------------------------------------------------------------------- 
 ______|_______ A-N ______  |_______ B-N _______  |_______ C-N _______ | 
 800   |  1.0500 at    .00  |  1.0500 at -120.00  |  1.0500 at  120.00 |    .000 
 802   |  1.0475 at   -.05  |  1.0484 at -120.07  |  1.0484 at  119.95 |    .489 
 806   |  1.0457 at   -.08  |  1.0474 at -120.11  |  1.0474 at  119.92 |    .816 
 808   |  1.0136 at   -.75  |  1.0296 at -120.95  |  1.0289 at  119.30 |   6.920 
 810   |                    |  1.0294 at -120.95  |                    |   8.020 
 812   |   .9763 at  -1.57  |  1.0100 at -121.92  |  1.0069 at  118.59 |  14.023 
 814   |   .9467 at  -2.26  |   .9945 at -122.70  |   .9893 at  118.01 |  19.653 
 RG10  |  1.0177 at  -2.26  |  1.0255 at -122.70  |  1.0203 at  118.01 |  19.654 
 850   |  1.0176 at  -2.26  |  1.0255 at -122.70  |  1.0203 at  118.01 |  19.655 
 816   |  1.0172 at  -2.26  |  1.0253 at -122.71  |  1.0200 at  118.01 |  19.714 
 818   |  1.0163 at  -2.27  |                     |                    |  20.038 
 820   |   .9926 at  -2.32  |                     |                    |  29.157 
 822   |   .9895 at  -2.33  |                     |                    |  31.760 
 824   |  1.0082 at  -2.37  |  1.0158 at -122.94  |  1.0116 at  117.76 |  21.648 
 826   |                    |  1.0156 at -122.94  |                    |  22.222 
 828   |  1.0074 at  -2.38  |  1.0151 at -122.95  |  1.0109 at  117.75 |  21.807 
 830   |   .9894 at  -2.63  |   .9982 at -123.39  |   .9938 at  117.25 |  25.678 
 854   |   .9890 at  -2.64  |   .9978 at -123.40  |   .9934 at  117.24 |  25.777 
 852   |   .9581 at  -3.11  |   .9680 at -124.18  |   .9637 at  116.33 |  32.752 
 RG11  |  1.0359 at  -3.11  |  1.0345 at -124.18  |  1.0360 at  116.33 |  32.752 
 832   |  1.0359 at  -3.11  |  1.0345 at -124.18  |  1.0360 at  116.33 |  32.754 
 858   |  1.0336 at  -3.17  |  1.0322 at -124.28  |  1.0338 at  116.22 |  33.682 
 834   |  1.0309 at  -3.24  |  1.0295 at -124.39  |  1.0313 at  116.09 |  34.786 
 842   |  1.0309 at  -3.25  |  1.0294 at -124.39  |  1.0313 at  116.09 |  34.839 
 844   |  1.0307 at  -3.27  |  1.0291 at -124.42  |  1.0311 at  116.06 |  35.095 
 846   |  1.0309 at  -3.32  |  1.0291 at -124.46  |  1.0313 at  116.01 |  35.784 
 848   |  1.0310 at  -3.32  |  1.0291 at -124.47  |  1.0314 at  116.00 |  35.885 
 860   |  1.0305 at  -3.24  |  1.0291 at -124.39  |  1.0310 at  116.09 |  35.169 
 836   |  1.0303 at  -3.23  |  1.0287 at -124.39  |  1.0308 at  116.09 |  35.677 
 840   |  1.0303 at  -3.23  |  1.0287 at -124.39  |  1.0308 at  116.09 |  35.839 
 862   |  1.0303 at  -3.23  |  1.0287 at -124.39  |  1.0308 at  116.09 |  35.730 
 838   |                    |  1.0285 at -124.39  |                    |  36.650 
 864   |  1.0336 at  -3.17  |                     |                    |  33.989 
 XF10  |   .9997 at  -4.63  |   .9983 at -125.73  |  1.0000 at  114.82 |  32.754 
 888   |   .9996 at  -4.64  |   .9983 at -125.73  |  1.0000 at  114.82 |  32.754 
 890   |   .9167 at  -5.19  |   .9235 at -126.78  |   .9177 at  113.98 |  34.754 
 856   |                    |   .9977 at -123.41  |                    |  30.195 
 
 -----------  VOLTAGE REGULATOR DATA  ---- DATE:  6-24-2004 AT 16:34:22 HOURS -- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 _______________________________________________________________________________ 
 [NODE]--[VREG]-----[SEG]------[NODE]           MODEL                OPT    BNDW 
 814     RG10       850        850     Phase A & B & C, Wye           RX    2.00 
        ........................................................................ 
         PHASE  LDCTR   VOLT HOLD  R-VOLT   X-VOLT  PT RATIO  CT RATE     TAP 
           1             122.000    2.700    1.600   120.00    100.00     12 
           2             122.000    2.700    1.600   120.00    100.00      5 
           3             122.000    2.700    1.600   120.00    100.00      5 
 _______________________________________________________________________________ 
 [NODE]--[VREG]-----[SEG]------[NODE]           MODEL                OPT    BNDW 
 852     RG11       832        832     Phase A & B & C, Wye           RX    2.00 
        ........................................................................ 
         PHASE  LDCTR   VOLT HOLD  R-VOLT   X-VOLT  PT RATIO  CT RATE     TAP 
           1             124.000    2.500    1.500   120.00    100.00     13 
           2             124.000    2.500    1.500   120.00    100.00     11 
           3             124.000    2.500    1.500   120.00    100.00     12 
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 -  R A D I A L  P O W E R  F L O W  ---  DATE:  6-24-2004 AT 16:34:32 HOURS --- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
    NODE      VALUE         PHASE A         PHASE B         PHASE C     UNT O/L< 
                            (LINE A)        (LINE B)        (LINE C)        60.% 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 800       VOLTS:   1.050     .00   1.050 -120.00   1.050  120.00 MAG/ANG 
 kVll  24.900           NO LOAD OR CAPACITOR REPRESENTED AT SOURCE NODE 
 
 TO NODE 802   .......:   51.56  -12.74   44.57 -127.70   40.92  117.37 AMP/DG   
 <802   > LOSS=  3.472:    (  1.637)       (   .978)       (   .858)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 802       VOLTS:   1.047    -.05   1.048 -120.07   1.048  119.95 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 800   .....:   51.58  -12.80   44.57 -127.76   40.93  117.31 AMP/DG   
 <802   > LOSS=  3.472:    (  1.637)       (   .978)       (   .858)    kW 
 TO NODE 806   .......:   51.58  -12.80   44.57 -127.76   40.93  117.31 AMP/DG   
 <806   > LOSS=  2.272:    (  1.102)       (   .618)       (   .552)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 806       VOLTS:   1.046    -.08   1.047 -120.11   1.047  119.92 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 802   .....:   51.59  -12.83   42.47 -126.83   39.24  118.52 AMP/DG   
 <806   > LOSS=  2.272:    (  1.102)       (   .618)       (   .552)    kW 
 TO NODE 808   .......:   51.59  -12.83   42.47 -126.83   39.24  118.52 AMP/DG   
 <808   > LOSS= 41.339:    ( 20.677)       ( 10.780)       (  9.882)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 808       VOLTS:   1.014    -.75   1.030 -120.95   1.029  119.30 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 806   .....:   51.76  -13.47   42.46 -127.59   39.28  117.76 AMP/DG   
 <808   > LOSS= 41.339:    ( 20.677)       ( 10.780)       (  9.882)    kW 
 TO NODE 810   .......:                    1.22 -144.62                 AMP/DG   
 <810   > LOSS=   .002:                    (   .002)                    kW 
 TO NODE 812   .......:   51.76  -13.47   41.30 -127.10   39.28  117.76 AMP/DG   
 <812   > LOSS= 47.531:    ( 24.126)       ( 11.644)       ( 11.761)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 810       VOLTS:                   1.029 -120.95                 MAG/ANG 
                   -LD:                     .00     .00                 kW/kVR 
 kVll  24.900      CAP:                             .00                 kVR 
 
 FROM NODE 808   .....:                     .00     .00                 AMP/DG   
 <810   > LOSS=   .002:                    (   .002)                    kW 
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 -  R A D I A L  P O W E R  F L O W  ---  DATE:  6-24-2004 AT 16:34:32 HOURS --- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
    NODE      VALUE         PHASE A         PHASE B         PHASE C     UNT O/L< 
                            (LINE A)        (LINE B)        (LINE C)        60.% 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 812       VOLTS:    .976   -1.57   1.010 -121.92   1.007  118.59 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 808   .....:   51.95  -14.18   41.29 -127.99   39.33  116.90 AMP/DG   
 <812   > LOSS= 47.531:    ( 24.126)       ( 11.644)       ( 11.761)    kW 
 TO NODE 814   .......:   51.95  -14.18   41.29 -127.99   39.33  116.90 AMP/DG   
 <814   > LOSS= 37.790:    ( 19.245)       (  9.140)       (  9.404)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 814       VOLTS:    .947   -2.26    .994 -122.70    .989  118.01 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 812   .....:   52.10  -14.73   41.29 -128.69   39.37  116.23 AMP/DG   
 <814   > LOSS= 37.790:    ( 19.245)       (  9.140)       (  9.404)    kW 
 TO NODE RG10  .<VRG>.:   52.10  -14.73   41.29 -128.69   39.37  116.23 AMP/DG   
 <RG10  > LOSS=   .000:    (   .000)       (   .000)       (   .000)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: RG10      VOLTS:   1.018   -2.26   1.026 -122.70   1.020  118.01 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 814   <VRG>:   48.47  -14.73   40.04 -128.69   38.17  116.23 AMP/DG   
 <RG10  > LOSS=   .000:    (   .000)       (   .000)       (   .000)    kW 
 TO NODE 850   .......:   48.47  -14.73   40.04 -128.69   38.17  116.23 AMP/DG   
 <850   > LOSS=   .017:    (   .008)       (   .005)       (   .005)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 850       VOLTS:   1.018   -2.26   1.026 -122.70   1.020  118.01 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE RG10  .....:   48.47  -14.73   40.04 -128.69   38.17  116.23 AMP/DG   
 <850   > LOSS=   .017:    (   .008)       (   .005)       (   .005)    kW 
 TO NODE 816   .......:   48.47  -14.73   40.04 -128.69   38.17  116.23 AMP/DG   
 <816   > LOSS=   .538:    (   .254)       (   .145)       (   .139)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 816       VOLTS:   1.017   -2.26   1.025 -122.71   1.020  118.01 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 850   .....:   48.47  -14.74   40.04 -128.70   38.17  116.23 AMP/DG   
 <816   > LOSS=   .538:    (   .254)       (   .145)       (   .139)    kW 
 TO NODE 818   .......:   13.02  -26.69                                 AMP/DG   
 <818   > LOSS=   .154:    (   .154)                                    kW 
 TO NODE 824   .......:   35.83  -10.42   40.04 -128.70   38.17  116.23 AMP/DG   
 <824   > LOSS= 14.181:    (  4.312)       (  5.444)       (  4.425)    kW 
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 -  R A D I A L  P O W E R  F L O W  ---  DATE:  6-24-2004 AT 16:34:32 HOURS --- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
    NODE      VALUE         PHASE A         PHASE B         PHASE C     UNT O/L< 
                            (LINE A)        (LINE B)        (LINE C)        60.% 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 818       VOLTS:   1.016   -2.27                                 MAG/ANG 
                   -LD:     .00     .00                                 kW/kVR 
 kVll  24.900      CAP:             .00                                 kVR 
 
 FROM NODE 816   .....:   13.03  -26.77                                 AMP/DG   
 <818   > LOSS=   .154:    (   .154)                                    kW 
 TO NODE 820   .......:   13.03  -26.77                                 AMP/DG   
 <820   > LOSS=  3.614:    (  3.614)                                    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 820       VOLTS:    .993   -2.32                                 MAG/ANG 
                   -LD:     .00     .00                                 kW/kVR 
 kVll  24.900      CAP:             .00                                 kVR 
 
 FROM NODE 818   .....:   10.62  -28.98                                 AMP/DG   
 <820   > LOSS=  3.614:    (  3.614)                                    kW 
 TO NODE 822   .......:   10.62  -28.98                                 AMP/DG   
 <822   > LOSS=   .413:    (   .413)                                    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 822       VOLTS:    .990   -2.33                                 MAG/ANG 
                   -LD:     .00     .00                                 kW/kVR 
 kVll  24.900      CAP:             .00                                 kVR 
 
 FROM NODE 820   .....:     .00     .00                                 AMP/DG   
 <822   > LOSS=   .413:    (   .413)                                    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 824       VOLTS:   1.008   -2.37   1.016 -122.94   1.012  117.76 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 816   .....:   35.87  -10.70   39.82 -129.02   38.05  116.25 AMP/DG   
 <824   > LOSS= 14.181:    (  4.312)       (  5.444)       (  4.425)    kW 
 TO NODE 826   .......:                    3.10 -148.92                 AMP/DG   
 <826   > LOSS=   .008:                    (   .008)                    kW 
 TO NODE 828   .......:   35.87  -10.70   36.93 -127.39   38.05  116.25 AMP/DG   
 <828   > LOSS=  1.108:    (   .361)       (   .393)       (   .354)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 826       VOLTS:                   1.016 -122.94                 MAG/ANG 
                   -LD:                     .00     .00                 kW/kVR 
 kVll  24.900      CAP:                             .00                 kVR 
 
 FROM NODE 824   .....:                     .00     .00                 AMP/DG   
 <826   > LOSS=   .008:                    (   .008)                    kW 
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 -  R A D I A L  P O W E R  F L O W  ---  DATE:  6-24-2004 AT 16:34:32 HOURS --- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
    NODE      VALUE         PHASE A         PHASE B         PHASE C     UNT O/L< 
                            (LINE A)        (LINE B)        (LINE C)        60.% 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 828       VOLTS:   1.007   -2.38   1.015 -122.95   1.011  117.75 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 824   .....:   35.87  -10.72   36.93 -127.41   37.77  116.42 AMP/DG   
 <828   > LOSS=  1.108:    (   .361)       (   .393)       (   .354)    kW 
 TO NODE 830   .......:   35.87  -10.72   36.93 -127.41   37.77  116.42 AMP/DG   
 <830   > LOSS= 26.587:    (  8.443)       (  9.214)       (  8.930)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 830       VOLTS:    .989   -2.63    .998 -123.39    .994  117.25 MAG/ANG 
                  D-LD:    9.95    4.98    9.86    4.93   24.55    9.82 kW/kVR 
 kVll  24.900    Y CAP:             .00             .00             .00 kVR 
 
 FROM NODE 828   .....:   35.43  -11.06   36.91 -127.92   37.79  115.96 AMP/DG   
 <830   > LOSS= 26.587:    (  8.443)       (  9.214)       (  8.930)    kW 
 TO NODE 854   .......:   34.22   -9.97   36.19 -127.47   36.49  116.26 AMP/DG   
 <854   > LOSS=   .635:    (   .197)       (   .227)       (   .211)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 854       VOLTS:    .989   -2.64    .998 -123.40    .993  117.24 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 830   .....:   34.23   -9.99   36.19 -127.48   36.49  116.25 AMP/DG   
 <854   > LOSS=   .635:    (   .197)       (   .227)       (   .211)    kW 
 TO NODE 852   .......:   34.23   -9.99   35.93 -127.72   36.49  116.25 AMP/DG   
 <852   > LOSS= 44.798:    ( 13.996)       ( 15.778)       ( 15.023)    kW 
 TO NODE 856   .......:                     .31  -98.70                 AMP/DG   
 <856   > LOSS=   .001:                    (   .001)                    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 852       VOLTS:    .958   -3.11    .968 -124.18    .964  116.33 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 854   .....:   34.35  -11.00   35.90 -128.66   36.52  115.41 AMP/DG   
 <852   > LOSS= 44.798:    ( 13.996)       ( 15.778)       ( 15.023)    kW 
 TO NODE RG11  .<VRG>.:   34.35  -11.00   35.90 -128.66   36.52  115.41 AMP/DG   
 <RG11  > LOSS=   .000:    (   .000)       (   .000)       (   .000)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: RG11      VOLTS:   1.036   -3.11   1.035 -124.18   1.036  116.33 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 852   <VRG>:   31.77  -11.00   33.59 -128.66   33.98  115.41 AMP/DG   
 <RG11  > LOSS=   .000:    (   .000)       (   .000)       (   .000)    kW 
 TO NODE 832   .......:   31.77  -11.00   33.59 -128.66   33.98  115.41 AMP/DG   
 <832   > LOSS=   .011:    (   .003)       (   .004)       (   .004)    kW 
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 -  R A D I A L  P O W E R  F L O W  ---  DATE:  6-24-2004 AT 16:34:32 HOURS --- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
    NODE      VALUE         PHASE A         PHASE B         PHASE C     UNT O/L< 
                            (LINE A)        (LINE B)        (LINE C)        60.% 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 832       VOLTS:   1.036   -3.11   1.035 -124.18   1.036  116.33 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE RG11  .....:   31.77  -11.00   33.59 -128.66   33.98  115.41 AMP/DG   
 <832   > LOSS=   .011:    (   .003)       (   .004)       (   .004)    kW 
 TO NODE 858   .......:   21.31     .47   23.40 -116.89   24.34  128.36 AMP/DG   
 <858   > LOSS=  2.467:    (   .643)       (   .997)       (   .827)    kW 
 TO NODE XF10  .......:   11.68  -32.29   11.70 -152.73   11.61   87.39 AMP/DG < 
 <XF10  > LOSS=  9.625:    (  3.196)       (  3.241)       (  3.187)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 858       VOLTS:   1.034   -3.17   1.032 -124.28   1.034  116.22 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 832   .....:   20.86     .86   23.13 -116.39   24.02  128.48 AMP/DG   
 <858   > LOSS=  2.467:    (   .643)       (   .997)       (   .827)    kW 
 TO NODE 834   .......:   20.73    1.01   23.13 -116.39   24.02  128.48 AMP/DG   
 <834   > LOSS=  2.798:    (   .717)       (  1.145)       (   .936)    kW 
 TO NODE 864   .......:     .14  -22.82                                 AMP/DG   
 <864   > LOSS=   .000:    (   .000)                                    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 834       VOLTS:   1.031   -3.24   1.029 -124.39   1.031  116.09 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 858   .....:   20.29    2.18   22.37 -116.07   23.23  130.06 AMP/DG   
 <834   > LOSS=  2.798:    (   .717)       (  1.145)       (   .936)    kW 
 TO NODE 842   .......:   14.75   34.68   16.30  -95.63   15.12  151.05 AMP/DG   
 <842   > LOSS=   .064:    (   .015)       (   .032)       (   .017)    kW 
 TO NODE 860   .......:   11.16  -43.05    9.09 -154.82   10.60   99.34 AMP/DG   
 <860   > LOSS=   .141:    (   .021)       (   .104)       (   .017)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 842       VOLTS:   1.031   -3.25   1.029 -124.39   1.031  116.09 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 834   .....:   14.74   34.67   16.30  -95.64   15.12  151.03 AMP/DG   
 <842   > LOSS=   .064:    (   .015)       (   .032)       (   .017)    kW 
 TO NODE 844   .......:   14.74   34.67   16.30  -95.64   15.12  151.03 AMP/DG   
 <844   > LOSS=   .306:    (   .068)       (   .156)       (   .083)    kW 
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 -  R A D I A L  P O W E R  F L O W  ---  DATE:  6-24-2004 AT 16:34:32 HOURS --- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
    NODE      VALUE         PHASE A         PHASE B         PHASE C     UNT O/L< 
                            (LINE A)        (LINE B)        (LINE C)        60.% 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 844       VOLTS:   1.031   -3.27   1.029 -124.42   1.031  116.06 MAG/ANG 
                  Y-LD:  143.41  111.54  142.97  111.20  143.51  111.62 kW/kVR 
 kVll  24.900    Y CAP:          106.23          105.90          106.31 kVR 
 
 FROM NODE 842   .....:   14.47   37.12   16.29  -95.71   15.11  150.97 AMP/DG   
 <844   > LOSS=   .306:    (   .068)       (   .156)       (   .083)    kW 
 TO NODE 846   .......:    9.83   78.88    9.40  -63.87    9.40 -170.67 AMP/DG   
 <846   > LOSS=   .323:    (   .043)       (   .212)       (   .068)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 846       VOLTS:   1.031   -3.32   1.029 -124.46   1.031  116.01 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 844   .....:    9.76   78.80    9.40  -52.54    9.78 -161.93 AMP/DG   
 <846   > LOSS=   .323:    (   .043)       (   .212)       (   .068)    kW 
 TO NODE 848   .......:    9.76   78.80    9.40  -52.54    9.78 -161.93 AMP/DG   
 <848   > LOSS=   .048:    (   .007)       (   .031)       (   .010)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 848       VOLTS:   1.031   -3.32   1.029 -124.47   1.031  116.00 MAG/ANG 
                  D-LD:   20.00   16.00   20.00   16.00   20.00   16.00 kW/kVR 
 kVll  24.900    Y CAP:          159.43          158.86          159.56 kVR 
 
 FROM NODE 846   .....:    9.76   78.79    9.77  -42.47    9.78 -161.94 AMP/DG   
 <848   > LOSS=   .048:    (   .007)       (   .031)       (   .010)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 860       VOLTS:   1.030   -3.24   1.029 -124.39   1.031  116.09 MAG/ANG 
                  Y-LD:   20.00   16.00   20.00   16.00   20.00   16.00 kW/kVR 
 kVll  24.900    Y CAP:             .00             .00             .00 kVR 
 
 FROM NODE 834   .....:    5.87  -33.62    7.68 -156.52    5.29   86.10 AMP/DG   
 <860   > LOSS=   .141:    (   .021)       (   .104)       (   .017)    kW 
 TO NODE 836   .......:    4.16  -30.19    5.96 -154.63    3.60   90.25 AMP/DG   
 <836   > LOSS=   .039:    (  -.035)       (   .103)       (  -.028)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 836       VOLTS:   1.030   -3.23   1.029 -124.39   1.031  116.09 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 860   .....:    1.49  -19.83    4.42 -150.74    1.74   68.08 AMP/DG   
 <836   > LOSS=   .039:    (  -.035)       (   .103)       (  -.028)    kW 
 TO NODE 840   .......:    1.50  -20.01    2.33 -151.97    1.75   68.00 AMP/DG   
 <840   > LOSS=   .002:    (  -.014)       (   .026)       (  -.010)    kW 
 TO NODE 862   .......:     .00     .00    2.09 -149.38     .00     .00 AMP/DG   
 <862   > LOSS=   .000:    (  -.005)       (   .009)       (  -.004)    kW 
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 -  R A D I A L  P O W E R  F L O W  ---  DATE:  6-24-2004 AT 16:34:32 HOURS --- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
    NODE      VALUE         PHASE A         PHASE B         PHASE C     UNT O/L< 
                            (LINE A)        (LINE B)        (LINE C)        60.% 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 840       VOLTS:   1.030   -3.23   1.029 -124.39   1.031  116.09 MAG/ANG 
                  Y-LD:    9.27    7.21    9.26    7.20    9.28    7.22 kW/kVR 
 kVll  24.900    Y CAP:             .00             .00             .00 kVR 
 
 FROM NODE 836   .....:     .79  -41.11     .79 -162.26     .79   78.21 AMP/DG   
 <840   > LOSS=   .002:    (  -.014)       (   .026)       (  -.010)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 862       VOLTS:   1.030   -3.23   1.029 -124.39   1.031  116.09 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll  24.900      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 836   .....:     .00     .00    2.09 -149.50     .00     .00 AMP/DG   
 <862   > LOSS=   .000:    (  -.005)       (   .009)       (  -.004)    kW 
 TO NODE 838   .......:                    2.09 -149.50                 AMP/DG   
 <838   > LOSS=   .004:                    (   .004)                    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 838       VOLTS:                   1.029 -124.39                 MAG/ANG 
                   -LD:                     .00     .00                 kW/kVR 
 kVll  24.900      CAP:                             .00                 kVR 
 
 FROM NODE 862   .....:                     .00     .00                 AMP/DG   
 <838   > LOSS=   .004:                    (   .004)                    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 864       VOLTS:   1.034   -3.17                                 MAG/ANG 
                   -LD:     .00     .00                                 kW/kVR 
 kVll  24.900      CAP:             .00                                 kVR 
 
 FROM NODE 858   .....:     .00     .00                                 AMP/DG   
 <864   > LOSS=   .000:    (   .000)                                    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: XF10      VOLTS:   1.000   -4.63    .998 -125.73   1.000  114.82 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll   4.160      CAP:             .00             .00             .00 kVR 
 
 FROM NODE 832   .....:   69.90  -32.29   70.04 -152.73   69.50   87.39 AMP/DG < 
 <XF10  > LOSS=  9.625:    (  3.196)       (  3.241)       (  3.187)    kW 
 TO NODE 888   .......:   69.90  -32.29   70.04 -152.73   69.50   87.39 AMP/DG   
 <888   > LOSS=   .000:    (   .000)       (   .000)       (   .000)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 888       VOLTS:   1.000   -4.64    .998 -125.73   1.000  114.82 MAG/ANG 
                   -LD:     .00     .00     .00     .00     .00     .00 kW/kVR 
 kVll   4.160      CAP:             .00             .00             .00 kVR 
 
 FROM NODE XF10  .....:   69.90  -32.29   70.04 -152.73   69.50   87.39 AMP/DG   
 <888   > LOSS=   .000:    (   .000)       (   .000)       (   .000)    kW 
 TO NODE 890   .......:   69.90  -32.29   70.04 -152.73   69.50   87.39 AMP/DG   
 <890   > LOSS= 32.760:    ( 11.638)       (  9.950)       ( 11.173)    kW 
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 -  R A D I A L  P O W E R  F L O W  ---  DATE:  6-24-2004 AT 16:34:32 HOURS --- 
 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
 ------------------------------------------------------------------------------- 
    NODE      VALUE         PHASE A         PHASE B         PHASE C     UNT O/L< 
                            (LINE A)        (LINE B)        (LINE C)        60.% 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 890       VOLTS:    .917   -5.19    .924 -126.78    .918  113.98 MAG/ANG 
                  D-LD:  139.11   69.55  137.56   68.78  137.01   68.50 kW/kVR 
 kVll   4.160    Y CAP:             .00             .00             .00 kVR 
 
 FROM NODE 888   .....:   69.91  -32.31   70.05 -152.75   69.51   87.37 AMP/DG   
 <890   > LOSS= 32.760:    ( 11.638)       (  9.950)       ( 11.173)    kW 
 ---------------------*--------A-------*-------B-------*-------C-------*-------- 
 NODE: 856       VOLTS:                    .998 -123.41                 MAG/ANG 
                   -LD:                     .00     .00                 kW/kVR 
 kVll  24.900      CAP:                             .00                 kVR 
 
 FROM NODE 854   .....:                     .00     .00                 AMP/DG   
 <856   > LOSS=   .001:                    (   .001)                    kW 
 
 
 

 

 

 

 

 


