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ABSTRACT 

 

Numerical models of flow and transport are commonly applied for the 

sustainable management of water resources and for the selection of appropriate 

remediation techniques. However, these numerical models are not always accurate due 

to uncertain parameters and the disparity of scales across which observations are made, 

hydrological processes occur, and modeling is conducted. The modeling framework 

becomes further complex because hydrologic processes are coupled with chemical and 

biological processes. This dissertation focuses on the most widespread contaminants of 

surface and ground water, which are E. coli and nitrate, respectively. Therefore, this 

research investigates the linkages between bio-chemical and hydrologic processes for 

E. coli transport, explores the spatio-temporal variability of nitrate, quantifies 

uncertainty, and develops models for both E. coli and nitrate transport that better 

characterize these biogeochemical linkages.  

A probabilistic framework in the form of Bayesian Neural Networks (BNN) 

was used to estimate E. coli loads in surface streams and was compared with a 

conventional model LOADEST. This probabilistic framework is crucial when water 

quality data are scarce, and most models require a large number of mechanistic 

parameters to estimate E. coli concentrations. Results indicate that BNN provides 

better characterization of E. coli at higher loadings. Results also provide the physical, 

chemical, and biological factors that are critical in the estimation of E. coli 

concentrations in Plum Creek, Texas.  
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To explore model parameters that control the transport of E. coli in the 

groundwater (GW) and surface water systems, research was conducted in Lake 

Granbury, Texas. Results highlight the importance of flow regimes and seasonal 

variability on E. coli transport. 

 To explore the spatio-temporal variability of nitrate across the Trinity and 

Ogallala aquifers in Texas, an entropy-based method and a numerical study were 

employed. Results indicate that the overall mean nitrate-N has declined from 1940 to 

2008 in the Trinity Aquifer as opposed to an increase in the Ogallala Aquifer. The 

numerical study results demonstrate the effect of different factors like GW pumping, 

flow parameters, hydrogeology of the site at multiple spatial scales. 

To quantify the uncertainty of nitrate transport in GW, an ensemble Kalman 

filter was used in combination with the MODFLOW-MT3DMS models. Results 

indicate that the EnKF notably improves the estimation of nitrate-N concentrations in 

GW. 

A conceptual modeling framework with deterministic physical processes and 

stochastic bio-chemical processes was devised to independently model E. coli and 

nitrate transport in the subsurface. Results indicate that model structural uncertainty 

provides useful insights to modeling E. coli and nitrate transport. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

1.1 Problem statement 

Protecting the world’s freshwater resources requires identification of threats 

across scales, from global to local. In surface water, microbes have been identified as 

major contaminants of water resources in USA [USEPA, 2006]. In groundwater, nitrate, 

from both natural and anthropogenic sources, has been identified as the most widespread 

contaminant [Nolan et al., 2002]. Surface water and groundwater interact directly or 

indirectly through the vadose zone (Figure 1.1).  

The sources of E. coli contamination in the surface water include waste water 

treatment plants, septic systems, wildlife, and livestock such as, cattle, pets, and horses 

[Teague et al., 2009; BRA and ECI, 2010]. While, much of the nitrate contamination of 

groundwater occurs through the vadose zone, usually from one of the following sources: 

inorganic nitrate from fertilizers, organic nitrate from animal manure applied to 

croplands, domestic lawns, golf courses, failing septic systems, domestic wastewater 

effluents, wastewater from confined animal feeding operations (CAFOs), and leachate 

from landfills and wastewater treatment lagoons, and feces of range livestock, wildlife, 

and domestic animals in residential areas [Gormly and Spalding, 1979; Keeney, 1986].  
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Figure 1.1: A graphical distribution of water on the Earth and the most ubiquitous 

contaminants in water resources. 
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1.2 Motivation 

Surface water provides 40%, and groundwater provides 60 % of the total water in 

Texas. Texas has a huge supply of surface waters, including rivers and streams, lakes 

and reservoirs, springs and wetlands, bays and estuaries, and the Gulf of Mexico. 

Additionally, there are 9 major and 21 minor aquifers, each with their own 

characteristics and ability to produce water. Groundwater is used about 80% to irrigate 

crops. Groundwater supplies are known to decrease in Texas, particularly because of the 

depletion of the Ogallala Aquifer. In addition, the population of Texas increased over 

20% between 2000 and 2010 [TWDB, 2012]. With depleting fresh water resources and 

increasing demand, it is crucial to understand the fate and transport of ubiquitous 

contaminants in order to mitigate contamination of fresh water resources.  

There are uncertainties in the predictions of contaminants; moreover the 

uncertainty associated with these predictions is magnified due to the spatio-temporal 

variability of contaminants, unknown parameters, and sparse datasets at large scales 

(Figure 1.2). For reducing uncertainty, an inherent requirement of contaminant transport 

modeling is parameter estimation and characterization of uncertainty across scales, and 

establishing connections between different types of water resources. This information 

assists environmental managers to design targeted monitoring program, support real-

time decision-making.  

1.3 Research objectives  

The primary objective of this research is to provide a modeling framework by 

bringing together physical, chemical, biological, and mathematical perspectives to 
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enable better prediction of fate and transport of contaminants in surface water, 

groundwater, and vadose zone (Figure 1.2). 

 

 
Figure 1.2: A schematic representation of process integration in the modeling 

framework, and analysis of parameter sensitivity and uncertainty in the output. 
 

 

 

 

 

 



 
 

5 
 

The specific objectives of this research were:  

1. To identify dominant physical, chemical, and biological factors and reduce 

uncertainty in predicting E. coli loads in surface water. 

2. To investigate parameter sensitivity and compare models of E. coli transport across 

surface water and groundwater 

3. To investigate the spatio-temporal variability of nitrate, in groundwater. 

4. To develop algorithms to reduce uncertatinty in nitrate predictions in groundwater 

5. To develop a suitable modeling framework which can improve predictions of E. coli 

and nitrate transport in the subsruface  

In Chapter I, the key water quality factors for estimating E. coli loads in Plum 

Creek, Texas are investigated, and E. coli loads are then estimated based on these 

selected key water quality parameters. We also characterize possible uncertainties in the 

estimation of E. coli loads using Bayesian Neural Networks.  

We also characterize possible uncertainties in the estimation of E. coli loads. 

Chapter II builds upon this work and explores parameter sensitivity and compares 

models for improving predictions of E. coli loads.  

In Chapters II, E. coli transport across surface water and groundwater is 

explored. Chapter II explores parameter sensitivity across unsaturated and saturated 

zones and investigates the effect of flow regimes and seasonal variability on E. coli 

concentrations.  

In Chapter III, the variability of NO3
--N across spatio-temporal scales in 

groundwater systems is investigated. We also analyze long-term trend and persistence 
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associated with disorders in the temporal distribution of NO3
--N, and explore the 

complex mechanisms that regulate the spatial variability NO3
--N in aquifers. 

Chapter IV will build upon the previous work and improve groundwater 

modeling capabilities by reducing uncertainties in NO3
--N prediction. We will estimate 

parameters (e.g., hydraulic conductivity, and reaction rate constants, and recharge) at 

larger scales in order to quantify and reduce the uncertainty of the groundwater flow and 

solute transport (MODFLOW and MT3DMS) models. 

In Chapter V, a novel conceptual modeling framework is developed that accounts 

for model structural uncertainty and explores the dynamics of E. coli and NO3
--N 

transport in subsurface. This conceptual framework models physical processes 

deterministically and treats biological and chemical processes stochastically.  
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CHAPTER II 

ESTIMATING E. COLI LOADS IN STREAMS BASED ON VARIOUS 

PHYSICAL, CHEMICAL, AND BIOLOGICAL FACTORS 

 

2.1 Synopsis 

Microbes have been identified as a major contaminant of water resources. 

Escherichia coli (E. coli) is a commonly used indicator organism. It is well recognized 

that the fate of E. coli in surface water systems is governed by multiple physical, 

chemical, and biological factors. The aim of this work is to provide insight into the 

physical, chemical, and biological factors along with their interactions that are critical in 

the estimation of E. coli loads in surface streams. There are various models to predict E. 

coli loads in streams, but they tend to be system or site specific or overly complex 

without enhancing our understanding of these factors. Hence, based on available data, a 

Bayesian Neural Network (BNN) is presented for estimating E. coli loads based on 

physical, chemical, and biological factors in streams. The BNN has the dual advantage 

of overcoming the absence of quality data (with regards to consistency in data) and 

determination of mechanistic model parameters by employing a probabilistic framework. 

This study evaluates whether the BNN model can be an effective alternative tool to 

mechanistic models for E. coli loads estimation in streams. For this purpose, a 

comparison with a traditional model (LOADEST, USGS) is conducted. The models are 

compared for estimated E. coli loads based on available water quality data in Plum 

Creek, Texas. All the model efficiency measures suggest that overall E. coli loads 
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estimations by the BNN model are better than the E. coli loads estimations by the 

LOADEST model on all the three occasions (three-fold cross validation). Thirteen 

factors were used for estimating E. coli loads with the exhaustive feature selection 

technique, which indicated that six of thirteen factors are important for estimating E. coli 

loads. Physical factors included temperature and dissolved oxygen; chemical factors 

include phosphate and ammonia; biological factors include suspended solids and 

chlorophyll. The results highlight that the LOADEST model estimates E. coli loads 

better in the lower ranges, whereas the BNN model estimates E. coli loads better at the 

higher ranges. Hence, the BNN model can be used to design targeted monitoring 

programs and support real-time decision-making. 

2.2 Introduction 

Microbes have been identified as a major contaminant (13.2% contamination 

caused by pathogenic microbes of total impaired water body segments) of water 

resources in USA (USEPA, 2006). Common bacterial waterborne pathogens include 

Salmonella sp, Shigella sp., few strains of Escherichia coli (E. coli), Pseudomonas 

aeruginosa, Aeromonas hydrophila, Mycobacteria, Helicobacter pylori, and various 

others [Fincher et al., 2009]. The most widely used indicator organisms are the enteric 

coliform bacteria, which are Gram-negative bacilli that belong to the family 

Enterobacteriaceae (e.g., Klebsiella spp., Enterobacter spp., Citrobacter spp., 

Escherichia coli) [Hipsey et al., 2008; Dorner et al., 2006; Mead and Griffin, 1998]. The 

indicator organisms are mostly harmless as compared to the pathogen(s) of concern. 

However, the indicator organisms are monitored due to the relative ease and lesser cost 
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involved in their measurements. It is well established that the fate of E. coli in surface 

water systems is governed by multiple physical (e.g., temperature [Flint, 1987], 

chemical (e.g., pH [Sjogren and Gibson, 1981], nutrients [Lessard and Sieburth, 1983], 

sulfate [Robakis et al., 1983], and nitrate [Noguchi et al., 1997]), and biological 

(Chlorophyll) [Nevers and Whitman, 2005] factors. The relationship among these factors 

and E. coli loads gets complicated by flow rate [Whitman et al., 2004; McKergow et al., 

2009]. Vidon et al. [2008] have reported that E. coli loads are significantly higher at high 

flow than at low flow, whereas McKergow et al. [2009] have observed that E. coli peak 

loads always preceded discharge and turbidity peaks (which had similar timings). 

Therefore, E. coli evidently has a nonlinear relationship with the flow rate and the 

turbidity.  

 It is important to develop an understanding of the relative importance of these 

physical, chemical, and biological factors in estimating the survival of E. coli in water 

bodies. However, a direct measurement of E. coli fate is not, in general, easy to 

implement. Therefore, the degree of impairment of a stream is assessed in terms of Total 

Maximum Daily Load (TMDL). Load duration curves are often used to estimate the 

reduction of contaminant loads in a watershed, especially in TMDL programs [Babbar-

Sebens and Karthikeyan, 2009]. The load duration curves are measured using the 

instantaneous ‘‘load’’. The instantaneous ‘‘load’’ passing through a stream cross-section 

is the product of the flow rate and the constituent concentration. 

Various models have been developed that use complex mechanistic and 

empirical relationships to predict the loads of E. coli in surface water systems e.g, Soil 
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and Water Assessment Tool (SWAT) [Arnold and Fohrer, 2005 and Pachepsky et al., 

2006], Hydrological Simulation Program—Fortran (HSPF) [Benham et al. 2006], and a 

watershed model developed by Tian et al. [2002]. However, overly complex mechanistic 

relationships and requirement of comprehensive descriptions of geometry and capacity 

of stream, detailed knowledge about sources within the watershed, sedimentation and re-

suspension characteristics, and bacteria die-off rates limit the utility of these models. 

Input parameter approximation and simplification in describing transport processes 

result in significant uncertainties in E .coli loads in streams. Other models have been 

developed that use statistical modeling framework to predict the loads of E. coli in 

surface water systems. For instance, Nevers and Whitman (2005) used regression 

modeling to determine E. coli using wave height, lake chlorophyll and turbidity for 

individual beaches of southern Lake Michigan. Furthermore, Money et al. (2009) 

estimated E. coli concentrations using turbidity, where E. coli data were not available, to 

assess fecal contamination along the Raritan River in New Jersey. Different models are 

relevant for different surface water environments, such as freshwater lakes and 

reservoirs [Auer and Niehaus, 1993; Walker and Stedinger, 1999; Jin et al., 2003; Hipsey 

et al., 2008], streams and rivers [Wilkinson et al., 1995; Medema and Schijven, 2001], 

and estuaries and coastal lagoons [Steets and Holden, 2003; McCorquodale et al., 2004]. 

It is also difficult for users to confidently implement these models, since models tend to 

be system or site specific. 

In comparison to these mechanistic and statistical models, a Bayesian Neural 

Network (BNN) provides a Bayesian modeling framework for estimating E. coli loads 
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by utilizing routinely monitored flow rate and water quality data. The input data will 

comprise of water quality data (physical, chemical, and biological factors) that will 

provide a functional framework for the BNN. In case of sparse datasets, the Bayesian 

framework helps in representing input parameters as random variables emphasizing the 

statistical strength of the available data. Also, the uncertainty in input data sets is 

reflected through the probabilistic prediction of E. coli loads. The graphical structure of 

the BNN represents a cause-and-effect relationship between system variables (water 

quality data) and E. coli loads, as shown in Figure 2.1. One can use various bases in the 

formulation of the BNN such as multi-layer perceptron (MLP), radial basis functions 

(RBF). BNN models with radial basis functions (RBF) have been used in this study as 

they have an ability to deal with sparse datasets and parameter over-fitting. 

The specific objective of this study is to identify the key water quality factors for 

estimating the E. coli loads in streams. Based on identified water quality factors, E. coli 

loads will be estimated in streams along with characterization of possible uncertainties. 

 



 
 

12 
 

 
Figure 2.1: The graphical structure of BNN representing cause-and-effect 

relationship between system variables (water quality parameters) and the E. coli 
loads. The Radial Basis layer is the hidden layer, which uses the transfer function f 
(thin plate spline), and the linear layer is the output layer, which uses the transfer 

function f (linear function). The transfer function f establishes a relationship 
between inputs and outputs, in case of estimation of E. coli loads, and thin plate 

splines work better than other transfer functions (Gaussian or r4 functions). 
 

2.3 Study area description and data availability  

This study is conducted at a station (Station ID: 12645; Latitude 29°40'02" and 

Longitude 97°39'14") in Plum Creek (Figure 2.2), which is monitored by the Texas 

Commission on Environmental Quality (TCEQ). The Plum Creek watershed is a part of 

the Guadalupe River basin and is located in east central Texas. It surrounds a drainage 

area of 1028 km2 in the counties of Hays, Caldwell, and Travis [Teague et al., 2009]. 

According to the 2008 Texas water quality inventory and 303(d) list of impaired water 

bodies, Plum Creek is impaired for bacteria throughout the entire segment 

[http://www.gbra.org/CRP]. Plum Creek is a shallow, intermittent fifth-order stream. It 
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is 83 km long and joins the San Marcos River that in turn connects with the Guadalupe 

River. The watershed has several rapidly growing towns such as Lockhart, Kyle, and 

Luling. The watershed has a diversified land use from urban to agriculture and oil field 

activities. The watershed encompasses 38% rangeland, 17% pasture, 11% cultivated 

cropland, 18% forest, 8% developed land, 6% near riparian forest, and 2% open water 

and barren land. The landscape is characterized as rolling hills of pasture and cropland 

surrounded by scrub oak forest. Plum Creek lies in a semi-humid subtropical climate 

zone and is heavily influenced by its proximity to the Gulf of Mexico [GBRA, 2006]. 

 

 
Figure 2.2: Map showing the Guadalupe river basin in east central Texas and the 
station ID 12645 in Plum Creek (Map modified from http://www.gbra.org/CRP). 
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Two US Geological Survey (USGS) gage stations are located on Plum Creek to 

monitor stream flows: one north of Lockhart (Station 08172400) and one near Luling 

(Station 08173000). Near Lockhart, periods of no flow have occurred almost every year 

on record. Southern reaches of Plum Creek, particularly south of Lockhart, are fed by a 

number of small springs and are usually perennial. Based on routine water quality 

sampling, TCEQ initially listed portions of Plum Creek for bacteria impairment for 

contact recreation use in 2002. The possible sources of E. coli contamination in the creek 

are cows¸ livestock, wildlife, wastewater treatment plants, septic systems, and pet 

sources [Teague et al., 2009]. By 2004, bacterial contamination level in Plum Creek was 

elevated, and it was included in the list of impaired waters of Texas prohibiting wading 

and swimming. The E. coli criteria for designated use of a stream specified in water 

quality standards (e.g., recreational uses, irrigation, and navigation etc.) require a 

geometric mean (GM) concentration of E. coli less than 126 cfu/100 mL of water with 

no sample exceeding 235 cfu/100 mL of water. E. coli and water quality data at the 

monitoring sites were available from October 1996 to December 2008 

[http://www.gbra.org/CRP]. Water quality data were collected monthly by the TCEQ. 

The available water quality data include thirteen factors wherein physical factors include 

turbidity (NTU), temperature (oC), conductivity (µmhos/cm)), and dissolved oxygen 

(mg/L) (DO); chemical factors include pH, phosphate (mg/L), nitrate-N (mg/L), chloride 

(mg/L), sulfate (mg/L), total hardness (mg/L), ammonia (mg/L); and biological factors 

include suspended solids (mg/L) (SS) and chlorophyll (mg/m3).  
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2.4 Methodology 

In order to identify the key water quality factors responsible for E. coli loads in 

streams, BNN models are run in conjunction with the exhaustive feature selection 

technique. We use the thirteen physical, chemical, and biological factors described 

above. The exhaustive feature selection technique provides the best set of water quality 

factors for estimating E. coli loads. A principal component analysis (PCA) is also 

conducted to get insight into the relative importance of the factors identified by the 

exhaustive feature selection. These selected factors are subsequently utilized in 

estimating E. coli loads by the BNN model in Plum Creek. The BNN model results are 

also compared with the LOADEST model. For better decision-making, uncertainty 

analysis is also conducted. In the subsequent sections, we provide a description of BNN 

and LOADSEST models, exhaustive feature selection, PCA, and uncertainty analysis. 

2.4.1 Bayesian neural networks  

The application of the Bayesian learning paradigm to neural networks results in a 

flexible and powerful nonlinear modeling framework that can be used for regression, 

density estimation, prediction and classification supporting adaptive decision-making, 

and accounting for uncertainties [Andrieu et al., 2001, Reckhow, 1999]. The regression 

of a target variable Y on an input set of covariates X given the 

data   {(     ) (     )  }  

                  (2.1) 

where i are independent and identically distributed (i.i.d.)   (    ). 
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The central process of the Bayesian framework is the calculation of a probability 

distribution on the unknown parameter (weight) vector w. Prior knowledge that we 

might have, say for small weights, is updated using the data. These posterior 

distributions are used in model predictions, with point forecasts given as expectations 

[Holmes and Mallick, 1998]: 

 [ |   ]  ∫ (   ) ( | )         (2.2) 

where E[Y| x, D] represents the posterior probability of the parameters of the model m(x, 

w) given the training data D. 

BNN generates a probability distribution of the layer weights, which is 

dependent on the given input data:  

 ( | )  
 ( |   ) ( )

 ( | )
       (2.3) 

where  ( | )  ∫ ( |   ) ( )   is the marginal distribution of Y, P(w) is the prior 

distribution of weights, and P(Y|w, X) is the likelihood function [Gelman et al., 1995]. 

Artificial Neural Network (ANN) combined with Monte Carlo Markov Chain (MCMC) 

generates multiple samples from a continuous target density [Bates and Campbell, 

2001]. A flat prior can be assumed here, as we do not have any definite prior knowledge 

of weights [Sims and Zha, 1998]. 

Predictive distribution of Yn+1 is given by: 

 (    |        )  ∫ (    |        ) ( |   )      (2.4) 

where n+1 denotes next realization. 
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We considered Radial Basis Functions (RBF) architecture in BNN, which has an 

ability of closely approximating any nonlinear multidimensional mapping [Ciocoiu, 

2002]. A brief summary of RBF is provided below for completeness. 

2.4.2 Radial basis function (RBF)  

RBF networks are one of the most commonly used types of feed forward 

networks. The feed forward neural network is most widely used to solve engineering 

problems. It is a simple nonlinear model that maps the input vector onto the output 

vector [Lanouette et al., 1999].The architecture of a RBF network consists of three 

layers: an input layer, a hidden layer, and an output layer. The transformation from input 

space to hidden unit space is nonlinear, whereas transformation from hidden unit space 

to output space is linear [Ciocoiu, 2002]. During the training stage, a known set of input 

and output data pairs are delivered to the RBF network to select the centers and compute 

the output layer weights. The models have radial functions, where each basis is 

parameterized by a knot or position vector located in the d-dimensional covariate space 

x. The hidden layer provides a set of functions that constitute an arbitrary basis for the 

input patterns. The hidden units are known as radial centers and represented by the 

vectors (C1; C2; …, Ch). Conventionally, there are as many basis functions (h) as data 

points to be approximated with the position vectors set to the data values. The model 

output m(x) is given by a linear combination of the basis functions response and a low-

order polynomial term: 

 ( )  ∑     (||    ||)  
 
   ∑   

 
     ( )     (2.5) 
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where ||| || denotes a distance metric, usually Euclidean or Mahalanobis, and 

  ( ) represents a polynomial of degree m. The coefficients w and a are calculated by 

least squares where the constraint∑   
 
     (  )    is imposed to ensure the 

uniqueness of the solution [Holmes and Mallick, 1998]. Different radial functions (e.g., 

Gaussian, quadratic, thin plate spline, and inverse quadratic functions) are used for 

different problems. We used the thin plate spline (TPS) for estimating E. coli loads. The 

TPS is given as:  

 ( )        ( )        (2.6) 

where   (||    ||)        (2.7) 

RBF networks enlarge the dimensionality of the input data in order to increase 

the probability that originally nonlinearly separable classes become linearly separable 

(Cover’s theorem) [Ciocoiu, 2002]. For modeling a system with limited experimental 

data, RBF may have an advantage over the other techniques. One of the problems that 

may occur during neural network training is over-fitting. A frequently used method for 

improving network generalization is to use an adequate-sized network, which is just 

large enough to provide an adequate fit [Cilek and Yilmazer, 2003]. Over fitting happens 

when the model has too many degrees of freedom, which is the result of including too 

many hidden neurons. The neurons in the hidden layer contain transfer functions whose 

outputs are inversely proportional to the distance from the center of the neuron. With 

small data sets used in this study, we ensured model accuracy by running multiple 

simulations by randomizing data sets. We split all the valid data into three randomly 

distributed groups. Three random sets are selected using randperm function in 
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MATLAB. Initially, random split 1 is set aside for testing, while the models are 

parameterized on the basis of random splits 2 and 3. The fitted models are then used to 

test/predict E. coli loads by using input data from the random split 1. Next, random split 

2 is set aside for testing, while random splits 1 and 3 are used for training. This pattern is 

also repeated for the random split 3. We use the same random splits (1, 2, and 3) for 

estimating E. coli loads by using the LOADEST Model. 

2.4.3 Load estimator  

Load estimator (LOADEST) is a regression-based model for estimating 

constituent loads in streams and rivers [Runkel et al., 2004]. Given a time series of 

streamflow and constituent concentration (E. coli), LOADEST facilitates users in 

developing a regression model for the estimation of constituent loads [Cohn, 2005]. 

Explanatory variables within the regression model include multiple functions of flow, 

time, and additional data variables. The developed regression model is then used to 

estimate loads over a user-specified time interval. Mean loads, standard errors, and 95% 

confidence intervals are also estimated on a monthly and/or seasonal basis. There are 

three statistical methods used for calibration and validation (estimation) of LOADEST 

including Adjusted Maximum Likelihood Estimation (AMLE), Maximum Likelihood 

Estimation (MLE), and Least Absolute Deviation (LAD). AMLE and MLE are 

appropriate when the calibration model errors (residuals) are normally distributed, 

whereas LAD is appropriate when model errors (residuals) are not normally distributed. 

In our case, calibration model errors are normally distributed, so we used AMLE for 

estimating E. coli loads. The detailed mathematical formulation of LOADEST is 
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provided elsewhere [Cohn, 2005]. In general, total mass loading over an arbitrary time 

period, τ, is given by:  

   ∫     
 

 
         (2.8) 

 ̂    ∑ ( ̂ )    ∑ ( ̂)  
   

  
         (2.9) 

where C is concentration [M/L3], L is the total load [M], Q is instantaneous stream flow 

[L3/T], t is time [T], and NP is the number of discrete points in time. The hats on       

and L denote the instantaneous values of the respective variables. E. coli loads estimated 

by the LOADEST model are compared with the E. coli loads estimated by the BNN 

model using the key water quality factors. The key water quality factors are identified 

using the exhaustive feature selection technique. 

2.4.4 Exhaustive feature selection 

The BNN models are run multiple times with all possible combinations of the 

thirteen water quality factors (13C1+13C2+….+13C13) for estimating E. coli loads. The 

Exhaustive Feature Selection is a technique of selecting a subset of relevant features for 

building robust models. The brute-force feature selection algorithm is applied to 

exhaustively evaluate all possible combinations of the input features, and then the best 

subset is chosen. The exhaustive search’s computational cost is prohibitively high, with 

a considerable danger of overfitting [Moore and Lee, 94; Skalak, 94]. Hence, for 

avoiding the over-fitting, K-fold (three-fold) cross validation is used in selecting the best 

subset. The aim of the feature selection is to choose a subset of the set of input features 

(physical, chemical, and biological factors) so that the subset can predict the output Y (E. 

coli loads) with accuracy akin to the performance of the whole input set X, and with a 
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reduction of the computational cost. For conducting the exhaustive feature selection, the 

following steps are outlined:  

1. Shuffle the dataset and split into a training set of 2/3rd of the data and a test set of the 

remaining 1/3rd of the data. 

2. Choose all possible combinations of various input variables. 

3. Select each subset, and run the BNN model with leave-one-out cross-validation. 

4. Store the Nash-Sutcliffe Efficiency (NSE) Coefficients (see section 2.4.5) of each 

run. 

5. Select the feature set which has minimum root mean square error of NSE three-fold 

validation. 

2.4.5 Model performance 

We computed the Nash–Sutcliffe efficiency (NSE) and Normalized Mean 

Squared Error (NMSE) as measures of the model performance.  

The Nash–Sutcliffe efficiency (NSE) coefficient is given as:  
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The Normalized Mean Squared Error (NMSE) is given as: 
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where     is observed E. coli loads, and     is simulated E. coli loads at time t.     is 

mean observed E. coli loads.    (    ) denotes the variance of all the observed E. coli 

loads. NSE can range from −∞ to 1. An efficiency of 1 (NSE = 1) corresponds to a 

perfect match of simulated values to the observed data. An efficiency of 0 (NSE = 0) 
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demonstrates that the model predictions are as good as the mean of the observed data. In 

essence, closer the efficiency of the model is to 1, the more accurate is the model. The 

NMSE of 0 indicates that the model predictions are perfect. The lower the NMSE, the 

better is the model performance. 

The Exhaustive Feature Selection technique in conjunction with the BNN model 

rendered the best set of factors. In order to assess the relative importance of these 

factors, principal component analysis (PCA) is done. 

2.4.6 Principal component analysis 

Principal component analysis (PCA) is a multivariate statistical technique. The 

transformed features have a descriptive power that is more ordered than the original 

features. PCA has been applied in describing various aspects of streamflow regimes 

[Olden and Poff, 2003], understanding the spatial and temporal changes in water quality 

[Bengraıne, and Marhaba, 2003], determination of dominant biogeochemical processes 

in a contaminated aquifer [Cazull and McGuire, 2008]. In this study, PCA is used to 

identify major factors among water quality data that can explain most of the variation of 

E. coli loads.  

PCA is an orthogonal linear transformation of the data (e.g., water quality data) 

to a new coordinate system such that the greatest variance by any projection of the data 

happens to span on the first quadrant. The principal axis method is used to extract the 

components, followed by a varimax (orthogonal) rotation with Kaiser Normalization. A 

detailed description, of how the principal components are calculated, is provided 

elsewhere [Jolliffe, 2002]. 
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2.4.7 Uncertainty analysis 

Monte Carlo based statistical techniques – resampling with replacement 

(“bootstrapping”) [Robert and Casella, 1999] is implemented to estimate the statistical 

uncertainty in predictions by the BNN and LOADEST models. To explore the 

uncertainty in the BNN predictions, 10000 realizations of E. coli loads are investigated. 

Bayesian networks are probabilistic models that combine prior distributions of 

uncertainty with data to yield an updated (posterior) set of distributions [Helton and 

Oberkampf, 2004]. Therefore, inputs are integrated over the weight space of the 

posterior probability distribution for finding the outputs (i.e., E. coli loads) of the 

networks.  

The probability distribution of each output as a random variable is plotted 

utilizing the kernel density (Parzen window) estimation, which is a non-parametric 

method [Silverman, 1986]. If x1, x2… xN are samples drawn from the density function of 

a random variable, then the kernel density approximation of its probability density 

function is given as: 
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where K is some kernel and h is a smoothing parameter called the bandwidth. Here, a 

Gaussian kernel is chosen with mean zero and unit variance:  
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2.5 Results and discussion 

The results presented here provide insight into the different physical, chemical, 

and biological factors that are critical in the estimation of E. coli loads in surface 

streams. The exhaustive feature selection in conjunction with the BNN model (Figure 

2.1) identified the best combination of input variables for estimating E. coli loads in 

Plum Creek (Figure 2.2). Out of the thirteen water quality factors, exhaustive feature 

selection identified six key variables: SS, phosphate, temperature, DO, ammonia, and 

chlorophyll. In the following section, we will focus on these key variables and their 

relative importance. Subsequently, we utilize these six key variables using the BNN 

model for estimating E. coli loads in Plum Creek.  

2.5.1 Identification of the key factors responsible for the E. coli loads in Plum Creek 

The exhaustive feature selection identified six factors in estimating E. coli loads 

in Plum Creek namely SS, phosphate, temperature, DO, ammonia, and chlorophyll. To 

investigate the relative importance of the key factors for E. coli loads in streams, a 

principal component analysis (PCA) was performed as shown in Figures 2.3 and 2.4.  
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Figure 2.3: Pareto diagram of principal components shows the percentage 

explained by each component. The first three components explain 70% of variation 
in the data set. 

 

The PCA explored the relationship among water quality factors such as SS, 

phosphate, temperature, DO, ammonia, and chlorophyll. The first two components 

explain 60.0% of the variance; component 1 and component 2 account for 35.6% and 

24.4% of the variance, respectively (Figure 2.4). The first principal component (PC) 

captures the variance of DO and temperature. The second PC captures the variance of 

SS, phosphate, ammonia, and chlorophyll.  
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Figure 2.4: The principal component analysis (PCA) of the dataset is shown above. 

First principal component is projected against the second principal component. The 
Euclidean norm (length) reflects the relative importance of different factors. The 

biplot of the PCA is shown in (A). (B) and (C) demonstrate factors loadings on first 
and second principal components, respectively. 
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The PCA biplot (Figure 2.4) illustrates a visual interpretation of the factor 

loadings that result from a bi-cluster system of variables projected onto the first and 

second PC axes. The biplot tells about the relative positions of the factors, and the angles 

between the factors give approximate estimates of the correlation among factors; small 

angles between projected axes imply a high correlation. The direction of axes gives the 

sign of correlation among factors displayed on the biplot [Jolliffe, 2002].  

Turning now to the interpretation of the PCs in the present work, the six factors 

can be divided into three groups. The group 1 includes temperature and DO (physical 

factors); the group 2 includes phosphate and ammonia (chemical factors); the group 3 

includes the SS and the chlorophyll (biological factors). The central idea of this 

classification is based on the fact that groups of variables often move together, and more 

than one factor measures the same driving force. The first PC clearly measured physical 

factors, as DO and temperature have the maximum loadings (Figure 2.4B); moreover, 

they also have a high negative correlation with each other (almost 1800 separated in 

biplot (Figure 2.4A). Therefore, DO and temperature were classified as the group 1. The 

second PC accounted for the chemical and biological factors (Figure 2.4C). Since, 

phosphate and ammonia are the dominant factors on the second PC, and phosphate and 

ammonia also have a high positive correlation with each other (almost overlapping in 

biplot (Figure 2.4A). For this reason, they were classified as group 2. Similarly, the third 

PC also accounted for biological factors, as SS and chlorophyll have a medium positive 

correlation with each other (a small angle between them in biplot Figure 2.4A). Hence, 

they were grouped together.  



 
 

28 
 

The biological tolerance of E. coli to different physical, chemical, and biological 

factors has been well studied, albeit mostly in the laboratory. It has been observed that E. 

coli are sensitive to changes in temperature [Maeda et al., 1976; Berg, 2004]. The rate of 

die-off depends on temperature [Flint et al., 1987]. Moreover, E. coli are anaerobic 

bacteria, and thus E. coli also responds to oxygen gradient. The majority of E. coli 

cannot live in oxygen rich environment [Berg, 2004]. This clearly explains the selection 

of DO and temperature as important physical factors in estimating E. coli loads in our 

study and their negative correlation. Temperature affects positively, whereas DO affects 

negatively in estimating E. coli loads by the BNN model. In the biplot, approximately 

1800 separation of temperature and DO corroborates this behavior of E. coli (Figure 

2.4A).  

Phosphate and ammonia are also found to be important factors in the estimation 

of E. coli loads by the BNN model. This is because phosphate and ammonia act as 

nutrients or substrates, and the presence of nutrients increases E. coli concentrations in 

streams [van der Steen et al., 2000]. These nutrients have significant positive correlation 

and therefore signify the importance of chemical factors on E. coli loads.  

In our study, SS and chlorophyll were also important factors in the estimation of 

E. coli loads by the BNN model. In the literature, there is evidence to suggest that high 

concentrations of chlorophyll and suspended sediments are associated with high E. coli 

concentrations [Nevers and Whitman, 2005]. However, Money et al. (2009) examined the 

relationship between turbidity and E. coli and found a significant correlation between 

both the parameters. Turbidity indicates high volumes of suspended sediments. SS and 
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chlorophyll correspond to the biological factors, as they are sources of organic carbon 

[Jonge et al., 1980]. These biological factors were measured by the second PC.  

It should be noted that the sign of any PC is completely arbitrary. If every 

coefficient in a PC has its sign reversed, the variance is unchanged, and so is the 

orthogonality [Jolliffe, 2002]. Therefore, the biplot and loadings only show the relative 

importance of the factors, they do not demonstrate if a factor is positively or negatively 

affecting the E. coli loads. However, the biplot exhibits how each factor can affect the E. 

coli loads. For example, it is evident from Figure 2.4A that all the factors on the left side 

of the plot (phosphate, ammonia, temperature, SS, and chlorophyll) are positively 

associated with E. coli loads, whereas the only factor on the right hand side of the plot is 

DO, and it is negatively associated with E. coli loads. This graphic examination further 

substantiates our findings. 

2.5.2  Estimation of E. coli loads 

In this section, we discuss the discrepancy between simulated and observed E. 

coli loads using the BNN model (using the six key variables) and compare its 

performance to the LOADEST model. Figure 2.5 and 2.6 show measured and simulated 

E. coli loads in Plum creek using the BNN and the LOADEST models respectively for 

three random splits. 
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Figure 2.5: Measured and simulated loads of E. coli by the BNN model in Plum 

Creek are shown above. The simulations were tested by three-fold cross validation. 
Months on X-axis represent the sequence of random splits (not the sequence of a 

timeseries). 
 

Table 2.1 shows the measures of the models’ performance. A three-fold cross 

validation results show that both modeling approaches (BNN and LOADEST) reproduce 

observed E. coli loads reasonably well, with all NSE values greater than or equal to 0.39 

and all NMSE values smaller than or equal to 0.59 (Table 2.1). However, the BNN is 

able to estimate E. coli loads better in all the three random splits (Table 2.1). The 

uncertainty bands (Figures 2.5 and 2.6) show that the BNN is also able to capture higher 

E. coli loads more accurately than the LOADEST model. This is expected because the 
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BNN model provides more flexible choices for the functional dependence in estimating 

E. coli loads based on physical, chemical, and biological factors (e.g., SS, phosphate, 

temperature, DO, ammonia, and chlorophyll), whereas the LOADEST model uses only 

the E. coli and flow data. 

 

 
Figure 2.6: Measured and simulated loads of E. coli by the LOADEST model in 
Plum Creek are shown above. E. coli loads are presented for the three random 

splits, which were used for three-fold cross validation of the BNN model. Months on 
X-axis represent the sequence of random splits (not the sequence of a timeseries). 
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Table 2.1: Nash-Sutcliffe efficiency (NSE) and normalized mean squared error 
(NMSE) of the BNN and LOADEST models. 

Random splits Models NSE NMSE 

Random split 1 BNN 0.48 0.51 
LOADEST 0.39 0.59 

Random split 1 BNN 0.69 0.30 
LOADEST 0.55 0.44 

Random split 3 BNN 0.75 0.23 
LOADEST 0.52 0.46 

 

 
Figure 2.7: The cumulative density functions of the observed E. coli loads, 

estimated E. coli loads by the BNN, and estimated E. coli loads by the LOADEST 
model are presented above. There are three regions in the figure. Region A signifies 
that the LOADEST model is able to estimate E. coli loads better. In region B and C, 
the BNN model predicts better, however in region B, both the LOADEST and BNN 

models overestimate E. coli loads. 
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Figure 2.7 shows the cumulative distribution functions (CDFs) of the observed, 

BNN simulated (all the three random splits), and LOADEST simulated (all the three 

random splits) E. coli loads in Plum Creek. The region A signifies the smaller E. coli 

loads (smaller than 0.5x1011 cfu/Day), which are better estimated by the LOADEST 

model. The BNN model is underestimating the E. coli loads in this region. The region C 

encompasses the higher E. coli loads (greater than 1.5x1011 cfu/Day), which are better 

estimated by the BNN model. For best management practices, it is essential to be able to 

estimate higher E. coli loads, and the BNN model is able to estimate values with greater 

accuracy in this range. The region B (0.5x1011 cfu/Day to 1.5x1011 cfu/Day) constitutes 

the region with medium loads between regions A and C, and where both the LOADEST 

and BNN models are overestimating the E. coli loads. However, the BNN model is 

closer to the observed values than the LOADEST model in this region. 

2.5.3 Uncertainty analysis 

Uncertainty analysis is conducted to further compare the performance of BNN 

and LOADEST models in estimating E. coli loads in Plum Creek. The uncertainty bands 

(±σ with 95% confidence) computed using bootstrap samples show that there is more 

uncertainty for larger loads than smaller loads (Figure 2.5 and 2.6). We believe that this 

reflects various sources of uncertainties. There is evidence that uncertainties of discrete 

E. coli samples are greater than 30% while the uncertainty in storm water flow 

measurements average greater than 97% [McCarthy et al., 2008]. Therefore, E. coli 

loads will have more uncertainty due to storm events. As high E. coli loads are often 

associated with storm events, the upper limit of the uncertainty band is also wider for 
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higher loads. These uncertainties in the inputs propagate into larger uncertainties in the 

output. 

Figure 2.8 shows six E. coli loads estimated by the BNN model (low and high E. 

coli loads for each random split), and the probability distribution functions (PDFs) of 

10,000 realizations for each E. coli loads were plotted. As stated previously, Bayesian 

Neural Networks use a range of weight sets instead of a single set. Each weight gives a 

realization of E. coli loads. The final predicted E. coli loads were generated from the 

average of 10,000 such realizations. The center of mass of a PDF shows the mean of the 

prediction and spread around the mean shows the uncertainty. It is clear from the Figure 

2.8 that E. coli loads, estimated by the BNN model, were closer to the centers of the 

PDFs with high density values (4 of them are >0.4). It should be noted that the BNN 

model estimates lower E. coli loads with a small bias and higher E. coli loads with a 

large bias; however, the performance of the BNN model is better than the LOADEST 

model  for estimating higher E. coli loads. Figure 2.8 demonstrates that the E. coli loads 

estimated by the BNN model have a smaller bias but a relatively larger variance.  The 

large variance in the PDFs is due to various uncertainties, which stem mainly from (1) 

the uncertainties in input data (e.g., flow rate and water quality data); (2) uncertainties in 

data used for calibration, (e.g., E. coli loads). Input data (flow rate and water quality 

data) and E. coli loads have large inherent uncertainties, and these uncertainties cannot 

be removed from the model predictions in the existing data. However, the advent of 

newer technologies and careful data collection may help in minimizing these 

uncertainties in the future. The other source of uncertainties is from model parameters 
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(weights and biases). These uncertainties are related to the fact that a small bias in the 

estimation, using a neural network with a training set of fixed size, can only be achieved 

with a large variance [Geman et al., 1992; Haykin, 1996]. This dilemma can be avoided 

if the training set is made very large, but the total amount of data is limited in our case. 

However, a possibility of making training sets larger can be plausible in the future. 

  

 
Figure 2.8: Probability distributions of low and high E. coli loads of each random 
split by the BNN model are presented above. PDFs show that uncertainty in the 

estimation has a small bias but a large variance. These uncertainties mainly stem 
from flow and other water quality data. 
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2.6 Summary and conclusions 

This study provides a Bayesian Neural Network (BNN) model for E. coli 

prediction in streams. A significant contribution of this paper is in identifying six key 

variables from a selection of physical, chemical, and biological factors that influence E. 

coli loads in surface streams. An exhaustive feature selection technique used in 

conjunction with BNN and the principal component analysis (PCA) indicated the 

importance and correlation among these six variables. Physical factors included 

temperature and DO; chemical factors include phosphate and ammonia; biological 

factors include SS and chlorophyll. 

The BNN model was then run using these six factors and a comparison with a 

traditional model (LOADEST) developed by the USGS was also conducted. The 

inherent differences between the models are the calibration procedures using statistical 

(LOADEST) versus probabilistic (BNN) framework. The models were compared for 

estimation of E. coli loads based on available water quality data, Nash–Sutcliffe 

efficiency (NSE), and normalized mean squared error (NMSE). Both the models were 

evaluated using three-fold cross validation. All the efficiency measures suggest that 

estimation of E. coli loads by the BNN model was better than the LOADEST model on 

all the occasions during three-fold cross validation. The results also highlight that the 

LOADEST model estimates E. coli loads better in the smaller ranges, whereas the BNN 

model estimates E. coli loads better at the higher ranges. Hence, the BNN model can be 

useful to decision maker and environmental managers to design targeted monitoring 

programs and support real-time decision-making. 
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An uncertainty analysis is also used to compare the predictive powers of the two 

models. These results suggest that more uncertainty is associated with larger E. coli 

loads, and signify that the major source of uncertainty comes from storm events 

associated with these loads. The uncertainty analysis also exhibits that the BNN model 

estimates E. coli loads with a small bias but slightly large variance. This can be avoided 

in the future with the presence of large datasets and improved monitoring programs. 
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CHAPTER III 

E. COLI FATE AND TRANSPORT BELOW SUBSURFACE SEPTIC TANKS IN 

THE LAKE GRANBURY AREA  

 

3.1 Synopsis 

Pathogens are major polluters of water resources in the state of Texas. 

Escherichia coli (E. coli) is an indicator microorganism for fecal contamination. E. coli 

contamination of groundwater (GW) and surface water (SW) occurs through the 

subsurface from onsite wastewater treatment systems (OWTSs). However, E. coli 

transport in the subsurface remains inadequately characterized at the field scale. 

Therefore, the aim of this research is to explore E. coli transport in the vadose zone 

under dynamic boundary conditions in a linked SW-GW system. Additionally, this study 

characterizes the impact of flow regimes on E. coli transport in the subsurface and 

explores parameters that control the transport of E. coli in the GW-SW system. This 

study was conducted in Lake Granbury, which is a critical water supply in North Central 

Texas providing water for over 250,000 people. In order to consider the impact of the 

vadose zone on E. coli migration, HYDRUS model was used to simulate E. coli 

movement in the unsaturated zone. Resulting E. coli concentrations from the simulation 

of HYDRUS were used as concentration boundary conditions in the 

MODFLOW/MT3DMS model. Results of unsaturated zone modeling manifest the 

importance of flow regime and seasonal variability on E. coli transport in the subsurface. 

It was found that there is increased mobility of E. coli in winter as compared to summer 
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months. Sensitivity analysis revealed saturated water content, decay coefficient, and 

dispersivity as important parameters for E. coli transport in the vadose zone. 

Comparatively, saturated zone modeling demonstrates saturated hydraulic conductivity 

as the most sensitive parameter followed by first order decay coefficient and partition 

coefficient of E. coli. 

3.2 Introduction 

Water resources are prone to microbial contamination in rural areas, where a 

large number of onsite wastewater treatment systems (OWTSs) are present. 

Onsite/decentralized wastewater treatment systems serve approximately 25% of U.S. 

households and almost 40% new developments [Lowe and Siegrist, 2008; USEPA, 

2005]. The most common OWTS involves a septic tank unit followed by dispersal to a 

subsurface soil infiltration unit. Onsite systems are one of many known contributors of 

pathogens and nutrients to groundwater (GW) [USEPA, 2002].  Escherichia coli (E. coli) 

is a microbe of fecal origin. Therefore, water contamination by various strains of E. coli 

is becoming common in rural areas in the US [Bradford et al., 2006].  

The level of E. coli contamination to GW depends upon multiple factors such as 

precipitation pattern, thickness and composition of the vadose zone [Williams et al., 

1998], subsurface heterogeneity [Spalding and Exner, 1993]. Physical processes 

controlling the fate and transport of E. coli have been studied extensively [Haznedaroglu 

et al., 2008].  Smith et al. (1985) demonstrated that the extent of E. coli transport largely 

depends on soil structure. They further suggested that flow through soil macropores, 

which bypasses the retentive capacities of the soil matrix, is a common phenomenon. 
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Gagliardi and Karns (2000) discussed the impact of soil type and method of pathogen 

delivery on E. coli transport in the subsurface. Another study conducted in a karstic 

aquifer described that the residence time of E. coli in the subsurface, which is correlated 

with the pore velocity, is crucial for GW contamination [Personne et al., 1998]. 

Furthermore, there is evidence in the literature that the survival and transport of E. coli 

in the subsurface is controlled by various factors, such as climate (e.g. temperature, 

rainfall), soil type (e.g. porosity), saturated water content [Federle et al., 1986]. 

Moreover, hydrological interactions between surface water (SW) bodies and GW are 

also of fundamental concern to the migration of contaminants (such as, E. coli) in a 

linked SW-GW system [e.g., Townley and Trefry, 2000; McMahon et al., 1995; Bethune 

et al., 1996]. However, despite the importance of SW-GW interaction, the 

characterization of the impact of GW flow patterns, due to dynamic boundary 

conditions, on fate and transport of E. coli near surface water bodies is still lacking. 

Therefore, the purpose of this research task is to investigate SW-GW interaction near 

shallow water bodies and to relate the results to E. coli transport through the subsurface 

to the SW.  

The fate and transport of E. coli in the subsurface poses a twofold challenge to 

researchers. First, most of the studies to characterize E. coli transport in the subsurface 

involve packed bed column systems. However, there are many differences between real-

world scenarios and the sand columns used in the laboratory. Second, the impact of 

vadose zone flow processes is oversimplified in GW modeling. For example, recharge 

and concentration boundary conditions are calculated externally without proper 
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consideration of the vadose zone. Therefore, a study is desired to understand the 

transport of E. coli in the subsurface under dynamic boundary conditions for a linked 

SW-GW system. For this study, we present a lose coupling between HYDRUS and 

MODFLOW to simulate E. coli migration below the subsurface zone in the Lake 

Granbury area. HYDRUS is used to produce E. coli flux at the water table that becomes 

a boundary condition for GW flow and transport models—MODFLOW and MT3DMS. 

HYDRUS can simulate flow and transport in a variably saturated system, however, 

HYDRUS does not consider head-dependent groundwater discharge [Niswonger and 

Prudic, 2009].  Moreover, we also note the problem of numerical instability that is 

associated with solutions for Richards’ equation despite significantly improved 

numerical methods. Therefore, MODFLOW and MT3DMS are used for simulating flow 

and transport of E. coli in the GW under dynamic boundary conditions. 

The aim of this research is to explore E. coli transport in the vadose zone under 

fluctuating GW table. In addition, this study investigates and uniquely characterizes the 

impact of flow paths on E. coli transport in the vadose zone and explores parameters that 

control the transport of E. coli in the SW-GW system. 

3.3 Study area description and data availability  

This study is conducted at a station (Segment ID: 1205; Latitude 32°27'40" and 

Longitude 97°42'53") in the Lake Granbury area, which is monitored by the Brazos 

River Authority. Lake Granbury is a man-made lake of 35 km2 within the Middle 

Brazos-Palo Pinto watershed (USGS Cataloging Unit: 12060201). The watershed is a 

part of the Brazos River basin and is located in north-central Texas, in Hood County. 
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Long, hot summers and short mild winters characterize the climate with average 

temperatures ranging from a low of 1.1 ˚C in January to a high of 35.5 ˚C in July. The 

average annual precipitation in the watershed is 760 mm. The watershed has a 

diversified land use from urban to agriculture; about 31 to 40 % of the land is considered 

prime farmland. The landscape is characterized as rolling hills of pasture and cropland 

surrounded by deciduous forest. Lake Granbury is an important source of water supply 

in this area, providing water for over 250,000 people in more than 15 cities. Recent 

studies by the Brazos River Authority (BRA) and Espey Consultants, Inc. have 

concluded that some of the Lake Granbury's coves especially shallow bodies of water are 

contaminated with E. coli. The possible sources of E. coli contamination in the lake are 

septic systems, cattle, pets, and wastewater treatment plants [BRA and ECI, 2010].  

The water quality data in Lake Granbury were collected under Clean River 

Programs (CRP) by the Brazos River Authority and the Texas Commission on 

Environmental Quality. E. coli (CFU/100 mL) data in Lake Granbury were available 

from July 2002 to August 2010. E. coli data are grab samples collected monthly at 0.3 

meters below the surface. Precipitation data were obtained from the National Climatic 

Data Center (NCDC) [available at http://www.ncdc.noaa.gov/], and evapotranspiration 

data from TexasET Network [available at http://texaset.tamu.edu/index.php]. 

3.4 Methodology  

For this study, HYDRUS-3D is used to simulate E. coli migration below the 

subsurface zone in the Lake Granbury area. The HYDRUS-3D software can be used to 

model 2-dimensional E. coli fate and transport in the vadose zone. Therefore, now on, 
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we will use HYDRUS to indicate 2-D modeling of E. coli transport in the vadose zone. 

HYDRUS produces E. coli flux at the water table which becomes a boundary condition 

for GW flow and transport models—MODFLOW and MT3DMS. Since, the E. coli 

concentrations obtained from HYDRUS are used as concentration boundary condition; 

we performed forward modeling in the unsaturated zone. However, calibration of 

MODFLOW and MT3DMS models’ is done using the Parameter Estimation (PEST) 

software to match estimated and observed E. coli concentrations. E. coli estimation at 

observation nodes are compared with available monitoring results. In the subsequent 

sections, we provide a description of the modeling framework in the Lake Granbury area 

using the unsaturated zone model—HYDRUS and saturated zone models—MODFLOW 

and MT3DMS. Subsequently, we perform sensitivity analysis to evaluate appropriate 

range of parameters. 

3.4.1 E. coli transport modeling in the unsaturated zone  

E. coli transport in the subsurface is explored in the Lake Granbury area using 

the physically-based HYDRUS hydrologic simulation software [Šimůnek et al., 2006]. 

The HYDRUS software allows the user to analyze fate and transport of E. coli through 

saturated, partially saturated or unsaturated regions with irregular boundaries, and 

composed of non-uniform soils. In the Lake Granbury area, there are shallow canals, 

which are hydrologically connected to the lake (Figure 3.1). Two different hydrologic 

scenarios are investigated and compared. Boundary conditions with respect to water 

levels in the lake, in the canal, and in the groundwater system are altered and 

incorporated in the HYDRUS model as follows:  
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 The first scenario involves the GW level to be lower than the water level in the lake 

and the canal. 

 The second scenario involves the GW level to be higher than the water level in the 

lake and the canal. 

The GW table fluctuates in response to climatic conditions (precipitation and 

evapo-tranpiration), and this fluctuation imposes a dynamic boundary condition in the 

linked SW-GW system (Lake Granbury Area). These scenarios allow us to investigate 

the possible effects of different hydrologic conditions on the transport of E. coli in the 

subsurface. 

3.4.2 Physical domain setup for the unsaturated zone  

The HYDRUS software package solves the Richards’ equation for water flow 

and advection dispersion equation for solute transport in variably saturated domains 

using the finite element method. Advective transport in the vadose zone is the major 

mechanism for E. coli transport. Richards’ equation (2-D) is used for describing 

variably-saturated flow: 
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where t is time [T], z is the vertical coordinate positive upwards [L], x is the lateral 

coordinate, θ is the water content [L3L-3], h is the pressure head [L], K is the unsaturated 

hydraulic conductivity [LT-1], S is a sink term.  

The advection dispersion equation (ADE) is used for modeling solute transport: 
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where c is the concentration of E. coli in the liquid phase,           are the dispersion 

coefficients,    and    are the pore water velocities,    is the bulk density,    is the 

amount of E. coli sorbed, the subscript     describes the bio-chemical transformation. 

The modeling domain is described in Figure 3.1. An initial time step of 0.1 day 

and minimum and maximum time steps of 0.01 and 5 day are employed. The flow and 

transport simulations for E. coli are performed for a period of 700 days. The simulation 

period is chosen based on the time required for E. coli to reach the peak concentration at 

the observation nodes. The results are described with respect to observation nodes as 

shown in Figure 3.1.  

 

Table 3.1: Initial input parameters for E. coli transport in the vadose zone 
[Bradford et al., 2006; Gelhar et al., 1992; Mace et al., 2000; Pang et al., 2004]. 

Parameter Value 
Longitudinal dispersivity (m) 1 

Longitudinal hydraulic conductivity (m/sec) 3.5 10-8
 

Attachment coefficient (-/sec) 7.73×10-5
 

Detachment coefficient (-/sec) 5.33×10-7 

Unsaturated E. coli removal (decay) rate (-/sec) 2.3×10-5 
Saturated E. coli removal (decay) rate (-/sec) 2.3×10-6 

Transmissivity (m 2/sec) 1 10-4 
Effective Porosity(-) 0.3 

E. coli concentration in septic tanks (CFU/100mL) 1×106 
Effluent Loading (m 3/sec) 1.05 1 

 

We use attachment/detachment model to describe E. coli movement in variably 

saturated soil. We assume monodispersed and time dependent deposition behavior of E. 

coli for this study. Flow and transport parameters used in the HYDRUS model are listed 

in Table 3.1. Boundary Conditions (BC) for the HYDRUS and MODFLOW-MT3DMS 
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models are listed in Table 3.2. As this model contains many nonunique input parameters, 

a sensitivity analysis is used to indicate which of these parameters are critical for 

describing E. coli transport in the subsurface. 

 

 
Figure 3.1: Plan view of the model domain (m) for (1) MODFLOW/MT3DMS and 

(2) cross sectional view of the model domain (m) for HYDRUS 2-D along A-A’ 
 transect (Map courtesy: Google Earth). 
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Table 3.2: Boundary conditions (BC) for HYDRUS and MODFLOW-MT3DMS 
models 

HYDRUS Boundary Conditions 

Hydrologic Upper BC 
Atmospheric BC 

 ( )  
               (   )   

 (     )
     (   )    

Hydrologic Lower BC 
Deep Drainage 

 ( )  
          (   )   

 (     )
     (   )    

Hydrologic Lateral BCs Variable Head 
   ( ) 

  

Solute Upper BC No Flux 
     

Septic Tanks BC Constant Flux 
       

Solute Lateral and Lower 
BCs 

Flux Type 
    (t) 

MODFLOW-MT3DMS Boundary Conditions 

Hydrologic Upper BC 
Atmospheric BC 

 ( )  
          (   )   

 (     )
     (   )    

Hydrologic Lower BC 
Deep Drainage 

 ( )  
          (   )   

 (     )
     (   )    

Lateral BCs Variable Head 
   ( ) 

Solute Upper BC Flux Type 
     (t) 

Solute Lower BC Flux Type 
     (t) 

Solute Lateral BCs Flux Type 
     (t) 

 

3.4.3 Sensitivity analysis in the unsaturated zone  

The aim of the sensitivity analysis is to estimate appropriate range of flow and 

transport parameters and ascertain critical values that may lead to optimal solutions. 

HYDRUS enables two (or three) dimensional flow and solute transport representations 
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in the unsaturated zone. However, the 2D/3D version of HYDRUS is not equipped with 

inverse estimation capabilities. Therefore, in this study, sensitivity analysis is carried out 

by individually varying one-parameter-at-a-time. Each parameter is perturbed by ±30% 

while keeping the rest of the parameters constant at their assigned values. 

3.4.4 Physical domain setup for the saturated zone  

E. coli concentrations obtained at the water table, using the optimal parameters in 

the HYDRUS model for scenarios 1 and 2, were used as the concentration boundary 

condition (winter and summer respectively) in GW flow and transport models—

MODFLOW and MT3DMS. 

The MODFLOW [McDonald and Harbaugh, 1984], a three-dimensional finite 

difference model, distributed with a graphical user interface by Waterloo Hydrogeologic 

(Visual MODFLOW), solves the GW equation for water flow and advection dispersion 

equation for E. coli transport in saturated domains. Advective transport in GW is the 

major mechanism for E. coli transport. GW equation is used for describing saturated 

flow: 
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where K is the hydraulic conductivity [LT-1], and h is hydraulic head [L], G is the source 

or sink term, and S is the storativity [L]. 

For E. coli transport, MT3DMS-v5.1 [Zheng and Wang, 1999] quantifies 

advective- dispersive transport process, 

  

  
 

 

   
(   

  

   
)  

 

   
(   )  ∑                      (3.4)  



 
 

49 
 

where C is the total aqueous concentration of solute [ML-3], Dij is the hydrodynamic 

dispersion coefficient tensor, vi is the pore-water velocity [LT-1] in direction xi, and Rreac 

is a source or sink rate due to microbial processes. 

The MODFLOW/MT3DMS model domain is described in Figure 3.1. The flow 

and transport processes are simulated using       uniform grids. The model has one 

layer, for a total modeling depth of 20 m. Model topography is imported from surveyed 

elevation data. The top of the model is assigned as a recharge boundary. The lateral 

limits are defined by physical and hydraulic boundaries (Figure 3.1). 

We assume Langmuir adsorption and first order decay models to describe the E. 

coli fate and transport in GW. Flow and transport parameters used for the MODFLOW 

and MT3DMS models are listed in Table 3.1. The Visual MODFLOW and MT3DMS 

models are run at steady state, and then calibrated to observed E. coli concentrations 

using PEST software. The calibration is done for a period of 49 months— from July 

2002 to January 2006 at observation grid located by the lake. The model is validated for 

a period of 49 months— from February 2006 to August 2010. Model calibration consists 

of modifying the flow and transport parameters to minimize the normalized root mean 

squared (NRMSE) error between estimated and observed E. coli concentrations. 

3.4.5 Calibration and sensitivity analysis in the saturated zone  

PEST is a parameter estimation package, which is model independent. In this 

study, PEST is utilized to calibrate the saturated zone model parameters such that E. coli 

concentrations match field measurements as closely as possible. PEST implements a 

particularly robust variant of the Gauss-Marquardt-Levenberg algorithm of nonlinear 
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parameter estimation [Marquardt, 1963]. As a spin-off, PEST also provides linear-based 

approximations of the uncertainties propagated through parameters that it estimates. The 

degree of correlation between parameters is also calculated to evaluate the equifinality of 

the inverse problem. We provide a brief description of the Gauss-Marquardt-Levenberg 

algorithm of nonlinear parameter estimation used by PEST. Further details can be 

obtained elsewhere [WHI, 2002]. 

Suppose that the GW model M, with the set of parameters b0, estimates E. coli 

concentrations C0 as follows: 

    (  )                     (3.5)  

Concentrations C are generated using another set of parameters b-b0, where b0 is 

in the proximity of b. Taylor’s theorem gives: 

      (    )                    (3.6)  

where J is the Jacobian matrix of     such that m are the number of observation and n 

are the first derivatives of one particular observation with respect to each parameter. The 

objective function is defined using the Gauss-Marquardt-Levenberg algorithm gives:  

  (      (    ))
  (      (    ))                (3.7)  

where Q is an m-dimensional diagonal matrix consisting of squares of weights attached 

to each observation. The superscript T represents the transpose operation.  

The model performance is assessed by normalized root-mean-square error 

(NRMSE). The Normalized Mean Squared Error (NRMSE) is given as:  

      
√ (( ̂   ) )

     (  )
                   (3.8)  
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where    is measured E. coli concentrations,  ̂ is the estimated E. coli concentration at 

time t, and      (  ) is the range of measured E. coli concentrations. The lower the 

NRMSE, the better is the model performance. 

3.5 Results  

This section discusses the key findings from the fate and transport analysis of E. 

coli in the subsurface. In the unsaturated zone, E. coli migration was examined at 

observation nodes 1 and 2 for two year simulations by the HYDRUS. The observation 

node 1 is located near the lake, whereas the observation node 2 is located near the canal 

(Figure 3.1). In order to explore important features and processes controlling E. coli 

transport in the subsurface, scenario analysis was conducted based on the different water 

levels in the lake and canal and GW. Subsequently, resulting E. coli concentrations from 

the simulation of the HYDRUS model were used as concentration boundary conditions 

in the MODFLOW and MT3DMS models. The results of these simulations were then 

used to evaluate E. coli migration into the lake and canal. An important part of the 

modeling process was to use field data to calibrate and independently test the predictive 

capabilities of the MODFLOW and MT3DMS models. The HYDRUS simulations were 

run from 2003 to 2004, whereas MODFLOW-MT3DMS simulations were run from July 

2002 to August 2010. The important results of this study are summarized below. 
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3.5.1 E. coli transport in the unsaturated zone 

The GW table fluctuates in response to climatic conditions. For example, in Lake 

Granbury site, winter (October to May) precipitation is often higher than summer (June 

to September) precipitation [Harmel et al., 2003] and so GW storage is not fully 

recharged in summer. Figure 3.2 demonstrates the higher precipitation and lower evapo-

transpiration in winter for years 2003 and 2004.  

 

 
Figure 3.2: Precipitation and evapo-transpiration in the Lake Granbury area for 

2003 and 2004 demonstrate that June to September have high evapo-transpiration 
and lower precipitation as compared to October to May (Data: TWDB). 
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Figure 3.3: The breakthrough curves of E. coli concentration at observation nodes 

1 and 2 demonstrate the impact of scenarios 1 and 2 on E. coli transport in the 
subsurface. Scenario 1 represents summer and scenario 2 represents winter. 
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As a result, the water table is lower in the summer period (scenario 1). Therefore, 

the first scenario, where the GW level is lower than the water level in the lake and the 

Canal, essentially represents the hydrologic conditions in the summer. Likewise, the 

second scenario, where the GW level is higher than the water level in the lake and the 

canal, represents the hydrologic conditions in the winter. Consequently, GW gains water 

from the lake during summer time; GW loses water to the lake during winter time.  

Figure 3.3 describes the characteristics of the E. coli breakthrough curves 

providing information on the peak concentrations of E. coli at observation nodes 1 and 2 

(Figure 3.1) for scenarios 1 (summer) and 2 (winter). It is evident from the figure that 

the peak concentrations of E. coli are smaller in the case of summer months as compared 

to winter months for both observation nodes 1 and 2. These results indicate increased 

mobility of E. coli in winter as compared to summer. In addition, Figure 3.3 also 

demonstrates that higher peak concentrations of E. coli are obtained at observation node 

2 than observation node 1 for both scenarios 1 (summer) and 2 (winter). This suggests 

that E. coli concentrations migrate towards the canal. 

 



 
 

55 
 

 
Figure 3.4: The horizontal (1.5 m below land surface) and vertical profiles (across 

septic tanks near the Lake) of pressure head demonstrate the impacts of 
 scenario 1 (summer) and 2 (winter) on the extent of the saturated and 

unsaturated zones. 
 

The E. coli concentration profiles in vertical and horizontal direction were 

examined in order to explore the important characteristics of E. coli transport in the 

subsurface. Figure 3.4 shows the change in pressure head profiles during different 

scenarios (winter and summer). 

Figure 3.5 represents the concentration profiles of E. coli in the horizontal (1.5 m 

below land surface) and vertical directions  along transect A-A’ for scenarios 1 

(summer) and 2 (winter). The lake and canal are located at 0 m and 100 m, respectively, 

on the X-axis. Septic tanks are located at 15 m and 85 m on the X-axis (Figure 3.5). 
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Figures 3.5 (A and C) again demonstrate higher concentrations near the lake as well as 

the canal during winter times (scenario 2) as compared to summer times (scenario 1). As 

GW loses water during winter times (Figure 3.4), there is advective transport towards the 

lake and canal from GW. Since the major transport modes of E. coli in the subsurface 

are through advective transport [Jamieson et al., 2003], higher E. coli concentrations are 

obtained at observation nodes 1 and 2 during winter times. In addition, winter times 

(scenario 2) shows small fluctuations in E. coli concentrations near septic tanks (Figure 

3.5). These fluctuations may be attributed to infiltrating water because there is higher 

precipitation in the Lake Granbury area in the winter months. The figure also depicts that 

E. coli concentration drops quickly towards the center of the modeling domain (42 to 58 

m on the X-axis). This phenomenon—higher E. coli concentration near the lake and 

canal and E. coli concentration dropping to zero towards the center of the modeling 

domain— shows that a GW divide exists in the modeling domain. A GW divide is 

defined by a hypothetical line on either side of which GW moves in opposite directions. 

The GW divide occurs because of the shallow water table, which is strongly influenced 

by surface water flow. The GW divide prevents E. coli movement through advective 

transport towards the center of the modeling domain.  As diffusive transport is smaller 

than advective transport, lower E. coli concentrations are observed in this central region.    
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Figure 3.5: The horizontal (1.5 m below land surface) and vertical profiles (across 

septic tanks near the Lake) of E. coli concentration demonstrate the impacts of 
 scenario 1 (summer) and 2 (winter) on E. coli transport in the subsurface. 

 

 Figures 3.5 (B and D) represent the concentration profile of E. coli in the vertical 

direction (by the septic tanks) for scenarios 1 (summer) and 2 (winter). Figures 3.5 (B 

and D) manifest little upward retention of E. coli for both the scenarios. It is evident 

from the figure that the soil matrix within a depth of 0.5 m contains 90% of E. coli from 

the source (septic tanks). The figure further demonstrates that E. coli concentration 

gradually changes for scenario 2 (winter) than for scenario 1 (summer), where E. coli 

concentration drops quickly. These results demonstrate the importance of the flow 

regime and seasonal variability (climatic) on E. coli transport in the subsurface. 
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3.5.2 Sensitivity analysis in the unsaturated zone 

Processes for investigating E. coli transport at large scales are currently lacking. 

Thus, these results should be interpreted and treated within the limits of uncertainty of 

the model and parameters (flow and transport). Nevertheless, the model provides useful 

insight into the E. coli transport processes. The objective of SA was to apportion the 

uncertainty in the predictions (E. coli concentration) to different sources of uncertainty 

in the flow and transport parameters. One-parameter-at-a-time (OAT) approach was 

implemented, where each parameter was altered by ±30% while keeping the rest of the 

parameters constant at their assigned values. It was found that E. coli concentration was 

largely affected by three parameters: saturated water content, decay coefficient, and 

dispersivity. E. coli transport in the vadose zone is contingent upon advection and 

dispersion. It is known that the saturated water content and transport properties of soils 

bear strong nonlinear relationships, and water content status in unsaturated porous media 

directly influences advective fluxes [Or et al., 2007].  

As seen in Figures 3.4 and 3.5, dispersive transport is significant for E. coli 

transport in the zones, where advection is not the dominant mode of E. coli transport. 

Decay coefficient reflects the residence time of E. coli in soil, and is therefore an 

important parameter. 
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3.5.3 E. coli data and moving average  

As seen in section 3.5.1, seasonal variability greatly influences E. coli transport 

in the subsurface. Therefore, the purpose of presenting autocorrelation function (ACF) 

and partial autocorrelation function (PACF) of E. coli concentrations was to describe the 

seasonal occurrence of E. coli in the lake. The ACF describes the similarity between E. 

coli observations as a function of the time lag between them. The higher ACF values 

show repeating patterns, such as seasonality. The PACF identifies the extent of the lag in 

an autoregressive model.  

Figure 3.6 demonstrates ACF and PACF of measured E. coli in the lake. It is 

evident from the figure that there are high and low observed E. coli values. The ACF and 

PACF demonstrate a repeating pattern after 7 and 10 months. This is because climatic 

seasonality has an effect on E. coli transport; a repeating pattern of 7 months is because 

of winter (October to May), and the repeating pattern of 10 months (which occurs after 3 

months of winter) is because of summer (June to September). These results corroborate 

the findings of the scenario analysis on E. coli transport in the subsurface. 

 

 

 

 

 

 

 



 
 

60 
 

 
Figure 3.6: The (A) autocorrelation (ACF) and (B) partial autocorrelation (PACF) 

functions of E. coli concentrations in the lake describe the seasonality in the 
observed E. coli concentrations. The ACF and PACF demonstrate a repeating 

pattern after 7 and 10 months. 
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Figure 3.7: The 3-month moving average of E. coli concentrations in the canal 

shows the seasonality in E. coli concentrations. 
 

Based on the ACF and PACF analysis, the moving average was selected to 

smooth out the variability of monthly E. coli data (Figures 3.6 and 3.7). 3-month moving 

average was chosen because this is the time lag between winter and summer months. 

The 3-month moving average E. coli concentrations were used for calibration and 

validation in the MODFLOW and MT3DMS models. The 3-month moving averages of 

E. coli concentrations are more appropriate than monthly values of observed E. coli 

concentrations, because the presence of E. coli in the lake is a continuous phenomenon. 

Smoothing out the fluctuations allows users to reduce uncertainty in the observed E. coli 

data. The important findings of the saturated zone modeling are summarized below. 
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Figure 3.8: (A) The Marquardt Lambda with parameter estimation attempts 

exhibits the performance of PEST during the calibration of 
MODFLOW/MT3DMS. (B) The change in the sensitivity of parameters with the 

number of iteration implies that the sensitive parameter is more accurately 
estimated than other parameters. 
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3.5.4 E. coli transport in the saturated zone  

The aim of the saturated zone modeling was to characterize the subsurface 

system in its totality using the known hydrogeology of the site. MODFLOW simulated 

the hydrogeologic regime at the site. MT3DMS simulates advection, dispersion, and first 

order decay of E. coli in GW. PEST software package was employed to calibrate the 

MODFLOW/MT3DMS models. In this section, we first describe the parameter 

sensitivity results from the calibration using PEST. Subsequently, we describe results 

obtained from the calibrated MODFLOW/MT3DMS models. 

3.5.5 Model calibration and sensitivity analysis in the saturated zone  

Figure 3.8A demonstrates the performance of PEST during the calibration of the 

saturated zone models. The plot shows the change in the Marquardt Lambda with 

parameters estimation attempts. The lower values of the Marquardt Lambda indicate that 

the process of optimization is relatively easy for PEST, while higher values indicate that 

the process is relatively challenging. In other words, higher values indicate that there is 

higher uncertainty in the system. It is evident from Figure 3.8A that the value of the 

Marquardt Lambda decreased after each parameter upgrade attempt (from 1 to 7). This 

indicates that initial upgrade attempts provided a sufficient reduction in the residual of 

the objective function (Equation 3.8). PEST increased the Marquardt Lambda with 

parameter upgrade attempt (from 7 to 9) to obtain optimal parameters in the gradient 

descent direction. 

Figure 3.8B illustrates the change in the sensitivity of different parameters (decay 

coefficient, storativity, hydraulic conductivity, partition coefficient) with the number of 
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iteration. It is evident from the figure that saturated hydraulic conductivity is the most 

sensitive parameter followed by the first order decay coefficient and partition 

coefficient. The greater sensitivity of hydraulic conductivity implies that this parameter 

is more accurately determined than other parameters. 

3.5.6 Simulation results of MODFLOW and MT3DMS  

 The calibrated groundwater flow and solute transport model was developed to 

characterize the Lake Granbury site for possible contamination of the lake from a large 

population of existing OWTSs. Figure 3.9 shows reasonably good agreement between 

the E. coli concentrations estimated from the MODFLOW/MT3DMS and the observed 

E. coli concentrations in the lake for calibration and validation periods. The normalized 

mean squared error (NMSE) value is 0.56 (calibration) to 0.59 (validation) from the 

simulated and observed E. coli concentrations. Furthermore, the coefficient of 

correlation (R) values range from 0.63 (validation) to 0.66 (calibration) from the 

simulated and observed E. coli concentrations. Overall NMSE and R are 0.58 and 0.64, 

respectively. However, there is uncertainty associated with the estimated/observed E. 

coli concentrations. The confidence interval (CI) band in Figure 3.9 reflects uncertainty 

in the model output. More than 78% observed E. coli values fall within the confidence 

limits of ±σ (1 standard deviation). Nevertheless, 22% E. coli values are not within the 

limits of the CI, and this mismatch between observed and estimated concentrations of E. 

coli can be a result the assumption that the sole source of E. coli contamination is from 

septic tanks. Therefore, it is believed that as more data become available, these 

uncertainties will decline. The present modeling effort is best used to provide a 
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manifestation of the relative contributions of the different processes causing E. coli 

contamination in the lake rather than absolute contributions. The flow paths in the Lake 

Granbury area suggest that the main body of canal is more at risk of impairment than the 

lake. 

 

 
Figure 3.9: Estimated E. coli concentrations from the calibrated MODFLOW and 
MT3DMS models and observed E. coli concentrations in the lake show that 85% 

observed E. coli values fall within the confidence limits of ±σ (standard deviation). 
Months from July 2002 to January 2006 (0-48) and months from February 2006 to 

August 2010 (49-98) were used for calibration and validation, respectively.  
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3.6 Summary and conclusions 

The major goal of this research was to explore E. coli transport in the subsurface 

by characterizing the vadose zone and groundwater (GW) system. Scenario analysis 

based on the water level in the lake and canal and GW level was implemented to 

investigate controls of E. coli transport in the subsurface. E. coli movement in the 

unsaturated zone was simulated in HYDRUS. Resulting E. coli concentrations from the 

simulation of the HYDRUS model were used as concentration boundary conditions in 

the MODFLOW/MT3DMS model. The results of these simulations were then used to 

evaluate E. coli migration into the lake and canal. As a significant contribution, this 

study demonstrates the impact of flow regime and seasonal variability (precipitation and 

evapo-transpiration) on E. coli transport in the subsurface. The results show increased 

mobility of E. coli in winter months as compared to summer months. It was found that 

90% E. coli are retained in the soil matrix within a depth of 0.5 m from the source 

(septic tanks). Saturated water content, decay coefficient, and dispersivity are the top 

three parameters that produced the most sensitivity to modeled E. coli concentration in 

the vadose zone when compared with the optimal HYDRUS simulation. It was found 

that saturated hydraulic conductivity is the most sensitive parameter followed by the first 

order decay coefficient and partition coefficient of E. coli in groundwater. The simulated 

MODFLOW/MT3DMS model produces reasonably good agreement between estimated 

E. coli concentrations and observed E. coli concentrations in the lake. Simulated E. coli 

values by the MODFLOW/MT3DMS are able to capture much of the variation (78%) of 

the measured E. coli concentrations regardless of some uncertainties associated with the 
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observed E. coli concentrations. These results are useful to decision makers and 

environmental managers to design targeted monitoring programs and support real-time 

decision-making. 
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CHAPTER IV 

ENTROPY-BASED ANALYSIS FOR SPATIO-TEMPORAL VARIABILITY OF 

NITRATE IN TEXAS AQUIFERS ACROSS MULTIPLE SCALES  

 

4.1 Synopsis 

Nitrate is considered to be one of the most prevalent contaminants in 

groundwater (GW). Because of its high solubility and mobility, it is prone to leaching 

through soils with infiltrating water. High nitrate-N concentration in GW is a human 

health concern particularly for infants. NO3
- in GW shows significant spatio-temporal 

variability which comes from interaction among multiple geophysical factors such as 

natural and anthropogenic source availability (land use), environmental forcings such as 

precipitation history, thickness and composition of the vadose zone, types of aquifers 

(confined or unconfined), aquifer heterogeneity and geology, etc. The spatial variability 

of nitrate-N reflects the heterogeneous nature of the major variables that affect nitrate-N 

in GW, such as uneven application of fertilizers, spatial variability of hydrogeology, 

different amounts of GW pumping at different locations, and other geo-environmental 

factors. We developed an entropy based method to describe the spatio-temporal 

variability of nitrate-N at multiple scales in two different hydrogeologic settings— the 

Trinity and Ogallala aquifers in Texas at fine (2 km ×2 km), intermediate (10 km×10 

km), and coarse (100 km×100 km) scales. The Hurst exponent was used to evaluate the 

long-term persistence and trend in the variability of nitrate-N. A numerical study using 

Visual MODFLOW was also conducted to verify the effect of different factors on spatial 
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variability of nitrate-N at multiple scales. Results demonstrate that the spatial variability 

of aquifer nitrate-N is controlled by the GW pumping activities, and hydraulic 

conductivity at the fine scale, the complex interactions between rivers and aquifers at the 

intermediate scale, and by lithology and geology at the coarse scale. There is maximum 

variability of nitrate-N contamination at the intermediate scale along with the long-term 

persistence. In the Trinity Aquifer, overall mean nitrate-N has declined with not much 

change in the temporal variability over each decade from 1940 to 2008. However, in the 

Trinity Aquifer, percent samples having nitrate-N > 10 mg/L did not change over time. 

In the Ogallala Aquifer, at all scales, overall mean nitrate-N has increased because of 

enhanced use of fertilizer since 1940. However, percent samples having nitrate-N > 10 

mg/L has significantly decreased over the last seven decades due to the use of more 

efficient methods of irrigation. The temporal variability of nitrate-N contamination has 

increased in the Ogallala Aquifer at all scales since 1940. 

4.2 Introduction 

Nitrate contamination of groundwater (GW) is a growing concern in the world. 

In a global context, more than 1.5 billion people, and in the United States, more than 

50% of the population (155 million) rely on ground water for their primary source of 

drinking water [Alley et al., 2002]. In recent times, nitrate (nitrate-N) contamination of 

GW has posed a severe threat to human health. Despite its critical importance, not 

enough is known about the long-term spatio-temporal variability of nitrate-N in GW to 

explain the complex mechanisms that regulate its variability. 
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The causes of contamination stem from both point sources and nonpoint sources. 

Various sources of nitrate-N in GW include domestic lawns, golf courses, failing septic 

systems, domestic and municipal wastewater treatment plants, wastewater treatment 

lagoons, confined animal feeding operations (CAFOs), landfills, and residential areas. 

Furthermore, different forms of nitrate-N in GW are inorganic nitrogen (from fertilizers), 

organic nitrogen (from animal manure applied to croplands), and soil organic nitrogen 

(from mineralization). [Gormly and Spalding, 1979; Keeney, 1986; Harter et al., 2001; 

Green et al., 2010]. Subsequently, storage of nitrate in the unsaturated zone occurs and 

may become a significant source to ground water [Domagalski et al., 2008]. 

Additionally, airborne nitrogen compounds given off by industry and automobiles are 

deposited on the land by precipitation [Nolan et al., 2002]. Most of the reactive nitrogen 

from fertilizer migrates into the atmosphere, rivers, and GW, where it acts as a polluter 

and poses a hazard to humans [Nolte et al., 2010]. 

The health risks of nitrate contamination in drinking water above 10 mg per liter 

of nitrate-N are well documented. Nitrate-N can cause methemoglobinemia in infants 

(“blue-baby syndrome”) and neural tube defects in women during pregnancy in the 

occurrence of higher nitrate-N intake from dietary, drinking water or other nitrate-N 

sources [Brender et al., 2004]. New studies suggest that there is a positive association 

between nitrate-N in drinking water and non-Hodgkin’s lymphoma and colorectal cancer 

in humans [Lundberg and Govoni, 2004; Showers et al., 2008]. For reducing health 

risks, cleaning up water contaminated with nitrate-N is an expensive and complicated 

alternative [McMahon et al., 2008]. Hence, it is crucial to understand the spatio-temporal 
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variability of nitrate-N and their contributing factors to minimize and mitigate 

contamination in GW. 

Nitrate-N patterns or trends in GW show significant variability in space and time 

scales [Williams et al., 1998]. This spatio-temporal variability comes from interaction 

among multiple geophysical factors such as sources of nitrogen loading (land use), 

precipitation pattern, thickness and composition of the vadose zone [Williams et al., 

1998], types of aquifers (confined or unconfined), aquifer heterogeneity and geology 

[Spalding and Exner, 1993]. Spatially varying long response times (years to centuries) of 

aquifers further contribute towards spatio-temporal variability of nitrate-N 

contamination. These factors also change across seasons and years across the catchment, 

and therefore an improved understanding of nitrate-N dynamics across multiple spatio-

temporal scales is desired. Several studies were conducted to understand the 

complexities of nitrate-N contamination in GW. Williams et al. [1998] demonstrated 

different spatio-temporal variations of nitrate-N contamination in isolated and clustered 

wells, as well as for a large diffuse region of the Sierra Pelona alluvial aquifer. They 

concluded that nitrate-N patterns are critical to constrain possible contamination sources 

and transport mechanisms. Refsgaard et al. [1999] characterized large scale modeling of 

GW contamination from nitrate-N leaching, and indicated the limitation posed by the 

upscaling procedure from point to field scale. There are numerous techniques available 

for quantifying spatio-temporal variability of a system component. For example, 

geostatistical methods have been applied to examine spatial variability of infiltration 

[Loague et al., 1990], arsenic contamination in GW [Ryker, 2001; Winkel et al., 2008], 
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aquifer hydraulic properties [Carle et al., 2006], etc. Geostatistical methods usually 

require an assumption of stationarity, and the interpolated value may be different from 

the measurement itself [Mariethoz et al., 2009]. Similarly, a principal component 

analysis (PCA) and K-means clustering technique were used to analyze the spatial and 

temporal patterns of droughts [Santos et al., 2010]. The applicability of PCA is limited 

by certain assumptions as large variances have important structure and linearity. K-

means clustering uses the Euclidean norm, which may not be valid in certain cases. 

Our aim is to develop an approach for characterizing spatial and temporal 

variability of nitrate-N at different scales (fine, intermediate, and coarse), and to identify 

the sources of variability in two different hydrogeologic settings— the Trinity and the 

Ogallala aquifers in Texas (Figures 4.1 and 4.2). The absence of continuous long-term 

water quality data for many regions in these aquifers impedes progress toward resolving 

the spatial complexity of the nitrate-N patterns. For the same reason, the gridded 

reconstruction of water quality dataset was developed in three spatial scales— fine 

(         ), intermediate (           ), and coarse (             ) grids.  
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Figure 4.1: Map showing the Trinity Aquifer and its outcrop area. The Trinity 
Aquifer is a sandstone-carbonate rock aquifer and partly confined. The Trinity 

Aquifer consists of early Cretaceous age formations of the Trinity Group, from the 
Red River in North Texas to the Medina River of South-Central Texas. Major 

Rivers in the study area include: the Red, Trinity, Brazos, Colorado, San Antonio, 
Guadalupe, and Medina rivers. 
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Figure 4.2: Map showing the Ogallala Aquifer, which is an unconfined aquifer and 

primarily composed of sand, gravel, clay, and silt deposited during the Tertiary 
Period. Major Rivers in the study area include: the Canadian, Prairie Dog Town 
Fork Red River, and Colorado Rivers. The part where the Canadian River wears 

away demarcates the Ogallala into two separate flow systems referred to as the 
Northern and Southern High Plains. The Ogallala and the underlying Cretaceous, 

Jurassic, and Triassic formations are hydrologically connected in many areas. 
These hydrologic connections also exist between the overlying Quaternary 

Blackwater Draw Formation wherever present. 
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The specific objectives of this study are:  

 To develop an entropy based approach and investigate the spatial variability and 

corresponding physical controls of nitrate-N associated with fine, intermediate, and 

coarse scale, 

 To investigate the temporal variability and corresponding physical controls of 

nitrate-N on a decadal scale and to compare disorders within/across decadal scale, 

and 

 To analyze long-term trend and persistence associated with randomness in the 

distribution of nitrate-N. 

4.3 Methodology  

In order to analyze the spatial variability of nitrate-N, we utilized an entropy 

based approach, which is further verified by using numerical modeling and scenario 

analyses. An information flow schematic of the method is provided in Figure 4.3. 

4.3.1 Estimation of variability  

Spatial variability is characterized by randomness, periodicity, discontinuity, or 

due to systematic variation. Within this framework, the terms unpredictable, uncertainty, 

unstructured, and complex are analogous to variability. Temporal variability indicates 

randomness, periodicity, or discontinuity in time at a given spatial location. Different 

descriptive statistics, such as range, mean, standard deviation, and coefficient of 

variability are widely used for measuring variability in a space or time series.  
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Figure 4.3: A schematic diagram of the data flow and analyses. Entropy approach 
(A) was utilized to find the controlling factors at different scales for the variability 

of nitrate-N. The results were verified by numerical modeling (B). 
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The entropy measure is a probabilistic approach to measure the spatio-temporal 

variability of a random variable. In information theory, entropy is a measure of the 

uncertainty associated with a random variable [Shannon, 1948]. The term entropy or 

Shannon entropy usually quantifies bits of the information contained in a dataset. The 

entropy concept has been widely used in hydrology and other fields and is a well 

established methodology for measuring spatio-temporal variability and evaluating model 

performance [Chapman, 1986, Mishra et al., 2009; Sharma et al., 2000], application to 

GW quality monitoring networks [Mogheir et al., 2002], providing guidelines for 

analysis of time-series data from experiments [Fraser, 1989], and cross spectrum 

analysis of large river flows and the El Ninõ-Southern Oscillation [Khan et al., 2006]. 

We used entropy concept here for analyzing the spatio-temporal variability of nitrate-N 

in the Ogallala and Trinity aquifers in Texas. The variability obtained through this 

concept is dimensionless. A brief summary of the entropy concept is provided below for 

completeness. 

4.3.2 Entropy 

For a variable with probability density function (PDF)   ( ), the information 

entropy is:  

   ∫   ( )    (  ( ))   
 

  
      (4.1)  

A discrete form of entropy H(x) is given as: 

   ∑  (  )    (  )
 
          (4.2) 

where n denotes a discrete data interval, xn is an outcome corresponding to interval n, 

and p(xn) is the probability of xn. In a more general mathematical sense, a mapping of mi 
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that counts the number of observations that fall into various disjointed categories or bins 

is desired for calculating the corresponding probabilities. The optimal number of bins 

can be chosen by using various methods such as Sturges' formula [Sturges, 1926], Scott's 

choice [Scott, 1979], Freedman-Diaconis' choice [Freedman and Diaconis, 1981], etc. 

We used Scott's choice for its ability to take into account the integrated squared error. 

The number of bins using Scott's choice is given as: 

  ⌈
   ( )     ( )

 
⌉        (4.3)  

  
    

    
        (4.4) 

where k is the number of bins, braces indicate the ceiling function, X is the random 

variable, σ is the sample standard deviation, and N is the number of data points. 

The function log (.) can be used with base 2, e, or 10, resulting in information 

entropy with units of bits, napiers, or decibels, respectively [Amorocho and Espildor, 

1973; Mays et al., 2002]. We used 2 as the base of the log function in this paper. 

Information entropy measures the extent to which the probability of each value of a 

random variable conforms to the noninformative probability distribution of the system, 

which is the uniform distribution of a finite range in X. Therefore, H reaches its 

maximum value if all states are equiprobable. In other words, the more informative 

distribution we have, the lesser will be the disorder and the entropy value. For a certain 

event, the probability is 1 and the entropy becomes 0. There is no upper bound for 

entropy, thus for eliminating the effect of different number of data points in datasets and 

comparing entropies between datasets, we used a normalized measure of entropy, which 

is given as: 
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   ( )  

   ( )
                  (4.5)  

where HN is the normalized marginal entropy (NME) of X, and b is the number of 

bins. For maximum entropy, all bins will have an equal number of observations; and 

probability will be log (b). For example, if there are b bins with m observations in each 

bin, then the entropy will be: 

   ∑ (
 

   
) 

      (
 

   
)                  (4.6)  

This equation can be simplified to:  

   ∑ (
 

 
) 

      (
 

 
)      ( )                  (4.7)  

Hence, maximum entropy is log of the number of bins (b), and HN is given by:  

)log(
)log(
b

HbHN


                     (4.8)  

The higher the NME, the lower will be the entropy and the variability. 

4.3.3 Mutual information 

The mutual information (also known as the trans-information, or transfer entropy 

or in generalized form as the information redundancy) measures the codependency 

between system variables. Mutual information or transfer entropy has been applied in the 

study of measuring the directionality and time scale of information flow between pairs of 

ecohydrological variables [Ruddell and Kumar, 2009], outlining the pathways through 

which soil moisture and meteorological phenomena mutually influence one another at 

local, regional and global scale [Entekhabi et al., 1996, Eltahir, 1998], and investigating 

the spatial variability of soil moisture [Western and Grayson, 1998]. Others have used 
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this approach for examining the dependence of complexity of the unsaturated flow 

process on both geologic heterogeneity and uncertainty due to the flow dynamics [Mays 

et al., 2002], as well as spatio-temporal variability or randomness in a system induced by 

complicated local dynamics and large-scale observations [Vastano and Swinney, 1988].  

Mutual information measures the symmetrical statistical information shared 

between two distributions [Dembo et al., 1991]. Let X and Y be the random variables and 

I(X, Y) denotes the mutual information between X and Y, and H(X) and H(Y) are the 

marginal entropies of X and Y respectively.  

 (   )  ∑ ∑  (  
 
      )   

 (  |  )

 (  )

 
        (4.9)  

where xi and yj are ith and jth terms in random variables X and Y respectively. Equation 

4.9 can be simplified as follows: 

 (   )  ∑ ∑  (  
 
      )   

 (     )

 (  ) (  )

 
                  (4.10)  

Conditional entropy can be defined as the average of entropy of X for each value 

of Y weighted according to the probability of getting that particular value of Y. 

Mathematically, 

 ( | )  ∑ ∑  (  
 
      )    (  

 
   |  )      (4.11)  

Mutual information computes the expectation of the ratio of dependence between 

the joint distribution of X and Y and what the joint distribution would be if X and Y were 

independent. Using equations 4.9, 4.10, and 4.11, it can be shown that: 

 (   )   ( )   ( )   (   )       (4.12) 
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where H(X, Y) is joint entropy of X and Y. It is clear from equation 4.12 that I(X, 

X) =H(X). As I(X, Y) is the mutual information between X and Y, therefore I(X, Y) ≤ min 

(H(X), H(Y)). I(X, Y) cannot exceed the individual information content of X or Y. There 

is no upper bound for I(X, Y), so for easier interpretation and comparisons, a normalized 

version of I(X, Y) that ranges from 0 to 1 is used. The geometric mean of H(X) and H(Y) 

was used because of the analogy with a normalized inner product in Hilbert space [Strehl 

and Ghosh, 2002]. Thus the normalized mutual Information (NMI) is given as:  

   (   )  
 (   )

√ ( ) ( )
        (4.13)  

where NMI(X, X) =1 and if X and Y are independent then NMI(X, Y) =0.  

In the present study, the mutual information between nitrate-N and chloride (Cl-) 

concentration in GW was considered. 

4.3.4 Normalized risk index 

We define a new index the Normalized Risk Index (NRI) for quantifying the 

distribution of hot spots (nitrate-N > 10 mg/L). The NRI can be extended to any variable 

depending upon the criterion of hot spots for the variable. For nitrate-N, if there are k 

spatial locations (well or grid) in an aquifer, there will be k time series datasets. Let N be 

the total number of cases having nitrate-N > 10 mg/L at a given spatial scale and ni be 

the total number of cases for a particular dataset or time series (grid in our case). 

  ∑   
 
            (4.14)  

where k is the total number of grids or datasets. Risk Entropy (RE) is given as: 

   ∑ (
  

 
)    (

  

 
)   

           (4.15)  
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where RE measures the density of hot spots in an aquifer. If there is only one time series 

data set which has all cases (samples having nitrate-N > 10 mg/L), RE will be zero, and 

if all of the k time series datasets have equiprobable number of cases then RE will be 

maximum i.e. log(k). For eliminating the effect of number data points in datasets and 

comparing entropies, we used a normalized measure of risk entropy. Normalized Risk 

Index (NRI) is given as: 

    
   (  )   

    (  )
        (4.16)  

or
 

    
   ( )   

    ( )
                    (4.17) 

The range of NRI is between 0 and 1. Therefore, the higher the NRI, the lesser will be 

the number of hot spots in the aquifer at a particular spatial scale. 

4.3.5 Hurst exponent 

Since the British hydrologist, H.E. Hurst, who first used the rescaled adjusted 

range analysis (R–S analysis or Hurst Exponent) in hydrology [Hurst, 1951], Hurst 

Exponent is widely used in different fields as an indicator of the irregularity, dependence 

or persistence such as in analyzing the fractal properties of river networks [Maritan et 

al., 1996], financial markets for price fluctuations [Bak et al., 1997] and digital signal 

processing [Goldberger et al., 2002; Maritan et al., 1996]. Hurst constant H always lies 

between 0 and 1, and equals 0.5 for processes that have independent increments e.g. 

Brownian motion. A Hurst exponent can be used to analyze the trends of nitrate-N in 

GW. A Hurst exponent value H between 0 and 0.5 indicates the ‘‘anti-persistent 

behavior.” This means that an increase in nitrate-N concentration, in a well for a 
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particular year, will tend to be followed by a decrease in nitrate-N concentration in the 

same well next year and vice versa. This behavior is called mean reversion. The intensity 

of the mean reversion increases as H tends to 0. A Hurst exponent H between 0.5 and 1 

indicates the ‘‘persistent behavior”, that is, the time series has a strong trend, (either 

increasing or decreasing). The larger the H value is, the stronger is the trend. Series of 

this type is easier to predict than series falling in the other category (mean reversion).  

A detailed description of how the Hurst exponent is calculated is provided 

elsewhere [Sakalauskienė, 2003; http://en.wikipedia.org/wiki/Hurst_exponent]. A time 

series of length N is divided into shorter time series of length n=N, N/2, N/4 … The 

average rescaled range is then calculated for each value of n. To calculate the average 

rescaled range for each partial time series of length n, X=X1, X2,…,Xn, the following 

steps are outlined:  

 Compute the mean;   
 

 
∑   
 
    

 Generate a mean adjusted series;                       

 Calculate the cumulative deviate series    ∑   
 
                       

 Compute the range R;  ( )     (           )      (           ) 

 Rescale the range, by dividing the range by the standard deviation S.  

 Calculate the mean of the rescaled range for all sub-series of length n; ( 
 
)  

 

 
∑ (

  

  

 
   ) 
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 Finally, the value of the Hurst exponent is obtained using an ordinary least square 

regression with log(n) as the independent variable and nlog(R/S) as the dependent 

variable. The gradient of the fit is the estimate of the Hurst exponent. 

 

 
Figure 4.4: Plan view of model domains (km) demonstating wells and boundary 
conditions (B.C.). The (A) Ogallala and (B) Trinity aquifers were simulated at a 

discretization of 1 km x 1 km grid size. 
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Table 4.1: Hydrogeologic and other properties of the Ogallala and Trinity aquifers 
used for modeling [Blandford et al., 2003 ; Long et al., 2003; Dutton et al., 2004; 

Mace et al., 2000]. 

Property 
Ogallala Aquifer Trinity Aquifer 
Parameter range Parameter range 

Hydraulic conductivity in 
longitudinal direction Kx (m/sec) 

7 10-7 to 4 10-4 3.5 10-8 to 3.5 10-3 

Hydraulic conductivity in lateral 
direction Ky (m/sec) 

7 10-8 to 4 10-5 3.5 10-9 to 3.5 10-4 

Hydraulic conductivity in vertical 
direction Kz (m/sec) 

7 10-8 to 4 10-5 3.5 10-9 to 3.5 10-4 

Transmissivity (m 2 /sec) 1 10-5 to 2 10-2 1 10-4 to 6 10-2 
Specific storage Ss (1/m) 2.6 10-3 to 5.5 10-2 4 10-6 to 4 10-4 

Specific Yield Sy (-) 0.05 to 0.03 0.1 to 0.3 
Effective Porosity (-) 0.2 to 0.3 0.35 to 0.50 

Total Porosity (-) 0.2 to 0.3 0.35 to 0.50 
 

Table 4.2: Parameters for nitrate-N transport [Gelhar, 1992; Mehta et al., 2000; 
Burton, 2007; Bronson et al., 2009]. 

Model Properties Values 
Longitudinal Dispersivity (m.)  10 

Horizontal/Longitudinal Dispersivity (-) 0.1 
Vertical/Longitudinal Dispersivity (-) 0.01 

Diffusion Coefficient (m2/day) 5.7 10-10 
First Order Reaction Rate for Dissolved Phase 

(1/sec) 
4 10-6  to 2 10-6 

First Order Reaction Rate for Sorbed Phase 
(1/sec) 

0 
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4.3.6 Numerical study 

We conducted numerical experiments (Figure 4.4) using MODFLOW 

[McDonald and Harbaugh, 1984], a three-dimensional finite difference model, with a 

graphical user interface (Waterloo Hydrogeologic, Visual MODFLOW), to evaluate the 

effect of different natural and anthropogenic factors on the variability of nitrate-N (e.g., 

irrigation-pumping, hydraulic conductivities, interaction between the aquifer and river, 

and geology) at the fine, intermediate, and coarse grids. For completeness, a brief 

description of numerical model [McDonald and Harbaugh, 1984] is given below, and 

parameters used in simulating the Trinity and Ogallala aquifers are given in Tables 4.1 

and 4.2.  

The general equation for regional flow of GW derives from the continuity 

equation,  

                        
  

  
             (4.18)  

where q is flux(m/s), G is the source or sink term, and Ss is the specific storage (m-1). 

Darcy’s law for the flow of GW is given as: 

                           (4.19)  

where K is the hydraulic conductivity, and h is the hydraulic head (m.). The negative 

sign indicates that GW movement is from high to low water level. Combining equations 

4.18 and 4.19 yields the general form of the governing equation for GW flow: 
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     (4.20)  

where S is the storativity, and it is equal to the saturated thickness of the aquifer times 

specific storage (SS).  
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For nitrate-N transport, MT3DMS-v5.1 [Zheng and Wang, 1999] quantifies 

advective- dispersive transport process, the governing equation for GW flow: 

  

  
 

 

   
(   

  

   
)  

 

   
(   )  ∑                    (4.21)  

where C is the total aqueous concentration of solute (mg/L), Dij is the hydrodynamic 

dispersion coefficient tensor, vi is the pore-water velocity in direction xi, and Rreac is a 

source or sink rate due to chemical reactions. 

4.3.7 Application of the modeling framework 

The model was run for various scenarios by altering certain features (binary state, 

for example, typical/normal pumping versus intense pumping), one at a time. In order to 

evaluate the effects of typical pumping vs. intense pumping, geology (layering vs. no 

layering), available hydraulic conductivities vs. high hydraulic conductivities, and 

interactions between GW (aquifer) and surface water (river), the model was run for a 

series of 48 simulations (24 simulations for the Ogallala Aquifer and 24 simulation for 

the Trinity Aquifer), varying each of these features. In order to evaluate the effect of 

intense pumping (50% higher than normal rate), we compared the results for this 

scenario with that of normal pumping scenario; to evaluate the effect of normal 

hydraulic conductivities vs. high hydraulic conductivity, we increased the hydraulic 

conductivity by 50%. For evaluating the effect of geology on the variability of nitrate-N, 

we carried out simulations with one layer to multiple layers by altering the layer 

properties (e.g., hydraulic conductivity). For understanding the impact of rivers, we 

performed GW flow simulations with and without river boundaries. All simulations were 
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carried out for a 15 year period (1991-2005). The model domains for both the aquifers 

are shown in Figure 4.4. The streams were represented by the river boundary nodes, 

when the impact of rivers was evaluated. For temporal discretization, each year was 

divided into 12 stress periods where each stress period corresponds to one month during 

which all inputs are constant. 

4.3.8 Aquifer descriptions, layers, grid size, model boundary, and parameters 

The Texas Water Development Board (TWDB) conducted a study on 

groundwater availability in Texas. The Groundwater Availability Models (GAMs) for 

the Trinity and Ogallala aquifers were used for setting up the modeling domain, geology, 

and other parameters (available at http://www.twdb.state.tx.us/groundwater/models/). A 

short description of the modeling framework is provided here for completeness. 

4.3.9 The Ogallala Aquifer 

The Ogallala aquifer is one of the world's largest aquifers, and it covers an area 

of approximately 450,000 km² in portions of the eight states of South Dakota, Nebraska, 

Wyoming, Colorado, Kansas, Oklahoma, New Mexico, and Texas [McGuire, 2003]. 

This study critically examines the Ogallala Aquifer with specific focus in the Texas 

regions. The Ogallala Aquifer, the prime water-bearing entity in the High Plains of 

Texas, covers an area of approximately 91,815 km² (20% of the aquifer) and provides 

water to all or parts of 46 counties. Major rivers in the study area include Canadian 

River, Prairie Dog Town Fork Red River, and Colorado River. The Ogallala is 

constituted for the most part by sand, gravel, clay, and silt deposited during the Tertiary 

Period (Figure 4.2). 
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The significance of the Ogallala Aquifer in the high plains is substantial as the 

aquifer has long been a principal source of water for agricultural, municipal, and 

industrial development. The withdrawal of this GW has significantly surpassed the 

aquifer's rate of natural recharge. Although many communities use the Ogallala Aquifer 

as their only source of potable water, approximately 30% of the water is used for 

irrigation in the United States [McMahon et al., 2000]. Previous studies suggest that the 

Ogallala Aquifer has median nitrate-N concentration exceeding 10.0 mg/l [Hudak, 

2000].  

A basic setup of a single layer model was adopted for the Ogallala Aquifer. We 

carried out simulations at 1 km x 1 km grids, and then nitrate-N values were computed 

for each grid. Subsequently, we aggregated the nitrate-N values as a time series in three 

different grids sizes (fine (         ), intermediate (           ), and coarse 

(             ) grids) to see the scale effect.  

The water-permeated thickness of the Ogallala Formation ranges from a few 

meters to more than 300 m and is generally greater in the northern plains. The lower 

boundary of the Ogallala Aquifer was assigned like a no-flow boundary. The top of the 

model domain was assigned as a recharge boundary, pumping, and return flow from 

irrigation. Regional recharge rates in the Ogallala aquifer, outside irrigated areas, are 

generally low (0.1 mm to 45 mm/yr), whereas playa-focused recharge rates are much 

higher (12 to 218 mm/yr). Irrigated areas also have fairly high recharge rates (15 to 280 

mm/yr) [Scanlon et al., 2003]. Groundwater discharges from the aquifer through 

pumping of water wells, and the Ogallala Aquifer has an annual pumpage between 
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       to        cubic m. The outer limits of the model domain were defined by 

physical and hydraulic boundaries. The eastern and western boundaries of the model 

domain were defined by the drain and no flow boundaries, and the northern and southern 

boundaries were maintained as constant head and drain boundaries, respectively. 

MODFLOW’s “river” module was used to denote the interaction of surface and GW 

along segments of the Canadian River, Colorado River, and Prairie Dog Town Fork Red 

River. MODFLOW’s “general-head boundary” module was used at the southwest side 

of the model domain between the Canadian River and Prairie Dog Town Fork Red 

River. Aquifer Properties and model parameters for the Ogallala Aquifer are provided in 

Table 4.1. 

4.3.10 The Trinity Aquifer 

The Trinity Group aquifer is an important source of water supply in north-

central, central, and southwest-central Texas and covers more than 106,190 km2 and 

provides water to all or parts of 52 counties. The Trinity Aquifer consists of early 

Cretaceous age formations of the Trinity Group, from the Red River in North Texas to 

the Hill Country of South-Central Texas. Major Rivers in the study area include the Red, 

Trinity, Brazos, Colorado, San Antonio, Guadalupe, and Medina rivers. The Trinity 

Group formations encompass the Paluxy, Glen Rose, and Twin Mountains- Travis Peak 

from the youngest to the oldest. The Antlers Formation, which results from the coalition 

of the Paluxy and Twin Mountains where the Glen Rose narrows down or almost 

disappears, is the outcrop part of the Trinity Group (Figure 4.1). Water from the Antlers 

is mainly used for irrigation on the outcrop area of North and Central Texas. In the 
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north, the downdip portion of the aquifer is extremely mineralized, and this portion is a 

source of contamination to drilled wells into the underlying Twin Mountains [Ashworth, 

1983; Ashworth and Hopkins, 1995; Dennehy et al., 2002; McMahon et al., 2006].  

The importance for choosing the Trinity Aquifer is because parts of four densely 

inhabited urban centers: San Antonio, Austin, Fort Worth and Dallas lie directly over the 

sub-crop of the Trinity Aquifer. The outcrop and sub-crop areas of the Trinity Aquifer 

provide water for drinking, irrigation and industrial purposes for almost seven million 

people in this region. The Trinity Aquifer is a vital resource but due to aquifer 

characteristics and land use, the aquifer has a history of nitrate-N contamination [Ryder, 

1996].  

A basic setup of a seven layer model was adopted for the Trinity Aquifer. These 

layers correspond to different geologic formations (Figure 4.1). We carried out flow and 

transport simulations at 1 km x 1 km grids, and then nitrate-N values were computed for 

each grid. Subsequently, we aggregated the nitrate-N values as a time series in three 

different grids sizes (fine (         ), intermediate (           ), and coarse 

(             ) grids) to see the scale effect.  

Thickness of the aquifer ranges from a few meters to more than 300 m. The 

lower boundary of the Trinity Aquifer was defined as a no-flow boundary. The top of the 

model was assigned as a recharge boundary and pumping. Recharge rates in the Trinity 

aquifers generally range from 2.5 to 50 mm/yr [Scanlon et al., 2003]. Groundwater 

discharges from the aquifer through pumping of water wells whereas the Trinity Aquifer 

has an annual pumpage between        to        cubic m. The outer limits were 
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defined by physical and hydraulic boundaries. The eastern and western boundaries were 

assigned as no flow and general head boundaries respectively. The northern part of the 

aquifer was assigned drain boundary conditions. The extreme southern part of the model 

was assigned with general head boundary conditions for simulating the interaction of the 

Trinity with the Colorado River. There are some faults in the Trinity model domain, 

which were simulated using a horizontal flow barrier (HFB) Package. Aquifer Properties 

and model parameters for the Trinity Aquifer are provided in Table 4.1. 

4.3.11 On-ground nitrogen loading  

The spatial distribution of the on-ground nitrogen sources were characterized 

using the National Land Cover Database (NLCD) as prepared by the United States 

Geological Survey (Figure 4.5). The annual on-ground nitrogen loadings were taken 

from various sources [Nolan et al., 2002; Scanlon et al., 2003; Almasria et al., 2007; 

Bronson et al., 2009]. The total amount of nitrogen from manure, fertilizer, dairy farm 

lagoons, and irrigation was calculated based on their application rate (Figure 4.6) and 

NLCD; the total amount of nitrogen was assigned to the model domain accordingly.  

 

 

 

 

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6C-4P2YWYK-3&_user=952835&_coverDate=09%2F20%2F2007&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1740831599&_rerunOrigin=scholar.google&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=d99753ae0b8c3dd43ca74581c909e217&searchtype=a#aff1
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Figure 4.5: Land use maps for the (A) Trinity and (B) Ogallala aquifers. 
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Figure 4.6: Maps showing (A) average annual atmospheric nitrate-N deposition 
based on National Atmospheric Deposition Program (NADP) data, (B) spatial 

distribution of inorganic nitrogen fertilizer application, (C) spatial distribution of 
organic fertilizer (manure) application, (D) distribution of concentrated animal 
feeding operations (CAFOs) based on data from TCEQ, TIAER, and USGS and 

permitted sludge application based on data from TCEQ, and (E) average soil 
profile organic matter derived from STATSGO database (From Scanlon et al., 

2003). 
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For example, the fertilizer application rate was multiplied by the acreage of that 

crop for nitrogen loading: 

∑                 (       )  ( )     (4.22)  

where         is the NLCD class area and   is 

the                            . For other NLCD classes and dairy lagoons (wherever 

present), nitrogen loadings were calculated similarly. The initial conditions were set as 

the background concentration (mean nitrate-N concentration from 1980 to 1990) of 

nitrate-N for the entire model domain to predict the ground water nitrate-N. 

4.3.12 Model assumptions and limitations  

Nitrate concentration measured at a particular well depends upon a number of 

factors such as irrigation, nutrient loading occurrences, extent of vadose zone, removal 

time in soil, denitrification and other soil-nitrogen dynamics, precipitation events, well 

depth below water table, etc. We made following simplifying assumptions due to 

unavailability of data on certain details of the nitrogen cycle for studying the impact of 

different factors on the variability of nitrate-N in GW. The model assumes a uniform 

distribution of nitrogen for a particular land cover. The application of nitrogen on 

agriculture land will vary depending upon different crops, but we have assumed a 

uniform distribution. Some model parameters were adopted from the literature (e.g., 

percentage of nitrogen species in manure and inorganic fertilizers, fertilizer application 

rate, etc.). Some NLCD classes were merged into one class such as the developed areas 

with low intensity, medium intensity, and high intensity were grouped as developed 

areas. We utilized a first-order decay process as a simplified approximation for 
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denitrification. While the numerical study was an attempt to mimic the real system, but 

in a large domain like ours, some simplifications were deemed necessary, and some 

factors were excluded. To predict the concentrations of nitrate-N in monitoring wells, 

one need all historical data of land use and land covers, besides a detailed 

parameterization of the aquifer. There are various sources of uncertainty. For example, 

uncertainty arises from unknown spatial variation of the medium parameters, choice of 

models, boundary conditions imposed on the flow domain, and concentration of 

contaminant (nitrate-N) released into the flow system etc [Smith and Schwartz, 1980, 

1981]. The extents of the aquifers (Ogallala and Trinity) are also large, and aquifer 

properties and parameters are stochastic in nature. Therefore, it is impossible to predict 

concentrations of nitrate-N deterministically in all monitoring wells. However, we can 

predict the trends of concentrations of nitrate-N with a band of uncertainty. Because of 

these limitations, the scope of this model is limited to estimation of the variability of 

nitrate-N in the aquifer. 

4.4 Data  

The land use and soil map were created from digital data (Figure 4.5) acquired 

from the U.S. Department of Agriculture [available at 

http://datagateway.nrcs.usda.gov]. The water quality (e.g., nitrate-N and Cl-) and 

precipitation data (Figure 4.7) were obtained from the Texas Water Development Board 

(available at http://www.twdb.state.tx.us). Data used in this study were from 1940-2008. 

Geologic information of the study area was procured from the USGS [available at 

http://waterdata.usgs.gov]. 
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Figure 4.7: Map showing average annual precipitation in Texas. Precipitation 

varies widely across Texas. In the Trinity Aquifer, precipitation varies from a low 
of 60 cm per year in the west to a high of 110 cm on the eastern portion of the 

outcrop of the aquifer, and in the Ogallala Aquifer, it varies from a low of 20 cm 
per year in the west and southwest to a high of 50 cm on the eastern portion. 
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Figure 4.8: The nitrate-N concentrations (1940 to 2008) are shown in the (A) 

Trinity and (B) Ogallala aquifers. In both the aquifers, three different spatial scales 
namely fine (2 km×2 km), intermediate (10 km×10 km), and coarse (100 km×100 

km) are used to analyze the spatial and temporal variability of nitrate-N. The 
gridded reconstruction of water quality dataset involved all wells falling in a 

particular grid (fine, or intermediate, or coarse) as one dataset (or time series). 
There are 25% and 16% of total wells exceeding 10 mg/L of nitrate-N in the 

Ogallala and Trinity aquifers, respectively. 
 

The Trinity and Ogallala aquifers were divided into different grid resolutions, as 

shown in Figure 4.8, fine (         ), intermediate (           ), and coarse 

(             ) grids. The choice of grids is dependent upon the flow system in the 

aquifers. An aquifer system can comprise local, intermediate, and regional ground-water 

flow systems. In a local system of ground-water flow, recharge and discharge areas are 

adjacent to each other. In an intermediate GW flow system, recharge and discharge areas 

are separated by one or more topographic highs and lows. In a regional ground-water 

flow system, recharge areas are along GW divides, and discharge areas lie at the bottom 
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of major drainage basins [Toth, 1963]. Here in the Trinity and Ogallala Aquifers, it was 

assumed that the local flow system spanning is an area of (         ), which is in 

accordance with the previous studies [Toth, 1963; available at 

http://pubs.usgs.gov/pp/pp1423-c/pdf/gwflow.pdf]. The gridded reconstruction of water 

quality dataset involved all wells within a grid (fine, intermediate, or coarse) as one 

dataset (or time series). Cl- along with nitrate-N were chosen for analysis, because Cl- is 

a potential indicator of pollution from agricultural practices. The gridded reconstruction 

was devised because of lack in continuity of data. For example, nitrate-N concentrations 

in a particular well were available only at five instances from 1940 to 2008, but in some 

other times, nitrate-N concentrations were available in nearby wells of the well under 

consideration. Therefore, we combined all wells falling in a particular grid as one time 

series dataset and analyzed the variability of nitrate-N annually. Each grid represents a 

time series, and its entropy is calculated as shown in section 4.3.2. For each grid, we 

have entropy values, and these values are plotted as maps using the surfer software. 

However, well data are at different depths, but the entropy approach deals with the 

histogram (distribution) of the data. There are 7866 and 8948 wells in Trinity and 

Ogallala Aquifers, respectively. In the Ogallala Aquifer, fine grids (FGs), intermediate 

grids (IGs), and coarse grids (CGs) have on an average 43, 140, and 375 wells. The 

intermediate and coarse grids have more than 20 wells for 95% of times, whereas fine 

grids have more than 10 wells for each grid for 90% of times. In the Trinity Aquifer, 

FGs, IGs, and CGs have on an average 52, 172, and 497 wells. The intermediate and 

coarse grids have more than 20 wells for 90% of times, whereas fine grids have more 
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than 10 wells for each grid for 87% of times. As described in section 4.3.2, entropy is a 

non-parametric approach, and it is a robust measure of variability. Entropy does not 

change drastically by small changes in data. Therefore, for estimating the variability, we 

can use the gridded time series. 

4.5 Results and discussion  

4.5.1 Spatial variability of nitrate-N 

Figure 4.9 shows normalized marginal entropy values in the Trinity and Ogallala 

aquifers at three spatial scales. The Ogallala Aquifer shows comparatively lower NME 

(or higher variability) than the Trinity Aquifer. The Trinity Aquifer exhibits higher NME 

at the small scale as compared to intermediate and coarse scales. Similarly, the Ogallala 

Aquifer also exhibits higher NME at the small scale as compared to intermediate and 

coarse scales. In both the aquifers, the intermediate scale exhibits the lowest NME. It is 

evident from Figure 4.9 that NME of nitrate-N is sparse over the small spatial scale in 

the Trinity and Ogallala aquifers. At the intermediate scale, both the aquifers show 

variability across different river basins, although the Ogallala Aquifer again displays 

lower NME (Figures 4.2 and 4.9) than the Trinity Aquifer. in the Ogallala Aquifer, the 

variability of nitrate-N changes around the Canadian and Colorado rivers, and in the 

Trinity Aquifer, the variability of nitrate-N is manifested around the Red, Brazos, 

Colorado, and Guadalupe rivers (Figures 4.1 and 4.2). At the coarse scale, in the Trinity 

Aquifer, NME exhibit more variability of nitrate-N on the outcrop region (Antlers 

formation) and in the lower part of the aquifer (Figure 4.9C), close to the northern 

segment of the Edwards Aquifer. In the Ogallala Aquifer at the coarse scale, NME 
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values are smaller on the western part of the aquifer, and there are lower NME values of 

nitrate-N, except in the regions lying between the Canadian and Prairie Dog Town Fork 

Red River (Figure 4.9F).  

 

 
Figure 4.9: Map shows the contour plots of normalized marginal entropy values of 
observed nitrate-N in the Trinity and Ogallala aquifers at three spatial scales: fine 

grid (A and D), intermediate grid (B and E), and coarse grid (C and F), 
respectively. The higher NME values indicate lower entropy values. 
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The Ogallala Aquifer shows comparatively lower NME than the Trinity Aquifer 

because of more mixing of nitrate-N at the local scale. The local and intermediate flow 

systems are more prevalent in the Ogallala Aquifer as most surface drainage in the 

Ogallala Aquifer is through ephemeral lakes or playas [Hudak, 2000]. The flat 

topography results in mostly internal drainage to thousands of playas. Apart from 

internal drainage, intense pumping for irrigation and subsequent return flow and higher 

hydraulic conductivity (sandy aquifer) also contribute towards the higher mixing nitrate-

N at the local scale. Pumping and hydraulic conductivity affect NME at the smaller scale 

as exhibited through the numerical study.  

At the intermediate scale, both the aquifers show variability across different river 

basins (Figures 4.2 and 4.9). Variability of nitrate-N at this scale results from the 

complex interactions between rivers and aquifers in the study area. Therefore, lower 

NME values of nitrate-N at the intermediate scale results from the complex interactions 

between rivers and aquifers in the study area.  

At the coarse scale, in the Trinity Aquifer, NME exhibit more variability of 

nitrate-N on the outcrop region (Antlers formation) and in the lower part of the aquifer 

(Figure 4.9C), close to the northern segment of the Edwards Aquifer. Lithology and 

local fracturing and Balcones Fault Zone control the entropy of nitrate-N in the Trinity 

Aquifer. In the Ogallala Aquifer, there are lower NME values of nitrate-N at the coarse 

scale, except in the regions lying between the Canadian and Prairie Dog Town Fork Red 

River and in the northern part (Figure 4.9F). This is because the geology and confining 

strata of the aquifer determine the degree of nitrate-N levels in GW at the coarse scale. 
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Figures 4.10 and 4.11 illustrate the effect of pumping and hydraulic conductivity 

on spatial variability of nitrate-N at three spatial scales using numerical experiments in 

the Ogallala and Trinity aquifers respectively. Intense pumping and high hydraulic 

conductivity exhibit lower NME values at the small grid, whereas the NME of nitrate-N 

has not changed significantly at the intermediate and coarse scales (Figures 4.10 and 

4.11). 

 

 
Figure 4.10: A numerical study using Visual MODFLOW in the Ogallala Aquifer 

was conducted to verify the effect of different factors on spatial variability of 
nitrate-N at multiple scales. Probability distribution functions of the normalized 
marginal entropy values (%) of nitrate-N in the Ogallala Aquifer are plotted for 
pumping and hydraulic conductivity scenarios. The results demonstrate that the 

spatial variability of nitrate-N is controlled by the effect of pumping at the fine grid 
(A) as compared to intermediate (B) or coarse (C) grids; hydraulic conductivity 

also plays a key role at the small grid (D) as compared to intermediate (E) or coarse 
(F) grids. The higher NME values indicate lower entropy values. 
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MT3DMS v5.1 was used for numerical modeling with perturbations in factors 

such as pumping, hydraulic conductivity, presence and absence of a river, and effects of 

layering. MODFLOW—2000 (Visual MODFLOW) was run prior to MT3DMS.  

 

 
Figure 4.11: A numerical study using Visual MODFLOW in the Trinity Aquifer 

was conducted to verify the effect of different factors on spatial variability of 
nitrate-N at multiple scales. Probability distribution functions of the normalized 
marginal entropy values (%) of nitrate-N in the Trinity Aquifer are plotted for 

pumping and hydraulic conductivity scenarios. The results demonstrate that the 
spatial variability of nitrate-N is controlled by the effect of pumping at the fine grid 

(A) as compared to intermediate (B) or coarse (C) grids; hydraulic conductivity 
also plays a key role at the small grid (D) as compared to intermediate (E) or coarse 

(F) grids. The higher NME values indicate lower entropy values. 
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Cumulative Probability distribution functions (CDFs) of NME values in the wells 

of the Ogallala and Trinity aquifers were compared for perturbed factors at the three 

spatial scales.The center of mass (mid- point of the CDF) of a CDF shows where NME 

values are positioned and spread around. Therefore, if the center of mass of a CDF is 

located at 40 as compared to another CDF whose center of mass is located at 60, the 

CDF with NME value of 40 will have more variability (see section 4.3.2). The CDFs 

also show the percentage of NME values greater than a particular number.  

 

 
Figure 4.12: A numerical study using Visual MODFLOW was conducted in the 
Ogallala Aquifer to verify the effect of different factors on spatial variability of 
nitrate-N at multiple scales. Probability distribution functions of the normalized 
marginal entropy values (%) of nitrate-N in the Ogallala Aquifer are plotted for 

river and layering scenarios. The results demonstrate that the spatial variability of 
nitrate-N is controlled by the presence of a river at the intermediate grid (B) as 

compared to fine (A) or coarse (C) grids; geology (layering vs. no layering) plays a 
key role at the coarse grid (F) as compared to fine (D) or intermediate (E) grids. 

The higher NME values indicate lower entropy values. 
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Figures 4.12 (A, B, and C) and 4.13 (A, B, and C) show the CDFs of NME 

values calculated by numerical simulations mimicking the effect of rivers on the spatial 

variability of nitrate-N at three spatial scales in the Ogallala and Trinity aquifers, 

respectively.  

 

 
Figure 4.13: A numerical study using Visual MODFLOW was conducted in the 
Trinity Aquifer to verify the effect of different factors on spatial variability of 

nitrate-N at multiple scales. Probability distribution functions of the normalized 
marginal entropy values (%) of nitrate-N in the Trinity Aquifer are plotted for 

river and layering scenarios. The results demonstrate that the spatial variability of 
nitrate-N is controlled by the presence of a river at the intermediate grid (B) as 

compared to fine (A) or coarse (C) grids; geology (layering vs. no layering) plays a 
key role at the coarse grid (F) as compared to fine (D) or intermediate (F) grids. 

The higher NME values indicate lower entropy values. 
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Presence of rivers exhibits lower NME values at the intermediate scale, whereas 

the NME of nitrate-N has not changed significantly between fine and coarse scales. At 

the large scale, geology becomes important for the spread of nitrate in the aquifer. Point 

sources of nitrate-N can contribute to GW nitrate at large scale through the unsaturated 

zone. If there is a confining stratum, then nitrate-N will spread only through mixing in 

GW, which is slow at the large scale. The numerical study corroborates the dominance 

of geological framework and layering at the coarse scale for the Ogallala (Figure 4.12 D, 

E, and F) and Trinity aquifers (Figure 4.13 D, E, and F). 

 

 
Figure 4.14: Map shows the contour plots of entropy values of Cl- in the Trinity and 

Ogallala aquifers at three spatial scales: fine grid, intermediate grid, and coarse 
grid, respectively. 
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4.5.2 Spatial variability of Cl- and mutual information sharing between nitrate-N and 

Cl-  

Figure 4.14 outlines the spatial variability of Cl- (Trinity and Ogallala aquifers), 

which is in accordance with the spatial variability of nitrate-N at the fine scale but not 

over the intermediate and coarse scales. Cl- is naturally present in GW, particularly in 

deep bedrock aquifers, and it may also originate from septic tank leachate or fertilizers. 

[http://walrus.wr.usgs.gov/infobank/programs/html/factsheets/pdfs/2004_3120.pdf].  

 

 
Figure 4.15: Map presents the Normalized Mutual Information between nitrate-N 

and Cl- in the Trinity and Ogallala aquifers at three spatial scales: fine (A, D), 
intermediate (B, E), and coarse (C, F) grids, respectively. The green color indicates 

the codependency of the two variables (nitrate-N and Cl-). 
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If Cl- has any anthropogenic sources, it- is likely to manifest spatial variability at 

all scales. In section 4.5.1, we have shown that pumping and hydraulic conductivity are 

the key controls for variability of nitrate-N at the local scale. 

Mutual information (NMI) between nitrate-N and Cl- are presented in Figure 

4.15. It is worth mentioning that the mutual variability (covariance of nitrate-N and Cl-) 

is different from the mutual information of nitrate-N and Cl-. The difference is that 

mutual variability does not state anything about the common source or origin of nitrate-

N and Cl- whereas the mutual information indicates the codependency of the two 

variables. As shown in Figure 4.15, the flow of information decreases from the small 

scale (NMI >30) to the coarse scale (NMI<20) in both the aquifers. In other words, 

nitrate-N and Cl- have a better codependency at the small scale. The mutual information 

in Figure 4.15 exhibits a rich pattern of information flow in the Trinity Aquifer where 

hot spots of nitrate contamination are present such that regions with NMI>30 of Figure 

4.15 match to hot spot regions (wells having nitrate-N>10 mg/L) of Figure 4.8. On the 

outcrop regions of the Trinity Aquifer, nitrate-N and Cl- have a maximum of relative 

mutual information of 50%, 15%, and 5% at the fine, intermediate, and coarse scales, 

respectively. This suggests that approximately 50%, 15%, and 5% of the total Shannon 

entropy of one variable (say nitrate-N) is explained by the other variable (Cl-). In the 

Trinity Aquifer at the coarse scale, there are high NMI values in the northern and 

southern parts. In the Ogallala Aquifer, nitrate-N and Cl- have high relative mutual 

information in the western part of the aquifer equaling to 40%, 20%, and 5% at the fine, 

intermediate, and coarse scales, respectively. These results suggest that nitrate-N and Cl- 
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may be partly originating from leachate and that soil type dominates the shared 

information at the small scale. Other than soil type, irrigation with GW is a crucial factor 

for the flow of information between nitrate-N and Cl-. Unlike the Ogallala Aquifer, the 

Trinity Aquifer has less intense GW-based irrigation, and there are limited recharge 

areas (aquifer outcrop areas (Figure 4.1). 

 

 
Figure 4.16: The Hurst exponent (H) of nitrate-N in the Trinity Aquifer at the small 
(A), intermediate (B), and coarse (C) scales, as well as in the Ogallala Aquifer at the 
small (D), intermediate (E), and coarse (F) scales. The Hurst exponent varies from 

0 to 1, 1 being the most persistent, 0.5 being the random changes in the trend, and 0 
being the most anti-persistent (or mean reversion) behavior. 
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Figure 4.17: Probability distribution (PDF) of the Hurst exponent of nitrate-N in 

the (A) Trinity and (B) Ogallala aquifers across different spatial scales (fine, 
intermediate, and coarse).  

 

4.5.3 Trend and persistence of variability of nitrate-N  

The Hurst exponents (H) of nitrate-N in both the aquifers at the fine, 

intermediate, and coarse scales are presented in Figure 4.16. Although there are 

small/fine scale variations of H in both the aquifers, trends are more persistent for both 

aquifers at the intermediate scale. In section 4.5.1, we have shown that there is 

maximum variability of nitrate-N at the intermediate scale. The Hurst exponent signifies 

that the variability of nitrate-N continues to exist at the intermediate scale. 

There are regions where more variation (anti-persistence) is observed in both the 

aquifers at the coarse scale. Figure 4.17 shows the probability distribution (PDF) of H at 

the fine, intermediate, and coarse scales in the Trinity and Ogallala aquifers. The PDF 

illustrates that more than 50% grids at the fine scale, 70% at the intermediate scale, and 

10% at the coarse scale show persistence in the Trinity Aquifer. On the other hand, the 

PDF shows that more than 80% grids at the small scale, 90% at the intermediate scale, 
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and 70% at the coarse scale show persistence in the Ogallala Aquifer. The constantly 

changing behavior of nitrate-N at the small scale in the Ogallala Aquifer, as shown in 

Figure 4.16 (in contrast to the Trinity Aquifer), may be explained by the presence of 

prevalent local flow systems. A local flow system is typically present in sandy and/ or 

unconfined aquifers, and such aquifers respond quickly to increased GW recharge. At 

the coarse scale in both the aquifers, PDFs show multimodality. In the Trinity Aquifer, 

these modes are located around 0.5, which means rapidly changing behavior of the 

variability of nitrate-N. However, in the Ogallala Aquifer, these modes are located 

around 0.5, 0.6, and 0.7, which means there are regions signifying the persistence of 

nitrate-N. The Ogallala Aquifer is intensive agricultural land, so the use of fertilizer may 

be a reason for the persistence. 

4.5.4 Normalized risk index of nitrate-N  

The Normalized Risk Index (NRI) measures the distribution of hot spots (nitrate-

N > 10 mg/L). The higher the NRI, the lesser are the number of hot spots in the aquifer 

at a particular spatial scale. In Table 4.3, the NRI values are given for both the aquifers 

at different scales. Results indicate that number of hot spots of nitrate contamination in 

GW decrease with the increase in the spatial scale (from fine to coarse grids). This 

finding may suggest that there are concentrated hot spots in both the aquifers where 

nitrate-N contamination is localized. 
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Table 4.3: Normalized risk index (%) in the Trinity and Ogallala aquifers. The NRI 
values show that the likelihood of hot spots is higher for larger NRI. 

Scale Trinity Aquifer Ogallala 
Aquifer 

Fine 32.2 24.7 
Intermediate 35.8 38.7 

Coarse 60.9 59.1 
 

4.5.5 Temporal variability of nitrate-N  

For understanding the spatial variability of nitrate-N over different decades, 

inter-decadal variation of nitrate-N was analyzed (Figures 4.18 and 4.19). Decadal mean 

(µ), standard deviation (SD), percent samples having nitrate-N > 10 mg/L, and 

normalized marginal entropy (NME) were plotted for different scales (fine, intermediate, 

and coarse). In the Trinity Aquifer, overall decadal mean nitrate-N has declined at all 

scales. Standard deviation has also decreased with time implying lesser uncertainty 

(Figure 4.18). Furthermore, NME also suggests a slight decline in the temporal 

variability of nitrate-N at the coarse scale (Figure 4.19). However, percent samples 

having nitrate-N > 10 mg/L are almost constant over the last 7 decades (1940-2010). 

Based on these findings, it seems that nitrate-N levels in GW have stabilized in the 

Trinity Aquifer. 

In the Ogallala Aquifer, overall decadal mean nitrate-N has increased at all scales 

from 1940 to 1970, which may be because of higher use of fertilizers to improve 

agricultural productivity since 1940s. After 1970, overall mean nitrate-N has decreased 

at fine and coarse scales (Figure 4.18). Standard deviation has increased in the Ogallala 

Aquifer at all scales (Figure 4.18). However, percent samples having nitrate-N > 10 
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mg/L decreased significantly over the last 7 decades. This decrease is suggested to be 

because of more efficient water management methods employed in irrigation practices of 

the region, particularly after the early 1980s. Hence, the irrigation return flow, which 

contributes significant amounts of recharge to the Ogallala Aquifer, has declined through 

time. 

 

 
Figure 4.18: Decadal analysis (mean and standard deviation) of nitrate-N in the 
Trinity Aquifer across (A) fine, (B) intermediate, (C) coarse scales, and in the 

Ogallala Aquifer across (D) fine, (E) intermediate, and (F) coarse scales.  
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Figure 4.19: Decadal analysis (% samples having nitrate-N more than 10 mg/ L and 

NME) of nitrate-N in the Trinity Aquifer across (A) fine, (B) intermediate, (C) 
coarse scales, and in the Ogallala Aquifer across (D) fine, (E) intermediate, and (F) 

coarse scales.  
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4.6 Summary and conclusions 

The entropy based approach provides a physical interpretation of spatial and 

temporal variability of nitrate-N in the two Texas aquifers. The primary conclusion of 

this study is that multiple controlling factors exist and dominate the variability of nitrate-

N at different spatial scales (fine, intermediate, and coarse) in the Trinity and Ogallala 

aquifers of Texas. The variability of nitrate-N is controlled by pumping, and hydraulic 

conductivity at the fine scale. The intermediate scale variability of nitrate-N results from 

the complex interactions between rivers and the aquifer. The coarse scale variability of 

nitrate-N is caused by lithology and geology control. The maximum variability of 

nitrate-N occurs at the intermediate scale. The number of hot spots of nitrate-N 

contamination in GW decreases with increase in the spatial scale (from fine to coarse 

grids).  

The sharing of information between (nitrate-N and Cl-) is an effective way to 

identify process interactions in complex subsurface systems. At the fine scale, nitrate-N 

and Cl- have similar sources (most likely fertilizers). Soil type and GW-based irrigation 

are important factors, which regulate the transport of nitrate-N and Cl- to GW.  

The trends of nitrate-N variability show long term persistence at the intermediate 

scale. In the Ogallala Aquifer, there is more persistence of nitrate-N, which is attributed 

to more fertilizer use. 

In the Trinity Aquifer, overall mean nitrate-N (at the fine scale 50 mg/L to 6 

mg/L; at the intermediate scale 40 mg/L to 15 mg/L; at the coarse scale 15 mg/L to 10 

mg/L) has declined with not much change in the entropy (at the fine scale 88 to 90; at 
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the intermediate scale 88 to 90; at the coarse scale 55 to 89) over the decades between 

1940 and 2008. Moreover, percent samples having nitrate-N > 10 mg/L did not change 

much across time (at the fine scale 60% to 70%; at the intermediate scale 70% to 75%; at 

the coarse scale 60% to 65%). It can be inferred from these results that overall 

consumption of fertilizers (or nitrate-N emanating from other sources as well) has gone 

down, but there are hot spots in the Trinity Aquifer. These hot spots are also responsible 

for the slight increase in the entropy values. In the Ogallala Aquifer, at all scales, overall 

mean nitrate-N has increased till 1970 because of enhanced use of fertilizer since 1940 

(at the fine scale 20 mg/L to 50 mg/L; at the intermediate scale 15 mg/L to 35 mg/L; at 

the coarse scale 15 mg/L to 60 mg/L). However, percent samples having nitrate-N > 10 

mg/L has significantly decreased (at the fine scale 60% to 32%; at the intermediate scale 

60% to 38%; at the coarse scale 60% to 27%) over the last seven decades due to the use 

of more efficient methods of irrigation. 
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CHAPTER V 

ADDRESSING UNCERTAINTY IN NITRATE TRANSPORT IN 

GROUNDWATER USING THE ENSEMBLE KALMAN FILTER  

 

5.1 Synopsis 

A fundamental problem in the analysis of nitrate-N contamination of complex 

GW systems is the fusion of data and modeling. We present the fusion of the ensemble 

Kalman filter (EnKF) with the GW flow model MODFLOW and the solute transport 

model MT3DMS. The EnKF is a sequential data assimilation approach, which is applied 

to quantify and reduce the uncertainty of flow and nitrate transport in GW. We 

conducted numerical simulation experiments from Jan 1996 to Dec 2005 with 

MODFLOW and MT3DMS models for variably saturated GW flow in a synthetic 2D 

Aquifer, and then tested the EnKF algorithm in the Ogallala Aquifer. The EnKF was 

used to update model parameters such as hydraulic conductivity, aquifer recharge, and 

first order decay coefficient of nitrate-N. Once these parameters are optimized, then 

updated parameters are used to predict hydraulic heads and nitrate concentration in 

aquifers. Results indicate that the EnKF method notably improves the estimation of 

nitrate-N concentrations as compared to hydraulic heads, and therefore, uncertainty is 

not propagated from MODFLOW to MT3DMS model. Hydraulic conductivity is found 

to be the most important parameter in improving estimations of hydraulic heads and 

nitrate-N concentrations using the EnKF, followed by recharge, and then by the decay 

coefficient. Results suggest that nitrate-N concentrations are more sensitive to 
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intermediate recharge values as compared to high or low recharge events. Furthermore, 

the optimization of parameters using the EnKF approach demonstrated the asymptotic 

behavior of hydraulic conductivity and first order decay coefficient. 

5.2 Introduction 

Nitrate is one of the most widespread contaminants in groundwater (GW) and 

known to pose a serious health risk. Despite its critical importance, fate and transport of 

nitrate-N in GW shows significant uncertainty as a result of poor spatial sampling and 

heterogeneity. Other factors contributing towards uncertainty are interaction among 

multiple geophysical factors such as source availability (land use), thickness and 

composition of the vadose zone [Williams et al., 1998], types of aquifers (confined or 

unconfined), aquifer heterogeneity (geological and alluvial) [Spalding and Exner, 1993], 

and precipitation characteristics [Koren et al., 1999]. Many uncertainty quantification 

frameworks exist in the environmental modeling literature [for example, Carrera and 

Neuman, 1986 a; b; c; Beven and Binley, 1992; Woodbury and Ulrych, 2000; Thiemann 

et al., 2001; Vrugt et al., 2005; Vrugt and Robinson, 2007].  

A fundamental problem in the analysis of nitrate-N contamination of complex 

GW systems is the fusion of data and modeling. Data on hydrologic properties 

controlling flow and transport are needed to address contamination in aquifer systems. 

Accurate predictions of fluid flow and contaminant transport are dependent on the values 

assigned to input parameters and the environmental forcing required for the simulation, 

which are often not known with certainty. In order to reduce uncertainty due to system 

parameters (e.g., hydraulic conductivity, reaction rate constants, etc.), numerous 
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parameter estimation methodologies have been proposed in the hydrologic literature 

[Ahmed and Demarsily, 1987; Dagan, 1979; Dagan and Lessoff, 2007; Indelman and 

Dagan, 1993; Indelman et al., 1998; Neuman, 1980; 2003; Neuman and Yakowitz, 1979; 

Neuman et al., 1980; Rubin et al., 1990]. 

In the last decade, ensemble-based forecasting methods established on data 

assimilation approaches have become increasingly popular for quantification and 

reduction of state uncertainty. Methods of probabilistic prediction and data assimilation 

(DA) have been extensively explored in the atmospheric and ocean sciences [Anderson, 

2007b; Daley, 1992; 1997]. Data assimilation and uncertainty analysis have also been 

employed for flux estimation [Ng et al., 2009], identification of diffuse recharge 

mechanisms [Ng et al., 2009]), surface energy balance assessment [Sun et al., 2011], and 

other hydrological applications (e.g., soil moisture [Flores et al., 2010; Margulis et al., 

2002; Sun et al., 2011]). In particular, the ensemble Kalman filter (EnKF) has been 

successfully employed in the estimation of hydrologic system parameters [Aksoy et al., 

2006a; b; Bailey and Bau, 2010; Ebtehaj et al., 2010]. DA schemes have also been used 

in contaminant transport studies to estimate the distribution of solute concentration in 

aquifer systems [Chang and Latif, 2010; Zou and Parr, 1995], and to design adaptive 

strategies for sampling in space and time [Kollat et al., 2011]. DA approaches have been 

employed to update solute transport parameters such as dispersivity values [G S Liu et 

al., 2008; Y Q Liu and Gupta, 2007], sorption rates [Vugrin et al., 2007], and first order 

chemical reaction rates [Bailey and Bau, 2011]. None, however, have addressed the 

temporal evolution of parameters (e.g., hydraulic conductivity, first order chemical 
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reaction rate) by assimilation of flow and concentration data. DA methods provide the 

flexibility to investigate possible temporal evolution of the model parameters. These 

adaptive estimation methods become more appropriate when the forecast lead-time is 

short in comparison to the response time of the aquifer system [Kitanidis and Bras, 

1980; Moradkhani et al., 2005], which is a typical scenario in the real world problems. 

Therefore, this study investigates the temporal progression of parameters like hydraulic 

conductivity, first order chemical reaction rate, and recharge in aquifer systems. 

The rationale behind selecting these parameters is that these three parameters are 

of critical importance for studying the fate and transport of nitrate-N in aquifers. For 

example, Tebes-Stevens et al. [2001] found that hydraulic conductivity is the most 

sensitive parameter for reactive transport models. In addition, previous studies have 

established that denitrification is an important mechanism for nitrate-N removal from 

aquifers containing reactive reducing substrates such as organic carbon [Bohlke et al., 

2002; Kolle et al., 1983; Komor and Anderson, 1993; Mariotti et al., 1988; Vogel et al., 

1981]. It has been observed that microbially mediated denitrification is a dominant 

process and can be represented as a first-order decay reaction [Frind et al., 1990]. 

Therefore, first order chemical decay rate is an important factor in studying nitrate-N 

transport in GW. Several studies have also reported that recharge conditions become 

crucial for nitrate-N transport especially at large spatial scales (e.g., aquifer scale) 

[Strebel et al., 1989; Bohlke, 2002]. 

In DA approaches, the parameters are estimated by establishing an initial (prior) 

state of the aquifer system by generating an ensemble of parameter fields and 
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subsequently, establishing flow and concentration fields using GW models (MODFLOW 

and MT3DMS). Then, a posterior ensemble of parameter fields are determined that best 

match with the measurement from the actual aquifer system. In this study, the integration 

of the ensemble Kalman filter (EnKF) with the numerical GW flow model MODFLOW 

[McDonald and Harbaugh, 2003] and the solute transport model MT3DMS [Wang and 

Zheng, 2000] to condition aquifer parameters is develpoed. The observed data (heads 

and nitrate-N concentration) are sparse in the Ogallala Aquifer; therefore, a synthetic 

aquifer is constructed to test the accuracy of the EnKF algorithm. Subsequently, the 

EnKF algorithm is applied with the available data in the Ogallala Aquifer. The specific 

objectives of this study are to improve forward groundwater modeling capabilities 

through parameter estimation (hydraulic conductivity, reaction rate constant, and 

recharge) and investigate the temporal evolution of these flow and transport parameters 

in the EnKF framework. 

5.3 Methodology 

In order to reduce the uncertainty associated with nitrate-N processes in GW, a 

data assimilation framework is applied to a synthetic 2D aquifer and the Ogallala 

Aquifer system. An Ensemble Kalman Filter (EnKF) approach is used to sequentially 

update relevant flow and transport parameters, such as hydraulic conductivity, recharge, 

and decay rate coefficient, by assimilating the hydraulic head and nitrate-N 

concentration data. Subsequently, updated parameters (once they are optimized with 

reference to the system response) are used to predict hydraulic heads and nitrate-N 

concentrations in the synthetic and Ogallala Aquifers. In this study, we numerically 
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solve the flow equation with MODFLOW-2000 and the solute transport equation with 

MT3DMS, and integrate these modeling results with measured data. 

5.3.1 Data assimilation theory and parameter estimation  

Data assimilation is an operation whereby measurement data are integrated into 

model simulation results to provide an updated estimate of the system state. The 

improvement in the corrected system state depends upon the uncertainty associated with 

both the simulation results and the measurement data. The data assimilation algorithm 

used in this study is the Ensemble Kalman Filter (EnKF) [Evensen, 1994], which is an 

extension of the Kalman Filter method [Kalman, 1960]. The Ensemble Kalman Filter 

(EnKF) is a Monte Carlo implementation in the Bayesian framework. In this framework, 

the probability density function (pdf) of the state of the modeled system (the prior) and 

the data (likelihood) are combined using the Bayes theorem to obtain the posterior pdf. 

This Bayesian update is combined with advancing the model in time, and incorporating 

new data as they become available. 

Data assimilation is generally applied to update the state vector in real-time 

applications. However, in GW hydrology, an important part of the estimation error is 

associated with incorrect parameter values as a result of the variability of the GW system 

in both space and time domains. Various studies have used the EnKF approach to jointly 

estimate states and parameters [Franssen and Kinzelbach, 2008; Naevdal et al., 2005]. 

However, Wen and Chen [2007] showed that the joint updating of states and parameters 

can introduce inconsistencies in the analysis, especially in a heterogeneous system. 

There are different methods to address this issue such as the rerun option [Wen and 
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Chen, 2007], a dual approach [Moradkhani et al., 2005], etc. We used the dual approach, 

in which, the Ensemble Kalman filter is first applied to update the parameters. Then, the 

updated parameters are again applied to the Ensemble Kalman Filter to obtain the final 

update of the states. Another problem associated with the EnKF approach is filter 

inbreeding [Franssen and Kinzelbach, 2008]. Filter inbreeding problems occur due to a 

deteriorating quality of the analyzed covariance matrix during the real-time assimilation 

of observations in the EnKF. In such cases, the ensemble variance is increasingly 

underestimated over time. Adaptive covariance inflation [Anderson, 2007a; X G Wang et 

al., 2007], dual filter [Houtekamer and Mitchell, 1998], and analysis of prediction errors 

[Moradkhani et al., 2005] are a few methods to deal with the filter inbreeding problem. 

Another method used to address this problem is the variance inflation approach in which 

both the ensemble and the covariance matrix are multiplied with a certain constant factor 

(fixed covariance inflation), which is obtained heuristically. For simplicity, we used this 

fixed variance inflation approach and the covariance inflation factor was chosen 

heuristically to give a filtering solution that does not diverge from the observations while 

keeping the prior covariances small. 

5.3.2 The Kalman filter  

A brief description of the Kalman filter methodology and its Bayesian framework 

is provided here, and further details can be obtained elsewhere [Kalman, 1960]. The 

Kalman filter methodology follows the sequential forecast-update (predictor-corrector) 

cycle. The Kalman Filter assumes that all pdfs are Gaussian: 

 ( )   ( 
 

 
(   )    (   ))

        (5.1)  
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where X denotes the n-dimensional state vector of the model, and it is assumed that it 

has Gaussian probability distribution with mean µ and covariance Q, and p(x) is called 

the prior.  

It is assumed that the error distribution of the data is known as well. The data (d) 

is assumed to have a Gaussian pdf with covariance R and mean        H is the 

observation matrix. Therefore, the likelihood of the data p(d|x) is calculated as: 

 ( | )   ( 
 

 
(       )
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     (5.2)  

where RE measures the density of hot spots in an aquifer. 

The prior of the state and the likelihood are combined to yield the posterior pdf 

of the state X conditioned on the value of d. As new data become available, the posterior 

is calculated using the Bayesian framework as: 

 ( | )   ( | ) ( )       (5.3)  

The posterior state is denoted as  ̂ and is given by: 
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                   (5.4)  

The posterior mean  ̂ and covariance  ̂ are calculated as follows: 

 ̂     (    )                     (5.5)  

 ̂  (    )                     (5.6)  

where K is the Kalman gain and is given by: 

     (      )                     (5.7)  

However, maintaining the covariance matrix Q is not feasible computationally 

for high-dimensional systems [Evensen, 1994]. For this reason, EnKFs were developed. 
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5.3.3 The ensemble Kalman filter (EnKF) 

The EnKF is an extension of the Kalman filter method by using Monte Carlo 

approximation of the Kalman filter for application to high-dimensional systems. The 

EnKF uses an ensemble of model realizations to define the error statistics of the 

predicted system state [Evensen, 1994]. The pdf of the state vector X is represented by 

an ensemble 

  [          ]  [  ]                      (5.8)  

where X is an     matrix, whose (n) columns are the ensemble members, and it is 

called the prior ensemble. Ideally, ensemble members would form a sample from the 

prior distribution. 

If m is numbers of ensemble and N is the number of observations, then data D is 

given as an     matrix:  

  [          ]  [  ]                      (5.9)  

                            (5.10)  

   (   )                       (5.11)  

The basic form of the algorithm follows a prediction-correction cycle, with 

corrections made to the system state whenever measurement data are available for 

assimilation. The prediction step involves forecasting an ensemble of model states Xk+1 

at forward time k+1 based on the solution to the GW model M, system parameters P, 

initial conditions I, forcing terms q, and boundary conditions B.C., thereby generating 

the predicted state: 

    
   (             )                    (5.12)  
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In GW modeling applications, each realization of the ensemble is run forward in 

time using a different set of system parameters (P). This creates an ensemble of model 

states in which model results at a given location are spread over a range of values 

signifying the uncertainty in the system prediction. At time k + 1, a set of measurements 

(e.g., hydraulic head and solute concentration) is collected, perturbed to account for 

measurement error, and assimilated into the system state     
  to produce a corrected 

system state       using the following correction equation: 

    
      

      (          
 )                 (5.13)  

Here, dk+1 contains the perturbed measurements, and B contains binary constants 

(0 or 1) that map model results at measurement locations to actual measurements, 

creating a residual at measurement locations between the predicted and actual value. The 

matrix K is termed the Kalman Gain matrix, and has the following structure: 

      (       )                     (5.14)  

where    is the forecast error covariance matrix associated with the model forecast     
  

and R is the measurement error covariance matrix associated with the perturbed 

measurements d. The formulation of K performs the dual role of (1) spreading 

information from measurement locations to regions between these locations, and thereby 

allowing the measurement information to correct predicted values throughout the model 

domain, and (2) weighting the correction terms according to model and measurement 

error. As R approaches zero, signifying low error in the measurement data, the influence 

of K increases and the residual is weighted more heavily. The model forecast values thus 

approach the measurement values. In contrast, as    approaches 0, signifying relative 
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agreement among the model realizations, the influence of K decreases, and the residual 

is weighted less heavily. The model forecast values thus receive little to no correction 

from the measurement data. 

5.3.4 Parameter update using the EnKF 

The EnKF is used to update model parameters such as hydraulic conductivity, 

aquifer recharge, and first order decay coefficient of nitrate-N to quantify uncertainty in 

hydraulic head and nitrate-N concentrations in two aquifer systems. All three parameters 

are considered to be random. Estimation of the parameters is performed using the EnKF 

in the following manner. The hydraulic conductivity [Mallants et al., 1997] and the first 

order rate coefficient [Frind et al., 1990] are known to vary log normally. An ensemble 

of random log spatial parameter fields, with each field encompassing the model domain, 

is generated using a sequential Gaussian simulation algorithm. This algorithm works 

using a specified mean µ, standard deviation σ, and correlation length l as described in 

the Stanford Geostatistical Earth Modeling Software (S-GEMS) [Deutsch and Journel, 

1992]. The recharge rate is assigned from the available data from the Texas Water 

Development Board (TWDB). All three parameters are inversely estimated by matching 

the model-simulated hydraulic heads and nitrate-N concentrations to the reference fields 

of the synthetic and Ogallala Aquifers.  

It is seen that the performance of the EnKF analysis is enhanced by the ensemble 

size [Evensen, 2009]. In most published applications of the EnKF, a typical ensemble 

size is around 100 members. Therefore, an ensemble of 100 realizations is used in this 

study. These parameter fields (100 realizations) are used in a numerical contaminant 
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transport model to generate an ensemble of nitrate-N concentration (C) fields, with a 

value of C calculated for each model grid cell. These C ensembles and predicted 

parameters populate the predicted system state matrix     
 , and the correlation between 

parameters and nitrate-N concentrations C is established in the matrix   . Then, 

measurement data from selected grid cells of the reference C field are chosen and 

perturbed with a specified coefficient of variation to mimic error in the measurement 

data, and the matrix d is populated with these perturbed values. The matrix d is then 

used in the EnKF update routine to correct the predicted parameters and C ensembles. 

The strength of correlation, between parameters and C obtained by the MT3DMS model, 

is the criterion to correct the parameters values.  

The update stage of the EnKF approach consists of populating the forecast model 

state matrix with system response variables and the ensemble of K fields (hydraulic 

conductivity or recharge or decay coefficient), obtaining measurements from the true 

state, and providing an updated estimate of the model states given the collected 

measurements. The update of the parameters using the EnKF approach is tested using 

the root mean square error (RMSE) criterion: 

    (   )  √ (( ̂   ) )                  (5.15)  

where E is the expectation of the difference of the estimated nitrate-N  concentration 

against the reference field. 
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5.3.5 Application of the modeling framework  

A synthetic 2D transient state GW flow problem is used to test the EnKF update 

routine to condition hydraulic conductivity, recharge, and decay coefficient fields using 

nitrate-N concentration data. The synthetic aquifer is constructed because the data 

availability (heads and nitrate-N concentrations) in the Ogallala Aquifer is limited. 

Therefore, the synthetic aquifer is used to examine the EnKF methodology. 

Subsequently, the EnKF algorithm is applied to the Ogallala Aquifer. The ENKF update 

algorithm using GW flow simulations is shown in Figure 5.1. The forecast stage 

comprises of initializing an ensemble of GW flow simulations with a separate ensemble 

of hydraulic conductivity, recharge, and decay coefficient fields, and initial conditions. 

In the following sections, details of the synthetic 2D transient flow problem and the 

Ogallala Aquifer system are described. 

 

 
Figure 5.1: The data assimilation algorithm is presented using the ensemble 

Kalman filter in a GW and nitrate-N transport modeling framework. The forecast 
stage consists of generating the initial ensemble of K (recharge, hydraulic 

conductivity, or decay coefficient individually) fields and the resulting simulated 
concentration fields. X is the state, K is the Kalman gain, w is the noise, and d is the 

binary matrix. 
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Figure 5.2: Conceptual model domain showing observation well and boundary 

conditions (B.C.) for the transient GW flow problem. 
 

5.3.6 Synthetic 2D transient state GW flow model  

The 2D transient flow problem consists of an areal aquifer of 4000 m (easting) 

by 4000 m (northing) as shown in Figure 5.2. Nitrate-N was simulated at 50 m x 50 m 

grids. The hydrological inputs consist of rainfall, evapo-transpiration, and surface runoff, 

and were applied as top boundary conditions. These inputs determine the recharge rate to 

the aquifer. Recharge updates account for uncertainty in the hydrological inputs. 

Irrigation, drainage, and pumping from wells were assigned throughout the modeling 

domain. No flow boundary was placed on the north and south ends of the aquifer, while 

all other ends were assigned drain boundaries, with an average saturated thickness of 30 

m. 
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Figure 5.3: Plan view of the Ogallala Aquifer shows the observation well, forcing, 

and boundary conditions (B.C.). A larger domain (10,000 m by 10,000 m) was 
selected to import boundary condition in the problem domain to reduce the edge 

effect. 
 

5.3.7 The Ogallala Aquifer GW flow model  

A basic setup of a single layer model was adopted for the Ogallala Aquifer. The 

model is 4000 m (easting) by 4000 m (northing). Nitrate-N was simulated at 50 m x 50 

m grids. The model domain for the aquifer is shown in Figure 5.3. For temporal 

discretization, each year was divided into 12 stress periods wherein each stress period 

corresponds to one month during which all inputs are constant. The top of the model 

domain was assigned a recharge boundary, which incorporates pumping and return flow 

from irrigation. A no-flow boundary was assigned as the bottom boundary condition for 

the Ogallala Aquifer. The outer limits of the model domain were defined by physical and 
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hydraulic boundaries. Therefore, the eastern, western, northern, and southern boundaries 

of the model domain were defined by drain conditions. The pseudo modeling domain 

was initially taken as 10000 m (easting) by 10000 m (northing). After model spin off 

(MODFLOW and MT3DMS initial runs from 1990 to 1996), the hydraulic heads 

obtained in the 4000 m by 4000 m modeling domains were employed as initial 

conditions.  

Aquifer properties and model parameters for the synthetic and Ogallala aquifers 

are provided in Tables 5.1 and 5.2. All simulations were carried out for a 10 year period 

(1996-2005) for both the aquifers. 

 

Table 5.1: Hydrogeologic and other properties of the Ogallala Aquifer used for 
modeling the Ogallala Aquifer and the synthetic flow problem [Blandford et al., 

2003; Long et al., 2003; Dutton et al., 2004]*. 

Property 
Ogallala Aquifer 
Parameter range 

Hydraulic conductivity in longitudinal direction Kx (m/sec) 7 10-7  
Hydraulic conductivity in lateral direction Ky (m/sec) 7 10-8  
Hydraulic conductivity in vertical direction Kz (m/sec) 7 10-8  

Transmissivity (m2/sec) 1 10-5  
Specific storage Ss (1/m) 2.6 10-3  

Specific Yield Sy (-) 0.05 
Effective Porosity (-) 0.2  

Total Porosity (-) 0.3 
* Hydraulic conductivity and recharge values were used to initialize the respective fields, later updated by 
the EnKF algorithm. 
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Table 5.2: Parameters for nitrate-N transport [obtained from Gelhar, 1992; Mehta 
et al., 2000; Burton, 2007; Bronson et al., 2009]. First order reaction rate values 
were used to initialize the decay coefficient field, and were later updated by the 

EnKF algorithm. 
Model properties Values 

Longitudinal Dispersivity (m)  10 
Horizontal/Longitudinal Dispersivity (-) 0.1 

Vertical/Longitudinal Dispersivity (-) 0.01 
Diffusion Coefficient (m2/sec) 5.7 10-10 

First Order Reaction Rate for Dissolved Phase (1/sec) 3.5 10-6 
First Order Reaction Rate for Sorbed Phase (1/sec) 0 

 

5.3.8 Numerical study  

For completeness, a brief description of the numerical model is given below. 

Numerical experiments (Figures 5.2 and 5.3) were conducted using MODFLOW 

[McDonald and Harbaugh, 1984]. The governing equations for GW flow and nitrate-N 

transport are given in 4.20 and 4.21, respectively. 

5.4 Results and discussion 

The data assimilation (DA) algorithm using the EnKF filter in a GW and nitrate-

N transport modeling framework was developed to estimate hydraulic heads and nitrate-

N concentrations in aquifers by sequentially updating parameters, and the model state. In 

this section, first we describe the applicability and validity of the EnKF algorithm in a 

synthetic 2D aquifer. Subsequently we will discuss the applicability and performance of 

the EnKF algorithm in real field conditions (Ogallala Aquifer), when only limited 

observations are available. We also describe how hydraulic conductivity, first order 

decay coefficient, and recharge parameters change over time, when the EnKF updates 

these parameters. As described in Figure 5.1, the MODFLOW and MT3DMS models 
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were used to assimilate hydraulic heads and nitrate-N concentrations Figures 5.2 and 5.3 

show the conceptual framework of the synthetic 2D and the Ogallala aquifers, 

respectively. 

5.4.1 Parameter optimization using the EnKF algorithm  

Figure 5.4 demonstrates the change in the fractional normalized entropy (FNME) 

values of hydraulic conductivity, first order decay coefficient, and recharge in aquifers 

during EnKF assimilations. Normalized marginal entropy (NME) is described in section 

4.3.2. FNME is the NME divided by 100. Figure 5.4 reveals that hydraulic conductivity 

manifests asymptotic behavior in both aquifers, after fifty EnKF assimilations. First 

order decay coefficient does not change like other two parameters; however, decay 

coefficient shows more uncertainty in its estimation in the Ogallala Aquifers as 

compared to the synthetic aquifer. FNME of recharge values describes the importance of 

the stress periods (recharge and its frequency) in real field conditions. For a controlled 

system, like the synthetic aquifer, recharge approaches asymptotic values with respect to 

the reference field after fifty EnKF assimilations; whereas recharge does not display 

asymptotic behavior in the Ogallala Aquifer.  
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Figure 5.4: The temporal evolution of the log hydraulic conductivity, first order 

decay coefficient, and recharge fields for the synthetic and Ogalalla aquifers shows 
the asymptotic behavior. 
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Figures 5.5 and 5.6 show the temporal evolution of the log hydraulic 

conductivity fields in the synthetic and Ogallala Aquifers. The log hydraulic 

conductivity fields shown in the Figures 5.5 and 5.6 are the realizations of log saturated 

hydraulic conductivity fields when 2, 10, 50 and 100 measurements of nitrate-N 

concentrations are assimilated in the synthetic and Ogallala Aquifers. 

 

 
Figure 5.5: The temporal evolution of the log hydraulic conductivity fields (m/sec) 
when (A) 2, (B) 10, (C) 50, and (D) 100 measurements of nitrate-N concentrations 

are assimilated in the synthetic Aquifer. 
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Figure 5.6: The temporal evolution of the log hydraulic conductivity fields (m/sec)  
when (A) 2, (B) 10, (C) 50, and (D) 100 measurements of nitrate-N concentrations 

are assimilated in the Ogallala Aquifer. 
 

It is evident that hydraulic conductivity fields change over time. This change is 

more visible when 2 or 10 nitrate-N measurements are assimilated in the synthetic 

Aquifer (Figures 5.5 A and 5.5 B). This evolution of temporal hydraulic conductivity 

fields can be attributed to uncertainty in the hydraulic conductivity parameter. The 

hydraulic conductivity further changes when 50 nitrate-N measurements are assimilated, 

but there is no significant change from the assimilation of 50 nitrate-N measurements to 

100 nitrate-N measurements. This reflects that hydraulic conductivity keeps evolving, 

and after 50 assimilations its estimation is closer to the true hydraulic conductivity field 

of the system. On the other hand, the hydraulic conductivity fields keep evolving with 
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the assimilation of 2, 10, 50 and 100 concentrations of nitrate-N measurements in the 

Ogallala Aquifer. Therefore, more uncertainty is associated with the hydraulic 

conductivity fields of the Ogallala Aquifer as compared to the synthetic Aquifer. This is 

because the available hydraulic conductivity fields in the Ogallala Aquifer are at the 

coarse scale (km scale) and the reference fields (hydraulic heads and nitrate-N 

measurements) are not available at each time step. 

Figure 5.7 shows the probability distributions (PDFs) of the log hydraulic 

conductivity fields in the synthetic and Ogallala Aquifers. The PDFs show the temporal 

evolution of the mean and spread of the hydraulic conductivity. In the synthetic Aquifer, 

the mean of hydraulic conductivity decreases slightly and the spread of the PDF 

increases with the increase in the number of measurements assimilated. In the Ogallala 

Aquifer, the mean of hydraulic conductivity increases from the assimilation of 2 to 10 

measurements, and remains constant beyond that. However, the spread of the PDF 

decreases with the increase in the number of measurements assimilated. Therefore, the 

temporal evolution of hydraulic conductivity demonstrates that conditioning of the 

parameters is a function of the number of assimilated measurements. 

 

 

 

 

 

 



 
 

140 
 

 
Figure 5.7: The temporal evolution of the log hydraulic conductivity fields (m/sec) 
when (A) 2, (B) 10, (C) 50, and (D) 100 measurements of nitrate-N concentrations 

are assimilated in the Ogallala Aquifer. 
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Figures 5.8 and 5.9 show the conditioning of the recharge values in the synthetic 

and Ogallala Aquifers when 100 measurements of nitrate-N concentrations are 

assimilated in the synthetic and Ogallala Aquifers. Recharge values (as input to the flow-

transport model)  are moderately conditioned for uncertainty, which may result from 

multiple factors such as runoff generation, focused recharge through playa, return flow 

from irrigation, etc.  

 

 
Figure 5.8: The reference recharge and assimilated recharge values for each month 
(from 1996 to 2005) in the synthetic Aquifer when 100 measurements of nitrate-N 

concentrations are assimilated. 
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It is evident from Figure 5.8 that recharge values are conditioned mostly for 

intermediate values (less than 70 mm and more than 30 mm) in the synthetic Aquifer. 

Possible reasoning for this is the importance of intermediate recharge values for flow 

and transport processes. When there are very high or low recharge events, it becomes 

less a sensitive parameter. Similar results are obtained for the conditioning of recharge 

values in the Ogallala Aquifer. 

 

 
Figure 5.9: The reference recharge and assimilated recharge values for each month 
(from 1996 to 2005) in the Ogallala Aquifer when 100 measurements of nitrate-N 

concentrations are assimilated. 
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5.4.2 DA algorithm in the synthetic 2D Aquifer  

Figure 5.10 shows the estimated hydraulic head and nitrate-N concentrations in 

the synthetic 2D Aquifer after the hydraulic head observations from the reference 

hydraulic head and nitrate-N concentration fields are assimilated using the EnKF 

approach.  In this step, the simulation analysis involves solving the flow (4.20) and 

transport (4.21) equations by updating first order decay coefficient, recharge, and 

hydraulic conductivity independently. Figure 5.10A displays the ensembles of hydraulic 

heads and Figure 5.10D presents the ensembles of nitrate-N concentrations of the 100 

realizations after the first order decay coefficient was updated in time. Figure 5.10B 

shows the ensembles of hydraulic heads and Figure 5.10E presents the ensembles of 

nitrate-N concentrations of the 100 realizations after the recharge was updated in time. 

Similarly, Figure 5.10C displays the ensembles of hydraulic heads and Figure 5.10F 

presents the ensembles of nitrate-N concentrations of the 100 realizations after the 

hydraulic conductivity was updated.  

It is visible from Figure 5.10 that updates of the parameters are successful in 

capturing the variability of hydraulic heads and nitrate-N concentrations in the synthetic 

2D Aquifer. Regardless of some local mismatch, the general trend is consistent between 

the simulated heads and nitrate-N concentrations and the reference field.  Figures 5.10 

(A, B, and C) show that hydraulic conductivity is the most important parameter in 

improving the estimation of hydraulic head, followed by recharge. Since recharge is not 

continuous in nature, hydraulic heads are not influenced by recharge as much as they are 
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influenced by the hydraulic conductivity parameter. The first order decay coefficient 

does not play any role in improving the estimation of hydraulic heads (Figure 5.10A). 

 

 
Figure 5.10: Estimation of hydraulic heads and nitrate-N concentrations in the 

synthetic 2D problem using the EnKF algorithm with 100 ensembles. Estimation of 
(A) the ensemble hydraulic heads by updating the first order decay coefficient; (B) 

the ensemble hydraulic heads by updating the recharge; (C) the ensemble hydraulic 
heads by updating the hydraulic conductivity; (D) the ensemble nitrate-N 

concentrations by updating the first order decay coefficient; (E) the ensemble 
nitrate-N concentrations by updating the recharge; and (F) the ensemble nitrate-N 

concentrations by updating the hydraulic conductivity. 
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It is evident from Figures 5.10 (D, E, and F) that hydraulic conductivity is again 

the most important parameter in improving the estimation of nitrate-N concentrations, 

followed by recharge, and then by the first order decay coefficient. This is expected 

because advection plays an important role in nitrate-N transport so the impact of 

hydraulic conductivity is more than the other two parameters. The EnKF method 

assimilates nitrate-N concentrations after the hydraulic heads are assimilated and 

therefore, nitrate-N concentrations also incorporate improved hydraulic heads. 

 The vertical spread of these ensembles in Figure 5.10 represents the 

uncertainty in the prediction.  The uncertainty band is not wide, however as we move 

forward from the first month to the next month, the EnKF improves the predicted state 

through the Bayesian update. It is also apparent that the EnKF reduces the mismatch 

between predictions and observations at different measurement locations and thereby 

produces a narrow uncertainty band.  

It is seen in Figure 5.10 that the uncertainty band is getting reduced from the 

Bayesian updates of all three parameters (first order decay coefficient, recharge, and 

hydraulic conductivity) in estimating hydraulic heads and nitrate-N concentrations. This 

uncertainty is further quantified by plotting the histograms of the root mean square error 

(RMSE) in the section 5.3.4. The width of the uncertainty bands further substantiate that 

the hydraulic conductivity parameter improves the ensemble predictions the most, 

followed by recharge, and then by the first order decay coefficient in the estimation of 

nitrate-N concentrations. 
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5.4.3 DA algorithm in the synthetic 2D Aquifer 

Figure 5.11 shows the estimated hydraulic head and nitrate-N concentrations in 

the Ogallala Aquifer after the hydraulic head observations from the reference hydraulic 

head and nitrate-N concentration fields are assimilated using the EnKF approach.  The 

difference in assimilating hydraulic heads and nitrate-N concentrations in real field 

conditions (Ogallala Aquifer) and in the synthetic Aquifer is the availability of data 

(reference fields). The EnKF approach adjusts the unknown model parameters based on 

the observed data with time. The hydraulic heads and nitrate-N concentrations were 

estimated in the Ogallala Aquifer from January 1996 to December 2005, a total of 120 

months. In this span of time, 14 observations of hydraulic heads and nitrate-N 

concentrations were available. These observations were used as the reference field for 

the EnKF algorithm. 

It is apparent from Figure 5.11 that updates of the parameters resulted in 

capturing the variability of hydraulic heads and nitrate-N concentrations. Figure 5.11 

shows that hydraulic conductivity is again the most important parameter in improving 

the estimation of hydraulic head and nitrate-N, followed by recharge, and then by the 

decay coefficient. However, the first order decay coefficient improves nitrate-N 

estimations more in the case of the Ogallala Aquifer as compared to the synthetic 2D 

Aquifer. 
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Figure 5.11: Estimation of hydraulic heads and nitrate-N concentrations in the 

Ogallala Aquifer using the EnKF algorithm with 100 ensembles. Estimation of (A) 
the ensemble hydraulic heads by updating the first order decay coefficient; (B) the 
ensemble hydraulic heads by updating the recharge; (C) the ensemble hydraulic 

heads by updating the hydraulic conductivity; (D) the ensemble nitrate-N 
concentrations by updating the first order decay coefficient; (E) the ensemble 

nitrate-N concentrations by updating the recharge; and (F) the ensemble nitrate-N 
concentrations by updating the hydraulic conductivity. 

 

The decay coefficient plays a key role in real field situations because it represents 

important processes that govern the fate of nitrate-N in GW. To understand the 

importance of the first order decay coefficient, we present here a brief historical 

background of nitrate-N contamination in the Ogallala Aquifer. Figures 4.18 and 4.19 

show mean nitrate-N concentrations and percentage samples having nitrate-N exceeding 

10 mg/L for different decades in the Ogallala Aquifer at various spatial scales. Nitrate-N 

concentrations start to rise around 1970-80 in accordance with the increasing load at 
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surface level (fertilizers). Nitrogen applications in the 1960s and 1970s ranged from 250 

to 300 kg ha-1, whereas recent surveys suggest most applications have declined to 150 to 

180 kg ha-1 [Spalding et al., 2001]. This suggests almost 50% reduction in the 

application rate. The response of nitrate-N concentrations in GW to the higher load (in 

1960-70) at the land surface is thus noticeably fast. However, the concentrations in the 

GW keep decreasing beyond 1990 even though the nitrate-N concentrations in the 

recharge water decrease around 1985. This implies that the nitrate-N application at the 

land surface arrives in the groundwater at least 10 years later, and there are other 

processes (such as denitrification, nitrogen cycling) that govern the fate of nitrate-N. 

  The uncertainty in the estimation of hydraulic heads and nitrate-N 

concentrations is larger in the Ogallala Aquifer than the uncertainty in the synthetic 

Aquifer. This is because the reference field data in the Ogallala Aquifer was scarce and 

has more variation as compared to the reference field data of the synthetic Aquifer. The 

width of the uncertainty bands in Figure 5.11 also corroborate that the hydraulic 

conductivity parameter improves the ensemble predictions of hydraulic head and nitrate-

N concentrations the most, followed by recharge, and then the first order decay 

coefficient. 

5.4.4 Root mean square error in the EnKF predictions 

Figures 5.12 and 5.13 show the root mean square error in the estimation of 

hydraulic head and nitrate-N concentrations in the synthetic and Ogallala Aquifers while 

updating the first order decay coefficient, recharge, and hydraulic conductivity 

parameters. In the synthetic Aquifer, the RMSE values while estimating the hydraulic 
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heads range from 1.25 to 1.60, 0.80 to 1.20, and 0.30 to 0.70 for the Bayesian updates of 

the first order decay coefficient, recharge, and hydraulic conductivity, respectively.  

 

 
Figure 5.12: Root mean square error (RMSE) in estimating ensemble hydraulic 

heads in the synthetic 2D problem by updating the (A) first order decay coefficient; 
(B) recharge; (C) hydraulic conductivity; and the RMSE in estimating ensemble 

nitrate-N concentrations by updating the (D) first order decay coefficient; (E) 
recharge; and (F) hydraulic conductivity. 
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Figure 5.13: Root mean square error (RMSE) in estimating ensemble hydraulic 

heads in the Ogallala Aquifer by updating the (A) first order decay coefficient; (B) 
recharge; (C) hydraulic conductivity; and the RMSE in estimating ensemble 
nitrate-N concentrations by updating the (D) first order decay coefficient; (E) 

recharge; and (F) hydraulic conductivity. 
 

On the other hand, the RMSE values while estimating the nitrate-N 

concentrations range from 0.60 to 0.80, 0.30 to 1.20, and 0.20 to 0.40 for the Bayesian 

update of the first order decay coefficient, recharge, and hydraulic conductivity, 

respectively. In the Ogallala aquifer, the RMSE values while estimating the hydraulic 

heads range from 60 to 90, 45 to 60, and 0 to 35 for the EnKF updates of the first order 

decay coefficient, recharge, and hydraulic conductivity, respectively. In contrast, the 

RMSE values while estimating the nitrate-N concentrations range from 1.2 to 2.4, 1.2 to 

2.0, and 0.75 to 1.0 for the Bayesian update of the first order decay coefficient, recharge, 

and hydraulic conductivity, respectively. It is evident that the synthetic Aquifer has 
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lesser RMSE in all simulations. This shows the importance of the reference field and the 

strength of the EnKF approach when data are available. It is also visible from Figures 

5.12 and 5.13 that the RMSE values are smaller in the estimation of nitrate-N 

concentrations as compared to the hydraulic heads. 

5.5 Summary and conclusions 

The EnKF, a data assimilation algorithm that conditions uncertain parameters 

with measurement data within a Bayesian framework, was applied to investigate the 

flow and nitrate transport processes at the Ogallala Aquifer. MODFLOW and MT3DMS 

models were used for estimating hydraulic heads and nitrate-N concentrations. Hydraulic 

conductivity, recharge, and first order decay coefficient parameters associated with flow 

and transport models were updated using EnKF, and evaluated for a synthetic 

groundwater and the Ogallala Aquifer. This study highlights several key findings. The 

EnKF improved nitrate-N estimates more than hydraulic heads. It was also found that 

the EnKF reduces the mismatch between observations and predictions over time for both 

the synthetic and Ogallala Aquifer systems. Hydraulic conductivity was found to be the 

most important parameter in estimating hydraulic heads and nitrate-N concentrations in 

aquifers, followed by recharge, and then by the decay coefficient.  

The EnKF can be a potential alternative approach for inverse estimation of 

parameters. The optimization of parameters using the EnKF approach demonstrated the 

asymptotic behavior (hydraulic conductivity and first order decay coefficient). The 

temporal conditioning of recharge parameter showed that nitrate-N concentrations are 

more sensitive to intermediate recharge values.  
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CHAPTER VI 

A HYBRID DETERMINISTIC-STOCHASTIC MODELING FRAMEWORK 

FOR CONTAMINANT TRANSPORT IN THE SUBSURFACE 

 

6.1 Synopsis 

Microbes are major contaminants of surface water while nitrate is the most 

ubiquitous contaminant in groundwater. Hydrological interactions between surface water 

bodies and groundwater are of fundamental concern to the migration of contaminants 

(microbes and nitrate) [McMahon et al., 1995; Bethune et al., 1996]. The vadose zone 

acts as an interface between surface water and groundwater. Once these contaminants 

enter the subsurface environment, they are subjected to a variety of coupled 

hydrological, geochemical, and biological processes. There is significant uncertainty 

associated with geochemical and microbiological processes due to a lack of easily 

available data and heterogeneity in terms of redox potential of the subsurface systems. 

Since most hydrologic analyses focus exclusively on the optimization of model 

parameters and ignore inadequate model structure (structural uncertainty), we present a 

conceptual framework that incorporates different model structures for complex 

biogeochemical processes. In the   proposed hybrid conceptual modeling framework 

physical processes (e.g., advection, dispersion) are modeled as deterministic partial 

differential equations, while chemical (e.g., nitrification, denitrification) and biological 

processes (e.g., population growth) are modeled as stochastic processes (e.g., 

chemotaxis). In this hybrid deterministic-staocastic modeling scheme, we focus here on 
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capturing the influence of stochastic chemical and biological processes under 

deterministic hydrological feedbacks on nitrate and E. coli transport (as two separate 

case studies) in a 1-D soil column and understanding their dynamics under perturbed 

conditions. We demonstrated that the hybrid-stochastic-deterministic model improves 

the predictive capabilities. Results from the nitrate transport study indicate that there is 

higher uncertainty in predicting ammonium concentrations in the soil column as 

compared to nitrate and nitrite concentrations when bio-chemical processes are modeled 

stochastically. Perturbations to soil temperature and pH cause variability in the vertical 

distribution of nitrate and ammonia. Results from the E. coli transport study suggest that 

the E. coli moves faster in the column with a slower rate of deposition. E. coli 

concentrations in the soil profile reach the breakthrough faster if both the growth and 

die-off rates are higher, whereas perturbations to chemotactic motility of E. coli suggest 

a delay in the breakthrough. 

6.2 Introduction 

In surface water, microbes have been identified as major contaminants of water 

resources in the US [USEPA, 2006]. In groundwater, nitrate from both natural and 

anthropogenic sources, has been identified as the most widespread contaminant [Nolan 

et al., 2002]. Surface water and groundwater interact directly at the recharge interfaces 

or indirectly through the vadose zone. As a result, much of the contamination of 

groundwater occurs through the vadose zone [Feyen et al., 1998]. Therefore, the 

importance of vadose zone in cycling and containing contaminants is substantial. Interest 

in the vadose zone function has remarkably increased in recent years due to the growing 
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concern of the subsurface being adversely affected by agricultural, industrial, and 

municipal activities.  

Once contaminants are released into the subsurface environment, they are 

subjected to a variety of coupled physical, chemical, and biological processes, such as 

advection, dispersion, ion-exchange, sorption-desorption, biotransformation, 

biodegradation [Ginn et al., 2002]. A variety of analytical and numerical models, 

encompassing such processes, are available to predict water and/or solute transport in the 

vadose zone. These predictive models provide the framework for integration in terms of 

processes and their linkages under various scenarios of subsurface conditions for 

assessing and optimizing the fate and transport of contaminants. Some of the earlier one- 

and multi-dimensional analytical transport models include AT123D [Yeh, 1981], 

CXTFIT [Parker and van Genuchten, 1984], and 3DADE [Leij et al., 2000]. However, 

other models developed afterwards can cope with much more complex system-

dependent boundary conditions evaluating mass and energy balances. Such models 

include DAISY [Hansen et al., 1990], TOUGH2 [Pruess, 1991], SHAW [Flerchinger et 

al., 1996], SWAP [van Dam et al., 1997], HYDRUS [Šimůnek et al., 2006], UNSAT-H 

[Fayer, 2000], COUP [Jansson and Karlberg, 2001], MIN3P [Mayer et al., 2001], and 

STOMP [Lenhard et al., 1995; White et al., 1995]. The widely-used models for 

predicting fate and transport of contaminants in the subsurface are typically based on the 

Richards' Equation for variably saturated flow and the Fickian-based Advection-

Dispersion Equation (ADE) for solute transport [Šimůnek et al., 2006]. These models are 

used to address subsurface fate and transport of nitrate and E. coli in the vadose zone. 
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Despite advances in subsurface modeling, there is growing evidence that many 

subsurface systems are not accurately predictable using these models. This situation can 

occur when subsurface systems involve one of the following, over simplified 

parameterization of complex processes, inadequate model structure (conceptualization), 

or processes triggered by microorganisms. For instance, relatively complex processes, 

such as adsorption and cation exchange, are often accounted for by means of empirical 

linear or nonlinear adsorption isotherms [Goncalves et al., 2006]. This leads to 

uncertainty in the output because of simplified parameters. An example illustrating 

inadequate conceptualization is the existence of more than fifty models representing the 

denitrification process [Heinen, 2006]. Thus, it is always challenging to decide which 

denitrification model is best suited for a given scenario. Microorganisms also pose 

challenges in system understanding and prediction, as they are adaptive life forms 

existing in an environment difficult to observe and measure.  

There are various approaches to improve predictions of fate and transport of 

contaminants in the subsurface, such as parameter estimation methodologies based on 

optimization and data assimilation algorithms [Ahmed and Demarsily, 1987; Dagan, 

1979; Dagan and Lessoff, 2007; Indelman and Dagan, 1993; Kitanidis and Bras, 1980; 

Neuman, 1980; Neuman and Yakowitz, 1979; Rubin et al., 1990], selection of the best 

models for a given scenario, and using these approaches jointly to render optimum 

predictions under uncertainty (Bayesian Model Averaging) [Gaganis and Smith, 2001; 

Neuman and Wierenga, 2003; Ye et al., 2004], as well as stochastic modeling [Freeze, 

1975; Gedeon, 1986; Gelhar and Axness, 1983; Gelhar et al., 1979; Neuman et al., 
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1987]. Yet, most hydrologic analyses focus exclusively on the optimization of model 

parameters and ignore inadequate model structure (structural uncertainty). This often 

leads to overconfidence in the predictions of the model, which are rarely substantiated 

with the sparsely available hydrologic data [Neuman and Wierenga, 2003].  

Therefore, we present a conceptual framework that incorporates different model 

structures for complex subsurface processes associated with nitrate and E. coli transport. 

However, we must account for the advantages and limitations of conducting stochastic 

simulations. In this regard, Dagan [1987; 1988] formulated a linear model of stochastic 

transport, which united the work of [Dagan, 1982; 1984; Gelhar and Axness, 1983; 

Neuman et al., 1987]. In this formulation, all nonlinear terms are neglected, such as 

those arising from the deviation of solute particles from their mean trajectory. 

Furthermore, the simulated water content and solute concentration distributions are 

quantified in terms of space averages and two-point autocorrelation functions, and the 

time evolution of the solute plume is quantified in terms of its first two normalized 

spatial moments [Russo, 1991]. Finally, the output concentration is depicted as the 

ensemble mean concentration. Hence, such stochastic models for contaminant transport 

in the vadose zone exist and can describe the general trend of the solute plume behavior 

in time but fail to predict the actual instantaneous spread of a single plume [Russo, 

1991], which signifies the limitations of stochastic models. Apart from solute transport, 

uncertainty in physical processes has been extensively explored in the hydrologic 

literature of [Dagan, 1982; 1984; Gelhar and Axness, 1983; Neuman et al., 1987]. Many 

microbial processes can also be described using either deterministic partial-differential 
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equations or stochastic simulation algorithms [Erban and Chapman, 2007]. However, 

the stochastic simulation algorithms provide a more comprehensive and precise picture 

of the microbial processes [Erban and Chapman, 2007].  

In this study, we present a conceptual model with physical processes represented 

in a deterministic framework, and chemical and biological processes as stochastic 

processes. This hybrid deterministic-stochastic conceptual framework is tested on a 1-D 

soil column where the emphasis is on capturing the influence of deterministic 

hydrological as well as stochastic bio-chemical processes separately on (1) nitrate and 

(2) E. coli transport. The dynamics of nitrate transport and E. coli deposition and 

transport are further explored under perturbed systems (i.e., soil temperature and soil pH 

for nitrate transport; E. coli growth-death and chemotaxis for E. coli deposition and 

transport).  

6.3 Methodology  

In this study, we present a novel approach to understand the interactions between 

biogeochemical and hydrological processes on nitrate and E. coli transport and their 

individual behavior in the subsurface environment under perturbed conditions. First, we 

will discuss the physical, chemical, and biological processes governing the fate and 

transport of nitrate and E. coli in subsurface systems, and their mathematical 

formulation. Then, we will present the application of this modeling framework to a 1D 

soil column study. 
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6.3.1 Factors affecting nitrogen transport through soils and their mathematical 

formulations 

Many aspects of the soil nitrogen cycle have been described elsewhere [Del 

Grosso et al., 2000; Parton et al., 1996; Shaffer, 2002; Tanji et al., 1979]. Here, we 

briefly describe nitrogen cycle components relevant to nitrate transport in the vadose 

zone (Figure 6.1A). 

Advective-dispersive transport in the vadose zone is the major mechanism for 

chemical transport. Richards’ equation is used for describing variably-saturated flow: 

  

  
  ⃗⃗   ( )                   (6.1)  

where t is time [T], θ is the water content [L3L-3], h is the pressure head [L], K is the 

unsaturated hydraulic conductivity [LT-1], S is a sink term.  ⃗⃗  is the gradient operator, 

and   is the divergence operator.The general advection dispersion equation (ADE) is 

used for modeling solute transport: 
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where c is the concentration of nitrate in the liquid phase,    is the longitudinal 

dispersion coefficient,    is the pore water velocity,    is the bulk density,    is the 

amount of solute sorbed (which is 0 for nitrate), the subscript     describes the chemical 

transformation.  
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Figure 6.1: A conceptual framework showing some key processes for (A) nitrate 
transport and (B) E. coli transport and deposition behavior in the subsurface. 

 

In addition to the advective-dispersive processes, the chemical form of N is also 

critical. N exists in many chemical forms in the soil. For example, nitrate (NO3
-) is 

highly soluble and very mobile in water. On the other hand, ammonium (NH4
+) and 

organic forms of N (Organic Nitrogen, ON) are sorbed by the soil and not readily 

transported by flowing water. N exists in many chemical forms in the soil. Moreover, 
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chemical transformations of N are a common occurrence, mainly mediated by a broad 

gamut of microorganisms that extensively inhabit near-surface soils. These 

microorganisms can potentially transform N via more than one pathway, and under 

various conditions of temperature, pH, water content, substrate, as well as electron 

acceptor and inhibitor concentrations in the subsurface environment [Wrage et al., 2001; 

Shrestha et al., 2002].  

Mineralization is the microbial conversion of organic N to mineral N in the crop 

root zone (Equation 6.3). The mineralization process is represented by the first order 

kinetics equation, which can be expressed as [Hutson and Wagenet, 1991]: 

      
    (Weeks to years)          (6.3)  

 [  ]

  
     [  ]                    (6.4)  

where ON represents the concentration of organic nitrogen in the soil, and     is first-

order rate constant for mineralization.  

NH4
+ produced in the root zone is oxidized to nitrate in the presence of oxygen 

(Equation 6.5), known as nitrification. This process is called nitrification. The rate of 

nitrification is expressed as [Parton et al., 1996]: 
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                     ( )   ( )   (  )   (6.6)  

where    is the rate of nitrification [ML-3T-1], Net is the daily net N mineralization from 

the organic nitrogen,    is the fraction of net nitrogen that is assumed to be nitrified each 

day, NH4
+ is the soil ammonium concentration [ML-3], Kmax is the maximum fraction of 

NH4
+ nitrified, F(T) is the effect of soil temperature on nitrification, F( ) is the effect of 
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soil water content and soil texture on nitrification, and F(pH) is the effect of soil pH on 

nitrification.  

There are several processes with which nitrate can be removed from the 

subsurface environment. Denitrification is the biological reduction of nitrate to nitrogen 

(Equation 6.7). The rate of denitrification is expressed as [Del Grosso et al., 2000]: 

   
                 (Days)     (6.7)  

        [  (   )   (   )]  ( )     (6.8) 

where    is the rate of denitrification [ML-3T-1], and   (   ) and   (   ) are general 

functions relating N to soil respiration and nitrate levels. This is modified by   ( ), a 

dimensionless multiplier based on water content status [Del Grosso et al., 2000]. 

In this study, we consider only nitrification processes (for validation). For 

completeness, we have provided a summary of the key processes that govern nitrate 

transport in the subsurface. Nitrification and denitrification are potentially affected by 

CO2, temperature, and N concentration through a wide variety of complex, interacting 

mechanisms. Some of factors have a direct impact (e.g., N addition increases substrate 

availability for both processes), and others have an indirect influence. For instance, 

nitrification is aerobic and denitrification is anaerobic. Therefore, O2 concentrations play 

a key role in controlling these processes [Barnard et al., 2005]. 

Mineralization and immobilization are N-transformation processes that occur 

simultaneously in the soil. Both NH4
+ and nitrate can be immobilized, i.e. taken up by 

the soil microorganisms (Equation 6.9). This immobilization is a very rapid process and 

is also considered to follow first order kinetics equation [Murphy et al., 2003]: 
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                          (6.9)  

 [  ]

  
     [  ]                    (6.10)  

NH4
+ produced in the root zone can also be removed via volatilization (Equation 

6.11). Volatilization is a first-order process in the surface layer and is given by [Hutson 

and Wagenet, 1991]: 

   
                               (6.11)  

 [   
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 ]             (6.12)  

where      represents the concentration of ammonium salt available in the soil for 

volatilization, and      is the first-order rate constant. 

6.3.2 Factors affecting E. coli transport through soils and their mathematical 

formulations 

Many physical, chemical, and biological processes that govern microbial 

transport in the subsurface have been described elsewhere [Bradford et al., 2006; Ginn et 

al., 2002; Murphy and Ginn, 2000]. Here, we present a brief summary of processes that 

are relevant for E. coli transport in the vadose zone (Figure 6.1B). The physico-chemical 

processes include advection, diffusion, dispersion, exclusion, straining, and physical 

filtration; and they are affected by the structure and properties of the porous media. The 

biological processes include growth/decay, chemotaxis, predation, physiological 

adaptation (survival), and adhesion or active detachment [Murphy and Ginn, 2000].  

E. coli transport in the vadose zone is strongly guided by the physico-chemical 

framework. Microbes undergo convective transport as particulates or dissolved species 
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moving with the pore water whose velocity is governed by the hydraulic pressure 

gradient, porosity, and permeability distribution of the porous media: 
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)         (6.13)  

where    is the concentration of microbes in the liquid phase, t is time,    is the 

longitudinal dispersion coefficient,    is the pore water velocity,    is the bulk density, 

  is the water content,     is the amount of solute sorbed (which is 0 for nitrate), and 

subscript bio describes the biological transformation.   

Physical partitioning of microbes between aqueous (Equation 6.14) and attached 

(Equation 6.15) phases can be represented by different first- or second-order models. We 

consider only first order models in this study. For example, a first-order model can be 

represented as [Murphy and Ginn, 2000]: 

  

  
                  (6.14)  

   

  
                             (6.15)  

where    and    are the rates for the attachment of mobile and immobile microbes, 

respectively.  

Biological processes (e.g., growth and decay) are critical for E. coli transport in 

the subsurface and are generally linked to spatial and temporal variations in nutrient 

flux. These can be described using the Monod reaction kinetics. The Monod equation is 

given as: 

      
 

      
                    (6.16)  
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where μ is the specific growth rate of the microorganisms,      is the maximum 

specific growth rate of the microorganisms, S is the concentration of the limiting 

substrate for growth, and      is the "half-velocity constant"—the value of S when   

/     =0.5.  

 E. coli’s search for food and escape from harm can be adequately represented by 

a biased random walk [Berg, 2004]. E. coli propel themselves with the help of flagella, 

and this process is called chemotaxis. The presence of a substrate gradient (food) gives 

rise to the biased random walk. A random walk is defined by the equal probability of E. 

coli movement in all possible directions. A biased random walk will have different 

probabilities of E. coli movement in different directions depending upon the susbtrate 

gradient. A simple random walk is defined as follows: 

   ∑     
 
                     (6.17)  

where Zj are independent random variables and their expectation is 0. 

6.3.3 Stochastic formulation 

In this hybrid approach for addressing nitrate and E. coli transport in the 

subsurface, physical processes (e.g., advection, dispersion) are modeled in the 

deterministic framework, and chemical (e.g., nitrification, denitrification) and biological 

processes (e.g., population growth, chemotaxis) are modeled as stochastic partial 

differential equations. For nitrate transport, relevant bio-chemical processes, such as 

nitrification, mineralization, immobilization, and denitrification, follow first order 

kinetics. For E. coli transport, biological processes, such as population growth, die-off, 
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also follow first order kinetics. Therefore, we will provide a mathematical formulation of 

the first order stochastic differential equation.  

The first order stochastic differential equation is of the form: 

  

  
  (    )   (    )           (6.18)  

where b and   are given functions, t is time, X is the process (e.g., nitrification), and W is 

the noise. It is assumed that the noise is independent and stationary with zero 

expectation. Rewriting this equation in a discrete form: 

         (     )     (     )         (6.19)  

This can be rewritten as [Knight, 1981]: 

      ∑  (     )
   
       ∑  (     )

   
         (6.20)  

where B is a Brownian motion approximation of the noise term. It is possible to prove 

that the limit of the right hand side of Equation 6.20 exists, and therefore this equation 

can be rewritten in an integral form: 

      ∫  (    )  
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     (6.21)  

Other processes that do not follow the first order kinetics are biological processes 

such as chemotaxis. Chemotaxis can be modeled as a biased random walk [Berg, 2004] 

as described in Equation 6.17.  

The Richard’s equation and advection-dispersion equations (Equations 6.1, 6.2, 

and 6.13) are solved using the HYDRUS model [Simunek et al., 2006]. After each time 

step the concentrations (nitrate or E. coli) are updated for chemical and biological 

processes. This is done for each ensemble at every time step. In most applications of the 

stochastic framework, a typical ensemble size is around 100 members [Evensen, 2009]. 
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Therefore, an ensemble of 100 members is generated in this study using parameter 

distributions. Uniform distributions are employed to describe all stochastic parameters 

(biological and chemical) because little prior information is available for these 

parameters in the literature. The range for each parameter is chosen to cover all realistic 

values. The generated ensemble of parameter fields (e.g., nitrification rate, growth rate 

for E. coli transport) is then used in the conceptual transport model to generate 100 

realizations of ammonium, nitrite, and nitrate concentrations for nitrate transport; and E. 

coli concentrations for E. coli transport. The predicted concentrations were then 

compared with the data using the root mean square error (RMSE) criteria: 

     √ (( ̂   ) )       (6.22)  

where E is the expectation of the difference of the predicted concentrations ( ̂) against 

the reference concentrations ( ) (analytical solutions explained in section 6.3.4). 

6.3.4 Model testing 

A synthetic one-dimensional steady state column is used to verify the accuracy of 

the conceptual framework for nitrate transport. Numerical results are compared with an 

analytical solution for advective dispersive transport of nitrate [van Genuchten, 1985]. 

Subsequently, we compare the analytical solution with the deterministic numerical 

solution, where parameters are estimated using the concentrations (ammonium, nitrite, 

and nitrate) from the analytical solution. The analytical solution for solute transport 

assumes a homogeneous, isotropic porous medium for the one-dimensional steady state 

column, and only considers nitrification process from NH4
+. It is assumed that there are 
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aerobic conditions in the column for nitrification process to occur. Ammonium is applied 

at the start of the experiment, and the experiment is simulated for 200 days. The soil 

column is 200 cm long. For the numerical study, a spatial discretization of 1 cm is 

adopted. An initial time step of 1 day and minimum and maximum time steps of 0.001 

and 100 day are employed. The results are described with respect to observation nodes 

located at 20, 40, 80, and 120 cm from the top of the soil column (Table 6.1). The 

conceptual model is governed by the advection dispersion equation for solute transport 

(Equations 6.1 and 6.2), and the nitrification process is described using first order 

kinetics (Equations 6.5 and 6.6). Initial input parameters for nitrate transport are 

provided in Table 6.2. 

Similarly, one-dimensional column experiments are conducted to investigate the 

transport and deposition behavior of E. coli involving attachment-detachment 

mechanism. The soil column is 200 cm long. The experiment is simulated for 700 days 

as E. coli transport occurs at a slower rate than nitrate. It is assumed that there is enough 

soil organic matter for E. coli survival, and there is no inhibition for E. coli growth. For 

the numerical study, the observation nodes as well as the spatial and temporal 

discretization are the same as applied to the nitrate transport experiment. The conceptual 

model for E. coli transport is governed by the attachment-detachment mechanism 

(Equations 6.14 and 6.15) other than advection and dispersion, and growth is described 

using the Monod model (Equation 6.16). Initial input parameters for E. coli transport are 

provided in Table 6.3. 
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Table 6.1: Description of the one-dimensional soil column. 
Feature Depth (from top in cm) 

Column Depth 200 
Observation Node 1 20 
Observation Node 2 40 
Observation Node 3 80 
Observation Node 4 120 

Boundary Conditions 

Top:       

  
=   

  

  
   

 
Bottom: if h=0;        

  
 

Else     
 

Table 6.2: Initial input parameters for nitrate transport [van Genuchten, 1985]. 
Parameter Value 

Average pore water velocity (cm/hour) 1.0 
Dispersion coefficient (cm2/hour) 0.18 

First order degradation coefficient for NH4
+ 

(-/sec) 
4.6×10-8 to 6.9×10-8 

First order degradation coefficient for NO2 
- 

(-/sec) 
9.2×10-6 to 1.4×10-8 

First order degradation coefficient for NO3 - 
(-/sec) 

0.0 

 

Table 6.3: Initial input parameters for E. coli transport [Bradford et al., 2006]. 
Parameter Value 

Average pore water velocity 
(m/sec) 

1.15×10-7 

Dispersion coefficient 
(m2/sec) 

2.1×10-10 

Attachment coefficient  
(-/sec) 

6.1×10-5 to 9.1×10-5 

Detachment coefficient  
(-/sec) 

4.1×10-7 to 6.3×10-7 
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6.4  Results and discussion  

The results presented here provide insight into the different physical, chemical, 

and biological processes that are significant in the modeling of nitrate and E. coli 

transport in the subsurface. First, we test the conceptual framework of nitrate and E. coli 

transport at the column scale independently. Then, we perturb some system properties 

to develop a better understanding of nitrate and E. coli transport in the subsurface. The 

significance of this modeling framework is that it provides a novel way of integrating 

physical and bio-chemical processes, and enables us to investigate the importance of 

individual processes and their mutual interactions. 

For nitrate transport, the one-dimensional column involves the application of a 

solute pulse (ammonium from fertilizers) resulting in the chemical transformation of 

ammonium to nitrite and then to nitrate. Nitrate transport is also analyzed under a 

perturbed system by changing soil temperature and pH. Advection dispersion (Equations 

6.1 and 6.2) are modeled as deterministic processes, and nitrification (Equations 6.5 and 

6.6) as a stochastic differential equation in the conceptual framework. The reason for 

modeling nitrification in a stochastic framework is that nitrification is a microbial 

mediated process and not possible to parameterize in a column for an extended period of 

time.  

Similarly, for E. coli transport, the one-dimensional column involves the 

application of a solute pulse (E. coli pulse from waste water) resulting in E. coli 

deposition. E. coli transport is also analyzed under a perturbed system by changing the 

growth and die-off rates of E. coli and imposing chemotaxis in E. coli. Advection 
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dispersion (Equations 6.1 and 6.13) are modeled as deterministic processes, and 

attachment-detachment mechanism (microbial processes) (Equations 6.14 and 6.15) and 

growth (Equation 6.16) as stochastic differential equations in the conceptual framework. 

6.4.1 Nitrate transport in one-dimensional soil column 

Chemical transformation of ammonium in soils takes place primarily through 

nitrification. Nitrification is an aerobic process carried out primarily by autotrophic 

bacteria [Anderson et al., 1993; Parton et al., 1996; Schimel et al., 1989]. In the 

nitrification process, part of ammonium first converts into nitrite, which is a daughter 

product of ammonia. Then, part of nitrite converts into nitrate, which is a daughter 

product of nitrite. The net result of the complete pathway is oxidation of ammonium to 

nitrate. 

In the column study, ammonium solute pulse was applied for the entire duration 

of the experiment. Figures 6.2 and 6.3 demonstrate ammonium, nitrite, and nitrate 

concentration at different observation nodes (1-4) corresponding to depths 20, 40, 80, 

and 120 cm (Table 6.1). However, Figure 6.2 presents a comparison of the analytical 

solution of ammonium, nitrite, and nitrate at different observation depths with the 

deterministic numerical solution.  
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Figure 6.2: Nitrate transport with three-species nitrification chain is shown at (A) 

observation node 1, (B) observation node 2, (C) observation node 3, and (D) 
observation node 4. Y-axis represents the breakthrough concentration (C/C0). Solid 
lines represent the analytical solution, and dotted lines represent the deterministic 

numerical solution. 
 

Figure 6.3 presents a comparison of the analytical solution with the hybrid-

stochastic-deterministic solution. In Figure 6.3, 100 realizations of ammonium, nitrite, 

and nitrate are plotted, and the vertical spread of these realizations represents the 

uncertainty in the prediction of these concentrations.  

It is clearly visible from Figures 6.2 and 6.3 that the hybrid-stochastic-

deterministic solution is able to reproduce the analytical solution, whereas the 
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deterministic numerical solution shows some mismatch at observation node 1. In other 

words, the proposed methodology offers an improvement. 

 

 
Figure 6.3: Nitrate transport with three-species nitrification chain is shown at (A) 

observation node 1, (B) observation node 2, (C) observation node 3, and (D) 
observation node 4. Y-axis represents the breakthrough concentration (C/C0). Solid 

white lines represent the analytical solution, and other lines represent the hybrid 
deterministic-stochastic numerical solution. 
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It is evident from Figure 6.3A that it takes almost 20 days for NH4
+ to reach the 

breakthrough at observation node 1. The chemical transformation of ammonia to nitrite 

occurs after a small time interval and therefore, nitrite is discernible at this observation 

node after 1 day. The transformation to nitrate is almost immediate. Observation node 2 

(Figure 6.3B) shows a similar behavior as well. However, observation nodes 3 and 4 

behave differently. Ammonium reaches observation node 3 after 140 days, but nitrate 

reaches observation node 3 after 80 days. This is because transport of NO3
- is faster as 

compared to NH4
+. Ammonium also gets adsorbed in soil and therefore, it is not 

observed at node 4 (Figure 6.3D) in the simulated time frame. It is clear from Figure 6.3 

that the predictions of ammonium, nitrite, and nitrate by the conceptual framework are in 

agreement with the analytical solution (white solid line). Moreover, the conceptual 

model provides a broader view of the integrated system behavior as it simulates bio-

chemical processes in a stochastic framework. 

This uncertainty is further quantified by plotting the probability distributions 

(PDFs) of the root mean square error (RMSE). Figure 6.4 depicts RMSE distributions of 

predicted ammonium, nitrite, and nitrate concentrations at observation node 4 against the 

analytical solution.  
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Figure 6.4: The probability distribution functions (PDFs) of the root mean square 

error (RMSE) of predicted (A) ammonium, (B) nitrite, and (C) nitrate 
concentrations at observation node 4 against the analytical solutions. The PDFs 

demonstrate the uncertainty in the predictions. 
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It is evident from Figure 6.4 that the maximum spread of the PDF is for 

ammonium, followed by nitrite, and then, by nitrate. Therefore, the maximum 

uncertainty is associated with predictions of ammonium concentrations in the 

subsurface, followed by nitrite and nitrate, respectively. Apart from advective dispersive 

transport, ammonium concentrations in the soil are affected by adsorption as well as 

oxidation to nitrite (nitrification). 

Ammonium concentrations are influenced by multiple processes and therefore, 

this may be the reason for its higher RMSE values (0.01 to 0.07) as compared to nitrite 

(0.005 to 0.02) and nitrate (0 to 0.03). Nitrite shows lesser uncertainty than nitrate. This 

may be because the concentration of nitrite is smaller and nitrite is short lived in the 

system. 

The factors which influence nitrification are pH, water content, temperature, and 

the existing ammonium concentration in the soil profile as given in Equation 6.6. 

Nitrification follows first order kinetics and is therefore dependent on the soil 

ammonium concentration. Among the factors, we perturbed soil temperature and pH to 

understand their effect on nitrate transport. 
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Figure 6.5: Nitrate transport with perturbations to soil temperature at (A) 

observation node 1, (B) observation node 2, (C) observation node 3, and (D) 
observation node 4. Y-axis represents the breakthrough concentration (C/C0). 

 

6.4.2 Nitrate transport with perturbations to soil temperature 

Figure 6.5 demonstrates one-dimensional nitrate transport in the subsurface with 

perturbed soil temperature. In soils, temperature profile varies quickly (5 ºC within 20 

cm of depth and then it varies gradually) [Raju et al., 1995], and may have a significant 

influence on nitrate transport. There is evidence in the literature that nitrification rates 

increase with increasing soil temperature. This increase is exponential [Parton et al., 

1996]. Therefore, nitrification rates vary along the soil profile. 
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For this study, soil temperature was varied with depth (starting at 30 ºC at the 

surface, 5 ºC variations till 20 cm depth, and 0.5 ºC variations from 20 cm till the length 

of the column) and follow temperature profiles described in Parton et al. [1996]. As 

expected, nitrification rate changes along the soil profile; it decreases with depth quickly 

(up to 20 cm i.e., observation node 1) and then decreases gradually. It is evident from 

Figure 6.5A that observation node 1 has less ammonium concentrations as compared to 

the unperturbed system (Figure 6.3A). This is because more ammonium gets nitrified at 

the top due to a higher nitrification rate. The ammonium concentration is also lower at 

observation nodes 2 and 3 but nitrite and nitrate concentrations are slightly higher as 

compared to the unperturbed system. The reason for higher nitrate concentration at 

observation node 2 is the higher nitrification rate associated with the soil temperature 

profile. However, the higher concentrations of nitrate at deeper observation nodes (such 

as node 3) are associated with high mobility of NO3
- in water. These results suggest that 

soil temperature variations cause nitrification rates to vary along the soil profile and 

consecutively, nitrate concentrations arrive earlier at greater depths, and ammonium 

concentrations are smaller along the soil profile. 
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Figure 6.6: Nitrate transport with perturbations to soil pH at (A) observation node 
1, (B) observation node 2, (C) observation node 3, and (D) observation node 4. Y-

axis represents the breakthrough concentration (C/C0). 
 

6.4.3 Nitrate transport with perturbations to soil pH 

Figure 6.6 demonstrates one-dimensional nitrate transport in the subsurface with 

perturbed soil pH. The majority of soils are known to be alkaline with pH ranging from 

7.0 to 7.8 and above. Soil pH vertical profile remains in a range of pH from 6 to 7, and it 

may have a significant influence on nitrate transport. There is evidence in the literature 

that nitrification rates increase with increasing soil pH (say from 6 to 7). This increase in 

nitrification rate can be described as inverse tangent function (arc tan) of soil pH [Parton 
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et al., 1996]. Nitrification rate is the highest under alkaline soil pH conditions [Pang et 

al., 1975]. 

For this study, soil pH was slightly depressed (5 to 7) and follows the trend of 

temperature profiles (as described above). Further details are available in Parton et al. 

[1996]. As expected, nitrification rate is slightly lower along the soil profile as compared 

to the unperturbed system. It is clear from Figure 6.6D that observation node 4 has some 

discernible amount of ammonium as compared to the unperturbed system (Figure 6.3D). 

This is because less ammonium gets nitrified at these depths (around 120 cm) due to a 

lower nitrification rate and therefore, it is transported to deeper depths in the soil 

column. The ammonium concentration is lower at observation nodes 1-3, but nitrite and 

nitrate concentrations are slightly higher as compared to the unperturbed system. Nitrate 

concentrations are significantly higher at observation node 2. These results suggest that 

nitrification rates are higher at the top of the soil column (20-80 cm) with lower 

ammonia concentrations and higher nitrate concentrations. Therefore, it is evident that 

soil pH variations cause nitrification rates to vary along the soil profile and 

consecutively, ammonium concentrations reach deeper in the column. 
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Figure 6.7: Transport and deposition behavior of E. coli with attachment- 

detachment model is shown at observation nodes 1, 2, 3 and 4. Y-axis represents the 
breakthrough concentration (C/C0). 

 

 

 

 

 



 
 

181 
 

6.4.4 E. coli transport in one-dimensional soil column  

Similarly, we present our findings of the E. coli transport and response to 

perturbations in the one-dimensional soil column in the following sections. We 

investigated E. coli transport using the conceptual framework that incorporates the 

various physical, chemical, and biological processes. E. coli transport takes place 

primarily through advection. We used an attachment-detachment model to describe E. 

coli movement in the subsurface because E. coli can reside in the porous media as 

monodispersed and aggregated species [Šimůnek et al., 2006]. 

In the column study, wastewater pulse was applied for the entire duration of the 

experiment. A typical concentration of E. coli in raw municipal waste is of the order of 

106 CFU/100 mL [Pang et al., 2004]. Figure 6.7 describes transport and deposition 

behavior of E. coli in the soil column at different observation nodes (1-4) as shown in 

Table 6.1. It is evident from Figure 6.7 that the breakthrough in the deposition of E. coli 

occurs almost at the same time in all observation nodes. However, E. coli concentrations 

are in decreasing order from observation node 1 to observation node 4.  
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Figure 6.8: The probability distribution functions (PDFs) of the root mean square 

error (RMSE) of predicted E. coli concentrations at A) observation node 1, (B) 
observation node 2, (C) observation node 3, and (D) observation node 4 against the 

numerical solution. The PDFs demonstrate the uncertainty in the predictions. 
 

The presence of E. coli at all nodes suggests that E. coli moves faster in the 

column due to advective transport while deposition occurs at a slower rate. It is also 

evident from Figure 6.7 that the majority of E. coli deposition occurs near the surface 

(observation node 1). Drawing a comparison with nitrate transport (Figure 6.3), E. coli 

concentrations are much lower at deeper depths. The reason is that E. coli is attached to 

the soil matrix whereas nitrate is not adsorbed in the soil matrix. Figure 6.7 further 

indicates that predictions of E. coli deposition by the conceptual framework are in 

agreement with the numerical solution (white solid line). In order to explore the 
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uncertainty in the estimation of E. coli concentrations, 100 realizations of E. coli 

depositions are plotted in Figure 6.7. 

This uncertainty is further quantified by plotting the probability distributions 

(PDFs) of the root mean square error (RMSE). Figure 6.8 demonstrates the root mean 

square error (RMSE) distributions of the predicted E. coli concentrations (at observation 

nodes 1-4) against the numerical solution. It is evident from Figure 6.8 that the range of 

RMSEs is approximately similar for all four observation nodes. This suggests that the 

uncertainty does not change with depth in E. coli transport. However, the conceptual 

modeling framework is able to predict near surface E. coli deposition with lesser RMSE 

values than the deeper E. coli deposition. For example, observation nodes 1 and 2 have 

RMSE values ranging from 2.27 to 2.29 and 1.92 to 1.93, respectively; observation 

nodes 3 and 4 have RMSE values ranging from 3.73 to 3.75 and 8.57 to 8.59, 

respectively. These results suggest that the complexity in the behavior of E. coli in the 

subsurface increases with depth. 

The factors that influence E. coli deposition and transport are growth, die-off, 

and random motility [Berg, 2004], as described in Equations 6.16 and 6.17. Therefore, 

we perturbed growth and die-off rates as well as random motility to investigate their 

effect on E. coli deposition and transport. 
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Figure 6.9: Transport and deposition behavior of E. coli with perturbations to 

growth and die-off rates is shown at observation nodes 1, 2, 3 and 4. Y-axis 
represents the breakthrough concentration (C/C0). 

 

6.4.5 E. coli transport with perturbations to growth and die-off rates  

Figure 6.9 demonstrates one-dimensional E. coli transport in the subsurface with 

perturbed growth and die-off rates. E. coli population has four growth stages: lag phase, 

exponential growth, stationary phase, and logarithmic decay phase [Berg, 2004]. If any 

system has enough supply of substrate, E. coli population will manifest itself in the 

stationary phase.  

For this study, we increased growth and die-off rates by 20% to investigate the 

deposition behavior of E. coli in the subsurface. It is evident from Figure 6.9 that 
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observation nodes (1-3) reach breakthrough earlier as compared to the unperturbed 

system (Figure 6.7). In addition, there is no discernible deposition of E. coli at 

observation node 4. This is because E. coli reaches the stationary phase faster and 

therefore, the breakthrough is also quicker. Moreover, the life span of E. coli is shorter 

with increased growth and die-off rates, which prohibits E. coli to reach deeper in the 

soil profile. 

 

 
Figure 6.10: Transport and deposition behavior of E. coli with perturbations to 

chemotaxis is shown at observation nodes 1, 2, 3 and 4. Y-axis represents the 
breakthrough concentration (C/C0). 
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6.4.6 E. coli transport with perturbations to chemotaxis  

Figure 6.9 demonstrates one-dimensional E. coli transport in the subsurface with 

perturbations to chemotaxis. Chemotaxis is the directed movement of E. coli towards or 

away from a chemical gradient. The presence of hot spots, such as food supply gradient, 

adds bias to the random walk [Macnab and Koshland, 1972].  

In this study, we introduced chemotaxis in the behavior of E. coli that was 

compared with the unperturbed system (no chemotaxis). As suggested earlier, the 

motility of E. coli in the subsurface can be modeled as a random walk [Berg, 2004]. In 

this situation, E. coli will have equal probabilities to go from one point to another in 

space. In the one-dimensional column, there are two directions (up and down) for the 

movement of E. coli. In our conceptual model, we introduced a biased random walk by 

allowing E. coli to move 70% times in the downward direction and 30% times in the 

upward direction. The reason for introducing this bias is that as carbon sources 

(substrates) are exhausted at the top of the soil column, E. coli will have a tendency to go 

down in search of food.  

Figure 6.10 indicates that observation nodes (2, 3, and 1) reach breakthrough 

after a lag as compared to both the unperturbed and the growth and die-off perturbed 

systems (Figures 6.7 and 6.8). There is higher deposition of E. coli at observation nodes 

1 and 2 as compared to the unperturbed system (Figure 6.7). However, there is very 

small deposition of E. coli at observation nodes 3 and 4. These results suggest that E. 

coli deposition rates are strongly influenced by chemotaxis. Therefore, an increase in 
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near surface E. coli deposition is observed, and consequently, E. coli concentrations are 

not observed at greater depths in the soil column. 

6.5 Summary and conclusions 

A novel conceptual framework, which provides an entirely new way of 

evaluating the importance of individual processes, was developed for modeling the fate 

and transport of contaminants in the subsurface. This modeling framework is particularly 

useful when biological and chemical processes with significant uncertainty are involved. 

We simulated nitrate transport involving various physical, chemical, and 

biological processes in a one-dimensional soil column and investigated the impact of 

perturbations to soil temperature (along the soil profile) and pH on nitrate transport. We 

showed that the hybrid-stochastic-deterministic model improves the predictive 

capabilities. The results indicate that there is higher uncertainty associated with 

predicting ammonium concentrations, followed by nitrite, and then, by nitrate in the 

subsurface. Variability in soil temperature causes nitrification rates to vary along the soil 

profile. This causes nitrate to move faster in the subsurface, and decreases ammonium 

concentrations along the soil profile. Variability in soil pH results in higher nitrate 

concentrations and lower ammonia concentrations at the top of the soil profile. Thus, 

perturbations to soil pH also cause nitrification rates to vary along the soil profile, higher 

rates at the top and lower at the bottom, and consecutively, ammonium concentrations 

reach deeper in the column.  

We also simulated E. coli transport involving various physical, chemical, and 

biological processes in a one-dimensional soil column and investigated the impact of 
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imposing chemotaxis in E. coli and perturbations to growth and die-off rates. The results 

suggest that the majority of E. coli deposition occurs near the surface of the soil profile, 

and it is associated with the smaller RMSE values. E. coli concentrations in soil profile 

reach the breakthrough faster if both the growth and die-off rates are higher. 

Furthermore, chemotactic motility of E. coli delays the breakthrough of E. coli 

concentrations in the soil profile. 
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CHAPTER VII 

GENERAL CONCLUSIONS 

 

Freshwater resource is a limited supply and is under threat because of various 

contaminants. The most ubiquitous contaminants of water resource include: microbes 

(in surface water) and nitrate (in groundwater). For the sustainable management, 

numerical models of flow and transport are frequently used. Despite advances in 

numerical modeling, threats from the ubiquitous contaminants are not accurately 

identified due to structural uncertainty, parameter uncertainty, and scale disparity 

(observation and process scales). 

This dissertation is specifically focused on understanding the linkages 

between bio-chemical and hydrologic processes, exploring the spatio-temporal 

variability, quantifying uncertainty, and developing models for both E. coli and nitrate 

transport to better characterize the threats to water resources. Chapters II and III 

highlight surface water (SW) contamination from microbes. E. coli is an indicator 

organism. For that reason, E. coli was used to explore the physical, chemical and 

biological linkages as precursors to SW contamination from microbes. Chapters IV 

and V provide a description of spatio-temporal variability of nitrate in groundwater 

(GW) and a quantification of parameter uncertainty for nitrate transport in GW. Since, 

surface water and GW interact directly or indirectly through the vadose zone, chapter 

VI advances our understanding of the subsurface modeling for E. coli and nitrate 
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transport, independently. The major conclusions from this dissertation are 

summarized below. 

Chapter II provides a Bayesian Neural Network (BNN) model for E. coli 

prediction in SW (streams). Results demonstrate six key variables, from a selection of 

physical, chemical, and biological factors, which influence E. coli loads in surface 

streams. Physical factors include temperature and DO; chemical factors include 

phosphate and ammonia; and biological factors include SS and chlorophyll.  

Results from chapter III demonstrate the impact of flow regime (shallow GW 

table and unsaturated flow in the vadose zone) and seasonal variability (climatic) on 

E. coli contamination to SW through the subsurface route. The results show slightly 

increased mobility of E. coli in GW during winter time as compared to summer. 

Chapter IV depicts that multiple controlling factors exist and dominate the 

variability of nitrate at different spatial scales (fine, intermediate, and coarse). The 

entropy based approach provides a physical interpretation of spatial and temporal 

variability of nitrate in the Trinity and Ogallala aquifers. Results demonstrate that the 

variability of nitrate is controlled by— pumping and hydraulic conductivity at the fine 

scale; complex interactions between rivers and the aquifer at the intermediate scale; 

and lithology and geology at the coarse scale. The trends of nitrate variability 

manifested long term persistence at the intermediate scale.  

Chapter V establishes the Ensemble Kalman Filter (EnKF) as a potential 

alternative approach for inverse estimation of parameters. The EnKF—integrated with 

the flow and transport models: MODFLOW and MT3DMS—improves estimation of 
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nitrate in GW. Parameter conditioning by the EnKF demonstrates that parameter 

update is a function of the number of assimilated measurements. 

In chapter VI, a novel conceptual framework is developed for modeling the 

fate and transport of contaminants (E. coli and nitrate, independently) in the 

subsurface. This modeling framework is particularly valuable when bio-chemical 

processes with significant uncertainty are involved. The modeling framework allows 

us to investigate the impact of perturbations to soil temperature (along the soil profile) 

and pH on nitrate transport. Results indicate that variability in soil temperature causes 

nitrification rates to vary along the soil profile. This causes nitrate to move quickly, 

and ammonium to move slowly along the soil profile. Variability in soil pH results in 

higher nitrate concentrations and lower ammonia concentrations near the surface.  

E. coli transport is explored in the subsurface for perturbed factors such as 

chemotaxis and growth and die-off rates. The results corroborate the findings of 

chapter III that the majority of E. coli deposition occurs near the surface. E. coli 

concentrations in the soil profile reach the breakthrough (peak concentration) faster if 

both the growth and die-off rates are higher. Furthermore, chemotactic motility of E. 

coli delays the breakthrough of E. coli deposition in the soil profile.  

This research develops tools and techniques to adequately address the issues 

in contaminant hydrology such as, structural uncertainty, parameter uncertainty, and 

scale disparity, alongside advancing process understanding with regards to fate and 

transport of contaminants in water resources. Results from this dissertation are 

valuable in identifying threats to water resources which are critical for decision 
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makers and environmental managers to design targeted monitoring programs and 

support real-time decision-making.  
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