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ABSTRACT 

 

Rutting is one of the major distresses in asphalt pavements and it increases road 

roughness and traps water, which leads to wet-weather accidents due to the loss of tire-pavement 

friction and hydroplaning. The fundamental mechanisms of rutting have not been well addressed 

because of the complexity of asphalt mixtures. A comprehensive characterization of the asphalt 

mixtures in compression was accomplished by mechanistically modeling the inherent anisotropy, 

viscoelasticity, viscoplasticity and viscofracture of the material.  

The inherent anisotropy due to preferentially oriented aggregates was characterized by a 

microstructural parameter (i.e., modified vector magnitudes) which could be rapidly and 

accurately measured by lateral surface scanning tests and physically related to anisotropic 

modulus ratio. The anisotropic viscoelasticity was represented by complex moduli and Poisson’s 

ratios in separate orthogonal directions that were determined by an efficient testing protocol. 

Master curve models were proposed for the magnitude and phase angle of these complex 

variables. The viscoplasticity were intensively modeled by an anisotropic viscoplastic model 

which incorporated 1) modified effective stresses to account for the inherent and stress-induced 

anisotropy; 2) a new model to provide a smooth and convex yield surface and address the 

material cohesion and internal friction; 3) a non-associated flow rule to consider the volumetric 

dilation; and 4) a temperature and strain rate dependent strain hardening function. The 

viscofracture resulting from the crack growth in compression led to the stress-induced anisotropy 

and was characterized by anisotropic damage densities, the evolution of which was modeled by 

the anisotropic pseudo J-integral Paris’ laws.  

Results indicated that the undamaged asphalt mixtures were inherently anisotropic and 

had vertical to horizontal modulus ratios from 1.2 to 2.0 corresponding to the modified vector 



 

iii 

 

magnitudes from 0.2 and 0.5. The rutting would be underestimated without including the 

inherent anisotropy in the constitutive modeling. Viscoelastic and viscoplastic deformation 

developed simultaneously while the viscofracture deformation occurred only during the tertiary 

flow, which was signaled by the increase of phase angle. Axial and radial strain decomposition 

methods were proposed to efficiently separate the viscoplasticity and viscofracture from the 

viscoelasticity. Rutting was accelerated by the occurrence of cracks in tertiary flow. The asphalt 

mixture had a brittle (splitting cracks) or ductile (diagonal cracks) fracture when the air void 

content was 4% and 7%, respecitvely. The testing protocol that produced the material properties 

is efficient and can be completed in one day with simple and affordable testing equipment. The 

developed constitutive models can be effectively implemented for the prediction of the rutting in 

asphalt pavements under varieties of traffic, structural, and environmental conditions. 
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CHAPTER I  

INTRODUCTION  

 

BACKGROUND 

An asphalt mixture exhibits very complicated behaviors when it is subjected to a 

compressive load. When the compressive load is sufficiently small, e.g., the total strain is 

controlled to less than 150 microstrains in compression (Levenberg and Uzan 2004), damages 

such as permanent deformation and cracking may be avoided and the asphalt mixture behaves as 

an anisotropic viscoelastic solid. As the compressive load increases, the stress and strain have a 

nonlinear relationship which may be caused by not only the material relaxation but also the 

stress-induced damages including viscoplastic deformation and viscofracture cracking (i.e., a 

time-dependent fracture).  

Permanent deformation (rutting) and fracture (cracking) are two major distresses of 

asphalt pavements. Rutting appears as a surface depression in the wheel paths, one primary 

source of which is the accumulation of the plastic and viscoplastic deformation in asphalt layers 

due to the inability to withstand the stress caused by traffic loading (Lytton et al. 1993). Rutting 

traps water and leads to wet-weather accidents due to loss of tire-pavement friction and 

hydroplaning. With the repeated applications of the traffic loads, energy is accumulated in the 

asphalt mixture due to the work done by the traffic loads during the primary and secondary 

stages of the rutting. The accumulated energy will initiate and propagate cracks in the tertiary 

stage of rutting and result in tertiary flow (Lytton 2000; Zhou and Scullion 2002). The cracking 

accompanying rutting in return accelerates the development of permanent deformation and 

eventually reduces the service life of the in-service pavements. Therefore, fundamentally 

mechanistic modeling and laboratory evaluation of the permanent deformation and the 
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associated viscofracture for the asphalt mixtures can contribute significantly to the design and 

analysis of the asphalt pavements for the purpose of better field performance and longer service 

life. 

The permanent deformation and the associated fracture of asphalt mixtures primarily 

results from the irrecoverable viscoplastic deformation and damages which has been investigated 

carefully using continuum mechanics (Sides et al. 1985; Uzan 1996; Levenberg and Uzan 2004). 

Sousa et al. (1993; 1994) proposed a nonlinear viscoelastic damage model to predict the 

permanent deformation of the asphalt mixture which included a volumetric component 

accounting for densification of air voids and a deviatoric component responsible for a softening 

or hardening process. Florea (1994b; 1994a) developed an associated and a non-associated 

viscoplastic model to describe the mechanical properties of the asphalt mixtures. Schapery (1997; 

1999) employed thermodynamic principles incorporated with internal state variables to develop 

the constitutive relations that account for the effects of viscoelasticity, viscoplasticity, growing 

damage and aging. Based on Schapery’s viscoplastic continuum model, Gibson et al. (2003) 

investigated the properties of asphalt mixtures in an unconfined compressive state and Chehab et 

al. (2003) predicted the responses of asphalt mixtures in a uniaxial tensile condition. Masad and 

some other researchers (Huang et al. 2007; Saadeh et al. 2007; Masad et al. 2008b; Darabi et al. 

2011) employed Schapery’s nonlinear viscoelastic model (Schapery 1969) and the Perzyna’s 

viscoplastic model (Perzyna 1971) associated with a damage density function to characterize the 

properties of the asphalt mixtures and yielded a good agreement between the laboratory testing 

results and the finite element simulations.  
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PROBLEM STATEMENT 

Characterizations of an asphalt mixture in compression include two parts namely the 

nondestructive characterization and the destructive characterization of the material properties. 

The nondestructive properties of the asphalt mixtures in compression include the anisotropic 

viscoelasticity and the inherent anisotropy that is caused by the preferential orientation of 

aggregates. The destructive properties of asphalt mixtures consist of the anisotropic 

viscoplasticity and the anisotropic viscofracture that is caused by the different crack areas 

projected in different directions. The following subsections briefly summarize the problems 

existing in the literature on the aforementioned four topics that are viscoelasticity, anisotropy, 

viscoplasticity and viscofracture. Details of those problems are addressed in the chapter 

corresponding to each topic. 

 

Problems of Anisotropic Viscoelastic Characterization 

Asphalt mixtures are typical time and temperature dependent materials, the 

nondestructive properties of which are normally characterized with creep compliance, relaxation 

modulus, dynamic modulus and phase angle according to viscoelastic theory. These 

nondestructive material properties provide a basis for quantifying how far the damages such as 

plasticity and fracture depart from the undamaged state. Thus a comprehensive description and 

an accurate laboratory measurement for these nondestructive material properties are strongly 

needed; however, some problems that appear in the existing literature are summarized as 

follows: 

a) The compressive and tensile viscoelastic properties of the undamaged asphalt mixtures 

are not separately characterized even though they are significantly distinct in terms of 

the magnitude, phase angle, and anisotropy.  
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b) The master curve models for the magnitude of the dynamic modulus are well addressed 

in the literature. Nevertheless, no perfect models are available to construct the master 

curve for the phase angle of the dynamic modulus as well as the master curves for the 

magnitude and phase angle of complex Poisson’s ratio.  

c) Rapid and efficient testing methods are needed to accurately determine the anisotropic 

complex modulus and the anisotropic complex Poisson’s ratios when asphalt mixtures 

are in compression.  

 

Problems of Inherent Anisotropic Characterization 

The anisotropy of an asphalt mixture is defined as a difference in physical properties, 

such as modulus and Poisson’s ratio, when the asphalt mixture is measured in different 

directions. According to the origins of anisotropy, granular materials, such as soils, aggregate 

base and asphalt mixtures, consist of two types of anisotropy: i) inherent anisotropy and ii) 

stress-induced anisotropy (Adu-Osei 2000; Masad et al. 2002; Kim et al. 2005; Underwood et al. 

2005). The inherent anisotropy of the asphalt mixture is attributed to the preferential orientation 

of aggregates along the horizontal direction that is perpendicular to the compaction direction. 

The inherent anisotropy of the asphalt mixture has been demonstrated to be significant using 

laboratory and field tests. Taking into account the inherent anisotropy in the continuum damage 

models produced more accurate predictions of pavement rutting. However, several problems 

occur in the characterization of the inherent anisotropy for the asphalt mixtures. 

(a) Only the inclination of coarse aggregates was considered for the characterization of the 

inherent anisotropy of asphalt mixtures, which, however, is properly attributed to the 

inclination, size, and sphericity of both coarse and fine aggregates.  
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(b) A nondestructive imaging system with high resolution is required to obtain the aggregate 

properties of the asphalt mixtures for the purpose of determining the inherent anisotropy.  

(c) A constitutive method is needed to incorporate the inherent anisotropy into the 

continuum mechanistic modeling of the asphalt mixtures so that the inherent anisotropy 

is accounted for in the viscoplastic and viscofracture characterization.  

 

Problems of Anisotropic Viscoplastic Characterization 

The permanent deformation is the major damage when asphalt mixtures are in 

compression. The mechanisms of the permanent deformation have been investigated for decades 

using multiple theories and methods including the phenomenological empirical methods (Perl et 

al. 1983; Mahboub 1990; Uzan 1996; Qi and Witczak 1998) and the mechanistic theories that 

consist of viscoelastic damage models (Sousa et al. 1993; Ramsamooj and Ramadan 1999) and 

elasto-viscoplastic damage models (Chehab et al. 2003; Schwartz et al. 2004; Nguyen et al. 

2007; Darabi et al. 2011).  The models that use mechanistic constitutive equations to model the 

material characteristics utilize the fundamental engineering properties of materials as input in the 

models, which can be applied to different types of materials in different pavement structures, 

different traffic and environmental conditions. Thus the mechanistic models, especially the 

viscoelastic-viscoplastic-damage models are becoming more and more appealing to researchers 

as well as the civil engineers. However, these mechanistic models are still far away from being 

widely used because of some problems in the models themselves and the difficulties in acquiring 

the fundamental engineering material properties required by the models. Specifically, the 

problems associated with viscoplastic characterization include: 

a) The anisotropy including the inherent anisotropy and the stress-induced anisotropy must 

be accounted for in the constitutive modeling of the asphalt mixtures. Otherwise, the 
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permanent deformation and fatigue cracking will be underestimated if assuming that 

asphalt mixtures in compression are isotropic.  

b) A more comprehensive constitutive model is needed to characterize a variety of the 

viscoplastic properties of the asphalt mixtures including the hydrostatic stress-dependent 

yield surface that satisfies the requirements of smoothness and convexity, viscoplastic 

potential based on a non-associated flow rule, viscoplastic strain hardening and the 

temperature and strain rate dependence.  

c) A systematic testing protocol and analyzing formulations are required to rapidly and 

accurately determine the parameters of the constitutive model and relate those model 

parameters to the measurable and understandable material engineering properties.  

 

Problems of Anisotropic Viscofracture Characterization 

The asphalt mixture experiences the primary, secondary and tertiary deformation stages 

when it is subjected to a destructive load in compression. The permanent deformation 

accumulates during all of the three stages while the microcracks are initiated during the 

secondary stage and grow into macrocracks in the tertiary stage. The increase of the crack size 

that mainly occurs in the tertiary stage leads to the loss of the intact material area, which is the 

major reason for the degradation of modulus. The area projection of the cracks differs in the 

vertical direction  and in the horizontal direction, which results in different modulus degradation 

and produces the stress-induced anisotropy in the asphalt mixtures. The loss of intact material 

increases the true stress which will yield more viscoplastic deformation. The problems 

associated with the viscofracture characterization are: 

a) Very few efforts are made in the investigation of the anisotropic viscofracture in the 

tertiary deformation and the mechanisms are not clearly revealed for the tertiary flow, 
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which in fact is not a plastic flow but the extra permanent strain that is caused by the 

formation and growth of cracks. 

b) The anisotropic viscofracture that happens in the tertiary stage has a significant 

contribution to permanent deformation and has not been well considered in the 

constitutive modeling of the asphalt mixture.  

c) The viscofracture strain that is caused by the crack growth in the tertiary stage needs to 

be separated from the viscoelastic strain and the viscoplastic strain for the purpose of an 

accurate characterization of the viscofracture and its evolution.  

 

RESEARCH OBJECTIVES 

The general objective of this research is to provide the engineers and researchers with 

fundamental mechanical models and efficient, reliable, and user-friendly testing methods to 

comprehensively characterize the engineered properties of the asphalt mixtures in compression 

and promote the understanding to the road performance of the materials. The problems 

mentioned in the section of problem statement will be resolved in this dissertation and 

specifically, the research objectives include: 

a) Develop an efficient testing protocol working on a single asphalt mixture to determine 

the anisotropic complex modulus and complex Poisson’s ratio and formulate rational 

master curve models for the magnitude and phase angle of the complex variables; 

b) Propose a reasonable parameter and the corresponding testing method to characterize the 

inherent anisotropy of the asphalt mixture due to the preferential orientation of 

aggregates in the mixture and relate the proposed parameter to the physical properties. 
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c) Model the constitutive behaviors of the asphalt mixtures using a comprehensive equation 

which is capable of accounting for the viscoelasticity, viscoplasticity, viscofracture and 

the anisotropy of the materials. 

d) Develop a systematic testing protocol and analyzing formulations to rapidly and 

accurately determine the parameters of the constitutive model and relate the parameters 

of the constitutive model to the measurable and understandable engineering material 

properties. 

 

DISSERTATION OUTLINE 

This dissertation combines four journal papers that have been published or in press and 

one paper that has been submitted for review. Some of the contents in this dissertation are 

slightly modified from the papers to avoid unnecessary repetitions of information and to improve 

the article flow.  More continuation studies to those papers are also included in this dissertation 

to present a complete characterization of the asphalt mixture in compression. This dissertation is 

written according to the format of the ASCE’s Journal of Materials in Civil Engineering, as well 

as the guidelines provided in the Texas A&M University Thesis Manual. The sign conventions 

used in this dissertation consider the compressive and extensive stresses and strains to be 

positive and the tensile stresses and strains to be negative. The organizations of this dissertation 

are as follows: 

Chapter I is an introduction which contains background, problem statement, research 

objectives and dissertation outline. 

Chapter II is a paper published in the ASCE’s Journal of Transportation Engineering 

(Zhang et al. 2012a). This chapter presents the characterization of the anisotropic viscoelasticity 

of the asphalt mixtures, which includes the development of the master curve models, design of 
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the testing protocols and the anisotropic analysis of the complex variables of the asphalt 

mixtures. 

Chapter III is a paper published in the ASCE’s Journal of Materials in Civil Engineering 

(Zhang et al. 2011). This chapter presents a formulation of the modified vector magnitude for the 

characterization of the inherent anisotropy, a testing method for the determination of the 

aggregate properties as well as the construction and the verification of the relationship between 

the anisotropic parameter and the anisotropic modulus ratio. 

Chapter IV is a paper published in the ASCE’s Journal of Materials in Civil Engineering  

(Zhang et al. 2012b). This chapter presents a new method to efficiently and accurately perform 

the strain decomposition on the total strain measured in a destructive test on asphalt mixture in 

compression. The viscoplastic strain and the viscofracture strain are separated from the 

viscoelastic strain and then implemented in the damage characterizations in the following 

chapters. 

Chapter V presents a comprehensive viscoplastic yield surface model for the asphalt 

mixture in compression. The model is capable of completely characterizing a variety of the 

viscoplastic yielding properties of the asphalt mixture. The corresponding parameter determining 

methods are also presented and some of the model parameters are related to the engineered 

material properties. Part of this chapter related to the temperature and strain rate dependent yield 

surface was summarized in a paper that had been submitted for presentation in the forthcoming 

92
nd

 TRB meeting and publication in the Transportation Research Record: Journal of the 

Transportation Research Board. 

Chapter VI presents a comprehensive anisotropic viscoplastic constitutive modeling of 

the asphalt mixture. A modified effective stress is defined and used in the formulation of the 

extended Perzyna-type viscoplastic model. A generalized yield surface model, non-associated 
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viscoplastic flow rule and a temperature and strain rate dependent strain hardening function are 

employed in the viscoplastic modeling. Testing methods and theoretical relationships are 

provided to determine the model parameters. The effect of the anisotropy on the permanent 

deformation of the asphalt mixture is discussed based on the model and the testing results. 

Chapter VII presents the characterization of the anisotropic viscofracture of the asphalt 

mixture in compression. The anisotropic (axial and radial) damage densities are determined 

using dissipated pseudo strain energy (DPSE) balance equations and geometric method. 

Anisotropic pseudo J-integral Paris’ laws are proposed to model the evolution of the 

viscofracture. Part of this chapter associated with the axial viscofracture characterization was 

summarized in a paper that had been accepted for publication on the ASCE’s Journal of 

Materials in Civil Engineering (Zhang et al. 2012c). 

Chapter VIII presents overall summaries and conclusions of the dissertation. 

Recommendations for future studies are also suggested in this chapter. 
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CHAPTER II  

ANISOTROPIC VISCOELASTICITY OF UNDAMAGED ASPHALT 

MIXTURES
*
 

 

OVERVIEW 

A test protocol and a data analysis method are developed in this chapter based on 

anisotropic linear viscoelastic theory to characterize the anisotropic viscoelastic properties of 

undamaged asphalt mixtures. The test protocol includes three nondestructive tests: 1) uniaxial 

compressive creep test, 2) indirect tensile creep test, and 3) the uniaxial tensile creep test. All 

three tests are conducted on asphalt mixtures at three temperatures (10, 20 and 30°C) to 

determine the tensile and compressive properties at each temperature and then to construct the 

master curve of each property. The determined properties include: magnitude and phase angle of 

the compressive complex modulus and Poisson’s Ratio in the vertical direction and in the 

horizontal plane, respectively, magnitude and phase angle of the tensile complex modulus.  

The test results indicate that all tested asphalt mixtures have significantly different 

tensile properties from compressive properties. The peak value of the master curve of the tensile 

complex modulus phase angle is within a range from 65 to 85 degrees while the peak value of 

the compressive moduli phase angle in both directions ranges from 35 to 55 degrees. In addition, 

the undamaged asphalt mixtures exhibit distinctively anisotropic properties in compression. The 

magnitude of the compressive modulus in the vertical direction is approximately 1.2 ~ 2 times of 

the magnitude of the compressive modulus in the horizontal plane. Dynamic modulus tests are 

______________________________ 
*
Reprinted with permission from ASCE: "Anisotropic Viscoelastic Properties of Undamaged Asphalt 

Mixtures." by Yuqing Zhang, Rong Luo and Robert L. Lytton, 2012, Journal of Transportation 

Engineering, 138(1), 75-89. Copyright [2012], ASCE. 
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performed to verify the results of the proposed test protocol. The test results from the proposed 

test protocol match well with those from the dynamic tests. 

 

INTRODUCTION 

An asphalt mixture that performs well in service must be designed to resist the damage 

done by both traffic and weather. The damage takes many forms such as fatigue, rutting, aging, 

and moisture damage among others. In addition, the successfully designed mixture has the 

ability to heal some of the damage that occurs. A careful evaluation of the damage resistance and 

healing properties of an asphalt mixture must be done in the laboratory prior to its being 

constructed as a pavement surface. Damage to such a mixture is evaluated as a departure from 

“undamaged” properties. Thus, an important aspect of all successful asphalt mixture design is in 

determining the undamaged properties of the mixture to use as a “bench mark” for all damage 

that is done by subsequent testing.  

This chapter presents a rapid and efficient method of evaluating the compressive 

properties of undamaged asphalt mixtures.  In previous related work, the tensile viscoelastic 

properties of an undamaged asphalt mixture were carefully studied and a novel approach was 

developed to accurately and quickly determine the master curve of the complex modulus and the 

phase angle of the undamaged asphalt mixture in tension (Luo and Lytton 2010). This chapter 

presents a continuation of that work, which develops a comprehensive method to characterize 

both viscoelastic isotropic properties of undamaged asphalt mixtures in tension and viscoelastic 

anisotropic properties of the undamaged asphalt mixtures in compression.  

The reason for characterizing tensile properties and compressive properties separately is 

that the tensile properties of an undamaged asphalt mixture are significantly different from the 

compressive properties of the same undamaged asphalt mixture. When an asphalt mixture is 
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subjected to a nondestructive tensile load, it has been found to be approximately isotropic 

(Underwood et al. 2005). In other words, the tensile properties of asphalt mixtures are 

approximately independent of direction. This is reasonable because the asphalt binder or mastic, 

which is recognized as an isotropic material, plays a key role when the asphalt mixture is under a 

tensile load. In contrast, when the asphalt mixture is in compression, it has been experimentally 

proved to be significantly anisotropic.  

Anisotropy is the property of being directionally dependent. The anisotropy of an asphalt 

mixture can be defined as the difference in physical properties, such as modulus and Poisson’s 

ratio, when the asphalt mixture is loaded in different directions. For example, the modulus in the 

vertical direction (compaction direction) was found to be 1.26 times larger than that in the 

horizontal plane perpendicular to the compaction direction based on the back-calculation of the 

modulus of the asphalt layer in the field (Oh et al. 2006). Motola and Uzan (2007) conducted 

dynamic modulus tests on 8 field specimens and found the dynamic modulus in the vertical 

direction could be as large as 1.5 times the dynamic modulus in the horizontal plane. They also 

found that, at a 5% significance level, the dynamic moduli statistically had the same mean value 

in the two directions in the horizontal plane. This finding suggests that the asphalt mixture is a 

transversely isotropic material whose physical properties are symmetric about the vertical 

direction that is normal to the horizontal plane of isotropy.  

The inherent anisotropy of an undamaged asphalt mixture was found to be mainly 

attributed to the preferential orientation of aggregates (Masad et al. 2002; Masad et al. 2005). 

Figure 2-1 illustrates the preferential orientation of aggregates in a field core from an asphalt 

pavement. The top view of the field core specimen shows a more circular cutting face of the 

aggregates, while the side view shows a more flat cutting face. This fact demonstrates that the 

aggregates tend to “lay down” during compaction and that the long dimension of the aggregates 
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has a preferential direction in the horizontal plane. As a result, the properties of the asphalt 

mixture in the vertical direction are different from those in the horizontal plane.  

 

 
(a) Top View 

 
(b) Side View 

Figure 2-1 Cutting faces of a field cored asphalt mixture sample: (a) Top view and (b) Side 

view 

 

Research efforts have been documented in the literature on investigating the anisotropic 

properties of the asphalt mixture under compressive loading. One approach was to core 

cylindrical specimens compacted by a gyratory compactor in the vertical and horizontal 

directions, respectively, and then to test the specimens separately to obtain the properties in the 

vertical direction and in the horizontal direction (Mamlouk et al. 2002; Masad et al. 2005; 
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Underwood et al. 2005; Wagoner and Braham 2008). Using this approach to obtain the 

anisotropic properties may introduce significant sample to sample variability. Another 

documented approach was to fabricate a cubic specimen and to test it in different directions 

(Wang et al. 2005). This approach successfully eliminates the sample to sample errors but a 

complicated servo-controlled true triaxial test device was required to conduct the true triaxial 

tests on the cubic specimens.  

For the purpose of using more accessible test equipment to efficiently measure the 

anisotropic properties of an asphalt mixture without introducing sample to sample errors, this 

chapter proposes three nondestructive tests on a single asphalt mixture specimen to the obtain the 

complex modulus and complex Poisson’s ratio in the vertical direction and in the horizontal 

plane. In order to obtain the properties of the undamaged asphalt mixture, all tests should be 

conducted in the small strain domain with an empirical endurance limit of approximately 100 

microstrains in tension and 150 microstrains in compression (Levenberg and Uzan 2004). As 

long as the asphalt mixture is tested under the endurance limit, the asphalt mixture can be 

characterized as a linearly viscoelastic material. In this study, the strains of the tested asphalt 

mixture specimen are carefully controlled under the endurance limits in all tests. At the end of all 

tests, additional dynamic tests are conducted on the same specimens to confirm that no damage 

is introduced to the specimens by verifying that the magnitude and phase angle of the complex 

moduli do not change.  

This chapter is organized as follows. The next section details the theoretical 

formulations of the anisotropic viscoelastic properties of the asphalt mixture. Then the 

configurations and procedures of the three tests are developed based on the theoretical 

formulations. The following section presents the analysis of the test data and the determination 

of the magnitude and phase angle of the complex moduli and complex Poisson’s ratio at each 



 

16 

 

test temperature. In the succeeding section, master curves of the magnitudes and phase angles are 

constructed using the time-temperature superposition principle and are then verified using the 

dynamic test. The final section concludes the main results of this chapter. 

 

ANISOTROPIC VISCOELASTIC FORMULATIONS OF ASPHALT MIXTURES 

The most general anisotropic form of linearly elastic constitutive relations is given by 

the generalized Hooke’s law (Ding et al. 2006): 

, , , 1, 2, 3ij ijkl klS i j k l         (2-1) 

where ij and ij are the linear stress and strain tensors and ijklS is a compliance tensor.  For a 

transversely isotropic material, the material properties are symmetric with respect to an axis 

which is normal to an isotropic plane. As shown in Figure 2-2, the symmetric axis is the vertical 

axis 01, the anisotropic plane is vertical plane 012 and 013, and the isotropic plane is the 

horizontal plane 023 in which the properties of materials are identical in all horizontal directions. 

For an isotropic material, the material properties are the same in all directions.  

When an asphalt mixture is under compressive loading, the material properties are 

symmetric about the compaction direction that is the vertical axis, which is perpendicular to the 

horizontal plane that is the plane of isotropy. In other words, the properties of the asphalt mixture 

in the horizontal plane are the same in all directions within the horizontal plane but different 

from the properties in the vertical direction. Using the coordinates in Figure 2-2, the constitutive 

relations for a transversely isotropic and linearly elastic material can be formulated as 

(Christensen 2005): 

 

 



 

17 

 

 

Figure 2-2 Coordinate system of transversely isotropic material 
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and εij is strain, σij is stress, Eij is Young’s modulus, νij is Poisson’s ratio, and Gij is shear 

modulus; in the subscript ij, the first index i refers to the coordinate of imposed stress or strain 

and the second index j refers to the response direction. Equation 2-2 has five independent 

constants: E11, E22, ν12, ν23, and G12, four of which (except G12) can be used to characterize the 

anisotropy of an asphalt mixture if assuming that the asphalt mixture is linearly elastic. Thus, 

substituting Equation 2-3 into Equation 2-2 yields: 
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    (2-4) 

Equation 2-4 is the constitutive relation for the asphalt mixture in compression, which 

behaves as a transversely isotropic material. Equation 2-4 indicates that four independent 

constants are required for the asphalt mixture in compression, including 11 22 12 23, , ,C C C CE E   , in 

which the superscript C indicates the material property in compression. In contrast, because the 

anisotropy of the asphalt mixture is negligible in tension (Underwood et al. 2005), the asphalt 

mixture can be regarded as an isotropic material when it is under tensile loading. In other words, 

when the asphalt mixture is in tension, 
11 22E E  and 12 23    in Equation 2-4. This fact 

indicates that only two independent constants are required for the asphalt mixture in tension, 

which are 11 12,T TE  , where the superscript T indicates a property in tension. As a result, there are 

a total of six independent material constants for an asphalt mixture, four of which are 

compressive properties including 11 22 12 23, , ,C C C CE E   , and the other two are tensile properties 

including 11 12,T TE  . 
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Equations 2-1 through 2-4 are elastic formulations for an asphalt mixture. These 

equations can be converted to the viscoelastic formulations in order to characterize the asphalt 

mixture since the properties of the asphalt mixture are frequency-dependent. The six independent 

constants ( 11 22 12 23 11 12, , , , ,C C C C T TE E E   ) in the elastic formulations are no longer constants in the 

viscoelastic formulations. Instead, they are frequency-dependent variables as follows: 

 compressive complex modulus in the vertical direction  11

CE 
; 

 compressive complex Poisson’s ratio in the vertical plane  12

C 
; 

 compressive complex modulus in the horizontal plane  22

CE 
;  

 compressive complex Poisson’s ratio in the horizontal plane  23

C 
; 

 tensile complex modulus  11

TE 
; and  

 tensile complex Poisson’s ratio  12

T 
.  

where the superscript “*” indicates the complex variables, and ω is frequency in rad/sec.  

If a prescribed strain ε is applied to a linearly viscoelastic material, the stress-strain 

relationship can be derived as (Findley et al. 1989): 

   
 

0

t

t E t d
 

  



 

  (2-5) 

where,  t
 
is time-dependent stress;  E t

 
is relaxation modulus;  t

 
is prescribed strain; 

and  is a dummy variable which is less than or equal to t. Let  f s  or   f tL
 
denote the 

Laplace transform of the function  f t , where s is the transform variable in Laplace domain and 

the Laplace transform is defined as: 
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      
0

stf s f t e f t dt



  L       (2-6) 

Applying the Laplace transform to Equation 2-5 yields: 

     s sE s s          (2-7) 

Equation 2-7 is the Laplace transform of the one-dimensional constitutive relation that 

can also be derived based on the Elastic-Viscoelastic Correspondence Principle (Findley et al. 

1989). According to the correspondence principle, elastic solutions can be converted into 

viscoelastic solutions by taking the Laplace transform of the time-dependent stress (or force) and 

strain (or displacement) and taking the Carson transform, also defined as an s-multiplied Laplace 

transform, of the modulus and Poisson’s ratio (Schapery and Park 1999; Tschoegl et al. 2002; 

Lakes and Wineman 2006). Specifically,      , ,t t E t   and  t  are replaced by  s , 

 s ,  sE s , and  s s respectively, where the upper script bar indicates the Laplace 

transforms of the corresponding variables. Therefore, applying the correspondence principle to 

Equation 2-4 obtains: 
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   (2-8) 

If a uniaxial quasi-static load is applied to the asphalt mixture along the vertical axis, 

 11 0s  ,    22 33 0s s   , then solving Equation 2-8 yields: 
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where Equation 2-9 is consistent with Equation 2-7. Applying the inverse Laplace transform, 

which is denoted by   1 f tL , to Equation 2-9 and Equation 2-10, the relaxation modulus 

and Poisson’s ratio are determined as: 

 
 

 
1 11

11

11

s
E t

s s






 

  
 

L        (2-11) 
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 
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t

s s







 

   
 

L        (2-12) 

In practice, the load applied on the pavement is not a quasi-static load, but a dynamic 

load such as a moving traffic load. Therefore, it is convenient to use oscillatory rather than static 

loading. If the input is an axial oscillatory strain with a sinusoidal form (Christensen 2003): 

   11 1 1cos sin i tt t i t e               (2-13) 

where 1  
is axial strain amplitude, ω is the frequency of the input vibration, and 1i    

represents the imaginary axis of the complex variable, then the stress response will lead the 

strain by a phase angle of 
E

   which denotes the phase angle of the complex modulus of the 

viscoelastic pavement material. The corresponding stress can be expressed as: 

         
 

11 1 1cos sin E
i t

E E
t E t i t E e

 
        



 

       
   

(2-14) 

where  E   is the complex modulus, and  E 
 is the magnitude of  E  . Dividing 

Equation 2-14 by Equation 2-13 yields: 

       cos sinE
i

E E
E E e E i


    



 

         (2-15) 
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The complex modulus in Equation 2-15 can be written as: 

 E E iE            (2-16) 

where E  is the storage modulus,   cos
E

E   

 ; and E  is the loss modulus, 

  sin
E

E   

 . The magnitude and phase angle, E

 
and 

E
   can be determined using E

and Eas follows: 

2 2E E E            (2-17) 

arctan
E

E

E
 

 
  

 
        (2-18) 

If the horizontal strain is measured, the horizontal strain is determined as (Di Benedetto 

et al. 2007a): 

       
22 2 2cos sin

i t

t t i t e 
 

 
        



 

         
 

  (2-19) 

where 
2  

is the horizontal strain amplitude, and 


  is the phase angle of the complex Poisson’s 

ratio,    . Using 


 to denote the magnitude of    , dividing Equation 2-19 by Equation 

2-13 obtains:  

   22 2

11 1

cos sin
i

e i i


 

 
      

 



 


 


           (2-20) 

where    is the storage Poisson’s ratio, cos


  

 ; and    is the loss Poisson’s ratio,

sin


  

 . Both the magnitude and phase angle of the Poisson’s ratio, 


and 


   can be 

calculated as: 

2 2              (2-21) 
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  arctan


 


  
  

 
        (2-22) 

The complex modulus and the relaxation modulus have the following relationship (Findley et al. 

1989; Park and Schapery 1999; Schapery and Park 1999): 

      
s i s i

E i E t sE s
 

 

 
    L      (2-23) 

Similarly, the complex Poisson’s ratio can be determined using the relaxation Poisson’s 

ratio (Tschoegl et al. 2002). 

      
s i s i

i t s s
 

    

 
    L      (2-24) 

Equations 2-23 and 2-24 indicate that the complex modulus and complex Poisson’s ratio 

can be determined using creep tests rather than the dynamic test. Equations 2-9 and 2-10 make it 

possible to use the Laplace transforms of stresses and strains to determine the Laplace transforms 

of the modulus and Poisson’s ratio, which are then substituted into Equations 2-23 and 2-24 to 

calculate the complex modulus and complex Poisson’s ratio. Equations 2-17, 2-18, 2-21 and 2-

22 are used to calculate the magnitude and phase angle of the complex modulus and complex 

Poisson’s ratio, respectively.  

 

MASTER CURVE MODELS FOR COMPLEX MODULUS AND POISSON’S RATIO 

To characterize the viscoelastic properties of asphalt mixtures in a wider range of 

temperature and frequency, it is preferred to construct the master curves for the magnitude and 

phase angle of the complex modulus and complex Poisson’s ratio. When constructing the master 

curves, the undamaged asphalt mixture is considered as a linearly viscoelastic material so that 

the time-temperature superposition principle is employed. This principle states that the effect of 

temperature on the time-dependent material is equivalent to an increasing (decreasing) of the 

frequency at a temperature below (above) the reference temperature. Therefore, the master 
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curves can be constructed by conducting tests at multiple temperatures and shifting the data to 

the reference temperature.  

The CAM model (Marasteanu and Anderson 1999) shown in Equation 2-25 has proved 

to be able to successfully construct the master curve of the magnitude of the complex modulus 

(Luo and Lytton 2010). The CAM model will be used later in this chapter to formulate the 

master curves of the magnitudes of both compressive complex modulus and the tensile complex 

modulus. 

  

 

*

log 2 log 2

1
10

E

E

E r

g

R

R
cE

C T T

E
E 








 
    

  
 

     (2-25) 

where gE  = glassy modulus of the asphalt mixture, MPa; 
cE  = crossover frequency of the 

asphalt mixture for modulus, rad/sec; 
ER  = rheological index of the asphalt mixture for 

modulus; and 
EC = slope of temperature shift factor for modulus. The CAM model in Equation 

2-25 yields a rising “S-shaped” curve for the magnitude of the complex modulus that approaches 

the horizontal glassy modulus an asymptote of 
gE .  

It is found in this study that the magnitude of the complex Poisson’s ratio decreases as 

the frequency increases, which will be shown in later sections. In addition, the magnitude curve 

has an “inverse S” shape. Therefore, a formula in the similar form of the CAM model is 

developed to construct the master curve of the magnitude of the complex Poisson’s ratio, as 

shown in Equation 2-26. The model presents a falling S-shaped curve on the frequency domain 

and is named as the Inverse S Model.  
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     (2-26) 

where 
g  = glassy Poisson’s ratio of the asphalt mixture; 

c  = crossover frequency of the 

asphalt mixture for Poisson’s ratio, rad/sec; R
 = rheological index for Poisson’s ratio; and C

= 

slope of temperature shift factor for Poisson’s ratio.  

For the master curve of the phase angle of the complex modulus, Bahia et al. (Bahia et 

al. 2001; Luo and Lytton 2010) developed a model (see Equation 2-27) that presents a bell-

shaped curve which is symmetric on a log-log plot of phase angle versus frequency. The 

Williams-Landel-Ferry (WLF) function is recommended to calculate the time-temperature shift 

factor for Bahia’s model.  
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   
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  
  
  

   

      (2-27) 

where 
mE  = the maximum phase angle for modulus, degrees; 

mE  = the frequency when 
mE  

occurs,  rad/sec; m, RφE = fitting parameters for modulus phase angle; Tr = reference temperature; 

and C1 and C2 = regression constants in WLF function.  

It is reasonable to use a bell-shaped curve to model the master curve of the phase angle 

of the complex modulus because the phase angle approaches zero at a frequency of zero or 

infinity. In other words, a viscoelastic solid, such as the asphalt mixture, behaves as an elastic 
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solid at extremely low or high frequencies. However, for an asphalt mixture, the master curve of 

the phase angle of may not be symmetric on a log-log plot of the phase angle versus the 

frequency. As a result, a more general model (see Equation 2-28) is developed and is named as 

the  -model for the phase angle of both complex modulus and complex Poisson’s ratio. This 

model also produces a bell-shaped curve but the curve is not constrained to be symmetric on the 

plot of phase angle versus the logarithm of frequency.  
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1
1

max

R T

T R
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 
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
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


        
                

    (2-28)

  

where 
max = the maximum phase angle, degrees;  

R  = the reference frequency where 
mE  

occurs, rad/sec.  = fitting parameter that determine curvature of the phase angle master curve; 

T = time-temperature shift factor, e.g. 
 
 

1

2

log r

T

r

C T T

C T T





 
 if the WLF model was used. 

When 0max  , Equation 2-28 produces a bell-shaped curve function that is applicable for the 

master curve of the phase angle of the complex modulus; while 0max  , Equation 2-28 yields 

an inverted bell-shaped curve function that is applicable for the master curve of the phase angle 

of the complex Poisson’s ratio. 

 

TEST CONFIGURATIONS AND DATA ANALYSIS 

Based on the viscoelastic formulations detailed in the previous section, a test protocol 

with three test scenarios is developed to determine the six independent variables:  11

CE  , 

 12

C  ,  22

CE 
,  23

C  ,  11

TE 
, and  12

T  . The test protocol includes the uniaxial 

compressive creep test, uniaxial tensile creep test and indirect tensile creep test. To investigate 
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the influence of mixture volumetrics and aging on the anisotropic viscoelastic characteristics, the 

three tests are respectively conducted on 16 asphalt mixture specimens that vary in the following 

conditions:  

 Two types asphalt binder: labeled as AAM and AAD in the Strategic Highway 

Research Program (SHRP) Materials Reference Library (MRL) (Jones 1993); 

 Two air void contents: 4% and 7% (variation within ±0.5%); and 

 Two aging periods: unaged and continuously aged asphalt mixtures at 60°C for 6 

months. 

Two replicate specimens are prepared for each combination of the above three varying 

conditions. For each specimen, the gradation for the aggregates is a Type C dense gradation 

specified by Texas Department of Transportation (TxDOT) (TxDOT 2004). The optimum 

asphalt content is calculated based on the TxDOT test procedure (TxDOT 2008). The asphalt 

mixture is compacted using the Superpave gyratory compactor to fabricate cylindrical specimens 

that are 150 mm in diameter and 175 mm in height. Then the specimens are cored to 100 mm in 

diameter and cut to 150 mm in height. During the three tests, the compressive creep test is firstly 

conducted on the specimens (150 mm in height, 100 mm in diameter), which is followed by the 

indirect tensile test. Then the specimens with 150 mm height are cut to 100 mm in height and the 

tensile creep test is finally conducted on the specimens (100mm height, 100mm diameter). The 

purpose of using the specimens that are 100 mm in height and 100 mm in diameter in the tensile 

creep test is to eliminate the effect of the non-uniform air void distribution on the tensile 

properties (Luo and Lytton 2010). The specimen compacted by the Superpave gyratory 

compactor has a higher air void content near the top and bottom of the compacted cylindrical 

specimen and an approximately uniform air void content in the middle part of the specimen. If a 

150 mm high specimen is used in the tensile test, the non-uniform air void distribution will result 
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in significant variations on the tensile properties of asphalt mixtures. Although the height to 

diameter ratio of 2 or 1.5 is preferred in order to minimize the constraint effect of the end caps 

(Witczak et al. 2000), the end cap constraint effect can be neglected in the middle part of the 100 

mm high specimen under a uniaxial tensile load.  

All three tests on each specimen are conducted at three temperatures (10°C, 20°C and 

30°C) in order to construct the master curves of the magnitude and phase angle of the complex 

modulus and complex Poisson’s ratio. Specimens are conditioned in an environmental chamber 

at the testing temperature for at least two hours before being tested to assure that the specimen 

temperature has reached equilibrium. In addition, all three tests are nondestructive so the 

specimens are not damaged in any one of the three tests and can be reused in succeeding 

destructive tests for its fatigue and healing properties. To avoid damaging the specimens, the 

specimen strains in each test are controlled below 100 microstrains; the corresponding applied 

load is determined based on testing conditions and shown in Table 2-1.  

 

Table 2-1 Applied Load at Different Testing Conditions 

 

 

In each of the three creep tests, the applied load is kept constant for 60 sec. The reasons 

of using a 60 sec creep period include: 1) a longer time of creep would introduce damage to the 

Testing 

Methods 

Mixture 

Type 

10°C 20°C 30°C 

4% 7% 4% 7% 4% 7% 

Compressive 

and Tensile 

Creep (kPa) 

AAD 70 50 30 20 15 10 

AAM 70 50 50 30 30 15 

Indirect 

Tensile 

Creep (N) 

AAD 500 500 300 300 150 150 

AAM 700 500 400 300 200 150 
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specimens; 2) the unstable transient material response at the early portion of creep usually 

vanishes within 1 second since the step loading reaches a constant level within this short period; 

3) the unstable creep data is not used to calculate the properties; instead, testing data from 5 sec 

to 60 sec are stable and reliable and they are employed in the calculation; and 4) a short creep 

test saves testing time.  

 

Uniaxial Compressive Creep Test 

The first test in the proposed test protocol is the uniaxial compressive creep test, which 

determines the compressive complex modulus in the vertical direction,  11

CE  , and the 

compressive complex Poisson’s ratio in vertical plane,  12

C  . Both the magnitude and phase 

angle of  11

CE   and  12

C   were calculated as functions of frequency. 

The Universal Testing Machine (UTM) is employed to conduct the uniaxial compressive 

creep test on specimens with a height of 150 mm and a diameter of 100 mm. The test 

configuration is shown in Figure 2-3, in which two vertical linear variable differential 

transformers (LVDTs) are mounted on the middle part of the asphalt mixture specimen with a 

gauge length of 90 mm to measure the vertical deformation of the specimen, and one LVDT is 

fitted on a bracelet which surrounds the specimen to record the change of the specimen’s 

circumference. A constant load, the magnitude of which is referred to Table 1, is applied to the 

specimen and held for 60 sec. The constant load is expressed as in Equation 2-29. The same test 

procedure is repeated three times in order to reduce the test variability. There is lengthy rest 

period between two repeating tests to assure the full recovery of the viscoelastic strains.  

 11 0t constant          (2-29) 
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The vertical strain is computed using the average vertical deformation divided by the 

vertical gauge length. The horizontal strain is calculated using the change of the circumference 

divided by the original circumference of the specimen. The vertical strains and horizontal strains 

of all three repeating tests are presented in Figure 2-4, in the legend of which “Horizontal 1” 

represents the horizontal strain of the 1
st
 repeating test, “Vertical 2” is the vertical strain of the 

2
nd

 repeating test, and so on.  

 

 

Figure 2-3 Configuration of the compressive creep test 
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Figure 2-4 Vertical strains and horizontal strains in the uniaxial compressive creep test 

 

As illustrated in Figure 2-4, the three curves of the vertical strain are close to each other 

and the three curves of the horizontal strain are also close to each other. This fact indicates that 

the three repeating tests produce similar results; therefore, the uniaxial compressive creep test 

proves to be repeatable. The average of the three vertical strain curves and the average of the 

three horizontal strain curves are then used for the following calculation. The average vertical 

strain and the average horizontal strain are firstly modeled using Equations 2-30 and 2-31, 

respectively: 

   1

11 1 11 b tt a e c            (2-30) 

   2

22 2 21 b tt a e c            (2-31) 

where t  is the loading time;  11 0t   is the constant compressive load in the vertical 

direction;  11 t  is the time-dependent average vertical strain;  22 t is the time-dependent 

average horizontal strain; e is the base of the natural logarithm; and a1, b1, c1, a2, b2, and c2 are 
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fitting parameters. By fitting the raw data to the strain models, all the fitting parameters are 

determined and the R-squared values of the strain models are found to be larger than 0.97, which 

indicates the goodness of the model fit. Applying the Laplace transform to Equations 2-29, 2-30 

and 2-31 yields: 

  0
11 s

s


           (2-32) 

 
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       (2-34) 

Then substituting Equations 2-32 and 2-33 into Equation 2-9 and then into Equation 2-

23 obtains: 

   
 
 

 
 

 

   

11 0 1

11 11

11 1 1 1 1

2 2

0 1 1 1 1 0 1 1

2 22 2 2 2 2 2

1 1 1 1 1 1 1 1

C C

s i

s i s i

s s b
E sE s

s b a c c s

b a c c a b
i

b a c c b a c c



 

 




   

 





 

   
            

     
   

  (2-35) 

where the real part is  
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Similarly,  12

C   is determined by substituting Equations 2-33 and 2-34 into Equation 

2-10 and then into Equation 2-24: 
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(2-36) 

By simplifying Equation 2-36, the real part and imaginary part of  12

C   can be estimated and 

 12

C   is expressed as      12 12 12

C C Ci          . Then the magnitude of  12

C   is 

calculated as    
2 2

12 12 12

C C C      , and the phase angle of  12

C  is estimated as

  12
12

12

arctan
C

C

C


 




 

  
 
 

.  

The magnitude and phase angle of both  11

CE  and  12

C   are complex functions of 

the frequency. Since time-dependent test data are obtained from the creep test in this study, the 

loading time needs to be converted to the corresponding frequency so that the frequency-

dependent magnitude and phase angle can be calculated. Schapery (1965) developed a 

straightforward method of approximation for the Laplace transform of the time function  f t . 

    1

2
s

t

f t sf s


            (2-37) 

Comparing Equations 2-23 or 2-24 with Equation 2-37 yields: 

1

2t
           (2-38) 

Since the testing data used in the calculation are within a loading time from 5 to 60 sec, 

the corresponding frequency is 0.0083 rad/sec to 0.1 rad/sec based on Equation 2-38. Then the 
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raw stress and strain data measured at three temperatures are used to determine the frequency-

dependent magnitude and phase angle of  11

CE  and  12

C 

 
using Equations 2-29 to 2-36. 

The master curves of 
11

CE   and 
11
CE

   are constructed at a reference temperature of 20°C using 

the CAM model in Equation 2-25 and the  -model in Equation 2-28, respectively. Figure 2-5 

shows an example of 
11

CE   determined at each temperature as well as how they shift horizontally 

to construct the master curve of 
11

CE   at a reference temperature of 20°C. It shows that the 

asphalt mixture has a higher value of 
11

CE   at a lower temperature or higher frequency. This 

finding agrees with what have been documented in the literature.  

 

 

Figure 2-5 Magnitude of the 11

CE 
 at different temperatures and master curve at 20°C 
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Figure 2-6 illustrates an example of 
11
CE

   determined at each temperature and two 

master curves of 
11
CE

   at a reference temperature of 20°C, one of which is constructed using 

Equation 2-27, and the other is constructed using Equation 2-28. 

 

 

Figure 2-6 Phase angle of the 11

CE 
 at different temperatures and master curve at 20°C 
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tests at the two frequencies are compared to those determined by the proposed uniaxial 

compressive creep test. Figure 2-7 and Figure 2-8 show the comparison of 
11

CE   and 
11
CE

 

respectively, of asphalt mixtures with different binder type, air void content and aging periods. 

For any type of asphalt mixture, both 
11

CE   and 
11
CE

   as determined by the proposed uniaxial 

compressive creep test match those measured by the dynamic test very well. This demonstrates 

that the proposed test method effectively determines  11

CE  . In addition, 
11
CE

   measured by 

the dynamic test at the two frequencies are also plotted as black circles in Figure 2-6. The two 

black circles in Figure 2-6 are close to the master curve constructed using Equation 2-28, but 

they do not well match the master curve constructed using Equation 2-27. Consequently, the 

asymmetric Equation 2-28 is more appropriate model of constructing the master curve of the 

phase angle of the complex modulus.  

The master curves of 
12

C   and 
11
CE

   are also constructed at a reference temperature of 

20°C using Equation 2-26 and Equation 2-28, respectively. Figure 2-9 shows an example of 

12

C   at three test temperatures and how they shift horizontally to construct the master curve at a 

reference temperature of 20°C. This figure indicates that the asphalt mixture has a higher 
12

C   

at a higher temperature or lower frequency. Figure 2-9 also illustrates that Equation 2-26 is 

appropriate to construct the master curve of 
12

C  . Figure 2-10 presents an example of 
11
CE

   at 

the three test temperatures and the constructed master curve at a reference temperature of 20°C. 

The values of 
11
CE

   are negative based on the definition in Equation 2-22.  
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Figure 2-7 Comparison of magnitudes of 11

CE 
 predicted by master curves with that 

measured in dynamic modulus tests for different asphalt mixtures 

 

 

Figure 2-8 Comparison of phase angles of 11

CE 
 predicted by master curves with that 

measured in dynamic modulus tests for different asphalt mixtures 
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Figure 2-9 Magnitude of the 12

C 
 at different temperatures and master curve at 20°C 

 

 

Figure 2-10 Phase angle of the 12

C 
 at different temperatures and master curve at 20°C 
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Uniaxial Tensile Creep Test 

The uniaxial tensile creep test is the third test (after the uniaxial compressive creep test and the 

indirect tensile creep test) in the sequence of the proposed test protocol. This test is conducted on 

the specimens with 100 mm in height and 100 mm in diameter to determine the tensile complex 

modulus  11

TE   and the tensile complex Poisson’s ratio  12

T   in terms of four complex 

functions of frequency: 1) the magnitude of the tensile complex modulus, 
11

TE  , 2) the phase 

angle of the tensile complex modulus, 
11
TE

  , 3) the magnitude of the tensile complex Poisson’s 

ratio, 
12

T  , and 4) the phase angle of the tensile complex Poisson’s ratio, 
12
T

  . The reason that 

the chapter presents the uniaxial tensile creep test before the indirect tensile creep test is that the 

uniaxial tensile creep test can independently measure the tensile properties of the asphalt 

mixtures, which will be used together with the results of the indirect tensile creep test to 

determine the compressive properties of the asphalt mixtures in the horizontal plane.  

The uniaxial tensile creep test is conducted on the specimens using the Material Testing 

System (MTS), as shown in Figure 2-11. A set of end caps are glued to the top surface and 

bottom surface of each specimen, and then the specimen is set up in the environmental chamber 

of the MTS by connecting the end caps to the loading frame. Three vertical LVDTs and a 

bracelet LVDT are mounted in the middle part of the specimen. The gauge length of the vertical 

LVDTs is 50 mm. A constant tensile load is applied to the specimen for 60 sec. The magnitude 

of the tensile load varies with the specimens and temperatures and is summarized in Table 2-1. 

Similar to the uniaxial compressive creep test, the uniaxial tensile creep test is also repeated 

three times on each specimen to verify the repeatability of the test. Figure 2-12 presents the 

measured vertical strains and horizontal strains of the three repeating tests. In this figure, the 

measured vertical strains from the three repeating tests are close to each other, and the measured 
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horizontal strains from the three repeating tests almost overlap each other. This fact proves that 

the uniaxial tensile creep test is also repeatable.   

 

 

Figure 2-11 Configuration of the uniaxial tensile creep test 

 

The same procedure of using Equations 2-29 through 2-36 to determine  11

CE  and 

 12

C   also applies to the calculation of  11

TE 

 
and  12

T  . Based on the stress and strain 

data measured at the three testing temperatures, 
11

TE  , 
11
TE

  , 
12

T   and 
12
T

   are all determined as 

complex functions of frequency. Then the CAM model (Equation 2-25) and the  -model 

(Equation 2-28) are employed to construct the master curves of 
11

TE   and 
11
TE

   at a reference 
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temperature of 20°C, respectively. The Inverse S model (Equation 2-26) and the  -model 

(Equation 2-28) are also used to construct the master curves of 
12

T   and 
12
T

   at the same 

reference temperature of 20°C, respectively. All master curves of   11

TE   and  12

T   are 

plotted in Figure 2-16 through Figure 2-19 and are compared to those of the compressive 

properties in both the vertical direction and the horizontal plane in later sections.  

 

 

Figure 2-12 Vertical strains and horizontal strains in the uniaxial tensile creep test 

 

Indirect Tensile Creep Test 
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CE   and the compressive complex Poisson’s ratio in the horizontal plane 
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 22

CE   and  23

C  . Again,  22

CE   and  23

C   are presented in terms of four complex 

functions of frequency: 1) magnitude of the compressive complex modulus in the horizontal 

plane, 
22

CE  , 2) phase angle of the compressive complex modulus in the horizontal plane, 
22
CE

  , 

3) magnitude of the compressive complex Poisson’s ratio in the horizontal plane, 
23

C  , and 4) 

phase angle of the compressive complex Poisson’s ratio in the horizontal plane, 
23
C

  .  

The IDT test has been widely used to determine the properties of the asphalt mixture. 

Mirza evaluated the Poisson's ratio and elastic modulus of an asphalt mixture using the IDT test 

(Mirza et al. 1997). Zhang incorporated the elastic-viscoelastic correspondence principle and 

Fourier transforms to obtain linear viscoelastic solutions of the asphalt mixture properties using 

the IDT test (Zhang et al. 1997). Kim developed an analytical solution for the dynamic modulus 

in terms of the magnitude and phase angle of the dynamic modulus using the linear 

viscoelasticity theory based on the IDT test results (Kim et al. 2004). Even though the IDT test 

has been employed as a convenient method of evaluating the mechanical properties of the 

asphalt mixtures, several problems in the previous research need to be addressed.  

First, the anisotropy of the asphalt mixture was not taken into account in the IDT tests 

reported in the literature. Many studies assumed the asphalt mixture as an isotropic material. 

Thus, only a direction-independent modulus was used in the constitutive relations to analyze the 

IDT test results.  

Second, the tensile modulus was not separated from the compressive modulus in 

previous studies in spite of the fact that they differed from each other significantly. If addressing 

the difference between the tensile properties and the compressive properties, the constitutive 

relation must be changed. Using the plane stress problem as an example, the constitutive relation 

should be: 
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1
C

xy

x x yT C

xx yyE E


     for plane stress      (2-39) 

If 
x
 
is a tensile stress, a tensile modulus 

T

xxE  should be used to calculate a tensile 

strain. Similarly, since 
y  is a compressive stress, a compressive modulus 

C

yyE  and compressive 

Poisson’s ratio 
C

xy should be used to calculate the compressive strain.  

Third, the assumption of plane strain or plain stress was used in the previous studies. 

However, neither plane strain nor plane stress applies to the IDT test because the length of the 

cylinder specimen is neither large enough to lead to a plane strain situation nor small enough to 

be treated as the plane stress case. Thus, a three-dimensional constitutive relation should be 

established for the IDT test. In order to address the three limitations of the previous studies, a 

novel set-up of the IDT test is developed and its configuration is shown in Figure 2-13.  

 

 

Figure 2-13 Configuration of the indirect tensile creep test 
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The asphalt mixture specimen has a height of 150 mm and a diameter of 100 mm. Six 

LVDTs are mounted on the specimen, including: 1) two vertical LVDTs glued along the vertical 

axis to measure the vertical compressive deformations, 
yU , 2) two radial LVDTs glued along 

the radial axis to measure the radial tensile deformations, 
xU , and 3) two axial LVDTs glued 

along the axial axis on the two lateral sides of the specimen to record the axial tensile 

deformations, 
zU . During the test, a constant compressive load is applied by the UTM in the 

direction of the arrow in Figure 2-13. This load is applied to the specimen through a steel bar 

with a flat bottom surface along the generatrix of the cylindrical specimen. The contact surface 

between the steel bar and the specimen is small enough so that the applied load can be 

considered as a line load. The constant load is held for 60 sec on the specimen in each IDT test. 

The magnitude of the applied load for each specimen at each temperature is listed in Table 2-1. 

This IDT test is also repeated three times on each specimen.  

A schematic illustration of the IDT test setup is plotted in Figure 2-14, in which a three-

dimensional coordinate system is established with the origin located at the center of the front 

surface. In the coordinate system, the 1(z) axis is the axial axis of the specimen, the 2(y) axis is 

the vertical axis, and the 3(x) axis is the radial axis. The specimen diameter is denoted as D, 

D=AB=CD=100 mm; the specimen height is denoted as L, L=CE=DF=150 mm; the line load is 

p , p P L , where P  is the concentrated load applied by the UTM. The gauge length of the 

vertical LVDTs is 2h, which is 75 mm. The gauge length of the radial LVDTs is 2r, which is 

also 75 mm. The gauge length of the axial LVDTs is 2l, which is 90 mm. Figure 2-15 illustrates 

the measured deformations in the vertical direction, the radial direction and the axial direction in 

the three repeating tests. The IDT creep test also proves to be repeatable.  
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The stress distribution in a cylindrical specimen with a line load applied as in the IDT 

test has been well analyzed in the available literature, and a closed-form solution has developed 

for the stress distribution (Ye et al. 2009). Based on this closed-form solution of the stress 

distribution, the stress components on axis CD (y axis, x = 0) are:  

33

2CD P

LD



           (2-40) 

22

2 2

2
1CD

D D

P D D

LD y y




 
   

  
      (2-41) 

 

 

 

Figure 2-14 Schematic illustration of the indirect tensile creep test 
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Figure 2-15 Deformations along vertical axis (Uy), horizontal axis (Ux), and axial axis (Uz) 

in the indirect tensile creep test 

 

When  y = 0, the stress components on axis AB (x axis) are obtained as: 

 

2 2

33 2
2 2

2 16
1

4

AB P D x

LD x D




 
  
 
 

      (2-42) 

 

4

22 2
2 2

2 4
1

4

AB P D

LD x D




 
  
 
 

      (2-43) 

After the determination of the stress components, the three-dimensional anisotropic 

elastic stress-strain relations are developed while including the difference between the tensile 

properties and the compressive properties. On axis CD, the stress-strain relation is as follows: 

12 12

11 11 11

2312

11 22 22

2312

11 22 22

1

11 11

1
22 22

33 331

C T

T C T
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T C T
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T C T
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E E E
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E E E

 





 

 

 

  
    
          
          

      (2-44)  
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On axis AB, the constitutive relation is shown in Equation 2-45: 

12 12

11 11 11

2312

11 22 22

2312

11 22 22

1

11 11

1
22 22

33 331

C T

T C T
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T C T
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AB ABE E E

AB AB

E E E
AB AB

E E E
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



 

 

 

  
    
          
          

      (2-45) 

On the right side of either Equation 2-44 or Equation 2-45, the elements in the first and 

the third columns of the compliance matrix are determined by tensile properties because 
11

CD , 

33

CD , 
11

AB  and 
33

AB
 
are tensile stresses, while the elements in the second column of each 

compliance matrix are determined by compressive properties since 
22

CD
 
and 

22

AB
  
are 

compressive stresses. As mentioned before, the anisotropy of the asphalt mixture is negligible 

when it is under a pure tensile load (Underwood et al. 2005), Equations 2-46 and 2-47 are valid:  

11 22

T TE E          (2-46) 

12 23

T T           (2-47) 

Equation 2-44 can be used to solve for 
22

CD as follows: 

   
2

122312 12

22 11 22 11

1
22 22 33 11 12

TTC T

C C T T

CD CD CD CD T

E E E E

     
 

     
 

    (2-48) 

The vertical compressive deformation on axis CD, Uy, is then calculated by integrating 

the strain 22

CD along the gauge length from –h to +h: 

22

h
CD

y
h

U dy


          (2-49) 

Substituting Equation 2-48 into Equation 2-49 yields: 

   
2

122312 12

22 11 22 11

1
TTC T

C C T Ty E E E E
U A P B P C

   
     

 
     (2-50) 

where: 
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2

22

1 2 2 2
ln ;

2

h
CD

h

D h h
A dy

P L D h D

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  
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h
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
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z
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h
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l
    


           (2-53) 

In Equation 2-53, the axial strain 11

CD  is computed by dividing Uz by the axial gauge 

length, 2l, since the tensile strain distribution within the axial gauge length is uniform under the 

line load. Solving Equation 2-50 for the radial elastic compressive modulus produces: 

 22

12 1212 12 12

11 11

1

1

C

T TC T T
y z

C T

E
BU h U

E AP l AP AE

   



  

     (2-54) 

Similarly, 
33

AB  is computed using Equation 2-45: 

   
2

1223 12 12

22 11 22 11

1
33 22 33 11 12

TC C T

C C T T

AB AB AB AB T

E E E E

      
 

      
 

    (2-55) 

The radial tensile deformation, Ux, on axis AB is determined by integrating 
33

AB  over the 

gauge length from r  to r : 

33

r
AB

x
r

U dy


  =    
2

1223 12 12

22 11 22 11

1
TC C T

C C T TE E E E
K P M P N

    
     

 
   (2-56) 

where: 

 22 2 2

1 4 2 8 4
arctan

4

r
AB

r

r rD r
K dy

P L D LDL r D


 

 
    

 
    (2-57) 

 33 2 2

1 4 2 8 4
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r
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r rD r
M dy

P L D LDL r D


 

 
    

 
  and  (2-58) 
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AB T AB T T

z
r

r
N dy r U

l
    


           (2-59) 

Solving Equation 2-56 for the elastic Poisson’s ratio in the horizontal plane yields: 

 
2

12
12 12 12

23 22

11 11

1 T
C T T

C C z x

T C

M
rU lU

E
KE E lKP

   


  
     

 
  

    (2-60) 

Applying the elastic-viscoelastic correspondence principle to Equations 2-54 and 2-60 

obtains: 

 22

12 1212 12 12

11 11

1

1

C

T TC T T
y z

C T

sE
Bs sUs s h U s

sE AP l AP AsE

   



  

    (2-61) 

 
2

12
12 12 12

23 22

11 11

1 T
C T T

C C z x

T C

M s
s s rU s lU

s sE
K sE sE lKP

   


  
       

 
  

   (2-62) 

where A, B, K and M are constants calculated using Equations 2-51, 2-52, 2-57 and 2-58; P  is 

the Laplace transform of the constant load, P P s ; 
11

CE , 
11

TE , 
12

C , and 
12

T  are Laplace 

transforms of the corresponding time-dependent variables, which are determined in the uniaxial 

compressive creep tests and uniaxial tensile creep tests; and 
xU , 

yU  and 
zU are Laplace 

transforms of the 
xU , 

yU  and 
zU  which are respectively measured using the radial LVDTs, 

vertical LVDTs and axial LVDTs, and are modeled using Equation 2-63: 

   , , ,
1 ub t

u ux y or z
U t a e c

 
         (2-63) 

where au, bu, and cu are the fitting parameters. Applying the Laplace transform to Equation 2-63 

yields: 
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u u u u

x y or z
u

b a c c s
U s

s s b

 



      (2-64) 

After determining all variables in Equations 2-61 and 2-62, substituting Equations 2-61 

and 2-62 into Equations 2-23 and 2-24 yields: 
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 
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(2-65) 
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  

           

(2-66) 

Although it is a mathematical challenge to obtain the closed-form solutions of Equations 

2-65 and 2-66, it is convenient to use the software MATLAB to determine the real part and 

imaginary part of the complex variables of  22

CE   and  23

C  .  Subsequently, 
22

CE 
, 

22
CE

  , 

23

C  , and 
23
C

   are determined respectively using Equations 2-17, 2-18, 2-21 and 2-22 at the 

three test temperatures, and their master curves are also constructed at a reference temperature of 

20°C using Equations 2-25, 2-28, 2-26 and 2-28, respectively. These master curves are plotted in 

Figure 2-16 through Figure 2-19.  

 

COMPARISON OF TENSILE AND COMPRESSIVE PROPERTIES 

By conducting the three tests detailed in former sections, the viscoelastic tensile 

properties and the anisotropic viscoelastic compressive properties are determined in terms of six 

parameters including 
11

CE 
, 

12

C 
, 

11

TE 
 

12

T 
, 

22

CE 
and 

23

C 
. Master curves are constructed for the 
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magnitude and phase angle of the six parameters at a reference temperature of 20°C using 

Equations 2-25, 2-26 and 2-28, and are plotted in Figure 2-16 through Figure 2-19. The model 

parameters of all master curves are summarized in Table 2-2.  

Figure 2-16 plots the master curves of 11

CE 
, 11

TE 
and 22

CE 
; each master curve has an 

S-shaped curve on the log scale of the frequency, which agrees with what is reported in the 

literatures (Findley et al. 1989; Christensen 2003; Kim et al. 2004; Di Benedetto et al. 2007a). 

Figure 2-17 shows the master curves of 
11
CE

  , 
11
TE

  and 
22
CE

  , which are bell-shaped curves on 

the log scale of the frequency. The bell-shaped master curves of the phase angle of the complex 

moduli were also obtained using dynamic modulus tests and were reported in the literature 

(Levenberg and Shah 2008; Biligiri et al. 2010).  

 

 

Figure 2-16 Master curves for the magnitude of 11

CE 
, 11

TE 
and 22

CE 
at 20°C 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.001 0.01 0.1 1

M
a
g
n

it
u

d
e 

o
f 

C
o
m

p
le

x
 M

o
d

u
lu

s 
(M

P
a
) 

Reduced Frequency (rad/sec) 

|E11c*|

|E11t*|

|E22c*|



 

52 

 

Figure 2-17 also indicates that Equation 2-27 predicts very low phase angles (close to 

zero) of the compressive complex moduli in the normal frequency range from 3.14  to 6.28 

rad/sec (from 0.5 Hz to 1 Hz), while the  -model yields more reasonable phase angles within 

the same frequency range. The tensile complex modulus shows a significantly larger phase angle 

than the compressive complex moduli at any given frequency in Figure 2-17. This is reasonable 

because it is mainly the asphalt binder or mastic that takes the tensile load when the asphalt 

mixture is in tension; therefore the asphalt mixture in tension is more viscous, which leads to a 

larger phase angle. In contrast, when the asphalt mixture is in compression, it is mainly the 

aggregates that take the compressive load. As a result, the asphalt mixture is less viscous in 

compression, which results in a smaller phase angle.  

 

 

Figure 2-17 Master curves for the phase angle of 11

CE 
, 11

TE 
and 22

CE 
at 20°C 
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Table 2-2 Values of Parameters in Master Curves 

Complex 

Modulus 
Parameters 11

CE   
22

CE 
 

11

TE 
 

Magnitude 

(CAM 

model) 

gE (MPa) 9933 7251 8500 

cE (rad/sec) 0.038 0.067 0.169 

ER  0.747 0.726 0.454 

EC  -0.062 -0.023 -0.048 

Phase Angle 

Bahia’s 

Model
 

β- 

Model 

Bahia’s 

Model
 

β -

Model 

Bahia’s 

Model
 

β -

Model 

Bahia’s 

Model
 

β -

Model 

mE
 max

 
47.32 47.0 39.3 41.89 75.4 75.0 

mE  
R  0.129 0.194 0.108 0.159 0.301 0.224 

ER    6.629 0.186 6.454 0.199 7.383 0.194 

m --- 88.20 --- 83.70 --- 68.15 --- 

C1 -1.343 -0.749 -0.168 

C2 -225.5 -225.3 -25.5 

Complex 

Poisson’s 

Ratio 

Parameters 12

C   
23

C   
12

T   

Magnitude 

(Inverse S 

model) 

g  0.846 1.0 1.0 

c (rad/sec) 35.00 0.479 3.01 

R
 1.173 0.509 0.949 

C  -0.044 -0.022 -0.061 

Phase Angle (

 -Model) 

max (degree) -12.0 -23.0 -23.23 

R (rad/sec) 0.130 0.301 0.359 

  0.174 0.101 0.071 

C1 -0.323 -200.7 -2.156 

C2 -26.58 -6000.1 -42.89 

 

Figure 2-18 plots the master curves of 12

C 
, 12

T 
 and 23

C 
 at the reference temperature 

of 20°C. Each master curve has an inverse S shape on the log scale of the frequency, which 

decreases as the frequency increases. The values of 12

C 
, 12

T 
 and 23

C 
 are relatively high 

since they are plotted in a relative low frequency range from 0.001 rad/sec to 0.1 rad/sec 
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corresponding to 0.00016 Hz to 0.016 Hz. The values in Figure 2-18 are considered to be 

reasonable because it has been reported in the literatures that the Poisson’s ratio of a transversely 

isotropic elastic material has the following relations (Pickering 1970; Christensen 2005): 

2 23 11 11
12

22 22

1

2

E E

E E




  
   
  

       (2-67) 

231 1            (2-68) 

 

 

Figure 2-18 Master curves for the magnitude of 12

C 
, 12

T 
 and 23

C 
at 20°C 
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18 also shows that 23

C 
 is less than 1 in a wide frequency range; this finding agrees with 

Equation 2-68, which indicates 231 1C    . Also, Table 2-2 shows that the values of 
g  for 

23

C 
, the maximum value of the horizontal Poisson’s ratio is 1.0, also agreeing with Equation 2-

68. Figure 2-19 plots the master curves of 
12
C

  ,
12
T

   and 
23
C

   at the reference temperature of 

20°C. Each master curve has a reversed bell-shaped curve on the log scale of the frequency, 

which agrees with what is reported in the literature (Di Benedetto et al. 2007a).  

 

 

Figure 2-19 Master curves for the phase angle of 12

C 
, 12

T 
 and 23

C 
at 20°C 
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curves of the total of 16 specimens are selected as the representative modulus magnitudes. 

Figure 2-20 plots the representative modulus magnitude of each specimen and the average 

representative modulus magnitude of the two replicates at each combination of the binder type, 

air void content and aging period. Figure 2-20 shows that the specimens with the AAM binder 

are stiffer than the specimens with the AAD binder. When the air void content increases from 

4% to 7%, 11

CE 
, 11

TE 
and 22

CE 

 
all decrease. The aged asphalt mixtures have higher moduli 

than the unaged specimens. For any combination of binder type, air void content and aging 

period, 11

CE 
 is always larger than 22

CE 
; the ratio of 11

CE 
 to 22

CE 
 ranges from 1.2 to 2, which 

proves that asphalt mixtures have significant anisotropy under a compressive load.  

 

 

Figure 2-20 Comparison of the magnitude of 11

CE 
, 11

TE 
and 22

CE 
at 0.1 Hz and 20°C 
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Figure 2-21 plots the peak value of the phase angle master curve of every specimen as 

well as the average peak value of the two replicates of each type of asphalt mixture. It can be 

seen from Figure 2-21 that the peak values of 
11
CE

   and 
22
CE

   are close to each other, both of 

which are in a range of 35 to 55 degrees, while 
11
TE

   always has a higher peak value ranging 

from 65 to 85 degrees. These findings can also be explained by the stronger viscoelasticity of 

asphalt mixture in tension but less viscoelasticity in compression as stated before.  

 

 

Figure 2-21 Comparison of the peak phase angles of the 11

CE 
, 11

TE 
and 22

CE 
 at 20°C 
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SUMMARIES AND CONCLUSIONS 

This chapter develops a test protocol and data analysis method based on anisotropic 

linear viscoelastic theory to characterize the anisotropic viscoelastic properties of undamaged 

asphalt mixtures. A total of 16 asphalt mixture specimens are tested in this study with two 

replicates at each of the two binder types (AAD and AAM), two air void contents (4% and 7%) 

and two aging periods (unaged and 6-month aging at 60°C). The test protocol includes three 

nondestructive tests: 1) the uniaxial compressive creep test, in which a uniaxial constant 

compressive load is applied to the cylindrical asphalt mixture specimen for 60 sec, and the 

vertical strains and the horizontal strains are recorded by the LVDTs; 2) the indirect tensile creep 

test, in which a constant compressive load is applied to the specimen for 60 sec, and the 

deformations are measured in the vertical, radial and axial directions; 3) the uniaxial tensile 

creep test, in which a uniaxial constant tensile load is applied to the specimen while the vertical 

and horizontal strains are measured. These tests are conducted on all specimens at three 

temperatures (10, 20 and 30°C).  

 The uniaxial compressive creep test determines 
11

CE 
 and 

12

C 
 independently, and the 

uniaxial tensile creep test determines 
11

TE 
 and 

12

T 
 independently. These properties are used 

together with the results of the indirect tensile creep test are used to calculate 
22

CE 
 and 

23

C 
. 

Master curves are constructed for the magnitude and phase angle of these six parameters. 

Calculation results indicate that all tested asphalt mixtures have significantly different tensile 

properties from compressive properties. The peak value of the phase angle of the master curve of 

the tensile complex modulus is within a range from 65 to 85 degrees while the peak values of the 

compressive moduli phase angle in both directions range from 35 to 55 degrees. In addition, the 
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undamaged asphalt mixtures exhibit distinctively anisotropic properties in compression. It is 

found that 11

CE 
 is approximately 1.2 ~ 2 times of 22

CE 
.  

Dynamic modulus tests are performed at 0.5 and 1 Hz to verify the results of the 

proposed test protocol. The predicted 11

CE 
 and 

11
CE

   from the master curves constructed by the 

proposed test protocol match well those measured by the dynamic test for the asphalt mixtures 

with different binder types, air void contents and aging periods.  

Compared to the traditional anisotropic test methods using multiple specimens cored in 

different directions, the newly proposed triple testing protocols are much quicker and more 

efficient. First, creep tests instead of dynamic tests are used to obtain the anisotropic complex 

modulus and Poisson’s ratio. Second, only one cylindrical specimen is needed for the three tests, 

which eliminates the sample to sample error and reduces the quantity of testing materials. Third, 

each test is finished in a short testing period (only 1 min). Finally, strains are controlled under 

the endurance limit of 100 microstrains so no damage is introduced to the specimen. Therefore, 

the same specimen may be reused in the future destructive fatigue, rutting and healing tests. 
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CHAPTER III  

MICROSTRUCTURE-BASED INHERENT ANISOTROPY OF ASPHALT 

MIXTURES
*
 

 

OVERVIEW 

Asphalt mixtures are demonstrated to be anisotropic materials in both laboratory and 

field tests. The anisotropy of asphalt mixtures consists of inherent anisotropy and stress-induced 

anisotropy. In previous work, the inherent anisotropy of asphalt mixtures was quantified using 

only the inclination angles of the coarse aggregate particles in the asphalt mixtures. However, the 

inclination of fine aggregates also has a contribution to the inherent anisotropy of the asphalt 

mixtures. Moreover, the contribution to the inherent anisotropy of each aggregate may not be the 

same as in the previous work but will depend on the size, orientation and sphericity of the 

aggregate particle.  

This chapter quantifies the internal microstructure of the aggregates in the asphalt 

mixtures using an aggregate-related geometric parameter, the vector magnitude. The original 

formulation of the vector magnitude, which addresses only the orientation of coarse aggregates, 

is modified to take into account not only the coarse aggregate orientation, but also the size, 

orientation and sphericity of coarse and fine aggregates. This formulation is applied to 

cylindrical Lab-Mixed-Lab-Compacted (LMLC) asphalt mixture specimens varying in asphalt 

binder type, air void content and aging period. The vertical modulus and the horizontal modulus 

are also measured using nondestructive tests.  

______________________________ 
*
Reprinted with permission from ASCE: "Microstructure-based Inherent Anisotropy of Asphalt Mixtures." 

by Yuqing Zhang, Rong Luo and Robert L. Lytton, 2011, Journal of Materials in Civil Engineering, 

23(10), 1473-1482. Copyright [2011], ASCE. 
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A relationship between the modified vector magnitude and the modulus ratio of the 

vertical modulus to the horizontal modulus is developed to quantify the influence of the inherent 

microstructure of the aggregates on the anisotropy of the mixtures. The modulus ratio is found to 

depend solely on the aggregate characteristics including the inclination angle, size and 

sphericity, and it is independent of the asphalt binder type, air void content and aging period. 

The inclination angle itself proves to be insufficient to quantify the inherent anisotropy of the 

asphalt mixtures.  

 

INTRODUCTION 

Anisotropy of a material is the property of being directionally dependent. The anisotropy 

of an asphalt mixture can be defined as a difference in physical properties, such as modulus and 

Poisson’s ratio, when the asphalt mixture is measured in different directions. According to the 

origins of anisotropy, granular materials, such as soils, aggregate base and asphalt mixtures, 

consist of two types of anisotropy: i) inherent anisotropy and ii) stress-induced anisotropy (Adu-

Osei 2000; Masad et al. 2002; Kim et al. 2005; Underwood et al. 2005). The inherent anisotropy 

of the asphalt mixture is attributed to the preferential orientation of aggregates. Since the 

aggregates tend to “lie flat” during compaction of asphalt mixtures as shown in Figure 2-1, the 

major axis (longest diameter) of the aggregate has a preferential direction in the horizontal plane. 

The stress-induced anisotropy is caused by the concentration of the contact normal of the 

material particles (e.g., soils, sands and aggregates) (Oda 1993). In this study, the stress-induced 

anisotropy of the asphalt mixture is believed as the result of crack growth under load 

applications. The increase of the crack surface area leads to the loss of the intact material area, 

which causes the modulus degradation. The projection area of the crack differs in different 

directions, which results in different lost area and true stresses in different directions and 
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produces the stress-induced anisotropy in the asphalt mixture. Because the two types of 

anisotropy have different mechanisms, the inherent anisotropy and the stress-induced anisotropy 

have to be investigated separately. The focus of this chapter is investigating the inherent 

anisotropy of asphalt mixtures and the stress-induced anisotropy is investigated in Chapter VII. 

In order to avoid the influence of the stress-induced anisotropy and to obtain the pure inherent 

anisotropy, all asphalt mixture specimens are tested within small strains in this study so that no 

crack grows in the asphalt mixture specimens in the test.  

The inherent anisotropy of the asphalt mixture has been demonstrated to be significant 

using laboratory and field tests. Levenberg and Uzan (2004) conducted small strain (below 150 

microstrains) hydrostatic compression tests on lab compacted cylindrical samples and found that 

the asphalt mixture was 1.5 times stiffer in the vertical direction than that in the horizontal 

direction. Ramos-Aparicio and Oh et al. (Ramos-Aparicio 2004; Oh et al. 2006) backcalculated 

106 groups data of ground penetrating radar (GPR) and falling weight deflectometer (FWD) 

field tests of asphalt pavement and found the anisotropic modulus ratio (the ratio of vertical 

modulus to the horizontal modulus) to be an average of 1.26. One point that needs to be noted is 

that asphalt mixtures exhibit significant inherent anisotropy only when they are in compression; 

when an asphalt mixture is under tensile loading, it behaves approximately isotropically 

(Underwood et al. 2005; Wagoner and Braham 2008). Therefore, this chapter studies the 

inherent anisotropy of asphalt mixtures under compressive loading only.  

The inherent anisotropy of the asphalt mixture needs to be taken into account during the 

performance analysis of asphalt pavements because both fatigue cracking and plastic 

deformation may be underestimated if using the assumption of asphalt mixtures being isotropic 

in compression. Wang et al. (2005) conducted triaxial tests on cubic field samples and showed 

significant differences in vertical and horizontal stiffness. They further analyzed the pavement 
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responses in a finite element pavement program using the anisotropic moduli and isotropic 

modulus, separately. They found larger tensile and shear stresses in the pavement when using the 

anisotropic moduli than those using the isotropic modulus. Oh et al. (2006) modeled the asphalt 

pavement using both anisotropic moduli and isotropic modulus for the asphalt layers. Their 

modeling results indicated that the pavement rutting predicted using the anisotropic moduli 

matched well with the measured pavement rutting which exceeded the rutting predicted using the 

isotropic modulus.  

To address the preferred orientation of geological structures, a parameter of vector 

magnitude was firstly introduced by Curray (1956) for quantification of  the two dimensional 

orientation data. Subsequent researchers (Oda and Nakayama 1989; Oda 1993) addressed the 

inherent anisotropy of soils in terms of the inclination of soil particles by using the concept of 

vector magnitude which was then used to formulate a microstructure-based fabric tensor to 

modify the effective stress in the soils during a continuum damage analysis. The similar fabric 

anisotropy concepts were employed to describe the granular sands and soils properties such as 

the inherent anisotropy, the directions of principal stresses and the anisotropic elastic 

deformation (Wong and Arthur 1985; Houque and Tatsuoka 1998; Yoshimine et al. 1998). 

Recently, by direct application of the fabric tensor, anisotropic behavior of granular soils is 

successfully simulated by a number of elasto-plastic constitutive models (Li and Dafalias 2002; 

Dafalias et al. 2004; Lashkari and Latifi 2007; Loukidis and Salgado 2009). 

The same formulations of the vector magnitude and the fabric tensor were applied to 

asphalt mixtures (Masad et al. 2002; Masad and Button 2004; Tashman et al. 2005a; Dessouky et 

al. 2006; Saadeh et al. 2007). The preferential orientation of the coarse aggregates in the asphalt 

mixtures was evaluated using X-ray Computed Tomography (X-ray CT) and was then quantified 

using the vector magnitude. Subsequently, the fabric tensor was formulated based on the vector 
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magnitude to modify the effective stress in the asphalt mixture during a continuum damage 

analysis. The fabric tensor formulated using the vector magnitude proved to be an effective 

indicator of the inherent anisotropy of asphalt mixtures. Taking into account the inclination of 

coarse aggregates in the continuum damage model produced more accurate predictions of 

pavement rutting. 

However, the inherent anisotropy of asphalt mixtures is not attributed only to the 

inclination of coarse aggregates. The inclination of fine aggregates also has a contribution to the 

inherent anisotropy. Moreover, the contribution to the inherent anisotropy of each aggregate may 

not be the same but will depend on the size, and sphericity as well as the orientation of the 

aggregate particle. All of these three parameters have to be addressed when quantifying the 

inherent anisotropy of an asphalt mixture. In other words, the microstructure-based fabric tensor 

should address not only the inclination of coarse aggregates but the size, orientation and 

sphericity of both coarse aggregates and fine aggregates whose size is between1.18 mm and 4.75 

mm. In order to characterize the fine aggregates, an imaging system with high resolution is 

required to scan the asphalt mixtures. The images produced by the X-ray CT may not have high 

enough quality in terms of dots per inch (DPI). Consequently, other imaging methods need to be 

investigated that can provide higher quality images. In addition, instead of indirectly addressing 

the inherent anisotropy by using the fabric tensor to modify the effective stress in the material, it 

is desirable to establish a direct relationship between the inherent anisotropy and the anisotropic 

moduli of the asphalt mixtures.  

This chapter investigates the inherent anisotropy of asphalt mixtures in terms of the size, 

orientation and sphericity of aggregate particles. These geometric characteristics of aggregates 

are formulated in a modified vector magnitude to construct the microstructure-based fabric 

tensor. The next section details the formulation of the modified vector magnitude and the fabric 
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tensor, which is followed by the laboratory measurement of the modified vector magnitude. The 

followed section presents a relationship between the modified vector magnitude and the ratio of 

the vertical modulus to the horizontal modulus, which is then verified based on the laboratory 

measurements. The final section summarizes the major findings of this chapter. 

 

FORMULATION OF FABRIC TENSOR AND VECTOR MAGNITUDE  

The original formulation of the component of the fabric tensor, 
ijF , which was 

developed to quantify the inherent anisotropy, is given in Equation 3-1 (Oda and Nakayama 

1989; Oda 1993): 

   , 1,2,3; 4ij i jF m m E m d i j 


         (3-1) 

where 
im  and jm (i, j = 1, 2, 3) = components of a unit vector m  projected on the orthogonal 

reference axes xi (i = 1, 2, 3); Ω = a solid angle corresponding to the entire surface of a unite 

sphere; and  E m = probability density function that describes the spatial distribution of the 

vector m . For transversely isotropic granular media, the  E m
 
is neglected and the fabric 

tensor [Fij] is formulated as: 

1

2

3

0 0 1 0 0
1

0 0 0 1 0
3

0 0 0 0 1

ij

F

F F

F

   
              
       

    (3-2) 

where Δ =  vector magnitude that is used to quantify the directional distribution of particles and 

is calculated by: 

2 2

1 1

1
sin 2 cos2

M M

k k

k kM
 

 

   
     

   
       (3-3) 
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where M = number of particles on an image; θk = inclination angle of the major axis of the k
th
 

particle measured from the horizontal axis in the image. Oda further interpreted the fabric tensor 

and emphasized that each particle could be defined by two unit vectors 
k

in and 
k

jn  which are 

identical in trend but in opposite directions. Then the fabric tensor in Equation 3-1 can be written 

as 
2

1

1

2

M
k k

ij i j

k

F n n
M 

   which is capable of yielding the same expression for vector magnitude as 

Equation 3-3. 

When applying the formulations of fabric tensor and vector magnitude to asphalt 

mixtures (Masad et al. 2002; Masad and Button 2004; Tashman et al. 2005a; Dessouky et al. 

2006; Saadeh et al. 2007), the vector magnitude,  , was used to quantify the directional 

distribution of coarse aggregates. The number ( 1, 2, ,k M ) and inclination angle (
k ) of 

the coarse aggregates were obtained by photographing the cut surface or scanning the asphalt 

mixture using the X-ray CT. The side view of the core sample in Figure 2-1 is re-plotted in  

Figure 3-1 which illustrates the definition of the aggregate inclination angle in the asphalt 

mixture.   

 

 

Figure 3-1 Vertical section of an asphalt mixture field core showing aggregate orientation 
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In Figure 3-1, x1 is the compaction direction and x2 is the horizontal direction that is 

normal to the compaction direction; 90 90o o

k   . Theoretically, the value of Δ ranges from 

0 to 1: Δ = 0 indicates that the aggregates are completely randomly distributed so that the asphalt 

mixture is isotropic; Δ = 1 implies that all aggregates are oriented in one direction. 

The formulations of the fabric tensor and vector magnitude shown in Equations 3-2 and 

3-3 are designated for fine-grained materials with approximately uniform particle size, such as 

soils. These formulations may not be directly applied to aggregates in an asphalt mixture, which 

do not have uniform particle size or uniform shape. Instead, the fabric tensor and the vector 

magnitude should be modified so it can address not only the inclination of coarse aggregates but 

also the size, orientation and sphericity of both coarse and fine aggregates.  

The modification of the fabric tensor and the vector magnitude are detailed as follows. 

First, a vector 
 k

a  is introduced to represent the k-th aggregate in the asphalt mixture system: 

     
1,2, , ;

k k k
a a n k M        (3-4) 

where 
 k

n = unit vector indicating the orientation of the aggregate, and it has two components in 

the two dimensional (2-D) orthogonal coordinate system: 

    
    
1 1

2 2

cos , sin

cos , cos

k k

k

k k

k

n x n

n x n





  



 

       (3-5) 

 k
a = normalized magnitude of the aggregate addressing the effects of the aggregate 

size and sphericity, where the aggregate size is characterized by the aggregate area (
 k

 ) on the 

scanned image of the asphalt mixture and the aggregate sphericity is described by the aspect 
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ratio, 
 k

  (
 k

 = ratio of the longest dimension to the shortest dimension). If set 

    0

1

M
k k

k

A  


 , 
 k

a  can be expressed as: 

 
       

    0

1

k k k k
k

M
k k

k

a
A

   

 


 


       (3-6) 

Second, the component of the fabric tensor is redefined in the 2-D coordinate system as: 

     , 1,2; 2i

k k

ij jF a n n d i j 


         (3-7) 

In fact, the 2-D fabric tensor ( ijF   ) can be interpreted as the quantitative estimate of the 

influence of an aggregate (with magnitude of 
 k

a  and orientation of 
 
i

k
n ) on a specific 

direction ( jn ). The aggregate magnitude (
 k

a ) is introduced to replace the probability density 

function  E m  in Equation 3-1 and to represent the effects of the aggregate size and sphericity 

on the inherent anisotropy. The fabric tensor has three independent components: 

     
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     (3-8) 

Then two principal values of the 2-D fabric tensor can be calculated because the fabric 

tensor is a symmetric second order tensor. Solving the characteristic equation 0ij ijF F   

yields: 
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 
21 211 22

11 22 12

2

1 1

2 4 2

F F F
F F F

F

   
    

 
    (3-9) 

where  = the modified vector magnitude that is formulated as: 

       
2 2

1 10

1
sin 2 cos2

M M
k k k k

k k

k kA
     

 

   
     

   
     (3-10) 

where 
    0

1

M
k k

k

A  


 , 
 k

 = area of k-th aggregate on the image of the asphalt mixture, 

and 
 k

 = aspect ratio of k-th aggregate. As can be seen from Equation 3-10, the modified 

vector magnitude addresses the effects of the aggregate size, orientation and sphericity of both 

coarse aggregates and fine aggregates on the inherent anisotropy. By comparing Equation 3-10 

to Equation 3-3, the modified vector magnitude can be interpreted as follows: the effect of the 

inclination angle on the anisotropy of an asphalt mixture is emphasized or de-emphasized based 

on the aggregate size (area) and sphericity (aspect ratio). For example, if the aggregate is larger 

or more flat and elongated, the inclination angle will contribute more anisotropy to the mixture. 

If the aggregate is smaller or has a more rounded shape, the net effect is to decrease the influence 

of the inclination angle on anisotropy. The next section will detail the test procedure for 

characterizing these aggregate characteristics to determine the modified vector magnitude.  

Using the same approach reported in the literature (Oda and Nakayama 1989), the 2-D 

fabric tensor is transferred to a 3-D fabric tensor ( ijF    ) as shown in Equation 3-11 that has a 

similar form to the original 3-D fabric tensor shown in Equation 3-2. This fabric tensor ( ijF    ) 

can be employed when using continuum mechanics principles to study asphalt mixtures or 

granular bases. 
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  (3-11) 

 

DETERMINATION OF MODIFIED VECTOR MAGNITUDE 

In order to determine the modified vector magnitude formulated in Equation 3-10, 

aggregate characteristics must be measured including the inclination angle (
k ), cutting surface 

area (
 k

 ), and aspect ratio (
 k

 ). In the previous research (Masad et al. 2002), only the 

inclination angle was measured on the cutting surface of Lab-Mixed-Lab-Compacted (LMLC) 

asphalt mixture specimens. Specifically, the LMLC specimens were cut into vertical sections or 

horizontal sections that were photographed using a digital camera or scanned using the X-ray CT 

to obtain the images of the sections. If using this technique to measure the aggregate 

characteristics, the specimens would be damaged in the cutting process and could not be reused 

in the future tests. Consequently, additional specimens have to be fabricated and tested for their 

physical properties such as modulus and Poisson’s ratio in order to establish the relationship 

between the microstructure and physical properties of the asphalt mixtures. This would also 

introduce sample to sample error. In addition, the images scanned by the X-ray CT may not have 

sufficient resolution to distinguish certain types of aggregates (such as limestone) from the 

asphalt mastic if the density of the aggregates is not significantly different from the asphalt 

mastic that consists of the asphalt binder, fine aggregates and mineral powder. As a result, a 

nondestructive test is desired to provide images of the asphalt mixture specimens with a 

sufficient resolution for the purpose of saving materials, eliminating sample to sample errors and 

obtaining more accurate aggregate characteristics.  
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Experimental Design and Image Analysis 

To address this research need, an efficient and economical test is developed in this study 

to nondestructively measure the aggregate characteristics (
k , 

 k
  and 

 k
 ). The minimum 

size of the aggregates that is characterized in this study is chosen to be 1.18 mm, which is the 

size of No. 16 sieve. This minimum size of aggregates is selected because the aggregates smaller 

than 1.18 mm have relatively negligible contribution to the anisotropy of the asphalt mixture and 

they can be considered to be imbedded in the asphalt binder to form the isotropic asphalt mastic 

according to the literature (You and Buttlar 2004). Therefore, a portable optical scanner with a 

maximum resolution of 600 dots per inch (DPI) is utilized to obtain the asphalt mixture images, 

which clearly capture the image of the aggregates as small as 1.18 mm. The procedure of the 

proposed test is detailed as follows.   

Firstly, the same 16 LMLC asphalt mixture specimens that were sued in the anisotropic 

viscoelastic characterization (Chapter II which performed nondestructive tests) were employed 

in the inherent anisotropic characterization (Chapter III). 

Secondly, each specimen is laid horizontally on an automatic rotator as shown in Figure 

3-2. A speed controller is connected to the motor to control the speed of the rotator. The portable 

scanner is installed on top of the specimen to scan the lateral surface of the cylindrical specimen 

while the specimen is rotating on the rotator.  

After scanning the entire lateral surface of the specimen, the scanner produces an image 

with 150 mm in height and 314 mm in width, as illustrated in Figure 3-3 (a). This image is then 

analyzed using the software Image-Pro Plus to identify the aggregates within the asphalt mixture, 

which are presented in Figure 3-3 (b).  
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Figure 3-2 Configuration of lateral surface scanning of an asphalt mixture sample 

 

Thirdly, after identifying the aggregate particles, the image is further processed using 

Image-Pro Plus (MediaCybernetics 2000) to determine the characteristics of each aggregate as 

follows: 

 Inclination angle (
k ): angle between the horizontal axis and the major axis of the 

ellipse equivalent to the aggregate particle,
  

90 90o o

k    (see Figure 3-4 (a)); 

 Cutting surface area (
 k

 ): area of the cutting surface of the aggregate (see Figure 

3-4 (b)); and 

 Aspect ratio (  k
a b  ): ratio of the major axis to the minor axis of the ellipse 

equivalent to the aggregate particle (see Figure 3-4 (c)). 
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Figure 3-3 Lateral surface of a cylinder asphalt mixture sample (a) Original scan (b) Plot 

of outline of aggregates 

 

 

Figure 3-4 Measurements of k-th aggregate characteristics (a) Inclination Angle (b) 

Cutting surface area   (c) Aspect ratio   

(a) 

(b) 

Perimeter of top surface 

= π×100mm = 314mm 

Height 

150mm  

 
 

 

 

(b) (a) (c) 
 

Height 

150mm  
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Results of Modified Vector Magnitude 

Based on the aforementioned experimental design, the lateral surface scanning test and 

image analysis were performed on each of the asphalt mixture specimens. The absolute values of 

the measured aggregates’ inclination angles ( k ) are classified into 9 intervals: 0 ,10   , 

10 ,20  , 20 ,30  , 30 ,40  , 40 ,50  , 50 ,60  , 60 ,70  , 70 ,80  , and 

80 ,90  . Then the percentage of the aggregates in each interval is calculated using the number 

of aggregates in the corresponding interval divided by the total number of aggregates measured 

on the lateral surface of the specimen. Statistical analysis is performed on the calculation results 

of all 16 specimens to determine the average, maximum and minimum percentage in each 

interval of the 16 specimens, which are illustrated in Figure 3-5. 

 

 

Figure 3-5 Distribution of aggregate inclination angles of asphalt mixtures 
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Figure 3-5 shows that an average of approximately 20% of the aggregates has an 

inclination angle between -10° and 10°, and two-thirds of the aggregates have an inclination 

angle between -45° and 45°. Since a small inclination angle indicates the aggregate lies flat in 

the horizontal direction, the measurements demonstrate that the aggregates have a preferential 

distribution in the horizontal direction that is perpendicular to the compaction direction.  

Finally, the modified vector magnitude (  ) is calculated for all 16 specimens based on 

the measured 
k , 

 k
  and 

 k
  according to Equation 3-10, and the values of   are tabulated 

in Table 3-1. The values of the original vector magnitude ( ) are also calculated that address 

only the inclination angles of the aggregates in the scanned image.  

 

Table 3-1 Vector Magnitudes of Measured Asphalt Mixture Specimens 

Aging Period Binder 
Air Void 

Content 

Replicate 

Specimen 
Δ' Δ 

0 Month 

Aging 

AAD 

4% 
No.1 0.236 0.029 

No.2 0.310 0.053 

7% 
No.1 0.258 0.039 

No.2 0.236 0.038 

AAM 

4% 
No.1 0.315 0.019 

No.2 0.301 0.051 

7% 
No.1 0.267 0.008 

No.2 0.254 0.018 

6 Month 

Aging 

AAD 

4% 
No.1 0.450 0.171 

No.2 0.386 0.082 

7% 
No.1 0.376 0.154 

No.2 0.381 0.116 

AAM 

4% 
No.1 0.364 0.162 

No.2 0.410 0.141 

7% 
No.1 0.435 0.147 

No.2 0.425 0.142 

 

Comparing   to   in Table 3-1, the value of   is significantly larger than the value 

of  ; in certain cases, they are not even in the same order. As stated in previous sections, a 

smaller value of the vector magnitude indicates that the aggregates are more randomly 



 

76 

 

distributed in the mixture so the mixture is less anisotropic while a larger value of the vector 

magnitude implies that the aggregates are more horizontally oriented. Therefore, the fact of   

being significantly smaller than   demonstrates that the original formulation of the vector 

magnitude ( ) substantially underestimates the inherent anisotropy of the asphalt mixtures. In 

other words, the inclination angle itself is not sufficient to quantify the inherent anisotropy of 

asphalt mixtures. The size and sphericity of the aggregates must be addressed to more accurately 

quantify the mixture’s inherent anisotropy.  

 

RELATIONSHIP BETWEEN VECTOR MAGNITUDE AND MODULUS RATIO 

It is desired to develop the relationship between the modified vector magnitude (  ) and 

the modulus ratio (
* *

11 22E E ) in order to quantify the inherent anisotropy of the asphalt 

mixtures. This subsection presents the theoretical derivation and the experimental verification. 

 

Derivation of Theoretical Relationship 

The development of the relationship between   and 
* *

11 22E E  starts from the general 

polynomial relation between the elastic modulus tensor and the fabric tensor of an elastic 

material (Cowin 1985; Tobita and Yanagisawa 1992). In the case of granular materials such as 

soils, aggregate base and asphalt mixtures, the high order terms in the polynomial function can 

be neglected and the elastic relation becomes (Oda and Nakayama 1989; Oda 1993; Tashman et 

al. 2004): 

6 72 4 , , , 1,2,3ijkl ik jl ik ljC b b F i j k l          (3-12) 
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where 
ijklC  = elastic modulus tensor; ij  = Kronecker delta;  ikF   is the 3-D fabric tensor given 

in Equation 3-11; 
6b  and 

7b are material parameters which can be determined using Equation 3-

13 (Oda and Nakayama 1989).  

6 2

7 2

1
2

4 2

3
2

4

b D

b D






 


 


        (3-13) 

where µ = experimentally determined parameter; and D2 = second invariant of the deviatoric 

fabric tensor. Since the deviatoric fabric tensor can be calculated using Equation 3-14: 

 

2 0 0
1 2

0 1 0
3 3 3

0 0 1

ij ij kk ijF F F 

 
     

  
  

     (3-14) 

The second invariant of the deviatoric fabric tensor (
2D ) is determined using Equation 3-15: 

 

2

2 2

1 4

2 3 3
ij jiD F F


  

 
       (3-15) 

Let 
ij  be the stress tensor and el

kl  be the elastic strain tensor, the constitutive relation 

for an elastic material is: 

, , , 1,2,3el

ij ijkl klC i j k l         (3-16) 

The truncated format of the constitutive relation in Equation 3-16 is shown as: 

, 1,2,3,4,5,6el

m mn nC m n         (3-17) 

For a cross-anisotropically elastic material, the truncated format of the constitutive relations with 

the normal stresses and strains only is: 



 

78 

 

1 11 12 12 1

2 12 22 23 2

3 12 23 22 3

C C C

C C C

C C C

 

 

 

     
    

    
         

      (3-18) 

in which 
11C and 

22C  are functions of the modulus and Poisson’s ratio, and shown as. 

 11 22

11

22 12 21

1

1 2

E
C



  




 
        (3-19) 

 
  

2

22 11 12 22

22

11 22 22 12 211 1 2

E E E
C

E



   




  
      (3-20) 

where 
11E  = elastic modulus in the 

1x  direction; 
22E  = elastic modulus in the 

2x  direction; and 

ij  = Poisson’s ratio in the ij  plane. In the mean time, 
ijkl mnC C  is a function of 

ikF   

according to Equation 3-12. Therefore, 
11C  and 

22C  are also functions of 
11F   and 

22F  , 

respectively, as shown in Equations 3-21 and 3-22.  

11 1111 6 7 112 4C C b b F          (3-21) 

22 2222 6 7 222 4C C b b F          (3-22) 

Substituting Equations 3-11, 3-13, 3-19 and 3-20 into Equations 3-21 and 3-22 yields: 

 
 

 

 

  

2
2 22 22 12 21 2211

2

22 12 21 22 22 22 12 21

1 1
3 6

1 2 1 1 2

E EE
D

E

  


      

   
           

(3-23) 

where 12 21

11 22

v v

E E
  is used. Equation 3-23 indicates an approximate linear relation between 2D  

and 
11 22E E , which may have the following form: 

 
11

2

22

2 3
1

3 3

E
D k b

E

 
        

      (3-24) 

where k  and b  are the slope and intercept of the fitting line, respectively.  
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When applying this relation to asphalt mixtures, the ratio of the representative moduli at 

a specific frequency (
* *

11 22E E ) will be used to replace 
11 22E E  in Equation 3-24. The 

boundary conditions are as follows: 

 If 0  , then 2 0D  , the aggregates are randomly distributed and the material 

is isotropic, which indicates 
* *

11 22E E  = 1; 

 If 1  , then 
2

1

2 3
D  , the aggregates orients along one direction, the 

material is fully cross-anisotropic, and the modulus ratio (
* *

11 22E E ) has the 

maximum value (let  * *

11 22max E E q ). 

Employing these two boundary conditions in Equation 3-24 to solve for k  and b  yields: 

 
3

6 1

0

k
q

b









        (3-25) 

Substituting Equation 3-25 into Equation 3-24, the relationship between   and 

* *

11 22E E  is developed as: 

 

*

11

*

22

*

11

*

22

3 1

4 1 1

E

E

E
q

E

 
 
 
  

 
   
 
 

       (3-26) 

 

 

 



 

80 

 

Experimental Verification of the Relationship 

Based on the measurements of the vertical and horizontal complex modulus in Chapter 

II, the modulus ratio (
* *

11 22E E ) is calculated for each replicate of the mixture with the same 

asphalt binder, air void content and aging period. The frequency of the vertical modulus and 

horizontal modulus ranges from 0.05 Hz to 50 Hz in order to determine the modulus ratios at a 

variety of frequencies. Then the mean and standard deviation of the modulus ratio over the 

frequency range is calculated and plotted against the modified vector magnitude (  ), as 

illustrated in Figure 3-6, in which each diamond represents the average 
* *

11 22E E  of a 

specimen.  

 

 

Figure 3-6 Relationship of vector magnitude with anisotropic modulus ratio 
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As can be seen from Figure 3-6, the average 
* *

11 22E E  ranges from 1.2 to 2.0 with a 

corresponding   ranging from 0.2 to 0.5. A higher value of the modified vector magnitude is 

associated with a larger modulus ratio, which indicates a stronger anisotropy of the specimen. 

The modulus ratio is found to depend solely on the modified vector magnitude that is a measure 

of the size, orientation and sphericity of the aggregate particles. These aggregate characteristics 

are the inherent properties of the asphalt mixture; they determine the level of the inherent 

anisotropy of the mixture. In contrast, the modulus ratio is independent of the type of the asphalt 

binder, air void content and mixture aging period.  

The data of the modified vector magnitudes and the modulus ratios are fitted into 

Equation 3-26 using regression analysis and shown in Equation 3-27. The maximum modulus 

ratio ( q ) is determined to be 2.808 with an R-squared value of 0.9439. The reasonable value of 

the maximum modulus ratio and the high R-squared value demonstrate the goodness of this 

model. Equation 3-27 effectively establishes a bridge between the aggregate characteristics and 

the physical properties of the asphalt mixtures. This relationship promotes the understanding of 

the influence of the internal structure on the anisotropy of the asphalt mixture; it also brings 

convenience to the laboratory and field testing of asphalt mixtures. For example, when 

measuring the anisotropic properties of field pavement sections, the modified vector magnitude, 

vertical modulus and horizontal modulus can be measured on a number of field cores. Then the 

relationship between the modified vector magnitude and the modulus ratio can be developed 

using Equation 3-26. This relationship can be used together with the nondestructive testing data 

on the field pavement sections to predict the horizontal modulus of the field pavement in the 

entire project length.  
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 
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 
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 
 

   (3-27) 

Regression analysis is also performed on the data of the original vector magnitude ( ) 

that addresses only the inclination angle of the aggregates in the scanned image. When fitting the 

data of   into Equation 3-26, the model is shown in Equation 3-28 which indicates that the 

maximum modulus ratio is 10.9 that is impossible for an asphalt mixture and the R-squared 

value is only 0.4559. This fact demonstrates that the inclination angle of the aggregate alone is 

insufficient to appropriately quantify the inherent anisotropy of the asphalt mixtures and the 

original vector magnitude is not applicable for granular media having a non-uniform distribution 

of particle size and shape. 

 

 

*

11

*

22
2

*

11

*

22

3 1

0.4559

4 10.9 1 1

E

E
R

E

E

 
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 
   

 
   
 
 

    (3-28) 

 

SUMMARIES AND CONCLUSIONS 

Asphalt mixtures are demonstrated to be cross anisotropic materials in both laboratory 

and field tests. The anisotropy of the asphalt mixture is classified into inherent anisotropy and 

stress-induced anisotropy. The inherent anisotropy is investigated in this study based on the 

internal microstructure of the aggregates in the asphalt mixture and is represented by an 

aggregate-related geometric parameter, a modified vector magnitude. The original formulation of 

the vector magnitude, which addresses only the orientation of coarse aggregates, is modified to 



 

83 

 

take into account not only the coarse aggregate orientation, but also the size, orientation and 

sphericity of coarse and fine aggregates. This formulation is applied to 16 cylindrical LMLC 

asphalt mixture specimens varying in asphalt binder type, air void content and aging period. The 

lateral surface of each cylindrical specimen is scanned to measure the inclination angle, surface 

area and aspect ratio of the aggregates, which are then employed to calculate the modified vector 

magnitude. The calculation results indicate that the aggregates in an asphalt mixture indeed have 

a preferential orientation along the horizontal direction and two-thirds of the aggregates have an 

inclination angle between -45° and 45°. The modified vector magnitude of every specimen is 

found to be significantly larger than the original vector magnitude that addresses only the 

inclination angle. This fact indicates that the original vector magnitude substantially 

underestimates inherent anisotropy of the asphalt mixtures. The inclination angle itself is not 

sufficient to quantify the inherent anisotropy of the asphalt mixtures.  

Three nondestructive tests, including the compressive creep test, tensile creep test and 

indirect tensile creep test, are performed on the same LMLC asphalt mixture specimens at three 

temperatures to measure the vertical modulus and the horizontal modulus. Master curves are 

constructed for the measured vertical and horizontal moduli. The vertical modulus is proved to 

be higher than the horizontal modulus at any specific frequency for all mixture types. The ratio 

of the vertical modulus to the horizontal modulus is then calculated and plotted against the 

corresponding modified vector magnitude. Among the various types of asphalt mixtures 

measured in this study, the modulus ratio ranges from 1.2 to 2.0 corresponding to a modified 

vector magnitude between 0.2 and 0.5.  

A relationship between the modified vector magnitude and the modulus ratio is 

developed to quantify the influence of the inherent microstructure of the aggregates on the 

anisotropy of the mixtures. The R-squared value of this model has a high value of 0.9439. The 
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maximum modulus ratio is determined to be approximately 2.808. The modulus ratio solely 

depends on the aggregate characteristics including the inclination angle, size and sphericity, and 

it is independent of the asphalt binder type, air void content and aging period. This relationship 

successfully serves as a bridge between the physical properties and anisotropy of the asphalt 

mixtures.  
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CHAPTER IV  

STRAIN DECOMPOSITION FOR PERMANENT DEFORMATION AND 

FRACTURE CHARACTERIZATIONS
*
 

 

OVERVIEW 

Permanent deformation and fracture may develop simultaneously when an asphalt 

mixture is subjected to a compressive load. The objective of this chapter is to separate the 

viscoplasticity and viscofracture from the viscoelasticity so that the permanent deformation and 

fracture of the asphalt mixtures can be individually and accurately characterized without the 

influence of the viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two 

binder types, two air void contents and two aging periods are firstly obtained by conducting 

nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are 

analyzed by using linear viscoelastic theory, in which creep compliance and relaxation modulus 

are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged 

asphalt mixtures are found to remain constant with load cycle.  

The undamaged asphalt mixtures are then used to perform destructive dynamic modulus 

tests, in which the dynamic modulus and phase angle of the damaged asphalt mixtures are found 

to vary with load cycle, which indicates the plastic evolution and the crack propagation. The 

growth of cracks is signaled principally by the increase of the phase angle, which occurs only in 

the tertiary stage. The measured total strain in the destructive dynamic modulus test is 

successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain 

______________________________ 
*
Reprinted with permission from ASCE: "Characterizing Permanent Deformation and Fracture of Asphalt 

Mixtures using Compressive Dynamic Modulus Tests." by Yuqing Zhang, Rong Luo and Robert L. 

Lytton, 2012, Journal of Materials in Civil Engineering, 24(7), 898-906. Copyright [2012], ASCE. 
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and viscofracture strain by employing the pseudo strain concept and the extended elastic-

viscoelastic correspondence principle. The separated viscoplastic strain is modeled with the 

Tseng-Lytton model to characterize the permanent deformation. The separated viscofracture 

strain is modeled by a fracture strain model to characterize the fracture of the asphalt mixtures, 

in which the flow number is determined and a crack speed index is proposed. Comparisons 

between the 16 samples show that the aged asphalt mixtures with lower air void content have a 

better performance resisting both permanent deformation and fracture.  

 

INTRODUCTION 

Permanent deformation (rutting) and fracture (cracking) are two major distresses of 

asphalt pavements. They may occur simultaneously under a compressive load and can 

significantly reduce the service life of the field asphalt pavements as described in Chapter I. The 

permanent deformation of asphalt mixtures primarily results from the irrecoverable viscoplastic 

deformation which has been investigated carefully using continuum mechanics. The cracks 

under compressive loads are randomly and widely distributed in the asphalt mixtures and they 

are normally characterized using an overall parameter such as damage density resulting from 

damage mechanics. The damage density is then embedded into the continuum mechanics to 

consider the evolution of viscofracture (time dependent fracture) and effect of the cracks on the 

viscoplastic deformation. 

The continuum models for asphalt mixtures have an advantage in their computational 

simplicity, that is, the material responses such as permanent deformation can be easily estimated 

once the model parameters are provided. To accurately determine the model parameters for 

different material performances, the properties of viscoelasticity, viscoplasticity and 

viscofracture for the asphalt mixtures need be individually investigated and characterized. 
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However, the measured data in the tests are normally the total deformation or strain that 

represents the overall material properties of the asphalt mixtures. Thus, it is urgently necessary to 

conduct the strain decomposition on the testing results for the purpose of the accurate 

characterizations of the viscoplasticity and viscofracture.  

The strain decomposition is usually accomplished by running the creep and recovery test 

in which repeated rest periods are provided during the creep test (Sides et al. 1985; Drescher et 

al. 1993; Uzan 1996; Masad et al. 2009; Darabi et al. 2011). Figure 4-1 shows a typical strain-

versus-time curve in the creep and recovery test which has three distinctive strain stages:  

1) Primary stage with a decreasing strain rate;   

2) Secondary stage with a constant strain rate; and  

3) Tertiary stage with an increasing strain rate.  

The total strain is usually decomposed into four components:  

1) Elastic strain that is recoverable and time-independent;  

2) Viscoelastic strain that is recoverable and time-dependent;  

3) Plastic strain that is irrecoverable and time-independent; and  

4) Viscoplastic strain that is irrecoverable and time-dependent.  

In the recovery period, the instantaneously recovered strain is the elastic strain and the 

retarded recovered strain is the viscoelastic strain. This currently used strain decomposition 

method assumes that the recovery time is sufficiently long so that the viscoelastic strain is fully 

recovered and that the remaining strain is the sum of the viscoplastic strain and the plastic strain. 

However, this strain decomposition method is associated with three problems:  

1) It is impossible to directly separate the strain components in the creep process of the 

test, and the recovery loading time that is required will increase the testing time;  
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2) The accumulated strain at the end of each recovery period may include not only the 

plastic strain and the viscoplastic strain but also the viscoelastic strain that has not 

recovered yet due to the limited recovery time in the test; and  

3) This method does not account for the viscofracture strain at all. In fact, when the 

total strain reaches the tertiary stage, the viscofracture strain develops due to the 

growth of cracks. Thus, the total strain should be decomposed into five components, 

including the viscofracture strain and the four aforementioned strain components.  

 

 
Figure 4-1 Schematic plot of the strain decomposition in a creep and recovery test 

 

To address the above problems with the current strain decomposition method, this 

chapter aims at:  

 Completely separate the viscoplastic strain and viscofracture strain from the other 

strain components when the asphalt mixtures are subjected to a compressive load; 
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 Accurately characterize the permanent deformation and fracture of the asphalt 

mixtures, respectively, without influence of viscoelasticity. 

In order to achieve these two objectives, this chapter proposes a new strain 

decomposition approach that decomposes the total strain of the material into five components, 

shown as follows: 

T e ve p vp vf                 (4-1) 

where
T = total strain; 

e = elastic (instantaneous) strain; 
ve = viscoelastic strain; 

p = plastic 

strain; 
vp = viscoplastic strain; and 

vf = viscofracture strain. Since the strain caused by cracks 

has an increasing strain rate while the strain resulted from viscoplasticity has a decreasing strain 

rate, the increasing strain rate in the tertiary stage indicates that 
vf  develops only in the tertiary 

stage. Once the total strain is decomposed, the separated 
vp  and 

vf  are then used to 

characterize the permanent deformation and fracture of the asphalt mixtures, respectively. 

This chapter is organized as follows. The next section discusses the proposed laboratory 

experiments for the purpose of strain decomposition, which is followed by a linear viscoelastic 

characterization of the undamaged asphalt mixtures. Then the strain decomposition is presented 

by employing the extended elastic-viscoelastic correspondence principle and the pseudo strain 

concept. The following section is the permanent deformation characterization using the separated 

viscoplastic strain curve and the fracture characterization based on the separated viscofracture 

strain data from destructive compressive dynamic modulus tests. The last section summarizes the 

major findings in this chapter.  
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LABORATORY EXPERIMENTS 

Sixteen (16) lab-mixed-lab-compacted (LMLC) asphalt mixture specimens in addition to 

the samples used for viscoelasticity and inherent anisotropic characterization in Chapters II and 

III were fabricated with the following variables: 

 Two types of asphalt binder: labeled by AAM and AAD in the Strategic Highway 

Research Program (SHRP) Materials Reference Library (MRL) (Jones 1993); 

 Two air void contents: 4% and 7% (variation within ±0.5%); and 

 Two aging periods: unaged and continuous 6-month 60 °C aged asphalt mixtures. 

Two replicate specimens were made for each combination of the asphalt binder, air void 

content and aging period. The same materials and compaction processes were used in the sample 

fabrications as that in the viscoelastic characterization of Chapter II.  

The testing protocol including the sequence of loading and testing methods was designed 

according to the mechanistic theories that were employed in the characterization of the 

viscoplasticity and viscofracture of the asphalt mixtures. In this chapter, the viscoplasticity and 

viscofracture were differentiated from the viscoelasticity by using a strain decomposition 

methodology, which yielded two principles for the selection of the loading sequence: 1) to 

quantify how far the damages including the viscoplasticity and viscofracture depart from the 

undamaged condition, the viscoelasticity that is the property of the undamaged material needs to 

be characterized firstly by using nondestructive tests; and 2) to introduce significant damage to 

the asphalt mixtures, the stress level needs to be increased in the destructive tests which will be 

continued until the material failed in the tertiary deformation stage.  

Therefore, based on the aforementioned principles, an experimental protocol was 

developed that includes three tests: 1) a nondestructive compressive creep test to obtain the creep 

compliance and relaxation modulus of the undamaged asphalt mixtures, which have been 
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finished in Chapter II; 2) a nondestructive compressive dynamic modulus test to obtain the 

dynamic modulus and phase angle of the undamaged asphalt mixtures; and 3) a destructive 

compressive dynamic modulus test to obtain the dynamic modulus and phase angle of the 

damaged asphalt mixtures. The total strain measured in the destructive dynamic modulus test 

was used to conduct the strain decomposition.  The three tests of the testing protocol had the 

same testing configurations as shown in Figure 4-2.  

 

 
Figure 4-2 Configurations of creep test and dynamic modulus tests 

 

In Figure 4-2, three vertical linear variable differential transformers (LVDTs) with a 

gauge length of 90 mm were mounted at 120° from each other on the lateral surface of each 

asphalt mixture specimen. The specimens were stored in the environmental chamber of the 

Universal Testing Machine (UTM) with a temperature of 40°C for at least 3 hours to reach the 
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equilibrium temperature. To reduce the lateral constraint due to the friction between specimen 

and the end caps, the following end treatments were employed: 1) two soft rubber membranes 

were put between the end caps and the specimens; and 2) a wax-based petroleum jelly was used 

between the rubber membranes and the end caps. With the help of the end treatments, the asphalt 

mixture specimens were found to be able to deform freely along the radial direction at the ends 

of the cylinder samples.  

The loading sequence used in the experimental protocol was shown in Figure 4-3. The 

nondestructive creep test was firstly conducted using the UTM in which a constant compressive 

stress of 25 kPa was applied to the specimens for 120 sec. The total strain at the end of the creep 

test was controlled to less than 150 με which was believed to be the linear viscoelastic limit for 

the asphalt mixture in compression (Levenberg and Uzan 2004). Then the compressive load was 

removed and the specimen was at rest for 1 hour. After the 1-hour rest period, the nondestructive 

dynamic modulus test was performed on the same specimen, in which a compressive sinusoidal 

stress with a maximum stress value of 70 kPa was applied to the sample for 600 cycles at a 

frequency of 1 Hz. The measured dynamic modulus and phase angle remain constant, which 

indicates that no damage is introduced to the specimen. After another 1-hour rest period, the 

destructive dynamic modulus test was then performed on the same undamaged specimen, in 

which a sinusoidal compressive load with a minimum stress of 20 kPa and a maximum stress of 

600 kPa was applied to the specimen at a frequency of 1 Hz. The total deformation was recorded 

with respect to time using the three LVDTs until the specimen fails in the tertiary deformation 

stage. It is noteworthy that the 1-hour rest period was used for the purposes of that: 1) the 

viscoelastic strains produced in the nondestructive tests were fully recovered and would not 

affect the results of the following tests; and 2) the 1-hour rest period was needed to compensate 
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the temperature loss due to the opening the door of the UTM chamber during the setup and 

operation of the tests. 

 

 
Figure 4-3 Schematic plot of loading sequences used in the tests (not scaled) 

 

 

LINEAR VISCOELASTIC CHARACTERIZATION 

The linear viscoelastic characterization of an undamaged asphalt mixture is conducted to 

provide a basis for quantifying how much the damage including viscoplasticity and fracture 

depart from the undamaged state. The asphalt mixture can be characterized as a linear 

viscoelastic material when the deformation is small, e.g. strains are controlled below 100 με in 

tension and 150 με in compression (Levenberg and Uzan 2004). 
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Creep Compliance and Relaxation Modulus 

A Prony series model including multiple Kelvin elements and one spring in series is 

used in this study to represent the viscoelastic properties of the asphalt mixture and the creep 

compliance and the relaxation modulus for the Prony series model are shown as follows: 

  0

1

1 exp
M

i

i i

t
D t D D



  
     

  
       (4-2) 

 
1

exp
M

j

j j

t
E t E E

k




 
    

 
        (4-3) 

where
 

 D t = creep compliance; 
0D = instantaneous compliance; 

iD = components of creep 

compliance; 
i = retardation time;  E t = relaxation modulus; E

= long term equilibrium 

modulus ;
jE = components of relaxation modulus; 

jk = relaxation time; and M = total number 

of Kelvin elements in the Prony series model. The creep compliance and relaxation modulus are 

related by the following equation (Findley et al. 1989): 

    2

1
E s D s

s
         (4-4) 

where  E s and  D s  are respectively the Laplace transform of  E t
 
and  D t , and s = 

variable in the Laplace domain. By taking the inverse Laplace transform of Equation 4-4, it is 

possible to solve for the relaxation modulus or the creep compliance if the other material 

property is known.  

In the nondestructive compressive creep test, the constant stress is 25 kPa   and the 

strain is calculated as the average value of the deformations measured from the three LVDTs 

divided by the gauge length of 90 mm. Then the creep compliance is directly calculated using

   D t t  , which is perfectly fitted by Equation 4-2. The relaxation modulus is estimated 
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using Equation 4-4 and then fitted by Equation 4-3. Take the sample labeled as AAD14 (AAD 

binder, 7% air void content, Unaged) for example,  D t and  E t  at 40°C are shown in Figure 

4-4 which indicates a good fitting between the Prony model and the measured data. 

Young’s modulus (
YE ) represents the instantaneous (elastic) response of a material and 

YE  can be calculated using    0 1 0YE E D   based on Equations 4-2, 4-3 and 4-4. The 

results of  measured Young’s moduli will be illustrated in the next section together with the 

dynamic moduli and phase angles for the undamaged 16 asphalt mixture specimens that vary in 

binder type, air void content and aging period. 

 

 
Figure 4-4 Creep compliance and relaxation modulus of an undamaged asphalt mixture 

(AAD binder, 7% air void, unaged) at 40°C 
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Dynamic Modulus and Phase Angle 

In practice, the load applied to the asphalt pavement is not a static load but a dynamic 

load such as a moving traffic load that has a loading period of 0.1 sec corresponding to a vehicle 

speed of 64 km/h (Huang 2004). The measured strain data of the creep test in such a short 

loading period are not reliable due to the transient effect which may need several seconds to 

vanish. Therefore, the relaxation modulus and the creep compliance can only characterize the 

long-term viscoelastic properties of the material and a dynamic modulus test is needed to obtain 

the dynamic modulus and phase angle which can characterize the short-period properties of the 

viscoelastic material. 

The dynamic modulus test employs an oscillatory stress loading that is: 

   0 cost t           (4-5) 

where 
0  

= stress amplitude which is 70 kPa in this study; and   = angular frequency in 

rad/sec. When the initial transient effect vanish and the material system arrives at a steady state, 

the strain output due to the oscillatory stress in Equation 4-5 will be an oscillation function as 

shown in Equation 4-6 which has the same frequency as the stress but lags behind the stress by a 

phase angle of (Wineman and Rajagopal 2001).  

   0 cost t             (4-6)  

where 
0  = strain amplitude which is constant if the specimen is not damaged. The dynamic 

modulus is calculated as: 

* 0

0

E



          (4-7)  

By determining the time lag between the peak stress and peak strain within one load 

cycle, the phase angle can be calculated as: 
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180 t

T





          (4-8)  

where t  = time lag between peak stress and peak strain within one load cycle; and T = loading 

period that is 1 sec in this study. Figure 4-5 shows the dynamic moduli and phase angles at every 

10 load cycles for the sample No. AAD14, in which the dynamic modulus and phase angle 

remain constant as the load cycle increase. The independence of the dynamic modulus and phase 

angle with time indicates that the sample is tested in a nondestructive condition. 

 

 
Figure 4-5 Dynamic modulus and phase angle of an undamaged asphalt mixture (AAD 

binder, 7% air void, unaged) at 40°C 

 

The 16 samples are tested using a nondestructive compressive dynamic modulus test and 

the values of the dynamic modulus and phase angle are calculated for each sample. Figure 4-6 
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dynamic modulus test together with Young’s moduli measured in the nondestructive 

compressive creep test for the 16 samples.  

 

 
Figure 4-6 Young’s modulus, dynamic modulus and phase angle for different asphalt 

mixtures at 40°C 

 

It is found that the Young’s modulus and the dynamic modulus both increase as the 

asphalt mixtures become stiffer due to aging or less air void content. The phase angle decreases 

as the asphalt mixture is aged which is reasonable because the asphalt mixture behaves more 

elastically when it is aged. No dependence is found of the phase angle on the air void content. 

However, aging reduces the phase angle more in the samples with the higher air void content 

which have more air available to oxidize the binder in the mix. All of the findings comply with 

the general understanding of the viscoelastic properties of asphalt mixtures. The measured 
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Young’s modulus, dynamic modulus and phase angle of the undamaged asphalt mixtures will be 

used in the following calculation of the pseudo strain and the strain decomposition in the 

destructive dynamic modulus tests. 

 

STRAIN DECOMPOSITION IN DESTRUCTIVE DYNAMIC MODULUS TEST 

This section details the measurements of the dynamic moduli and phase angles of the 

damaged asphalt mixtures in the destructive dynamic modulus test and the strain decompositions 

by using the pseudo strain concept and the extended elastic-viscoelastic correspondence 

principle. 

 

Destructive Dynamic Modulus Test 

The function of the applied load in a destructive dynamic modulus test is: 

   cosc dt t            (4-9) 

where 
c = creep stress;  and  cosd t 

 
= dynamic cyclic stress. Based on the testing 

protocol, =310c kPa  and 290d kPa  . The strain outputs are: 

     

 

     

0

1

2

*

1 exp

cos cos

T

c d

L

c i

i i

d N N N

N

t t t

t
t

t t t
E

  

  



     






 
   

      
  


    




    

(4-10) 

where 
T = measured total strain; 

c  = creep strain due to the creep stress; 
0 , ,i i    = fitting 

parameters for the creep strain; L = total number of 
i  and 

i ; 
d = dynamic cyclic strain due to 



 

100 

 

the dynamic cyclic stress; 
N  = amplitude of the cyclic strain at the N-th load cycle; 

*

NE  = 

dynamic modulus of the damaged asphalt mixture at the N-th load cycle that is calculated using 

*

N d NE   ; and  
N  = phase angle of the damaged asphalt mixture at the N-th load cycle. 

At least one 0i   and one 0i   are required to fit the whole processes of the creep strain in 

the primary, secondary and tertiary stages. Figure 4-7 shows an example of the measured total 

strain, dynamic modulus and phase angle of the damaged asphalt mixture sample AAD14. 

Compared to the time-independent dynamic modulus and phase angle of the undamaged asphalt 

mixture shown in Figure 4-5, 
*

NE  and 
N  of the damaged asphalt mixture are time (load 

cycle)-dependent at a constant loading frequency. 

 

 
Figure 4-7 Total strain, dynamic modulus and phase angle of a damaged asphalt mixture 

(AAD binder, 7% air void, unaged) at 40°C 
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As indicated in Figure 4-7. In the primary stage, 
*

NE  increases and 
N  

decreases, 

which may have two causes: 1) the initial transient responses due to the dynamic loads need a 

period of time to disappear; and 2) the initial air voids in the asphalt mixture need a period of 

time to be compressed and closed. In the secondary stage, 
*

NE  decreases slowly while 
N  

remains constant, which are the results of the plastic flow of the material under the destructive 

compressive stress. In the tertiary stage, 
*

NE  decreases rapidly and 
N  

increases, which is 

because of the opening and propagation of cracks. The other 15 specimens are also found to have 

similar evolutions of 
*

NE  and 
N . One noteworthy point is that the constant phase angle in the 

secondary stage and the increasing phase angle in the tertiary stage indicate that the cracks under 

a compressive load will not develop until the tertiary stage and the growth of cracks is signaled 

principally by the increase of the phase angle. To consider the changes of the dynamic modulus 

and phase angle,  
*

NE  and 
N  are modeled using Equations 4-11 and 4-12, respectively. 

   1 1E EB N D N

N E E EE A e C e E
             (4-11) 

   1 1
B N D N

N A e C e E 

  
  

          (4-12) 

where 
EA , 

EB ,
EC ,

ED  and 
EE

 
are positive fitting parameters for the model of 

*

NE ; and A , 

B , C , D  and E are positive fitting parameters for the model of 
N . Figure 4-7 shows a 

good fitting between the models and the measured data. 

 

Extended Elastic-Viscoelastic Correspondence Principle 

Schapery (1984) proposed the extended elastic-viscoelastic correspondence principle 

which states that, if the actual stress or strain is replaced by the pseudo stress or pseudo strain, 
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the constitutive equation for the viscoelastic material is identical to that for the elastic case. The 

pseudo strain is defined as: 

   
 

0

1 t
R

R

d
t E t d

E d

 
  




        (4-13) 

where 
R  = pseudo strain; t  = current time;   

= previous time before t ;   
 
= strain history 

measured in the test;  E t = relaxation modulus of the undamaged material; and 
RE = reference 

modulus which is an arbitrary constant. Based on Equations 4-13, the physical stress and the 

pseudo strain have a relationship as: 

   R

Rt E t          (4-14) 

It is obvious that a correspondence can be found between Equation 4-14 and the elastic 

stress-strain relationship, e.g. the Hooke’s law. The advantage of this extended correspondence 

principle is that the effect of time on the constitutive equation of the viscoelastic material is 

eliminated, which brings significant convenience to the damage analysis on the viscoelastic 

materials (Kim et al. 1995; Park et al. 1996; Si et al. 2002).   

Equation 4-13 establishes a practical method to calculate the pseudo strain provided that 

the reference modulus is determined. Many researchers employ a unity for the reference modulus 

which has the same unit as stress (Lee and Kim 1998; Gibson et al. 2003; Kutay et al. 2008). 

However, the pseudo strain calculated using this method is only a relative strain with a 

maximum value of 1. This pseudo strain does not have a physical meaning and cannot be used in 

the strain decomposition. Thus, a reference modulus with a physical meaning is needed in the 

strain decomposition and the quantification of viscoplasticity and viscofracture.  

The reference modulus can be determined by the extended correspondence principle 

which indicates that a viscoelastic problem is converted to an elastic problem when modeling 
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material constitutive relation using stress and pseudo strain, which further indicates that the 

pseudo strain removes the viscous effect on the total strain and pseudo strain becomes the 

remaining part of the total strain after subtracting the viscous strain. Thus, according to the strain 

components in Equation 4-1, we have: 

e

R T ve

e p vp vf

Nondestructive Condition

Destructive Condition


  

   


   

  

  (4-15) 

Comparing Equation 4-14 with Hooke’s law ( = e

YE  ) and using Equation 4-15 in the 

nondestructive condition yields: 

R YE E          (4-16) 

where 
YE = Young’s modulus. Two examples are provided here as proofs of Equation 4-16. 

Taking the nondestructive creep test for the first example, the total strain in the creep test 

is expressed as    t D t  which is substituted in Equation 4-13 and yields: 

   
 

 
0

t
R

R R

dD
t E t d H t

E d E

 
  




       (4-17) 

where  H t  is Heaviside step function;   0H t   when 0t   and   1H t   when 0t  . 

Considering Hooke’s law and 
R e   in the undamaged condition, Equation 4-17 yields

R YE E .  

The second example is the nondestructive dynamic modulus test where the measured 

strain is expressed in Equation 4-6. The pseudo strain becomes:  

   
 

   

0

0

0 0

cos

cos cos

t
R

R

R R

d
t E t d

E d

E
t t

E E

  
  



 
   






 

   


    (4-18) 
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where Equation 4-7 is used. The elastic strain under an oscillatory stress is 

 0 cose

Yt E      . Comparing this with Equation 4-18 yields R YE E  by considering 

R e   in the undamaged condition. 

 

Calculation of Pseudo Strain and Strain Decomposition  

Introducing the pseudo strain into the destructive test allows the separation of the 

components of the total strain. The pseudo strain for the destructive dynamic modulus test can be 

calculated by substituting the total strain modeled in Equation 4-10 and the relaxation modulus 

of the undamaged asphalt mixture in Equation 4-3 into the definition of the pseudo strain in 

Equation 4-13:  

     

     
 

   

0

1 1

*

1
exp exp

1

cos

R R R

c d

L M
i jR

c c

i jR j ii j

R d
d N

R N

t t t

E t t
t E t E t

E kk

E
t t

E E

  


  




   



 





  


        
                    




  




 (4-19) 

where 
R YE E based on Equation 4-16 and    E t E t E   according to Equation 4-3. 

E
 and   are dynamic modulus and phase angle of the undamaged asphalt mixtures that are 

measured in the nondestructive dynamic modulus tests. 
*

NE  and 
N  are the dynamic modulus 

and phase angle of the damaged asphalt mixtures that are measured in the destructive dynamic 

modulus tests and modeled by Equations 4-11 and 4-12, respectively. 
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The strain decomposition can be conducted once the pseudo strain is calculated. First, 

the elastic strain is always calculated by using the Hooke’s law: 

 e

Y

t

E


           (4-20) 

where  t  is the controlled stress in the nondestructive dynamic modulus test. Second, the 

viscous strain is determined based on Equation 4-15 and is shown as: 

ve T R             (4-21) 

Third, since the instantaneous viscoplastic stain and the instantaneous viscofracture 

strain are zero, that is,    0 0 0vp vf   , Equation 4-15 yields the plastic strain as: 

 0p R e            (4-22)  

Fourth, the viscofracture strain will not develop until the tertiary stage because the 

viscofracture strain is caused by the initiation and propagation of the cracks that occur only in 

the tertiary stage. In other words,  , 0vf I II  . Thus the pseudo strain in the primary and 

secondary stages only includes the elastic strain, plastic strain and viscoplastic strain. As a result, 

the viscoplastic strain in the primary and secondary stage is: 

     , ,vp R e pI II I II            (4-23) 

It is noteworthy that the Equation 4-23 theoretically remains true for the whole primary 

and secondary stages, however, since the flow number that is the separation point of secondary 

and tertiary stages has not been determined yet, the viscoplastic strain that is calculated by 

Equation 4-23 only includes the strain data at the whole primary stage and the first half of the 

secondary stage. To predict the viscoplastic strain during the entire deformation processes 
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including the primary, secondary and tertiary stages, the Tseng-Lytton model (Tseng and Lytton 

1989) is employed to fit the viscoplastic strain data obtained by Equation 4-23 and gives: 

 expvp vp N


  
  
 

       (4-24) 

where vp = saturated viscoplastic strain that is the viscoplastic strain when time goes to infinity; 

and  and   are model coefficients. Fifth, the viscofracture strain (
vf ) can be computed using 

Equation 4-1 and is given by: 

vf R e p vp               (4-25) 

Finally, every component of the total strain is separated from each other and can be 

characterized individually. For example, Figure 4-8 shows the curves of all strain components of 

the asphalt mixture sample AAD14, in which the total strain is the only one that is measured in 

the destructive dynamic modulus tests and all other strain components are determined by 

conducting the strain decomposition to the measured total strain. It is found that elastic and 

plastic strain are time-independent and the viscoelastic strain shows three stage changes and 

occupies a large proportion of the total strain.  

To clearly show the viscoplastic strain and viscofracture strain, Figure 4-8 is plotted in a 

smaller strain scale and is shown in Figure 4-9, which illustrates that the viscoplastic strain has a 

power curve that can be used to accurately determine the parameters of the viscoplastic 

constitutive model in the continuum mechanics analysis. Figure 4-9 also shows that the 

viscofracture strain declines very quickly to zero and remains at zero until the tertiary stage in 

which the viscofracture strain increases rapidly. The decline of the viscofracture strain in the first 

several load cycles is believed to be caused by the closure of the air voids in the asphalt mixture 

under a compressive load. The increasing viscofracture strain in the tertiary stage has an 

increasing strain rate, which is similar to a typical crack growth curve and can be implemented to 
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acquire the viscofracture properties of the asphalt mixture in compression. Another direct 

application of the viscofracture strain curve is to obtain the flow number that is the number of 

load cycles at which the viscofracture strain departs from zero and starts to grow, which is 

discussed in the next section.  

 

 

Figure 4-8 Strain decomposition in destructive dynamic modulus test for an asphalt 

mixture (AAD binder, 7% air void, unaged)  

 

EMPIRICAL CHARACTERIZATION OF PERMANENT DEFORMATION AND 

FRACTURE  

The strain decomposition technique proposed in the previous section provides an 

efficient method to simultaneously differentiate two distinctly different damage mechanisms, 

e.g. permanent deformation and fracture, which can be characterized by the separated 

viscoplastic strain and viscofracture strain, respectively.  
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Figure 4-9 Strain decomposition on a smaller strain scale showing viscoplastic stain, 

viscofracture strain and modeled viscofracture strain 

 

Firstly, the separated viscofracture strain is modeled using Equation 4-26 as follows: 

1

0 1fN Nvf vf e


 
  

  
       (4-26) 

where 
fN = flow number that is the starting point of the tertiary stage; 

0

vf  and 
1  = fitting 

parameters. fN N is a step function where f fN N N N    if 0fN N   and 

0fN N  if 0fN N  . Figure 4-9 shows that the viscofracture strain model in Equation 

4-26 fits very well with the measured viscofracture strain data. By fitting Equation 4-26 to the 

separated viscofracture strain curve, the flow numbers (
fN ) are determined for different asphalt 

mixtures and shown in Figure 4-10. Taking the first derivative of Equation 4-26 with respect to 

load cycles yields: 
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  1 1

1 0

f f

vf
N N N Nvfd

e e
dN

 
  

 
        (4-27) 

where 
1 0

vf   in µε/cycle. Since the increasing viscofracture strain results from the crack 

initiation and propagation, the derivative of viscofracture strain with respect to the load cycle in 

Equation 4-27 indicates the speed of crack growth. To compare the cracking speed of different 

asphalt mixtures, the parameter   is chosen as a crack speed index and a larger   means faster 

crack propagation. The values of   for different asphalt mixtures are shown in Figure 4-10. 

Secondly, the separated viscoplastic strain is modeled using Equation 4-24. The model 

coefficients   and   are also determined in the modeling process. The flow number (
fN ) is 

then plugged into Equation 4-24 to calculate the viscoplastic strain at the flow number (i.e.,

( )vp

fN ) of each asphalt mixture specimen. The parameter ( )vp

fN  is regarded as the 

indicator of the permanent deformation of the asphalt mixtures, which is also plotted in Figure 4-

10.  Figure 4-10 shows that the flow number (
fN ) increases while the viscoplastic strain at flow 

number ( ( )vp

fN ) and the crack speed index ( ) decreases as the air void content decreases or 

the asphalt mixtures become aged, which means a smaller air void and a stiffer asphalt mixture 

due to aging can provide the material a better resistance to permanent deformation and fracture.  

A further characterization of permanent deformation and fracture for the asphalt mixture 

will include the viscoplastic continuum mechanistic modeling of permanent deformation using 

the separated viscoplastic strain data to investigate the strain hardening effect during the plastic 

flow and the fracture mechanistic analysis on the cracking using the separated viscofracture 

strain data to estimate the evolution of the damage density as well as the J-integral Paris’ law in 

the tertiary stage. Therefore, the viscoplastic strain and viscofracture strain obtained by using the 
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strain decomposition methodology proposed in this chapter will directly be used in the further 

mechanistic characterization of permanent deformation and fracture of the asphalt mixtures.  

 

 
Figure 4-10 Flow number, viscoplastic strain at flow number and crack speed index for 

different asphalt mixtures at 40°C 

 

SUMMARIES AND CONCLUSIONS 

Asphalt mixtures in compression experience the primary, secondary and tertiary 

deformation stages. The viscoelastic and viscoplastic deformation of the asphalt mixture develop 

simultaneously during the three stages, while the cracks that lead to the viscofracture 

deformation initiate and propagate in the tertiary stage and yield the tertiary flow. The objective 

of this research is to separate the viscoelasticity, viscoplasticity and viscofracture in a destructive 

compressive dynamic modulus test so as to simultaneously characterize the permanent 

deformation and fracture of the asphalt mixtures.   
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The undamaged properties of 16 asphalt mixtures that have two binder types, two air 

void contents and two aging periods are firstly obtained by conducting nondestructive creep tests 

and nondestructive dynamic modulus tests. Testing results are analyzed by using linear 

viscoelastic theory, in which creep compliance and relaxation modulus are well modeled by the 

Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures are 

found to remain constant with load cycle, which indicates that the samples are tested in 

nondestructive conditions. Then, the undamaged asphalt mixtures are used to perform 

destructive dynamic modulus tests, in which the dynamic modulus and phase angle of the 

damaged asphalt mixtures are found to vary with load cycle, which indicates the plastic 

evolution and the crack propagation. The growth of cracks is signaled principally by the increase 

of the phase angle, which occurs only in the tertiary stage.  

The measured total strain in the destructive dynamic modulus test is successfully 

decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain and 

viscofracture strain by employing the pseudo strain concept and the extended elastic-viscoelastic 

correspondence principle. The separated viscoplastic strain is modeled with the Tseng-Lytton 

model to characterize the permanent deformation and the separated viscofracture strain is 

modeled by a fracture strain model to characterize the fracture of the asphalt mixtures, in which 

the flow number is determined and a crack speed index is proposed. Comparisons between the 

16 samples show that the aged asphalt mixtures with lower air void content have a better 

performance resisting both permanent deformation and fracture.  
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CHAPTER V  

VISCOPLASTIC YIELD SURFACE OF ASPHALT MIXTURES 

 

OVERVIEW 

The existing yield surface models of asphalt mixture have failed in completely 

characterizing the important material properties of the asphalt mixture including: 1) distinctions 

between compression, extension and tension; 2) dilative volumetric change; 3) internal friction 

and cohesion; 4) rate and temperature dependence; 5) strain hardening; and 6) convexity and 

smoothness of the yield surface. Thus the objective of this chapter is to develop a comprehensive 

yield surface model for the asphalt mixture to consider all of the aforementioned material 

characteristics for the purpose of an accurate permanent deformation prediction.  

The proposed ZLL (Zhang-Luo-Lytton) yield surface model coincides with the external 

apices of the Mohr-Coulomb yield surface to differentiate the distinctions between compression 

and extension but is still smooth and convex on both the meridian and the octahedral planes over 

the full possible range of the internal friction angle from 0 to 90 degrees. An Arrhenius 

temperature function and a power model are integrated into the ZLL model to include the 

temperature and strain rate dependence, respectively. A stress-pseudostrain strain decomposition 

method is proposed to accurately determine the initial yield strengths and the model parameters. 

Laboratory tests including compressive creep and uniaxial/triaxial strength tests are conducted 

on asphalt concrete mixtures that have two binders, two air void contents and three aging 

periods. More uniaxial strength tests are performed on two types of asphalt concrete at five 

temperatures and five strain rates.  

The ZLL model parameters are determined and some significant conclusions are 

achieved: 1) The stress-pseudostrain curve in the strength tests can accurately (the stress-strain 
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curve cannot) determine the initial yield strength of the asphalt mixture because the pseudostrain 

removed the viscous effect on the material responses; 2) the ZLL model parameters representing 

the aggregate interlocks and cohesive properties of the asphalt mixture can be accurately 

predicted by the internal friction angle and cohesion; 3) the cohesion and strain hardening 

amplitude decline when temperature is increased or strain rate is decreased, which can be 

quantified by temperature and strain rate factors in the yield surface model; and 4) the cohesive 

parameters like cohesion, intercept of yield surface, strain hardening amplitude are greater for 

stiffer asphalt concretes which have stiffer binder, lower air voids, and longer aging periods. 

However, those properties do not affect the strength-related parameters like internal friction 

angle and slope of the yield surface which depend on aggregate contacts and interlocks. 

 

INTRODUCTION 

Viscoplastic mechanics are widely used in the constitutive modeling for the purpose of 

predicting the permanent deformation of asphalt mixtures. As the kernel of the viscoplastic 

theories, a yield surface model determines under what conditions the asphalt mixture begins to 

yield and how the yielding of the material evolves as the permanent deformation accumulates. 

Therefore, the yielding properties of the asphalt mixture should be characterized accurately and 

comprehensively by using an appropriate yield surface model. As a viscoelastoplastic material, 

the asphalt mixture has the following complicated material properties associated with the 

yielding of the material:  

1) Material properties of the asphalt mixture show significant distinctions in compression, 

tension and extension. For instance, the yield strength in extension is less than the yield 

strength in compression. The tensile phase angle is greater than the compressive phase 

angle as discussed in Chapter II. Since the rutting primarily depends on the compressive 
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and extensive material properties, this chapter does not include the characterization of 

the tensile material properties;  

2) Asphalt mixture is a frictional material with cohesion. Thus the asphalt mixture will 

dilate under a deviatoric shear stress (Bahuguna et al. 2006) and the yield strength will 

increase with an increasing confining pressure (Sousa and Weissman 1994);  

3) Asphalt mixture shows a viscoplastic strain hardening (i.e., before the ultimate yield 

strength, the yield surface of the asphalt mixture expands as the accumulation of the 

viscoplastic deformation); and 

4) Material behaviors of the asphalt mixture are rate and temperature dependent (e.g., the 

cohesion and strain hardening of the yield surface depends on loading rate and 

temperature). 

In addition to the above inherent material properties of the asphalt mixture, the yield 

surface model also needs to satisfy the following two mathematical criteria: 

1) Convexity. The work-hardening materials (e.g., soils, sands, and asphalt mixtures) need 

to comply with Drucker’s Postulate (Drucker 1959), which indicates that the work done 

during an incremental load is positive and the work done in a loading-unloading cycle is 

nonnegative. As a consequence, the yield surface of asphalt mixture must be convex in 

stress space. In addition, the convexity of yield surfaces is practically demonstrated by 

the experiments in all materials and had become a fundamental property of plasticity 

(Jiang and Pietruszczak 1988; Bigoni and Piccolroaz 2004).  

2) Smoothness. A non-smooth yield surface (e.g., Mohr-Coulomb criterion which 

represents an irregular hexagon on the octahedral plane) is not very convenient for finite 

element analysis since the corners conflict with convergence of numerical computation 



 

115 

 

(Lin and Bazant 1986). Thus the yield surface of the asphalt mixture must be smooth in 

stress space.  

To accurately predict rutting in the field asphalt pavement, it is crucial to propose a 

comprehensive yield surface model to account for all of the aforementioned critical material 

characteristics and the mathematical requirements. The existing yield surface models for asphalt 

mixture are discussed in detail in the next section. One can conclude that the existing yield 

surface models are not able to completely characterize the yielding properties of the asphalt 

mixture and simultaneously satisfy the mathematical requirements. 

The objective of this chapter is to develop a convex and smooth yield surface model to 

comprehensively and accurately characterize the yielding properties of the asphalt mixture. The 

next section discusses the advantages and disadvantages of the currently existing yield surface 

models for asphalt mixture, which is followed by a derivation of a comprehensive yield surface 

model for asphalt mixture. Then the laboratory experiments are presented in detail. The 

following section presents an analytical method to accurately determine the initial yield strength 

for a viscoelastic material, e.g., asphalt mixture. After this, the yield surface model parameters 

are determined and analyzed based on testing results. The last section summarizes the major 

findings of this chapter.  

 

EXISTING YIELD SURFACE MODELS FOR ASPHALT MIXTURE 

Many yield surface models have been proposed in the literature to characterize the 

yielding properties of an asphalt mixture. The most widely used yield surface models for asphalt 

mixture include the Mohr-Coulomb model, Drucker-Prager model, Extended Drucker-Prager 

model, Matsuoka-Nakai model, Hierarchical Single-Surface model, etc. The typical functions 

and problems associated with these yield surface models are presented as follows. 
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Mohr-Coulomb (M-C) Model 

The function of Mohr-Coulomb yield surface model is shown as follows (Fwa et al. 

2004): 

tan 0C             (5-1) 

where  is the yield shear stress;  is the normal stress; C and   are cohesion and internal 

friction angle of the asphalt mixture, respectively. Researchers (Tan et al. 1994) found that   

was primarily a function of aggregate contacts and interlocks, which were insensitive to 

temperature and strain rates, whereas C  depended on testing temperature, strain rate, and 

properties of binder and fine aggregates. Figure 5-1 showed an example of a Mohr-Coulomb 

yield surface which is an irregular hexagon on the octahedral plane. 

 

Drucker-Prager (D-P) Model 

Drucker-Prager yield surface model is expressed as (Tan et al. 1994; Seibi et al. 2001; 

Park et al. 2005): 

2 1 0 0J I            (5-2) 

where 
2J ( 1

2 ij jiS S ) is the second invariant of the deviatoric stress tensor , 
ijS ( 1

13ij ij I   ); 

ij  is Kronecker delta; 
1I (

kk ) is the first invariant of the stress tensor (
ij ).  and 

0  are 

material properties, which can be determined by the cohesion and internal friction angle. By 

matching the Drucker-Prager yield surface with the external apices of the Mohr-Coulomb 

criterion (as shown in Figure 5-1), the following relationships are obtained (Chen and Mizuno 

1990; Tashman et al. 2004): 

 

2sin

3 3 sin








        (5-3) 
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 
0

6 cos

3 3 sin

C 






        (5-4) 

 

Extended Drucker-Prager (ED-P) Model 

Extended Drucker-Prager yield surface model is expressed as (Argyris et al. 1974; 

Dessouky and Masad 2006; Saadeh et al. 2007; Darabi et al. 2011): 

 
3

2

2 3
1

2

3 31 1
1 1 0

2 2

J J
I

d d J
 

  
       

   

     (5-5) 

where 
3J (  det ijS ) is the third invariant of the deviatoric stress tensor;   is the strain 

hardening parameter; d  is an extension ratio that is the ratio of yield strength in extension to that 

in compression, which is the length ratio of segment OB to segment OA in Figure 5-1. d  is 

related to the internal friction angle of geomaterials as follows (Bardet 1990; Maiolino and 

Luong 2009): 

3 sin

3 sin
d









         (5-6) 

The value of d  ranges from 1 to 0.5 which corresponds to the internal friction angle 

from 0 to 90 degrees. A d  value less than 1 indicates that the yield strength in extension is lower 

than that in compression, which is true for asphalt mixture. When 1d  , the extended Drucker-

Prager model reduces to the Drucker-Prager model. To ensure convexity of the extended 

Drucker-Prager yield surface, d  is limited to between 1 and 0.778 (Lin and Bazant 1986; 

Maiolino 2005; Masad et al. 2007; ABAQUS 2010), which corresponds to the internal friction 

angle from 0 to 22 degrees based on Equation 5-6. Examples in Figure 5-1 show that the 

extended Drucker-Prager is convex when 15  whereas concave when 35  . It had been 
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indicated by some studies (Fwa et al. 1997; Birgisson et al. 2003) that the asphalt mixtures 

commonly have a larger internal friction angle than 22 degrees. Thus, even though the extended 

Drucker-Prager is widely employed in the viscoplastic modeling of the asphalt mixture, a new 

convex yield surface model is still needed to account for a full range of the internal friction angle 

from 0 to 90 degree for the asphalt mixture.  

To consider the strain hardening and temperature effect on the yield surface,   can be 

written as (Abu Al-Rub et al. 2010): 

  0 1 2

0

1 exp exp 1vp

e

T

T
     

  
         

  
    (5-7) 

in which 
0 , 

1  and 
2  are material parameters identified at the reference temperature 

0T ; 
0  

defines the initial yield strength; 
1  determines the amplitude of the strain hardening; 

2  is the 

strain hardening rate;   is an experimentally determined parameter; and 
vp

e  is effective 

viscoplastic strain, the rate of which is expressed as follows (Dessouky 2005; Huang et al. 2011): 

1
2 2

0.5 3
1 2

1 3

vp vp vp

e ij ij


  





  
   

   

      (5-8) 

where   is the slope of the viscoplastic potential and 
vp

ij is the rate of viscoplastic strain tensor. 

In addition to the above three well-known yield surface models, pavement researchers 

also introduced yield surface models of geomaterials into the viscoplastic modeling of asphalt 

mixture, which are briefly discussed as follows.  

 

Extended Matsuoka-Nakai (EM-N) Model 

Bahuguna et al. (2006) extended Matsuoka-Nakai model (Matsuoka and Nakai 1974; 

1985) and proposed the following yield surface equation: 
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1 2 3 0I I I Hk           (5-9) 

where 
1I (

kk ), 
2I (  1

2 ii jj ij ji     )and 
3I (  det ij ) are first, second and third 

invariants of the stress tensor; H is an isotropic hardening parameter; and k is a friction 

dependent parameter. Matsuoka-Nakai model is an excellent yield surface model for 

cohesionless geomaterials (e.g., sands) and it is inherently smooth and convex (Haythornthwaite 

1985; Mortara 2008). However, Equation 5-9 cannot address the effect of the rate and 

temperature dependent cohesion and strain hardening on the yielding properties of the asphalt 

mixture. In addition, Equation 5-9 is a function with the third order of the stress and the 

differential of the yield surface is a function with the second order of the stress, which will bring 

difficulties during numerical simulations. 

 

 

Figure 5-1 Yield surfaces of Mohr-coulomb, Drucker-Prager and extended Drucker-Prager 

models on octahedral plane 
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Di Benedetto (DBN) Model 

Di Benedetto et al. (2007b) proposed a yield surface based on the Lode angle and a 

hardening variable. The yield surface is expressed as: 

1 0
2

3
cos 0

3 3

I S
J R




 
   

 
      (5-10) 

where R is a scalar hardening variable; 
0S is a parameter; and   is the Lode angle which is 

defined as: 

 
3

2

3

2

1 3 3
arccos 0,

3 2 3

J

J




   
    

   

     (5-11) 

The value of  , as shown in Figure 5-1, is zero in extension and 3  in compression. 

The yield surface derived by Equation 5-10 is an equilateral triangle on the octahedral plane. 

Thus the yield strength ratio of extension to compression is always 0.5 (i.e., 0.5, 90d   ), 

which is not reasonable for the asphalt mixture. 

 

Desai’s Hierarchical Single-Surface (HISS) Model 

Desai et al. (1986) proposed a hierarchical single-surface model (HISS) to constitutively 

model geologic materials and the yield surface function has a form as follows: 

     
2

2 1 11 cos 3 0
m n

J B I S I S            
    (5-12) 

where   is a softening parameter;   is a hardening parameter, S  is a cohesion related 

parameter; n  is a parameter determining shape of the yield surface in the deviatoric-hydrostatic 

stress ( 2 1~J I ) plane (or meridian plane); B and m  are parameters determining the shape of 

the yield surface on the octahedral plane. Pavement researchers used Desai’s HISS model to 
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model asphalt mixtures by setting m as 0.5 (Muraya et al. 2009) and sand/aggregate base by 

setting m  as 1 (Bonaquist and Witczak 1996). Several problems exists in Desai’s HISS model 

when applied to model asphalt mixture: 1) to ensure a convex yield surface for the full range of 

the internal friction angle from 0 to 90 degrees, the value of m  must be 0.229 (Van Eekelen 

1980); 2) Desai’s HISS model exhibits a spindle shape and the yield surface becomes nonlinear 

at relatively high confining pressures, which are normally used to characterize the nonlinear 

softening of soils or granular base. In contrast, the confinement in an asphalt layer cannot reach a 

very high level and the yield surface remains linear on the meridian plane for the asphalt 

mixture; 3) too many fitting parameters in the HISS model require complicated laboratory 

experiments for the determination of the model parameters; and 4) the rate and temperature 

dependent strain hardening is not accounted for in Desai’s HISS model.  

Table 5-1 summarizes the properties of the existing yield surface models used for 

asphalt mixtures. Based on the discussions in this section as well as Table 5-1, one may conclude 

that the currently existing yield surface models are not capable of completely characterizing the 

yielding properties of asphalt mixtures and a comprehensive yield surface model of the asphalt 

mixture is needed for the purpose of an accurate rutting prediction.  

 

A NEW YIELD SURFACE (ZLL) MODEL FOR ASPHALT MIXTURE 

This section derives a comprehensive yield surface model to account for all of the 

aforementioned yielding properties of the asphalt mixture.  

 

Development of the Yield Surface Model 

By evaluating the existing yield surface models as discussed in the previous section, a 

general yield surface function for an asphalt mixture is written as: 
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 2 1 0TJ I a a             (5-13) 

where 
2J ,

1I , and   are defined in Equation 5-2.   is the Lode angle that is defined in Equation 

5-11.     is a function that defines the yield surface shape on the octahedral plane and 

determines the convexity of yield surface.   is a strain hardening function which will be 

discussed later. 
Ta  and a

 are temperature and strain rate effect factors, respectively. The term 

Ta a  represents the temperature and strain rate dependent cohesion and strain hardening for an 

asphalt mixture, which will be discussed in detail after the derivation of    . 

 

Table 5-1 Yield Surface Models for Asphalt Mixture in the Literature 

Yield 

Surface 

Model 

Smooth? Convex? 

Consider 

Distinctions 

between 

Compression 

and 

Extension? 

Consider 

Friction and 

Cohesion? 

Consider 

Strain 

Hardening? 

Consider 

Temperature 

and Rate 

Dependence? 

Mohr-

Coulomb 
No Yes Yes Yes No No 

Drucker-

Prager 
Yes Yes No Yes No No 

Extended 

Drucker-

Prager 

Yes No Yes Yes Yes 

Temperature: 

Yes 

Rate: No 

Extended M-

N 
Yes Yes Yes 

Friction: Yes 

Cohesion: 

No 

Yes No 

Di Benedetto 

DBN 
No Yes 

Strength ratio 

is always 0.5 
Yes Yes No 

Desai’s HISS Yes No Yes Yes Yes No 
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As an inherently smooth and convex yield surface, Matsuoka-Nakai model is used and 

transformed to an expression with the first order of the stress so as to determine the function of 

   . The Matsuoka-Nakai model is expressed as: 

1 2

3

I I
k

I
          (5-14) 

where 
1I (

kk ), 
2I (  1

2 ii jj ij ji     )and 
3I (  det ij ) are first, second and third 

invariants of the stress tensor; k  is a friction dependent parameter. Matsuoka-Nakai model is 

commonly used for cohesionless materials such as sands and the parameter k can be expressed 

in terms of the material internal friction angle (or the extension ratio d  based on Equation 5-6) 

(Bardet 1990): 

  

2

2

9 sin 9

1 sin 2 1 2

d
k

d d






 

  
      (5-15) 

In addition, 
2I  and 

3I  can be written as: 

2

2 1 2

1

3
I I J           (5-16) 

3

3 3 1 2 1

1 1

3 27
I J I J I          (5-17) 

Substituting Equations 5-15, 5-16, and 5-17 into Equation 5-14 obtains: 

   
2 3 2

1 1 2 32 1 6 1 27 0d I d d I J dJ           (5-18) 

Equations 5-3 and 5-6 relate   with d as follows: 

1

3

d

d



          (5-19) 

Employing Equations 5-19 and 5-11 in Equation 5-18 gives: 
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          
3

232 2

1 2 1 21 1 cos 3 0d I d d J I d J           (5-20) 

Equation 5-20 is a transformed expression for the Matsuoka-Nakai model and still does 

not account for the temperature and rate dependent cohesion and strain hardening. To consider 

these material properties of the asphalt mixture, the term 
Ta a  is added to the hydrostatic 

stress and Equation 5-20 becomes: 

          
3

232 2

1 2 1 21 1 cos 3 0T Td I a a d d J I a a d J            
 

         
(5-21) 

To acquire an expression with the first order of stress, Equation 5-21 is regarded as a 

cubic equation which has a variable of 
1 TI a a  . Solving this cubic equation gives a new 

yield surface function for the asphalt mixture: 

 2 1

1
cos arccos cos3 0

3
TJ I a a    

 
   

 
    (5-22) 

The yield surface model in Equation 5-22 is named as ZLL (Zhang-Luo-Lytton) yield 

surface model, where    1
3

cos arccos cos3        , and parameters   and   depend on 

internal friction angle and can be calculated using d  (i.e., Equation 5-6) as follows: 

 

 

2

3
2 2

2 1

3

13 3

2 1

d d

d

d d

d d





  



 
  
  


       (5-23) 

It is further proved that   and   have the following relations: 

   

 

1
0 cos arccos 1

3

1 1
cos arccos

3 3 d

   


   

  
    

  


              

     (5-24) 
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The ZLL yield surface model as shown in Equation 5-22 is derived by combining the 

Matsuoka-Nakai model with the Drucker-Prager model and incorporating the temperature and 

rate dependent strain hardening function. When the differences between extension and 

compression are neglected (i.e., 1d  ), the ZLL model is reduced to the Drucker-Prager model; 

while the cohesion is neglected (i.e., 0  ), the ZLL model becomes the Matsuoka-Nakai 

model. In addition, the ZLL model also satisfies the three requirements of Lode dependence for 

pressure-sensitive materials (Bardet 1990): 1) extension ratio (i.e.,    3
0 d   ); 2) 

smoothness (i.e., the first derivative of the function     with respective to   are zero, that is

   3
0 0    ); and 3) convexity that is inherited form Matsuoka-Nakai model. Figure 5-2 

plots three dimensional examples of the ZLL yield surface and Figure 5-3 shows the yield 

surfaces of the ZLL model on the octahedral plane with different internal friction angles. One 

can find that the ZLL model provides a smooth and convex yield surface when the internal 

friction angle changes from 0 to 90 degrees and the extensive yield strength is less than 

compressive yield strength which is quantified by parameter d (or parameters   and  ). The 

ZLL yield surface also characterizes the increasing yield strength with an increasing confinement 

(i.e., 
1I  is included in the model). The temperature and strain rate dependent cohesion and strain 

hardening is represented by term 
Ta a  which is modeled in the next section. 

 

Strain Hardening Model  

In the derived ZLL yield surface model shown as Equation 5-22, 
Ta a is used to 

consider the temperature and strain rate dependent strain hardening of the asphalt mixture.   is 
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a strain hardening function at a reference temperature and a reference strain rate.    is modeled 

by an exponential function as follows: 

 

 

Figure 5-2 Three dimensional plot of the proposed ZLL yield surfaces 

 

 

   

Figure 5-3 The ZLL yield surfaces on the octahedral plane with different internal friction 

angles 
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 0 1 21 exp vp

e        
 

       (5-25) 

where 
0 , 

1  and 
2  are material parameters identified at the reference temperature (

0T ) and 

the reference strain rate (
0 ); and 

vp

e  is the effective viscoplastic strain which will be discussed 

in the next sub-section.  

The effect of temperature on the cohesion and strain hardening is
 
accounted for by a 

temperature effect factor that is formulated by an Arrhenius temperature function as follows: 

0

1 1
exp T

T

E
a

R T T

  
   

  
       (5-26) 

where 
TE

 
is the activation energy of the temperature effect on the strain hardening, J/mol; R is 

the universal gas constant, 8.314 J/mol·K; T is the temperature of interest, K; and 
0T is the 

reference temperature, K, at which 
0 , 

1  and 
2  are determined. 

TE is determined by 

performing uniaxial strength tests at different temperatures. It must be emphasized that 
Ta  is 

totally different from the time-temperature shift factor (i.e., 
T  in Chapter II) used in the 

construction of the master curve for the thermorheologically simple materials. The Arrhenius 

temperature function
 Ta  quantifies the effect of the temperature on the yield strength during the 

strain hardening process while the time-temperature shift factor 
T  evaluates the equivalent 

effects of the time and temperature on the responses of the viscoelastic materials. Equation 5-26 

indicates that the cohesion and strain hardening amplitude will decrease as temperature 

increases, which will be verified by the experimental results in this chapter. 

The effect of strain rate on the cohesion and strain hardening is evaluated by a strain rate 

effect factor ( a
) which is modeled by a power function as follows: 
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3

0

a









 
  
 

         (5-27) 

where  is the strain rate of interest, 1/sec; 
0 is the reference strain rate, 1/ sec; and 

3  is a 

material property that can be determined by performing uniaxial strength tests on asphalt 

mixtures at different loading (strain) rates. For asphalt mixtures, it is satisfied that 
30 1  . 

Equation 5-27 shows that the cohesion and strain hardening amplitude will increase as the strain 

rate increases, which will also be verified by the experimental results in this chapter. 

 

Effective Viscoplastic Strain 

In plastic analysis, the deformation of a strain hardening material under multiaxial 

loading is commonly correlated by a single uniaxial stress-strain curve which can be related to 

the multiaxial experimental results. To accomplish this correlation, the effective plastic strain 

(or, effective viscoplastic strain for an asphalt mixture) is employed to establish a 

correspondence between a material deforming under multiaxial loading and the same material 

deforming under uniaxial loading. The hardening behavior of the yield surface is normally 

controlled by the effective plastic strain, which is usually expressed in an incremental form such 

as (Khan and Huang 1995): 

2

3

p p p

e ij ijd d d           (5-28) 

where 
p

ijd  is the incremental plastic strain tensor. The definition of the effective plastic strain in 

Equation 5-28 can only be applied to the materials that employ the von Mises yield surface and 

the associated flow rule (plastic potential is the same as yield surface). When the material is 
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assumed incompressible (i.e., Poisson’s ratio is 0.5), Equation 5-28 gives 
11

p p

ed d   which is 

the axial plastic strain increment in a uniaxial test.  

For an asphalt mixture, Equation 5-8 has been widely used to calculate the effective 

viscoplastic strain rate; however, it is proved that Equation 5-8 employed the following 

assumptions: 1) associated flow rule which overestimates the dilation of the asphalt mixture 

(Masad et al. 2007); 2) Drucker-Prager yield surface which neglects the differences between 

extension and compression for an asphalt mixture; and 3) an asphalt mixture is assumed as an 

isotropic material. Thus, a new expression for the effective viscoplastic strain rate is derived to 

remove these assumptions. The derivation of the effective viscoplastic strain rate is presented in 

Chapter VI and the final expression is written as:  

 

1
22 22

1 3 1 0.5 3
1

11 3 1 3

vp vp vp

e ij ijn
 

  
 



       
                  

  (5-29) 

where 1n   in a uniaxial condition and 3n   in a triaxial condition;   is the modified vector 

magnitude defined in Equation 3-10; and   is the slope of the viscoplastic potential that reflects 

the dilative potential of the material. The theoretical relationship between   and   is derived 

as an implicit expression (i.e., Equation 6-36) in Chapter VI. For practical use, the implicit 

theoretical relationship is converted to a linear explicit relation as follows: 

 20.5889 0.0122 0.9988R          (5-30) 

Equation 5-29 is a very general definition for the effective viscoplastic strain rate which 

considers anisotropy ( 0  ) and employs the ZLL yield surface model with a nonassociated 

flow rule (  ). Some studies have indicated that the viscoplastic deformation of the asphalt 

mixture is nonassociated (Florea 1994b; Masad et al. 2005). If using an associated viscoplastic 

flow rule (  ) and considering isotropy ( 0  ), Equation 5-29 is reduced to Equation 5-8 
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that is used for asphalt mixtures in the literature. If further assuming 0    (using von 

Mises yield criterion), Equation 5-29 is reduced to Equation 5-28 that has been widely used in 

plasticity theory.  

 

LABORATORY TESTING AND MATERIALS 

To obtain the model parameters and verify the temperature and strain rate effects on the 

yield surface, laboratory tests were performed on lab-mixed-lab-compacted (LMLC) asphalt 

mixture specimens that were fabricated with two types of asphalt binder (Valero asphalt (PG64-

16) and NuStar asphalt (PG67-22)), two air void contents (4% and 7%) and three aging periods 

(0, 3, and 6-month continuous aging at 60°C). Two replicate specimens were fabricated for each 

combination of the asphalt binder, air void content and aging period. The testing protocol 

(including test method, loading mode, and temperature), tested materials and corresponding 

material properties are summarized in Table 5-2. 

The lateral surface scanning test in Table 5-2 is described in Chapter III. Each cylinder 

specimen was laid horizontally on an automatic rotator which rotated the sample at a constant 

speed. The lateral surface of the sample was scanned by a portal scanner to obtain a lateral 

surface image, which was then analyzed to determine the aggregates’ properties including the 

inclination angle, area of the cutting surface, and the aspect ratio. These measurements were 

used to calculate the modified vector magnitude by Equation 3-10. The UCC test (see Table 5-2) 

employed a constant stress and the axial strain was recorded to calculate the creep compliance. 

By using a Prony model (i.e., Equation 4-3), the relaxation modulus (  E t ) was determined 

based on the creep compliance (i.e., Equation 4-2) and was employed to calculate pseudostrain 

and determine the initial yield strength for the asphalt mixture.  
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Table 5-2 Testing Protocol, Materials and Parameters Determination for the Verification 

of the ZLL Yield Surface 

Testing Protocol 
Materials Tested 

Material 

Properties 

Obtained  Tests Loading Temperature 

Lateral Surface 

Scanning Test 
N/A 

Room 

temperature 
VHL and NHL 

mixtures: 

 

Binder:  

Valero (PG64-16) 

NuStar (PG67-22) 

Air Void:  

4% 

7% 

Periods of Aging at 

60°C:  

0 month 

3 months 

6 months 

 ,   

Uniaxial 

Compressive Creep 

(UCC) Test 

Remain constant 

at 40kPa 
40°C  E t  

Uniaxial 

Compressive 

Strength (UCS) 

Test 

311με/sec 40°C 

C ,   

 , 
0  

1 , 
2  

Triaxial 

Compressive 

Strength (TCS) 

Test 

311με/sec 

Confining 

pressures: 

103kPa (15psi) 

207kPa (30psi) 

40°C 

UCS at Different 

Strain Rate 

18 με/sec 

65 με/sec  

311 με/sec  

622 με/sec  

1074 με/sec 

40°C 

NHL mixtures: 

Binder: NuStar 

Air Void: 7% 

Aging: 6 months 

3  

Uniaxial 

Compressive Creep 

(UCC) Test 

40 kPa (at 40°C) 

30 kPa (at 45°C) 

25 kPa (at 50°C) 

20 kPa (at 55°C) 

15 kPa (at 60°C) 

40°C 

45°C 

50°C  

55°C  

60°C 

NHL mixtures: 

Binder: NuStar 

Air Void: 4% 

Aging: 6 months 

 E t  

UCS at Different 

Temperature 
311με/sec TE  

 

The strength tests (e.g., UCS and TCS as shown in Table 5-2) employed a constant 

crosshead strain rate control mode, in which the specimens were compressed at a constant 

crosshead strain rate until failure occurred or the limits of the linear variable differential 

transducers (LVDTs) were reached. Figure 5-4 shows the typical stress responses, crosshead 

strains and on-specimen strains in a TCS test. Both the strain and strain rate of the on-specimen 

measurements were less than the crosshead strain and strain rate due to the machine compliance 
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that consumed part of the crosshead deformation, which was also observed in the literature 

(Zhao and Kim 2003). The strain rates mentioned in Table 5-2 are all referred to the strain rate 

measured by the on-specimens’ LVDTs.  

 

 

Figure 5-4 Stress, crosshead strains and on-specimen strains in a triaxial compressive 

strength test of an asphalt mixture 

 

As for the materials used in the tests, a commonly-used Texas Hanson limestone shipped 

from New Braunfels, Texas, was selected in this study and the gradation for the aggregates was 

determined based on a Type C (coarse surface) dense gradation specified by the Texas 

Department of Transportation (TxDOT) (2004). The optimum asphalt content was calculated 

based on the TxDOT test procedure (TxDOT 2008) and was determined as 4.4% for the two 

binders (i.e., NuStar and Valero). The asphalt mixtures VHL and NHL stand for Valero binder 

with Hanson Limestone and NuStar binder with Hanson Limestone, respectively. The asphalt 

mixtures were compacted using the Superpave gyratory compactor to a cylindrical sample with 
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150 mm in diameter and 175 mm in height. Then the asphalt mixture samples were cored to 100 

mm in diameter and were cut to 150 mm in height. The specimens were stored in an 

environmental chamber at the testing temperature for at least 3 hours to reach the equilibrium 

temperature and then tested using Universal Testing Machine (UTM) and Rapid Triaxial Test 

(RaTT) cell.  

The testing configuration of the uniaxial tests such as UCC tests and UCS tests remain 

the same as the tests in Chapter IV (see Figure 4-2). The triaxial compressive strength (TCS) 

tests require a confining pressure, which is accomplished by the rapid triaxial testing (RaTT) cell 

of the UTM that is shown in Figure 5-5. In the RaTT cell, the confining pressure is provided by 

compressed air and the asphalt mixture specimen is wrapped by a cylindrical rubber. Two 

vertical LVDTs and two radial LVDTs are used to record the vertical and horizontal deformation 

of the samples.  

 

 

Figure 5-5 Testing configuration of rapid triaxial test (RaTT) cell 
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DETERMINATION OF INITIAL YIELD STRENGTH AND STRAIN 

DECOMPOSITION IN STRENGTH TESTS 

To obtain material properties such as C ,  ,  and 
0 , the initial yield strength (

y ) 

should be firstly determined. The initial yield strength is defined as the stress at which the plastic 

(or viscoplastic) deformation occurs. For the elastoplastic material (e.g., metal), the initial yield 

strength is determined as the separation point at which the stress-strain curve of a strength test 

transits from the linear part (elastic domain) to the nonlinear part (plastic domain). However, for 

a viscoplastic material like an asphalt mixture, no linear part is observed on the stress-strain 

curve measured in the strength test. As shown in Figure 5-6, the stress-strain curve illustrates a 

nonlinear relationship even at a very small load level and no obvious separation point is 

observed on the stress-strain curve. Based on this observation, some researchers (Drescher et al. 

1993; Lu and Wright 1998) concluded that no yielding threshold (i.e., initial yield strength) 

existed for the asphalt mixture, which is proved to be an incorrect conclusion based on the 

following analysis.  

In fact, the nonlinearity of the stress-strain curve is caused by the relaxation of the 

viscoelastic material, which can be explained by a simple mechanistic analysis: if the input of the 

strength test is a controlled strain: ct   where c  is the constant strain rate, the output stress in 

the viscoelastic domain (before the yielding threshold) is theoretically calculated as 

 
0

t

c E s ds   . One can find that the strain is linear with time while the stress is nonlinear 

with time, thus the stress is nonlinearly related to the strain and the stress-strain curve becomes 

nonlinear even in the viscoelastic domain. Because of the nonlinearity of the stress-strain curve, 

the traditional approach of determining the initial yield strength by using the separation point of 

the linear and the nonlinear curves does not apply to the asphalt mixture. 
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Figure 5-6 Typical stress-strain curve in a uniaxial compressive strength test of an asphalt 

mixture  

 

However, the asphalt mixture does have a yielding threshold that separates the 

viscoelastic part from the viscoplastic part of the stress-strain curve. An analytical method using 

pseudostrain concept is proposed in this chapter to effectively and accurately determine the 

initial yield strength of the asphalt mixture, which is illustrated by the following steps. 

First, the relaxation modulus of the undamaged asphalt mixture is determined from the 

uniaxial compressive creep tests and modeled by Prony series in Equation 4-3. Details about the 

model can be found in Chapter IV. 

Second, the pseudostrain in a strength test with a constant strain rate is calculated based 

on the definition of pseudostrain (i.e., Equation 4-13) and shown as: 

 
1

1 j

t
M

kR

j j

jR

c
t E t E k e

E



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

  
    

    

      (5-31) 
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where c  is the constant strain rate used in the strength test; 
RE is reference modulus which is 

assigned equal to the Young’s modulus of the asphalt mixture (  0YE E t  ).  

Third, the measured stress is plotted against the pseudostrain, as shown in Figure 5-7 

which has a linear portion (
2 0.9989R  ) with a slope of Young’s modulus. It is noted that the 

initial several data (before the linear portion) in Figure 5-7 showing nonlinearity is caused by the 

machine compliance. The initial yield strength (
y ) is determined as the stress at the end of the 

linear portion of the stress-pseudostrain curve. The initial yield strengths determined from 

uniaxial and triaxial strength tests are employed to calculate the material properties such as       

C ,  ,  , and 
0 . 

The reason for using the pseudostrain rather than total strain is that, when 
RE  equals to 

the Young’s modulus, the pseudostrain is demonstrated to be equal to the remaining strain after 

subtracting the viscous strain from the total strain (Zhang et al. 2012b). In other words, the 

pseudostrain is the strain component after removing the viscous effect on the material responses. 

Before yielding occurs (viscoelastic zone), the pseudostrain shows a linear relation with the 

stress since it is equivalent to the elastic strain (
e ). As the viscoplastic deformation occurs, the 

pseudostrain equals to the sum of 
e  and viscoplastic strain (

vp ). After the peak stress, the 

viscofracture strain (
vf ) also contribute to the pseudostrain. Thus the pseudostrain in a strength 

test is physically decomposed as: 

e

R e vp

e vp vf

Viscoelastic Undamaged Zone

Viscoplastic Hardening Zone

Viscofracture Softening Zone



  

  




 


 

    (5-32a) 
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Figure 5-7 Stress versus pseudostrain in a uniaxial compressive strength test of an asphalt 

mixture 

 

The stress-pseudostrain curve from the initial yield strength (
y ) to the ultimate yield 

strength (peak stress, 
u ) shows a nonlinear relation as shown in Figure 5-7, which actually is 

the strain hardening process. The determinations of the hardening parameters (i.e.,
1  

and 
2 ) are 

based on this portion of the curve. According to the above analysis and Equation 5-32a, a strain 

decomposition can be performed on the total strain (
T ) before 

u  in the strength test: 

e

Y

vi T R

vp R e

E 
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
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        (5-32b) 
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opening of cracks will be introduced into the material. The viscofracture will be characterized 

using fracture and damage mechanics in Chapter VII.   

 

TESTING RESULTS AND PARAMETRIC ANALYSIS  

This section presents data analysis methods, testing results and parametric analysis. The 

effects of the temperature and strain rate on the yielding properties of the asphalt mixture are 

discussed based on the testing results.  

 

Yielding Strength Parametric Analysis 

The yielding strength properties are firstly presented in this subsection including 

determination of the initial yield strength, slope and intercept of the ZLL yield surface, cohesion 

and internal friction angle of the asphalt mixture.  

Based on the pseudostrain method proposed in the last section, the Young’s moduli        

(
YE ) and the initial yield strengths (

y ) for different asphalt mixtures were obtained. Figure 5-8 

shows the measured Young’s moduli and the initial yield strengths in the UCS test for different 

asphalt mixtures at 40°C. It is found that both 
YE  and 

y  increase as the air void content 

decreases or the aging period increases. No significant differences are found between the asphalt 

mixtures with the Valero binder (PG64-16) and the asphalt mixtures with the NuStar binder 

(PG67-22) since the two binders have very close Superpave performance grading (PG) at the 

high temperature. A relationship was obtained as shown in Equation 5-33 between the initial 

yield strength and the Young’s modulus with an acceptable coefficient of determination (
2R ). 

    20.8782 64.32 0.8306y YkPa E MPa R        (5-33) 
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Equation 5-33 indicates a stiffer asphalt mixture tends to have a higher initial yield 

strength. It must be emphasized that the relationship between 
YE  and 

y  can be affected by 

loading rate, confinement and temperature.  

 

 
Figure 5-8 Young’s modulus and initial yield strength in uniaxial compressive strength test 

for different asphalt mixtures at 40°C 

 

The slope ( ) and intercept (
0 ) of the proposed ZLL yield surface model (i.e., 

Equation 5-22) were determined based on the initial yield strengths in the UCS and TCS tests. At 

the reference temperature and strain rate, the ZLL model in Equation 5-22 gives the initial yield 

surface function at triaxial compressive condition as follows: 
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where 
y is the initial yield strength and p is the confining pressure. The slope ( ) and 

intercept (
0 ) of the yield surface were determined for varieties of asphalt mixtures and shown 

in Figure 5-9.  

 

 
Figure 5-9 Slope and intercept of the ZLL yield surface on meridian plane for different 

asphalt mixtures  

 

The cohesion (C ) and internal friction angle ( ) for the asphalt mixture were also 

determined based on the UCS and TCS testing data. The Mohr-Coulomb initial yield surface 

function is written as follows: 

sin cos
2 2

y yp p
C

 
 

 
         (5-35) 

Employing the initial yield strengths (
y ) at three different confining pressures ( p = 0, 103, 207 

kPa) in Equation 5-35, the cohesion (C ) and internal friction angle ( ) of the asphalt mixtures 

were determined and shown in Figure 5-10.  
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Figure 5-10 Cohesion and internal friction angle for different asphalt mixtures at 40°C 

 

It is found from Figure 5-9 and Figure 5-10 that the slope of the ZLL yield surface ( ) 

has an average value of 0.352 with a standard deviation of 0.016 and the internal friction angle (

 ) has an average value of 45 degrees with a standard deviation of 2 degrees. Both  and   

have limited variations for the tested asphalt mixture specimens, thus one can conclude that 

and   are not affected by the binder type, air void content and aging period. This is reasonable 

since   
relies on the aggregate contacts and interlocks which depend on the aggregate gradation 

of the asphalt mixture specimen. Since all of the tested asphalt mixture specimens have an 

identical gradation, it makes sense that   remains similar for different asphalt mixture 

specimens that were tested in this study.   represents the internal friction angle according to 

Equation 5-3; thus   also stays close even though the asphalt mixture specimens have different 

binders, air void contents and aging periods. In fact, since the proposed ZLL yield surface 

coincides with the external apices of the Mohr-Coulomb yield surface, the relationship between 
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  and   in Equation 5-3 also applies to the ZLL yield surface. Using the measured  ,   is 

predicted by Equation 5-3 and compared with the measured  . A good agreement is found in 

Figure 5-11 between the measured   and the predicted  . 

 

 
Figure 5-11 Comparisons between measured   from tests and predicted   based on   for 

different asphalt mixtures  

 

Figure 5-9 and Figure 5-10 also indicate that the intercept of the ZLL yield surface (
0 ) 

and cohesion (C ) increase as the aging period increases or the air void content decreases. 
0  

and C  of the asphalt mixture with Valero binder are a little greater than the asphalt mixture with 

NuStar binder. Actually, 
0  and C  quantify the cohesive properties of the concrete. A stiffer 

asphalt mixture (e.g., due to stiffer binder, low air voids, longer aging periods) tends to have a 

greater cohesive strength. With using the measured C  and  , 
0  is predicted by Equation 5-4 
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and compared with the measured 
0 . A good agreement is shown in Figure 5-12 between the 

measured 
0  and the predicted 

0 , which demonstrates that the relationship between C ,   and 

0  in Equation 5-4 also applies to the proposed ZLL yield surface.  

 

 
Figure 5-12 Comparisons between measured 

0  from tests and predicted 
0  based on C  

and   for different asphalt mixtures at 40°C 
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Equations 5-36 and 5-37, one may conclude that a stiffer asphalt mixture tends to have a higher 

values for  
0  and C .  

The relationships between  , 
0  and C ,   in Equations 5-3 and 5-4 are verified by 

Figure 5-11 and Figure 5-12. This finding can be used to simplify the testing protocols that are 

used to determine the model parameters. The TCS tests in Table 5-2 are employed to perform 

strength tests at different confining pressures and determine the strength parameters such as  , 

0  and C ,  . However, the TCS tests require testing equipment which can provide a 

confinement during the tests, such as RaTT cell used in this study or triaxial cell used in material 

testing system (MTS) machine. The equipment might not be accessible since they are relatively 

expensive and the operations are also more complicated compared to the uniaxial tests. To avoid 

those problems, the users can employ the indirect tensile strength (IDT) test as an alternative test 

for the TCS test. In fact, some studies (Christensen et al. 2004; Pellinen et al. 2005) showed that 

the Mohr-Coulomb strength parameters (C  and  ) could be determined by performing UCS 

and IDT strength test . Once, C  and   are determined, the model parameters   and 
0  can be 

directly calculated by Equations 5-3 and 5-4. 

 

Strain Hardening Parametric Analysis 

This subsection presents the determination of hardening parameters 
1  and 

2  in the 

strain hardening function (i.e., Equation 5-25) based on the strength testing data. At the reference 

temperature and strain rate, the ZLL model in Equation 5-22 gives the hardening yielding 

surface function in uniaxial ( 0p  ) or triaxial ( 0p  ) compressive condition as follows: 

   1
1 0 1 22 1 exp

3

vp

e

p
p


     


      
      (5-38) 
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where 
1  is the measured stress during strain hardening process that is between the initial yield 

strength and the ultimate yield strength. 
vp

e  is the effective viscoplastic strain that is defined by 

Equation 5-29. In the uniaxial compressive condition, 
vp

e  is obtained by integrating Equation 5-

29 over time and becomes: 

1
1

1 3 1 3

1 3 1 3

vp vp R

e

YE

 
  

 

  
   

   
     (5-39) 

where 
1

vp  is the viscoplastic strain in the axial direction of the UCS test that can be calculated 

by subtracting the elastic strain (
1

e

YE  based on Hooke’s law) from the pseudostrain (i.e. 

R  in Equation 5-31) .   is determined by Equation 5-30 in which the modified vector 

magnitude is measured by the lateral surface scanning test. 

Figure 5-13 shows an example for the measured stress (
1 ) versus the effective 

viscoplastic strain (
vp

e ). It is found that the effective viscoplastic strains do not occur before the 

initial yield strength and the stresses show a power curve with the effective viscoplastic strains 

during the strain hardening process. The measured 
1 ~ vp

e   data during the strain hardening 

process were modeled by the exponential function shown in Equation 5-25. The modeled 

stresses were plotted as the solid line in Figure 5-13 and the hardening parameters 
1  and 

2  

were determined by fitting Equation 5-25 to the 
1 ~ vp

e   data.  
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Figure 5-13 Stress versus effective viscoplastic strain in a uniaxial compressive strength test 

of an asphalt mixture at 40°C 

 

One can conclude from Figure 5-13 that the strain hardening model using an exponential 

function can perfectly model the measured stresses during the strain hardening process in the 

strength tests. The same data analyses were performed on all of the tested asphalt mixtures and 

Figure 5-14 shows the measured values of the hardening parameters 
1  and 

2  for different 

asphalt mixtures. In general, 
1  determines the amplitude of the strain hardening and it increases 

as the air void content decreases or the aging period increases. In fact, 
1 , similar to 

0 , 

represents the cohesive properties of the asphalt mixture and a stiffer asphalt mixture tends to 

have a greater 
1 . 

2  determines the rate of the strain hardening for the asphalt mixture in 

compression. Testing results in Figure 5-14 do not show obvious differences for 
2  when 

asphalt mixtures have different binders, air void contents, and aging periods. 
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Figure 5-14 Calculated 

1  and 
2  for different asphalt mixtures at 40°C 

 

Effect of Temperature on the Yielding of Asphalt Mixture 

This subsection determines the temperature effect factor (
Ta ) and discusses the effect of 

temperature on the yielding properties of the asphalt mixture.  

The uniaxial compressive strength tests were performed on the NHL asphalt mixtures 

(NuStar binder, 4% air void, 6-month aging) at five different temperatures (40°C, 45°C, 50°C, 

55°C, and 60°C). Figure 5-15 shows the stress-strain curves at the five temperatures. Each curve 

is an average of the testing data from two replicate specimens. One can find that the yield 

strength decreases as the temperature increases, which is due to the lower cohesion of the asphalt 

mixture at a higher temperature. From Figure 5-15, it is very easy to determine the ultimate yield 

strength (
u ) which is the peak stress on the stress-strain curve.  
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Figure 5-15 Measure stress versus strain in uniaxial compressive strength tests of asphalt 

mixtures at different temperatures 

 

The ultimate yield strengths at the five different temperatures (in Kelvin: K=273.15+°C) 

are shown in Figure 5-16 and found to decline with the increasing testing temperature. The 

ultimate yield strengths were employed to determine the temperature effect factor. The asphalt 

mixture starts to yield at the initial yield strength and the yield surface expands due to strain 

hardening until the stress arrives at the ultimate yield strength. At the moment of the ultimate 

yield strength, the strain hardening becomes saturated and the ZLL yield surface function in the 

uniaxial condition is: 
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where 
u  is the ultimate yield strength that is determined from the stress-strain curve of the 

UCS test; 
Ta  is the temperature effect factor.  , 
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at the reference temperature (i.e., 40°C in this study). Thus the values of 
Ta  were solved based 

on Equation 5-40 and shown in Figure 5-16.  

The relationship between 
Ta  and temperature (in Kelvin) was modeled by the Arrhenius 

temperature function shown in Equation 5-26. Using the measured data of 
Ta , the activation 

energy for the temperature effect (
TE ) was determined to be 21020 J/mol for this asphalt 

mixture (NHL: NuStar binder, 4% air void, 6-month aging). Figure 5-16 also shows the modeled 

Ta  by the Arrhenius temperature model, which is demonstrated to be approximate to the 

calculated 
Ta . The decreasing 

Ta  with temperature quantifies the loss of the cohesion and strain 

hardening amplitude due to an increasing temperature.  

 

 

Figure 5-16 Ultimate yield strengths (
u ) of asphalt mixtures at different temperatures 

and comparisons between the calculated and the predicted temperature effect factors (
Ta ) 
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From the above determining method, one can find that 
Ta  or 

TE  can be solely 

determined by the ultimate yield strength (
u ). However, it must be verified that the calculated 

Ta  based on the ultimate yield strength can successfully predict the yield stresses during the 

entire strain hardening process that are the stresses between the initial yield strength and the 

ultimate yield strength. Thus, the calculated values of 
Ta  solely based on 

u  were employed to 

predict the yield stresses during the strain hardening as follows: 

  1
1 0 1 21 exp

3

vp

e Ta


         
       (5-41) 

where 
1  is the yield stresses during strain hardening and 

vp

e  is the effective viscoplastic strain 

that is computed by Equation 5-39. On the one hand, the yield stresses were predicted by 

Equation 5-41 using the parameters  , 
0 , 

1  and 
2  at the reference temperature and 

Ta  

calculated based on the ultimate yield strengths at different temperatures. On the other hand, the 

yield stresses were directly measured in the uniaxial compressive strength tests at the five 

temperatures. Figure 5-17 compares the measured yield stresses and the predicted yield stresses 

at 40°C, 45°C, 50°C, 55°C, and 60°C, respectively.  

It can be found from Figure 5-17 that the predicted stresses are comparable with the 

measured stresses for the asphalt mixtures at each of the temperatures. Thus one can conclude 

that it is reliable and feasible to calculate the temperature effect factor (
Ta ) solely based on the 

ultimate yield strengths which can be easily obtained from the stress-strain curves of the asphalt 

mixture. In addition, Figure 5-17 also indicates that the asphalt mixture requires a lower yield 

stress to achieve the same viscoplastic strain when the temperature increases, which means 
Ta  is 

a decreasing function of the temperature; however, the rate of the strain hardening (
2 ) does not 

change significantly at different temperatures. 
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Figure 5-17 Comparisons between the measured stresses and the predicted stresses during 

strain hardening process of the asphalt mixtures at different temperatures 

 

Effect of Strain Rate on the Yielding of Asphalt Mixture 

This subsection determines the strain rate effect factor ( a
) and discusses the effect of 

strain rate on the yielding properties of the asphalt mixture.  

The uniaxial compressive strength tests were performed on the NHL asphalt mixtures 

(NuStar binder, 7% air void, 6-month aging) at 40°C using five different strain rates (i.e., 18 

με/sec, 65 με/sec, 311 με/sec, 622 με/sec and 1074 με/sec). Figure 5-18 illustrates the stress-

strain curves in the uniaxial compressive strength tests of asphalt mixtures at the five strain rates. 

Each curve is an average of the testing data from two replicate specimens. It is found from 

Figure 5-18 that the yield stress increases with an increasing strain rate, which indicates that a 

larger cohesive strength and the amplitude of the strain hardening are obtained for the asphalt 

0

400

800

1200

1600

2000

2400

-100 0 100 200 300 400 500

S
tr

es
s 

(k
P

a)
 

Effective Viscoplastic Strain (με) 

40°C Measured Stress 40°C Predicted Stress

45°C Measured Stress 45°C Predicted Stress

50°C Measured Stress 50°C Predicted Stress

55°C Measured Stress 55°C Predicted Stress

60°C Measured Stress 60°C Predicted Stress



 

152 

 

mixture tested at a higher strain rate. The strain rate effect factor ( a
) in Equation 5-27 was 

employed to account for the effect of strain rate on the cohesion and strain hardening. To 

determine a
, the ultimate yield strengths (

u ) were acquired from the stress-strain curves. 

Figure 5-19 shows 
u  at different strain rates and 

u  increases and follows a power curve as the 

strain rate increases.  

 

 

Figure 5-18 Measure stress versus strain in uniaxial compressive strength tests of asphalt 

mixtures at different strain rates and 40°C 

 

At a constant temperature, 1Ta   and the ZLL yield surface function at the ultimate 
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where 
u  is the ultimate yield strength that is determined from the stress-strain curve of the 

UCS test; a
 is the strain rate effect factor.  , 

0  and 
1  are yielding parameters determined at 

the reference strain rate (i.e., 311 με/sec in this study). By substituting the ultimate yield 

strengths in Equation 5-42, the values of a
were resolved at the five different strain rates which 

are shown as the calculated a
 in Figure 5-19. The calculated a

 were modeled by a power 

function in Equation 5-27 in which the power coefficient 
3  was resolved as 0.196 for this NHL 

asphalt mixture (NuStar binder, 7% air void, 6-month aging). The increasing a  
following a 

power function with strain rates quantifies the effect of strain rate on the material cohesion and 

strain hardening during the viscoplastic deformation of the asphalt mixture. 

 

 

Figure 5-19 Ultimate yield strengths (
u ) of asphalt mixtures at different strain rates and 

comparisons between the calculated and the predicted strain rate effect factors ( a
) 
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Similar to the verification process of 
Ta , the verification of a

 was performed on the 

entire strain hardening process. The values of a
 calculated solely based on the ultimate yield 

strengths were employed to predict the yield stresses during the whole strain hardening process. 

The yield stresses predicting function is as follows: 

  1
1 0 1 21 exp

3

vp

e a


         

       (5-43) 

where 
1  is the yield stresses during strain hardening and 

vp

e  is the effective viscoplastic strain 

that is computed by Equation 5-39.  , 
0 , 

1  and 
2  are parameters determined at the 

reference strain rate and a
 is strain rate effect factor calculated based on the ultimate yield 

strengths at different strain rates.  Figure 5-20 compares the measured yield stresses with the 

predicted yield stresses at 40°C using strain rates of 18 με/sec, 65 με/sec, 311 με/sec, 622 με/sec 

and 1074 με/sec, respectively. One can find that the predicted stresses match well with the 

measured stresses during the entire strain hardening process for all of the strain rates used in the 

tests. Thus, the same as with the temperature effect factor, it is also reliable and feasible to 

calculate the strain rate effect factor solely based on the ultimate yield strengths of the asphalt 

mixture. In addition, Figure 5-20 also indicates that the asphalt mixture requires a higher yield 

stress to achieve the same viscoplastic strain when the strain rate increases, which means a
 is 

an increasing function of the strain rate; however, the rate of the strain hardening (
2 ) remains 

almost unchanged at different strain rates. 
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Figure 5-20 Comparisons between the measured stresses and the predicted stresses during 

strain hardening process of the asphalt mixtures at different strain rates 

 

The findings of the temperature and  strain rate dependent yield surface reveal the 

viscoplastic mechanisms of the accumulating permanent deformation of the field asphalt 

pavement under repeated traffic loads. The yield driving stress (  2 1,J d I   ) remains 

unchanged if the traffic load is simulated as a repeated load in a stress-controlled test applied to 

the asphalt concrete.  The hardening stress ( ) functions as a resistance to the viscoplastic 

deformation and it increases as the viscoplastic deformation accumulates due to the strain 

hardening effect. However, the strain rate decreases under the repeated load. Thus, the increase 

of   is reduced by a factor of a  
due to the decrease of the strain rate. The temperature also has 

an effect on the increase of  : if the temperature increases or decreases, the increase of   is 
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reduced or magnified by a factor of 
Ta , respectively. As long as the yield function, 

 2 1, 0Tf J d I a a       , the viscoplastic deformation will keep accumulating. It is 

noteworthy that the strain rate declines only in the primary and secondary stages, whereas it 

increases in the tertiary stage due to the viscofracture development which also contributes to the 

permanent deformation.  

 

SUMMARIES AND CONCLUSIONS 

This chapter presents the development of a comprehensive yield surface model to 

characterize the complicated yielding properties of an asphalt mixture for the purpose of the 

accurate permanent deformation prediction. The vital and essential material properties of an 

asphalt mixture that must be considered in the yield surface model includes: 1) distinctions 

between compression and extension; 2) dilative volumetric change; 3) internal friction and 

cohesion; 4) rate and temperature dependence; 5) strain hardening; and 6) convexity and 

smoothness of the yield surface. Based on the mechanistic analysis and the laboratory testing on 

the asphalt mixtures with two binders, two air void contents and three aging periods, the 

following conclusions are made: 

1) The existing yield surface models in the literature cannot completely characterize the 

aforementioned yielding properties of the asphalt mixture. The proposed ZLL (Zhang-

Luo-Lytton) model is a comprehensive and general yield surface model for the asphalt 

mixture. The Drucker-Prager model and the Matsuoka-Nakai model are special cases of 

the ZLL model. The ZLL yield surface coincides with the external apices of the Mohr-

Coulomb yield surface but is still smooth and convex over the full possible range of the 

internal friction angle from 0 to 90 degrees.  
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2) A stress-pseudostrain method was proposed to accurately determine the initial yield 

strength of the asphalt mixtures. The yielding strength analysis indicates that the internal 

friction angle ( ) only depends on the aggregate contacts and interlocks while the 

cohesion (C ) depends on cohesive properties of the mixtures which can be affected by 

binder properties, air void content, aging periods, temperature, and strain rate. A stiffer 

asphalt mixture (e.g., due to stiffer binder, low air voids, longer aging period) tends to 

have a greater cohesion. The model parameters (slope   and intercept
0 ) of the ZLL 

model were determined based on strength testing results. It was found that   and 
0  

could be accurately predicted with using C  and  . 

3) A temperature and strain rate dependent strain hardening function was developed and 

embedded in the ZLL yield surface model. Testing results demonstrated that the 

cohesion and the amplitude of the strain hardening declined when temperature increased 

or the strain rate decreased. The temperature effect factor was modeled using an 

Arrhenius temperature function and the strain rate effect factor was modeled by a power 

function. Both effect factors can be determined solely based on the ultimate yield 

strength in the uniaxial compressive strength tests at different temperatures or strain 

rates. The determined effect factors are reliable since they can be employed to accurately 

predict the stresses during the entire strain hardening process. The rate of strain 

hardening does not change significantly with temperature or strain rate.  

  



 

158 

 

CHAPTER VI  

ANISOTROPIC VISCOPLASTICITY OF DAMAGED ASPHALT 

MIXTURES 

 

OVERVIEW 

The mechanisms of permanent deformation (rutting) in asphalt pavements have not been 

well addressed due to the complexities of asphalt concrete. In this chapter, the permanent 

deformation in asphalt mixture is comprehensively characterized by modeling the anisotropic 

viscoplasticity of the damaged asphalt mixture. An extended Perzyna’s anisotropic viscoplastic 

model is employed for asphalt mixture, which incorporated 1) modified effective stresses in the 

formulation of the models to account for the inherent and the stress-induced anisotropy; 2) an 

extended ZLL yield surface to provide a smooth and convex yield surface and address the 

cohesion and internal friction; 3) a non-associated flow rule to address the volumetric dilation; 

and 4) a temperature and strain rate dependent strain hardening function.  

The parameters of the viscoplastic yield surface and potential function are related to 

fundamental material properties such as cohesion, internal friction angle and inherent anisotropy 

of the asphalt mixtures. Using the decomposed viscoplastic strain in the destructive dynamic 

modulus tests, the Perzyna’s viscoplastic coefficients are determined and the viscosity related 

coefficient   is found to decrease as the aging period increases or the air void content decreases; 

while the rate dependent parameters N  and 
3  have limited variations for the asphalt mixtures 

having different binder, air voids and aging periods. The effect of the inherent anisotropy on the 

viscoplastic yielding is that the yield strengths of the asphalt mixture modeled by isotropic 

viscoplastic models are greater in the triaxial compressive condition while less in the triaxial 
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extensive condition than the yield strengths of the asphalt mixture modeled as an anisotropic 

material. Thus the predicted permanent deformation of the asphalt pavement is underestimated 

without considering the inherent anisotropy. Using the modified stresses in the viscoplastic 

models provide a straight forward method to account for the inherent anisotropy of the asphalt 

mixture during the modeling of the viscoplastic deformation. 

 

INTRODUCTION 

The permanent deformation (i.e., rutting) has been one of the major distresses in asphalt 

pavements since the asphaltic materials are widely used in the pavement constructions. The 

rutting can bring severe damages to the pavement structures which lead to significant waste of 

the natural resources such as asphalt and aggregates. Rutting can also result in safety problems 

especially after raining because the rutting can trap water and cause unstable control of vehicles. 

Thus many research efforts were focused on the investigations of the fundamental mechanisms 

of the rutting. Some phenomenological methods (Mahboub 1990; Qi and Witczak 1998; Zhou et 

al. 2004; Li et al. 2011) and mechanistic models (Drescher et al. 1993; Collop et al. 2003; Hajj et 

al. 2007) were proposed to characterize the development of the rutting and used to predict the 

permanent deformation of the asphalt pavements using finite element modeling techniques.  

Extensive studies indicate that one of the main resources for rutting is the permanent 

deformation developed in the asphalt mixture layers, which are primarily attributed to the 

irrecoverable shear deformation under heavy truck loads and a high environmental temperature 

(Sousa and Weissman 1994). To accurately model and predict the permanent deformation 

occurring in the asphalt mixture layers, a variety of mechanistic models based on viscoplasticity 

theories have been proposed and widely employed as constitutive relations in the continuum 

mechanistic modeling (Florea 1994a; 1994b; Lu and Wright 1998; Huang et al. 2001; Bahuguna 
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et al. 2006; Di Benedetto et al. 2007b; Yun and Kim 2011). The continuum mechanistic models 

for asphalt mixtures have an advantage in their computational simplicity, that is, the material 

responses such as permanent deformation can be easily predicted once the model parameters are 

provided. However, some problems exist in those models which impede the wide applications of 

the mechanistic models. Several significant problems of the existing viscoplastic models for 

asphalt mixtures are presented as follows. 

First, the inherent anisotropy of asphalt mixtures has not been well addressed in the 

constitutive modeling. Asphalt mixture is an inherently anisotropic viscoelastic material 

according to the discussions in Chapter II. Studies (Pickering 1970; Tobita and Yanagisawa 

1992) on geomaterials indicated that, without consideration of inherent anisotropy caused by the 

preferentially oriented granular particles (e.g., soils, sands, and aggregates) in the constitutive 

formulation, some important material properties such as non-coaxial and dilatant behaviors 

would not be properly accounted for.  

Second, in addition to considering the inherent anisotropy, the stress-induced anisotropy 

should also be taken into account in the constitutive models of the asphalt mixture. In fact, the 

anisotropic cracks dominate the evolution of the permanent deformation when the material has 

encountered the peak of the stress-strain curves, high stress levels and long loading periods. For 

instance, the anisotropic viscofracture controls the properties of the asphalt mixture in the 

softening stage after the peak stress in a strength test or the tertiary flow stage in a repeated 

destructive stress test.  

Third, a non-associated viscoplastic flow rule must be used in the viscoplastic model of 

the asphalt mixture. The non-associated flow rule indicates that the direction of the incremental 

viscoplastic strain is not parallel to the direction of the incremental stress. Many studies (Oda 

and Nakayama 1989; Florea 1994b; Masad et al. 2005) have indicated that the viscoplastic 
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deformation of asphalt mixtures and granular materials in general is nonassociated and an 

associated flow rule (directions are the same for incremental strain and stress) overestimates the 

dilation of the asphalt mixture (Masad et al. 2007). Thus, it would be very important to 

accurately determine the viscoplastic potential that has a different parameter than the viscoplastic 

yield surface based on a non-associated flow rule. 

Fourth, the temperature and rate dependence needs to be addressed in the viscoplastic 

constitutive models. A new viscoplastic yield surface (i.e., ZLL model) has been proposed in 

Chapter V, in which the temperature and strain rate dependent cohesion and strain hardening had 

been embedded in the yield surface. The temperature and strain rate dependence should be 

further included in the viscoplastic constitutive model when the new ZLL yield surface model 

and the non-associated flow rule are used.  

To address the aforementioned problems, a modified effective stress method is proposed 

to integrate both the inherent anisotropy and the stress-induced anisotropy in the viscoplastic 

constitutive models, which is presented in the next section. Then, an extended Perzyna-type 

viscoplastic constitutive model is developed to incorporate the ZLL yield surface and the non-

associated flow rule, in which the general expressions for the effective viscoplastic strain and the 

slope of the viscoplastic potential are derived. The following section presents the laboratory 

experiments that are used to determine the model parameters. In the succeeding section, the 

viscoplastic properties of the asphalt mixtures are analyzed based on the constitutive models and 

testing results. The last section summarizes the major findings of this chapter. 

 

INTEGRATION OF ANISOTROPY IN CONSTITUTIVE MODELING 

A modified effective stress is proposed in this section to account for the inherent 

anisotropy and the stress-induced anisotropy of the asphalt mixture. The modified effective 
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stress is used to formulate the viscoplastic yield surface function, viscoplastic potential function, 

and viscoplastic constitutive models of the asphalt mixture.  

 

Modified Stress for Characterization of Inherent Anisotropy 

To consider the inherent anisotropy of the asphalt mixture, one can use different material 

properties (e.g., modulus and Poisson’s ratio) in different directions and formulate an anisotropic 

constitutive model. However, this method introduces many unknown material properties that 

need to be determined by performing more experiments on the materials. For example, an 

isotropic material has two independent material parameters whereas a cross-anisotropic material 

has five independent material parameters. An alternative way to address the inherent anisotropy 

that is caused by the preferential particle orientation is to formulate the constitutive equation 

based on the modified stresses (instead of the nominal stress) that are obtained by modifying the 

nominal stress using a microstructural fabric tensor. Literature studies (Oda and Nakayama 

1989; Tobita 1989; Li 2002) had successfully captured the material inherent anisotropy of the 

granular materials by using the modified stresses. It was also suggested that the isotropic yield 

condition in terms of the modified stresses could lead to an anisotropic yielding and hardening 

nature of the granular materials with less mathematical complexities (Tobita and Yanagisawa 

1988; Yang et al. 2008). 

As a granular material, the asphalt mixture exhibits the inherent anisotropy due to 

preferred aggregates’ orientation along the horizontal direction that is perpendicular to the load 

direction. Pavement researchers (Masad et al. 1998; Tashman et al. 2002) adopted the same 

fabric tensor concept to account for the anisotropy during the viscoplastic constitutive modeling 

of an asphalt mixture. In Chapter III, the microstructural parameter characterizing the inherent 

anisotropy was improved as a modified vector magnitude (  ) which considered not only the 
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aggregate orientation, but the size and shape of both the coarse and fine aggregates. A high 

correlation is also obtained between   and the anisotropic modulus ratio of asphalt mixture. 

Based on the modified vector magnitude, a modified fabric tensor is formulated in Chapter III 

(i.e., Equation 3-11) which is repeated as: 

1 0 0
1

0 1 0
3

0 0 1

ijF

  
          

   

      (6-1) 

where   is the modified vector magnitude that is reprinted from Equation 3-10 as: 

       
2 2

1 10

1
sin 2 cos 2

M M
k k k k

k k

k kA
     

 

   
     

   
     (6-2) 

The modified stress tensor is determined by modifying the nominal stress tensor using 

the fabric tensor (Tobita and Yanagisawa 1988; Oda 1993; Yang et al. 2008): 

 1 11

6
ij in nj in njF F             (6-3) 

where, ij  is the modified stress tensor; ij  is the nominal stress tensor. 
1

ijF   is the inverse of 

the modified fabric tensor. If a fourth-order fabric tensor is defined as: 

 1 11

6
imnj im nj im njF F F            (6-4) 

where, ij  is Kronecker delta tensor; the modified stress tensor becomes: 

 1 11

6
ij imnj mn im nj im njF F F              (6-5) 

In this dissertation, a variable with a superimposed bar indicates that the variable is 

modified by the fabric tensor and the modified variables are used in the viscoplastic modeling to 

account for the inherent anisotropy of the asphalt mixture. 
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Effective Stress for Characterization of Stress-induced Anisotropy 

Once a material is damaged, the load is transferred or carried out by the remaining 

undamaged (effective or intact) material. The cracked (lost) area cannot be used to transfer load 

inside of the material. Thus the viscoplastic constitutive equations cannot be formulated in terms 

of the nominal (apparent) stress that is calculated by using the total material area which includes 

both the intact area and the lost area. Instead, the effective (true) stress should be employed to 

express the viscoplastic models. The effective stress concept was introduced (Kachanov 1986; 

Lemaitre and Desmorat 2005) to capture the overall fracture properties of the hundreds of 

microcracks and macrocracks that are randomly dispersed in the damaged materials. The damage 

density is physically defined as (Rabotnov 1969; Lemaitre and Desmorat 2005; Sullivan 2008): 

c

T

A

A
           (6-6) 

where,   is the damage density that can be explained as a lost area ratio and 0 1  ; 0   

when there is no damage and 1   when the material is completely damaged. 
cA  is the lost 

area due to damages such as voids, flaws and cracks and 
TA is the total cross-sectional area of 

the material. 

Based on the continuum damage mechanics (CDM) (Chaboche 1987; Lemaitre and 

Desmorat 2005), a force balance equation exists between the nominal (apparent) configuration 

and the effective (true) configuration as follows: 

 T e T cA A A           (6-7) 

where,   is the nominal stress that is defined in the apparent configuration; 
e  is the effective 

stress that considers the damages in the material and defined in the true configuration. 

Substituting Equation 6-6 into Equation 6-7 yields the effective stress as: 
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1

e 






         (6-8) 

Equation 6-8 gives an isotropic effective stress which assumes that the damages of the 

material are identical in all directions. However, the damages such as cracks may have different 

propagation and evolution speed at different directions. Thus the projected lost areas differ in 

different directions, which indicate that the damage density can be an anisotropic parameter. 

Thus an anisotropic damage density is proposed as follows: 

c

ij

ij T

ij

A

A
   (no sum on sub-indices)      (6-9) 

where, 
ij  is the anisotropic damage density that can be explained as a lost area ratio on a 

specific cross section. 
c

ijA  is the lost area and 
T

ijA is the total area of the specific cross section. In 

order to formulate the effective stress based on the anisotropic damage density, a fourth-order 

damage tensor is developed as follows: 

    
1 11

2
imnj im nj nj im im njM      

     
  

     (6-10) 

where 
imnjM  is the fourth-order damage density tensor;

 ij  is the Kronecker delta tensor. Then 

the effective stress becomes: 

   
1 11

2

e

ij imnj mn in nj nj im im mjM       
      

  
   (6-11) 

where 
mn  is the nominal stress tensor. In this dissertation, a variable with a superscript (e) 

indicates that the variable has been modified by the anisotropic damage density and has become 

an effective variable. The effective variable is used in the viscoplastic modeling to account for 

the stress-induced anisotropy of the asphalt mixture. If the inherent and stress-induced 
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anisotropy needs to be accounted for simultaneously in the constitutive modeling, Equations 6-5 

and 6-11 are combined to compute a modified effective stress that is expressed as: 

e

ij imnj mabn abM F          (6-12) 

 

ANISOTROPIC VISCOPLASTIC MODEL FOR ASPHALT MIXTURE 

To account for the inherent anisotropy and the stress-induced anisotropy, the modified 

effective stress in Equation 6-12 is employed in the following derivation of the viscoplastic 

modeling of the asphalt mixture.  

 

Perzyna’s Viscoplastic Flow Rule 

The deformation response of an asphalt mixture under a destructive load can be 

decomposed into recoverable and irrecoverable components. The recoverable components 

include the elastic and viscoelastic strains while the irrecoverable components consist of the 

plastic, viscoplastic and viscofracture strains. This chapter is focused on the mechanistic 

modeling of the anisotropic viscoplastic strains.  

The viscoplastic strain is associated with the permanent deformation of the asphalt 

mixture and the rate of the viscoplastic strain can be defined by a Perzyna-type viscoplasticity 

theory as (Perzyna 1971): 

 
Nvp

ij e

ij

g
f




  


        (6-13) 

where 
vp

ij  represents the rate of the viscoplastic strain with respect to time;   is the viscosity 

related parameter and 1   is proportional to the viscosity of the asphalt mixture and 1   also 

represents the viscoplastic relaxation time. Thus   is a temperature dependent parameter. N is 



 

167 

 

the viscoplastic rate dependent exponent. Both   and N  are experimentally determined and 0

1N   for the asphalt mixtures.    is the overstress function which is expressed in terms of the 

yield surface function, f . 
e

ij  is the effective stress tensor and is defined in Equation 6-11. g is 

the anisotropic viscoplastic plastic potential function. The non-associated flow rule applies when

g f , which is appropriate for the asphalt mixture. It must be noted that the function of f  and 

g  are formulated by the modified effective stress 
e

ij
 
, while the effective stress 

e

ij  (neither the 

modified effective stress 
e

ij
 
nor the nominal stress ij ) is utilized in the term of 

e

ijg  
 
of the 

viscoplastic model. This is because that it is the effective stress 
e

ij
 
that acting on the intact 

material area drives the viscoplastic deformation of the material. The McCauley brackets in 

Equation 6-13 imply that: 

 
 

 

0, 0

, 0

f

f f
f

Pa

 


  
 



      (6-14) 

Equations 6-13 and 6-14 indicate that the viscoplastic strain occurs only when the 

overstress function   is greater than zero. The Perzyna-type viscoplastic model as shown in 

Equations 6-13 and 6-14 has been used to describe the viscoplastic evolution of the asphalt 

mixture for decades (Abdulshafi and Majidzadeh 1984; Tan et al. 1994; Seibi et al. 2001; 

Tashman et al. 2005a; Masad et al. 2007; Abu Al-Rub et al. 2012). However, most of the yield 

surface functions used in the literature studies are Drucker-Prager (D-P) or extended Drucker-

Prager (ED-P) models. As discussed in Chapter V, the D-P and ED-P yield surface models have 

some significant limitations such as non-convexity when the internal frictional angle is greater 

than 22 degrees. Thus the new yield surface model (i.e., ZLL model) developed in Chapter V is 

expressed in terms of the modified effective stresses and used in this chapter.   
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Extended ZLL Viscoplastic Yield Surface  

To account for the inherent and stress-induced anisotropy, the ZLL yield surface model 

developed in Chapter V is extended by formulating the yield surface model using modified 

effective stresses. The extended ZLL yield surface model is formulated as: 

 2 1

e e

Tf J I a a             (6-15) 

where 
2

eJ  ( 1
2

e e

ij jiS S ) is the second invariant of the modified effective deviatoric stress tensor 

e

ijS ( 1
13

e e

ij ij I   ); 1

eI (
e

kk ) is the first invariant of the modified effective stress tensor (
e

ij ) 

that is defined in Equation 6-12. Schematic plots of the ZLL yield surface on the meridian plane 

and in the modified effective principal stress space are shown in Figure 6-1 and Figure 6-2, 

respectively. The two Figures indicate that the viscoplastic deformation does not occur when the 

stress of the material is located on and within the yield surface locus.    is the Lode angle that 

has the same formulation as Equation 5-11 but is expressed using invariants of the modified 

effective stress as follows: 

 
3

2

3

2

1 3 3
arccos 0,

3 2 3

e

e

J

J




 
         

 

     (6-16) 

 where 
2

eJ  and  3 dete e

ijJ S  are the second and third invariants of the modified effective 

deviatoric stress tensor.    is zero in compression (direction OA in Figure 6-2) and    is 3 in 

extension (direction OB in Figure 6-2).     is a function that defines the yield surface shape 

on the octahedral plane and determines the convexity of the yield surface. Based on Equation 5-

22,     is expressed as: 
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   
1

cos arccos cos3
3

    
 

   
 

      (6-17) 

where   and   are dependent on the extension ratio according Equation 5-23, and: 
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d d
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



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  



 

       (6-18) 

where d  is the extension ratio that is the ratio of the yield strength in extension to that in 

compression. In Figure 6-2, d  is explained as the segment length ratio of OB to OA.    is the 

internal friction angle of the asphalt mixture. The formula of     in Equation 6-17 ensures 

that the yield surface of the asphalt mixture is smooth and convex on both the meridian plane as 

shown in Figure 6-1and the octahedral plane as shown in Figure 6-2.  

 

Viscoplastic Strain Hardening Function 

The term 
Ta a  in the extended ZLL yield surface represents the temperature and strain 

rate dependent cohesion and strain hardening for an asphalt mixture.   is a strain hardening 

function that is defined by Equation 5-25. 
Ta  and a

 are temperature and strain rate effect 

factors which are defined by Equations 5-26 and 5-27, respectively. To have a complete 

description of the viscoplastic model, the functions of  , 
Ta  and a

 are repeated as follows: 

 0 1 21 exp vp

e        
 

       (6-19) 
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  
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       (6-20) 
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







 
  
 

         (6-21) 

where 
0 , 

1  and 
2  are material parameters identified at the reference temperature (

0T ) and 

the reference strain rate (
0 ); 

vp

e  is the effective viscoplastic strain which is derived in the 

following sub-section. 
TE

 
is the activation energy of the temperature effect, J/mol; R is the 

universal gas constant, 8.314 J/mol·K; T is the temperature of interest, K;  is the strain rate of 

interest, and 
3  is a material property that is determined by experiments.  

The yield surface of the asphalt mixture expands with the increase of the effective 

viscoplastic strain. The dashed straight lines in Figure 6-1 illustrate the expanded yield surfaces 

of the asphalt mixture during the strain hardening process. In addition, the relationships between 

 , 
0  and C  and   in Equations 5-3 and 5-4 still apply to the extended ZLL viscoplastic yield 

surface models and the relationships are repeated as follows: 

 

2sin

3 3 sin








        (6-22) 

 
0

6 cos

3 3 sin

C 






        (6-23) 
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Figure 6-1 Schematic plot of the viscoplastic yield surface and potential surface on the 

meridian plane 

 

 

Figure 6-2 Schematic plot of the viscoplastic yield surface and potential surface on the 

modified effective principal stresses space 

 

β 

α 

Yield surface = f 

Plastic potential 

function = g 

 

 

α 

 

 

 

Viscoelastic 

Zone 

Hardening f 

 

 

 

 

 

 
 

 

 

Plastic potential 

surface = g Yield surface = f 

Octahedral Plane 

 

 

A 

B 

O 



 

172 

 

Viscoplastic Potential Function 

The viscoplastic model in Equation 6-13 uses a non-associated viscoplastic flow rule for 

the asphalt mixture, which is reasonable because i) the associated flow rule would overestimate 

the amount of viscoplastic dilation of materials and ii) the direction of the viscoplastic strain 

increment is not perpendicular to the yield surface, but to the viscoplastic potential surface, as 

shown in Figure 6-1. It is assumed that the viscoplastic potential surface has the same linear 

form as the yield surface but with a smaller slope which affects the volumetric dilation of the 

material. Thus the viscoplastic potential is expressed as: 

 2 1 4

e eg J I             (6-24) 

where   is the slope of the viscoplastic potential surface and   . 
4  is the incept of the 

viscoplastic potential surface which vanishes during the calculation of  
e

ijg   . A number of 

studies have indicated that the value of   is less than the value of   for geomaterials such as 

soils, sands, and asphalt mixtures (Oda and Nakayama 1989; Tashman et al. 2005a). Figure 6-1 

and Figure 6-2 illustrate the viscoplastic potential surface on the meridian plane and in the 

modified effective principal stress space, respectively. 

The gradient operator of 
e

ijg    determines the directions of the viscoplastic strain 

increment, which can be calculated by performing the first derivative of Equation 6-24 with 

respect to the effective stress components as follows: 

2 1

12

ee ee

mn mn

e e e e e e e ee
ij mn ij mn mn mn ij

J Ig g g g g

IJ

 

       

        
    
          

  (6-25) 

where 
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  (6-26) 

where e

mnS  is the modified effective deviatoric stress tensor ( 1
13

e e e

ij ij ijS I   ). Equations 6-5 

indicates 
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     (6-27) 

Substituting Equations 6-26 and 6-27 into Equation 6-25 gives 

 
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     
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  
             

  (6-28) 

The slope of the viscoplastic potential is a material property which can be derived based 

on the viscoplastic model proposed in this section. Employing Equation 6-28 in the Perzyna’s 

viscoplastic model of Equation 6-13, the viscoplastic strain rate (or increment) in the triaxial 

compressive condition (
1 2 3

e e e    , 0  ) is expressed as:  
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      (6-29) 

where  
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        (6-30) 

Thus the first invariant of the viscoplastic strain increment is expressed as: 

   1 2
n

I f Xa Yb           (6-31) 

The deviatoric viscoplastic strain increment is defined as: 

1

1

3

vp vp

ij ij ije I            (6-32) 

Then the second invariant of the deviatoric viscoplastic strain increment is computed as: 

   
2

2

2

1 1

2 3

nvp vp

ij jiJ e e f Xa Yb     
 

     (6-33) 

The slope of the viscoplastic strain increments plotted in the meridian viscoplastic strain 

increment ( 2 1~J I 
) plane becomes: 

 
2

1 3 2

J Xa Yb
m

I Xa Yb



 


 


       (6-34) 
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A normality condition must be satisfied that the viscoplastic stain increment is normal to 

the viscoplastic potential surface, as shown in Figure 6-1. The Equation 6-24 indicates that the 

slope of the viscoplastic potential function is  , thus one can have the following relation: 

1m             (6-35) 

Considering Equations 6-30, 6-34 and 6-35 solves   as:   

 
3 3

2 6

3 2 2 3 3 3

2

Xa Yb

Yb Xa

 




     
 

      
     (6-36) 

It can be found that Equation 6-36 is an implicit solution for  . Thus, for practical use, 

the values of   are resolved over the entire theoretical range of   from 0 to 1. Then a linear 

relationship is regressed with a high coefficient of determination ( 2R ) as follows: 

 20.5889 0.0122 0.9988R          (6-37) 

For the asphalt mixture,   normally ranges from 0.2 to 0.5 based on the conclusions in 

Chapter III. Thus   changes from 0.1 to 0.28 according to Equation 6-37. As we know, an 

asphalt mixture normally has an internal friction angle between 20 and 60 degrees, thus   

ranges from 0.15 to 0.47 according to Equation 6-22. Thus the value of   is always greater than 

the value of   for an asphalt mixture, which means that a non-associated flow rule is applied to 

the asphalt mixture. Equation 6-37 has been employed as Equation 5-30 in Chapter V. 

 

Determination of Effective Viscoplastic Strain 

As discussed in Chapter V, the effective viscoplastic strain is normally used to correlate 

the stress-strain relation of a material under multiaxial loading to that of the same material under 

uniaxial loading. The hardening behaviors of the material are evaluated by the effective 

viscoplastic strain. This sub-section presents the derivation of a general form of the effective 
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viscoplastic strain based on the Perzyna’s viscoplastic flow rule in Equation 6-13, the extended 

ZLL yield surface in Equation 6-15 and the viscoplastic potential function in Equation 6-24. 

The effective viscoplastic strain is determined based on an viscoplastic work 

equivalence principle (Chen and Han 1988), which states that the viscoplastic work increment    

( vpW ) of a material under multiaxial loading that is expressed by the stress and strain measured 

on the material is equivalent to the viscoplastic work increment of the same material under 

uniaxial loading that is expressed by the effective viscoplastic stress (
vp

e ) and the effective 

viscoplastic strain (
vp

e ). It is noted that 
vp

e  is different from the effective stress (
e

ij ) defined 

in Equation 6-11. Thus the viscoplastic work increment equivalence is formulated as 

e e vp vp

vp ij ij e eW              (6-38) 

Rewrite the yield surface function in Equation 6-15 as: 

 ij Tf F a a           (6-39) 

where    2 1

e e

ijF J I      which is a driving force of the viscoplastic strain. Chen and 

Han (1988) demonstrated that  ijF   was defined as a power function of the effective 

viscoplastic stress as follows: 

     2 1

m
e e vp

ij eF J I K            (6-40) 

where K  and m are constant coefficients. Equation 6-40 applies to the material under both the 

uniaxial and multiaxial loading conditions. Thus, when a uniaxial compressive load is applied on 

the material, Equation 6-40 becomes 

 
   

 
11

3 1

3 1 1 3

vp
m

vp vpe
ij e eF K


  



   
      

    (6-41) 

One can solve for the constants as follows: 
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   11

3 1 1

3 1 1 3

1

K

m




    
       




      (6-42) 

Substituting Equation 6-42 into 6-40 yields the effective viscoplastic stress as: 

   

 

 

 
 11

2 1

3 1 3 1

3 3 3

ijvp e e

e

F
J I

K

 
   



     
   

   (6-43) 

It is also demonstrated that  ijF   is homogenous of degree m  of the stress (Chen and 

Han 1988; Tashman et al. 2005b) and the viscoplastic work increment can be expressed as:  

     
N Ne e e

vp ij ij ij ije

ij

g
W f f mF   




      


   (6-44) 

Equation 6-13 yields 

 
vp vp

N ij ij

e e

ij ij

f
g g

 

 

  
 

 

       (6-45) 

Substituting Equations 6-43, 6-44 and 6-45 into Equation 6-38 gives a general expression for the 

effective viscoplastic strain rate: 

 

 
 11

3 33

3 1 3 1

vp vp

ij ijvp

e

e e

ij ij

g g

  




 

 


   

 

     (6-46) 

In a uniaxial compressive condition, Equation 6-28 gives: 

  11 11

22 33 12 23 31

3 3

3 3 1 1

0

e

e e e e e

g

g g g g g


 

    

     
          


    

    
    

     (6-47) 
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Then the effective viscoplastic strain rate in uniaxial compression becomes 

 
 

1 3

1 3

vp vp vp

e ij ij


  




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
       (6-48) 

In a triaxial compressive condition, Equation 6-28 gives: 
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   
   
  



    (6-49) 

In compression, the cracks do not grow until a fracture threshold such as the peak stress in a 

strength test or the flow number in a repeated destructive test is reached. Thus the damage 

densities in different directions are assumed to be very small and identical value before the 

viscofracture strains that are caused by the cracks occur (i.e., 0ij constant   ).  Thus the 

effective viscoplastic strain rate in triaxial compression can be written as: 

1
22 22

1 3 1 0.5 3
2

11 3 1 3

vp vp vp

e ij ij

 
  

 



       
                 

   (6-50) 

Generalizing Equations 6-48 and 6-50 gives: 

 

1
22 22

1 3 1 0.5 3
1

11 3 1 3

vp vp vp

e ij ijn
 

  
 



       
                  

  (6-51) 

where 1n   in a uniaxial condition and 3n   in a triaxial condition; Integrating Equation 6-51 

over time can give the effective viscoplastic strain. It is noteworthy that Equation 6-51 has been 

used as Equation 5-29 in Chapter V.   
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LABORATORY EXPERIMENTS 

In this chapter, both the nondestructive dynamic modulus (NDM) tests and the 

destructive dynamic modulus (DDM) tests that are employed in Chapter IV (i.e., Figure 4-3) are 

performed on more asphalt mixture specimens. The measured axial total strains are decomposed 

based on the strain decomposition developed in Chapter IV and obtain the viscoplastic strains 

which are implemented in the characterization of the viscoplasticity of the asphalt mixtures.  

The asphalt mixtures used in the NDM and the DDM tests were the same types of 

asphalt mixtures that had been used in Chapter V (i.e., Table 5-2). The VHL and NHL asphalt 

mixtures were fabricated by mixing Texas Hanson limestone with two types of asphalt binder 

(Valero asphalt (PG64-16) and NuStar asphalt (PG67-22)), respectively. The VHL and NHL 

asphalt mixture specimens are varied by two air void contents (4% and 7%) and three aging 

periods (0, 3, and 6-month continuous aging at 60°C). Two replicate specimens were fabricated 

for each combination of the asphalt binder, air void content and aging condition.  

The NDM and the DDM tests employed the same testing configurations of the NDM and 

DDM tests used in Chapter IV (i.e., Figure 4-3). In the NDM test, a compressive sinusoidal 

stress with a maximum stress value of 70 kPa was applied to the sample for 600 cycles at a 

frequency of 1 Hz and at a temperature of 40°C. Stresses and strains were recorded by three 

LVDTs to calculate the dynamic moduli and phase angles of undamaged asphalt mixtures. In the 

DDM test, a compressive sinusoidal load with a minimum stress of 20 kPa and a maximum 

stress of 600 kPa was applied to the asphalt mixture specimen at the frequency of 1 Hz and at the 

temperature of 40°C. The total deformation was recorded with respect to time using the three 

LVDTs until the specimen fails in the tertiary deformation stage. 

The total strains measured from the DDM tests on different asphalt mixtures are 

decomposed by using the strain decomposition method proposed in Chapter IV. The separated 
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viscoplastic strains are employed to determine the Perzyna’s viscoplastic parameters,   and N , 

which is presented in this chapter. The separated viscofracture strains will be implemented in 

Chapter VII to determine anisotropic damage densities and the parameters of the viscofracture 

evolution.  

 

ANALYSIS OF VISCOPLASTIC PROPERTIES OF ASPHALT MIXTURES 

In Chapter V, the strength tests at different confining pressures, temperatures and strain 

rates have been performed to determine the following viscoplastic material properties of asphalt 

mixtures: 1) strength-related parameters:  ,  , 
0 , C  and d  in the ZLL yield surface; 2) 

strain hardening parameters: 
1  and 

2 ; and 3) temperature and strain rate dependent 

parameters: 
Ta ,

TE  and  a
, 

3 . In this section, the Perzyna’s viscoplastic parameters,   and 

N  are determined and analyzed when the asphalt mixtures have different binders, air voids and 

aging periods.  

In addition, the slope of the viscoplastic potential function,  , is also calculated for the 

asphalt mixtures based on the measured modified vector magnitudes in Chapter V. The effects of 

the inherent anisotropy of the asphalt mixtures on the viscoplastic yielding are analyzed based on 

the extended ZLL yield surface model and the viscoplastic testing data. 

 

Determination of Perzyna’s Viscoplastic Properties  

Based on the Perzyna’s viscoplastic flow rule and the extended ZLL yield surface 

model, the axial viscoplastic strain rate of a DDM test can be theoretically expressed as: 

 11 2 1

11

N
vp e e

T e

g
J I a a    



    
  

     (6-52) 
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The DDM test is a uniaxial compressive test conducted at a constant temperature, thus 0  , 

  1   , 1Ta  . Using Equations 6-19, 6-20, 6-47, 6-48 in Equation 6-52  and assuming the 

axial damage density (
11 ) before viscofracture occurs is zero give: 

 
   

3

11 1 0 1 2 11

0

1 33 3 3
1 exp

3 3 3 11 3

N

vp e vp

 
       



                                                
     (6-53) 

It is noted that the assumption that 11 0   is believed reasonable because 1) the initial 

air voids of the asphalt mixture are squeezed under a compressive load and becomes a very small 

value (normally less than half of the initial air void content) and 2) the cracks will not grow in 

the viscoplastic deformation stage, thus the axial damage density will not be increased due to the 

crack growth before the viscofracture occurs (e.g., peak stress of a strength test or the flow 

number of a repeated destructive load test). 

In Equation 6-53, the parameters  , 
0 , 

1 , 
2  and 

3  have been determined using 

UCS and TCS tests at the reference strain rate, 
0 .   is the total strain rates of the DMM test 

and it keeps decreasing as the total strain increases. The value of   is also calculated by 

Equation 6-36 or Equation 6-37 based on the modified vector magnitude,  , which has been 

determined using the lateral surface scanning test proposed in Chapter III.  The only unknown 

parameters in Equation 6-53 are the Perzyna’s viscoplastic coefficients,   and N . However, the 

strain rate dependent parameter, 
3 , is also treated as an unknown parameter in this study. This 

is because 1) the total strain rates of the DDM test are not constants but keep decreasing during 

the primary and secondary deformation stages; 2) 
3  is a strain rate dependent parameter, which 

can be inherently characterized by the DDM test that has varying strain rates during the tests; 
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and 3) by doing so, the UCS tests at different strain rates shown in Table 5-2 can be avoided and 

the total experimental work is minimized.  

It must be noted that the modified effective stress, 
1

e  in Equation 6-53, should be 

assigned as the measured stresses in the lab tests. This is because the measured stresses are 

directly determined on the real asphalt mixture specimens which are anisotropic materials. Thus 

the measured stresses have already characterized the inherent anisotropy of the asphalt mixture. 

They do not need the modifications of the fabric tensor and the measured stresses are equivalent 

to the modified effective variables. In contrast, if a stress is calculated or predicted (e.g., by 

employing the finite element program) on an inherently anisotropic material such as the asphalt 

mixture which, however, is characterized by an isotropic model (e.g., use an identical modulus 

and Poisson’s ratio in all directions of the finite element models of the asphalt mixture), then this 

stress does not include the anisotropic properties of the material and needs to be modified by the 

fabric tensor to account for the inherent anisotropy. Without considering the inherent anisotropy 

of the material will introduce a possibly very large systematic error in the performance 

prediction of the material, which will be illustrated in the next sub-section. 

The axial viscoplastic strains are obtained by performing the strain decomposition 

proposed in Chapter IV on the measured total strain of the DDM test. Then the axial viscoplastic 

strain rates with respective to time are calculated and implemented in Equation 6-53, and the 

Perzyna’s viscoplastic coefficients ( , N ) and the strain rate dependent parameter (
3 ) can be 

determined.  Figure 6-3 shows an example of the viscoplastic strain and the axial viscoplastic 

strain rate of an asphalt mixture measured in the primary and secondary stages. The axial 

viscoplastic strain rate is fitted by Equation 6-53. It is found that the viscoplastic strain increases 

while the viscoplastic strain rate decreases with load cycles. The Equation 6-53 can be used to 

predict the viscoplastic strain rate in the DDM test. 
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Figure 6-3 Viscoplastic strain and viscoplastic strain rate in primary and secondary stages 

of an asphalt mixture (VHL-22, 4%, 0-month aged) 

 

The aforementioned analysis method is applied to all of the tested asphalt mixtures that 

have different binders, air voids and aging periods. Figure 6-4 shows the measured Perzyna’s 

viscoplastic coefficients ( , N ) and strain rate dependent parameters (
3  ) of the asphalt 

mixtures. It can be found that   decreases as the aging period increases or the air void content 

decreases. The values of  for the mixtures using Valero binder (PG64-16) are a little greater 

than that of using NuStar binder (PG67-16). These findings make sense because   is inversely 

proportional to the viscosity of the material. A stiffer asphalt mixture that is caused by a stiffer 

binder, lower air void and longer aging period normally has a higher viscosity, which results in a 
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lower value of  . It is also must be noted that the value of   might also be affected by other 

factors such as temperatures.  

 

 

Figure 6-4 Measured Perzyna’s viscoplastic coefficients ( , N ) and strain rate dependent 

parameters (
3 ) of asphalt mixtures 

 

The testing results in Figure 6-4 do not show obvious trends for the rate dependent 

parameters including N  and 
3  when the asphalt mixtures have different binders, air void 

contents and aging periods. For all the tested asphalt mixtures, N  has an average value of 1.77 

with a standard deviation of 0.141 while 
3  has an average value of 0.31 with a standard 

deviation of 0.050. Thus, based on the limited testing data, it might be appropriate to conclude 

that the viscoplastic rate dependent parameters ( N  and 
3 ) of the asphalt mixtures have limited 
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variation and might be assumed as constants when the asphalt mixtures have different binders, 

air void contents and aging periods. 

 

Effect of Inherent Anisotropy on Viscoplastic Yielding  

This subsection presents the results of the inherent anisotropy of asphalt mixture due to 

the preferentially oriented aggregates and its effect on the yield surfaces and the viscoplastic 

deformation. 

The inherent anisotropy of the asphalt mixture is quantified by a modified vector 

magnitude (  ) which is measured by the lateral surface scanning tests in Chapter III. As 

mentioned previously, 0   indicates an isotropic condition and 1   implies a fully cross 

anisotropic condition. As shown in Table 5-2, the lateral surface scanning tests are performed for 

all the asphalt mixture specimens which employ one aggregate gradation and have two binders, 

two air void contents and three aging periods. According to Equation 6-36 or 6-37, the slopes of 

the viscoplastic potential (  ) are calculated based on the values of  . Figure 6-5 shows that 

the measured   and   for the tested specimens. On can find that the values of   vary from 

0.2 to 0.5, which are consistent with the measurements in Chapter III. The corresponding values 

of   range from 0.1 to 0.28.  No obvious relations are found between   or   and the binder 

type and air void content. In fact, according to the analysis in Chapter III,   solely depends on 

the aggregate properties including aggregate inclination angle relative to the horizontal direction, 

aggregate size and aggregate shape, all of which are related to the aggregate gradation used for 

the asphalt mixture and the compaction effort during the specimen fabrication.  

 



 

186 

 

 

Figure 6-5 Modified vector magnitudes and slope of the viscoplastic potential of asphalt 

mixtures 

 

Two typical values of   ( 0.25  and 0.5  ) are selected to quantify the effect of 

the inherent anisotropy on the viscoplastic yielding properties of the asphalt mixture. Based on 

the measurements of the yielding properties in this study, the following material parameters were 

implemented in the plot of yield surface examples:  209C kPa  and 45   which 

correspond to 0.352  , 
0 224kPa  , and 0.62d  . The initial yield surfaces (before 

hardening) for the asphalt mixture considering isotropy ( 0  ), low anisotropy ( 0.25  ) 

and high anisotropy ( 0.5  ) are plotted in Figure 6-6, in which 
1 , 

2  and 
3  are nominal 

principal stresses. Figure 6-6 demonstrates that, when the asphalt mixture is modeled as an 

isotropic material, the yield strength is greater in the triaxial compressive condition while less in 

the triaxial extensive condition than the yield strengths of the asphalt mixture when modeled as 

an anisotropic material. Thus, if using an isotropic yield surface model for the asphalt mixture, 
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the predicted viscoplastic deformation in the vertical direction (along the direction of tire 

pressure) will be underestimated in the triaxial compressive condition and overestimated in the 

triaxial extensive condition compared to the viscoplastic deformation which occurs in the asphalt 

mixture of the field pavement which is an inherently anisotropic material.  

 

 

Figure 6-6 Yield surfaces of asphalt mixture (with an internal friction angle of 45 degrees) 

at different levels of anisotropy ( 0  : Isotropy; 0.25  : Low anisotropy, 0.5  : 

High anisotropy) 

 

As we know, the asphalt mixtures beneath the tire load is subjected to triaxial 

compressive stresses (compression zone 
x y   in Figure 6-7) which lead to the development 

of the vertical viscoplastic deformation. The asphalt mixtures away from the tire load (including 

the asphalt mixtures along the wheel paths which are ahead of and behind the vehicle tire) are 
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subjected to triaxial extensive stresses (extension zone 
x y   in Figure 6-7) which cause the 

reversal of the vertical viscoplastic deformation. When using an isotropic yield surface model to 

model the asphalt mixture, the development of the vertical viscoplastic deformation is 

underestimated and the reversal of the vertical viscoplastic deformation is overestimated, both of 

which result in the underestimation of the permanent deformation in the asphalt pavements.  

 

 

Figure 6-7 Schematic representations of stresses induced by wheel load in asphalt 

pavements (
x  is horizontal stress and 

y  is vertical stress) (Ashtiani 2009) 

 

It was also found in the literature (Wang et al. 2005; Oh et al. 2006) that, using 

anisotropic moduli in the finite element modeling of the asphalt pavement, larger tensile and 

shear stresses were obtained than those modeled by isotropic moduli. The predicted rutting of 

pavements with anisotropic modeling of the asphalt mixture matched well with the measured 
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pavement rutting, which exceeded the rutting predicted by the isotropic moduli. The study in this 

chapter explains the fundamental mechanisms of these calculated results based on the effect of 

the inherent anisotropy on the viscoplastic yield surface of the asphalt mixture. Therefore, a yield 

surface considering the anisotropy of the asphalt mixture is more appropriate to be used in the 

constitutive modeling when making the rutting predictions of asphalt pavements. This study 

provides a straight forward method of using the modified stresses in the viscoplastic yield 

surface and viscoplastic potential functions to account for the inherent anisotropy of the asphalt 

mixture. 

 

SUMMARIES AND CONCLUSIONS 

The mechanisms of permanent deformation (rutting) in asphalt pavements have not been 

well addressed due to the complexities of asphalt concrete. In this chapter, the permanent 

deformation in an asphalt mixture is comprehensively characterized by modeling the anisotropic 

viscoplasticity of the damaged asphalt mixture. An extended Perzyna’s anisotropic viscoplastic 

model is employed for the asphalt mixture, which incorporates: 1) a modified effective stress in 

the formulation of the models to account for both the inherent anisotropy due to the aggregates’ 

orientation and the stress-induced anisotropy caused by the crack growth; 2) an extended ZLL 

yield surface developed in Chapter V to provide a smooth, convex, hydrostatic pressure 

dependent yield surface function; 3) a non-associated flow rule to address the volumetric 

dilation; and 4) a temperature and strain rate dependent strain hardening function.  

The parameters of the viscoplastic yield surface models are related to fundamental 

material properties such as cohesion and internal friction angle of the asphalt mixtures. A general 

expression is derived for the effective viscoplastic strain of the asphalt mixture based on the 

proposed viscoplastic models. The slope of the viscoplastic potential surface is found to be 



 

190 

 

solely dependent on the modified vector magnitude which was used to quantify the inherent 

anisotropy of the asphalt mixtures. Using the decomposed viscoplastic strain measured in the 

destructive dynamic modulus tests, the Perzyna’s viscoplastic coefficients are determined for 

different asphalt mixtures. It is found that the viscosity related coefficient  decreases as the 

aging period increases or the air void content decreases; while the rate dependent parameters N  

and 
3  do not change very much when the asphalt mixtures have different binders, air void 

contents and aging periods. 

The inherent anisotropy is quantified by a modified vector magnitude (  ) which is 

demonstrated to be independent of binder, air void content and aging periods. The systematic 

error when using isotropic model in the viscoplastic characterization is that the yield strength of 

the asphalt mixture is greater in the triaxial compressive condition while less in the triaxial 

extensive condition than the yield strengths of the asphalt mixture modeled as an anisotropic 

material. Thus the predicted permanent deformation of the asphalt pavement will be 

underestimated without considering the inherent anisotropy. Using the modified effective 

stresses in the viscoplastic models provides a straight forward method to account for the inherent 

anisotropy of the asphalt mixture in the modeling of the viscoplastic deformation. 
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CHAPTER VII  

ANISOTROPIC VISCOFRACTURE OF DAMAGED ASPHALT 

MIXTURES
*
 

 

OVERVIEW 

When an asphalt mixture is subjected to a destructive compressive load, it experiences a 

sequence of three deformation stages: the primary, secondary and tertiary stages. Most of the 

research in the literature focused on the plastic deformation in the primary and secondary stages, 

or the prediction of the flow number which, in fact, is the initiation of the tertiary stage. 

However, little research effort has been reported on the mechanistic modeling of the damage that 

occurs in the tertiary stage. The main objectives of this chapter are to provide a mechanistic 

characterization method for the damage modeling of the asphalt mixtures in the tertiary stage and 

to provide a method to determine the anisotropic damage densities used in the effective stress 

during the anisotropic viscoplastic modeling of the asphalt mixture.  

The strain caused by the growth of cracks is the viscofracture strain which is an 

anisotropic variable. The axial viscofracture strain is obtained by conducting the strain 

decomposition of the measured total axial strain in the destructive compressive test, which has 

been presented in Chapter IV. The radial strain decomposition is proposed in this chapter based 

on a generalized elastic-viscoelastic correspondence principle. The testing results of the 

destructive tests illustrate that the deformation during the tertiary flow of the asphalt mixtures is 

principally caused by the formation and propagation of cracks which is signaled by the increase  

______________________________ 
*
Part of this chapter is reprinted with permission from ASCE: "Mechanistic Modeling of Fracture in 

Asphalt Mixtures under Compressive Loading." by Yuqing Zhang, Rong Luo and Robert L. Lytton, 2012, 

Journal of Materials in Civil Engineering, In Press, Copyright [2012] by ASCE. 
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of the phase angle in the tertiary phase. The decomposed axial and radial viscofracture strains are 

employed to mechanistically characterize the viscofracture of asphalt mixtures in compression, 

which are represented by the anisotropic damage densities and true stress.  

The axial damage density and true stress are determined by using the dissipated pseudo 

strain energy (DPSE) balance principle, and the radial damage density is determined based on a 

geometric analysis of the cracking mode in compression. Both damage densities and true stress 

are demonstrated to increase with load cycle in the tertiary stage. The increased true stress yields 

extra viscoplastic strain, which is the reason why the permanent deformation is accelerated by 

the occurrence of the cracks. To characterize the evolution of the anisotropic viscofracture in the 

asphalt mixtures in compression, an anisotropic pseudo J-integral Paris’ law in terms of damage 

densities is proposed and the material constants in the Paris’ law are determined, which are 

temperature independent and can be employed to predict the time-dependent fracture of asphalt 

mixtures in compression. 

 

INTRODUCTION 

When a paving asphalt mixture is subjected to a destructive compressive load, it 

experiences a sequence of three deformation stages: the primary stage, secondary stage and 

tertiary stage. During the primary and secondary stages, permanent deformation (rutting) 

accumulates based on a strain (or work) hardening mechanism. The work done by the repeated 

load accumulates energy in the asphalt mixture which yields a stiffer material. The asphalt 

mixture reaches a point at which it is so stiff that the microcracks and voids start to grow and 

propagate to macrocracks in the tertiary stage (Lytton 2000; Zhou and Scullion 2002). This point 

is actually the initiation of the tertiary stage and is defined as the flow number in the repeated 

load test or the flow time in the static creep test (Witczak et al. 2002). The increase of the crack 
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size leads to the loss of the area of the intact material, which is the major reason for the 

degradation of the modulus. The cracks that appear in the tertiary stage in turn accelerate the 

development of permanent deformation and eventually reduce the service life of pavements. In 

order to accurately predict the field performance of asphalt pavements, there is an imperative 

need to perform the fundamentally mechanistic modeling and laboratory evaluation on the 

fracture that occurs in the tertiary stage of asphalt mixtures. 

However, little effort has been made on the investigation of the fracture properties of the 

asphalt mixtures during the tertiary deformation stage. Most of the research efforts documented 

in the literature (Kvasnak et al. 2007; Goh and You 2009; Bausano and Williams 2010; Rodezno 

et al. 2010) focused on the prediction of the flow number or flow time which was the starting 

point of the tertiary stage. Bausano and Williams (2010) used an energy-based approach to 

predict the flow number while Kvasnak et al. (2007) and Rodezno et al. (2010) employed 

statistical models to relate the flow number with the material properties. A number of researchers 

(Kaloush and Witczak 2002; Zhou et al. 2004; Biligiri et al. 2007) modeled the evolution of the 

plastic strain with load cycle in the tertiary stage by using empirical fitting functions. 

Nevertheless, the fundamental mechanisms for the tertiary flow were not clearly discovered. 

Lytton (2000) emphasized that “what has been called ‘tertiary creep’ is in fact not creep at all 

but an increase of permanent strain due to the formation and growth of microcracks”. Some 

other researchers (Ramsamooj and Ramadan 1999; Zhou and Scullion 2002) also reported that 

the cracks were observed during the tertiary deformation stage of asphalt mixtures. Therefore, 

further mechanistic characterizations based on fracture mechanics and damage mechanics should 

be performed to reveal the fundamental mechanisms of the time dependent fracture 

(viscofracture) in the tertiary phase of the asphalt mixtures in compression, which is also the 

objective of this study. 
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The fracture of an asphalt mixture in compression develops with viscoplasticity 

simultaneously in the tertiary stage when the asphalt mixtures are subjected to a destructive 

compressive load. Chapter IV proposes a strain decomposition to differentiate viscoplasticity and 

viscofracture from the viscoelasticity of the asphalt mixtures. The modulus and phase angle data 

in Chapter IV indicate that the cracking mode in compression differs significantly from that in 

tension of the asphalt mixture. The studies in the literature have not presented any in-depth 

investigations on the cracking of the asphalt mixture in compression.  

This chapter presents more fundamental studies on the viscofracture properties of the 

asphalt mixtures in compression and provides the determination of the anisotropic damage 

densities (defined in Equations 6-9 and 6-11) used in viscoplastic modeling. The contents are 

organized as follows. The next section introduces the observation of the cracks of the asphalt 

mixture in compression. Then laboratory experiments and testing results are presented. The 

following section presents a brief description of the axial strain decomposition proposed in 

Chapter IV and further develops a radial strain decomposition technique. Then the mechanistic 

modeling of the anisotropic viscofracture in the tertiary stage is presented in detail. After this, 

the evolution of the anisotropic viscofracture of the asphalt mixtures under repeated compressive 

loads is characterized by an anisotropic pseudo J-integral Paris’ law. The last section summarizes 

the major findings in this chapter.  

 

CRACKING MODE OF ASPHALT MIXTURE IN COMPRESSION 

An asphalt mixture has a different cracking model in compression and in tension. It is 

well known that the cracks grow in the direction that is perpendicular to the direction of stress in 

tension. To demonstrate the cracking mode of the asphalt mixture in compression, some of the 

asphalt mixture specimens were painted on the lateral surface by white plaster before the 
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destructive tests, as shown in Figure 7-1. It is noted that the top and bottom plaster caps on the 

specimens were employed to ensure that the top surface is parallel to the bottom surface and that 

the three LVDTs deformed uniformly. Figure 7-2 shows the asphalt mixture specimen after the 

destructive test. It can be seen from the figure that some of the cracks were illustrated as splitting 

cracking which grow along the vertical direction that is the direction of the stresses, while some 

of the cracks are shown as diagonal cracking which propagate in the diagonal directions.  

 

 

Figure 7-1 An asphalt mixture specimen painted by white plaster on surfaces before 

destructive test 

 

The studies on the crack development in compression have been intensively performed 

on some civil materials such as glass, casting resin, cement, mortar and rocks (Hoek and 

Bieniawski 1965; Reys 1991; Eberhardt et al. 1999; Dyskin et al. 2003). Figure 7-3 shows the 
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two dimensional (left figure) plot and three dimensional (right image) photos of the cracks in 

compression. It can be seen that the cracks can initiate at the pre-existing defects such as voids, 

flaws of the materials and the cracks incline to propagate along the compression axis.  

The asphalt mixture fractures in the tertiary stage when it is subjected to a compressive 

load. The literature studies on compressive cracking of civil materials provide an approach to 

understand the phenomena of the cracks of the asphalt mixtures in compression. However, a 

systematic mechanistic characterization of the cracking mode in the asphalt mixture is urgently 

needed and will be addressed in this chapter. 

 

 

Figure 7-2 An asphalt mixture specimen painted by white plaster on surfaces after 

destructive test 

 

Cracks 
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Figure 7-3 Crack propagation in uniaxial compression plotted in 2-D (left figure) and 

imaged in 3-D (right photo) (Dyskin et al. 2003) 

 

LABORATORY EXPERIMENTS AND MATERIALS 

The anisotropic damage densities (defined in Equations 6-9 and 6-11) including the axial 

damage density and the radial damage density are employed to characterize anisotropic 

viscofracture and used in the anisotropic viscoplastic modeling of the asphalt mixture. The data 

that are needed to determine the anisotropic damage densities are the decomposed viscofracture 

strains including the axial viscofracture strains and the radial viscofracture strains in the tertiary 

stage of the destructive dynamic modulus (DDM) test, which can be provided by the tests 

performed in Chapter VI. Thus no new tests are needed to perform in this chapter. A brief 

summary for the testing protocol and materials used in Chapter VI is provided as follows: the 

testing protocol includes a series of three laboratory tests: 1) uniaxial compressive creep (UCC) 

test; 2) nondestructive dynamic modulus (NDM) test; and 3) destructive dynamic modulus 

(DDM) test. The three tests were conducted on the asphalt mixtures that were fabricated by 
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mixing Texas Hanson limestone with two types of asphalt binder (Valero asphalt (PG64-16) and 

NuStar asphalt (PG67-22)), respectively. The VHL and NHL asphalt mixture specimens are 

varied by two air void contents (4% and 7%) and three aging periods (0, 3, and 6-month 

continuous aging at 60°C). Two replicate specimens were fabricated for each combination of the 

asphalt binder, air void content and aging period.  

To obtain the radial strains, a radial LVDT is mounted on a bracelet which surrounds the 

specimen to record the deformation of the specimen’s circumference during the tests, as shown 

in Figure 7-4. The radial strain is calculated as the ratio of the circumferential deformation to the 

specimen’s circumference (314 mm). The same technique is used in Chapter II (see Figure 2-3).  

 

 

Figure 7-4 Testing configurations of the UCC, NDM, DDM tests including axial and radial 

LVDTs. 
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The measured total axial strain and the total radial strain in the DDM tests need to be 

decomposed to obtain the axial and radial viscofracture strains. Chapter IV has presented a strain 

decomposition method to acquire the axial viscofracture strain in the tertiary stage. This chapter 

is about to provide a similar strain decomposition based on a generalized elastic-viscoelastic 

correspondence principle to obtain the radial viscofracture strain from the data of the DDM tests. 

 

AXIAL AND RADIAL STRAIN DECOMPOSITIONS 

In this section, a brief summary is presented for the axial strain decomposition. Then a 

generalized elastic-viscoelastic correspondence principle is proposed, based on which the radial 

strain decomposition is accomplished. In the end, both the axial and the radial viscofracture 

strain are obtained based on the measured axial and radial total strains in the DDM tests and will 

be employed in the anisotropic viscofracture characterization of the next section. 

 

Axial Strain Decomposition 

The total axial strain measured in the destructive dynamic modulus test is decomposed 

into five components (see Equation 7-1) using the materials properties of the undamaged asphalt 

mixtures, including  E t , E
,  , and 

YE  as discussed in Chapter IV 

1 1 1 1 1 1

T e ve p vp vf                (7-1) 

where 
1

T is axial total strain; 
1

e  is axial elastic strain; 
1

ve  is axial viscoelastic strain; 
1

p  is 

axial plastic strain; 
1

vp  is axial viscoplastic strain; and 
1

vf  is axial viscofracture strain. 

The axial strain decomposition is conducted by employing the extended elastic-

viscoelastic correspondence principle and the pseudo strain concept (Schapery 1984). It is 

proved in Chapter IV that, when the Young’s modulus is assigned as the reference modulus, the 
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pseudo strain equals the remaining strain after subtracting the viscous strain from the total strain. 

Therefore, once the pseudo strain (  1

R t ) is calculated based on its definition (i.e., Equation 7-

9), the strain decomposition can be accomplished by the following steps:  

1) elastic strain is always calculated by the Hooke’s law as follows:  

 1

e

Yt E          (7-2) 

2) viscoelastic strain is computed by subtracting the pseudo strain from the measured total 

strain as follows:  

1 1 1

ve T R            (7-3) 

3) plastic strain is the difference between the instantaneous pseudo strain (  1 0R t  ) and 

the elastic strain as shown below:  

 1 1 10p R et            (7-4) 

4) viscoplastic strains in the primary and secondary stages are calculated by subtracting the 

elastic strain and the plastic strain from the pseudo strain as shown in Equation 7-5. 

Then the viscoplastic strain in the tertiary stage was predicted by using the Tseng-Lytton 

model (Tseng and Lytton 1989) as shown in Equation 7-6;  

     1 1 1 1, ,vp R e pI II I II            (7-5) 

  1

1 1 1expvp vp N


  
  
 

      (7-6) 

5) viscofracture strain was calculated by subtracting all of the other strain components from 

the measured total strain as shown in Equation 7-7.  

 1 1 1 1 1

vf R e p vp               (7-7) 

Details of the axial strain decomposition can be found in Chapter IV. 
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Generalized Elastic-Viscoelastic Correspondence Principle 

In the extended elastic-viscoelastic correspondence principle, Schapery (1984) 

formulated a linear constitutive law for the viscoelastic material as follows: 

   1

R

Rt E t          (7-8) 

where 
RE  is the reference modulus and  1

R t  is the axial pseudo strain that is expressed as: 

   
 1

1
0

1
T

t
R

R

d
t E t d

E d

 
  




        (7-9) 

where  1

T 
 
is the axial total strain measured in the test and  E t

 
is the relaxation modulus of 

the undamaged asphalt mixture. It is proved in Chapter IV that, if the reference modulus is 

assigned as Young’s modulus,  1

R t  is capable of eliminating the viscous effect on the axial 

total strain and mathematically equals      1 1 1

R T vet t t     where  1

ve t  is the axial 

viscoelastic strain.  

Inspired by Equation 7-8 and 7-9, another corresponding law is formulated for the 

viscoelastic material to relate the axial strain to the radial strain as follows: 

   1 2

12

1 R

R
t t 


          (7-10) 

where 
12

R  is the reference Poisson’s ratio that is assigned as the elastic Poisson’s ratio.   2

R t  

is the radial pseudo strain that can be calculated by: 

   
 2

2 12 12
0

T
t

R R
d

t t d
d

 
    




 
    

 
      (7-11) 

where  2

T 
 
is the radial total strain that is measured in the test and  12 t

 
is named as inverse 

viscoelastic Poisson’s ratio of the undamaged viscoelastic material. Similar to the axial pseudo 



 

202 

 

strain, the radial pseudo strain is capable of removing the viscous effect on the material 

responses and mathematically, 
2 2 2

R T ve     where 
2

ve  is radial viscoelastic strain. 

 12 t  is a newly proposed viscoelastic variable that is used to determine the axial 

strain provided that the radial strain is given and can be defined through: 

     1 12 2
0

t

t t s d s  


          (7-12) 

If the axial strain (  1 t ) and the radial strain (  2 t ) are measured in a nondestructive creep 

test,  12 t  can be determined by taking Laplace transform to Equation 7-12 and yields: 

 
 

 
11

12

2

s
t

s s







  

  
  

L        (7-13) 

where  1 s  and  2 s  are the Laplace transform of the axial strain and radial strain, 

respectively. s  is the variable in the Laplace domain. It is known that the viscoelastic Poisson’s 

ratio can be defined through Equation 7-14 and determined by Equation 7-15 based on the 

measured axial and redial strains. 

     2 12 1
0

t

t t s d s  


          (7-14) 

 
 

 
21

12

1

s
t

s s







  

  
  

L        (7-15) 

Equations 7-13 and 7-15 indicate that, in the Laplace domain, we have: 

 
 12

12

1
s s

s s



         (7-16) 

Equation 7-16 is a companion formula to the relationship between the creep compliance and the 

relaxation modulus as shown in Equation 4-4. Figure 7-5 shows an example of  12 t  and 
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 12 t  that are determined by conducting a UCC test on an asphalt mixture. It is found that the 

viscoelastic Poisson’s ratio is an increasing power curve and can be greater than 0.5 for an 

anisotropic viscoelastic material. The inverse viscoelastic Poisson’s ratio is a decreasing curve 

and always greater than 1.  

 

 

Figure 7-5 Viscoelastic Poisson’s ratio and inverse viscoelastic Poisson’s ratio for an 

asphalt mixture 

 

Figure 7-5 also demonstrates that the measured  12 t  and  12 t  can be perfectly 

fitted by the Prony series models that are shown in Equations 7-16 and 7-17, respectively. 

 12 0

1

1 exp
M

i

i i

t
t

r
  



  
     

  
       (7-16) 

 12

1

exp
M

j

j j

t
t

z
  



 
    

 
       (7-17) 
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where M is the total number of the Kelvin elements in the Prony series model; 
0 , 

i , 
ir , 

, 

j  and 
jz  are fitting parameters. 

0  is used as the elastic Poisson’s ratio, i.e., 
12 0

R  . 

 

Radial Strain Decomposition 

In order to perform the radial strain decomposition, the radial pseudo strain needs to be 

firstly calculated based on Equation 7-11, in which  2

T t  is the measured radial total strain of 

the DDM tests. Similar to the model for the axial total strain in Equation 4-10,  2

T t  can be 

modeled as: 

     

 

     

2 2 2

2 20 2

1 2

2
2 2 2 2*

2

1 exp

cos cos

T

c d

L

c i

i i

d N N N

N

t t t

t
t

t t t
E

  

  



     






 
   

      
  


    




    

(7-18) 

where 
2

T is measured radial total strain; 
2c  is radial creep strain due to the creep stress; 

20 2 2, ,i i    are fitting parameters for the radial creep strain; L  is total number of 
2i  and 

2i ; 

2d  is radial dynamic cyclic strain due to the dynamic cyclic stress; 
2N  is amplitude of the 

radial dynamic strain at the N-th load cycle; 
*

2NE  is the magnitude of the radial dynamic 

modulus (
*

2NE ) of the damaged asphalt mixture at the N-th load cycle that is calculated using 

*

2 2N d NE   ; and  
2N  is phase angle of 

*

2NE  , which equals the lag angle between the 

radial total strain and the stress at the N-th load cycle.  

Employing Equations 7-17 and 7-18 in Equation 7-11 gives the radial pseudo strain as: 
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




 (7-19) 

where 12 0

R  that is the elastic Poisson’s ratio and    t t    
 
according to Equation 

7-17. 
*

12  and    are the magnitude and phase angle of the complex Poisson’s ratio of the 

undamaged asphalt mixtures that are measured in the NDM tests. Figure 7-6 illustrates an 

example of 
*

12  and    of an undamaged asphalt mixture. It is found that both 
*

12  and    

remain unchanged with load cycles in the NDM test. 

Similar to the axial strain decomposition, the total radial strain is also decomposed into 

five components as follows: 

2 2 2 2 2 2

T e p ve vp vf                 (7-20) 

where 2

T is radial total strain; 2

e  is radial elastic strain; 2

ve  is radial viscoelastic strain; 2

p  is 

radial plastic strain; 2

vp  is radial viscoplastic strain; 2

vf  is radial viscofracture strain. By 

inputting the measured total radial strain into Equation 7-11, the radial pseudo strain is 

calculated by Equation 7-19. Based on the generalized elastic-viscoelastic correspondence 

principle the radial pseudo strain is the remaining strain by subtracting the radial viscoelastic 

strain from the total radial strain. Thus: 

2 2 2 2 2 2 2

R T ve e p vp vf                  (7-21) 
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Figure 7-6 Magnitude and phase angle of complex Poisson’s ratio for asphalt mixture 

 

The radial strain decomposition is performed as follows:  

1) the radial elastic strain is calculated using axial elastic strain multiplied by the reference 

Poisson’s ratio that is elastic Poisson’s ratio, which is shown as 

 
2 12 1 0

e R e

Y

t

E


              (7-22) 

2) the radial viscoelastic strain is obtained by subtracting the radial pseudo strain from the 

radial total strain: 

2 2 2

ve T R             (7-23) 

3) since    2 20 0 0vp vft t     , the radial plastic strain is determined as: 

 2 2 20p R et              (7-24) 
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4) since the viscofracture strain due to the growth of cracks does not occur until the tertiary 

stage (Part III), the radial pseudo strain in the primary and secondary stages (  2 ,R I II ) 

only includes the radial elastic strain, radial plastic strain and radial viscoplastic strain. 

As a result, the radial viscoplastic strain in the primary and secondary stage (  2 ,vp I II ) 

can be calculated using Equation 7-25. Then the Tseng-Lytton model in Equation 7-26 is 

employed to fit  2 ,vp I II and predict the radial viscoplastic strain during the entire 

deformation process including the primary, secondary and tertiary stages; 

     2 2 2 2, ,vp R e pI II I II            (7-25) 

  2

2 2 2expvp vp N


  
  
 

       (7-26) 

5) the radial viscofracture strain can be computed by subtracting all other components from 

the total radial strain: 

  2 2 2 2 2

vf R e p vp               (7-27) 

Thus the radial strain decomposition is accomplished by a complete separation of each 

strain component in the DDM test. An example is given in Figure 7-7 to show the radial strain 

decomposition for an asphalt mixture in the DDM test. It is found that radial elastic and plastic 

strain are time-independent and the radial viscoelastic strain shows three stage changes and 

occupies a large proportion of the radial total strain. The radial viscoplastic strain shows a power 

curve and the viscofracture strain increases with load cycles at an increasing strain rate in the 

tertiary stage.   
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Figure 7-7 Radial strain decomposition for an asphalt mixture  

 

MECHANISTIC MODELING OF VISCOFRACTURE IN TERTIARY FLOW 

By using the decomposed axial and radial viscofracture strains, this section presents the 

determination of the axial and radial damage densities which are employed in the effective stress 

as shown in Equation 6-11. Since the cracks grow only in the tertiary stage of the destructive 

tests in compression, the damage densities are calculated only for the tertiary stage.  

To determine the axial damage density, a balance principle of the incremental dissipated 

pseudo fracture strain energy ( DPFSE ) is implemented between the apparent configuration 

and the true configuration of the material. This principle states that the apparent dissipated 

pseudo strain energy ( DPSE ) that is consumed in developing the viscofracture strain within 

each load cycle in the apparent configuration equals the true DPSE  that is dissipated for the 

fracture of the intact material within the same load cycle in the true configuration.  
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The reason for using DPSE  to formulate the energy balance is that DPSE  is the 

irrecoverable energy that is dissipated during the evolution of the different types of damage such 

as viscoplasticity and fracture. Actually, the DPSE  has already been widely and successfully 

used in characterizing the damages including fatigue cracking and permanent deformation in 

viscoelastic materials such as asphalt binders and asphalt mixtures (Gibson et al. 2003; Walubita 

et al. 2006; Wen and Bahia 2009). If the DPSE  used for viscoplasticity is denoted as DPPSE  

and the DPSE  used for fracture is denoted as DPFSE , then DPSE DPPSE DPFSE  . 

The DPFSE equivalence equation is formulated step by step as follows. 

 

Step 1: Calculate the Apparent Incremental Dissipated Pseudo Fracture Strain Energy 

First, the apparent DPFSE , denoted as 
ADPFSE , is calculated by integrating the 

apparent stress with the viscofracture strain that is obtained using strain decomposition, as shown 

in Equation 7-28: 

 
 2

2

1

f

vf
N

A A

N

d t
DPFSE t dt

dt








        (7-28) 

where    0 1 cosA At t       is the apparent stress in kPa, which is equal to the applied 

load divided by the entire cross-sectional area (including the crack opening areas); 
0

A  is the 

amplitude of the stress and  0 0.5 300A

c d kPa       according to Equation 4-9;   is 

the load frequency, rad/sec; 
2

N t



  is the number of load cycles; fN  is the flow number; and 

 1

vf t
 
is the axial viscofracture strain that is modeled using Equation 4-26, which is repeated as 

 1

1 0 1fN Nvf vf e


 
  

    
where 

fN is flow number that is the starting point of the tertiary stage. 
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Figure 7-8 illustrates that the flow number is greater for an asphalt mixture that has a lower air 

void content or a longer aging period. 
0

vf  and 
1  are fitting parameters. Substituting 1

vf

function into Equation 7-28 and conducting the integration yields 
ADPFSE  to be: 

 
10

0 0 2

1

1
1 2

f

A
N NA vf ADPFSE e


 

 


 

         

    (7-29) 

The exponent of the viscofracture strain, 
1 , is always less than 0.1 in its magnitude, as 

shown in Figure 7-8. As a result, the calculating error caused by ignoring the term 
 

0

2

11 2

A

 
 

in Equation 7-29 is less than 0.025%. Therefore, Equation 7-29 is abbreviated to: 

 1

0 0 0 11fN NA A vf A vfDPFSE e N


   
   

  
     (7-30) 

Then the apparent incremental DPFSE  is: 

       0 1 0 1 11A A vf A vf vfDPFSE N N N N               (7-31) 

Equation 7-31 indicates that only the axial viscofracture strain (
1

vf ) component of the 

total strain is involved in the calculation of 
ADPFSE . Consequently 

ADPFSE  is the energy 

dissipated to drive the propagation of the cracks in one load cycle.  
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Figure 7-8 Flow number (
fN ) and exponent of viscofracture strain (

1 ) of asphalt mixture 

 

Step 2: Calculate the True Incremental Dissipated Pseudo Fracture Strain Energy 

The true incremental dissipated pseudo fracture strain energy (
TDPFSE ) is obtained 

by performing an energy analysis in the intact materials that are in the true configuration of the 

material. The total energy that results from the work done by an external load is dissipated by 

both the material relaxation due to the viscoelasticity of the asphalt mixtures and the damages 

including plasticity and fracture in the tertiary phase of the asphalt mixtures. Since the 

constitutive equation based on pseudo strain is capable of eliminating the viscous effect on the 

material responses (Kim et al. 1995; Park et al. 1996; Si et al. 2002), the dissipated pseudo strain 

energy (DPSE) does not include the energy dissipated for the material viscoelastic relaxation. 

The DPSE only accounts for the energy dissipated in generating the damages including 

viscoplasticity and viscofracture in the asphalt mixture, which means: 
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T T TDPSE DPPSE DPFSE          (7-32) 

Thus 
TDPFSE can be determined by subtracting the true incremental dissipated 

pseudo plastic strain energy (
TDPPSE ) from the true incremental dissipated pseudo strain 

energy (
TDPSE ). The following derivations show the calculations of 

TDPSE  and 

TDPPSE . 

In the true configuration, the true stress acts on the intact material. Under cyclic loading, 

the true stress varies with time as: 

   1 cosT T

Nt t             (7-33)  

where 
T

N  is the amplitude of the true stress at the load cycle, N , the true strain responding to 

the true stress includes the following two parts (Findley et al. 1989):  

1) True creep strain, which is caused by the true creep stress (
T

N ) and is determined 

as  T

N D t , where  D t  is the creep compliance of the undamaged asphalt 

mixtures; and  

2) True oscillatory strain, which is caused by the true oscillatory stress (  cosT

N t  ) 

and is determined as  
*

cos
T

N t
E


 

 
  
  

, where 
*E  and   are the magnitude 

and phase angle of the complex modulus for the undamaged asphalt mixtures, 

respectively.  

The amplitude of the true stress (
T

N ), which increases with load cycle due to the 

growth of cracks, is assumed to remain constant within one load cycle. Thus the true stain caused 

by the true stress becomes: 
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     
*

cos
T

T T N
Nt D t t

E


            (7-34) 

In the calculation of the dissipated energy for damage, the pseudo strain concept is 

employed to eliminate the viscous effect on the material responses. By definition, the true 

pseudo strain corresponding to the true strain can be determined as (Schapery 1984):  

   
 

0

1
T

t
TR

R

d
t E t d

E d

 
  


        (7-35) 

where 
TR  is true pseudo strain, t   is the current time, 

 
is the previous time before t ,  E t  is 

relaxation modulus of the undamaged material, and 
RE  is the reference modulus which is 

determined as the Young’s modulus according to the study in Chapter IV. Based on Equations 7-

34 and 7-35, the true pseudo strain is written as: 

     TR TR TR

c dt t t           (7-36) 

where  TR

c t  is the creep part of the true pseudo strain and  TR

d t  is the dynamic part of the 

true pseudo strain. Thus  TR

c t  is calculated as follows: 

   
 

0

T T
t

TR N N
c

R R

dD
t E t d

E d E

 
  




        (7-37) 

 TR

d t  is determined as: 

   
 

* 0

cos1
T

t
TR N
d

R

d
t E t d

E dE

 
  





      (7-38) 

Substituting s t    in Equation 7-38 yields: 

   
 

 * 0

cos1
T

t
TR N
d

R

d t s
t E s ds

E d t sE

 




   
     (7-39) 
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Let      E t E E t    where  E   is the asymptotic value when time approaches 

infinity and  E t  is the difference between  E t  and  E  , which decreases with time for a 

viscoelastic solid, then Equation 7-39 becomes: 

       
 

 

           

     

* 0

* 0

0

cos1
cos

1
cos sin cos

cos sin

T
t

TR N
d

R

T
t

N

R

t

d t s
t E t E s ds

E d t sE

E t E E s s ds t
E E

E s s ds t

 
 


    

   

       
  

       
  

   
  







      

 (7-40) 

After sufficient load cycles, the initial transient response vanishes and the material 

undergoes a steady oscillation, which can be explained mathematically that, when t  , 

  0E    and both    
0

sin
t

E s s ds


  and    
0

cos
t

E s s ds


  approach a well-

defined limit. For an asphalt mixture that is subjected to a destructive compressive sinusoidal 

loading, the initial transient mainly occurs and vanishes within the primary deformation stage 

and the steady oscillation state is approached in the secondary deformation stage. Based on 

viscoelastic theory (Wineman and Rajagopal 2001), one can have: 

     
0

sin
t

IIE E E s s ds 


          (7-41) 

   
0

cos
t

IIE E s s ds 


          (7-42) 

where 
IIE  and 

IIE  are the real and imaginary parts of the complex modulus in the secondary 

deformation stage ( IIE
). Based on the results of the destructive dynamic modulus tests, the 

magnitude of IIE
 is the dynamic modulus (

*

IIE ), which is a variable that is dependent on the 
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load cycle, and the phase angle of IIE
 is 

II , which was demonstrated to be a constant for a 

specific asphalt mixture. Substituting Equations 7-41 and 7-42 as well as 
* cosII II IIE E    and 

* sinII II IIE E    into Equation 7-40 gives: 

   
*

*
cos

T
IITR N

d II

R

E
t t

E E


     

  

    (7-43) 

The material properties in the secondary deformation stage are determined as the 

reference properties in the true configuration because of the following two reasons:  

1) The secondary stage is in a steady oscillatory phase and the initial transient response 

has disappeared; and  

2) The fracture starts to grow in the tertiary stage when it departs from the steady state 

in the secondary stage.  

As a result, the reference modulus in Equations 7-37 and 7-43 is determined as the 

Young’s modulus of the asphalt mixtures in the secondary stage (
YIIE ). Substituting Equations 

7-37 and 7-43 into Equation 7-36 and using 
R YIIE E  yields the true pseudo strain: 

   
*

*
1 cos

T
IITR N

II

YII

E
t t

E E


   

 
    
      

  (7-44) 

TDPSE  can be computed by integrating the true stress in Equation 7-33 with the true 

pseudo strain in Equation 7-44 within one load cycle, which is: 

   
     

 
2

2

2
*

1

*
sin

TTR
N N IIT T

II
N

YII

Ed t
DPSE N t dt

dt E E








   



     (7-45) 
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Assuming that the ratio of the Young’s modulus to the dynamic modulus in the 

undamaged condition remains the same as that in the secondary deformation stage for each 

asphalt mixture, that is, 

* *

Y YII

II

E E

E E
          (7-46) 

where 
YE  is the Young’s modulus of the undamaged asphalt mixture, and the values of with 

asphalt mixtures with different binders, air void contents and aging periods have been shown in 

Figure 5-8. Substituting Equation 7-46 into 7-45 gives: 

 
 

 

2

sin

T

NT

II

Y

DPSE N
E


           (7-47) 

In the tertiary stage, 
TDPSE is the pseudo strain energy dissipated by both 

viscoplasticity and viscofracture. In contrast, in the secondary stage, 
TDPSE  is the pseudo 

strain energy dissipated only by viscoplasticity since no viscofracture occurs in this stage. Thus 

TDPSE  is equal to 
TDPPSE  in the secondary stage. Actually, in the primary stage, the air 

voids of the asphalt mixture are squeezed due to the compressive load, which is indicated by a 

deceasing phase angle. Thus the lost area keeps decreasing which results in a decreasing damage 

density in this stage. While in the secondary stage, the phase angle remains unchanged which 

demonstrates that the decrease of air voids have ceased and a steady stage is reached. Thus the 

damage density at the flow number (i.e., the end of the secondary stage) is the minimum damage 

density after the compression during the primary and secondary stages. Therefore the true stress 

at the flow number is  0 011
f

T A

N     where 
01  is the axial damage density at the flow 

number. Thus 
TDPPSE at the flow number load cycle is determined as: 



 

217 

 

 
 

2

0

01

sin

1

A
IIT

f

Y

DPPSE N
E

  



 
   

 
     (7-48) 

It is assumed that the  TDPPSE N  in the tertiary stage remains unchanged from 

 T

fDPPSE N  that is in the flow number load cycle. This assumption is reasonable because:  

1) In the tertiary stage the apparent stress remains unchanged, however, the true stress 

continues to increase;  

2) An asphalt mixture follows a work hardening rule and the incremental viscoplastic strain 

(i.e., viscoplastic strain rate) continues to decrease with load cycles; thus 

3) Because of the reasons (1) and (2), the integral of the product of the true stress and the 

incremental viscoplastic strain within each load cycle in the tertiary stage remains 

unchanged from that at the flow number load cycle. 

Substituting Equations 7-47 and 7-48 into Equation 7-32 gives: 
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   (7-49) 

If defining 
 sin

Y

II

E
K

  



 as the compressive viscofracture modulus, the 

incremental dissipated pseudo fracture strain energy is expressed as: 
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     (7-50) 

For a specific asphalt mixture, test observations have shown that  , 
II  and 

YE  remain 

unchanged with load cycles even in a destructive test. Thus the compressive viscofracture 

modulus ( K ) also remains unchanged with load cycles and can be recognized as a material 

property which characterizes the viscofracture of the asphalt mixture in compression. Figure 7-9 
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shows  and 
II  for the asphalt mixtures with different binders, air void contents and aging 

periods.  

 

 

Figure 7-9 Phase angle of undamaged asphalt mixture ( ) and phase angle of damaged 

asphalt mixture in the secondary deformation stage (
II ) 

 

It is found from Figure 7-9 that 
II  applies to all asphalt mixtures. This is because 

the phase angle   is the phase angle of the asphalt mixture before applying destructive 

compressive loads and 
II  is the phase angle of the asphalt mixtures in the secondary phase 

after such loads are applied. The asphalt mixture is compressed in the primary stage and the air 

voids are squeezed during compression, which yields a stiffer asphalt mixture because of less air 

voids and more intact material. A stiffer viscoelastic material normally has a lower phase angle, 

which indicates 
II  . For different asphalt mixtures,   decreases as the asphalt mixtures are 
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aged or have a low air void content while 
II  does not have a significant change when the 

asphalt mixtures use different binder, air void content and aging period. 

 

Step 3: Calculate True Stress and Axial Damage Density 

Let    A TDPFSE N DPFSE N    according to the DPFSE  balance principle, 

the amplitude of the true stress is solved to be: 

  
2

0
0 1

011

A
T A vf

N K N


  


 
   

 
     (7-51) 

Based on Equations 6-8 and 7-51, the axial damage density is determined as: 
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    (7-52) 

At the flow number load cycle (
fN N ), the viscofracture strain still remains zero, that 

is  1 0vf

fN  . Thus, based on Equations 7-51 and 7-52, one has  0 011
f

T A

N     and 

 1 01fN  , which indicates that Equations 7-51 and 7-52 satisfy their boundary conditions 

implicitly. 

To determine the true stress amplitude in Equation 7-51 and the damage density in 

Equation 7-52, the measured average K  and 1

vf  based on the testing results of the two 

replicates are used in the calculations of true stress and damage density. However, 
01  is still an 

unknown parameter. Thus a trial and error method is employed as follows:  

1) An initial value is assigned to 
01 , such as half of the air void content, in the first 

trial calculation of 
T

N  and  1 N ;  



 

220 

 

2) The calculated  1 N  is fitted by a damage density prediction model in Equation 7-

61 that is derived in the next section, where 
01 , 

1C  and 1D  are fitting parameters;  

3) Minimize the error between the assumed 
01  and the fitted 

01  and determine the 

optimum 
01  using the Solver function in the Excel processor.  

Figure 7-10 shows the calculated true stress and axial damage density for an asphalt 

mixture, which indicates that both the true stress and the axial damage density increases in the 

tertiary stage. This is because the area of the intact material decreases and the lost area increases 

due to the growth of cracks in this stage. Since the true stress acts on the intact material, more 

viscoplastic strain is produced due to the increase of the true stress, which is the reason why the 

cracks in the tertiary stage accelerate the evolution of the permanent deformation. To take into 

consideration the accelerating effect of the cracks on the plastic deformation, the true stress, 

instead of the apparent (nominal) stress, should be used in the prediction of the permanent 

deformation for the asphalt mixtures. In addition, Figure 7-10 indicates that the air void content 

of the specimen is 0.51% at the flow number load cycle. This demonstrates that the air voids are 

significantly compressed during the primary stages, which leads to a dramatic decrease of the air 

void content (from the original air void 7% to 0.51% at the flow number). 

 

Step 4: Calculate Radial Damage Density Based on Geometry of Cracks 

Damage density is employed in this study to characterize the viscofracture of the asphalt 

mixture in compression and it is defined as a ratio of the lost area due to cracks to the total area 

of a cross section in a specific direction. Since the projections of the cracks differ in different 

directions, the damage density is an anisotropic parameter. The axial damage density (
1 ) has 

been determined in step 3 by employing the incremental dissipated pseudo fracture strain energy 
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balance principle. To determine the radial damage density (
2 ), a geometrical method is 

proposed in this study as follows: 

 

 

Figure 7-10 True stress and axial damage density of an asphalt mixture in tertiary stage  

 

First, the axial viscofracture strain (
1

vf ) and radial viscofracture strain (
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plots a geometric illustration of cracks in a cylindrical asphalt mixture specimen under a 
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deformations and purely caused by the growth of cracks, are denoted as H  and R , 

respectively. 

 

 

Figure 7-11 Geometric illustration of cracks in a cylindrical specimen under a compressive 

load 

 

Since the axial viscofracture strain (
1

vf ) and radial viscofracture strain (
2

vf ) 

characterize the viscofracture deformation of the asphalt mixture that are caused by cracks. Then 

we have: 
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Second, the cracks disperse randomly in the asphalt mixture. If assuming that all cracks 

are collected in a cylinder whose height and radius are r and h, respectively; then the damage 

densities can be calculated based on their definitions in Equation 6-9 and one has: 

2

1 2

2

2

2

r

R

r h

R H















 

 

        (7-54) 

Third, since H and R are purely caused by the cracks, the increased volume of the 

cylindrical asphalt mixture specimen should equal to the volume of cracks, that is: 

   
2 2 2R R H H R H r h           (7-55) 

Finally, Equations 7-53, 7-54 and 7-55 yield an expression to determine the radial 

damage density based on the axial and radial viscofracture strains as well as the axial damage 

density, which is shown as follows: 

   
2

2 1

2

1

1 1 1vf vf 




  
        (7-56) 

Figure 7-12 shows the axial and radial damage densities for an asphalt mixture with a 

4% air void content and Figure 7-13 shows the axial and radial damage densities for an asphalt 

mixture with a 7% air void content. It can be concluded that the asphalt mixture with 4% air void 

content has a higher radial damage density and a lower axial damage density while the asphalt 

mixture with 7% air void content has a lower radial damage density and a higher axial damage 

density. The same conclusion is found for all of the tested asphalt mixtures that vary by two 

binders (Valero, NuStar), two air void contents (4%, 7%) and three aging periods (0, 3, 6-month 

60°C aged).  
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In fact, the asphalt mixture with the 4% air void content is stiffer than the asphalt 

mixture with the 7% air void content and has more axial cracks during fracture, which is called 

brittle fracture and has a splitting cracking mode. The axial cracks have a larger projection area 

on the circumferential surface, which yields a higher radial damage density. In contrast, the 

asphalt mixture with the 7% air void content is relatively soft and tends to have a ductile fracture 

and has a diagonal cracking mode. The cracks grow along the diagonal plane that is the plane of 

the maximum shear stress, which yields a larger projection area on the horizontal cross section 

and eventually causes a higher axial damage density.  

Based on the axial and radial damage density curves, the evolution of the viscofracture 

in compression for different asphalt mixtures can be characterized by using a pseudo J-integral 

Paris’ law in terms of damage density, which is illustrated in the next section. 

 

 

Figure 7-12 Damage densities for an asphalt mixture with 4% air void 
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Figure 7-13 Damage densities for an asphalt mixture with 7% air void 

 

ANISOTROPIC PSEUDO J-INTEGRAL PARIS’ LAW 

The pseudo J-integral Paris’ law had been widely employed to characterize the fatigue 
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the fracture properties of the materials (Si et al. 2002; Cleveland et al. 2003; Arambula et al. 

2007; Castelo Branco et al. 2008; Masad et al. 2008a). The pseudo J-integral Paris’ law is also 

used in this chapter to model the viscofracture evolution of the asphalt mixtures under a repeated 

compressive load during the tertiary stage.  
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where c  is the crack size; t  is time; K  is the amplitude of the stress intensity factor under a 

repeated load; A  and n  are parameters determined by experiments. The conventional Paris’ law 

is normally employed in the characterization of the fatigue and fracture of the metallic materials 

(Beden et al. 2009). To characterize crack propagation of the ductile and viscoelastic materials, 

the pseudo J-integral is used to replace the stress intensity factor in the function, where the 

pseudo J-integral is defined as (Schapery 1984; Kuai et al. 2009): 

 
2

0

t

R

K
J D t s ds

s


 

        (7-58) 

where  D t  is the creep compliance, s  is the current time before time t . 
RJ  is temperature 

dependent because of the temperature dependence of the creep compliance. To account for the 

temperature effect, a reduced time (  
0

t

T

ds
t

a
   ) can be employed in Equation 7-58, in which 

Ta  is the time-temperature shift factor. The advantage of using the pseudo J-integral is that the 

temperature effect on the fracture development can be taken into account by the pseudo J-

integral. Then the model coefficients A  and n  are independent of the testing temperature and 

become the material constants. Thus one testing temperature is sufficient to determine the two 

material properties in the pseudo J-integral Paris’ law. 

Under a destructive compressive load, it is common that hundreds and thousands of 

microcracks and macrocracks are widely and randomly distributed in the asphalt mixture. Thus it 

is neither convenient nor reasonable to use one single crack size in the formulation of the pseudo 

J-integral Paris’ law. Instead of using crack size as in the conventional Paris’ law, the damage 

density which represents the overall viscofracture property of the asphalt mixture is implemented 

in the pseudo J-integral Paris’ law. The model is expressed as: 
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  1,2ini
i Ri

d
A J i

dN


         (7-59) 

where i  
is the anisotropic damage density; 

iA  and 
in  are coefficients of Paris’ law that are 

material constants, where 
iA  indicates the initial evolution speed of the viscofracture in terms of 

damage density and  
in  indicates the changing rate of the damage density evolution speed. 

RiJ  

is the pseudo J-integral that can be calculated as: 
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   (7-60) 

where Equations 6-9 and 7-30 are used.  . . .
i

c s a  is the crack surface area projected on a specific 

direction and  . . .
i

c s a  is determined as two times the lost area projection on the specific 

direction within the asphalt mixture. 
T

iA  is the total (apparent) area of the cross section in the 

specific direction. Substituting Equation 7-60 into Equation 7-59 and then integrating both sides 

of Equation 7-59 yields: 

   
0 1i fD N N

i i iN C e 
   

  
      (7-61) 

where 
0i

 
is the damage density at the flow number in the specific direction and 

iC  and 
iD  are 

model parameters that can be expressed as: 
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      (7-62) 

The damage density predicted using Equation 7-61 is also shown in Figure 7-10, which 

indicates that the Equation 7-61 predicts perfectly the damaged density that is calculated using 
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Equation 7-52 with a R
2
 of 0.9997. Once the model parameters (

iC  and 
iD ) are determined, the 

material constants in Paris’ law can be determined as follows: 

 
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       (7-63) 

By applying the above pseudo J-integral Paris’ law to the separated viscofracture strain 

of the asphalt mixtures with different binder, air void content and aging periods, the damage 

density curves are obtained and the material constants in the pseudo J-integral Paris’ law are 

determined. Figure 7-14 and Figure 7-15 show the viscofracture coefficients ( iA  and in ) of the 

axial and radial pseudo J-integral Paris’ law for different asphalt mixtures, respectively.  

 

 

Figure 7-14 Viscofracture coefficients of axial pseudo J-integral Paris’ law for different 

asphalt mixtures 
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It is found from Figure 7-14 that 
1A  decreases and 

1n  increases when the asphalt 

mixture become stiffer which might be caused by a stiffer binder, a lower air void content and a 

longer aging period. This observation complies with Schapery’s viscoelastic fracture theory 

(Schapery 1975). Based on Schapery’s theory, 
1n  is inversely proportional to the slope of creep 

compliance, e.g. 
1 1 1n m  , where m  is slope of the creep compliance that is modeled by 

  0 2

mD t D D t  . It is known that a stiffer asphalt mixture normally has a smaller value of m  

than the softer asphalt mixture. Thus a stiffer asphalt mixture has a relatively larger 1n  value, 

which is verified by the testing results of this study. 

 

 

Figure 7-15 Viscofracture coefficients of radial pseudo J-integral Paris’ law for different 

asphalt mixtures 
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It is found from Figure 7-15 that 
2A  decreases and 

2n  increases when the asphalt 

mixture become stiffer which is due to a longer aging period. However, the changes of 
2A  and 

2n  do not show a consistent laws (e.g., 
2A  decreases and 

2n  increases) when the asphalt 

mixture has a lower air void contents or uses a stiffer binder. More theoretical analysis and 

laboratory tests might be needed to investigate the factors that affect the values of 
2A  and 

2n  of 

the asphalt mixtures. In addition, Equation 7-63 indicates that 
iA  is strongly related to 

in . Based 

on the testing data in Figure 7-14 and Figure 7-15, relationships are found between  log iA  and 

in  with high values of coefficients of determination ( 2R ), which are shown in Figure 7-16.  

 

 

Figure 7-16 Relationships between iA  and in  of pseudo J-integral Paris’ law for asphalt 

mixtures 
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Once the material constants (
iA  and 

in ) are determined, the evolution of the damage 

densities due to a variety of apparent stress histories can be predicted by inputting the pseudo J-

integral that is calculated based on the apparent stress history into the pseudo J-integral Paris’ 

law. Then the evolution of the effective (true) stress corresponding to this apparent stress history 

can be determined using Equation 6-11. Finally, the viscofracture strain that is caused by this 

specific apparent stress history can be estimated by the constitutive relationship between the true 

stress and viscofracture strain, e.g. Equation 7-51. To calibrate the mechanistic model for the 

viscofracture characterization of the asphalt mixtures in compression, the destructive 

compressive tests using a variety of the forms of the load need to be performed on the asphalt 

mixtures and then the measured viscofracture strain is compared with the predicted value using 

the pseudo J-integral Paris law and the viscofracture constitutive relationship. 

 

SUMMARIES AND CONCLUSIONS 

The objectives of this chapter are to provide a mechanistic characterization method for 

the damage modeling of the asphalt mixtures in the tertiary stage and to provide a method to 

determine the anisotropic damage densities used in the effective stress during the viscoplastic 

modeling of the asphalt mixture. Based on the mechanistic analysis and the laboratory testing on 

the fracture properties of asphalt mixtures in compression, the following summaries and 

conclusions can be achieved:  

1) The asphalt mixture does fracture in the tertiary stage under a destructive compressive 

load. The deformation caused by the formation and propagation of the cracks is 

viscofracture strain, which is signaled by the increase of the phase angle in the tertiary 

phase. The moment at which the cracks are initiated is recognized as the flow number or 

flow time that is the starting point of the tertiary stage. 
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2) Viscofracture strain is an anisotropic variable, in which the axial viscofracture strain can 

be obtained by conducting the strain decomposition of the total measured axial strain 

based on extended elastic-viscoelastic correspondence principle, which has been 

presented in Chapter IV. The radial strain decomposition is proposed in this chapter 

based on a generalized elastic-viscoelastic correspondence principle. The axial and 

radial strain decompositions demonstrate that the viscoplastic strains increase with a 

decreasing strain rate while the viscofracture strains increase with load cycles at an 

increasing strain rate, which implies that the viscofracture deformation contributes 

significantly to the permanent deformation in the tertiary stage. 

3) The asphalt mixture with 4% air void content has more axial cracks during viscofracture, 

which is brittle fracture and has a splitting cracking mode. The axial cracks have a larger 

projection area on the circumferential surface, which yields a higher radial damage 

density. In contrast, the asphalt mixture with 7% air void content is relatively soft and 

tends to have a ductile fracture and a diagonal cracking mode. The cracks grow along a 

diagonal plane that is the plane of the maximum shear stress, which yields a larger 

projection area on the horizontal plane and eventually causes a higher axial damage 

density. 

4) The viscofracture properties of an asphalt mixture in compression are characterized by 

the anisotropic damage densities and true stress. The axial damaged density and true 

stress are determined by employing the dissipated pseudo strain energy balance 

principle. The radial damage density is determined based on a geometric analysis of the 

cracking mode in compression. Both damage densities and true stress increase with load 

cycles, which indicates that the extra plastic strain is produced by the increase of true 
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stress. Therefore the permanent deformation is accelerated by the occurrence of cracks 

in the tertiary stage. 

5) Anisotropic Pseudo J-integral Paris’ laws in terms of damage densities are employed to 

accurately characterize the evolution of the viscofracture of the asphalt mixtures in 

compression. The material constants in the Paris’ law are determined, which are 

temperature independent and can be employed to predict the fracture properties of the 

asphalt mixtures in compression. 
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CHAPTER VIII  

SUMMARIES, CONCLUSIONS AND RECOMMENDATIONS 

 

Permanent deformation (or rutting) is one of the major distresses on asphalt pavements 

and it not only increases the road roughness but traps water and leads to wet-weather accidents 

due to loss of tire-pavement friction and hydroplaning. However, the mechanisms of rutting have 

not been well addressed due to the complexity of the asphalt concrete which behaves 

significantly differently under a compressive load than under a tensile load. Thus, to demonstrate 

the mechanisms of rutting, it is crucial to investigate the fundamental material behaviors of the 

asphalt concrete in compression. 

 

SUMMARIES AND CONCLUSIONS 

This study addresses the characterization of the fundamental mechanisms of the 

permanent deformation of an asphalt mixture when it is subjected to a compressive load. The 

criteria that are followed during the characterization include: 

1) Comprehensive and complete characterization of the material properties of the asphalt 

mixture including anisotropy, viscoelasticity, viscoplasticity and viscofracture. 

2) Fundamental mechanistic characterization models and data analysis methods. 

3) Relating model coefficients to understandable engineering parameters with physical 

meaning. 

4) Simple, fast and accurate testing protocol design based on affordable and accessible 

testing equipment. 
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The comprehensive characterization of asphalt concrete in compression was 

accomplished by constitutively modeling the anisotropy and viscoelasticity of the undamaged 

asphalt mixture, and the viscoplasticity and viscofracture of the damaged asphalt mixture.  

Chapter II presented the characterization of the anisotropic viscoelasticity of the 

undamaged asphalt mixture based on anisotropic linear viscoelastic theory. Three simple 

nondestructive creep tests were developed and master curve models were proposed to determine 

the magnitudes and phase angles of the anisotropic complex moduli and complex Poisson’s ratio. 

The test results indicate that asphalt mixtures have significantly different tensile properties from 

compressive properties. The vertical modulus of the undamaged asphalt mixtures is 1.2 to 2 

times as large as the horizontal modulus, which demonstrates distinctively the inherent 

anisotropy of the asphalt mixture in compression. 

In Chapter III, the inherent anisotropy was characterized based on the microstructure of 

the asphalt mixture. The inherent anisotropy was indicated to be caused by the preferentially 

oriented aggregates and was characterized by a microstructural parameter, the modified vector 

magnitude.  A lateral surface scanning test was designed to obtain the microstructural properties 

including orientation, size and shape of the fine and coarse aggregates which can be used to 

calculate the modified vector magnitude.  A relationship was derived to physically relate the 

modified vector magnitude to the macroscopic material properties, i.e. anisotropic modulus ratio, 

of the asphalt mixture. 

In Chapter IV, an effective and efficient strain decomposition technique was developed 

by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence 

principle. The viscoplasticity and viscofracture were separated from the viscoelasticity so that 

the permanent deformation and fracture of the asphalt mixtures in compression can be 

individually and accurately characterized without the influence of the viscoelastic responses. The 
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viscoplasticity developed in the primary, secondary and tertiary deformation stage of the asphalt 

mixture, whereas the viscofracture of the mixture occurred only in the tertiary stage and was 

demonstrated to be caused by the growth of cracks which is signaled principally by the increase 

of the phase angle. 

Chapter V presented the development of a comprehensive viscoplastic yield surface 

model (the ZLL yield surface) which was capable of completely characterizing the fundamental 

material properties of the asphalt mixture including: 1) distinctions between compression, 

extension and tension; 2) dilative volumetric change; 3) internal friction and cohesion; 4) rate 

and temperature dependence; 5) strain hardening; and 6) convexity and smoothness of the yield 

surface. A stress-pseudostrain method was proposed to accurately determine the yield surface 

model parameters which were also related to the engineering material properties such as 

cohesion and internal friction angle. 

In Chapter VI, the permanent deformation (rutting) of the asphalt concrete was 

intensively characterized by an extended Perzyna’s anisotropic viscoplastic model which 

incorporated 1) a modified effective stress in the formulation of the models to account for both 

the inherent anisotropy due to the aggregates’ orientation and the stress-induced anisotropy 

caused by the crack growth; 2) an extended ZLL yield surface to provide a smooth and convex 

yield surface and to address the cohesion and internal friction of the material; 3) a non-associated 

flow rule for the viscoplastic potential to address the volumetric dilation of the asphalt mixture; 

and 4) a temperature and strain rate dependent strain hardening function. The slope of the 

viscoplastic potential surface was found to be solely dependent on the inherent anisotropy of the 

asphalt mixtures. The permanent deformation of the asphalt pavement would be underestimated 

if the inherent anisotropy was not included in the viscoplastic modeling of the asphalt mixture.  
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Chapter VII provided a mechanistic characterization method for the anisotropic 

viscofracture of the asphalt mixtures in the tertiary stage and determined the anisotropic damage 

densities. Axial and radial strain decompositions were conducted by proposing a generalized 

elastic-viscoelastic correspondence principle. Then the separated axial and radial viscofracture 

strains were employed to achieve the anisotropic damage densities based on dissipated pseudo 

strain energy balance principle and the geometric analysis of the cracks in compression. The 

evolutions of the anisotropic viscofracture were modeled by the Pseudo J-integral Paris’ laws in 

terms of damage densities. Testing results indicated that the viscofracture deformation 

contributed significantly to the permanent deformation in the tertiary stage and the viscoplastic 

deformation was also accelerated by the occurrence of cracks in the tertiary stage. The asphalt 

mixture with a low air void (i.e., 4%) has a brittle-like fracture which is a splitting cracking 

mode; whereas, the asphalt mixture a high air void (i.e., 7%) has a ductile-like fracture which is 

a diagonal cracking mode.  

In order to describe a complete and clear map for the characterization of the asphalt 

mixture in compression, Table 8-1 summarizes the material properties, model parameters, testing 

protocols, testing measurements and contents in corresponding chapters of this study. The 

measured results for the material properties and model parameters of the VHL and NHL asphalt 

mixtures at two different air void contents and three aging periods are collected from the 

individual chapter and summarized in Table 8-2 and Table 8-3. The Table 8-2 shows the 

measured results of the inherent anisotropy, viscoelasticity and viscofracture properties of the 

asphalt mixtures while the Table 8-3 shows the measured results of the viscoplasticity properties 

of the asphalt mixtures.  
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Table 8-1 Summary of Material Properties, Parameters, Testing Protocols and Chapter 

Contents in the Characterization of Asphalt Mixtures in Compression 

Material Properties 
Material Parameters 

Testing Protocols 

Data for 

Parameter 

Determination 

Chapters 
Symbol Physical Meaning 

Nondestru

ctive 

Properties 

Viscoelasticity 

 E t
YE  

Relaxation and 

Young’s Modulus 

Uniaxial 

Compressive 

Creep Tests 

(UCC) 

 

Creep Strain 

Chapters 

II and IV 

T  
Time-Temperature 

Shift Factor 

*E  
Magnitude of 

Dynamic Modulus 
Nondestructive 

Dynamic Modulus 

Test (NDM) 

Dynamic Strain 

and Stress 
, II   

Phase Angle of 

Dynamic Modulus 

Inherent 

Anisotropy 
  

Modified Vector 

Magnitude 

Lateral Surface 

Scanning Tests 

Aggregate 

Size, Area, 

Aspect Ratio 

Chapter 

III 

Destructiv

e 

Properties 

Viscoplastic 

Yield Surface 

 ,   
Slope, Internal 

Friction Angle 

Uniaxial/Triaxial 

Compressive 

Strength Tests 

(UCS/TCS) 

Initial yield 

Strength 

Chapter 

V 

0 , C  
Intercept, 

Cohesion 

d  
Yield Extension 

Ratio 

Strain 

Hardening 

Function 

1  
Strain Hardening 

Amplitude 
Yield Stresses 

during Strain 

Hardening 2  
Strain Hardening 

Rate 

Temperature 

and Strain Rate 

Dependence 

Ta , TE  
Temperature 

Effect Factor 

UCS at Different 

Temperatures 

Ultimate Yield 

Strength 

a , 3  
Strain Rate Effect 

Factor 

UCS at Different 

Strain Rates or 

DDM tests 

Ultimate Yield 

Strength or 

Viscoplastic 

Strain 

Viscoplastic 

Potential 

Function 

  
Slope of 

Viscoplastic 

Potential 

N/A   
Chapters 

V and VI 

Perzyna's 

Viscoplasticity 

  
Viscosity 

Parameter 

Destructive  

Dynamic Modulus 

Tests (DDM) 

Separated 

Viscoplastic 

Strain 

Chapters 

IV and VI 

 N  Rate Parameter 

Viscofracture 

Damage 

Density 

Function 

ij  Anisotropic 

Damage Density Separated 

Viscofracture 

Strain 

(in Tertiary 

Stage) 

Chapters 

IV and 

VII 

,i iA n  
Coefficients in 

Paris’ Law 

,fN   Flow Number, 

Crack Speed Index 
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Table 8-2 Measured Results of the Inherent Anisotropy, Viscoelasticity and Viscofracture 

Properties for the VHL and NHL Asphalt Mixtures 

 

 

Table 8-3 Measured Results of Viscoplasticity Properties for the VHL and NHL Asphalt 

Mixtures 

 

 

Inherent 

Anisotropy

Modified 

Vector 

Magnitude

Young's 

Modulus

Dynamic 

Moudlus

Phase 

Angle

Phase 

Angle in 

Phase II

Flow 

Number

Crack 

Speed 

Index

Δ' Eʏ |E*| δ φɪɪ N f η A₁ n₁ A₂ n₂

Binder Air Void
Aging 

Months
N/A MPa MPa degrees degrees cycles με/cycle 1/cycle N/A 1/cycle N/A

0 0.3106 656 1513 31.7 20.4 824 0.580 3.04E-14 1.369 1.75E-10 1.115

3 0.3354 1108 2015 28.9 20.3 1153 0.036 3.19E-16 1.731 7.05E-14 2.555

6 0.3880 1670 3435 26.5 21.6 3156 0.012 3.79E-20 1.965 1.75E-23 4.593

0 0.3471 455 502 33.1 21.4 37 21.231 1.90E-10 1.265 2.02E-05 0.000

3 0.3998 906 1438 30.2 24.1 435 0.919 2.71E-13 1.502 8.12E-07 0.419

6 0.4088 1352 2072 28.5 21.2 1718 0.045 1.42E-17 1.688 2.21E-09 1.100

0 0.3131 759 1531 36.8 25.1 282 0.625 1.44E-08 0.602 1.71E-07 0.657

3 0.4422 1354 3093 32.1 23.3 1050 0.156 6.18E-11 0.843 3.88E-12 1.409

6 0.3907 1575 3268 30.6 24.2 1650 0.046 2.02E-12 0.956 2.22E-16 1.963

0 0.3114 540 998 36.7 20.3 119 2.169 1.23E-06 0.486 1.39E-05 0.071

3 0.4478 1019 2181 34.4 23.9 375 0.664 6.99E-10 0.782 4.10E-17 2.107

6 0.4060 1099 2407 32.2 24.7 713 0.517 1.87E-10 0.839 2.01E-19 2.464

Asphalt Mixtures

NHL       

PG64-

16

4%

7%

VHL       

PG67-

22

4%

7%

Material Properties Viscoelasticity Viscofracture

Physical Meaning 

Paris' Law's 

Coefficients for Axial 

Damage Density

Paris' Law's 

Coefficients for 

Radial Damage 

Density

Initial 

Yield 

Strength Cohesion

Internal 

Friction 

Angle

Slope of 

Yield 

Surface

Intercept 

of Yield 

Surface

Rate 

Coefficien

t

Extension 

Ratio

Slope of 

Plastic 

Potential

Γ N σʏ C φ α κ₀ κ₁ κ₂ κ₃ d β

Binder Air Void
Aging 

Months
1/sec N/A kPa kPa Degrees N/A kPa kPa 1/με N/A N/A N/A

0 1.30E-07 1.71 675.3 143.6 46.8 0.370 150.8 75.0 0.0031 0.23 0.61 0.17

3 9.12E-08 1.71 1194.4 227.3 48.9 0.382 241.5 111.0 0.0110 0.30 0.60 0.19

6 2.31E-08 1.77 1486.9 302.5 45.9 0.363 319.6 148.6 0.0064 0.29 0.61 0.22

0 2.53E-07 1.59 566.0 119.8 43.0 0.340 131.0 72.0 0.0116 0.26 0.63 0.19

3 1.52E-07 1.90 731.6 164.8 44.4 0.350 179.4 91.4 0.0093 0.31 0.62 0.22

6 8.90E-08 1.90 990.1 203.9 44.8 0.354 218.4 107.8 0.0044 0.24 0.62 0.23

0 2.20E-07 1.82 835.3 191.9 43.1 0.339 211.7 75.9 0.0083 0.37 0.63 0.17

3 8.23E-08 1.66 1451.2 307.6 45.0 0.351 339.9 152.5 0.0049 0.37 0.62 0.25

6 4.55E-08 1.64 1560.6 328.1 45.7 0.361 349.4 154.9 0.0052 0.34 0.61 0.22

0 4.50E-07 2.10 419.1 93.9 44.1 0.349 101.5 63.9 0.0080 0.35 0.62 0.17

3 1.32E-07 1.69 824.3 190.0 42.9 0.338 209.7 102.8 0.0066 0.32 0.63 0.25

6 8.70E-08 1.79 1009.8 238.0 41.5 0.326 266.7 130.9 0.0035 0.35 0.64 0.23

Asphalt Mixtures

NHL       

PG64-

16

4%

7%

VHL       

PG67-

22

4%

7%

Viscoplasticity

Perzyna's 

Coefficients

Material Properties

Physical Meaning 

Coefficients of Strain 

Hardening
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The testing methods proposed in study (see Table 8-1) are very effective and efficient 

for the determination of the model parameters and material properties. A brief review of the 

efficiency of each characterizing test is shown as follows: 

1) Inherent Anisotropy: the lateral surface scanning tests utilizes a portable scanner and a 

rotating device to obtain the image of the aggregates with a high resolution and can be 

finished within 5 minutes; 

2) Viscoelasticity: nondestructive uniaxial compressive creep (UCC) tests can be 

accomplished in any common material testing machine that can provide a constant axial 

load and record the axial deformation. This test can also be finished within 5 minutes; 

3) Viscoplasticity (Yielding and strain hardening): the UCS test is performed on the same 

machine as the UCC test with the same testing configuration. TCS needs a triaxial cell or 

RaTT cell; however, as discussed in Chapter V, the TCS test can be replaced by the 

indirect tensile strength test which only requires the same testing machine as the UCC 

test. Each of the strength tests can be finished within 5 minutes. 

4) Viscoplasticity (Perzyna’s viscosity) and Viscofracture: the NDM and DDM tests are 

uniaxial tests and they can be performed on any common material testing machine that 

can provide a sinusoidal repeated axial load and record the axial and radial deformation. 

The NDM tests need about 15 minutes and the DDM can be finished within 2 hours for 

most of the asphalt mixtures at relatively high temperature (e.g., ≥40°C). 

To account for the temperature effect on the material properties, the aforementioned 

tests such as the UCC tests, UCS tests and DDM tests might need to be performed at several 

different temperatures. To reach the equilibrium temperature, it is common to take two or three 

hours to change from one temperature to another. In summary, by using the mechanistic models 

and testing protocol proposed in this study, it is possible to characterize one type of the asphalt 
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mixture in compression and obtain all the material properties and model parameters within one 

day. The constitutive models developed for the characterization of asphalt concrete in 

compression can be effectively implemented for the rutting prediction of the asphalt pavements 

under a variety of traffic, structural, and environmental conditions. 

 

RECOMMENDATIONS 

This study is focused on the fundamentally mechanistic modeling of the asphalt mixture 

in compression. Some characterization models and testing protocols were proposed and the 

critical material properties associated with permanent deformation were obtained for limited 

asphalt mixture specimens. The work done in this study is a first and basic step to a successful 

prediction of the field performance of the asphalt pavements. More studies are recommended as 

continuations of this study: 

First, the mechanistic models proposed in this study are in an urgent need to be 

implemented in the performance prediction of the asphalt pavements. A necessary step toward 

performance prediction is to formulate the evolutionary rules which are used in the numerical 

finite and boundary element predictions of pavement distresses. This can be done by using the 

material characteristics and constitutive models for permanent deformation and fracture that 

have been developed in this dissertation. Thus, more work can be done in the prediction of the 

field performance of the asphalt pavements at different traffic loads, environmental conditions 

and pavement structures. Comparisons between the predictions and field measurements are also 

very necessary to evaluate the accuracy of the constitutive models.  

Second, the yield criterion on the octahedral plane of the newly developed ZLL yield 

surface model in this study was derived based on the model and testing data of geomaterials. 

Even though the asphalt mixture is one of the geomaterials, the validation of the ZLL yield 
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surface on the octahedral plane still need to be performed on the asphalt mixtures by conducting 

the yield strength tests at different octahedral shear stress paths. 

Third, a microstructural study by using more advanced techniques such as X-ray CT 

might be performed on the investigations of the initiation of the microcracks and the propagation 

of the macrocracks of the asphalt mixtures when it is subjected to a destructive compressive 

load. The direct observation of the cracks in compression can be utilized to validate the 

theoretical viscofracture characterization results in this study.  

Fourth, because these test protocols produce measured material properties, a systematic 

program of measuring and cataloging the properties of the most commonly used mixture 

properties can now be initiated. Once it is developed and available to the pavement designers, 

this catalog will make the process of mixture design and performance prediction much more 

efficient. 

Fifth, these testing protocols being simple, rapid and efficient can now be used to 

measure the effects of moisture vapor, healing, additives and modifiers on the properties of 

commonly used asphalt mixtures. The characteristics of the warm mix asphalt mixture can now 

be compared objectively with the same properties of the hot mix asphalt mixtures. 

Sixth, a large number of replicate samples needs to be tested in order to determine 

precision, bias and variances of the test results. These individual test results may then be used to 

predict pavement life cycles to determine their expected values and variances. This is an 

essential step toward using these fundamental test methods in design. Furthermore, these test 

protocols and analysis methods can be the basis of test process specifications that will eventually 

be adopted by American Association of State Highway and Transportation Officials (AASHTO) 

and American Society for Testing and Materials (ASTM). This is a lengthy process but one that 

can and need to be initiated.   
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