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ABSTRACT 

 

Overheight vehicle impact to bridge decks is a major problem in the transportation 

networks in the United States. An important factor that causes this problem is inadequate 

vertical clearance of bridges. Using steel pedestals to elevate bridge decks is an efficient 

and cost-effective solution for this problem. So far, steel pedestals have been used in the 

low seismic regions of the United States and therefore, their design has been based on 

providing enough strength to carry vertical loads and the lateral behavior of bridges 

elevated with pedestals have not been a major concern. But even in low seismic zones 

the seismic hazard should not be completely ignored. Also there might be some bridges 

in medium or high seismic regions that need to be elevated because of the lack of 

enough vertical clearance and using steel pedestals can be considered as an option for 

elevating those bridges. To address the mentioned needs, this dissertation proposes a 

framework to determine the structural reliability of bridges elevated with steel pedestals 

by developing probabilistic capacity and demand models for the slab-on-girder bridges 

subjected to lateral loads. 

This study first compares the behavior of previously tested pedestals with the 

behavior of elastomeric bearings in low seismic regions using statistical tests. Then, to 

provide a general framework, which can be applied to all bridges that are elevated with 

steel pedestals, this dissertation develops probabilistic capacity and demand models for 

steel pedestals considering all the aleatory and epistemic uncertainties of the problem. 

Using the developed probabilistic models along with the available models for other 
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components of bridges, seismic fragility curves for elevated bridges are obtained and 

used to determine the structural reliability. Finally, this study uses the developed 

framework in a decision analysis that helps the engineering community and decision 

makers to check if the installation of steel pedestals on a specific bridge has financial 

justification or not. Results show that for a typical two-span slab-on-girder bridge, the 

use of steel pedestals has financial justification only in low seismic regions and if the 

societal benefits of elevating the bridge can at least cover the installation cost of 

pedestals. 
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1. INTRODUCTION 

 

1.1 Background 

An important problem within the U.S. transportation network is overheight vehicle 

collision with bridge decks. According to a survey by Fu et al. (2004) among 29 states, 

18 states declared that they consider overheight vehicle collision as a problem in their 

transportation network. Several cases of overheight vehicle collisions in the United 

States have been reported (Hartick et al. 1990; Feldman et al. 1998; Fu et al. 2004; 

Wardhana and Hadipriono 2003), where inadequate vertical clearance of bridges has 

been identified (Hilton 1973; Hadipriono 1985). There are four types of methods to 

solve this problem: routing procedures, warning systems, clearance augmentation, and 

impact absorbers (Sharma et al. 2008). Using steel pedestals to elevate the decks of 

simply-supported bridges is an efficient and cost-effective clearance augmentation 

method (Hite et al. 2008). Steel pedestals are short columns that increase the vertical 

clearance height of bridges. Due to a lack of understanding of the performance of steel 

pedestals when subject to combined axial and lateral loads, so far, steel pedestals have 

been used in limited areas of the United States of low seismicity and their design has 

been based on providing enough strength to carry primarily vertical dead and live loads. 

Therefore, there is a need to 1) assess the structural reliability of bridges elevated with 

steel pedestals and subjected to lateral loads and 2) determine whether the addition of 

steel pedestals is detrimental or beneficial depending on the specifics of the bridge. 
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Using steel pedestals to elevate bridges is a relatively new approach. Therefore 

there are very few studies about the structural behavior of steel pedestals and their effect 

on the lateral response of the elevated bridges. Hite et al. (2008) conducted quasi-static 

tests on six steel pedestals and presented the hysteretic force-displacement relationships 

of the tested pedestals. However, the results of the conducted experiments cannot be 

extended to steel pedestals with other dimensions nor different loading conditions. 

Therefore, a general framework is required for the fragility estimation of bridges 

elevated with steel pedestals. Developing fragility estimates for bridges elevated with 

steel pedestals requires the development of probabilistic capacity and demand models 

that can capture uncertainties in the material and geometrical properties and lateral loads, 

which is explored in this dissertation. 

As such, this study presents the development of probabilistic models for seismic 

capacity and demands on simply-supported slab-on-steel-girder bridges elevated with 

steel pedestals. The proposed models along with the available probabilistic capacity 

models for the bridge components (such as Choe et al. 2007) can be used in a system 

reliability analysis to estimate the fragility of bridges elevated with steel pedestals. 

Following Gadoni et al. (2002, 2003), the probabilistic models are developed starting 

from common deterministic models and adding correction terms to compensate for the 

inexactness/bias in the deterministic models. The correction terms are calibrated using 

experimental data for capacity models and demand data generated from nonlinear time 

history analyses (NTHAs) of detailed three-dimensional (3D) finite element models for 

demand models. In order to maximize the information content of the finite number of 



 

3 
 

NTHAs for developing demand models, an experimental design is used to generate the 

geometrical and mechanical properties used in the finite element models. Unknown 

model parameters in the proposed probabilistic demand models are estimated using a 

Bayesian updating method.  

 

1.2 Research Objectives 

The goal of this research is to develop a probabilistic framework for the assessment of 

the structural reliability of steel pedestals. The anticipated results consist of estimating 

the ultimate load carrying capacity of steel pedestals considering all failure modes 

associated with the post-installed unheaded anchor bolts of steel pedestals, assessing the 

demands on the steel pedestals subject to earthquake load, assessing the structural 

reliability of the steel pedestals via probabilistic capacity and demand models, and 

computing the life-cycle costs that aid the decision-making process for elevating bridges. 

From the framework, the lateral capacity and demand on the steel pedestals will be 

evaluated and the structural reliability of steel pedestals will be assessed. Probabilistic 

capacity models for steel pedestals will be based on the capacity of steel pedestal 

components such as base plate, anchor bolts and base concrete. The capacity models 

along with demand models will be developed such that engineers can use them easily 

without running detailed nonlinear time history analyses. Based on the developed 

capacity and demand models, the structural reliability of steel pedestals will be assessed. 

To justify the use of steel pedestals, a decision analysis will be conducted for steel 
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pedestals. The following five specific objectives are considered to develop a framework 

for reliability assessment and decision analysis for bridges elevated with steel pedestals: 

 Objective 1: To investigate the seismic effects of elevating bridges with steel 

pedestals  

 Objective 2: To develop probabilistic capacity models for steel pedestals used to 

elevate bridges 

 Objective 3: To develop probabilistic demand models for bridges elevated with 

steel pedestals  

 Objective 4: To assess the structural reliability of steel pedestals 

 Objective 5: To provide a decision analysis tool to aid the decision‒making 

process for determining elevation of bridges with steel pedestals 

Figure 1-1 shows an overview of the research plan in this dissertation. The 

header of each box in Figure 1-1 shows an objective and the required steps to achieve 

the objective are provided below the corresponding header. 
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Objective 1-Investigation of seismic effects
 of elevating bridges with steel pedestals

Objective 2-Development of  probabilistic
capacity models for steel pedestals used to
elevate bridges

Objective 3-Development of  probabilistic
demand models for bridges elevated with
steel pedestals

Objective 4-Assessment of  structural
reliability of steel pedestals

General framework for the reliability assessment of bridges elevated with steel pedestals

 Three-dimensional analytical models
 Selection of earthquake records
 Nonlinear time history analyses
 Statistical analysis of the results
 Investigation the stability of the studied

steel pedestals

 Capacity models of anchor bolts
 Capacity models of base plate
 Lateral-vertical interaction curves for

steel pedestals

 Experimental design
 Analytical model for steel pedestals
 Models of  bridges elevated with steel

pedestals
 Assessment of  the demand model

parameters

 Assessment of  the structural
reliability of steel pedestals

 Sensitivity analyses
 Case study

Objective 5-Decision analysis to aid
decision making for elevating bridges

 Investigation the effect of  elevating
bridges on the expected failure costs
to justify the use of steel pedestals

 

Figure 1-1. Overview of the research plan in this dissertation 
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1.3 Organization of Dissertation 

This dissertation is organized using a section-subsection format. The following five 

sections discuss the details of research and methods used to achieve the five specific 

objectives mentioned in the previous subsection. Each section explains an objective and 

the required steps and conducted research to achieve that objective. The results of these 

five sections provide a general framework to assess the structural reliability of bridges 

elevated with steel pedestals. The last section provides conclusions of this research and 

proposes some recommendations for the future work. Following is a brief overview of 

each section in this dissertation. 

 Section 1 (current section) provides an introduction about the problem, including 

background, research objectives and organization of dissertation. 

 Section 2 investigates the seismic effects of elevating bridges with steel pedestals in 

the Southeastern United States, where steel pedestals have been used in the past to 

elevate bridges. In Section 2, the responses of a typical bridge elevated with 

previously tested steel pedestals are compared to the responses of the same bridge 

with elastomeric bearings, which are common types of bridge bearings. The results 

of this section are only valid for the tested pedestals and for the Southeastern United 

States. More comprehensive models are presented in Sections 3 through 5. Research 

conducted in Section 2 has been published in the Engineering Structures, 33(12) 

with the title of “Seismic effects of elevating bridges with steel pedestals in the 

southeastern United States.” 
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 In section 3, probabilistic capacity models are developed for steel pedestals used to 

elevate bridges. All the failure modes of base plate and anchor bolts including tensile 

and shear modes of failure and their interaction are considered in developing 

capacity models. Error terms are added to the available deterministic models and 

their mean and standard deviation are estimated by comparing the outputs of the 

deterministic models with experimental data. This work has been published in the 

Journal of Structural Engineering ASCE, 137(12) with the title of “Probabilistic 

capacity models and fragility estimates for steel pedestals used to elevate bridges.” 

 In section 4, probabilistic demand models are developed for bridges elevated with 

steel pedestals by adding correction and error terms to deterministic models. 

Correction terms are selected from candidate explanatory functions that are thought 

to be influential on the responses. Virtual data are used as the required data to 

develop probabilistic models and an experimental design is employed to maximize 

the information content of the virtual data. Model parameters are estimated using 

Bayesian updating method. Fragility of a typical two-span bridge using developed 

demand models in this section and capacity models in section 3 is estimated. This 

work has been summarized in a journal paper entitled “Probabilistic seismic demand 

models and fragility estimates for bridges elevated with steel pedestals” and 

submitted to Journal of Structural Engineering ASCE. 

 Section 5 provides a decision analysis framework for elevating bridges using steel 

pedestals. The probability of failure of bridges is computed due to vehicular impact 

and earthquake loads as function of the pedestal height in different regions of the 
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United States. The optimum height of pedestals is then defined as the height that 

minimizes the probability of failure. Comparison between the expected costs of 

failure before and after bridge elevation shows that if the elevation of a bridge in a 

specific region has financial justification or not. This work has been summarized in a 

journal paper entitled “Decision analysis for elevating bridge decks with steel 

pedestals” and submitted to Structure and Infrastructure Engineering.  

 The conclusion of this dissertation is provided in Section 6 along with the unique 

contributions from this work as well as some suggestions for the future work. 
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2. SEISMIC EFFECTS OF ELEVATING BRIDGES WITH STEEL PEDESTALS* 

 

2.1  Introduction 

While steel pedestals have been used recently in the southeastern United States to 

increase the vertical clearance of bridges, their effects on the seismic responses of 

bridges in that region are still unknown. Steel pedestals resemble short columns that are 

used as a cost-effective means to elevate bridges in order to decrease the likelihood of 

overheight vehicle collisions to bridges. Figure 2-1 shows a bridge in Georgia elevated 

with steel pedestals.  

 

 

Figure 2-1. A bridge in Georgia elevated with steel pedestals 

 

However, the mechanism of transferring inertial loads in steel pedestals is similar 

to steel rocker bearings, which have revealed poor performance during earthquakes 

                                                 
*  Reprinted with permission from “Seismic effects of elevating bridges with steel pedestals in the 
southeastern United States.” by Vahid Bisadi, Monique Head and Daren B.H. Cline, 2011, Engineering 
Structures, 33(12), 3279-3289, Copyright 2011 by Elsevier Ltd. 
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(Douglas 1979; Mander et al. 1996; DesRoches et al. 2000, 2003; Buckle et al. 2006), 

thereby raising concerns as to the seismic performance of steel pedestals given their 

height and connectivity to bent caps via post-installed unheaded, unhooked anchor bolts 

that are embedded into drilled holes filled with grout. Therefore, there is a need to 

investigate the effects of adding steel pedestals to existing bridges, which changes the 

lateral stiffness, on the structural responses of the bridge during earthquakes since no 

analytical study is available to date. Hite et al. (2008) conducted six quasistatic reversed 

cyclic experimental tests on bridge steel pedestals to obtain the hysteretic behavior that 

is used in the analytical model developed herein.  

This section investigates the elevated bridge responses during earthquakes to find 

the effects of the replacement of elastomeric bearings with steel pedestals. To evaluate 

the seismic response of bridges elevated with steel pedestals, an analytical study is 

conducted that uses a finite element (FE) model developed in Open System for 

Earthquake Engineering Simulation (OpenSees). The nonlinear response of bridges via 

nonlinear time-history analyses is investigated. The load–displacement relationships 

from experimental tests (Hite et al. 2008) are used to define the pedestal stiffness and 

hysteretic behavior in the FE model. This study considers a typical multi-span, slab-on-

girder bridge as a representative of the southeastern United States bridges and compares 

the responses of the studied bridge in four cases. In one case elastomeric bearings that 

are the commonly used bridge bearings are used in the model. The bridge responses in 

this case are considered as the bridge responses before the elevation. In the other cases, 

three types of previously tested steel pedestals by Hite et al. (2008), are used as bridge 
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bearings in the model and bridge responses are compared to the first case. Also, the 

bridge responses with different steel pedestals are compared to each other. This study 

uses 100 artificially generated earthquakes for five different locations in the southeastern 

region of the United States since the occurrence of earthquakes is still probable even in 

low seismic regions like the southeastern United States. For example, based on 

AASHTO (2010) seismic hazard maps, the horizontal peak ground acceleration of an 

earthquake with a return period of 1000 years in different parts of Georgia is between 

0.03g and 0.12g, Alabama is between 0.03g and 0.1g, and South Carolina is between 

0.09g and 0.5g. 

A statistical effects model is considered for the resulting data from nonlinear 

time-history analyses given the massive output produced from the computation of 800 

total cases run. The comparison between the bridge responses is conducted using 

Tukey’s Honest Significant Difference (HSD) test to show any statistically significant 

differences in bridge responses, which help identify cases where the addition of steel 

pedestals may not be favorable. Tukey’s test is a statistical test that is used for the 

comparison between two groups, for example between the responses of a bridge with 

elastomeric bearings and the responses of the same bridge with steel pedestals subject to 

a set of ground motions. Information about Tukey’s HSD test is available in multiple 

comparison textbooks such as Hsu (1996). 

In this section, the geometrical and mechanical properties of the studied steel 

pedestals are presented and then the details of the FE model and modeling assumptions 

are discussed. After that, the generation of artificial earthquake records is briefly 
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discussed. Then the fitted statistical model on the data is presented and based on that the 

seismic performances of the bridge after elevation with the studied steel pedestals are 

compared to its performance before elevation (with elastomeric bearings) using 

statistical significant difference tests. Finally, demand forces on steel pedestals are 

compared to their capacity considering their strength and stability criteria. 

 

2.2  Properties of the Studied Steel Pedestals 

The performances of three types of steel pedestals are investigated: one short and two 

tall steel pedestals that have been used to elevate bridges (Hite et al. 2008). These 

pedestals are shown in Figure 2-2. The short steel pedestals have a height of 500 mm and 

W200 × 46.1 steel profile. It will be denoted by ‘‘S’’ in this dissertation. The tall steel 

pedestals have a height of 850mmand built-up steel profiles (with an area of 9800 mm2), 

and will be denoted by ‘‘T1’’ and ‘‘T2’’ as illustrated in Figure 2-2. The direction of 

steel pedestals is considered in a manner that the web of the steel profile of the pedestal 

is parallel to the longitudinal axis of the bridge. This is the direction of installation that 

usually is selected in practice as shown in Figure 2-1. These steel pedestals are anchored 

to the cap beams or abutments with 32 mm stainless steel stud anchor bolts having a 

minimum yield strength of 210 MPa. The mechanism of transferring loads from steel 

pedestals to the stud anchor bolts in S and T1 pedestals are through A36 L-shaped (L100 

× 100 × 12 mm) angles that are welded to the base plate of the pedestals as shown in 

Figure 2-3. T2 pedestals do not have angles attached to their base plate, but rather the 

load is transferred by the anchor bolts themselves, which are within the base plate as 
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shown in Figure 2-2. The other properties of this type are similar to those of T1. Detailed 

information about the properties of each type of studied pedestals in this dissertation and 

their response to quasi-static lateral forces is available in Hite et al. (2008).  
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Figure 2-2. Three types of steel pedestals studied in section 2 

 

 

Figure 2-3. L-shaped angles welded to the short pedestal (S) base plate (anchor bolt nut 
not shown) 



 

14 
 

48800

12200 24400 12200

5000

1600

11
00

46
00

914

CL
7 1830

Logitudinal elevation of the bridge

Transverse elevation of the bridge

10 piles @ 1450

15000

A A

C C

B

B
Section A-A

Section B-B

460 760

2280

460

Section C-C

760

2280

1229

13@305

929

91
4

12
14

1067

416

16@305

629

 

Figure 2-4. Geometric properties of the considered typical three-span bridge in the southeastern United 
States 

 

2.3  Three-Dimensional Analytical Modeling  

2.3.1  Description of the Representative Bridge 

Steel pedestals can be used to elevate bridges with various geometries. For the 

evaluation of the seismic performance of steel pedestals in the southeastern region of the 

United States, a bridge geometry is needed that can be considered as being 

representative of bridges in this region. This study uses an unskewed three span slab-on-

girder bridge shown in Figure 2-4 for this purpose. Based on a statistical analysis on the 

bridges in the central and southeastern parts of the United States by Nielson and 

DesRoches (2006), this bridge can be considered as a representative of bridges in those 

regions. The end spans of the bridge have length 12.2 m and the middle span has length 

24.4 m. The width of the bridge is 15 m and the deck consists of a 180mm concrete slab 
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placed over eight steel girders. The bridge has two bents, where each of them consists of 

a rectangular cap beam and three circular columns with 1% longitudinal reinforcement. 

There are 10 piles under each abutment and 8 piles under each column bent. 
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Figure 2-5. Three-dimensional nonlinear model of the studied bridge modeled in OpenSees 
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2.3.2   Modeling of Bridge Components 

Figure 2-5 illustrates the three-dimensional model of the bridge created in OpenSees. In 

this model, decks are modeled using equivalent linear beam–column elements and their 

masses are concentrated at the nodes along the decks. Rigid links are added to the ends 

of equivalent deck beams to properly connect them to the bent cap beam nodes through 

bearing springs and also to account for in-plane rotation of the deck. Bent cap beams and 

columns are modeled using displacement beam–column elements with fiber sections. 

Unconfined concrete properties are assigned to the fibers in the cover area and confined 

concrete in the core area of the section. Following Mander et al. (1988), a confinement 

effectiveness coefficient is obtained equal to 1.07 and 1.15 for columns and bent cap 

beams of the studied bridge, respectively. A contact element proposed by Muthukumar 

(2003) that considers the hysteretic energy loss is used to model pounding between 

decks and between abutments and decks. This contact element is composed of a gap 

element representing the expansion joint and a bilinear spring to capture the energy 

dissipation and other effects during the impact. Considering a contact element to model 

pounding is essential in nonlinear analyses of bridges because it directly affects the 

forces transferred from superstructure to substructure. 

This study uses six linear springs in six degrees of freedom to model bent 

foundations, a trilinear model implemented by Choi (2002) to model the lateral behavior 

of piles at abutments and a quadrilinear model developed by Nielson (2005) to model the 

behavior of passive soil. The initial lateral stiffness of piles is considered equal to 7 

kN/mm/pile (Caltrans 2006) and their vertical stiffness is assumed to be 175 kN/mm/pile 
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(Choi 2002). These models are shown in Figure 2-5. In the models of abutments, passive 

soil and piles are considered in the longitudinal direction and only piles in the transverse 

direction. The stiffness of the wing walls is conservatively neglected in the model. 

 

2.3.3  Modeling of Bearings 

Two types of bearings (i.e., elastomeric bearings for the bridge before elevation and steel 

pedestals for the bridge after elevation) are studied in this study and their performances 

are compared. 

 

2.3.3.1 Modeling of Elastomeric Bearings 

Following Kelly (1998) and Naeim and Kelly (1999), bilinear models as shown in 

Figure 2-5 represent elastomeric bearings in this study. In this figure Fy, Dy and b are 

yield strength, yield displacement and strain hardening ratio of the bearing, respectively. 

Table 2-1 shows the considered values of these parameters at the middle and center 

spans. Dimensions of elastomeric bearings are obtained based on the AASHTO LRFD 

Bridge Design Specifications (2010) and their stiffnesses are computed given the 

designed dimensions. 

 

Table 2-1. Properties of elastomeric bearings considered in the models 

Elastomeric bearings (E) Dimensions (mm) Dy (mm) † Fy (kN) † b † 

End span 300×200×100 10 10.5 0.33 

Center span 450×300×150 15 23.7 0.33 
†  Dy, Fy and b  are yield displacement, yield strength and strain hardening ratio of the bearing. 
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2.3.3.2 Modeling of Steel Pedestals 

The nonlinear force–displacement relationship of steel pedestals depends on many 

factors such as the geometry of the pedestal and details of its connection to the base and 

to the bridge girder. This study uses a bilinear hysteretic model (as shown in Figure 2-5 

for bearings) based on the experimental results of the quasistatic tests conducted by Hite 

et al. (2008). To this end, the hysteretic models used to represent steel pedestals loosely 

encompass the point at which the anchorage to concrete is expected to degrade. This is 

important to note since failure in the anchorage or its surrounding concrete is not part of 

the study in this section and the anchorage to concrete is not explicitly modeled. Possible 

modes of failure such as anchor failure in steel pedestals will be studied in the next 

section. This section focuses on the overall seismic performance of steel pedestals based 

on the force–displacement relationships obtained from experimental tests. A sample of 

bilinear models that are fitted to experimental results of T2 pedestals in the transverse 

direction is shown in Figure 2-6. Similar bilinear models are used for the other pedestal 

types. The values of yield strength, yield displacement and strain hardening ratio of the 

three types of steel pedestals are shown in Table 2-2. 

 

Table 2-2. Properties of steel pedestals considered in the models 

Steel pedestal type Direction Dy (mm) † Fy (kN) † b † 

Short (S) Longitudinal 5.20 26.0 0.16 

Transverse 6.20 31.0 0.16 

Tall (T1) 
Longitudinal 2.35 18.0 0.3 

Transverse 6.55 32.7 0.36 

Tall (T2) 
Longitudinal 1.65 19.8 0.15 

Transverse 9.90 49.5 0.36 
† Dy, Fy and b  are yield displacement, yield strength and strain hardening ratio of the bearing. 
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Figure 2-6. Analytical and experimental force–displacement relationship for the T2 steel pedestals in 
transverse direction 

 

 

2.4  Nonlinear Time History Analyses 

Nonlinear time-history analyses in the OpenSees finite element package are used to 

determine various responses of the studied bridge, namely the maxima of deck 

displacement, abutment force, column shear and moment in both longitudinal and 

transverse directions, cap beam shear and moment, and pounding force. Ground motion 

records are applied to the model and the analyses are repeated for each type of bearing. 

The artificial ground motions were generated by Fernandez (2007) for five 

different locations of the southeastern United States. The locations are Bartow, Liberty 

and Lowndes counties in Georgia, Fort Payne, Alabama and Charleston, South Carolina. 
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Two hazard levels of 2% and 10% probability of exceedance in 50 years (corresponding 

to the return period of 475 and 2475, respectively) are selected for the analyses. 

Fernandez (2007) simulated 1000 response spectra for each hazard level in each location 

and then selected 10 at random to obtain time histories. Figure 2-7 shows the mean curve 

of the 10 selected response spectra and Table 2-3 shows the maximum and minimum 

PGA of the selected ground motions for each location. Figure 2-8 shows samples of 

artificial time history records used in this study. 

 

 

(a) (b) 

Figure 2-7. Mean response spectra of ground motions used in the nonlinear time-history analyses: (a) 
earthquakes with return period of 475 years; and (b) earthquakes with return period of 2475 years 

 
 

Table 2-3. Maximum and minimum values of the PGA of applied ground motions 

Location 
Return Period of 475 years  Return Period of 2475 years 

min. PGA max. PGA  min. PGA max. PGA 
Bartow 0.052g 0.099g  0.094g 0.233g 
Liberty 0.016g 0.078g  0.059g 0.280g 
Lowndes 0.012g 0.053g  0.046g 0.204g 
Fort Payne 0.082g 0.178g  0.147g 0.670g 
Charleston 0.165g 0.430g  1.010g 1.730g 
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 (a) 

 
 

 
 

(b) 
 
 
 

Figure 2-8. Samples of artificial time-history records used in this study: (a) return period of 475 years for 
Charleston; and (b) return period of 2475 years for Charleston 
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Table 2-4. Effects considered in the statistical model and their levels 

Effect Type of effect Levels 

Bearing type fixed 
Elastomeric Bearing (E), Short Pedestal (S), Tall 

Pedestal (T1), Tall Pedestal (T2) 

Location fixed 
Bartow, Liberty, Lowndes, Fort Payne, 

Charleston 

Earthquake return period fixed 475 Years, 2475 Years 

Simulation random 1,..,10 

 
 

2.5  Statistical Analysis of the Results 

2.5.1  Effects Model 

This section of the dissertation considers four types of bearings, five locations, two 

return periods of earthquakes, two directions of applying ground motions on the studied 

bridge (longitudinal and transverse directions) and 10 simulations with different artificial 

earthquake records for each combination of bearing types, locations, return period and 

direction of earthquake. Therefore the total number of simulations is 800. Regarding the 

large amount of data in this study, it is imperative to conduct a statistical analysis of the 

results to compare the performance of elastomeric bearings to steel pedestals and the 

performance of different types of studied steel pedestals. For this purpose, a statistical 

“effects model” in JMP software (SAS Jmp) is used separately for each response 

variable of the bridge. General information about effects models can be found in 

statistical textbooks such as Montgomery and Runger (2006). Bearing type, location, and 

earthquake return period are considered to be fixed effects in the model along with their 

possible interactions. Because the ground motion records have been selected at random 

from a suite of earthquake records for each location and hazard level, a random effect 
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(called simulation) is added to the model in which location and hazard level are nested. 

Table 2-4 shows the effects included in the model and the levels of each effect and 

Figure 2-9 shows an overview of the statistical model used in this study. As Figure 2-9 

shows, location and return period are the nested in earthquake record effect, which is 

considered a random effect in this study. Location has five and return period has two 

levels. Bearing type is another effect in the model that has four levels and it is 

considered as fixed model in the effects model. 

 

 

 

 

Figure 2-9. An overview of the statistical effects model used in this study 
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2.5.2  Comparing Least Squares Means by Tukey’s HSD Test 

Figure 2-10 shows the least squares means of variables computed based on the statistical 

models. The least squares means are estimates of the average response among all 

possible simulations and across the locations and return periods in the experiment. 

Figure 2-10 provides a visual aid to compare the results. For example, Figure 2-10 

shows that the mean of longitudinal deck displacement of the studied bridge with the 

considered short pedestal is more than the mean of the deck displacement with the 

considered tall steel pedestals. Since there are limited data points, it has to be confirmed 

that the difference between the responses is significant enough before jumping to 

conclusions about the observations. Therefore, a statistical test is needed to check if the 

difference between the same response of the studied bridge with different bearings is 

significant or not. Statistical tests provide procedures to draw conclusions based on the 

statistics of the data rather than just compare the values in Figure 2-10. To compare the 

means of responses based on available data, Tukey’s HSD Test with level of 

significance, αs, equal to 0.05 is used in this research. Tukey’s HSD Test is a procedure 

for multiple comparisons in which αs is the chance that any type I error occurs. Tukey’s 

Test corrects the increase in the probability of making a type I error when multiple 

comparisons are made. 
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Figure 2-10. Least squares mean values of bridge responses. (Elastomeric bearing, S-short steel pedestal, 
T1-tall steel pedestal type 1, T2-tall steel pedestal type 2) 
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For the purpose of variance stabilization, Tukey’s HSD Test is applied to the 

means of the square root of the responses. This transformation is used to ensure the 

homoscedasticity assumption of the test that states the model variance is independent of 

variables. Whether comparing the means of the original responses or of the transformed 

responses, Tukey’s HSD Test is used to indicate which conditions tend to have 

larger/smaller response values. The results of multiple comparisons for various bridge 

responses are shown in Table 2-5. In this table, capital letters A, B, C and D are used to 

signify the difference between the responses. Sharing a letter between two groups shows 

that there is no statistically significant evidence of a difference between the observed 

mean (square root of) responses in those two groups at the 0.05 level. For example, 

sharing letter C for longitudinal displacement in tall steel pedestals (T1 and T2) means 

that there is no statistically significant evidence of a difference between the mean square 

root of longitudinal displacements of two types of tall pedestals. But because steel 

pedestals do not have a shared letter with the elastomeric bearings, it can be concluded 

that elastomeric bearings generally have different longitudinal displacements than steel 

pedestals. Another example is the results of Tukey’s HSD Test for pounding force in 

Table 2-5. Sharing letter B between three types of steel pedestals show that there is not 

any statistically significant evidence of a difference in pounding force of the studied 

bridge when different steel pedestals are used (despite the corresponding mean values in 

Figure 2-10 being different). It should be noted that capital letters in Table 2-5 are used 

just to show the lack of a significant difference between responses and do not have any 

other meaning. If there is significant difference between two responses in Table 2-5, 



 

27 
 

Figure 2-10 helps to identify which is larger and which is smaller by comparing their 

least squares means. 

 

Table 2-5. Results of Tukey’s HSD Test on the square root of responses for comparison performance of 
bridge bearings 

 Response  
Elastomeric Bearing 

(E) 
Short Pedestal 

(S) 
Tall Pedestal 

(T1) 
Tall Pedestal 

(T2) 

Longitudinal displacement  A B C C 

Transverse displacement  A B C C 

Longitudinal abutment force  A A B B  A B 

Transverse abutment force  C B B A 

Longitudinal column shear  A B C C 

Transverse column shear  A B B A 

Longitudinal column moment  A B C C 

Transverse column moment  A B B A 

Cap beam moment  A C C B 

Cap beam shear  A B C B C A 

Pounding force  A B B B 
 
 

2.5.3  Results of the Statistical Analyses 

Table 2-5 shows that elastomeric bearings do not share any letter with steel pedestals for 

longitudinal and transverse deck displacements, longitudinal shear and moment in 

columns, cap beam moment and pounding force. Also, Figure 2-10 shows that the means 

of those responses are larger for elastomeric bearings than steel pedestals. Therefore, it 

can be concluded that elevating the studied bridge with any of the steel pedestal types 

studied in this dissertation decreases longitudinal and transverse deck displacements, 

longitudinal shear and moment in columns, cap beam moment and pounding force. The 

reduction of force demands in the longitudinal direction arises from the additional 

stiffness of steel pedestals compared to elastomeric bearings. This additional stiffness 



 

28 
 

helps reduce the pounding force, which in turn, reduces the other force demands in the 

longitudinal direction. In the transverse direction, elevating the bridge leads to an 

increase in the abutment force, which is the result of its increased stiffness. This is 

concluded from Table 2-5, where elastomeric bearings do not share letter C with steel 

pedestals, which have letters A and B. 

Comparison of steel pedestals in pairs show that the two types of studied tall 

steel pedestals (T1 and T2) are more effective in decreasing longitudinal shear and 

moment in columns and also in decreasing transverse displacements than the studied 

short pedestal (S). It is inferred from Table 2-5, where the studied tall pedestals have 

letter C for those responses but the studied short pedestal have letter B. It should be 

noted that the failure of pedestals due to instability or lack of strength are not included in 

these results but are investigated in the next subsection.  

The interaction terms in the statistical models show how the effects of each factor 

can depend on different levels of the other factors. In this study, despite statistical 

significance, the magnitudes of the interactions tend to be small, except in the cases 

shown in Figures 2-11 and 2-12. These figures present the interaction of bearing type 

with earthquake return period and with location, respectively, for three response 

variables. Because the mean plots for different levels of return period in Figure 2-11 and 

for different levels of location in Figure 2-12 are not parallel, the effect of bearing type 

on the response variables shown in those figures is not the same for different return 

periods and different locations. Considering that earthquakes in Charleston tend to be 

larger than earthquakes in the other locations, it is apparent in Figures 2-11 and 2-12 that 
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using steel pedestals helps to decrease the pounding force and transverse displacement 

more in large earthquakes than it does in small earthquakes. Large earthquakes in this 

study are referred to as those with a return period of 2475 years and wherever the 

comparisons are among locations, earthquakes related to the Charleston area are 

considered as large earthquakes. Figures 2-11 and 2-12 also show that using steel 

pedestals decreases the longitudinal abutment force only in large earthquakes. In the 

previous paragraph, it was concluded that the two types of tall steel pedestals (T1 and 

T2) are more effective than the short pedestal (S) in decreasing transverse displacement. 

Figures 2-11 and 2-12 show this effect in more detail and reveal that the decrease in 

transverse deck displacement occurs only in large earthquakes while in small 

earthquakes there is not a clear difference in the performance of short and tall pedestals. 

 

 
 

 
Figure 2-11. Mean plots of square root of those responses in which there is interaction between the return 

period of earthquake and bearing type 
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Figure 2-12. Mean plots of square root of those responses in which there is interaction between location 
and bearing type 

 

2.6  Seismic Force Demand vs. Capacity of Steel Pedestals 

The results of the previous section show the influence of elevating bridges with steel 

pedestals on the seismic responses by considering the stiffness and force‒displacement 

relationship of steel pedestals in the bridge model. But in addition to the steel pedestal 
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stiffness and force–displacement relationship, the capacity to withstand seismic forces is 

important in the evaluation of the seismic behavior. In this subsection, the lateral force 

capacity of steel pedestals is estimated and the seismic demands are compared with 

estimated force capacity. Two criteria of strength and stability are of interest for the 

estimation of the lateral force capacity of steel pedestals. Figure 2-13 shows the forces in 

the studied short steel pedestal (S) in the longitudinal direction.  
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Figure 2-13. Applied forces on short steel pedestal 

 

Based on the equilibrium equations in this figure, Eqs. (2-1) and (2-2) are 

obtained as the stability and strength criteria for the short steel pedestal in the 

longitudinal direction, respectively. 
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  uF V                                                              (2-2) 

where W=the gravity load; Nu= the tensile capacity of anchor bolts; Lp= length of the 

base plate; Bp = the width of the base plate, '
cf  is the ultimate compressive stress in 

concrete; hped= the height of the pedestal; and Vu=  the shear capacity of anchor bolts. 

Four failure modes of steel rupture, concrete cone breakout, pullout and splitting failure 

are considered for the estimation of the tensile capacity of anchor bolts. Also three 

failure modes of steel failure, concrete edge breakout and concrete pry-out are 

considered for the estimation of the shear capacity of anchor bolts. Details about the 

mechanisms of these failures and formulas to calculate anchor capacity in each of them 

are provided by Eligehausen et al. (2006). The stability and strength criteria for the other 

studied cases in this study are obtained similarly. In all the studied steel pedestals, 

stability criteria are more critical than strength criteria when determining the lateral force 

capacity of the steel pedestal. Figure 2-14 shows the seismic demand and capacity of the 

steel pedestals. In this figure, box-whisker plots show the seismic demands in the studied 

ground motions and horizontal dotted lines show the capacity of the pedestals based on 

the stability criteria. On each box for demand, the central mark represents the median, 

the edges of the box show the 25th and 75th percentiles, the whiskers extend to the most 

extreme data points and outliers are plotted individually by plus signs.  
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             Longitudinal Direction 

 
Figure 2-14. Comparison between seismic force demands and capacities of steel pedestals: (a) S in 

longitudinal direction; (b) T1 in longitudinal direction; (c) T2 in longitudinal direction; (d) S in transverse 
direction; (e) T1 in transverse direction; and (f) T2 in transverse direction 

 

Figure 2-14 reveals that studied steel pedestals have a stability problem in 

maximum credible earthquakes (with a return period of 2475 years) generated for 

Charleston in which the PGA of ground motions are higher than other studied locations. 

Transverse Direction 

S T1 T2 

S T1 T2 
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Also, T1 steel pedestals have a stability problem in the transverse direction in almost all 

of the ground motions due to their small resisting lever arm in the transverse direction, 

resulting from the small width of base plate and the arrangement of anchor bolts (section 

B–B, Figure 2-2). Therefore, the use of this type of pedestal is not well-suited due to 

stability problems. Generally, using four anchor bolts at the corners of the base plate 

similar to what is being used in the column base plates of buildings can increase the 

lateral force capacity of steel pedestals and decrease their stability problems when 

installed in bridges. 

 

2.7   Conclusions 

This section investigated the seismic performance of three types of steel pedestals used 

to elevate bridges and compared them to the performance of elastomeric bearings (which 

were assumed to be used before elevation) in a representative bridge subjected to 100 

artificial ground motions generated for the southeastern parts of the United States. It 

should be noted that the results of this section are valid only for the southeastern region 

of the United States and for the studied pedestal types. A general framework that works 

for all dimensions and geometrical properties will be presented in the next sections. The 

fitted bilinear models for experimental force‒displacement relationships were used in a 

bridge model created in OpenSees to evaluate the seismic performance of steel pedestals. 

Then statistical effects models were employed to process the data, and Tukey’s HSD 

Test was used to compare the performance of bearings. Also, the lateral force capacity of 
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the pedestals was evaluated and compared to the seismic demands. The findings, which 

are valid for the case study bridge analyzed, are as follows: 

•   Elevating the studied bridge with the steel pedestals reduced most of the 

demands such as longitudinal and transverse deck displacements, longitudinal 

shear and moment in columns, cap beam moment and pounding force. 

•  The most important effect was the reduction in pounding force that comes from 

stiffening the bridge when replacing elastomeric bearings with steel pedestals. 

This is the main reason for the reduction in longitudinal demands such as the 

longitudinal abutment force. 

•  Elevating the studied bridge with steel pedestals had some unfavorable effects, 

too, such as increasing the transverse abutment force. 

•  Studied steel pedestals showed a stability problem in large earthquakes (such as 

Charleston earthquakes with a return period of 2475 years). T1 pedestals (see 

Figure 2-2) showed a stability problem in the transverse direction even in small 

earthquakes. So, the use of this type of pedestal is not well-suited. 

•  Using the studied steel pedestals helped to decrease pounding force and 

transverse displacement more in large earthquakes than in small earthquakes but 

it should be noted that in the large earthquakes instability may occur. 

•  In large earthquakes the two types of studied tall steel pedestals, T1 and T2, were 

more effective in decreasing transverse displacements than the short pedestals 

but all of them may become unstable in large earthquakes (as was observed in the 

Charleston 2475 return period simulations.) 
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•  The two types of studied tall steel pedestals (T1 and T2) were more effective in 

decreasing longitudinal shear and moment in columns and also in decreasing 

transverse displacements than the short pedestal (S). The scope of this study was 

limited to the three types of typical steel pedestals used in the southeastern 

United States. Further experimental and analytical studies are still needed for 

pedestals with other geometrical properties and locations. 
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3. PROBABILISTIC CAPACITY MODELS FOR STEEL PEDESTALS USED TO 

ELEVATE BRIDGES* 

 

3.1  Introduction 

Previous section investigated the seismic effects of elevating bridges with steel bridges 

and compared their responses with elastomeric bearings. The results of section 2 are 

valid for the tested pedestals by Hite et al. (2008) and for the Southeastern United States. 

Those results cannot be extended to steel pedestals with different properties and different 

locations. Therefore, an analytical method is needed so that engineers can evaluate the 

failure probability of steel pedestals with various geometrical and mechanical properties 

subjected to different lateral load levels. This section provides the probabilistic capacity 

models for the steel pedestals used to elevate bridges.  

Figure 3-1 shows a steel pedestal with post-installed anchor bolts that are used to 

attach the pedestal to the bent cap beam or abutment of a bridge. Usually two anchor 

bolts are used in the steel pedestals to carry inertial loads but using four bolts (two bolts 

in each side as shown in Figure 3-1) is recommended in this section because in this case 

the pedestal has resisting lever arms in both longitudinal and transverse directions and is 

able to carry the lateral load in both directions. This section presents findings for the 

lateral load capacity and vulnerability of steel pedestals with four anchor bolts. 

However,  the proposed procedure can  also  be  applied to the steel  pedestals  with  two 

                                                 
* Reprinted with permission from “Probabilistic capacity models and fragility estimates for steel pedestals 
used to elevate bridges.” by Vahid Bisadi, Paolo Gardoni and Monique Head, 2011, ASCE Journal of 
Structural Engineering, 137(12), 1583-1592, Copyright 2011 by ASCE. 
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Figure 3-1. Steel pedestal at the corner of a bridge bent beam 

 

anchor bolts in the direction where the pedestal has a resisting lever arm. 

The load capacity of the pedestals depends on the capacity of the anchor bolts 

and the capacity of the base plate. Eligehausen et al. (2006) presented a comprehensive 

literature review about the methods of computing anchor bolt capacity. Also, there is 

much research about the load carrying capacity of column base plate connections, such 

as Melchers (1992) and Stamatopoulos and Ermopoulos (1997). However, these 

investigations focused only on base plates typically used in buildings and did not 

consider all the failure modes of post-installed anchor bolts used in steel pedestals. 

This section shows the development of probabilistic models for the lateral load 

capacity of steel pedestals in the longitudinal direction of bridge accounting for the 

failure modes associated with the post-installed unheaded non-expansion anchor bolts 

(which are typically used in steel pedestals), yielding of the base plate, and compressive 

failure of the concrete under the pedestal. The lateral capacity of steel pedestals is 

presented for the case where the lateral load pushes the pedestal toward the inside part of 

the cap beam (inward capacity) and for the case where the lateral load pushes the 
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pedestal toward the outside of the cap beam (outward capacity). These two cases are 

considered separately because some of the parameters such as the concrete covers on the 

anchor bolts are not the same in both cases. Depending on the values of parameters 

either of them can govern the capacity of the pedestal. For the lateral capacity of the 

interior steel pedestals in the transverse direction, the inward load capacity models for 

the longitudinal direction can be used with the corresponding values for the concrete 

covers. For the exterior steel pedestals in transverse direction, inward and outward 

capacities have to be estimated separately following the method proposed in this 

dissertation for the longitudinal direction.   

The probabilistic capacity models in this study are constructed based on available 

deterministic methods for computing the load carrying capacity of anchor bolts and base 

plates. The proposed capacity models consider the prevailing uncertainties including 

statistical uncertainty and model errors due to inaccuracy in the model form or missing 

variables. The developed probabilistic models are of value to the engineering community 

to assess the lateral load capacity and failure probability of existing bridges elevated 

with steel pedestals. It should be noted that this section focuses on the probabilistic 

capacity models of steel pedestals and all the fragility estimates presented in this section 

are conditioned on the demand. There are lots of uncertainties in the demand on the steel 

pedestals, which are considered in developing the probabilistic demand models for 

bridges elevated with steel pedestals in the next section. 

This section has six subsections. After the introduction, the failure modes of 

different components of steel pedestals and the variables that can affect them are 
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discussed and probabilistic capacity models for them are presented. Next, a procedure is 

developed to find lateral-vertical interaction curves for steel pedestals. The fourth 

subsection describes probability of failure versus lateral and vertical loads on the 

pedestal. Then the fragility for an example steel pedestal using developed capacity 

models is estimated and the sensitivity of the results to changes in the mean value and 

coefficient of variation of random variables is investigated. Finally, the last subsection 

presents some conclusions. 

 

3.2  Probabilistic Capacity Model of Steel Pedestals Subjected to Lateral Loads 

The load carrying capacity of steel pedestals depends on the capacity of anchor bolts, 

yielding capacity of base plate and the compressive capacity of concrete under the 

pedestal. It is assumed that the steel profile of the pedestal and its welded connection to 

the base plate have enough capacity to carry lateral loads and do not govern the capacity 

of the pedestal. This assumption is consistent with the experimental results obtained by 

Hite et al. (2008). 

Figure 3-1 illustrates the geometrical variables used in this study, where efh  = 

embedment length of anchor bolts in concrete (considered as random variable); 1c  = 

distance between the longitudinal axis of anchor in tension and perpendicular edge of 

concrete to the lateral load direction (considered as random variable); 2c  = distance 

between the longitudinal axis of anchor in tension and parallel edge of concrete to the 

lateral load direction (considered as random variable); 3c = distance between the 

longitudinal axis of anchor and perpendicular edge of base plate to the lateral load 
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direction; pedh = pedestal height; sL = steel profile dimension parallel to the lateral load; 

pt = base plate thickness; pL = base plate dimension parallel to the lateral load; pB = base 

plate dimension perpendicular to the lateral load; and s = distance between the 

longitudinal axis of anchors perpendicular to the lateral load direction. 

 

3.2.1  Anchor Capacity 

Eligehausen et al. (2006) provide a comprehensive study and literature review about the 

capacity of anchor bolts. According to Eligehausen et al. (2006) and the American 

Concrete Institute (ACI) (2008), anchor bolts may fail in tension, shear or interaction 

between tension and shear. When steel pedestals are subjected to lateral loads, both shear 

and tension forces are available in anchor bolts. As such, discussion about all the 

probable failure modes of anchor bolts in tension and shear is presented in the following 

subsections.  

 

3.2.1.1 Anchor Bolt Failure Modes in Tension 

There are five anchor bolt failure modes in tension: steel rupture, concrete cone 

breakout, pullout, concrete side blow-out and splitting failure (ACI 2008). All these 

modes, except concrete side blow-out that is related to headed anchor bolts are 

considered in this study. Anchor bolts that are used for bridge steel pedestals in this 

study are post-installed unheaded anchors and concrete side blow-out is not applicable to 

them. In this study, the anchor bolts tension capacity, uN , at the tension side of the steel 

pedestal is defined as the minimum of the four tension failure mode capacities 
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  , , , ,min , , ,u u s u c u cp u spN N N N N                                    (3-1) 

where ,u sN = anchor failure load in tension associated with steel rupture; ,u cN = anchor 

failure load in tension associated with concrete cone breakout; ,u cpN = anchor failure 

load in tension associated with pullout failure; and ,u spN = anchor failure load in tension 

associated with splitting failure. 

 

Steel Rupture 

Steel rupture failure mode rarely occurs in anchor bolts and usually other modes of 

failure happen before (Eligehausen et al.  2006). The following equation computes the 

failure load for this mode: 

  
2

, 4u s s u s n
dN nA f n f 

 
   

 
                                 (3-2) 

where n = number of anchors in each side of the pedestal; sA = cross sectional area of 

one anchor bolt; uf = ultimate stress of anchor bolt steel; d = anchor bolt diameter; 
s
= 

random variable for the ratio of ultimate stress to nominal stress of steel; and nf = 

nominal stress of anchor bolt steel. This study uses the random variable 
s
 because the 

ultimate stress of anchor bolt steel usually is about ten to twenty percent more than its 

nominal stress (Eligehausen et al. 2006). This random variable considers the uncertainty 

in the material property of steel. No model error terms are considered for steel rupture 

because the model is based on the principles of mechanics of materials and is assumed to 

be accurate. 
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Concrete Cone Breakout 

Concrete cone breakout is the most common failure mode of the anchor bolts 

(Eligehausen et al. 2006). Some methods are available to calculate the failure load of this 

mode such as the 45 degree cone Method, the Variable Angle Cone (VAC) Method and 

the Concrete Capacity Design (CCD) Method (Fuchs et al. 1995). The CCD Method is 

the most common and, according to Farrow et al. (1995), also the most accurate. The 

following modification of the CCD Method that accounts for the underlying 

uncertainties is proposed in this study 

, 1.5 0.5 2 3 4
, , ,0 2

, 1

'14.6 c N
u c s N m N ef c

c N

A
N

A
h f    



   

       
                             (3-3) 

 0 2
, 9c N efA h 																																																														(3-4)	
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                                        (3-8)  

where ,c NA = projected concrete failure area of anchors under consideration for 

calculation of strength in tension, limited by the overlap of the individual concrete cones 
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of adjacent anchors and the edges of the component; 0
,c NA = projected concrete failure 

area of a single anchor for calculation of strength in tension if not limited by corner 

influences, spacing or member thickness; ,s N = coefficient for the effect of edge 

distances; ,m N = coefficient for the consideration of helpful effect of compression zone 

under the pedestal; '
cf = concrete compressive strength (considered as random variable); 

i  ( 1,2,3,4)i  = random variables with the lognormal distribution that capture the 

model errors; and z = lever arm between the tension force of anchors and compression 

force in concrete under the pedestal. The value of 0
,c NA  in Eq. (3-4) is computed based on 

the assumption of a cone shape failure for the concrete around the anchor. However, due 

to the presence of concrete edges near the anchor, the failure shape is not always a 

complete cone. Therefore, the ratio 0
, ,/c N c NA A  is added to Eq. (3-3). The ratio 0

, ,/c N c NA A  

in Eq. (3-3) is limited to the number of anchors in tension which is 2 in this study. 

Coefficients for the effect of load eccentricity and special reinforcement consideration 

are neglected in Eq. (3-3) because they are not applicable to the studied case. The 

coefficient ,m N  should be neglected when tensile anchors are the ones located near the 

edge of the concrete (Eligehausen et al. 2006) because in this case the compressive 

anchors do not help to stabilize the concrete cone that is come out from the concrete 

body around tensile anchors. The coefficient ,s N  is considered because near the edges 

of concrete a complete cone cannot form during the failure. Details about the 

coefficients used in Eqs. (3-3) to (3-8) can be found in Eligehausen et al. (2006).  
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Table 3-1. Error terms in probabilistic model for steel pedestals 

Error term Applied to Mean C.O.V. 
1 Concrete cone breakout of anchor in tension  0.96 0.23 
2 Concrete cone breakout of anchor in tension 0.96 0.21 
3 Concrete cone breakout of anchor in tension 1.04 0.26 
4 Concrete cone breakout of anchor in tension 1.10 0.15 
5 Splitting failure of anchor in tension 0.95 0.163 
6 Steel failure of anchor in shear 1 0.300 
7 Concrete edge failure of anchor in shear 0.96 0.165 
8 Concrete pry-out of anchor in shear 1 0.300 
9 Proposed method to calculate pedestal capacity   1.06 0.175 

                      Note: i, i=1,…,9, have lognormal distributions. 

 

Following Gardoni et al. (2002), model error terms are used in Eq. (3-3). These 

error terms are considered as random variables in the analyses. Table 3-1 shows the error 

terms used in the probabilistic capacity models. In this table, 1 through 4 are 

multiplicative error terms related to 0
,u cN , 0 0

, , ,( / )c N c N u cA A N , 0
, ,s N u cN and 0

, ,m N u cN

respectively, where
0 1.5 0.5
,

'14.6u c ef cN h f . Therefore, the term in the first parenthesis of 

Eq. (3-3) is modified by a combined error term in the second parenthesis. The mean and 

coefficient of variation (C.O.V.) of error terms 1 through 4 are chosen based on the 

experiments and statistical analyses conducted by Eligehausen et al. (2006).  

 

Pullout 

For unheaded grouted anchors, a probabilistic model that considers pullout failure due to 

bond failure at the steel/grout or at grout/concrete interface is proposed using a uniform 

bond stress model (Zamora et al. 2003) as follows:  

  , 0 0min ,u cp ef efN n dh d h                                    (3-9) 
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where  = random variable representing the uniform bond stress between anchor steel 

and grout at pullout failure; 0 = random variable representing the uniform bond stress 

between grout and concrete at pullout failure; and 0d = random variable representing the 

grout hole diameter.  The first and second terms in parenthesis show the force due to a 

uniform bond stress around a cylinder and correspond to steel/grout and grout/concrete 

bonds, respectively. For completeness, Eq. (3-9) considers bond failure both at the 

steel/grout and grout/concrete interfaces.  However, bond failure between steel and grout 

is more common than bond failure between grout and concrete. This model is also based 

on the mechanics of material principles and thus no model error is considered for it. 

 

Splitting Failure 

Splitting failure usually occurs with anchors close to an edge of a concrete member with 

small thickness (Eligehausen et al. 2006). The probability of occurrence of this mode of 

failure is small for anchor bolts installed in thick concrete members such as the bridge 

cap beams but not equal to zero, and is assessed as such for completeness in this study. 

Following deterministic model proposed by Huer and Eligehausen (2007) for splitting 

failure mode of bonded anchors, Eqs. (3-10) to (3-13) for the probabilistic model of 

splitting failure load are proposed 

 
     1/2 1/6, 3/7 1/2
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, 1
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s s h
N k dh c c h f

s c h
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   

  
   (3-10) 
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  ,
,

max 1 ,1g sp
cr sp

sn n
s


 

   
  

                               (3-12) 

  2/3 1/3
, 1min 5 ,32cr sps c d d                                       (3-13) 

where ,cr sps = distance for calculating projected area of anchors; ,h sp , ,g sp = 

modification coefficients; pk = product factor; caph = cap beam thickness; and 5 = model 

error term. Factor ,g sp considers the larger load bearing area for two tensile anchors in 

comparison to a single anchor and factor ,h sp is a modification factor to modify the 

effect of concrete member height. The mean and C.O.V. of 5  is selected based on the 

experiments and finite element analyses conducted by Huer and Eligehausen (2007) and 

are shown in Table 3-1. 

  

3.2.1.2 Anchor Bolt Failure Modes in Shear  

Three shear failure modes are referenced in ACI (2008). The modes are steel failure, 

concrete edge breakout and concrete pry-out. In this study, the anchor bolts shear 

capacity, uV , at the tension side of the steel pedestal is defined as the minimum of the 

three shear failure mode capacities 

  , , ,min , ,u u s u c u cpV V V V                                         (3-14) 

,u sV  = anchor failure load in shear associated with steel rupture; ,u cV = anchor failure 

load in shear associated with concrete cone breakout; and ,u cpV = anchor failure load in 

shear associated with concrete pry-out. 
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Steel Failure 

Steel failure mode occurs in anchors with enough cover and embedment length. 

Following the deterministic model in Eligehausen et al. (2006) and ACI (2008), the 

following probabilistic capacity model for calculation of failure load in this mode is 

proposed 

 
2

, 64u s s n
dV n f  

 
  
 

                                   (3-15) 

where  = 0.6 for post-installed anchors; and 6 = model error term. Since I did not have 

access to the corresponding experimental results, reasonable values for the mean and 

standard deviation of 6  were assumed as shown in Table 3-1.  

 

Concrete Edge Failure 

Concrete edge failure is associated with anchors near the free edge of the concrete 

subjected to a shear force perpendicular to the edge. At this mode of failure, a semi-

conical fracture surface is developed originating from the anchor toward the free surface 

of the concrete at the near edge. Muratli et al. (2004), Eligehausen et al. (2006) and ACI 

(2008) have proposed deterministic formulas to compute the failure load of this mode. 

Following Eligehausen et al. (2006) that gives more convenient deterministic model for 

anchors with diameters more than 25mm (which are typically used in steel pedestals),  

Eqs. (3-15) to (3-20) are proposed in this dissertation as probabilistic model for concrete 

edge failure 
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 0 2
, 14.5c VA c                                                  (3-17) 
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  min ,8f efl h d                                              (3-19) 
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                                      (3-21) 

where ,c VA = projected concrete failure area of anchors under consideration for 

calculation of strength in shear, limited by the overlap of the individual concrete cones 

of adjacent anchors and the edges of the component; 0
,c VA =  projected concrete failure 

area of a single anchor for calculation of strength in shear if not limited by corner 

influences, spacing or member thickness; ,s V = coefficient for the effect of edge 

distances; ,h V = coefficient for the effect of concrete component thickness; 7 = model 

error term; and fl = effective load transfer length. The formula for 0
,c VA  in Eq. (3-17) is 

obtained by assuming a half-pyramid for the failure surface of a single anchor. 

Furthermore, the ratio 0
, ,/c V c VA A  captures the effects of the edges that prevent the 

development of a full half-pyramid. The mean and coefficient of variation (C.O.V.) of 
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the error term 7 are chosen based on the experiments and statistical analyses conducted 

by Eligehausen et al. (2006) and are shown in Table 3-1. 

 

Concrete Pry-out 

Concrete pry-out occurs when the surface concrete near the bolt crushes. According to 

Eligehausen et al. (2006), the failure load in this mode is considered as twice the 

concrete cone breakout capacity in tension. The following probabilistic model for this 

mode of failure is used 

  , , 82.0u cp u cV N                                               (3-22) 

where 8 = model error term. Since I did not have access to the corresponding 

experimental results, reasonable values for the mean and standard deviation of 8  were 

assumed as shown in Table 3-1.  

 

3.2.1.3 Shear-Tension Interaction  

Anchor bolts of steel pedestals in bridges subjected to lateral loads carry shear and axial 

forces simultaneously. The interaction between shear and tension has the following 

general relationship (Eligehausen et al. 2006) 

1
q q

u u

N V
N V

   
    

   
                                              (3-23) 

where N =tension force in anchor bolt; V =shear force in anchor bolt; and q =exponent 

of interaction equation. 
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A variety of recommendations for the exponent q is available in the literature 

varying from 1 (Cook and Klinger 1989) to 2 (Shaik and Whayong 1985). But 5 / 3q   

is the mostly accepted value (McMackin et al. 1973; Meinheit and Heidbrink 1985). This 

study considers q as a random variable to include the effect of uncertainty in this 

parameter.  

 

3.2.2  Base Plate Yielding 

Yielding of the base plate is another mode of failure for the whole system of the steel 

pedestal. When the lateral load is applied on the pedestal, the base plate steel may yield 

at the edge of steel profile of the pedestal. Eligehausen and Fichtner (2007) have 

investigated the stiffness requirements for base plates. The plastic moment capacity of 

the base plate is computed based on the equations of mechanics of materials as follows 

2

4
p p

pl py

B t
M f                                                    (3-24) 

where pyf = yield stress of base plate steel. 

 

3.3 Lateral-Vertical Load Interaction Curves for Steel Pedestals 

For determination of the lateral and vertical load capacity of a bridge steel pedestal, a 

method is needed by which the load capacity of the pedestal can be obtained based on 

the capacity of the pedestal components, i.e., anchor bolts, base plate and base concrete. 

The method proposed by Stamatopoulos and Ermopoulos (1997) for obtaining the 

interaction curves of column base-plate connections is applicable for this purpose. Other 
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methods such as the one proposed by Penserini and Colson (1989) or EC3 method 

(Melchers 1992) are available but comparisons of these methods with experimental 

results by Stamatopoulos and Ermopoulos (1997) show that their method gives more 

realistic results than others. 
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Figure 3-2. Failure modes of steel pedestals: (a) Failure Mode 1 due to large F and small W; (b) Failure 

Mode 2 due to large F and large W; and (c) Failure Mode 3 due to small F and large W 

 

This dissertation modifies the method by Stamatopoulos and Ermopoulos (1997) 

to make it applicable to post-installed anchors for bridge steel pedestals. Three failure 

modes are considered for the steel pedestal as shown in Figure 3-2. Mode 1 occurs when 

the lateral force is large and vertical force is much less than pedestal vertical load 

capacity. In this mode compression stress in concrete under the pedestal is less than 

ultimate compressive stress of concrete. Mode 2 is associated to the cases where the 

applied vertical force on the pedestal is considerable and the lateral force is also large. In 
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this case, the concrete stress is equal to the ultimate compressive stress of concrete. 

Finally, mode 3 occurs in cases where the vertical load on the pedestal is large. No 

tensile load is in anchor bolts in the third mode and the failure occurs by a plastic 

mechanism in base plate or compression failure of the concrete. The difference between 

the first and second mode of failure is the concrete stress that is estimated under the base 

plate. The difference between second and third mode of failure is the presence of tensile 

force within the anchor bolts in the second mode. 

Following Stamatopoulos and Ermopoulos (1997), a cantilever effective length is 

considered for the cantilever parts of the base plate at the edges, which is shown by c in 

Figure 3-2. This is the length of the base plate in its cantilever part where there is 

nonzero stress under the base plate. It is determined based on the plastic moment 

capacity of the base plate assuming an equivalent rectangular stress distribution instead 

of complicated real stress distribution under the base plate. The cantilever effective 

length is computed from Eq. (3-25). 

 
2

py
c p

c

f
t

f
                                                      (3-25) 

where cf = concrete stress under the pedestal. 

The first failure mode of Figure 3-2 is different from the first failure mode 

proposed by Stamatopoulos and Ermopoulos (1997). They used a triangular stress 

distribution under the base plate in the first mode that contradicts the assumption for 

calculating cantilever effective length.  
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The maximum tensile force in the anchor bolts is the minimum of the force that 

leads to anchor failure and the force that cause a plastic failure mechanism at tension 

side of the base plate. The anchor tensile failure load considering shear-tension 

interaction is computed from Eq. (3-23) as follows 

 

1/

1

qq

a u
u

VN N
V

  
    
   

                                           (3-26) 

and the anchor tensile force that causes a plastic failure mechanism in the base plate is 

computed as follows (Stamatopoulos and Ermopoulos 1997) 

 
 

2

34
py p p

p

f B t
N

e c



                                                   (3-27) 

where e = distance between the edge of profile and the edge of base plate. 

Thus, the tensile load of the anchors at failure modes 1 and 2 is found from Eq. 

(3-28). 

  max min ,a pN N N                                               (3-28) 

Stamatopoulos and Ermopoulos (1997) considered column base plates with cast 

in place anchors. Therefore, yielding of steel was considered as the only failure 

mechanism of the anchors. The embedment length of cast in place anchors and their end 

hooks are such that the other modes of failure can be neglected. However, for steel 

pedestals with post installed anchor bolts with limited length, there is no hook at the end 

of the anchors. Therefore, the other modes of failure of the anchor bolts have to be also 

considered. In this study, all possible modes of failure are considered in Eq. (3-26). The 

flowchart presented in Figure 3-3 shows the steps for calculating the lateral-vertical load 
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interaction curve for steel pedestals, where   = random variable that represents the 

fraction of the lateral load that is transferred to the anchor bolts in tension side of the 

base plate; aF = assumed value for the lateral capacity of steel pedestal; cF = calculated 

value for the lateral capacity of steel pedestal ; and  = acceptable tolerance. Parameters 

maxW and cr  are computed from Eqs. (3-29) and (3-30), respectively.   

  max
' 2c p p cuW f B L e                                              (3-29) 

   2

3 3' 2 ped
cr p cu p

c p

FhWL c e L c
Wf B


  

           
  

                    (3-30) 

where cr = a parameter that shows the failure mode 3 occurs when its value is less than 

zero; maxW = maximum tolerable vertical force by steel pedestal; cu = effective cantilever 

length of base plate when concrete stress is equal to '
cf and W = vertical load demand. 

Details about the derivation of cr can be found in Stamatopoulos and Ermopoulos 

(1997). 

Described procedure gives the lateral load capacity of the steel pedestal for any 

value of vertical load. This procedure is applicable to find the lateral load capacity of the 

pedestal when the applied load is inward. In this case, the load is applied such that the 

steel pedestal is pushed toward the center of the cap beam, the anchor bolts near the edge 

are in tension, and the anchor bolts far from the edge are in compression. With this 

arrangement of tension and compression anchors, coefficient ,m N  should be neglected 

in Eq. (3-3) (Eligehausen et al. 2006). In the case of an outward load where the load 

pushes the steel pedestal toward outside of the cap beam, the arrangement of tension and 
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compression anchors are reverse to the inward case and coefficient ,m N  should be 

determined as a function of the lever arm between compression and tension forces under 

the pedestal. Since this lever arm is a function of the parameter y in Figure 3-2, an 

additional iterative loop should be added to the mentioned procedure when the applied 

load is outward. 
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Figure 3-3. Flowchart for calculation of lateral-vertical load interaction curve for steel pedestal  
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Considering the error term 9  in Table 3-1 is for covering error in the described 

procedure for finding the lateral load capacity of the steel pedestals. Applying the 

procedure illustrated in Figure 3-3 for the specimens tested by Dewolf and Sarisley 

(1980) and Thambiratnam and Paramasivam (1986) shows that the error term 9 has a 

mean equal to 1.06 and coefficient of variation equal to 0.175.  Hence, the probabilistic 

model of the lateral load capacity of the pedestal is presented in this study as follows 

 9cF F                                                          (3-31) 

where F = lateral capacity obtained from the procedure illustrated in Figure3-3.  

 

3.4 Probability of Failure versus Lateral and Vertical Loads 

Based on the conventional notation in reliability theory (Ditlevsen and Madsen, 1996), a 

limit state function g(.) is defined such that g(.)≤0 represent the failure of steel pedestal. 

Using the probabilistic model for steel pedestal capacity described in Eq. (3-31), the 

limit state function is written in the following form. 

    , , ,D D C D Dg F W F W F x x                                     (3-32) 

where x = vector of random variables; DF = lateral force demand; DW = vertical force 

demand; and ( , )C DF Wx = probabilistic lateral load capacity of the steel pedestal 

computed from Eq. (3-31). A conditional probability of failure given the values of DF  

and DW is obtained as follows 

  , , 0 | ,D D D DP g F W F W  x                                        (3-33)    

and the generalized reliability index related to this probability is computed as 
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     1, , 1 , , 0 | ,D D D D D DF W P g F W F W      x x                   (3-34) 

where 1 .  denotes the inverse of the standard normal cumulative probability. Figure 

3-4 shows a conceptual diagram of the fragility of bridge steel pedestals evaluated in this 

study versus lateral and vertical forces applied on them. Figure 3-4 shows that at a 

specified vertical load, failure probability of steel pedestal increases as lateral load 

increases. At a specified lateral load, as the vertical load increases the failure probability 

of the steel pedestal decreases at first and increases after reaching a minimum point. 

 

Lateral Load, F

Vertical
Load, W

Fragility

D

D

 

Figure 3-4. Conceptual diagram for the fragility of bridge steel pedestals 

 

3.5  Probability of Failure for an Example Steel Pedestal 

The proposed probabilistic models developed in the previous sections are used to 

compute the probability of failure for any post-installed, unheaded anchor bolts 

subjected to lateral load and positioned within the base plate of a steel pedestal. The 
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horizontal and vertical demand forces on the steel pedestals can be the result of any 

applied loads on the bridge that can produce force demands on the bearings. For 

example, the lateral load on the pedestal can be due to earthquake loads, braking loads, 

wind loads. Since this study focuses on the capacity models and all the fragility 

estimates are conditioned on demands, no details of the demand models are presented in 

this section. Following the formulation in Gardoni et al. (2003), the presented capacity 

models in this study can be used in combination with probabilistic demand model to 

estimate the probability of failure of the pedestal subjected to the corresponding load.   

 

Table 3-2. Deterministic parameters for the example pedestal 

Parameter Unit Value 
d mm 32 

hcap mm 1200 

hped mm 500 

c3 mm 60 
s mm 280 

Lp mm 400 
Bp mm 400 
tp mm 25 
Ls mm 200 
fn MPa 517 

 

As an example, this section estimates the probability of failure of an example 

bridge steel pedestal with properties presented in Table 3-2 for given the values of 

demand forces. The parameters presented in Table 3-2 are considered as deterministic in 

this example because their values can be easily measured with sufficient accuracy. The 

uncertainty in the material properties of anchor steel is considered in the parameter   

and therefore nf  is considered as a deterministic parameter. Table 3-3 shows the random 

variables of the example pedestal along with the considered values of their means and 
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C.O.V.s, and the considered ranges for their mean value in sensitivity analysis. All the 

random variables are assumed to be statistically independent in this study. The input 

variables reflect the actual (potentially deteriorated) state of the system. Mean values and 

C.O.V.s for the steel/grout and grout/concrete bond stresses are selected as reported by 

Zamora et al. (2003) and Subramanian and Cook (2004) for the specimens from nine 

types of grouts.  

 

Table 3-3. Random variables in probabilistic model for the example pedestal 

Random 
Variable 

Unit Distribution Mean C.O.V.
Range of the mean in 
sensitivity analysis 

d0 mm Lognormal 70 0.1 40-100 

hef mm Lognormal 300 0.1 100-500 

f’c MPa Lognormal 25 0.2 15-50 

fpy MPa Lognormal 240 0.05        200-500 

 MPa Lognormal 18.4 0.27 5-25 

0 MPa Lognormal 8.1 0.3 3-12 

s ---- Lognormal 1.15 0.05 ---- 

c1 mm Lognormal 270 0.1 
50-500 (inward load) 

350-800 (outward load) 

c2 mm Lognormal 500 0.1 50-950 

q ---- Lognormal 5/3 0.1 1-2 

 ---- Beta [0,1] 0.5 0.25 0-1 

 

 

Figure 3-5 shows the point estimate of the interaction curves for the example 

steel pedestal computed using the mean values of all random variables. For the outward 

load case the mean value for the parameter c1 = 550 mm and the other parameters are the 

same as shown in Tables 3-2 and 3-3. Figure 3-5 shows that for the mean value of 

random variables, anchor bolt capacity controls the capacity of the example steel 
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pedestal when the lateral load is applied inward. When the applied load is outward, base 

plate capacity controls the capacity of the example pedestal. This situation may change 

for different geometrical values and mechanical properties. When the pedestal is subject 

to cyclic loads such as earthquake forces, the smallest value of inward capacity, outward 

capacity and base plate capacity governs the capacity of steel pedestal. For the example 

pedestal considered in this study, the inward load capacity governs its capacity subjected 

to cyclic loads but the outward load capacity and base plate capacity may govern in the 

other cases and thus all of those capacities should be checked to find the smallest one. 

 

 

Figure 3-5. Point estimation of interaction curves for the example steel pedestal at mean values 

    

Figure 3-6 shows the contour lines for the fragility of the example bridge steel 

pedestal that is the result of conducting Monte Carlo simulations with different vertical 

and horizontal loads with the target coefficient of variation of the failure probability 

estimate of 0.001. In typical simply supported bridges, the vertical forces on bearings are 
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usually fall within the bottom part of the Figure 3-6. Therefore, for the studied example 

pedestal, increasing the vertical load on the bridge decreases the failure probability of 

the pedestal. 

 

 

 

Figure 3-6. Contour lines for the fragility of the example steel pedestal 
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Figure 3-7. Results of the sensitivity to mean analysis for the inward load (WD=200kN, FD=200kN) 

 

Figure 3-8. Results of the sensitivity to mean analysis for the outward load (WD=200kN, FD=200kN) 
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3.6  Sensitivity Analysis for the Example Steel Pedestal 

Because of the discontinuity in the capacity models of components such as the capacity 

model for concrete cone breakout of anchor bolts, the limit state function for the steel 

pedestal system is not continuous. Therefore, First Order Reliability Method (FORM) is 

not applicable to estimate probability of failure of steel pedestals and Monte Carlo 

simulation should be used for this purpose. Thus, conventional importance and 

sensitivity analysis, which are based on FORM, could not be conducted for bridge steel 

pedestals. To investigate the effect of random variables on the failure probability in this 

study, mean values and C.O.V. of random variables are varied within a practical range of 

each random variable. Table 3-3 shows the range considered for the mean of each 

random variable. The C.O.V.s of random variables in the sensitivity analysis to C.O.V. 

is considered between 0 and 1. For each random variable, the sensitivity of fragility to 

changes in the mean of that random variable is investigated by changing the mean value 

over the considered range and calculating fragility by Monte Carlo simulation while the 

mean of the other random variables are constant. The same method is used to study the 

sensitivity of probability of failure to the C.O.V. of each random variable. The results of 

the sensitivity analysis to the means of random variables are shown in Figure 3-7 for the 

case of inward load and in Figure 3-8 for the case of outward load. A force amount of 

200kN is considered for both the lateral and vertical forces in sensitivity analysis. 

Figures 3-7 and 3-8 reveal that the sensitivity of steel pedestal fragility to the 

means of '
cf , efh and   are more than other means for both inward and outward lateral 

load cases. Mean values of 1c and 2c are also effective parameters especially when the 
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mean value of these parameters take small values. The mean of 0d does not seem to have 

an important effect on the fragility. The fragility is sensitive to the means of  and 0  if 

they have small values, otherwise the fragility is not sensitive to them. Increasing the 

mean of q  reduces the fragility but its effect is less than 1c  and efh . Figures 3-7 and 3-8 

also reveal that the mean of pyf  is not as effective as the mean of  '
cf  on the results. 

To summarize, increasing '
cf , efh and 1c  are recommended as the most effective 

ways to decrease the probability of failure of the studied steel pedestal. However, since 

steel pedestals are usually used in existing bridges, '
cf  is known and not changeable.   

 

 

Figure 3-9. Results of the sensitivity to C.O.V. analysis for the inward load (WD=200kN, FD=200kN) 
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Figure 3-10. Results of the sensitivity to C.O.V. analysis for the outward load (WD=200kN, FD=200kN) 

 

The results of the sensitivity analysis to the C.O.V.s of random variables are 

shown in Figures 3-9 and 3-10. The results of the sensitivity analysis to C.O.V.s of 

random variables show that for the studied example steel pedestal, the probability of 

failure is more sensitive to the variation of the C.O.V of pyf . The sensitivity of the 

outward capacity to the variation of C.O.V.s of random variables is more than the 

sensitivity of the inward capacity.  

 

3.7 Summary and Conclusions 

Steel pedestals are efficient tools to elevate bridges. Steel pedestals are composed of 

steel profiles that are attached to the bent beam or abutment using a base plate and 

anchor bolts. Currently, there are deterministic models in literature for the capacities of 
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steel pedestal components such as anchor bolts but there is no probabilistic model 

available for estimation the lateral load capacity of the steel pedestals as a whole system. 

This section presented probabilistic capacity models for the lateral load capacity of 

bridge steel pedestals. Available methods for the calculation of anchor bolt capacity and 

base plate connection were used and terms considering model errors added to consider 

inaccuracy of the models. Fragility curves for an example bridge steel pedestal with 

typical geometrical and mechanical properties using the proposed capacity models were 

developed and the sensitivity of the results to the mean value of random variables was 

investigated. Compressive strength of concrete under the pedestal, embedment length of 

anchor bolts and distribution of lateral force on the pedestal anchors were found to be the 

most effective random variables for the studied example steel pedestal. Increasing the 

embedment length and cover of anchor bolts was observed as the most effective ways to 

decrease the probability of failure of the studied example steel pedestal given force 

demands. In this section, the fragility estimations were conditioned on demands. Next 

section develops probabilistic demand models for bridge elevated with steel pedestals. 
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4. PROBABILISTIC DEMAND MODELS AND FRAGILITY ESTIMATES FOR 

BRIDGES ELEVATED WITH STEEL PEDESTALS* 

 

4.1  Introduction 

To estimate the fragility of bridges elevated with steel pedestals, probabilistic demand 

models are also required rather than the probabilistic capacity models developed in the 

previous section. Probabilistic demand models consider the aleatory uncertainties 

inherent in the loads on the bridge and epistemic uncertainties in the deterministic 

models that estimate the loads. A probabilistic model developing framework proposed 

by Gardoni et al. (2002, 2003) is employed for developing demand models. The 

probabilistic models are developed by adding correction terms to commonly used 

deterministic models. Correction terms are selected from a set of candidate explanatory 

functions. An error term is also added to the models that represents the randomness in 

the models. Bayesian updating method is used to estimate models parameters. Required 

data for the Bayesian updating process for estimating parameters are generated using 

detailed 3D nonlinear time history analyses (NTHAs) on a set of bridge configurations. 

Bridge configurations are selected using an experimental design to maximize the 

information content of the data.   

The next subsection describes the NTHAs and the experimental design used to 

compute the seismic demand on bridges elevated with steel pedestals. Next, the 

                                                 
* Reprinted with permission from “Probabilistic seismic demand models and fragility estimates for bridges 
elevated with steel pedestals.” by Vahid Bisadi, Paolo Gardoni and Monique Head, 2012, ASCE Journal of 
Structural Engineering,  Accepted for publication, Copyright 2012 by ASCE. 
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proposed probabilistic demand models are developed. Finally, a formulation to compute 

fragility estimates is presented along with an illustration. 

 

4.2 Seismic Demands on Elevated Bridges with Steel Pedestals 

In order to develop probabilistic demand models for bridges elevated with steel 

pedestals, accurate demands from experimental tests or detailed finite element models 

are required. Since there are no results available from experimental tests on the seismic 

response of elevated bridges with steel pedestals, this study uses the results of the 

NTHAs on detailed 3D finite element models of bridges to develop proposed 

probabilistic models.  This section describes the details of the finite element models used 

in this study and the experimental design used to generate the bridge configurations and 

select earthquake records used in the NTHAs. 

 

4.2.1 Analytical Modeling 

This study uses detailed 3D finite element models created in the Open System for 

Earthquake Engineering Simulation (OpenSees) to obtain seismic demands on bridges 

elevated with steel pedestals and uses those demands to develop the probabilistic 

models. Figure 4-1 shows the finite element model used in this study. All the 

nonlinearities are considered explicitly in the abutments, columns and pounding 

elements, as explained in further details next. The bridge decks are expected to remain 

elastic during the earthquake loadings and therefore are modeled with equivalent elastic 

beam-column  elements.  Rigid  links at each end  of the decks  connect the  decks to the  
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Figure 4-1. Detailed 3-D nonlinear finite element model in OpenSees 

 

pedestals. Rigid links are also used to model the width of the cap beam, the back wall of 

the abutments and the distance from the bottom edge of the cap beam to its neutral axis. 

The bent foundations are modeled with translational and rotational linear springs. The 

stiffnesses of the springs are calculated based on the shear wave velocities that are 

considered for the models in the experimental design. The abutment model considers the 

contribution of the abutment backfill and piles in the longitudinal direction and only of 

the piles in the transverse direction. The abutment piles are modeled using a trilinear 

model developed by Choi (2002), and the abutment backfill is modeled using a 

quadrilinear model developed by Nielson and DesRoches (2006). Caltrans’ (2006) 
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recommendations are the basis of initial stiffness values in both of those models. To 

model the pounding between decks and between abutments and decks, an analytical 

model of pounding based on Hertz Law developed by Muthukumar and DesRoches 

(2006) is used. This model uses a nonlinear hysteresis damper that considers the energy 

dissipation during the impact and can be simplified to an applicable model in OpenSees 

by using a gap element and a bilinear hysteretic model in series. Displacement beam-

column elements with fiber sections are used to model columns and bent cap beams. 

Confinement effectiveness coefficients for the core areas of the columns and bent cap 

beams are computed based on the theoretical model developed by Mander et al. (1988) 

for confined concrete. Pedestals are modeled using displacement beam-column elements 

with fiber sections. The base plate and anchor bolts used to attach the pedestal to the cap 

beam or abutment are modeled using rotational springs in longitudinal and transverse 

directions. The stiffnesses of the rotational springs are computed based on the following 

formula provided by Wald et al. (2001) 

2
p

r

Ez t
K


                                                        (4-1) 

where rK = the rotational stiffness of the base plate; E = the modulus of elasticity of 

steel; z = the lever arm between the anchor tensile forces and concrete compressive 

force under the pedestal; pt = thickness of the base plate; = coefficient varying between 

10 and 20. The comparison presented in Table 4-1 between the rotational stiffness 

produced by Eq. (4-1) and the rotational stiffness of three sample pedestals tested by 

Hite et al. (2008) shows that Eq. (4-1) generates good approximations of the rotational 
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stiffness of pedestal bases. It is assumed that the base plate of pedestals is fixed in 

translational degrees of freedom. The sliding of the pedestals observed by Hite et al. 

(2008) is not captured in this study. Determining the analytical force-displacement 

relationship for sliding of the base plate of pedestals requires further experimental tests.  

 

Table 4-1. Comparison between the rotational stiffness from Eq. (4-1) and experimental results 

Rotational stiffness (kN.m/rad) 

Sample No. Experiment  Eq. (4-1) 

1 1250 1500 

2 5534 6175 

3 3612 3179 
 

4.2.2  Experimental Design 

This study conducts an experimental design to maximize the information content of the 

NTHAs and minimize the cost associated with running 3D nonlinear analyses. In the 

experimental design, the structural configurations are selected to cover the possible 

bridges that could realistically be elevated with steel pedestals. Similarly, the ground 

motion records are selected to cover a broad but realistic range of seismic excitations. 

 

4.2.2.1 Structural Configurations 

This dissertation uses a Latin hypercube sampling technique (McKay et al. 1979), which 

is a space-filling method, to generate the bridge configurations used in the analyses. 

Table 4-2 shows the ranges of the basic geometrical and mechanical properties used in 

the experimental design. All other geometrical and mechanical properties can be 

computed based on the basic properties. The ranges in Table 4-2 are selected such that 



 

73 
 

all realistic simply supported bridges that can be elevated with steel pedestals fit in the 

ranges. Therefore, the developed demand model is a general model that can be applied to 

all the bridges with geometrical and mechanical properties that fit within the ranges 

given in Table 4-2. In this study, 200 models of simply-supported bridges are generated 

from the experimental design. 

 

Table 4-2. Geometrical and mechanical properties used in the experimental design 

Property Unit Symbol Range 

Number of spans - Ns 1,2,3,4,5,6 

Average span length  m L 10-50 

Distance between beams m Sb 1-4 

Diameter of columns  m Dc 0.7-2 

Bridge width  m Wb 8-30 

Column height  m hc 3-6 

Span length ratio - rs 1-2 

Bent cap depth  m hcap [0.75Dc , 1.5Dc ] 
Soil Type (USGS) - ST A,B,C,D 

Abutment longitudinal soil stiffness  kN/mm/m Kal 3-40 

Abutment pile stiffness kN/mm/pile Kpile 5-10 

Additional bridge dead load  % bm 0-100 

Skew angle ° b 0-60 

Concrete compressive strength  MPa f 'c 20-55 

Reinforcement yield strength  MPa fry 300-655 

Girder steel yield strength  MPa fby 200-400 

Gap in expansion joints  mm Lgap 25-150 

Longitudinal reinforcement ratio in columns %  1-4 

Transverse reinforcement ratio in columns  % s 0.1-1.1 

Column spiral pitch  mm ssp 70-400 

Pedestal height  mm hped 300-1000 
Pedestal and base plate steel yield strength  MPa fpy 200-400 
Distance from pedestal edge to base plate edge  mm e 50-150 

Pedestal anchor bolt diameter  mm d 10-40 

Pedestal anchor bolt ultimate strength MPa fu 500-800 

Pedestal base plate thickness mm tp 10-40 

Stiffness coefficient for the base of the pedestal in Eq. (4-1) -  10-20 
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4.2.2.2 Ground Motion Records 

In order to develop a general model, ground motion records for the analyses should be 

selected such that they can cover the relevant characteristics, such as the frequency 

content and duration, of the possible earthquakes. This study uses the bin approach 

proposed by Shome and Cornell (1999) for the selection of ground motion records. The 

bin approach uses different bins to subdivide ground motions based on earthquake 

magnitude (M) and distance to the earthquake source (R). Table 4-3 shows the five bins 

of ground motions used in this study. To capture the variability of earthquake 

characteristics in each bin, 40 ground motion records are selected from the database of 

the Pacific Earthquake Engineering Research Center (NGA Database 1999), where half 

of the earthquakes in each bin are selected from ground motions recorded in sites with 

hard soil or rock (USGS soil types A and B) and the other half from sites with soft soil 

(USGS soil types C and D). Selected earthquakes are assigned to the generated bridge 

models for the nonlinear time history analysis. Paired ground motion records are used in 

each analysis, where one component of the records is applied in the longitudinal 

direction of the bridge and one in the transverse direction. The critical excitation angle is 

not used in this study because earthquakes do not always attack bridges at the critical 

angle and using it can result in overestimation of the failure probability (Maleki and 

Bisadi 2006, Bisadi and Head 2011).  

In some models, drift values determined by nonlinear time history analyses are 

relatively large and therefore the results of those analyses cannot be completely trusted. 

Following Ramamoorthy et al. (2006, 2008) and Bai et al. (2011), a 5% drift in columns 
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is selected as the threshold for valid data points. The results of three models in this study 

are considered as lower bound data. In those cases, the analysis is stopped once one of 

the bridge columns reaches 5% drift and the drift at that column, which is equal to the 

threshold, is considered as the lower bound data Type I and the maximum response 

reached by the other demand variables up to that moment are considered as lower bound 

data Type II. 

 

Table 4-3. Bins from which ground motions are selected 

Bin No. Bin characteristics Magnitude Distance No. of Records 

1 Large magnitude, small distance M>6.5 13km<R<30km 40 

2 Large magnitude, large distance M>6.5 R>30km 40 

3 Small magnitude, small distance M<6.5 13km<R<30km 40 

4 Small magnitude, large distance M<6.5 R>30km 40 

5 Near fault M>6.5 R<13km 40 
See Appendix A for details of ground motion records in each Bin 

 

4.3  Development of Probabilistic Demand Models 

This study uses the formulation proposed by Gardoni et al. (2002, 2003) to develop 

general probabilistic models. The models have the following form  

     ˆ, , , , , ,ki ki ki ki ki ki ki kiD d k f v i l t        x θ x x θ            (4-2) 

where  , ,ki ki kiD x θ = natural logarithm of normalized demand measure; k = failure 

mode of interest; f = pedestal force;  = column drift;
 
v = column shear;

 
i = direction 

of the demand;
 
l = longitudinal direction;

 
t = transverse direction;

 
x = vector of random 

variables such as mechanical and geometrical properties and boundary conditions; kiθ

=vector of unknown model parameters; ki = standard deviation of the model error;
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 ˆ
kid x = natural logarithm of normalized demand predicted by a selected deterministic 

demand model;  ,ki ki x θ = correction terms to consider bias inherent in the 

deterministic demand model; and ki = a random variable with zero mean and unit 

standard deviation. It is noted that Dfl and Dft in Eq. (4-2) are natural logarithms of FD in 

Eq. (3-32) in longitudinal and transverse directions, respectively. 

Eq. (4-2) uses three assumptions: the homoskedasticity assumption, which 

requires ki  to be constant (i.e., not dependent on x ); the normality assumption, which 

requires ki
 

to follow a normal distribution; and the additivity assumption, which 

requires an additive model form. Using a suitable variance stabilization transformation 

usually helps to satisfy these assumptions (Box and Cox 1964). This study uses the 

natural logarithm as variance stabilization transformation for all the demands. 

The correction term  ,ki ki x θ
 
in Eq. (4-2) can be expressed in term of a set of 

explanatory functions as  

   
1

,
kp

ki ki kim kim
m

h 


 x θ x                                            (4-3) 

where  kih x is a suitable set of “explanatory” basis functions and kp  is the number of 

explanatory functions in each model.  

This study considers column failures due to excessive deformation (deformation 

mode) and shear force (shear mode), and failure of the pedestals due to excessive lateral 

load.  All three modes of failure are considered in both longitudinal and transverse 

directions.  
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4.3.1  Deterministic Demand Models 

The Modified N2 Method developed by Gardoni et al. (2003) is used as the deterministic 

model to compute  ˆ
kid x . Bilinear force-displacement curves are generated for 

pedestals and columns in both longitudinal and transverse directions. Nonlinear 

pushover analyses are conducted in the longitudinal and transverse directions. The force-

displacement curves for the pedestals at each span in each direction are obtained by 

plotting the summation of the forces in the pedestals that support the same span versus 

the relative displacement of the deck to the bent cap in that direction, and then fitting 

bilinear curves. For the columns, the force-displacement curves are obtained by plotting 

the summation of the forces in the columns of each bent versus the displacement of the 

top of the bent and again fitting bilinear curves. Equations developed by Krawinkler and 

Nassar (1992) for determining the displacements of nonlinear systems are used to predict 

deformation demands in this dissertation. The spectral accelerations used in the 

equations are obtained from a design spectrum for the region where bridge is located. 

After obtaining deformation demands, force demand for each component can be 

determined using the appropriate bilinear force-displacement curve. 

 

4.3.2 Bayesian Parameter Estimation 

Mean and standard deviation of the parameters in Eq. (4-2) can be estimated using a 

Bayesian approach. The posterior distribution of the model parameters can be written as 

(Box and Tiao 1992) 

     , , ,ki ki ki ki ki kif L p   θ θ θ                                  (4-4) 
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where   = normalizing factor;
 

 ,ki kip θ  = prior distribution of kiθ
 
and ki ;  ,ki kiL θ  

= likelihood function that is proportional to the conditional probability for given values 

of kiθ and ki . Following Gardoni et al. (2002), the likelihood function in the general 

case in which equality, lower bound and upper bound data are available can be written as  

       1
, ki ki ki

ki ki
failuredata lower bound data upper bound dataki ki ki ki

L
  

 
   
                  
       

  
θ θ θ

θ

  (4-5) 

where     and    , respectively, denote the standard normal probability density and 

cumulative distribution functions and  ki θ  is defined as  

       ˆ, , ,ki ki ki ki ki ki kiD d    θ x θ x x θ                           (4-6) 

With the lack of any prior information about model parameters, non-informative 

prior distributions are used in Eq. (4-4). In this study, failure data and lower bound data 

are used in Eq. (4-5).  

 

4.3.3 Model Selection 

The explanatory functions in Eq. (4-3) are selected from a set of dimensionless candidate 

explanatory functions shown in Table 4-4. These candidate explanatory functions are 

created by combining based on principles of physics and mechanics the geometrical and 

mechanical properties defined in Table 4-2 and the ground motion intensity measures 

and other properties defined in Table 4-5.  The indices i and i+/2 are used to define the 

direction of some of the properties used in the explanatory functions in Table 4-4. 

Specifically, i  indicates that the direction of the property is  the  same  as  the  one of the 
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Table 4-4. Explanatory functions for demand models in longitudinal and transverse directions 

Explanatory function Formula Used for 

h1 1 All models 

h2 ( / )aLn S g All models 

h3 ( / )d cLn S h  All models 

h4 ( / )Ln PGA g  All models 

h5 ( / )n cLn PGV T h  All models 

h6 ( / )cLn PGD h  All models 

h7   2 / nLn PGV PGA T   All models 

h8   2 / nLn PGD PGV T   All models  

h9 sa All models 

h10 Dsoil All models 

h11 tan b All models 

h12 Ns All models 

h13 Ncol All models 

h14 ER All models 

h15 PR All models 

h16 ( / )Ln r h  All models 

h17 ( / )gapLn L L  All models 

h18 ( cos / )bLn z W  All models 

h19 / bL W  All models 

h20 ,
ˆ

f id  Pedestal models 

h21 , /2
ˆ

f id   Pedestal models 

h22 /ped baseK K  Pedestal models 

h23 ,
ˆ

v id  Column models 

h24 ,
ˆ

id  Column models 

h25 , / 2
ˆ

v id   Column models 

h26 , / 2
ˆ

id   Column models 

h27  /col fK K   Column models 
 

 

modeled demand, and i+/2 indicates that direction of the property is orthogonal to the 

direction of the modeled demand. For example, if the demand of interest is in 

longitudinal direction, those properties that have index i in Table 4-4 are also in the 

longitudinal direction and the other ones that have index i+/2 are in transverse 
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direction. In Table 4-4, sa  represents the number of standard deviations by which an 

observed logarithmic spectral acceleration differs from the mean logarithmic spectral 

acceleration of a ground-motion prediction equation (Baker et al. 2005). Abrahamson-

Silva ground-motion prediction equation (Abrahamson and Silva 2008) is used to 

calculate sa. 

 

Table 4-5. Intensity measures and other properties used to define candidate explanatory functions 

Measure  Description 

Sa Spectral acceleration 

Sd Spectral displacement 
PGA Peak ground acceleration 
PGV Peak ground velocity 
PGD Peak ground displacement 

Tn Natural period of the equivalent SDOF system 
sa The number of standard deviations by which an observed  

logarithmic spectral acceleration differs from the  
mean logarithmic spectral acceleration of a ground-motion prediction equation 

Dsoil Soil type=0,1,2,3 for soil types A, B, C and D, respectively 
Ncol Multi-Column Ratio=0   if bents consist of single columns 

                                  =1   if bents consist of multiple columns 
ER Elastic Ratio=1-(/ y) if the SDOF system response is in elastic range 

                      =0 otherwise; y is yield drift 
PR Plastic Ratio=(/ y)-1  if the SDOF system response is in plastic range  

                    =0 otherwise                                                        
rg Gyration radius of columns and pedestals in column and pedestal models, respectively 
h Pedestal and column height in pedestal and column models, respectively 

zc Distance of pedestal or column to the center of its corresponding bent or abutment 

Kped Pedestal lateral stiffness 

Kbase Pedestal base (abutment or bent) lateral stiffness 
Kcol Bent lateral stiffness 
Kf Foundation lateral stiffness  

 

A model selection process is used to construct accurate and parsimonious 

demand models that have the minimum number of explanatory functions that are needed 

to reach a sufficient accuracy. The “best” model with pk explanatory functions is selected 
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from a set of candidate models using all possible subsets of explanatory functions that 

have pk members. The “best” model is defined as the one that satisfies the selection 

criteria better than the other models with the same number of explanatory functions. 

Choosing the value of pk is then a trade-off between simplicity and accuracy of the 

model because choosing a larger pk might result in a more accurate but more complex 

model. In this dissertation, the adjusted R2 (Theil 1961), Mallows’ Cp (Mallows 1973) 

and the Corrected Akaike’s Information Criterion (AICc) (Hurvich and Tsai 1989) are 

used as selection criteria. The adjusted R2 and AICc capture how closely the model fits 

the data and Cp is used to measure potential overfitting of the data.  Additional details 

and formulas of these model selection criteria can be found in statistical textbooks such 

as Burnham and Anderson (2002). For a given subset (all possible models that have the 

same number of explanatory functions), the model with highest adjusted R2 or lowest Cp 

and AICc provides the most accurate predictions among all the models in that subset. To 

choose the number of explanatory functions, pk, changes in the values of model selection 

criteria are monitored versus the number of explanatory functions if increasing the 

number of explanatory functions does not cause a significant improvement in the 

selection criteria, that number could be selected as pk. Using the described procedure, the 

final form of the developed probabilistic demand models are  

       20 1 3 11
ˆ, , 1 ln / tanfl fl fl fl fl fl fl d c fl fl flD d S h            x Θ x (4-7) 

       20 1 3 11
ˆ, , 1 ln / tanft ft ft ft ft ft ft d c ft ft ftD d S h            x Θ x  (4-8) 
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       23 1 5 11
ˆ, , 1 ln / tanvl vl vl vl vl vl vl n c vl vl vlD d PGV T h             x Θ x   

(4-9) 

       23 1 5 13
ˆ, , 1 ln /vt vt vt vt vt vt vt n c vt col vt vtD d PGV T h N            x Θ x      

(4-10) 

         24 1 4 5
ˆ, , 1 ln / ln /l l l l l l l l n cD d PGA g PGV T h                 x Θ x

11 tanl l l                                                                         (4-11) 

       24 1 4 13
ˆ, , 1 ln /t t t t t t t t colD d PGA g N                x Θ x  

 16 ln /t g c t tr h                                                        (4-12) 

Tables 4-6 to 4-11 show the posteriors of parameters for the models in Eqs. (4-7) 

to (4-12). Tables 4-12 to 4-15 show the correlation coefficients between the error terms 

in the different models. Figures 4-2 to 4-7 present the predicted data versus the virtual 

data for the deterministic and probabilistic models. For the probabilistic models, the 

median predicted is calculated using the point estimates for the posterior of parameters. 

It should be noted that in Figures 4-2 to 4-7 the demands are normalized but are not in 

the logarithmic scale to provide a better comparison between deterministic and 

probabilistic models. Dashed lines in the right charts indicate the 1  standard deviation 

 

Table 4-6. Posterior statistics of the parameters in the pedestal longitudinal force model  

     Standard 
Deviation 

Correlation coefficient 

Parameter Mean 1fl 3fl 11fl 20fl fl

1fl 0.051 0.023 1.00 

3fl 0.274 0.008 0.04 1.00 

11fl 0.214 0.013 0.44 0.06 1.00 

20fl 0.705 0.008 0.63 0.67 0.01 1.00 

fl 0.500 0.004 0.05 0.00 0.06 0.02 1.00 
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Table 4-7. Posterior statistics of the parameters in the pedestal transverse force model 

    Standard 
Deviation 

Correlation coefficient 

Parameter Mean 1ft 3ft 11ft 20ft ft

1ft 0.713 0.034 1.00         

3ft 0.326 0.009 0.02 1.00       

11ft 0.500 0.030 0.53 0.09 1.00     

20ft 0.754 0.011 0.62 0.62 0.08 1.00   

ft 0.621 0.006 0.01 0.04 0.00 0.01 1.00 
 

Table 4-8. Posterior statistics of the parameters in the column longitudinal shear model 

    Standard 
Deviation 

Correlation coefficient 

Parameter Mean 1vl 5vl 11vl 23vl vl

1vl 0.418 0.131 1.00         

5vl 0.533 0.025 0.53 1.00       

11vl 0.735 0.062 0.38 0.11 1.00     

23vl 0.743 0.045 0.59 0.28 0.24 1.00   

vl 0.514 0.018 0.01 0.02 0.03 0.02 1.00 
 

Table 4-9. Posterior statistics of the parameters in the column transverse shear model 

    Standard 
Deviation 

Correlation coefficient 

Parameter Mean 1vt 5vt 13vt 23vt vt

1vt 0.879 0.125 1.00         

5vt 0.478 0.027 0.66 1.00       

13vt 0.369 0.062 0.04 0.30 1.00     

23vt 0.668 0.045 0.41 0.29 0.05 1.00   

vt 0.523 0.018 0.14 0.13 0.01 0.01 1.00 

 

Table 4-10. Posterior statistics of the parameters in the column longitudinal drift model 

    Standard 
Deviation 

Correlation coefficient 

Parameter Mean 1l 4l 5l 11l 24l l

1l 1.749 0.117 1.00           

4l 0.352 0.040 0.24 1.00         

5l 0.599 0.052 0.10 0.42 1.00       

11l 0.384 0.052 0.19 0.09 0.08 1.00     

24l 0.776 0.045 0.59 0.07 0.79 0.14 1.00   

l 0.439 0.015 0.02 0.01 0.06 0.00 0.04 1.00 
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Table 4-11. Posterior statistics of the parameters in the column transverse drift model 

    Standard 
Deviation 

Correlation coefficient 

Parameter Mean 1t 4t 13t 16t 24t t

1t 0.480 0.241 1.00           

4t 0.534 0.046 0.25 1.00         

13t 0.560 0.066 0.40 0.07 1.00       

16t 0.274 0.071 0.84 0.10 0.49 1.00     

24t 0.306 0.034 0.62 0.73 0.21 0.21 1.00   

t 0.509 0.018 0.03 0.01 0.01 0.02 0.02 1.00 
 

Table 4-12. Correlation coefficients of error terms for the same pedestal  

  Correlation coefficient 

Error term fl ft

fl 1.00   

ft 0.51 1.00 
 

Table 4-13. Correlation coefficients of error terms for the same column  

  Correlation coefficient 

Error term vl vt l t

vl 1.00       

vt 0.73 1.00     

l 0.01 0.03 1.00   

t 0.42 0.55 -0.02 1.00 
 
 

Table 4-14. Correlation coefficients of error terms for different columns or pedestals on the same bent 

Correlation coefficients 

Error term fl ft vl vt l t

fl 0.81 (0.72)           

ft 0.44 (0.39) 0.56 (0.44)         

vl 0.11 0.09 0.85       

vt 0.07 0.08 0.70 0.92     

l 0.04 0.08 0.02 0.09 0.41   

t 0.07 0.03 0.37 0.54 0.12 0.95 
Numbers in parenthesis correspond to the case where two pedestals are on the same bent but carry the 

weight of different decks. (Two pedestals in different rows ) 
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Table 4-15. Correlation coefficients of error terms for different columns or pedestals on different bents 

Correlation coefficients 

Error term fl ft vl vt l t

fl 0.73 (0.64)           

ft 0.38 (0.31) 0.34 (0.31)         

vl 0.14 0.05 0.71       

vt 0.12 0.04 0.59 0.66     

l 0.08 0.06 0.18 0.10 0.17   

t 0.11 0.02 0.40 0.38 0.03 0.57 
Numbers in parenthesis correspond to the case that pedestals are not the bearings of the same span. 

 

 

 

Figure 4-2. Pedestal longitudinal force demands predicted using deterministic (left) and probabilistic 
(right) models versus measured values from NTHA  
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Figure 4-3. Pedestal transverse force demands predicted using deterministic (left) and probabilistic (right) 
models versus measured values from NTHA 

 
 

 

Figure 4-4. Column longitudinal shear demands predicted using deterministic (left) and probabilistic 
(right) models versus measured values from NTHA 
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Figure 4-5. Column transverse shear demands predicted using deterministic (left) and probabilistic (right) 
models versus measured values from NTHA 

 
 

 

Figure 4-6. Column longitudinal drift demands predicted using deterministic (left) and probabilistic 
(right) models versus measured values from NTHA 
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Figure 4-7. Column transverse drift demands predicted using deterministic (left) and probabilistic (right) 
models versus measured values from NTHA 
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the mean absolute percentage error (MAPE) in deterministic models and probabilistic 

models. MAPE is defined as follows for the developed probabilistic models 
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where Ns = sample size. For the deterministic models, MAPE is defined as in Eq. (4-13) 

but without the correction terms ,ki j . The smaller MAPE of developed probabilistic 

models compared to the corresponding deterministic models reveals that the developed 

probabilistic models produce better predictions than their corresponding deterministic 

models. 
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Table 4-16. Mean absolute percentage errors for deterministic and probabilistic models 

  MAPE 

Model Deterministic Probabilistic 

Longitudinal pedestal force 151.96 44.76 

Transverse pedestal force 208.72 68.71 

Longitudinal column drift 11.29 6.81 

Transverse column drift 10.42 8.23 

Longitudinal column shear 122.26 68.21 

Transverse column shear 118.00 64.58 
 

 

4.4 Fragility Estimates 

In this dissertation, the fragility of bridges elevated with steel pedestals is defined as the 

conditional probability that the force demands in the pedestals or the shear or 

deformation demands in the columns exceed their corresponding capacities for given 

values of the earthquake intensity measures. The demand quantities of interest are 

estimated using the probabilistic demand models in Eqs. (4-7) to (4-12). The 

probabilistic capacity models developed in section 3 are used to predict the pedestal 

force capacities. The shear and deformation capacities are computed based on the 

probabilistic capacity models developed by Choe et al. (2007) for single-curvature 

columns. For the calculation of the deformation capacity of multi-column bents parallel 

to their plane, in which the columns experience a double-curvature deformation, a 

simple modification proposed by Zhong et al. (2008) is applied. In the modification, it is 

assumed that there are inflection points at midheight of the columns, dividing the 

columns in two equal single-curvature portions of height equal to half of the total 
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column height. Therefore, the deformation capacity of the double-curvature columns is 

the sum of the deformation capacities of the two single-curvature portions. 

If the vector of random variables, x, in Eq. (4-2) is partitioned into a vector of 

material and geometric variables, r, and a vector of earthquakes intensity variables, s, the 

predictive fragility of the bridges system (Gardoni et al. 2002), that considers the 

uncertainties in the model parameters by treating them as random variables, can be 

written as 

                   ,
1, , , , ,

, , 0ki j
j p k f v i l t

F P g
  

 
  

 
s r s Θ s



   
                         

 (4-14) 

where j=index representing the jth component of the bridge system; 

 , , , , ,fl ft vl vt l t Θ Θ Θ Θ Θ Θ Θ ;and  , , ,ki jg r s Θ  is the limit state function defined as 

       , , ,, , , , , 1, , ; , , ; ,ki j ki j ki jg C D j p k f v i l t    r s Θ r r s Θ          (4-15) 

where  ,ki jC r and  , , ,ki jD r s Θ represent capacity and demand models, respectively.  

In general, in cases where several limit states are considered at the same time, 

sampling analyses such as Importance Sampling have to be carried out to estimate the 

fragility of the system. Therefore, for the estimation of fragility in Eq. (4-14), 

Importance Sampling is used.  

 

4.5 Illustration 

As an illustration of the proposed approach, this section conducts fragility estimates for a 

typical two-span bridge elevated with steel pedestals. Figure 4-8 and Table 4-17 show 
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the configuration and properties of the example bridge. The example bridge is not 

designed for seismic loads to be representative of typical bridges in Southeastern United 

States, where the use of steel pedestals as a clearance augmentation method is more 

common. Importance Sampling is employed to estimate the fragility, where the unknown 

model parameters in the demand and capacity models are treated as random variables 

and point estimates of geometrical and material properties (r) at their mean values are 

used in Eq.(4-14). Because the fragilities are estimated for future earthquakes, a design 

spectrum is used to calculate deterministic demands instead of a real earthquake 

spectrum from past earthquakes.  For  a  given  PGA,  the  spectral  accelerations  of  the 
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Figure 4-8. Configuration of the studied two-span bridge (Dimensions are in mm) 
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Table 4-17. Properties of the example bridge 

Property Value Unit 

Ns 2 - 
L 20 m 
Sb 3.0 m 
Dc 1.0 m 
Wb 10.0 m 
hc 4.50 m 
rs 1 - 

hcap 1.2 m 
ST B - 

Kal 20 kN/mm/m 
Kpile 7.5 kN/mm/pile 
m 20 % 
b 0 ° 
f 'c 25 MPa 
fry 400 MPa 
fby 240 MPa 

Lgap 25 mm 
 1.08 % 
s 0.2 % 
ssp 300 mm 
hped 500 mm 
fpy 240 MPa 
e 100 mm 
d 32 mm 
fu 517 MPa 
tp 25 mm 
 20 - 

 

pedestals and columns in each direction are obtained from the design spectrum using the 

corresponding frequency of the equivalent SDOF system of the pedestals or columns in 

that direction. Spectral displacement is then computed as 2( / 2 )d a nS S T  . In this way, 

fragility curves can be conditioned on only two intensity measures, PGV and PGA. 

Figure 4-9 shows the design spectrum from AASHTO LRFD Bridge Design 

Specifications (2010) that is used to calculate deterministic demands. The design 
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spectrum is a function of two quantities 1 and s, which depend on the location of the 

bridge. To consider the randomness in the site seismology, 1 and s are considered as 

random variables with means equal to 0.73 and 2.2 and standard deviations equal to 0.19 

and 0.2, respectively. The values of means and standard deviations are calculated based  
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Figure 4-9. AASHTO spectrum used to calculate deterministic demands on the example bridge  

 

 

Figure 4-10. Fragility curves for different components of the example bridge for PGV=0.1 m/s 
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on AASHTO (2010) hazard maps for Region 4 of the United States (Southeastern United 

States), where the studied bridge is assumed to be located. The same spectrum is used 

for both longitudinal and transverse directions. Figure 4-10 shows the fragility curves for 

pedestals and columns in longitudinal and transverse directions for PGV=0.1 m/s. Figure 

4-10 shows that pedestals of the studied bridge are more vulnerable in longitudinal 

direction than transverse direction, which is the result of the smaller concrete cover on 

the anchor bolts of the pedestals in the longitudinal direction than that value in the 

transverse direction. On the contrary, the columns are more vulnerable in the transverse 

direction due to their larger stiffness that results in more shear force. As Figure 4-10 

illustrates, column failure for the studied bridge is mostly due to shear failure and failure 

probability due to deformation is close to zero. 

Figure 4-11 shows the fragility contours for the studied bridge and its 

components (columns and pedestals). Fragility contours reveal that for the combination 

of small PGVs and large PGAs, pedestals have more contribution in bridge failure than 

columns but for the combination of large PGVs and small PGAs, columns have more 

contribution in bridge failure than pedestals. It is illustrated in Figure 4-11 by a solid 

grey line that separates the region governed by pedestal failure from the one governed by 

column failure. For example at PGV=0.1, columns have larger contribution in failure for 

PGA<0.22g, but pedestals have larger contribution in failure for PGA>0.22g. 

Considerable shear failure probability of columns shows that pedestals do not perform as 

seismic isolators and transfer demands to columns.   
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Figure 4-11. Fragility contours for the example bridge: (left) all PGAs and PGVs; and (right) small PGAs 
and PGVs   

 

 

Figure 4-12. Sensitivity of the fragility to pedestal height, anchor length and concrete cover (Sensitivity of 
each quantity is computed while the other two quantities are fixed at values shown in Table 4-17) 
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                                                    (a)                                                                         (b)  

 

                                                                                            (c)  

Figure 4-13. Comparison between the fragility curves using AASHTO design spectra and synthetic 
earthquake spectra for different locations for PGV=0.1m/s: (a) Liberty County, GA; (b) Lowndes County, 

GA; and (c) Charleston, SC 
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sensitivity analysis for the parameters that are more influential on the probability of 

failure than others, i.e. pedestal height, anchor length, concrete cover. According to 

Figure 4-12, decreasing pedestal height and increasing the length of anchor bolts and 

their concrete cover are effective ways to decrease the probability of failure. Therefore, 

for such a bridge, it is recommended that steel pedestals should not be used with heights 

more than required for bridge augmentation and maximum possible anchor length and 

concrete cover should be used to install them. 

To check the accuracy of using design spectra instead of real earthquake spectra, 

the fragility curves of the example bridge are compared using AASHTO (2010) spectra 

and three earthquake spectra from synthetic earthquakes generated by Fernandez (2007) 

for Southeastern United States (Liberty and Lowndes Counties in Georgia and 

Charleston, South Carolina). Figure 4-13 shows the results of this comparison that 

implies that using the design spectra instead of real earthquakes does not have significant 

effects on fragility curves. 

 

4.6 Conclusions 

This section developed probabilistic seismic demand models for bridges elevated with 

steel pedestals. Failure due to lateral force for the pedestals and shear and deformation 

failure modes of columns were considered in longitudinal and transverse directions. An 

experimental design was conducted to generate 200 bridge configurations for generating 

detailed 3D finite element models used in nonlinear time history analyses. The results of 

nonlinear time history analyses were considered as virtual data to estimate parameters in 
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probabilistic models. To facilitate the use of the developed probabilistic models, they 

were constructed by adding correction terms to the modified N2 method, which is a 

nonlinear static analysis method and can be easily applied to all bridges. Correction 

terms were selected from a set of candidate explanatory functions using statistical model 

selection methods. Parameters in the probabilistic models were assessed by a Bayesian 

updating approach.  

As an illustration, the fragility curves for a typical two-span simply supported 

bridge were estimated using developed probabilistic demand models and previously 

developed probabilistic capacity models. Importance Sampling was employed to 

estimate fragility curves. The studied bridge was not designed for seismic loads in order 

to represent the situation of a large number of bridges in Southeastern United States, 

where using steel pedestals to elevate bridges is more common. Fragility contours of the 

example bridge were provided over PGA and PGV. Also, the fragility curves for bridge 

components were provided versus pseudo acceleration of ground motion. Fragility 

curves showed that the studied bridge is vulnerable to seismic loads and has considerable 

failure probability even in small PGAs. Considerable failure probability of columns of 

the example bridge suggested that steel pedestals did not perform as seismic isolators 

and transformed the seismic loads from the deck to columns.     

The results showed that the pedestals of the studied bridge are more vulnerable in 

longitudinal direction than transverse direction. It is because of the less concrete cover 

on the anchor bolts of pedestals in the direction of the load when the load is applied in 

longitudinal direction. As opposed to pedestals, columns of the studied bridge showed 
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larger failure probability in transverse direction than longitudinal direction, which is the 

effect of larger stiffness of the columns in transverse direction that produces larger shear 

forces. The results showed the pedestals of the studied bridge have more contribution in 

bridge failure than columns at the combination of small PGVs and large PGAs.  

The sensitivity analysis of fragility to various design parameters showed that 

failure probability is more sensitive to pedestal height, anchor bolt length and concrete 

cover on anchor bolts. Therefore, decreasing the height of the pedestal, increasing 

anchor bolt lengths and concrete cover are recommended in the design of pedestals to 

decrease their failure probability. It should be noted that this section developed 

probabilistic demand models based on the load capacity of the steel pedestals. As the 

height of the pedestals increases, the stability of the pedestals becomes an important 

issue that should be investigated separately.  
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5. DECISION ANALYSIS FOR ELEVATING BRIDGE DECKS WITH STEEL 

PEDESTALS 

 

5.1 Introduction 

Deciding whether to elevate a bridge with steel pedestals and choosing the optimal 

height of the pedestals that should be used to elevate a bridge are challenging tasks for 

engineers because increasing the height of pedestals has relatively high construction 

costs and as shown in section 4, while it decreases the probability of vehicular impact to 

the bridge, it can also increase the probability of bridge damage or failure due to seismic 

loads. The answer is in the optimal tradeoff that minimizes the expected life-cycle cost 

that considers both vehicular impacts and seismic events. Therefore, there is still a need 

for a general framework that assists decision-makers determining if the installation of 

steel pedestals is beneficial and, if so, providing the optimum height of pedestals.   

As such, this section develops a formulation for decision analysis for elevating 

bridges with steel pedestals. The proposed framework uses probabilistic models to 

estimate the expected costs associate to vehicular impacts and seismic loads, properly 

incorporating the relevant aleatory and epistemic uncertainties. As an illustration, the 

proposed approach is implemented considering different bridge locations to investigate 

the influence of the different seismological characteristics on the optimal solution. 

This section is divided into six subsections. After this introduction, the following 

two subsections develop models for the estimation of the expected cost associated with 

vehicular impact and seismic loads, respectively.  Then, based on the developed models 
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for expected costs, a framework is proposed for decision analysis. The last two 

subsections present the illustration of the developed approach and conclusions. 

 

5.2 Expected Cost of Damage or Failure Due to Vehicular Impact to Bridge 

Decks 

The annual probability that a specific bridge deck is impacted by an overheight vehicle ,

( )P VI , is needed to estimate the expected life-cycle cost of the bridge. Using the Total 

Probability Rule (Ang and Tang 2006), ( )P VI  can be written as 

                                              
     

v

v v v
h

P VI P VI h f h dh                                           (5-1) 

where vh = a random variable with probability density function ( )vf h  that represents the 

height of the vehicles passing underneath the bridge; and ( | )vP VI h = the conditional 

probability of vehicular impact given the vh  that can be expressed as  

                                                  

  0 if

1 if

v v b

v b

P VI h h h

h h

 

                                              
(5-2) 

where bh
 

= the vertical clearance of the bridge. Ideally, ( )vf h  should be defined using 

statistical data collected from the field. Fu et al. (2004) summarized data from the 

literature and their own investigation related to vehicle collisions for the bridge network 

in the state of Maryland. According to Fu et al. (2004), 20% of the bridges in the studied 

network are impacted by vehicles during their service life. Fu et al. (2004) also 

suggested that an increase of 0.3 m in bh  would halve the probability of vehicular impact 
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to bridge decks. In this section, to model the reduction in the ( )vf h  as vh  increases, we 

propose the following form for  vf h  

                                
   

 

0 min

min min

if

exp if

v v v b

v b v b

f h f h h h
a h h h h
T
 

 

     
                       (5-3) 

where minbh = minimum bridge vertical clearance in the network; a = the fraction of the 

bridges in the studied network that are impacted by vehicles during their service life;   

 the parameter of the exponential distribution; and T = the service life of the bridge. 

The first part of Eq. (5-3) for minv bh h  describe the likelihood of passing of vehicles that 

are lower than minbh .  However, by replacing Eq. (5-2) in Eq. (5-1), it can be seen that 

0 ( )vf h  does not contribute to ( )P VI , because 0 ( )vf h  is multiplied by zero. The second 

part of Eq. (5-3) defined for minv bh h is the Probability Density Function (PDF) of a 

shifted exponential distribution that is constructed so that the probability of impact over 

the time T  is equal to a . As per the observation in Fu et al. (2004), a  should be equal 

to 0.2. By replacing Eqs. (5-2) and (5-3) into Eq. (5-1), the probability of vehicular 

impact can be written as  

   
b

v vh
P VI f h dh


 

                                              
(5-4) 

In order to satisfy the conclusions made by Fu et al. (2004), that says the 

probability of vehicular impact for a bridge with height bh  is twice as the probability of 

vehicular impact for a bridge with height 0.3bh  , the following equation can be written 
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   

0.3
2

b b
v v v vh h

f h dh f h dh
 


 

                                       
(5-5) 

Solving Eq. (5-5) results in a value of ln(2) / 0.3 2.31  for the parameter  . The area 

under the second part of Eq. (5-3), is /a T that gives ( )P VI a .   

The parameter   can be updated in case any future study provides additional 

data about the impact of overheight vehicles. Following Box and Tiao (1992), the 

posterior PDF of   ( )f  , can be obtained using the Bayesian updating rule as  

       
     f L f                                                   (5-6) 

where = a normalizing factor; ( )L  = the likelihood function that represents the 

information from the additional data; and ( )f  = the prior distribution of   (prior to 

obtaining the additional data). Conjugate distributions (Ang and Tang 2006) can be used 

to conveniently update the estimate of   If ( )f   is assumed to follow a Gamma 

distribution with mean /k    and standard deviation 2/k   , where k   and    are the 

parameters of the prior gamma distribution, at the presence of dn  new data for heights 

1 2( , , , )v v vnh h h  then ( )f   follows again a gamma distribution with the following 

updated mean and standard deviation  

                        

 
 min

1

d

d
n

vi b
i

k n

h h
 




  
  

                                             (5-7) 

                       
 

 
2

min
1

d

d

n

vi b
i

k n

h h

 




  
 
   

 


                                          (5-8) 
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Using a point estimate of parameter  equal to its mean value and replacing Eq. (5-3) 

into Eq. (5-4), ( )P VI  can be written as  

                         
   min

ˆexp b b
aP VI h h
T

                                        (5-9) 

where ̂ = point estimate of   (e.g., its posterior mean) ccording to Fu et al. (2004), 

both the height of bridges and height of vehicles that pass under the bridges depend on 

the type of bridge network. For example, the minimum bridge height in a rural bridge 

network might be 4m and in an interstate highway bridge network might be 5m. 

Similarly, the height of vehicles that travel in an interstate highway network is also 

typically higher than in a rural bridge network. Therefore, the probability of vehicular 

impact is larger for a bridge in an interstate highway network than a bridge with the 

same height in a rural network. The term minbh  in Eq. (5-9) captures the effect of the 

bridge network type on the probability of vehicular impact.  

According to Fu et al. (2004), 1/2 of the vehicular impacts to bridge decks result 

in superficial scrapes and gouges, 1/3 of them cause minor damage (minor bends, tears 

or cracks that do not need immediate repairs) and 1/6 of them result in severe damage 

(any damage for which repairs are necessary) or failure. Therefore the average cost of a 

vehicular impact can be written as 

    

1 1 1

2 3 6VI SC MD SDC C C C                                     (5-10) 

where SCC = the cost of repairing scrapes; MDC = the cost of repairing minor damage; and 

SDC = the cost of repairing severe damage or failure. Using Eqs. (5-9) and (5-10) along 
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with the equation proposed in NCHRP12-43 (2003) to compute the present value of the 

costs with constant annual values over time, the expected contribution to the life-cycle 

cost of a bridge that comes from the potential damage or failure associated with 

vehicular impacts can be expressed as 

   
 

 min

1 1 1 1 (1 ) 1
exp

5 2 3 6 (1 )

s

s

T t

VI b b SC MD SD T t

rE NPV C h h C C C
T r r






                      
(5-11) 

where, ( )E  = the expected value; ( )NPV  = the net present value; r = the discount rate; 

and st = the number of years of service completed. Therefore, ( )sT t  is the time 

horizon in years (i.e., the remaining service life of the bridge.) 

 

5.3 Expected Cost of Damage or Failure Due to Seismic Loads 

Similar to the case of vehicular impact, the annual probability of damage or failure due 

to earthquakes (event indicated as FE) is expressed as follows  

                             
     P FE P FE f d 

IM

IM IM IM
                                  

(5-12) 

where IM = vector of variables that represent intensity measures of the earthquake with 

distribution  f IM ; and  P FE IM = the probability of bridge damage or failure 

conditioned on IM  generally known as fragility (Gardoni et al. 2002). The fragility of 

bridges elevated with steel pedestals can be estimated for given intensity measures peak 

ground acceleration (PGA) and peak ground velocity (PGV) using the models proposed 

in Section 4. The distributions of PGA and PGV depend on the location of the bridge. 

Annualized seismic hazard curves for different regions throughout the United States are 
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available from the United States Geological Survey (USGS), where past earthquakes, 

deformation of the earth crust, seismic attenuation relationships and geological site 

conditions are used to generate hazard curves for each location (Frankel et al. 2002). 

Alternatively, the open source program OpenSHA (Field et al. 2005) can be used for the 

hazard analysis.  

The seismic hazard function of an intensity measure IM ,  G IM , is defined as 

the expected annual frequency of experiencing an intensity measure equal to or greater 

than IM . Using the hazard function for a location and assuming the occurrence of 

earthquakes follows a Poisson’s process (Frankel et al. 2002), the annual probability 

density of IM at a bridge site, ( )f IM can be written as a function of  G IM as follows: 

                           
   

( ) exp
dG IM

f IM G IM
dIM

 
      

                                     
(5-13) 

Kumar and Gardoni (2012) proposed the Second-Order Logarithmic Formulation 

(SOLF) for hazard curves and also a closed-form approximation to the annual failure 

probability that can be used to compute  P FE  without computing the integral in Eq. 

(5-12). However, the method developed by Kumar and Gardoni requires writing the 

limit state function in a closed-form. This is typically possible in component reliability 

analysis (i.e., when there is only one limit state function.) However, in this study, there 

are several limit state functions each capturing a possible mode of failure. Therefore, we 

cannot take advantage of the simplification offered by Kumar and Gardoni and the 

multi-fold integral in Eq. (5-12) should be computed numerically. 
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Eqs. (5-12) and (5-13) along with the present-value equation for the costs with 

constant annual values over time proposed by NCHRP12-43 (2003), are employed to 

estimate the expected present-value cost of bridge damage or failure due to seismic loads 

as follows 

             
   

 

 
(1 ) 1

(1 )

s

s

T t

FE FE T t

rE NPV C P FE C
r r





  
                                   

(5-14) 

where FEC = the cost of bridge damage or failure subject to earthquake loads. 

  

5.4 Decision Analysis Framework for Using Steel Pedestals to Elevate Bridges 

Optimal decisions about whether to elevate a bridge using steel pedestals and the 

optimum height of the pedestals that should be used require conducting a life-cycle cost 

analysis (LCCA). There are several frameworks proposed for the LCCA of structures 

and optimization of management strategies. Studies conducted by Wen (2001), Stewart 

and Val (2003), Kong and Frangopol (2004), Val (2005), Kumar et al. (2009), Padgett et 

al. (2010) and Kumar and Gardoni (2012) provide examples of such frameworks. 

Following Kumar et al. (2009), the expected life cycle cost (LCC) of a bridge is 

expressed as 

             C IN M DLCC E C E NPV C E NPV C E NPV C                            
(5-15) 

where CC = initial construction cost; INC = cost of inspections; MC = cost of routine 

maintenance; and DC = cost of damage or failure that can be written as follows 

                     
     D VI FEE NPV C E NPV C E NPV C                                    

(5-16)  
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where  VIE NPV C    and  FEE NPV C    can be obtained using Eq. (5-11) and Eq. (5-

14), respectively. To find the optimum height of pedestals that results in the minimum 

expected life cycle cost of the bridge, it is assumed that the first three terms in Eq. (5-15) 

i.e.  CE C ,  INE NPV C    
and  ME NPV C    do not depend on the height of 

pedestals. Therefore, the optimum height of pedestals is the height that minimizes 

 DE NPV C    in Eq. (5-15). 

Once the optimum height of pedestals is obtained by minimizing Eq. (5-16), then 

its corresponding  DE NPV C    plus the installation cost of pedestals should be 

compared to the  DE NPV C    before the installation of pedestals to check if the 

installation of pedestals has financial justification or not. To make a fair comparison, the 

broader societal benefits of bridge elevation should also be considered. In other words 

installation of steel pedestals has financial justification if the following condition is 

satisfied 

 

     
1D

p

D INST SB

E NPV C

E NPV C E C E B


   
                                

(5-17) 

where  DE NPV C    = expected cost of damage or failure before the installation of 

pedestals;  DE NPV C    = expected cost of damage or failure after the installation of 

pedestals;  INSTE C = expected cost of installation; and  SBE B = expected societal 

benefits of elevating bridge other than decreasing the probability of damage or failure 
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due to vehicular impacts. These broader societal benefits include eliminating the need 

for rerouting overheight vehicles and costly passive or active warning systems, and 

impact absorbers (Sharma et al. 2008). Murphy and Gardoni (2006) developed an 

approach to quantify the broader societal consequences of natural and man-made 

hazards. This approach could be used to determine the broader societal benefits of 

elevating the bridge. However, this is outside of the scope of this study. Next, the 

proposed framework is illustrated by applying it to a typical bridge. 

 

5.5 Illustration of the Developed Framework 

A typical two-span slab-on-girder bridge shown in Figure 4-8 is considered to illustrate 

the proposed framework. It is assumed that the lifetime of the bridge is 75T   years 

from which 50 years are left ( 25st   years) and the bridge is a part of a network in 

which the minimum vertical clearance of bridges is min 4.3bh m . The value of the 

discount rate, r , is needed to estimate the expected present-value cost of vehicular 

impact to the studied bridge using Eq. (5-11). Since there is not a generally accepted 

procedure for determining the discount rate for infrastructure systems, a typical discount 

rate of 0.05 is used in this study. Following Stewart and Val (2003) and Kumar et al. 

(2009), it is assumed that the cost of severe damage or failure of the bridge including all 

direct and indirect costs for the owner and users is 10 times the construction cost. 

Therefore, the value of 10 CC  for both SDC  and FEC  is used in Eqs. (5-11) and (5-14), 

respectively. The cost of repairing scrapes, SCC , is considered to be 0.001 CC  and the cost 
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of repairing minor damage, MDC , is considered to be 0.2 CC . To investigate the effect of 

the location of the bridge on the optimal decision, eight different locations in the United 

States are considered. Table 5-1 shows the considered locations and their corresponding 

PGA with a return period of 1,000 years obtained, PGA1,000, from USGS curves (Frankel 

et al. 2002). Five locations are considered in the Southeastern United States, where the 

use of steel pedestals to elevate bridges is more common and three locations are 

considered in the Western United States where the seismic hazard is the most important 

one compared to other hazards. For the considered locations in the Western United 

States, Los Angeles and San Francisco in California represent high seismic regions and 

Yuma in Nevada represents a moderate seismic region. The annual probability of failure 

of the example bridge due to earthquake is estimated using Eq. (5-12) for each location, 

where the seismic fragility of the bridges is obtained using the method presented in 

Section 4. Considering heights for the steel pedestals varying from 0.3 to 1.0m, Figure 5-

1 compares the annual probability of damage or failure of the example bridge due to 

seismic loading in each location with the annual probability of damage or failure due to  

 

Table 5-1. Locations considered for the studied bridge 

Region Location 
PGA with return period of 

1,000 years 

Southeastern United States Lowndes, GA 0.0322 

  Bartow, GA 0.0714 

  Liberty, GA 0.0755 

  Fort Payne, AL 0.1109 

  Charleston, SC 0.1934 

Western United States Yuma, NV 0.3992 

  San Francisco, CA 0.6229 

  Los Angeles, CA 0.6799 
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Figure 5-1. Annual probability of failure versus pedestal height 

 

 

Figure 5-2. Normalized expected cost of failure versus pedestal height for the Southeastern United States 
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Figure 5-3. Normalized expected cost of failure versus pedestal height for the Western United States 
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considered range for the studied bridge at different locations. For moderate and high 

seismic regions, the smallest height in the considered range minimizes the expected cost 

of damage or failure. The smallest considered height in this study for steel pedestals is 

0.3m because the height of pedestals should be larger than the height of previous 

bearings.  

 

Table 5-2. Optimum height of pedestals for each location 

Location Optimum height of pedestals (m) 

Lowndes, GA 0.63 

Bartow, GA 0.44 

Liberty, GA 0.44 

Fort Payne, AL 0.30 

Charleston, SC 0.30 

Yuma, NV 0.30 

San Francisco, CA 0.30 

Los Angeles, CA 0.30 
 

 

After obtaining the optimum height of pedestals based on the value of 

[ ( )] / ( )D cE NPV C E C , it has to be checked if Eq. (5-17) is satisfied for each location. For 

the studied bridge, 0.3m rocker bearings are assumed to support the deck prior to 

installation of pedestals. Since the mechanism of transferring load for rocker bearings is 

through anchor bolts as for steel pedestals, the same probabilistic capacity and demand 

models are used for the rocker bearings. Figures 5-4 and 5-5 show the value of p  from 

Eq. (5-17) versus PGA1,000 for two cases. In the first case shown in Figure 5-4, it is 

assumed that there is no broader societal impact of elevating the bridge than decreasing  
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Figure 5-4. Ratio of expected cost of failure before elevation over expected cost of failure after elevation 

assuming the elevation of bridge has no societal benefits other than decreasing the probability of vehicular 

impact 

 

 

Figure 5-5. Ratio of expected cost of failure before elevation over expected cost of failure after elevation 

assuming the elevation of bridge has broader societal benefits other than decreasing the probability of 

vehicular impact 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 p

Peak Ground Acceleration with 1000 Years Return Period, PGA1,000

CINST=0.01CC

CINST=0.004CC

CINST=0.001CC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 p

Peak Ground Acceleration with 1000 Years Return Period, PGA1,000



 

115 
 

the probability of vehicular impact. In this case, Figure 5-4 reveals that even if the 

installation cost of steel pedestals is 0.001 times the construction cost, p is smaller 

than 1 for all the considered locations except Lowndes, GA. This means that the use of 

steel pedestals to elevate bridges has financial justification only for Lowndes, GA if the 

installation costs does not exceed 0.0014 times construction cost of the bridge. Hite et al. 

(2007) reported that in 1996, INSTC  for a four-span bridge in Georgia was $95,000. That 

is, in this case, INSTC  was larger than 0.001 times the CC . Therefore, it can be concluded 

that if elevating the bridge does not have any broader societal benefits, the installation of 

steel pedestals for the studied bridge is not a beneficial investment. In the second case, 

shown in Figure 5-5, it is assumed that the broader societal benefits of elevating the 

example bridge are such that they cover the installation cost. In this case, Figure 5-5 

shows that the use of steel pedestals can be beneficial in low seismic regions such as 

Georgia. In Figure 5-5, p  is equal to 1 for moderate and high seismic regions because 

the optimum height of pedestals for those regions is the same as the assumed bearing 

height before elevation that implies no elevation has to be done. Therefore, based on 

Figures 5-4 and 5-5, it is concluded that if the elevation of the studied bridge using steel 

pedestals has no broader societal benefits, it is not recommended in all the regions but if 

the broader societal benefits are such that they can at least cover the installation cost of 

pedestals, the use of steel pedestals to elevate the studied bridge can be beneficial in low 

seismic regions. It should also be noted that developing new technologies that decrease 



 

116 
 

the installation cost of pedestals can be helpful to satisfy Eq. (5-17) and make elevating 

bridges using steel pedestals more advantageous. 

 

5.6 Summary and Conclusions 

This study provided a framework to determine the financial benefit of elevating bridges 

using steel pedestals. Formulations to estimate the expected costs associated with 

vehicular impact and seismic loads were developed and used to estimate the total 

expected cost of damage or failure. Then the optimum height of steel pedestals was 

defined as the height that minimizes the total expected cost of damage or failure. To 

determine if the installation of the pedestals with the optimum height is beneficial, a 

ratio was defined that compares the expected cost of damage or failure before the 

installation of pedestals with the expected cost of damage or failure after the installation 

of pedestals accounting for installation cost and broader societal benefits. 

The developed framework was applied on a typical two-span slab-on-girder 

bridge in different locations in Southeastern and Western United States. Investigations 

on a range of pedestal heights from 0.3m to 1.0m showed that the optimum height is 

0.3m for all the considered regions except the state of Georgia, where the optimum 

height was found to be between 0.44m to 0.63m in different locations of this state 

depending on the local seismicity. Then the expected cost of damage or failure for the 

bridge before elevation is compared to the expected cost of damage or failure after 

elevation. Assuming rocker bearings for the bridge with similar behavior to steel 

pedestals before elevation, it was concluded that the elevation of the studied bridge using 
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steel pedestals does not have financial justification for all the considered locations in this 

study if the elevation of the bridge has no broader societal benefits. In other words, in 

this case benefits from decreasing the probability of vehicular impact to the bridge do 

not compensate for the installation cost and the additional expected cost due to 

increasing the probability of damage or failure due to earthquakes. Results showed that 

in the case the broader societal benefits for elevating the bridge can cover at least the 

installation cost of the pedestals, the use of pedestals has financial justification in low 

seismic regions. Although the framework developed in this section is general, the 

observations made in the illustration subsection are valid for the specific studied bridge, 

which is a typical two-span slab-on-girder bridge. Additional bridges can be investigated 

using the proposed framework to generalize these conclusions to other bridges. 
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6. CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

This dissertation investigated the seismic effects of elevating bridges with steel pedestals 

in the Southeastern United States and developed probabilistic capacity and demand 

models for steel pedestals used to elevate bridges and probabilistic shear and 

deformation demand models for the columns of the elevated bridges. Probabilistic 

models were developed by adding correction and error terms to the commonly used 

deterministic models, which make them simple to use by engineering community. 

Developed models help engineers to include aleatory and epistemic uncertainties in the 

problem and estimate fragility of the elevated bridges with steel pedestals subjected to 

earthquake loads. Based on the developed probabilistic capacity and demand models, a 

decision analysis framework was proposed that helps designers and decision makers to 

determine if the elevation of a bridge has financial justification or not. The results of this 

study can be summarized as: 

 For the three types of pedestals described in Section 2, some of the seismic 

responses of a studied bridge elevated with steel pedestals in low seismic regions 

such as pounding force, deck displacements and column demands were assessed 

to be less than the responses of the same bridge with elastomeric bearings while 

some of the responses such as transverse abutment force were found to be larger. 

Since there are stability issues if pedestals are used with two anchor bolts, the use 

of steel pedestals with four anchor bolts is recommended. 
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 Fragility curves for a typical bridge using developed capacity and demand 

models showed that elevated bridges with steel pedestals are vulnerable to 

earthquake loads. The results showed that steel pedestals are more vulnerable in 

longitudinal direction than transverse direction and columns of the elevated 

bridges are more vulnerable in transverse direction than longitudinal direction. 

The results also showed that at the combination of large PGAs and small PGVs, 

steel pedestals have more contribution in bridge failure than columns. 

 Results of sensitivity analyses showed that decreasing the height of the pedestal, 

increasing anchor bolt lengths and concrete cover are the most effective ways to 

decrease the failure probability of steel pedestals. 

 Increasing the height of pedestals results in increasing the probability of failure 

of the bridge subject to earthquake loads but decreases the probability of failure 

due to vehicular impact. A decision analysis framework was provided that 

computes the expected cost of failure considering failure probability due to 

vehicular impact and earthquake loads. 

 Applying the developed decision analysis framework in this dissertation on a 

typical two-span bridge revealed that the use of steel pedestals to elevate bridges 

do not have financial justification in moderate and high seismic regions. In low 

seismic regions, it has financial justifications if the broader effects of installation 

of pedestals such as the effects on improving the economy can cover at least the 

installation cost of pedestals.  
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6.2 Unique Contributions 

This dissertation provided for the first time, an analytical procedure to estimate the 

lateral capacity of and demand on steel pedestals. Although the developed models in this 

dissertation are probabilistic models but the point estimates of the models can be used to 

obtain deterministic values for the capacity and demand of steel pedestals. Point 

estimates of Eqs. (3-1) through (3-31) along with the procedure shown in Figure 3-3 

would result in a deterministic capacity value for steel pedestals and point estimates of 

Eqs. (4-7) through (4-12) using the mean values of the parameters in Tables 4-6 through 

4-11 provides deterministic values for the demands  components of bridges  

 

6.3 Future Work 

Some suggestions for future work based on the progress of the research here include:  

 Using the developed probabilistic models for transportation networks where 

several bridges might need to be elevated. In this case, the developed models in 

this dissertation can be applied to each individual bridge and then the probability 

of failure of the bridge network can be obtained using system reliability methods.  

 Developing probabilistic demand models for bridges elevated with steel pedestals 

subject to other types of hazards such as flood loading. Such models can be used 

for bridges over rivers that do not have enough vertical clearance and installation 

of steel pedestals is an option to elevate them. 

 Developing probabilistic capacity and demand models for other types of bridge 

bearings such as elastomeric bearings. Without such models comparisons 
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between the performance of steel pedestals and other types of bearings are not 

accurate enough to make general conclusions.   

 Developing new methods for elevating bridges in moderate and high seismic 

regions where the installation of steel pedestals does not have financial 

justification or improving the design of steel pedestals such that they can be used 

in high seismic regions without considerable probability of failure. 
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APPENDIX A 

Table A.1. Ground motion records in Bin 1 (PEER NGA Database 1999) 

# 
Record 

ID 
Earthquake M R GM Station 

1 P0734 Loma Prieta 1989/10/18 00:05 6.9 21.8 A 57217 Coyote Lake Dam (SW Abut) 

2 P0749 Loma Prieta 1989/10/18 00:05 6.9 17.9 A 58135 UCSC Lick Observatory 

3 P0498 Nahanni, Canada 1985/12/23 6.8 16 A 6099 Site 3 

4 P0885 Northridge 1994/01/17 12:31 6.7 26.8 A 127 Lake Hughes #9 

5 P0915 Northridge 1994/01/17 12:31 6.7 22.7 A 90017 LA - Wonderland Ave 

6 P0937 Northridge 1994/01/17 12:31 6.7 24.5 A 24047 Vasquez Rocks Park 

7 P0059 San Fernando 1971/02/09 14:00 6.6 27 A 104 Santa Anita Dam 

8 P0076 San Fernando 1971/02/09 14:00 6.6 24.2 A 126 Lake Hughes #4 

9 P0077 San Fernando 1971/02/09 14:00 6.6 23.5 A 127 Lake Hughes #9 

10 P0084 San Fernando 1971/02/09 14:00 6.6 19.1 A 266 Pasadena - Old Seismo Lab 

11 P0090 San Fernando 1971/02/09 14:00 6.6 27.5 A 285 Santa Felita Dam (Outlet) 

12 P0738 Loma Prieta 1989/10/18 00:05 6.9 19.9 B 57383 Gilroy Array #6 

13 P0746 Loma Prieta 1989/10/18 00:05 6.9 24.2 B 57425 Gilroy Array #7 

14 P0791 Loma Prieta 1989/10/18 00:05 6.9 18.1 B 15 UCSC 

15 P0906 Northridge 1994/01/17 12:31 6.7 23.7 B 90015 LA - Chalon Rd 

16 P0910 Northridge 1994/01/17 12:31 6.7 23.9 B 90016 LA - N Faring Rd 

17 P0950 Northridge 1994/01/17 12:31 6.7 20 B 90059 Burbank - Howard Rd. 

18 P0994 Northridge 1994/01/17 12:31 6.7 26.2 B 90049 Pacific Palisades - Sunset Blvd 

19 P0056 San Fernando 1971/02/09 14:00 6.6 24.9 B 24278 Castaic - Old Ridge Route 

20 P0078 San Fernando 1971/02/09 14:00 6.6 20.3 B 128 Lake Hughes #12 

21 P0810 Cape Mendocino 1992/04/25 18:06 7.1 18.5 C 89324 Rio Dell Overpass - FF 

22 P0817 Landers 1992/06/28 11:58 7.3 19.3 C 5071 Morongo Valley 

23 P0889 Northridge 1994/01/17 12:31 6.7 20.8 C 90014 Beverly Hills - 12520 Mulhol 

24 P0890 Northridge 1994/01/17 12:31 6.7 19.6 C 90013 Beverly Hills - 14145 Mulhol 

25 P0891 Northridge 1994/01/17 12:31 6.7 24 C 90061 Big Tujunga, Angeles Nat F 

26 P0916 Northridge 1994/01/17 12:31 6.7 22.3 C 90060 La Crescenta - New York 

27 P0933 Northridge 1994/01/17 12:31 6.7 17.7 C 90058 Sunland - Mt Gleason Ave 

28 P0975 Northridge 1994/01/17 12:31 6.7 22.8 C 24607 Lake Hughes #12A 

29 P0058 San Fernando 1971/02/09 14:00 6.6 25.8 C 125 Lake Hughes #1 

30 P0808 Cape Mendocino 1992/04/25 18:06 7.1 23.6 D 89486 Fortuna - Fortuna Blvd 

31 P0814 Landers 1992/06/28 11:58 7.3 23.2 D 12149 Desert Hot Springs 

32 P0818 Landers 1992/06/28 11:58 7.3 24.2 D 5070 North Palm Springs 

33 P0865 Landers 1992/06/28 11:58 7.3 21.2 D 23 Coolwater 

34 P0881 Landers 1992/06/28 11:58 7.3 24.9 D 22074 Yermo Fire Station 

35 P0732 Loma Prieta 1989/10/18 00:05 6.9 28.2 D 1028 Hollister City Hall 

36 P0737 Loma Prieta 1989/10/18 00:05 6.9 16.1 D 57382 Gilroy Array #4 

37 P0742 Loma Prieta 1989/10/18 00:05 6.9 28.2 D 57066 Agnews State Hospital 

38 P0743 Loma Prieta 1989/10/18 00:05 6.9 21.4 D 1652 Anderson Dam (Downstream) 

39 P0884 Northridge 1994/01/17 12:31 6.7 25.5 D 24303 LA - Hollywood Stor FF 

40 P0905 Northridge 1994/01/17 12:31 6.7 25.7 D 24389 LA - Century City CC North 
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Table A.2. Ground motion records in Bin 2 (PEER NGA Database 1999) 

# 
Record 

ID 
Earthquake M R GM Station 

1 P0880 Landers 1992/06/28 11:58 7.3 42.2 A 22161 Twentynine Palms 

2 P0768 Loma Prieta 1989/10/18 00:05 6.9 30.6 A 1032 Hollister - SAGO Vault 

3 P0771 Loma Prieta 1989/10/18 00:05 6.9 44.8 A 47377 Monterey City Hall 

4 P0774 Loma Prieta 1989/10/18 00:05 6.9 36.3 A 1601 Palo Alto - SLAC Lab 

5 P0926 Northridge 1994/01/17 12:31 6.7 36.1 A 24399 Mt Wilson - CIT Seis Sta 

6 P0965 Northridge 1994/01/17 12:31 6.7 37 A 24592 LA - City Terrace 

7 P0969 Northridge 1994/01/17 12:31 6.7 32.3 A 24611 LA - Temple & Hope 

8 P0970 Northridge 1994/01/17 12:31 6.7 34.6 A 24605 LA - Univ. Hospital 

9 P1011 Northridge 1994/01/17 12:31 6.7 41.7 A 90019 San Gabriel - E. Grand Ave. 

10 P0731 Spitak, Armenia 1988/12/07 6.8 30 A 12 Gukasian 

11 P0811 Cape Mendocino 1992/04/25 18:06 7.1 33.8 B 89530 Shelter Cove Airport 

12 P0740 Loma Prieta 1989/10/18 00:05 6.9 43 B 57064 Fremont - Mission San Jose 

13 P0750 Loma Prieta 1989/10/18 00:05 6.9 34.7 B 47189 SAGO South - Surface 

14 P0763 Loma Prieta 1989/10/18 00:05 6.9 43.4 B 1686 Fremont - Emerson Court 

15 P0793 Loma Prieta 1989/10/18 00:05 6.9 39.9 B 58127 Woodside 

16 P0903 Northridge 1994/01/17 12:31 6.7 31.3 B 24157 LA - Baldwin Hills 

17 P0923 Northridge 1994/01/17 12:31 6.7 35.2 B 24396 Malibu - Point Dume Sch 

18 P0973 Northridge 1994/01/17 12:31 6.7 32.3 B 24469 Lake Hughes #4 - Camp Mend 

19 P1014 Northridge 1994/01/17 12:31 6.7 43.4 B 24644 Sandberg - Bald Mtn 

20 P0085 San Fernando 1971/02/09 14:00 6.6 38.9 B 269 Pearblossom Pump 

21 P0907 Northridge 1994/01/17 12:31 6.7 32.8 C 90033 LA - Cypress Ave 

22 P0918 Northridge 1994/01/17 12:31 6.7 36.3 C 24271 Lake Hughes #1 

23 P0921 Northridge 1994/01/17 12:31 6.7 38.3 C 24055 Leona Valley #5 - Ritter 

24 P0924 Northridge 1994/01/17 12:31 6.7 42 C 90046 Manhattan Beach - Manhattan 

25 P0999 Northridge 1994/01/17 12:31 6.7 39.2 C 90095 Pasadena - N Sierra Madre 

26 P0807 Cape Mendocino 1992/04/25 18:06 7.1 44.6 D 89509 Eureka - Myrtle & West 

27 P0860 Landers 1992/06/28 11:58 7.3 36.1 D 23559 Barstow 

28 P0773 Loma Prieta 1989/10/18 00:05 6.9 36.1 D 58264 Palo Alto - 1900 Embarc. 

29 P0778 Loma Prieta 1989/10/18 00:05 6.9 32.6 D 47179 Salinas - John & Work 

30 P0896 Northridge 1994/01/17 12:31 6.7 40.7 D 90079 Downey - Birchdale 

31 P0904 Northridge 1994/01/17 12:31 6.7 30.9 D 90054 LA - Centinela St 

32 P0912 Northridge 1994/01/17 12:31 6.7 37.9 D 24400 LA - Obregon Park 

33 P0914 Northridge 1994/01/17 12:31 6.7 30 D 90091 LA - Saturn St 

34 P0920 Northridge 1994/01/17 12:31 6.7 42.4 D 90045 Lawndale - Osage Ave 

35 P0929 Northridge 1994/01/17 12:31 6.7 34.2 D 90047 Playa Del Rey - Saran 

36 P0931 Northridge 1994/01/17 12:31 6.7 35.1 D 24401 San Marino, SW Academy 

37 P0938 Northridge 1994/01/17 12:31 6.7 42.5 D 90099 Arcadia - Arcadia Av 

38 P0942 Northridge 1994/01/17 12:31 6.7 35.7 D 24461 Alhambra - Fremont School 

39 P0944 Northridge 1994/01/17 12:31 6.7 38.4 D 24576 Anaverde Valley - City R 

40 P0946 Northridge 1994/01/17 12:31 6.7 44.2 D 90093 Arcadia - Campus Dr. 
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Table A.3. Ground motion records in Bin 3 (PEER NGA Database 1999) 

# 
Record 

ID 
Earthquake M R GM Station 

1 P0552 Chalfant Valley 1986/07/21 14:42 6.2 23 A 54424 Bishop - Paradise Lodge 

2 P0359 Coalinga 1983/05/02 23:42 6.4 29.6 A 36438 Parkfield - Stone Corral 4E 

3 P0370 Coalinga 1983/05/02 23:42 6.4 27.7 A 46175 Slack Canyon 

4 P0165 Imperial Valley 1979/10/15 23:16 6.5 26.5 A 6604 Cerro Prieto 

5 P0191 Imperial Valley 1979/10/15 23:16 6.5 26 A 286 Superstition Mtn Camera 

6 P0448 Morgan Hill 1984/04/24 21:15 6.2 16.2 A 47379 Gilroy Array #1 

7 P0538 N. Palm Springs 1986/07/08 09:20 6 25.8 A 12206 Silent Valley - Poppet F 

8 P0612 Whittier Narrows 1987/10/01 14:42 6 26.8 A 108 Carbon Canyon Dam (L Abut) 

9 P0341 Coalinga 1983/05/02 23:42 6.4 29.6 B 36449 Parkfield - Fault Zone 8 

10 P0344 Coalinga 1983/05/02 23:42 6.4 28.4 B 36453 Parkfield - Fault Zone 11 

11 P0347 Coalinga 1983/05/02 23:42 6.4 29.9 B 36445 Parkfield - Fault Zone 15 

12 P0213 Livermore 1980/01/24 19:00 5.8 29.8 B 57064 Fremont - Mission San Jose 

13 P0215 Livermore 1980/01/24 19:00 5.8 21.7 B 57134 San Ramon Fire Station 

14 P0216 Livermore 1980/01/24 19:00 5.8 17.6 B 57187 San Ramon - Eastman Kodak 

15 P0462 Morgan Hill 1984/04/24 21:15 6.2 22.7 B 57007 Corralitos 

16 P0464 Morgan Hill 1984/04/24 21:15 6.2 16.2 B 47006 Gilroy Gavilan Coll. 

17 P0606 Whittier Narrows 1987/10/01 14:42 6 23.3 B 951 Brea Dam (L Abut) 

18 P0631 Whittier Narrows 1987/10/01 14:42 6 27 B 24157 LA - Baldwin Hills 

19 P0639 Whittier Narrows 1987/10/01 14:42 6 28.5 B 90016 LA - N Faring Rd 

20 P0697 Whittier Narrows 1987/10/01 14:42 6 29.3 B 90008 Sun Valley - Sunland 

21 P0345 Coalinga 1983/05/02 23:42 6.4 29.5 C 36138 Parkfield - Fault Zone 12 

22 P0346 Coalinga 1983/05/02 23:42 6.4 29.9 C 36456 Parkfield - Fault Zone 14 

23 P0348 Coalinga 1983/05/02 23:42 6.4 28.1 C 36457 Parkfield - Fault Zone 16 

24 P0361 Coalinga 1983/05/02 23:42 6.4 29.5 C 36448 Parkfield - Vineyard Cany 1W 

25 P0520 N. Palm Springs 1986/07/08 09:20 6 15.8 C 5069 Fun Valley 

26 P0525 N. Palm Springs 1986/07/08 09:20 6 29.8 C 22170 Joshua Tree 

27 P0604 Whittier Narrows 1987/10/01 14:42 6 25.5 C 90061 Big Tujunga, Angeles Nat F 

28 P0617 Whittier Narrows 1987/10/01 14:42 6 17.1 C 90068 Covina - S Grand Ave 

29 P0625 Whittier Narrows 1987/10/01 14:42 6 19 C 90063 Glendale - Las Palmas 

30 P0647 Whittier Narrows 1987/10/01 14:42 6 22.7 C 90060 La Crescenta - New York 

31 P0698 Whittier Narrows 1987/10/01 14:42 6 27.5 C 90058 Sunland - Mt Gleason Ave 

32 P0555 Chalfant Valley 1986/07/21 14:42 6.2 18.7 D 54428 Zack Brothers Ranch 

33 P0323 Coalinga 1983/05/02 23:42 6.4 25.5 D 46314 Cantua Creek School 

34 P0352 Coalinga 1983/05/02 23:42 6.4 29.2 D 36439 Parkfield - Gold Hill 3E 

35 P0406 Coalinga 1983/07/22 02:39 5.8 17.4 D 1162 Pleasant Valley P.P. - yard 

36 P0153 Coyote Lake 1979/08/06 17:05 5.7 15.6 D 1377 San Juan Bautista 

37 P0154 Coyote Lake 1979/08/06 17:05 5.7 17.2 D 1492 SJB Overpass, Bent 3 g.l. 

38 P0164 Imperial Valley 1979/10/15 23:16 6.5 23.8 D 5061 Calipatria Fire Sta 

39 P0173 Imperial Valley 1979/10/15 23:16 6.5 15.5 D 5056 El Centro Array #1 

40 P0450 Morgan Hill 1984/04/24 21:15 6.2 15.1 D 47380 Gilroy Array #2 
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Table A.4. Ground motion records in Bin 4 (PEER NGA Database 1999) 

# 
Record 

ID 
Earthquake M R GM Station 

1 P0550 Chalfant Valley 1986/07/21 14:42 6.2 33.4 A 54214 Long Valley Dam (L Abut) 

2 P0559 Chalfant Valley 1986/07/21 14:42 6.2 40.6 A 54101 Tinemaha Res. Free Field 

3 P0327 Coalinga 1983/05/02 23:42 6.4 38.4 A 36450 Parkfield - Cholame 3E 

4 P0357 Coalinga 1983/05/02 23:42 6.4 34.4 A 36422 Parkfield - Stone Corral 2E 

5 P0358 Coalinga 1983/05/02 23:42 6.4 31.8 A 36437 Parkfield - Stone Corral 3E 

6 P0364 Coalinga 1983/05/02 23:42 6.4 32.3 A 36176 Parkfield - Vineyard Cany 3W 

7 P0214 Livermore 1980/01/24 19:00 5.8 31 A 58219 APEEL 3E Hayward CSUH 

8 P0477 Morgan Hill 1984/04/24 21:15 6.2 44.1 A 58135 UCSC Lick Observatory 

9 P0537 N. Palm Springs 1986/07/08 09:20 6 43.8 A 5230 Santa Rosa Mountain 

10 P0554 Chalfant Valley 1986/07/21 14:42 6.2 36 B 54T03 Lake Crowley - Shehorn Res. 

11 P0325 Coalinga 1983/05/02 23:42 6.4 40.5 B 36230 Parkfield - Cholame 2E 

12 P0353 Coalinga 1983/05/02 23:42 6.4 38.8 B 36420 Parkfield - Gold Hill 3W 

13 P0354 Coalinga 1983/05/02 23:42 6.4 41 B 36433 Parkfield - Gold Hill 4W 

14 P0355 Coalinga 1983/05/02 23:42 6.4 47 B 36434 Parkfield - Gold Hill 5W 

15 P0365 Coalinga 1983/05/02 23:42 6.4 34.6 B 36446 Parkfield - Vineyard Cany 4W 

16 P0456 Morgan Hill 1984/04/24 21:15 6.2 31.4 B 57064 Fremont - Mission San Jose 

17 P0518 N. Palm Springs 1986/07/08 09:20 6 35.3 B 5157 Cranston Forest Station 

18 P0522 N. Palm Springs 1986/07/08 09:20 6 34.9 B 5043 Hurkey Creek Park 

19 P0694 Whittier Narrows 1987/10/01 14:42 6 32.6 B 90048 Santa Monica - Second St 

20 P0705 Whittier Narrows 1987/10/01 14:42 6 30.1 B 90090 Villa Park - Serrano Av 

21 P0328 Coalinga 1983/05/02 23:42 6.4 43.9 C 36410 Parkfield - Cholame 3W 

22 P0340 Coalinga 1983/05/02 23:42 6.4 31 C 36431 Parkfield - Fault Zone 7 

23 P0367 Coalinga 1983/05/02 23:42 6.4 41 C 36441 Parkfield - Vineyard Cany 6W 

24 P0152 Coyote Lake 1979/08/06 17:05 5.7 31.2 C 57191 Halls Valley 

25 P0217 Livermore 1980/01/24 19:00 5.8 37.7 C 57063 Tracy - Sewage Treatm Plant 

26 P0535 N. Palm Springs 1986/07/08 09:20 6 32 C 12204 San Jacinto - Soboba 

27 P0667 Whittier Narrows 1987/10/01 14:42 6 30.8 C 90009 N Hollywood - Coldwater Can 

28 P0689 Whittier Narrows 1987/10/01 14:42 6 37.7 C 90044 Rancho Palos Verdes - Luconia 

29 P0549 Chalfant Valley 1986/07/21 14:42 6.2 44.9 D 54099 Convict Creek 

30 P0551 Chalfant Valley 1986/07/21 14:42 6.2 37.2 D 54100 Benton 

31 P0324 Coalinga 1983/05/02 23:42 6.4 41.6 D 36452 Parkfield - Cholame 1E 

32 P0337 Coalinga 1983/05/02 23:42 6.4 36.4 D 36408 Parkfield - Fault Zone 3 

33 P0189 Imperial Valley 1979/10/15 23:16 6.5 31.7 D 5052 Plaster City 

34 P0447 Morgan Hill 1984/04/24 21:15 6.2 32.5 D 1028 Hollister City Hall 

35 P0455 Morgan Hill 1984/04/24 21:15 6.2 30.3 D 1377 San Juan Bautista 

36 P0512 N. Palm Springs 1986/07/08 09:20 6 43.3 D 12331 Hemet Fire Station 

37 P0527 N. Palm Springs 1986/07/08 09:20 6 38.2 D 22T13 Landers Fire Station 

38 P0539 N. Palm Springs 1986/07/08 09:20 6 44.4 D 5038 Sunnymead 

39 P0599 Whittier Narrows 1987/10/01 14:42 6 38.9 D 24087 Arleta - Nordhoff Fire Sta 

40 P0623 Whittier Narrows 1987/10/01 14:42 6 35 D 90002 Fountain Valley - Euclid 
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Table A.5. Ground motion records in Bin 5 (PEER NGA Database 1999) 

# 
Record 

ID 
Earthquake M R GM Station 

1 P0806 Cape Mendocino 1992/04/25 18:06 7.1 8.5 A 89005 Cape Mendocino 

2 P0873 Landers 1992/06/28 11:58 7.3 1.1 A 24 Lucerne 

3 P0733 Loma Prieta 1989/10/18 00:05 6.9 11.2 A 47379 Gilroy Array #1 

4 P0760 Loma Prieta 1989/10/18 00:05 6.9 10.3 A 13 BRAN 

5 P0770 Loma Prieta 1989/10/18 00:05 6.9 6.1 A 16 LGPC 

6 P0449 Morgan Hill 1984/04/24 21:15 6.2 0.1 A 57217 Coyote Lake Dam (SW Abut) 

7 P0995 Northridge 1994/01/17 12:31 6.7 8 A 24207 Pacoima Dam (downstr) 

8 P0996 Northridge 1994/01/17 12:31 6.7 8 A 24207 Pacoima Dam (upper left) 

9 P0034 Parkfield 1966/06/28 04:26 6.1 9.9 A 1438 Temblor pre-1969 

10 P0691 Whittier Narrows 1987/10/01 14:42 6 9 A 90019 San Gabriel - E Grand Av 

11 P1043 Kobe 1995/01/16 20:46 6.9 0.6 B 0 KJMA 

12 P0745 Loma Prieta 1989/10/18 00:05 6.9 5.1 B 57007 Corralitos 

13 P0764 Loma Prieta 1989/10/18 00:05 6.9 11.6 B 47006 Gilroy - Gavilan Coll. 

14 P0453 Morgan Hill 1984/04/24 21:15 6.2 11.8 B 57383 Gilroy Array #6 

15 P0928 Northridge 1994/01/17 12:31 6.7 8.2 B 24088 Pacoima Kagel Canyon 

16 P1021 Northridge 1994/01/17 12:31 6.7 14.6 B 90055 Simi Valley - Katherine Rd 

17 P0032 Parkfield 1966/06/28 04:26 6.1 9.2 B 1015 Cholame #8 

18 P0082 San Fernando 1971/02/09 14:00 6.6 2.8 B 279 Pacoima Dam 

19 P0624 Whittier Narrows 1987/10/01 14:42 6 12.1 B 709 Garvey Res. - Control Bldg 

20 P0706 Whittier Narrows 1987/10/01 14:42 6 10.5 B 90071 West Covina - S Orange 

21 P0190 Imperial Valley 1979/10/15 23:16 6.5 11.1 C 6619 SAHOP Casa Flores 

22 P0816 Landers 1992/06/28 11:58 7.3 11.6 C 22170 Joshua Tree 

23 P0744 Loma Prieta 1989/10/18 00:05 6.9 4.5 C 47125 Capitola 

24 P0454 Morgan Hill 1984/04/24 21:15 6.2 3.4 C 57191 Halls Valley 

25 P0528 N. Palm Springs 1986/07/08 09:20 6 10.1 C 5071 Morongo Valley 

26 P0541 N. Palm Springs 1986/07/08 09:20 6 7.3 C 5072 Whitewater Trout Farm 

27 P0988 Northridge 1994/01/17 12:31 6.7 14.6 C 90009 N. Hollywood - Coldwater Can 

28 P1005 Northridge 1994/01/17 12:31 6.7 7.1 C 77 Rinaldi Receiving Sta 

29 P0636 Whittier Narrows 1987/10/01 14:42 6 11.4 C 90033 LA - Cypress Ave 

30 P0648 Whittier Narrows 1987/10/01 14:42 6 13.5 C 90074 La Habra - Briarcliff 

31 P0809 Cape Mendocino 1992/04/25 18:06 7.1 9.5 D 89156 Petrolia 

32 P0553 Chalfant Valley 1986/07/21 14:42 6.2 9.2 D 54171 Bishop - LADWP South St 

33 P0368 Coalinga 1983/05/02 23:42 6.4 8.5 D 1162 Pleasant Valley P.P. - bldg 

34 P0006 Imperial Valley 1940/05/19 04:37 7 8.3 D 117 El Centro Array #9 

35 P0160 Imperial Valley 1979/10/15 23:16 6.5 12.9 D 6618 Agrarias 

36 P0736 Loma Prieta 1989/10/18 00:05 6.9 14.4 D 47381 Gilroy Array #3 

37 P0451 Morgan Hill 1984/04/24 21:15 6.2 14.2 D 47381 Gilroy Array #3 

38 P0452 Morgan Hill 1984/04/24 21:15 6.2 12.8 D 57382 Gilroy Array #4 

39 P0530 N. Palm Springs 1986/07/08 09:20 6 8.2 D 5070 North Palm Springs 

40 P0893 Northridge 1994/01/17 12:31 6.7 13 D 90057 Canyon Country - W Lost Cany 
 

 




