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ABSTRACT 

 

There are many factors which contribute to fatigue failure in HMA. While studies have 

been made with respect to binder aging, little has been done to investigate the effect of 

aging on the fatigue failure of asphalt mixtures. The lack of an effective and efficient 

method of testing field samples has contributed to this deficiency. This study focused on 

the development of a method for preparing and testing field samples in direct tension. 

This methodology was then be employed in combination with the VEC and RDT* tests 

to investigate several factors that affect fatigue in HMA. Particular emphasis was placed 

on the role of aging in the fatigue process. 

A method of testing field samples in direct tension was successfully developed. 

Results from the VEC and RDT* tests performed on several field samples collected from 

across the state of Texas were analyzed. US 277 field sample results were compared to 

laboratory mixed and compacted (LMLC) sample results as well as results obtained from 

extracted binder testing. Findings show that oxidative aging has an impact on the 

stiffness and performance of HMA. Chip seal surface treatments can extend the life of 

the pavement, but their affects are found primarily at the surface. 

Two additional field sites were tested, analyzed, and compared to LMLC results. 

These comparisons verified the effects of aging and show that a relationship between 

LMLC samples and field samples can be developed. Modulus values for one month of 

artificial aging of LMLC samples is equivalent to 10.5 months of aging in the field. 
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Finally, 21 Texas sites used for the study were analyzed and a multivariate linear 

regression was performed to determine the factors that play the most significant role in 

the aging process. A linear regression model was constructed to determine the number of 

loads to failure from fatigue cracking due, primarily, to aging. 
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CHAPTER I  

INTRODUCTION 

 

In 1912 Carl G. Fisher developed the idea for the Coast to Coast Rock Highway, which 

would later become the Lincoln Highway. The Lincoln Highway was the first road in the 

United States to stretch from the Atlantic coast to the Pacific Coast. It would eventually 

connect New York City to San Francisco, California (1). One hundred years later, there 

are over 16,500 miles of Interstate highways across the United States (2). During a time 

when so much emphasis is placed on the deteriorating transportation system, it is 

important to remember the incredible progress that has been made in the past century. 

The future of transportation will be as bright as the past as new and improved methods 

of designing, constructing, and testing roads are developed. 

 This chapter includes a review of the background surrounding current methods of 

fatigue testing for hot mix asphalt (HMA) and some of their strengths and weaknesses. 

Two new tests developed at Texas A&M and used for direct tension testing are also 

described. These two tests will be used for calculating several values associated with 

fatigue in HMA. A brief discussion on the background of binder and mixture aging and 

their association with fatigue cracking follows along with a description of the need for 

this study.  Finally, an outline of the dissertation is given, describing the contents of each 

of the following chapters. 
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Fatigue Testing Background 

 Material testing to predict fatigue cracking is one area that has received, and 

continues to receive, a great deal of attention. Pavement design, construction, 

maintenance, and reconstruction can be improved by successfully predicting fatigue 

failure in HMA pavements. Over the years, several testing methods have been developed 

to determine the tensile properties of HMA, including diametral, simple and supported 

flexure, direct axial, triaxial, and wheel-track type tests (3). Each one comes with its own 

set of strengths and weaknesses. 

 The Indirect Tension (IDT) test has been one of the more commonly used and 

studied tests. This test is performed by applying a compressive load to the side of a disk 

shaped sample, causing the sample to fail in tension along the center axis. The IDT is 

simple to perform (3, 4). However, this test determines the material and fracture 

properties using a biaxial state of stress, has shown to provide lower fatigue lives than 

other testing methods, and is not a good representation of the stresses experienced in the 

field (3-8). Some of this reduction may be the result of permanent deformation occurring 

under the loading strips applied to the sample during testing (4, 5, 8). 

 The Flexural Bending (FB) test indirectly determines fatigue properties by 

loading a prismatic sample at the third points of its length, causing the sample to bend. 

This causes tension in the bottom of the sample. Material properties can then be 

calculated and the fatigue life determined. While this test is a good representation of 

material behavior in the field (3), samples are more difficult to obtain and conventional 

testing time is extensive (9). 
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 The Semicircular Bending (SCB) Test is a relatively new test that is gaining 

momentum and popularity. Semicircular disks are taken from cores and tested by 

supporting the flat edge at two points at a specific spacing and applying a compressive 

load at the top of the arch. Samples are easy to obtain and the test is simple to perform, 

but requires indirect calculation of the tensile properties of the material (5). Permanent 

deformation under the load may also occur, which can change the stress distribution, but 

it’s much less than that experienced in the IDT test (4, 5). 

 Other tests, like the Overlay Tester (10) and Fenix Test (11), have recently been 

used to determine HMA fatigue and tensile material properties, but these tests are early 

in development and require further investigation. 

 Direct tension testing has also been successfully applied to laboratory mixed, 

laboratory compacted (LMLC) samples. These tests measure material behavior in the 

sample where uniform stresses occur (3). They also make testing and analysis simpler, 

quicker, and less expensive than other methods (3). However, it has been suggested that 

field samples are too thin to be practically tested using this type of test (12). 

 This study found that direct tension testing of field samples is not only possible, 

but can also provide accurate and timely results. It investigates the successful application 

of two new direct tension testing methods to field samples. The Viscoelastic 

Characterization (VEC) test and the Modified Repeated Direct Tension (RDT*) test 

were initially developed for application to LMLC samples. Through this study, 

modifications to the sample preparation, test setup, testing procedures, and analysis 

methodology were made and reported. Several samples from various sites throughout 
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Texas were tested, and the results reported indicate that these direct tension tests can be 

successfully applied to field samples in order to determine material properties associated 

with fatigue cracking.  

 

Direct Tension Testing of LMLC Samples 

Common fatigue analysis methods use material properties such as the stiffness modulus, 

complex modulus, and phase angle to determine the number of loads to failure for a 

HMA pavement (12). Two new direct tension tests have been developed which can be 

used to calculate some of these important material properties. 

 

Viscoelastic Characterization (VEC) Test 

The VEC test was developed at Texas A&M University for determining the relaxation 

modulus and complex modulus of LMLC samples (13). This new test method efficiently 

models the viscoelastic characteristics of HMA without causing damage to the sample. 

Time dependent stress and strain determined from this test are used to calculate the 

relaxation modulus master curve and the relaxation rate. Using Laplace transforms, the 

data can also be used to calculate the complex modulus master curve (13). 

 The VEC test is performed by applying a monotonically increasing load to a 4 

inch (101.6 mm) diameter by 4 inch (101.6 mm) high sample at a machine displacement 

rate of 0.01 inches per minute (0.254 mm/min.). The time of loading was controlled by 

monitoring three vertical linear variable differential transformers (LVDTs) placed 

equidistant around the sample. These LVDTs were monitored so that the strain 
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experienced by the sample did not exceed 100 με. It was assumed that under such a low 

strain level, the sample was undamaged and could be retested after allowing for recovery 

(13). The test was performed at 10°C (50°F), 20°C (68°F), and 30°C (86°F) with a 2 to 3 

hour temperature conditioning period between temperatures. Resulting stress and strain 

data at each temperature is averaged and fit with the following time dependent functions 

for stresses and strains, respectively (13): 

   

  -(1- )b t
t a e 

 
 

(1) 

 

  (1 )b t
t a e 

 
 

 
(2) 

 

where:  

 (t) =  time-dependent stress 

 (t) =  time-dependent strain 

 t = time 

e =  the base of the natural logarithm 

a, b, a, b =  fitting parameters 

 

 Using the calculated fitting parameters, the Laplace transforms of the stress and 

strain can be determined as:   
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where: 

  s = Laplace transform variable. 

 

Using equations 3 and 4, the relaxation modulus, E(t), and complex modulus, E*(), can 

then be determined as: 
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where:  

  =  Loading frequency 

 

 Luo and Lytton (2010) provide a more detailed description of the calculations 

involved (13). They have shown that the VEC test can be used for accurate and efficient 
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development of the relaxation modulus and complex modulus master curves (13). A 

sample can be tested at all three temperatures within 7 hours (13). If analysis of the 

collected data is automated, the entire process, including development of the master 

curves can be completed within one day (14). The VEC test also uses direct tension as 

opposed to traditional indirect tension tests, which may not accurately characterize the 

tensile properties of the material. Finally, the VEC test keeps the strain limit below 100 

με which is assumed to be undamaging, allowing for further testing of the sample. 

 

Modified Repeated Direct Tension (RDT*) Test 

While the VEC test determines some of the undamaged properties of the material, it can 

be followed by the RDT* test in order to verify the undamaged properties and determine 

the cumulative damaged properties of a mixture. The RDT* test was also developed at 

Texas A&M in order to determine undamaged and damaged properties of LMLC 

samples (15). The resulting data could then be used to determine important properties 

such as Paris’ fracture coefficient and exponent, the rate of crack growth and damage 

accumulation, and ultimately, the number of loads to fatigue failure (15). 

The undamaged portion of the test was used in order to verify and validate the 

results of both the VEC and RDT* tests for determining the undamaged properties of a 

mixture. While the undamaged portion of the test is described in the following 

paragraphs, Luo et al. (2008) provide a detailed description of the calculations used for 

determining the damaged mixture properties (15). 
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Determination of the undamaged properties of the mixture requires that a sample 

of the same dimensions as that used in the VEC test be preconditioned at a temperature 

of 20°C (68°F). The test is run in displacement control mode with load and deformation 

data collected every 0.005 seconds. The sample is exposed to a haversine loading with a 

maximum vertical strain level of 80 με for 500 cycles at a frequency of 1 Hz (6.28 

radians/sec.). For 2 inch (51 mm) LVDT gauge length, 80 με is a change in LVDT 

length of approximately 0.00016 inches (0.004064 mm). No rest period is given between 

cycles. This portion of the test can be used to calculate the undamaged viscoelastic phase 

angle and the dynamic modulus of the material at a 1 Hz (6.28 radians/sec.) frequency. 

At the completion of the 500 cycles at 80 με, a 1000 cycle haversine loading is applied at 

a frequency of 1 Hz (6.28 radians/sec.) with a maximum strain level of 350 με. For 2 

inch (51 mm) gauge length, 350 με is a change in LVDT length of approximately 0.0007 

inches (0.01778 mm). Though visible cracks may not be apparent, at the completion of 

the test the sample is damaged and cannot be retested (15). 

 The RDT* method, as developed by Luo et al. (15), separates the tension and 

compression components of the test and calculates their related material properties 

separately. In order to understand some of the variables used in the calculations, it is 

helpful to show an illustration of the stress response and strain input produced by the 

test. In FIGURE 1, T represents the period of the strain wave with a cycle of 2π radians 

(360°). Tc is the portion of the stress period corresponding to compressive stresses being 

applied to the sample. Tt represents the portion of the stress period corresponding to 

tensile stress application. In viscoelastic materials the strain lags behind the stress. Also 
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the material responds differently when in tension than it does in compression (15). To 

account for these differences in response, the variables ttens and tcomp (with corresponding 

lag angles of φt and φc, respectively) are used to represent the tensile and compressive 

lag times, respectively. σtm is the maximum tensile stress, while σcm is the maximum 

compressive stress applied to the sample for each phase. The amplitudes of the input and 

response waves are identified by σ0 and ε0, respectively (15). 

 

 

FIGURE 1 Strain response and stress input from the RDT* Test. Adapted from 

Luo et al. (15). 

 

 

 The tensile phase angle, φt, in degrees, is calculated using equation 7 while the 

dynamic tensile modulus, Eve, is calculated from equation 8 (15). 
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t
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σ
E

ε
  

(8) 

 

where, 

 σ
0t

 = Amplitude of the tensile stress calculated using σtm and Tt 

  

 Once the VEC and RDT* test methods are validated, the damaged portion of the 

RDT* test can then be used with the results of the undamaged VEC and RDT* test 

results to calculate the number of loads to failure in fatigue (Nf).  

 

Motivation and Objectives 

 Cracking failure of hot mix asphalt (HMA) due to fatigue by repetitive traffic 

loading has long been an important issue that affects the long-term performance of 

pavement systems. Understanding the material properties and environmental factors that 

affect fatigue cracking is an important part of understanding and predicting this mode of 

failure. While many of the past performance prediction models have been empirically 

based, concerted efforts have been underway to better predict this phenomenon using 

more mechanistic methodologies. At Texas A&M University, uniaxial, repeated load 

tests (VEC and RDT* tests) and an associated analysis system were developed as the 

Modified Calibrated Mechanistic with Surface Energy (CMSE*) method. Other models, 
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such as the Viscoelastic Continuum Damage (VECD) model, have also been developed. 

These models use measured mixture properties such as the relaxation and dynamic 

modulus, phase angle, and the rate of damage accumulation along with other damage 

properties to determine Nf for HMA (7, 15-18). The CMSE* method also includes 

surface energies associated with binders and aggregates, Paris' Law fracture parameters, 

and calculated shift factors which incorporate the effects of mixture anisotropy, healing, 

and simplified aging using a multiplicative factor based on changes in binder properties 

(16, 19). While this effort to include aging as a shift factor is a step in the right direction, 

it is still empirical in nature. In order to move toward a more mechanistic method of 

quantification for HMA, aging needs to be better understood and further investigated. 

 While HMA mixture aging is not well quantified (20, 21), considerable effort has 

been made to characterize aging in neat binders. Tools, such as Fourier Transform 

Infrared Spectroscopy (FTIR) and the Dynamic Shear Rheometer (DSR), have been used 

to investigate changes in binder viscosity and its correlation with binder oxidation in the 

laboratory (22-24). Binders have been extracted from existing field pavements in order 

to examine the binder aging process and some of the factors which affect it (20, 21). But 

binder aging alone cannot be used to draw a complete picture of the effects of binder 

oxidation on fatigue in HMA mixtures. It is important to investigate binder properties in 

combination with the mixture properties determined from effective laboratory testing to 

better characterize the effect of aging on HMA performance. 

 This study focuses on the development of a method for preparing and testing 

field samples in direct tension. This methodology was then employed in combination 
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with the VEC and RDT* tests to investigate several factors that may affect fatigue in 

HMA. Particular emphasis is placed on the role of aging in the fatigue process.  

 

Outline 

In this dissertation, several chapters are used to describe the background, research, and 

findings associated with this study. 

 Chapter I included a summary of the literature associated with fatigue testing 

methods used previously as well as those to be used in this study. The background 

associated with binder and HMA aging was discussed along with the motivation for this 

study. 

 Chapter II discusses the application of direct tension testing to LMLC and field 

samples. A detailed description of the modifications necessary for successful direct 

tension field sample testing is discussed along with results which support the new 

methodology. 

 Chapter III takes the test procedures from Chapter II and applies them to one 

particular site in Texas. LMLC and field samples are tested and compared. Binder from 

corresponding field cores is extracted and tested. These results are also compared to the 

field sample test results. All comparisons are used to identify relationships between 

binder aging, LMLC sample aging, and HMA aging in the field. 

 Chapter IV expands upon Chapter III by examining the relationship between 

samples taken from three different Texas field sites and their corresponding laboratory 

artificially aged LMLC samples. Field samples were collected annually over four years. 
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All samples were tested using the VEC and RDT* tests and the results analyzed. A 

comparison of Eve and Nf between LMLC samples and field samples is made. 

 Chapter V is a statistical analysis of the factors that are influential in the aging 

process using stepwise linear regressions on the data collected from tests performed on 

over 200 field samples collected from throughout the state of Texas. Significant factors 

with combined two way effects are identified and a linear regression model for the 

calculation of age influenced Nf is provided. 

 Chapter VI discusses the findings and conclusions reached through this study. 
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CHAPTER II 

DIRECT TENSION TESTING OF HOT MIX ASPHALT FIELD SAMPLES 

 

A comparison can be made to validate the VEC and RDT* tests by testing the same 

sample using both tests. The complex modulus at a frequency of 1 Hz (6.28 radians/sec.) 

can be pulled from the 20°C (68°F) master curve developed from VEC test data and 

compared with the dynamic modulus from the RDT* test. If the two moduli are similar, 

then the tests were successful and can be confidently used to determine the undamaged 

properties of a mixture. 

 

Direct Tension Testing of Field Samples 

The RDT* and VEC tests were originally designed for testing LMLC samples. It’s much 

more of a challenge to test field samples and correctly characterize and compare the 

material properties. Field samples vary from site to site with respect to layer thickness, 

air voids, binder type, and aggregate type, among other factors. Even samples taken from 

the same site have variations from sample to sample. However, if these tests can be 

successfully applied to field samples, a comparison can be made between the VEC and 

RDT* tests, validating the tests as viable options for direct tension testing of field 

samples. To make this possible, changes to the sample configuration had to be made in 

order to test the HMA layer of interest in the direct way that it experiences tension in the 

field. In addition, several modifications had to be made to the VEC and RDT* test setup, 
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procedures, and analysis. Various field sites were selected in order to determine the 

factors that have the greatest impact on differences between VEC and RDT* test results.  

 

Field Sample Selection 

Seven field sites throughout Texas were selected from which to take samples for this 

study. Each site was selected based on differing factors such as sample thickness, 

composition, and climate. Sample thicknesses range from 1.5 inches (38.1 mm) to 3 

inches (76.2 mm). Climates were selected based on geographical regions throughout 

Texas and include dry-warm (DW), dry-cold (DC), wet-warm (WW), and wet-cold 

(WC). For six of the seven sites, four cores were taken from each site with two cores 

from the wheel path (WP) and two cores from the shoulder (SH). For the remaining site, 

only cores from the shoulder were collected. The defining characteristics of each site are 

shown in TABLE 1.  

Texas Department of Transportation (TxDOT) mixtures Type C and Type D can 

be found in TxDOT Standard Specification 340 while the CMHB-F mixture is found in 

TxDOT Standard Specification 344 (25). The 25 mm SFHMAC mixture was a special 

TxDOT speciation, SS3248, prepared for perpetual pavement sections. 
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TABLE 1  Field Sample Characteristics 

Route Name 

C
o

n
stru

ctio
n

 

Y
ea

r 

C
lim

a
te

1 

Mixture 

Type 
Aggregate Binder 

Sample 

Size 

(in) 

WP/

SH
2
 

A
ir V

o
id

s 

(%
) 

Interstate 
Highway 20 2001 WC 12 mm SP3 Sandstone PG 76-22 1.5 

WP 9.6 
8.8 

SH 10.1 
11.1 

Interstate 
Highway 35 2007 DW 25 mm 

SFHMAC4 

Traprock/ 
River 

Gravel 
PG 76-22 3 SH 

3.3 

3.6 

US Route 277 2008 DW TxDOT 
Type C Limestone PG 70-22 2 

WP 14.1 
7.4 

SH 7.2 
7.2 

US Route 82 2008 DC CMHB-F5 Limestone PG 70-28 1.5 
WP 8.6 

10.1 

SH 8.8 
7.6 

US Route 83 2008 DC TxDOT 
Type D Granite PG 70-28 

1.5 WP 5.8 
9.8 

2 SH 9.1 
11.0 

State Highway 
36 2006 WW TxDOT 

Type D Limestone PG 64-22 1.5 
WP 4.1 

3.0 

SH 5.3 
6.8 

Farm to Market 
2994 2002 DW TxDOT 

Type D 
River 

Gravel PG 70-22 2 
WP 6.6 

5.6 

SH 8.3 
8.1 

                                                 

1
 WC = Wet Cold, DW = Dry Warm, DC = Dry Cold, WW = Wet Warm 

2
 WP = Wheel Path, SH = Shoulder 

3 12 mm Superpave mix 
4 TxDOT Stone Filled Hot Mix Asphalt Concrete 
5 TxDOT Type F Course Mix-High Binder Mixture 
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Sample Configuration and Preparation 

The cylindrical shape used to test LMLC samples for the VEC and RDT* tests was not 

conducive to testing field samples. A new sample shape as well as a procedure for gluing 

the samples to the test platens had to be developed for the testing of field samples. 

 

Sample Cutting 

Testing field samples in direct tension requires some modifications to the samples taken 

from the field. Cores in their original configuration do not lend themselves to direct 

tension testing in the direction of interest. In order to facilitate this type of testing on 

field materials collected as cores, they must be trimmed and oriented so that the layer in 

question can be pulled in the direction for which the tensile properties of the material are 

sought. In order to determine the tensile properties associated with fatigue failure, 

collected cores are trimmed to leave only the layer of interest. The resulting circular disk 

of thickness varying from 1.5” to 3” is trimmed into a rectangular shape. Preliminary 

attempts were made to test the samples without trimming the ends of the sample as 

shown in FIGURE 2(a). However, this proved to be problematic. If the initial lengthwise 

cuts were not well centered, platens glued to the sample for testing would not align 

properly causing unwanted moments and occasional failure at the sample/platen 

interface. In order to address these issues, the rounded ends were removed and the 

rectangular shape shown in FIGURE 2(b) was adopted.  

 Fatigue failure is most often associated with longitudinal cracking which runs 

parallel to the direction of traffic; therefore the length of the prism runs perpendicular to 
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the traffic direction. For a 6” diameter core, this results in a prism with a length of 

approximately 4” and a width of 3” as shown in FIGURE 2(b). The depth of the prism is 

dependent on the thickness of the layer under investigation. 

 

 

FIGURE 2 Sample trimming procedures with ends (a) untrimmed and (b) 

trimmed. 

 

 

Sample Gluing 

Initial attempts at gluing platens to the sample for testing were made on the vertical 

gluing jig shown in FIGURE 3(a). While this method of gluing centered the sample on 

the platens with respect to width, it failed to center it with respect to depth. It also failed 

to properly align the top and bottom platens. Improperly centered samples and 

misaligned platens tend to cause unwanted moments in the testing process which 

introduce high variability and unreliability in the test results. In some cases, the moments 

placed on the sample prevented the test from running to completion due to the platens 

being peeled from the sample or the sample failing in bending. 
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In order to better center the samples between platens, a horizontal, magnetic 

gluing vice, shown in FIGURE 3(b), was employed. Thickness and width of the samples 

were carefully measured at each end and at the midpoint of the sample. The platen 

dimensions were also measured. The sample measurements were then averaged and 

divided by two. Gauge metal of appropriate thicknesses was inserted below and beside 

the sample to position the sample in the center of the platens. Platens were placed flush 

against the side and bottom of the vice, then brought together to ensure proper alignment 

with each other. The vice was then reopened and the sample inserted between the platens 

with the appropriate gauge metal pieces in place. Platens and sample ends were cleaned 

and a 2 ton (17.8 kN) epoxy was applied to each end of the sample. The vice was then 

tightened until complete contact was made with the platens and the epoxy. Care was 

taken to not over tighten the vice, allowing the platens to remain aligned with each other 

rather than aligning with the sample ends.  

 

 
FIGURE 3 Vertical gluing jig (a) and horizontal magnetic gluing vice with three 

inch wide sample (b). 
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Unwanted moments were minimized by properly preparing the sample, ensuring 

proper platen alignment, and centering the sample between the platens. 

In order to measure displacement of the sample during testing, LVDTs were 

centered, vertically, on each of the four sides of the sample with a 2 inch (50.8 mm) 

gauge length. The data collected from these LVDTs was averaged to obtain the 

approximate sample displacement near the center of the sample. 

 

Machine Modifications 

While careful preparation of the field samples greatly reduced the potential for moments 

during testing, some changes also had to be made to the servo hydraulic testing machine 

in order to reduce eccentricity. Initial tests used a fixed-fixed connection, where both 

platens were directly bolted, on both ends, into the testing machine. This tended to 

exaggerate the small eccentricities inherent in the samples. To remedy this problem, a 

fixed-pinned connection was used which incorporated a ball and socket joint on one end 

of the sample, as shown in  FIGURE 4. This allowed the sample to move more freely 

during testing. The socket base plate was also adjusted horizontally for each test to 

ensure that the ball was not forced into the joint, causing unwanted bending in the 

sample. As a result, the ball fit directly into the joint without the application of any 

horizontal forces. This modification to the servo hydraulic testing machine further 

reduced the potential for error in testing caused by eccentric loading and applied 

moments. 
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 FIGURE 4 Three inch wide sample attached to ball and socket joint shown with 

movable base plate. 

 

 

 In addition to the mechanical modifications made to the machine, a program was 

added to the testing system which would automatically detect when one of the measuring 

LVDT’s for the VEC test reached the 100 με limit. At this point, the test would 

automatically terminate, reducing the possibility of human error caused by attempting to 

stop the test manually. 

 

Test Modifications 

With adjustments made to sample preparation and the testing machine, modifications 

could then be made to the tests themselves. VEC test cycles were completed in 

approximately 5 to 15 seconds at the original rate of 0.01 inches/min. (0.254 mm/min.). 

This limited amount of data proved to be insufficient for proper analysis and 

development of the relaxation modulus and complex modulus master curves. In order to 
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provide more test data from the VEC test, the loading rate was adjusted from 0.01 

inches/min. (0.254 mm/min.) to 0.004 inches/min. (0.102 mm/min) and finally to 0.002 

inches/min. (0.051 mm/min). This provided a minimum of 20 seconds worth of data for 

most cases. 

 The RDT* test was adjusted to separate the undamaged and damaged cycles. 

Other adjustments were also necessary to eliminate the possibility of damaging the 

samples during the undamaged cycles due to excessive strain. The controlled strain limit 

for the undamaged cycles was changed from 80 με to 30 με in order to accomplish this. 

The reduction in this limit made it more difficult for the testing machine to control the 

test, increasing the amount of noise in the resulting data. However, it prevented the 

sample from experiencing damaging strains. The number of undamaged cycles was also 

reduced from 500 to 50. 500 cycles was unnecessary when 50 cycles provided sufficient 

data to perform the necessary analysis. The damaged strain limit was also reduced from 

350 με to 175 με. This allowed for collection of sufficient data to calculate the damaged 

properties while preventing sample failure or failure at the sample/platen interface.  

 

Analysis Modifications 

As mentioned in the previous section, the decrease in strain limits for the undamaged 

cycles of the RDT* test caused an increase in the noise observed in the recorded data. 

The analysis of the RDT* data requires that the peaks and valleys of the stress and strain 

be located. Automation of this process resulted in picking the peaks and valleys of the 

noise rather than the actual response. Manual identification of these points proved to be 
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far too time consuming and inefficient for adequate and timely analysis. It was observed 

that the recorded noise occurred at a much higher frequency than the 1 Hz (6.28 

radians/sec.) loading frequency. This made it possible to apply a low pass frequency 

filter to the collected data, removing the unwanted noise occurring at frequencies above 

1 Hz (6.28 radians/sec). The result was a much smoother data set that allowed for 

automated peak picking of the stress and strain curves. 

 

Results 

With sample, machine, test, and analysis modifications made, the VEC and RDT* tests 

could be applied to field samples. The data was collected and test results analyzed for 

the selected sites listed in TABLE 1. The results from these tests can be seen in TABLE 

2, which include E* and Eve as well as the absolute percent difference between E* and 

Eve for each sample. 

 A careful inspection of the results from the individual LVDT’s indicates that a 

stiffness gradient occurs between the pavement surface and the bottom of the layer being 

tested. While further analysis of this gradient is ongoing, it is beyond the scope of this 

particular study. However, the average response of the four LVDT’s was sufficient to 

give an overall view of the material behavior and performance needed for test 

comparisons and practical application. 

 Of the 26 samples tested, only three appeared as outliers in a statistical analysis. 

These included a sample from US Route 83 located in the wheel path and two from State 

Highway 36, one in the wheel path and one in the shoulder. After reviewing the notes 
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and results associated with US Route 83, it appears that the unusually large percent 

differences between E* and Eve could be the result of poor sample preparation and 

handling which resulted in eccentric loading during testing. State Highway 36, however, 

is a very stiff mixture. This high level of stiffness may have influenced the results of the 

VEC test. Mixturees of this level of stiffness may require a higher strain limit than the 

prescribed 100 με in order for the VEC test to produce viable results. This warrants 

further evaluation using several samples of high stiffness. 

 For the remaining 23 samples, the absolute percent difference between E* and 

Eve follow a normal distribution with a mean of 5.4% and a standard deviation of 3.72%, 

indicating that the results from the VEC and RDT* tests were similar. A study by L. K. 

Huang suggested that differences between stiffness moduli from SCB and FB test of 

about 10% or less were acceptable (26). Thus, the VEC and RDT* tests are viable direct 

tension tests for determining the undamaged moduli of a HMA field sample. 
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TABLE 2  Field Sample VEC and RDT* Test Results 

Route Name 
Wheel Path 

/Shoulder 

Percent 

Air Voids 

Eve 

Average 

(MPa) 

E*(1) 

(MPa) 

Eve 

(MPa) Absolute 

% Difference 

Interstate Highway 20 

Wheel Path 
9.6% 

6631 

6356 6538 2.8% 

8.8% 8313 7793 6.7% 

Shoulder 
10.1% 6240 6072 2.8% 

11.1% 6396 6121 4.5% 

Interstate Highway 35 Shoulder 
3.3% 

3883 
3475 3575 2.8% 

3.6% 3952 4191 5.7% 

US Route 277 
Wheel Path 

14.1% 

4564 

4020 4407 8.8% 
7.4% 4589 4928 6.9% 

Shoulder 
7.2% 4323 4459 3.0% 
7.2% 4367 4462 2.1% 

US Route 82 
Wheel Path 

8.6% 

6054 

5027 4826 4.2% 
10.1% 5496 6190 11.2% 

Shoulder 
8.8% 7744 6900 12.2% 
7.6% 7101 6300 12.7% 

US Route 83 
Wheel Path 

5.8% 

19896 

1921 3000 36.0% 

9.8% 1887 1800 4.8% 

Shoulder 
9.1% 2004 1999 0.2% 

11.0% 1981 2169 8.7% 

State Highway 36 
Wheel Path 

4.1% 

8923 

8567 9419 9.0% 
3.0% 6254 9061 31.0% 

Shoulder 
5.3% 7870 8426 6.6% 
6.8% 4682 6962 32.8% 

Farm to Market 2994 

Wheel Path 
6.6% 

4719 

4899 5040 2.8% 

5.6% 5093 5097 0.1% 

Shoulder 
8.3% 3966 4140 4.2% 

8.1% 4566 4597 0.7% 

 

                                                 

6 Value does not include outlier value of 3000 MPa. 
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 It is also important to consider the effects of the different properties of each 

individual sample. This is necessary in order to determine if the two tests can be applied 

over a broad range of field samples, or if the test results are limited based on the 

individual properties of the sample. Differences between E* and Eve were examined 

based on air void content, binder content, sample thickness, age, and climate conditions 

to determine what correlations, if any, could be drawn from the results. In each case, 

correlations were weak, with age having the greatest correlation coefficient of 0.4311, 

indicating a slight increase in E* and Eve differences with respect to aging. Binder 

content and sample thickness appeared to have the next greatest correlations, though 

they were also weak, with values of 0.3289 and -.3068, respectively. Climate conditions 

and air voids tend to have little effect on E* and Eve differences, both having correlation 

coefficients less than 0.18. 

 A mixed stepwise regression was also run for the above mentioned effects to 

determine their level of significance. At a 95% level of significance, only the age of the 

sample and sample thickness were shown to have a significant effect on the absolute 

difference between E* and Eve. Respective p-values for these effects were 0.014 and 

0.045, respectively. It can, therefore, be stated that thicker samples taken early in the life 

of the pavement minimize the difference between E* and Eve. As a result, it is important 

to use as much of the layer in question as possible when using the VEC and RDT* tests 

for determining field sample properties. As the sample ages, careful evaluation should be 

made with respect to the change in modulus, in order to ensure that the test results are of 

sufficient quality for accurate pavement evaluation. 
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 Further evidence for the viability of the VEC and RDT* tests can be seen by 

examining the resulting modulus values at each individual site. Noting that variability 

can be found from location to location within a site, the average values of Eve for each 

site in TABLE 2  Field Sample VEC and RDT* Test Results are relatively close to the 

actual measured values for each individual sample. Standard deviations for the study 

sites range from 185 MPa (26,800 psi) for US Route 83 to 876 MPa (127,000 psi) for US 

Route 82 with 75% of the individual values falling within 10% of their respective site 

mean. The variation that is found can be attributed to factors such as different air void 

contents, binder contents, and traffic loading rates, among others. The similarities 

between samples provide some confidence in the consistency of the tests for any given 

site. 

 

Summary 

 By comparing VEC and RDT* test results from the same sample as well as the 

results from different samples taken from the same site, it can be seen that these two 

tests can be successfully applied to field samples. The VEC and RDT* tests provide a 

quick and accurate method of determining the material properties necessary to assess 

fatigue under field conditions. Streamlining of the test preparation and further 

automation of the analysis will further make the VEC and RDT* tests practical methods 

for determining the material properties of samples obtained from the field. 

Researchers will be able to separate and assess the effects of aging and 

trafficking on the number of loads to fatigue failure by examining VEC and RDT* test 
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results from the wheel path and shoulder of any given pavement over time. This, in turn, 

will allow for more accurate development of mechanistic models which incorporate 

accurate aging prediction and correctly characterize fatigue. Current and future models 

can be compared and analyzed for accuracy by testing field samples throughout the life 

of the pavement and comparing the test results to those obtained from the models. 

 Over the past 100 years, significant progress has been made in the development 

of an efficient and effective transportation system. The direct tension testing of field 

samples using the VEC and RDT* tests will help propel the industry forward into the 

next 100 years of success by allowing for the quick, accurate, and direct determination 

of the material properties of HMA pavements. As these results are applied, agencies will 

be better able to determine pavement life and plan for the maintenance, rehabilitation, 

and reconstruction of the transportation system.  
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CHAPTER III 

INVESTIGATION OF AGING EFFECTS AT A SINGLE FIELD SITE USING 

DIRECT TENSION TESTING 

 

In this portion of the study, field samples acquired from a site in south Texas were 

investigated over time to see if relationships existed between the oxidative aging of the 

binder and the performance of the mixture. Cores were taken four times, at construction 

and then at intervals of approximately one year. Laboratory aged mixtures were also 

compared to the field samples. Raw materials collected from the same site in south 

Texas were used to prepare laboratory mixed, laboratory compacted (LMLC) samples 

that were artificially aged and tested to determine their material properties. Binder 

extracted from the LMLC and field samples was also examined. 

 This chapter discusses materials collected for the study are identified followed by 

a description of the sample preparation methods and test methodologies used to obtain 

the material properties of the aged and initial condition samples from the laboratory as 

well as the field. Binder extraction and test methods are also described. Material 

properties were then used to estimate Nf using the CMSE* method, without the 

application of shift factors. Results from the binder tests, field sample tests, and LMLC 

sample tests are reported followed by a cross-comparison of all of the results. From each 

of these tests, conclusions were made with respect to the effects of aging on the selected 

HMA mixture. 
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Materials 

Materials for this study were selected from US Route 277 in the Laredo District of the 

Texas Department of Transportation (TxDOT). At the time of construction, raw 

materials from the site were collected for the fabrication of LMLC samples. Field cores 

were taken immediately following construction and thereafter at approximately one year 

intervals for a total of four sampling times. Binder used specifically for testing was 

extracted from selected field cores. 

US Route 277 was constructed in 2008. Aggregates for this mixture consisted of 

a blend of four different aggregates to create a TxDOT Type C mixture (25). Three of 

the aggregates consist of limestone from the South Texas Aggregates Inc., Sabinal 

Quarry located in Uvalde County, Texas. They include a coarse limestone aggregate, a 

blend of Type D and Type F limestone aggregates, and manufactured sand. The fourth 

aggregate used in the blend is manufactured sand from the Vulcan Materials Company, 

Knippa Quarry, also located in Uvalde County, Texas. 

Binder for the US Route 277 mixture consisted of a PG 70-22 Valero Asphalt 

binder with an optimum asphalt content of 4.5% by weight of mixture using the 

Superpave volumetric mixture design method. 

Twelve cores were taken from the field in 2008; six from the wheel path, and six 

from the shoulder. Air void content (AV) for all twelve field samples was determined. 

Two cores from the wheel path and two from the shoulder were used for mixture testing. 

One field core from the wheel path and one from the shoulder were used for binder 

extraction. The remaining cores were retained as alternates.  
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A portion of the test section was treated with a chip seal following the initial core 

extraction. In 2009, six more field samples were taken from the untreated wheel path and 

six more from the shoulder with six additional field samples taken from the treated 

wheel path. This sampling process was repeated in 2010 and 2011. Field samples were 

selected from the treated and untreated sections for mixture and binder testing as 

described for the 2008 samples. The 2011 field wheel path samples all had a chip seal, 

which was placed on the pavement surface approximately nine months prior to coring. 

 

Testing Methodology 

Two uniaxial tension tests developed at Texas A&M University were used to determine 

the material and fatigue properties of the samples. These include the Viscoelastic 

Characterization (VEC) test (13) and the Modified Repeated Direct Tension (RDT*) test 

(15). Asphalt binder was extracted from selected field samples and analyzed using a 

Fourier Transform Infrared Spectrometer (FTIR) to determine the degree of binder 

oxidation. 

 

Sample Preparation 

 LMLC and field samples were prepared for uniaxial tension testing in order to 

minimize eccentricities and to reduce moments during testing. Binders were extracted 

from selected field cores. 
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LMLC Samples 

LMLC samples used in this study were fabricated based on a D-optimal statistical design 

which incorporated several combinations of binder contents and AV with 0, 6, 9, and 12 

month aging periods in a 60 C accelerated aging room. TABLE 3 includes the D-optimal 

design combinations. Ranges used for binder contents and AV are shown in TABLE 4. 

 

TABLE 3  D-Optimal Statistical Design for LMLC Samples 

Run Aging 
Binder 

Content 

Air 

Void 

1 

0 months 

Opt -0.5% Low 
2 High 
3 

Opt +0.5% 
Medium 

4 High 
5 Low 
6 Optimum Medium 
7 High 
8 

6 months 

Opt -0.5% High 
9 Medium 

10 Opt +0.5% Low 
11 Medium 
12 

Optimum 
High 

13 Low 
14 Medium 
15 

9months 

Opt -0.5% High 
16 Medium 
17 

Opt +0.5% 
Medium 

18 Low 
19 High 
20 Optimum Medium 
21 

12 months 

Opt -0.5% Medium 
22 Low 
23 Opt +0.5% Low 
24 High 
25 

Optimum 
Low 

26 High 
27 Medium 
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TABLE 4  Binder Content and Air Voids for US 277 Samples 

 Binder Content Air Voids 

Low Optimum -0.5 % (4.0 %) < 5% 
Medium Optimum (4.5 %) 5% - 7% 
High Optimum +0.5 % (5.0 %) > 7% 

 

 

Aggregates used for the LMLC samples were placed in an oven at the mixing 

temperature of 149° C and were left overnight in order to remove any moisture. The 

binder was also heated to the same mixing temperature for 2 hours just prior to mixing. 

The mixture was then short-term oven aged at the compaction temperature of 135°C for 

four hours as prescribed by AASHTO R30 for performance testing. 

Samples were molded using the Super Gyratory Compactor (SGC) to 152 mm 

diameter by 152 mm height in order to meet the specified target AV content. The initial 

AV content found in the 152 mm diameter by 152 mm high samples was slightly higher 

than the values shown in TABLE 4 due to the conditions imposed by the SGC mold 

(27). To obtain a more uniform AV distribution, representative of the typical air void 

distributions encountered in field samples, LMLC samples were compacted at a higher 

AV content and then cored to a 102 mm diameter. The samples then had 25 mm trimmed 

from each end to produce the final 102 mm diameter by 102 mm high sample with the 

appropriate target low, medium, or high AV content.  

The prepared LMLC samples were next placed in vertical gluing jigs (FIGURE 

5a) so that 102 mm diameter steel platens could be affixed to each end. The gluing jigs 

provided a method of aligning the platens to minimize eccentricities during the tension 
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testing process. Following sufficient drying time, three linear variable displacement 

transducers (LVDTs) were placed vertically and equidistant around the sample (Figure 

1b). The LVDT gauge length was 51 mm. 

 

 
FIGURE 5  Vertical gluing jig (a) and test setup (b) for LMLC samples 

 

 

Field Samples 

Field cores were trimmed into a prismatic shape as shown in FIGURE 6. This allowed 

the samples to be tested in the same direction that they would experience tension forces 

in the field. Special care was taken during cutting to ensure that the sample sides were as 

close to parallel as possible. 

 

 

(a) (b) 
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FIGURE 6  Field sample testing configuration 

 

 

A horizontal magnetic gluing vice (FIGURE 7) was used to affix steel platens to 

each end of the field samples. The magnetic vice ensured that the platens remained 

aligned with each other, regardless of any small discrepancies in the sample, which may 

have occurred during the cutting process.  

 

 
FIGURE 7  Magnetic gluing vice for field samples. 
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LVDTs were placed at 51 mm gauge length on each of the long sides of the 

sample to measure the vertical displacement induced during testing. 

 

Binder Extraction 

The binder extraction process for the field samples was executed by first separating any 

applied chip seals from the sample by knife. Field samples were then cut by electric saw 

into several layers, from top to bottom, with each layer being approximately 12.7 mm 

thick. These layers were then broken into small pieces. 

The extraction used three successive washes of a mixture of 15% ethanol plus 

85% toluene by volume. After the extraction, the solvent was centrifuged and filtered to 

remove all the aggregate particles from the binder solution.  

The asphalt binder was recovered from the solvent with a Büchi RE111 Rotovap. 

Nitrogen was used to carry off the solvent and prevent further oxidation. During solvent 

removal, the bath temperature was kept at 100° C to avoid hardening or softening of the 

asphalt in dilute solution. To ensure total solvent removal, the temperature was increased 

to 174° C for 45 min after the condensing solvent could no longer be detected visually. 

 

HMA Mixture Testing 

In order to calculate the fatigue properties of LMLC and field samples, both the VEC 

and RDT* tests were performed. VEC and RDT* tests were performed using a servo-

hydraulic testing machine. A ball and socket joint was used to further minimize the 

effects of sample eccentricity and undesirable moments for both LMLC and field 
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samples. FIGURE 8 shows the field sample test setup with LVDT placement and the ball 

and socket joint. 

 

 
FIGURE 8  Field sample test setup with ball and socket joint at base. 

 

 

VEC Test 

The original VEC test and analysis was developed at Texas A&M University for 

application to LMLC samples (13, 15). Modifications were later made to this test for 

application to field samples as described in Chapter II.  

The VEC test was performed by applying a monotonically increasing tensile load 

to a sample at a strain rate of 50.8 μm per minute. The test continued at this rate until 

one of the measuring LVDT’s reached a strain level of 100 με. It is assumed that at this 

small strain level, no damage occurs and the sample can used in further testing (13). 
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The sample was initially conditioned and tested at 10° C. Once the test was 

completed, the sample was reconditioned for a minimum of 2 hours and retested at 20° C 

and 30° C using the same procedure.  

Recorded load and displacement data from the LVDTs for each temperature were 

used to calculate stress and strain. These values were averaged and defined using a 

fitting curve at each temperature. Fitting parameters from these curves were then used, in 

conjunction with Laplace transformations and calculated shift factors, to determine the 

relaxation modulus (Et) master curve and the complex modulus (E*) master curve at 

20°C. 

 

RDT* Test 

The RDT* test was developed by X. Luo et al. at Texas A&M University (15). This test 

was also further refined for application to field samples as described in Chapter II  

The RDT* test was performed on a sample preconditioned at 20°C. The sample 

was exposed to a Haversine load in displacement control mode with a maximum vertical 

strain level of 30 με for 50 cycles at a frequency of 1 Hz. For a 51 mm LVDT gauge 

length, 30 με is a change in gauge length of approximately 1.5 μm. This portion of the 

test was used to calculate the undamaged viscoelastic phase angle and the undamaged 

dynamic modulus of the mixture.  

Following the 50 cycles at 30 με, a 1000 cycle Haversine loading was applied at 

a frequency of 1 Hz with a maximum strain level of 175 με. For a 51 mm LVDT gauge 
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length, 175 με is a change in gauge length of approximately 8.9 μm. At the completion 

of the test the sample was damaged and could not be retested. 

Data obtained from the RDT* test were averaged and filtered using a low pass 

filter. The filter removed machine noise from the data, allowing for automated data 

processing. 

The damaged portion of the RDT* test (175 με level) was used in combination 

with the results of the undamaged portion of the test to determine fracture properties, 

such as Paris’ law fracture coefficient, A, Paris’ law exponent, n, and the rate of damage 

accumulation, b. These were then used in the CMSE* model to calculate Nf (15, 16). 

 

Binder Testing 

Extracted binders from field cores and LMLC samples were analyzed using FTIR to 

determine the degree of oxidation. A Nicolet 6700 FTIR spectrometer with an attenuated 

total reflectance zinc selenide prism was used to determine the degree of binder 

oxidation, by measuring carbonyl area (CA). CA is the area under the absorbance peak 

from 1650-1820cm-1, in arbitrary units, which provides a direct measurement of the 

oxidation progress in asphalt binder. This property is also strongly correlated to 

rheological properties measured in the Dynamic Shear Rheometer (23). 

 

Test Results 

Mixture and fracture properties for LMLC samples and field samples were calculated 

using the data obtained from both the VEC and RDT* tests. Binder properties were also 
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determined. The results of these calculations were evaluated and compared as a way of 

validating the VEC and RDT* testing methods. LMLC and field mixture results and 

binder results were also evaluated individually and combined in order to provide a 

preliminary evaluation of the effects of aging and maintenance treatments on HMA 

mixtures. 

 

Extracted Binder Test Results 

Following the testing of the LMLC samples, the binders were extracted and tested using 

FTIR to determine its chemical properties. Due to the nature of the D-optimal statistical 

design used in the sample fabrication determination, a full factorial set of data is not 

available. However, the overall trends can still be observed from the test results.  

FIGURE 9 shows the CA of the samples which had optimum binder content with each 

series representing different AV contents. From FIGURE 9 it can be seen that as the 

samples age in the laboratory, the CA increases. However, the Low AV samples show 

less oxidation (lower CA values) as a result of less exposure to oxygen within the 

sample. The Medium AV and High AV samples appear to experience similar changes in 

CA as the sample ages. This indicates that there may be a threshold AV content at which 

the diffusion of oxygen into the binder becomes constant. 

In FIGURE 10 the AV content is held constant at Medium AV with each series 

representing different binder contents. FIGURE 10 shows that the change in binder 

content appears to have little effect on the change in CA. 
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While it appears that a change in AV content has a greater impact as compared to 

a change in binder content, the binder from the LMLC samples is aging in a measurable 

way and trends are as expected, with CA increasing with time. 

 

 

FIGURE 9  CA of LMLC samples at optimum binder content. 
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FIGURE 10  CA of LMLC samples at medium AV. 
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FIGURE 11  CA value with depth and years for US-277 shoulder. 

  

 

 
FIGURE 12  CA value with depth and years for US-277 wheel path. 
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In FIGURE 11, for the samples taken from the shoulder, there was no chip seal 

treatment on the surface, indicating that the data represents the natural aging process of 

the road without traffic. The CA values of the first layer for all of the samples are 

considerably higher than those for the underlying layers. The 2008 sample was collected 

three months after construction. The CA value of the first layer for this sample was 

already over 0.1 higher than the average value for layers 2 through 5 which have a 

standard deviation of 0.015. This is likely due to direct exposure to oxygen during 

paving in combination with the three month service period. For the 2009 shoulder 

sample, the CA values of all the layers had increased as expected. Furthermore, the CA 

for the first layer, which increased 0.2 compared to 0.08 for the deeper layers, has a 

much faster aging rate between 2008 and 2009. The CA difference between the top layer 

and the underlying layers rose to about 0.25. The reason for this phenomenon may be the 

oxygen diffusion resistance, which plays an important role in field aging. The oxygen 

diffusion resistance for the surface layer is negligible due to the direct exposure to the 

air. These conclusions agree with observations made in previous studies (28). 

Similar results were found from the CA data for the wheel path as shown in 

FIGURE 12. As previously mentioned, some of the wheel path sections had a chip seal 

surface treatment placed on the pavement surface after three months of use; just after the 

2008 core collection. The purpose of the chip seal was to protect the HMA from 

oxidative aging by cutting off the contact between the air and pavement. It is also 

thought to rejuvenate the binder directly beneath the treatment.  
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The CA for the chip seal treated wheel path samples had a much lower value for 

the first layer when compared with the untreated sample from the same year. This is a 

good indication that the first layer aged much less under the chip seal treatment. 

However, it is not clear whether this was due to cutting off oxygen flow, binder 

rejuvenation, or a combination of the two factors. The CA value for the chip seal binder, 

which was not included in FIGURE 11 and FIGURE 12, was approximately 1.5 to 1.6, 

which is extremely high. This could be due to direct exposure to air or from high UV 

radiation and high temperatures that result from the darker exposed area associated with 

chip seals. With the exception of layer 1, the untreated core in 2009 did not did not 

behave as expected when compared with the core in 2008. For layer 4 (about 38 mm 

beneath the surface) the CA of the 2009 core turned out to be less than the CA for the 

2008 core. This may be due to the variability of the cores or materials, especially when 

considering that AV content for the 2009 core was approximately 1% less than the core 

from 2008. The results shown in FIGURE 12 also give the impression that the chip seal 

accelerated the aging beneath the surface, which is not as expected. 

FIGURE 13 shows the average CA results for the shoulder, untreated wheel path, 

and treated wheel path combined. While there is a difference between results from year 

to year, there is no evident difference between the wheel path and shoulder until 2010. In 

2010, the oxidation occurring in the untreated wheel path is slightly less than that 

occurring in the shoulder. The treated section's oxidation is less than both the shoulder 

and untreated wheel path. From these results it appears that the average pavement 

oxidation is eventually affected by both traffic and maintenance treatments. Also note 
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that the CA increased for all three locations by about 0.07 during the first year, 

indicating that much of the aging occurs during the first year of the life of the pavement.  

 

 
FIGURE 13  Average combined CA for all sections of US-277. 
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had a chip seal placed on it shortly after the 2010 sample was collected. The shoulder 

experiences effectively no traffic, therefore, this result is primarily due to the aging of 

the HMA.  

Both the treated and untreated wheel path experience an initial increase in Eve 

between 2008 and 2009, however, contrary to the shoulder trend, the modulus then 

begins to decline for the following three years. From 2008 to 2009, the modulus 

increases as the pavement ages and is exposed to traffic loading. However, after only the 

first year, the HMA begins to accumulate damage in the form of fatigue cracking and the 

modulus declines. Also note that the rate of decline for the untreated wheel path slightly 

decreased between 2010 and 2011. Again, this may be due to the placement of a chip 

seal on the surface of the pavement shortly after collection of the 2010 samples. 

 

 
FIGURE 14  Eve for US 277 field samples. 

 

4,551.89 4,808.00 

5,513.38 

5,045.12 

4,460.50 

5,776.50 

5,504.40 

5,375.27 

6,177.00 

5,899.57 

5,263.63 

4000 

4500 

5000 

5500 

6000 

6500 

Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10 Jan-11 Jul-11 Jan-12 Jul-12 

E
v

e 
(M

p
a

) 

 

Coring Month and Year 

Shoulder Eve 
Wheel Path Eve 
Treated Wheel Path Eve 



 

48 

 

Some other interesting trends can be seen by examining the Nf values calculated 

for these same samples. Nf values were calculated using the VEC and RDT* results in 

the CMSE* model. Calculated Nf values are shown in FIGURE 15. Notice that the Nf 

values for the shoulder remain relatively flat with a slight decline in Nf values as it ages. 

The wheel path sections, however, have an initial sharp decline with the rate of change 

in Nf values slowing as time progresses. Once again, there was a slight increase in Nf for 

the 2011 wheel path samples, which had the chip seal applied in 2010. It is also 

important to note that for the treated wheel path section, the Nf values remain at a higher 

level than the untreated section, suggesting that the chip seal has a positive effect in 

extending the life of a pavement. It also appears that the placement of a chip seal later in 

the life of a pavement can also positively affect the pavement life.  

 

 
FIGURE 15  Nf for US 277 field samples. 
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Based on these results, the HMA stiffens with aging, which plays a role in the 

fatigue failure of pavements. It can also be concluded that a chip seal placed as a 

maintenance treatment can extend the life of a pavement. However, these results are 

specific to this particular site. Additional research is recommended using mixtures from 

other sites in order to determine if these trends are typical of all HMA and if the trends 

can be predicted. 

 

LMLC Sample Test Results 

The VEC and RDT* tests were also performed on LMLC samples. Test data 

collected allowed for a comparison of the material properties and performance of the 

LMLC samples at different AV and binder contents for the initial condition and aged 

samples. An Analysis of Variance (ANOVA) test concluded that there are statistically 

significant effects of aging level, binder content, and air voids on Eve while there are no 

statistically significant interaction effects among them (i.e., the rate of change in Eve over 

different aging levels are not statistically different over different AV or over different 

binder contents). A Tukey HSD statistical test confirmed that Eve was statistically 

different at each aging level. As seen in the field samples, it is safe to conclude that Eve 

increases with age. FIGURE 16 shows how Eve changes over time with low, medium, 

and high AV contents. As expected, the modulus increases as the sample ages. Low AV 

samples had a higher Eve value, followed by that for the medium and high AV samples. 

While the medium and high AV samples appeared to have very similar Eve's at 6 months, 

the Tukey HSD analysis for the effect of AV indicated Eve was significantly different 
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overall among all three AV contents. Also, notice that the rate of change in Eve over time 

is similar for all three AV contents as expected from the insignificant interaction effect 

test results between aging levels and AV contents.  

FIGURE 17 shows the change in the Eve values for three different binder 

contents: optimum, optimum -0.5%, and optimum +0.5%. From FIGURE 17 the rate of 

change in Eve appears approximately the same for the optimum and optimum -0.5% 

binder contents, but is slightly slower for the optimum +0.5% binder content. However, 

as mentioned above, the ANOVA test on the interaction effect between binder contents 

and aging levels indicated that the rate of change in Eve across three binder contents was 

not statistically significantly different. Tukey HSD analysis on the main effect of binder 

content indicated that overall there was no significant difference in Eve based on binder 

content for optimum and optimum +0.5% while a significant difference did exist 

between these two and the optimum -0.5%.  

 

 
FIGURE 16  Eve for LMLC samples at differing AV. 
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FIGURE 17  Eve for LMLC samples at differing binder contents. 
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collected for both LMLC and field samples allowed for some relationships to be 

developed, as discussed in the subsequent section. 

 

 

FIGURE 18  Number of loads to fatigue failure for LMLC samples with medium 

AV and optimum binder content. 

 

 

Comparison of Test Results 

With testing and analysis results obtained for binders, field samples, and LMLC 

samples, it is possible to make some comparisons between the results. A connection 

between binder aging and field performance along with a correlation between field and 

LMLC mixture performance may provide the information required to predict the effects 

of aging on the performance of HMA in the field. 

 

2556951.811 

4462200.812 

3798096.755 

4315668.03 

y = 134564x + 3E+06 
R² = 0.6342 

1.00E+05 

1.00E+06 

1.00E+07 

1.00E+08 

0 3 6 9 12 

N
f 

Months Aged 



 

53 

 

LMLC vs. Field Samples  

LMLC samples were only exposed to accelerated laboratory aging and experienced no 

traffic loading prior to testing. In order to make an equivalent comparison to 

performance in the field, it is important to compare the LMLC sample results with field 

results from samples which had minimal exposure to traffic loading. To accomplish this, 

a comparison was made between the LMLC samples and the field samples taken from 

the shoulder of US 277. FIGURE 19 shows this comparison of Eve values. The 2011 field 

sample is not shown because the chip seal placement altered the resulting Eve value, 

making it incompatible. By plotting the two lines representing the linear fit of Eve for the 

LMLC and field samples on the same graph, the relationship between field and LMLC 

samples can be easily seen. With the age of the LMLC samples in months listed at the 

top of the graph and the number of months that spanned between field samples 

acquisition listed at the bottom, it can be determined that one month of aging in the 

laboratory is equivalent to approximately 10.5 months in the field for US 277. This is 

less than the 13 to 19 months found in previous studies (29), but the Laredo climate is a 

case of extreme heat which may have affected the rate of aging. 

 



 

54 

 

 

FIGURE 19  Laboratory to field Eve comparison. 
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with the higher binder content having a much stronger correlation. Thus, it can be stated 

that there is a strong relationship between binder oxidation, resulting binder stiffening, 

and ultimate mixture stiffening with aging. 

 

 
FIGURE 20  Eve vs. CA for LMLC samples with different AV and increasing age. 
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FIGURE 21  Eve vs. CA for LMLC samples with different binder contents and 

increasing age. 
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and CA for field samples cannot be made. Some generalized conclusions, however, can 

be made.  

FIGURE 22 is a combined plot of Eve and CA with respect to the month the 

sample was obtained, with Eve shown on the left axis and CA on the right. Eve trends are 

represented by solid lines, while CA results are shown as dashed lines. Based on this 

comparison, the oxidation of the binder, as represented by CA of the corresponding 

extracted binder, plays a role in the stiffness of the mixture. This is especially apparent 

when viewing the response of the shoulder, which has little or no exposure to traffic 

loading. With the exception of the 2011 sample, which, as stated previously, had a chip 

seal placed on it, the shoulder's mixture stiffness continues to increase over time as the 

CA increases. In the case of the treated and untreated wheel path, this phenomenon is 

apparent between 2008 and 2009, but the mixture loses stiffness as it begins to 

experience damage and cracks begin to accumulate throughout the HMA. This is also 

shown by the fact that Nf continues to decrease with time as was seen in FIGURE 15. 
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FIGURE 22  Eve vs. CA of field samples for US 277 between 2008 and 2011. 
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 For US-277, much of the HMA aging occurs during the first year. In general, the 

rate of aging for US-277 decreases over time. 

 Chip seals appear to slow HMA aging, and, as a result, slow the rate of damage 

accumulation due to fatigue. However, this effect takes place primarily at the 

surface of the HMA where the chip seal is placed. 

 It is possible to develop a relationship between binder aging and mixture aging. 

A relationship can also be drawn between artificially aged LMLC samples and 

realistically aged field samples. 

 

 These generalized conclusions are an important first step in moving toward 

mechanistic models which incorporate and quantify aging. A relationship between 

binders and LMLC samples, and between LMLC samples and field samples, lends itself 

to the potential development of prediction models which incorporate aging. The next 

step in this development requires a deeper investigation into other field sites with 

different mixture and environmental conditions. While the findings in this chapter are a 

good starting point, a quality fatigue failure prediction model must be applicable to a 

wide range of HMA mixtures in all types of climates and conditions. 

  



 

60 

 

CHAPTER IV 

COMPARISON OF AGING IN THE FIELD WITH ACCELERATED LABORATORY 

AGING 

 

This chapter examines HMA mixture aging at three different sites across Texas based on 

the properties of field samples cut from cores and corresponding LMLC samples made 

from raw materials used during construction. A description of the materials collected 

from each site is included along with a brief description of the test methods used to 

determine the mixture properties of the samples. The CMSE* method (15, 19) was used 

to determine the loads to failure in fatigue for both the LMLC and field samples. The 

results associated with the LMLC samples are discussed. Next, the field sample test 

results are presented followed by an examination of the relationships between the 

LMLC, artificially laboratory aged samples, and the naturally aged field samples.  

 

Materials and Testing 

Materials were collected from three Texas sites where HMA was utilized in the 

construction of new pavement surface layers. Enough binder and aggregate was 

collected for LMLC samples to be fabricated and tested. Field cores were also collected 

immediately after construction and then three more times at approximately one, two, and 

three years after construction. 
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Site Selection 

Each of the sites selected had different characteristics which distinguished it from the 

others, such as climate, aggregate type, and binder type. This allowed for a more broad 

study. A description of each site follows. 

 

US 277 Laredo District 

US Route 277 is located in the Laredo District of TxDOT and is in the southernmost part 

of the state. The climate is dry and warm (DW) with an annual average of the high 

temperatures of 86.3°F (30.2°C) and 21.5 inches (545 mm) of average annual 

precipitation (30). The mixture was a TxDOT Type C mixture (25) with a PG 70-22 

binder. The optimum binder content was 4.5% by weight of the mixture. The aggregate 

consisted of a well graded blend of limestone and manufactured sand from Uvalde 

County, Texas. 

 

US 83 Childress District 

US Route 83 is located in the Childress District of TxDOT and is located in the 

northernmost part of the state. The climate is dry and cool (DC) with an annual average 

of the high temperatures of 74.3°F (23.5°C) and 22.7 inches (576 mm) of average annual 

precipitation (30). The mixture consisted of a TxDOT Type D mixture (25) with a PG 

70-28 binder. The optimum binder content was 5.3% by weight of the mixture. The 

aggregate consisted of a well graded granite material from Snyder, OK.  
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SH 24 Paris District 

State Highway (SH) 24 is located in the Paris District of TxDOT and is located in the 

northeastern portion of the state. The climate is wet and cool (WC) with an annual 

average of the high temperatures of 74.0°F (23.4°C) and 47.8 inches (1214 mm) of 

average annual precipitation (30). The mixture consisted of a TxDOT Type D mixture 

(25) with a PG 64-22 binder. The optimum binder content was 5.4% by weight of the 

mixture. The aggregate consisted of a well graded sandstone material from Sawyer, OK. 

 

LMLC Sample Preparation 

LMLC samples were fabricated using the Super Gyratory Compactor (SGC). A blended 

aggregate gradation was used, and a mixture design was prepared in accordance with 

Superpave requirements. HMA mixture designs included the materials described in the 

preceding section. The aggregates used for the samples were heated to a temperature of 

300°F (149°C) and left overnight to remove any moisture. The binder was also heated to 

the same temperature for two hours before mixing. The mixture was then short term 

oven aged at the molding temperature of 275°F (135°C) for four hours. This short term 

aging is intended to capture the aging that takes place during mixing, transport, and 

placement of HMA in the field. 

 The samples were compacted into cylinders of 6 inch (152 mm) height by 6 inch 

(152 mm) diameter to the required AV content in the SGC. The initial AV content in 

these compacted samples was measured to be higher than the specified content due to 

the conditions imposed by the mold. To remedy this problem, the samples were molded 
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at a higher AV content and then cored to a 4 inch (102 mm) diameter. The sample had 1 

inch (25 mm) trimmed from each end to produce the final 4 inch (102 mm) diameter by 

4 inch (102 mm) high sample with the specified range of AV. The coring and trimming 

of the LMLC samples provided samples with a more uniform distribution of AV, similar 

to what would be found in the field (27). The AV content used for each of the three 

mixtures had an average AV content of 5-7%. Optimum binder content, as described in 

the preceding section for each site, was used in this study. 

 Prior to laboratory testing, the samples were subjected to artificial laboratory 

aging for periods of 6, 9, and 12 months at a constant temperature of 140°F (60°C) in an 

environmental room. Samples tested immediately after fabrication represent the initial 

aging condition and approximate the pavement condition at the time of placement. 

After artificial laboratory aging, the sample was centered and glued to steel platens using 

a vertical gluing jig with high strength 2-ton epoxy glue. The freshly glued sample was 

left in the jig for a minimum of four hours to ensure complete setting of the glue. Three 

linear variable displacement transducers (LVDTs) were attached at 120° from each other 

along the sample diameter. 

 

Field Sample Preparation 

In order to obtain a good representation of HMA mixture behavior under varying 

conditions and ages, field cores were taken from the wheel path, shoulder, and, where 

possible, from adjoining wheel path and shoulder sections which had been treated with a 

chip seal. Field cores were taken from each site at approximately one year intervals 
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following an initial coring shortly after construction for the purpose of examining the 

effects of aging.  

 For US 277, field cores were taken from the wheel path, shoulder, and treated 

wheel path in July 2008, December 2009, December 2010, and January 2012. The initial 

coring in 2008 took place just prior to the placement of the chip seal and did not include 

a treated field core. It is assumed that the treated section would exhibit the same 

properties as the untreated section at the time of chip seal treatment. 

 US 83 field cores were collected from the wheel path and shoulder in 2008 with 

subsequent coring from the wheel path, shoulder, treated wheel path, and treated 

shoulder in 2009, 2010, and 2011. 

 SH 24 field cores were collected from the shoulder and wheel path in 2009, 

2010, and 2011. This site did not include a treated section. 

 All collected field cores were photographed, catalogued, and trimmed to obtain 

the surface layer of HMA. The AV content for the surface layer from each core was 

determined. The layers were then trimmed to the sample shape shown in FIGURE 6. 

This allowed the samples to be tested in direct tension perpendicular to the direction of 

traffic, in the same manner they experienced tension in the field under traffic loading. 

 Following trimming, the samples were placed in a magnetic gluing vice and steel 

platens were affixed to each end. Imperfections in the trimming process produced 

samples with ends which were not always perfectly parallel. The magnetic vice provided 

a way to ensure that the platens were aligned with each other, and not with the 

imperfectly trimmed samples. This helped to eliminate eccentricities in the testing 
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process and minimized undesirable moments. Finally, LVDTs were affixed to each side 

of the sample with a 2 inch (50.8 mm) gauge spacing for a total of four LVDTs.  

 

Testing Procedures 

LMLC and field samples were tested following the same procedure. Samples were place 

in a servo-hydraulic testing machine with a fixed connection at the top of the sample. A 

pinned connection, by way of a ball and socket joint, was used for the bottom of the 

sample to help align the sample in the testing machine and further minimize undesired 

moments during testing. The test setup for both LMLC and field samples is shown in 

FIGURE 23, which also shows the LVDT placement. 

 

 
FIGURE 23  Test setup for (a) LMLC and (b) field samples. 

 

 

 The samples were tested using two uniaxial test methods developed at Texas 

A&M University. These include the Viscoelastic Characterization (VEC) test (13) and 

the Modified Repeated Direct Tension (RDT*) Test (15).  

(a) (b) 
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 For the VEC test, a monotonically increasing load is applied to the sample at a 

machine displacement rate of 0.002 inches per minute (50.8 µm per minute). This 

continued until one of the measuring LVDTs recorded a displacement of 100 µɛ. It was 

assumed that at 100 µɛ the sample is not damaged and can subsequently be retested (13). 

Each sample was tested with load and displacement data collected at 50° F (10° C), 68° 

F (20° C), and 86° F (30° C). The load and displacement data were used to calculate the 

respective stresses and strains. 

 Stresses and strains calculated from the VEC test were then processed using 

fitting parameters and Laplace transformations to create relaxation and complex 

modulus master curves at 68° F (20° C) (13). 

 Following the VEC tests, the samples were reconditioned to 68° F (20° C) and 

tested using the RDT* test. For the RDT* test, the samples were subjected to repeated, 

strain controlled loading. Strain levels were controlled by one of the sample-mounted 

LVDTs.  

 Initially, the samples were subjected to a tensile load resulting in an undamaging 

strain level of 30 µɛ. The sample was then compressed back to its original configuration. 

This haversine loading cycle was repeated for 50 cycles at a frequency of 1 Hz in order 

to obtain the undamaged properties of the mixture, including the dynamic modulus (Eve). 

The results of this portion of the test were also used to verify the results of the VEC test. 

 Following a short resting period of 5 to 10 minutes, the samples were then 

subjected to 1000 cycles of a 175 µɛ strain level at a frequency of 1 Hz. These cycles 

were used to capture the damaged behavior of the mixture. 
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 By using both the undamaged mixture properties and the results of the damaged 

portion of the uniaxial repeated load test, the dissipated pseudo-strain energy (DPSE) 

associated with fracture was calculated. The DPSE associated with fracture, AV 

contents, and binder film thicknesses (based on aggregate gradation and binder content) 

were then used to calculate damage parameters such as Paris' Law fracture coefficient 

(A) and exponent (n) (15). 

 All of these mixture properties were then used in the CMSE* performance 

prediction model (15, 19) to calculate Nf. 

 

LMLC Sample Test Results 

VEC and RDT* tests were carried out on LMLC samples at different AV and binder 

content combinations selected by a D-optimal statistical design. The design aimed at 

evaluating the effects of these two mixture parameters on mixture properties and 

performance. 

 FIGURE 24 shows the Eve values for the three different sites at optimum binder 

content and medium AV. Eve increases considerably with age confirming that the 

mixture becomes stiffer with time. US 277 was the stiffest of the three sites, while US 83 

had the lowest stiffness. Also, US 277 continued to show an increase in the modulus 

after nine months while the other two sites start to level off. 

 An Analysis of Variance (ANOVA) test of the data showed that AV, binder 

content, and aging level had statistically significant effects on Eve with no statistically 

significant interaction effects among them. A Tukey Honest Significant Differences 
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(HSD) analysis for each of significant factors was also performed, which confirmed that 

the overall Eve was statistically different for all three AV contents. Mixtures with low 

AV (<4%) exhibited higher Eve values than those with medium (5-7%) and high (>7%) 

AV. The insignificant interaction effects between AV and aging level is evidenced by 

the similar rate of change in Eve over time.   

 A Tukey HSD analysis of binder content showed that there was no statistically 

significant difference between optimum and optimum +0.5%. However, a significant 

difference was found between optimum -0.5% and optimum as well as between optimum 

-0.5% and optimum +0.5%. 

 

 
FIGURE 24  Eve trends for artificially laboratory aged LMLC samples. 

 

 

 FIGURE 25 shows the Nf for the three mixtures at optimum binder content and 
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that the mixture stiffens with age and becomes more susceptible to failure. US 277 and 

SH 24 show slight increases in Nf with time; however, the overall trends are relatively 

stable when compared with that for US 83. Based on these results, the US 83 mixture is 

more sensitive to the effects of aging. 

 

 
FIGURE 25  Nf trends for artificially laboratory aged LMLC samples. 

 

 

Field Sample Test Results 

Data collected from the tests performed on the field samples for US 277, US 83, and SH 

24 were analyzed and evaluated. Results from both the wheel path and shoulder were 

examined. FIGURE 26 shows the Eve values for the treated and untreated wheel path 

sections. As with the LMLC samples, the Eve values for US 83 continue to increase with 

age. However, the Eve values for US 277 exhibit a sharp increase followed by a gradual 
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decrease. This may be a result of the formation of micro cracks in the trafficked wheel 

path, which are resulting in a weakening of the layer. The same can be said for the 

results of the Eve values for the SH 24 samples. Note that the treated wheel path Eve 

values for US 277 are similar to those found in the untreated wheel path, indicating that 

the treatment had minimal effect on the overall stiffness of the HMA layer. However, 

there appears to be a significant benefit from the chip seal treatment on the trafficked 

wheel path section of US 83, which is located in a cooler climate than US 277. 

  

 
FIGURE 26  Eve for field samples taken from the wheel path. 
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 In order to more directly examine the effects of aging without the confounding 

effects of traffic, the shoulder samples were analyzed and evaluated. FIGURE 27 shows 

Eve for the shoulders of US 277, US 83, and SH 24. Each site shows an initial increase in 

Eve to a maximum value followed by a slight decrease. This minimal change in Eve after 

the initial jump may be associated with a more steady, level trend which continues in the 

future and is similar to previous results found in aged binder testing (31, 32). Also note 

that the treatment placed on the shoulder of US 83 appears to have no major effect on the 

overall Eve of the HMA layer. For both the wheel path and shoulder, there is a sharp 

increase in Eve over the first 18 months. For the US 277 and US 83 shoulder samples, this 

upward trend continues past 24 months. While some of this increase may be due to the 

impact of traffic loading on the wheel path samples, the increase in Eve for the shoulder 

samples can be attributed more directly to mixture aging. 

 While the Eve value provides an indication of the HMA mixture response to 

oxidative aging of the binder, which also plays a role in the fatigue failure of HMA, it is 

important to examine the Nf values calculated from the CMSE* method. Nf includes 

other influential factors such as binder film thickness, AV content, binder content, and 

pavement structure as well as damage properties including Paris' Law fracture 

coefficient and exponent and the rate of fracture damage accumulation. FIGURE 28 

shows the calculated values of Nf for the wheel paths of US 277, US 83, and SH 24. 

Boxes near the data points indicate the AV content of the HMA layer in the field. 

 



 

72 

 

 
FIGURE 27  Eve for field samples taken from the shoulder. 

 

 

 As expected, US 277 and SH 24 show a continued decrease in Nf values as the 

pavement ages and is subjected to traffic. For both of these cases, the AV content in the 

field remains relatively constant. Following the collection of the third core, the US 277 

Nf values increase slightly. This may be attributed to the placement of a chip seal shortly 

after the third core collection, indicating a small benefit from a treatment placed a few 

years after the pavement is constructed. The Nf values for the treated section of US 277 

decrease at a slower rate than those for the untreated section, indicating that the chip seal 

slows the rate of damage to the pavement due to fatigue. 

 US 83 shows an increase in Nf over the first couple years of cores. Note, 
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stiffen, which resulted in an extension of the pavement life. In other words, Nf increased 

with further compaction and lower AV. 

 

 
FIGURE 28  Nf for field samples taken from the wheel path. 
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chip seal placed on the shoulder of US 83 seems to have little effect on extending the 

pavement life. While the downward trend on the shoulders is less than that for the wheel 

paths, it is still significant, indicating that HMA aging does have a significant impact on 

fatigue failure in HMA. 

 

 
FIGURE 29  Nf for field samples taken from the shoulder. 
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 FIGURE 30 shows the combined results of the LMLC and field sample Eve 

values. The top axis represents the artificial aging period for the LMLC samples while 

the bottom axis is the actual age of the HMA layer in the field. By adjusting the axes to 

fit the field Eve to the LMLC Eve, it was determined that one month of aging in the 

laboratory was equivalent to 10.5 months of aging in the field for both US 277 and US 

83. SH 24 data could not be aligned without a vertical shift in the LMLC results; 

however, the trends between laboratory and field with the 1:10.5 comparison are similar. 

 The combined graphical results for Nf are not as easily interpreted as the Eve 

results. While all of the combined Nf results shown in FIGURE 31 either decrease or 

remain relatively constant, as expected, any correlations between LMLC and field 

sample results could not be made directly. This may be due to the number of factors 

which play a role in the calculation of Nf. In order to relate the LMLC sample Nf results 

to the field Nf results, a more complex model needs to be developed. 
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FIGURE 30  LMLC and field sample combined Eve results. 

 
 

 
FIGURE 31  LMLC and field sample combined Nf results. 
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Summary 

Characterizing the role of aging in the development of fatigue failure in HMA mixtures 

is not a simple task. There are many factors which play a role, not only in fatigue 

cracking as a whole, but also in the aging process. In order to effectively characterize 

and predict HMA aging in the field, aging in LMLC mixtures must be understood and 

correlated with actual field performance.  

 This chapter shows that HMA aging through binder oxidation not only occurs, 

but plays a significant role in the development of fatigue failure. A comparison can be 

made between artificially laboratory aged LMLC samples and naturally aged field cores 

taken from the shoulder, where minimal trafficking has occurred. For the sites in Texas 

included in this study, when comparing Eve, one month of artificial aging in the 

laboratory is equivalent to 10.5 months in the field. 

 Future studies should include the further development of a more mechanistic 

model to predict Nf in the field from mixture data collected from unaged LMLC samples 

available during mixture design and collected unaged binder data, in combination with 

accelerated laboratory aged binder data or aged binder data calculated using existing 

models (32). This can be accomplished by developing the relationship between 

artificially laboratory aged LMLC Nf values and Nf values obtained from naturally aged 

field samples. By developing this relationship with field cores taken from the shoulder, 

the impact of aging without the confounding effects of traffic can be better understood 

and predicted. With these components, a pavement prediction model that accounts for 

aging and its impact on Nf in the field can be fully developed. 
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CHAPTER V 

INVESTIGATION OF FACTORS AFFECTING AGING OVER MULTIPLE FIELD 

SITES 

 

In order to move toward a more mechanistic model which includes aging for predicting 

Nf, it's necessary to determine which factors have the greatest affect on fatigue cracking, 

particularly, those factors related to aging.  

 In this chapter, the data collected from 21 sites across the state of Texas are used. 

Three of the sites are US 277, US 83, and SH 24, which were described in the preceding 

chapter. A description of the 18 additional sites is also given. Cores from these sites 

were trimmed and analyzed in the same fashion as those from the preceding chapters. 

Factors which affect the calculation of Nf will be listed as well as additional factors 

which may contribute to the aging affects. A multivariate linear regression analysis of all 

sites, including samples from both the wheel path and shoulder, was made. Factors 

found to be influential in the regression are listed. Another multivariate linear regression 

analysis was made from the data collected from only the wheel path samples. The factors 

influencing Nf for these sites are also listed. A final multivariate linear regression 

analysis on the shoulder samples is also discussed. The factors identified from the 

shoulder only analysis are those factors which are influential in aging. Finally, a linear 

regression model is included for prediction of Nf on the shoulder, which includes the 

factors that have been shown to be influential in the aging process. 
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Material Selection 

Twenty-one sites across Texas were used in this part of the study. Sites were selected 

from five different climate zones which include DW, DC, WW, WC, and moderate (M). 

Each site had different characteristics, such as aggregate type, binder type, binder 

content, and layer of interest. All binders were classified as Superpave Performance 

Grade (PG) binders. Cores were taken from the shoulder, wheel path, treated and 

untreated shoulder and wheel path where possible. Each site and its associated 

characteristics are listed in TABLE A-1 of Appendix A. An abbreviated list showing 

location, climate, construction date, and binder type is shown in TABLE 5. 

 Testing and subsequent data collection for several cores collected from US Route 

190 was not possible due to the stiffness of the samples. The high modulus values 

(ranging from 7500 to 11,000 MPa) discovered during the non-damaging tests caused 

the samples to fail prematurely during the damaging portions of testing , leaving an 

incomplete data set for this site. A similar situation occurred for US Route 54. This site 

was constructed in 1998 resulting in samples which were extremely brittle. Again, 

failure occurred during the damaging portion of the RDT* test, resulting in an 

incomplete data set. State Highway 59 and US Route 69 had similar problems with a few 

samples, but not to the same degree as US Route 190 and US Route 54. However, of the 

218 samples tested from the shoulder and wheel path of the listed sites, 191 ran to 

completion and provided enough data to calculate Nf. 
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TABLE 5  Field Sample Collection Sites 
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Bryan 

US 
Route 
290 M 2002 

PG 
64-22 

 

Lubbock 
US 

Route 84 DC 2009 
PG 

70-22 

Atlanta 

Interstate 
Highway 

20 WC 2001 
PG 

76-22 
 

Childress 
US 

Route 83 DC 2008 

PG 
70-28 

Waco 

Interstate 
Highway 

35  
Layer #5 M 2002 

PG 
70-22 

 
Yoakum 

State 
Highway 

36 WW 2006 

PG 
64-22 

Wichita 
Falls 

State 
Highway 

59 DC 2007 
PG 

70-22 
 

Atlanta 

US 
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259 WC 2005 

PG 
76-22 

Laredo 

Interstate 
Highway 

35  
Layer #3 DW 2007 
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Multivariate Linear Regression Factors 

There are several factors which contribute to the calculation of Nf as well as other factors 

which are influential in evaluating pavement performance in the field. For this study, 

nine factors were selected which were assumed to have an impact on or are influenced 

by the aging of HMA pavements. Some of these factors are included in the calculation of 

Nf while others are not. 

 The factors associated with Nf are percent binder content by weight of mixture 

(AC), AV content, rate of accumulation of dissipated pseudo strain energy (b), 

maximum design shear strain located at the edge of a loaded tire at the top of the layer of 

interest (γ), and Eve (16). 

 Additional factors which were assumed to influence (or are influenced by) the 

aging of HMA included the age of the HMA layer of interest in years, climate conditions 

(DW, DC, WW, WC, and M), location of the HMA sample whether WP or SH, and the 

crack ratio (c1000/c0). For the statistical analysis, climate conditions of DW, DC, WW, 

WC, and M were numbered 1, -1, 2, -2, and 0, respectively, with WP represented with 1 

and SH represented with 0. 

 c1000/c0 is a ratio of the size of an average crack in the field sample after 1000 

loading cycles in the RDT* test to the original crack size before testing. c1000 and c0 are 

both values which can be calculated based on the sample cross sectional area, AV 

content, and the response in repeated load testing (33). 
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Multivariate Linear Regressions 

With these nine factors selected, linear regression analysis was performed. In order to 

get a full view of the impact of these factors on aging and the calculation of Nf, a linear 

regression was performed first on all of the collected data, regardless of WP or SH 

location, followed by a linear regression on just the wheel path sample data, and finally 

on the data collected from the shoulder samples. Shoulder samples experience an 

insignificant amount of traffic, and so it can be assumed that any change in Nf is 

associated with the aging of the HMA mixture. If the factors selected are influential in 

the aging process, then a linear regression should create a linear model which fits the 

collected data relatively well. The linear regressions for the combined and wheel path 

data would be expected to produce models with a poor fit, since the wheel path sections 

experience traffic loading and would have additional factors which contribute to Nf.  

 For all three scenarios, a stepwise, mixed mode (forward and backward), linear 

regression was performed. This was first done with no interactions between terms, then 

with two way interactions between all terms. The stepwise linear regression starts with a 

basic linear model which includes a dependant variable (y), and intercept term (β0) and 

an error term (ɛ) as seen in Equation 9. 

   

0 y β ε                  (9) 

 

 Each factor is then added, one independent variable at a time based on an F-test. 

The factor which provides the largest F value for the regression is added to the model. 
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For the second step, the two factors which provide the largest F values for the two factor 

model are added. In this case, the first factor may not be included in the model that 

includes the best two factors. Each F value is calculated as shown in Equation 10. This 

calculated value must be greater than Fα, which is the F-test statistic for a predetermined 

level of significance, α. Factors continue to be added until an individual factors F value 

is less than Fα (34).  For this study, an α of 0.25 was used. 

 

     1,2,j

j

SSR SSR
F j

MSR


   

(10) 

 

where, 

 Fj  = F value for the jth factor 

 SSRj = sum of squares residuals for model containing all but  jth factor 

 SSR = sum of squares residual for the complete model 

MSR = mean square error for the complete model. 

 

Combined Location Linear Regression 

A linear regression was first performed on the complete data set, which included 

samples from all sites in both the shoulder and the wheel path. In order to confirm that 

there were no collinear factors included in the model, a multivariate correlation matrix 

was created and is shown in TABLE 6 for the full data set. Any correlations over 0.9 

indicate that two variables are highly correlated and may cause problems in the analysis 
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(34). In this particular case, there are no strong correlations between any of the factors. 

In fact, the strongest correlation is found between Eve and Nf with a correlation value of -

0.40. 

 

TABLE 6  Correlation Matrix for All Data 
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Age 1.00 0.08 0.31 0.18 -0.04 0.07 -0.17 0.05 0.08 -0.08 
AC 0.08 1.00 -0.20 -0.08 0.02 -0.05 -0.02 0.09 -0.20 -0.04 
AV 0.31 -0.20 1.00 0.18 -0.08 0.10 -0.39 0.14 0.00 -0.27 
Eve 0.18 -0.08 0.18 1.00 0.07 -0.17 -0.40 0.21 0.08 0.08 

b -0.04 0.02 -0.08 0.07 1.00 0.20 0.16 -0.12 -0.05 -0.12 
γ 0.07 -0.05 0.10 -0.17 0.20 1.00 -0.08 -0.06 0.09 0.00 

Nf -0.17 -0.02 -0.39 -0.40 0.16 -0.08 1.00 -0.17 -0.02 -0.07 
c1000/c0 0.05 0.09 0.14 0.21 -0.12 -0.06 -0.17 1.00 -0.01 0.06 

Climate  0.08 -0.20 0.00 0.08 -0.05 0.09 -0.02 -0.01 1.00 0.05 
Location  -0.08 -0.04 -0.27 0.08 -0.12 0.00 -0.07 0.06 0.05 1.00 

 

 

  The first regression analysis included only the individual factors with no 

interactions between them. This model included the following terms in order of 

significance: 

 Eve 

 AV 
 b 

 AC 
 γ 

 Location 

 Climate, Age, and c1000/c0 were all eliminated from the model. However, this 

model had a coefficient of variation (R2) value of 0.34, indicating that the model is a 

poor predictor of actual performance. 
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 In an attempt to create a better model, the stepwise linear regression was re-

evaluated to include two way interactions. For this scenario, all of the factors from the 

first model were included along with 14 additional individual and combined factors. The 

R2 value improved to 0.60. All factors were represented in this scenario as either 

individual or combined factors except for c1000/c0. 

 To further refine the model, the data were separated based on whether or not the 

field cores were taken from SH or WP. A stepwise linear regression was then performed 

on each. It was expected that the WP model would not create a quality model because 

the Nf values for these samples are dependent on other factors, such as traffic and 

healing, in addition to those that influence aging. 

 

Wheel Path Linear Regression 

It was expected that the WP model would not create a quality model because the Nf 

values for these samples are dependent on other factors, such as traffic and healing, in 

addition to those that influence aging. However, by running the regression on both the 

SH and WP, it provides a method of showing that the factors selected are effective for 

predicting Nf where Nf is influenced primarily by aging. If the model for SH is a good fit, 

then the factors included are sufficient. As stated previously, it is known that there are 

other factors influencing Nf in the wheel path, so if the model for the WP also fits with a 

similar R2 value as found for the SH, then the model for both WP and SH are flawed. If 

the model for the WP doesn't fit well, then it simply confirms that there are other factors 

that must be included in the WP model. 
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 In order to confirm that there were no collinear factors included in the model, a 

multivariate correlation matrix was created and is shown in TABLE 7 for the WP data 

set. There are no strong correlations between any of the factors. The strongest correlation 

is found between AV and Nf with a correlation value of -0.43. 

 

TABLE 7  Correlation Matrix for WP Data 
 

A
g

e
 

A
C

 

A
V

 

E
ve

 

B
 

γ N
f 

c 1
0
0
0
/c

0
 

C
li

m
a

te
 

Age 1.00 0.20 0.21 0.04 0.03 0.18 0.01 0.04 0.13 
AC 0.20 1.00 -0.23 -0.05 -0.04 -0.17 0.14 0.18 -0.29 
AV 0.21 -0.23 1.00 0.14 -0.06 0.42 -0.44 0.00 0.13 
Eve 0.04 -0.05 0.14 1.00 0.19 -0.11 -0.38 0.10 0.09 

b 0.03 -0.04 -0.06 0.19 1.00 -0.11 0.15 -0.11 -0.08 
γ 0.18 -0.17 0.42 -0.11 -0.11 1.00 -0.09 -0.03 0.05 

Nf 0.01 0.14 -0.44 -0.38 0.15 -0.09 1.00 -0.13 -0.03 
c1000/c0 0.04 0.18 0.00 0.10 -0.11 -0.03 -0.13 1.00 -0.06 

Climate  0.13 -0.29 0.13 0.09 -0.08 0.05 -0.03 -0.06 1.00 
 

 

 The first regression analysis for the WP included only the individual factors with 

no interactions between them. This model only included the following terms in order of 

significance: 

 AV 

 Eve 

 b 

 Climate, Age, AC, γ, and c1000/c0 were all eliminated from the model. This model 

had an R2 value of 0.33, which is slightly lower than the R2 value for the full data set. 

This also indicates that the model is a poor predictor of actual performance. However, 

with the full data set, a better regression was obtained by including 2 way interactions 



 

87 

 

between factors. The same was done for the WP data in order to create a better model. 

However, the 2 way interaction model for WP only yielded an R2 value of 0.46. Only 6 

additional terms were added to the model indicating that many of the selected factors or 

their interaction effects did not have a significant impact on the development of Nf. 

 These results confirm that the WP Nf cannot be well predicted with factors 

selected to model aging. Additional factors, such as traffic, would need to be added to 

obtain a more accurate linear regression model. This also does not show whether or not 

the factors selected for modeling are sufficient to characterize aging, but it is a step in 

the right direction. In order to determine which factors are significant in the effect of 

aging on Nf, a linear regression model for the SH must be created. 

 

Shoulder Linear Regression 

If the factors selected to characterize aging are sufficient, then the models for the SH 

should have a relatively high R2 value. As with the full data and WP analysis, the first 

step in the process is to confirm that there are no collinear effects between factors. The 

correlation matrix for the SH data is shown in TABLE 8. Once again, there are no strong 

correlations between factors with the highest correlations occurring between Nf and Eve 

with a correlation value of -0.43 and between Nf and AV with a correlation value of -

0.41. Thus, collinear effects are not a concern. 
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TABLE 8  Correlation Matrix for SH Data 
 

A
g

e
 

A
C

 

A
V

 

E
ve

 

b
 

γ N
f 

c 1
0
0
0
/c

0
 

C
li

m
a

te
 

Age 1.00 -0.07 0.37 0.31 -0.09 0.09 -0.29 -0.04 0.03 
AC -0.07 1.00 -0.24 -0.09 0.07 -0.10 -0.14 0.11 -0.09 
AV 0.37 -0.24 1.00 0.26 -0.15 0.01 -0.41 0.01 -0.08 
Eve 0.31 -0.09 0.26 1.00 -0.02 -0.03 -0.43 0.13 0.05 

b -0.09 0.07 -0.15 -0.02 1.00 0.37 0.15 0.00 -0.03 
γ 0.09 -0.10 0.01 -0.03 0.37 1.00 -0.06 -0.01 0.05 

Nf -0.29 -0.14 -0.41 -0.43 0.15 -0.06 1.00 -0.07 0.00 
c1000/c0 -0.04 0.11 0.01 0.13 0.00 -0.01 -0.07 1.00 -0.03 

Climate  0.03 -0.09 -0.08 0.05 -0.03 0.05 0.00 -0.03 1.00 
 

 

 The first regression analysis for the SH included only the individual factors with 

no interactions between them. This model included the following terms in order of 

significance: 

 AV 
 AC 
 Eve 

 Age 

 Climate, b, γ, and c1000/c0 were eliminated from the model. This model had an R2 

value of 0.37, which is slightly lower than the R2 value for the full data set. This is 

slightly higher than both the full data set and WP R2 values, but it still does not indicate 

a quality model. A much higher R2 value is necessary to provide an acceptable level of 

confidence in the model. This also shows that a successful model cannot be made 

without including interaction effects between factors. 

 To create a better model and to identify the factors and interactions that are 

significant to the aging process, a linear regression model was made which included two 
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way interactions for the SH data. There are 14 terms which were included in the model. 

These terms, or factors, with the exception of the intercept term, in order of significance, 

are: 

 Age and γ 
 Age 
 γ 

 AC and γ 
 AV 
 AC 
 Eve 

 Age and AV 
 Age and Eve 

 b 

 AV and b 
 AV and Eve 

 AC and b 

 Climate and c1000/c0 were eliminated from the model, indicating that their 

contribution to the aging model was insignificant. The R2 value was 0.76, which is 

considerably better than the 0.46 R2 value for the WP and the 0.60 R2 value for the full 

data set.  

 The linear regression model for Nf in the SH, as produced by the statistical 

analysis software, is shown in Equation 11. 
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ve=-237676549+19403569*Age+5422172743*AC-5012173*AV-6906*fN E  

+134333010*b-96921553487*γ  

 
     

  

ve2008549* AV-8.02 2123* -5674
Age-2.57 *

104341948133* γ-0.000468

E 
 
  

 

 
  

  

-10859954160* b-0.08236
AC-0.0533 *

26241653875302* γ-0.000468

 
 
  

 

 
  

  

ve977.8* -5673.72
AV-8.02 *

-48793007* b-0.0824

E 
 
  

 

(11) 

 

 By eliminating the Location factor through the removal of the WP data from the 

analysis, a much better model of the effects of aging was obtained. The difference in R2 

value for the SH from the other two analysis confirm that the factors used to evaluate the 

shoulder were the correct factors to use and were significant in the aging process. It also 

confirms that aging plays a significant role in the lowering of Nf with time. 

 

Summary 

While the linear regression of the SH data provided a good fit with the measured data, 

the model provided is simply a means to an end. The regression provides a good look at 

which factors play a significant role in aging, but further work is required to determine 

the type of model which these factors should be used in. A linear fit may not be the best 

option for moving towards a more mechanistic prediction model.  
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 Future research should include an evaluation of several different model types 

using the factors identified in this chapter. Also, it is a concern that the linear regression 

model eliminated the Climate factor. Much of the accelerated aging work done on 

binders involves increasing the temperature to which it is exposed to speed up the aging 

process (31, 35). A more defined climate number may prove to be more influential in the 

aging process than a climate value based solely on five different climate zones. Perhaps 

the use of an average annual high temperature and an average high humidity value, 

separated into two different factors, would change the outcome of the linear regression 

and provide an even better fitting model. Regardless of the influence of the Climate 

factor, the other factors identified play a significant role and should be included in future 

modeling efforts. 
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CHAPTER VI 

CONCLUSIONS 

 

As 100 years of transcontinental highway construction approaches, it is important to 

investigate and evaluate the methods currently used to predict the performance of HMA 

pavements. New testing methods and a better understanding of all the factors which play 

a role in pavement performance are necessary for finding an economic, lasting solution 

for the next 100 years.  

 This study has examined a new way of testing field samples in direct tension. 

The results of tests performed on over 200 samples using this new methodology have 

been analyzed and evaluated to investigate the effects of aging on HMA fatigue 

cracking. The factors which play the most prominent role in the aging phenomenon have 

been identified using the data collected. 

 By comparing VEC and RDT* test results from the same sample as well as the 

results from different samples taken from the same site, it can be seen that these two 

tests can be successfully applied to field samples. The VEC and RDT* tests provide a 

quick and accurate method of determining the material properties necessary to assess 

fatigue under field conditions. Streamlining of the test preparation and further 

automation of the analysis will make the VEC and RDT* tests even more practical 

methods for determining the material properties of samples obtained from the field. 

Researchers will be able to separate and assess the effects of aging and 

trafficking on the number of loads to fatigue failure by examining VEC and RDT* test 
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results from the wheel path and shoulder of any given pavement over time. This, in turn, 

will allow for more accurate development of mechanistic models which incorporate 

accurate aging prediction and correctly characterize fatigue. Current and future models 

can be compared and analyzed for accuracy by testing field samples throughout the life 

of the pavement and comparing the test results to those obtained from the models.  

In order to move towards new models which include the effects of aging, a 

comparison between LMLC sample test results, field sample test results, and extracted 

binder test results was made for one field site. The laboratory test results from LMLC 

and field samples and corresponding extracted binders lead to the following important 

conclusions regarding HMA aging as well as the effects of chip seals on pavement 

performance:  

 Aging does play a role in the fatigue failure of HMA as evidenced by the 

performance of field samples, taken over time, from the shoulder. The stiffening 

of a mixture also coordinates well with an increase in oxidation, represented by 

CA development in corresponding extracted binders. 

 While both AV and binder content play a role in mixture aging, AV plays a much 

more significant role. 

 In general, the rate of aging decreases over time. 

 Chip seals appear to slow HMA aging, and, as a result, slow the rate of damage 

accumulation due to fatigue. However, this effect takes place primarily at the 

surface of the HMA where the chip seal is placed. 
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 It is possible to develop a relationship between binder aging and mixture aging. 

A relationship can also be drawn between artificially aged LMLC samples and 

realistically aged field samples. 

 
 These generalized conclusions are an important first step in moving toward 

mechanistic models which incorporate and quantify aging. A relationship between 

binders and LMLC samples, and between LMLC samples and field samples, lends itself 

to the potential development of prediction models which incorporate aging. While these 

findings are a good starting point, a quality fatigue failure prediction model must be 

applicable to a wide range of HMA mixtures in all types of climates and conditions. 

 A deeper investigation including three separate field sites shows that HMA aging 

through binder oxidation not only occurs, but plays a significant role in the development 

of fatigue failure. A comparison can be made between artificially laboratory aged LMLC 

samples and naturally aged field cores taken from the shoulder, where minimal 

trafficking has occurred. For the three sites in Texas included in this study, when 

comparing Eve, one month of artificial aging in the laboratory is equivalent to 10.5 

months in the field. 

 While this comparison shows that a relationship exists between LMLC samples 

and field samples, a more important, and more difficult relationship to develop is the 

relationship between the LMLC sample Nf and the field sample Nf.  

 In order to move toward the development of this relationship, the factors which 

play a role in the aging of HMA in the field had to be identified. This was accomplished 
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using the test results of field cores from 21 sites taken from the shoulder, where the 

impact of aging without the confounding effects of traffic could be investigated.  The 

field sample test results were used in combination with pre-selected factors in a stepwise 

linear regression analysis. The linear regression analysis was performed on the total data 

set, as well as on the data collected from WP samples and SH samples. As expected, the 

SH samples with two way interactions between factors provided the best linear fit with 

an R2 value of 0.76. The following factors and combination of factors were identified as 

those that play a significant role in the aging of HMA pavements: 

 Age and maximum design shear strain located at the edge of a loaded tire at the 
top of the layer of interest (γ) 

 Age 
 γ 

 AC and γ 
 AV 
 AC 
 Eve 

 Age and AV 
 Age and Eve 

 rate of accumulation of dissipated pseudo strain energy (b) 
 AV and b 
 AV and Eve 

 AC and b. 

 While the linear regression of the SH data provided a good fit with the measured 

data, the model provided is simply a means to an end. The regression provides a good 

look at which factors play a significant role in aging, but further work is required to 

determine the type of model which these factors should be used in. A linear fit may not 

be the best option for moving towards a more mechanistic prediction model.  
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 Future research should include an evaluation of several different model types 

using the factors identified in this study. Also, it is a concern that the linear regression 

model eliminated the Climate factor. A more defined climate number, such as an average 

annual high temperature and an average annual high humidity value, may prove to be 

more influential in the aging process than a climate value based solely on five different 

climate zones. Regardless of the influence of the Climate factor, the other factors 

identified do play a significant role and should be included in future modeling efforts.  

Additional factors which may play a role, but were not included in the scope of this 

study are film thickness, which is a representation of aggregate gradation, and binder 

type.  These factors should also be included in future studies. 

 Future studies should also include the further development of a more mechanistic 

model to predict Nf in the field from mixture data collected from unaged LMLC samples 

available during mixture design and collected unaged binder data, in combination with 

accelerated laboratory aged binder data or aged binder data calculated using existing 

models (32). 
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APPENDIX A 

FIELD SITE INFORMATION 

 

TABLE A- 1  Field Site Information 

TxDOT 

District 
Location 

C
li

m
a
te

 

C
o
n

st
ru

ct
io

n
 

D
a
te

 

Binder 

Type A
C

  

(%
 o

f 
m

ix
 b

y
 

w
t.

) Mix 

Type 

Aggregate 

Type 

Layer of 

Interest 

Location 

Bryan 
US Route 

290 M 2002 PG 64-22 4.4 Type C Limestone 
Under CMHB 

Layer 

Atlanta 

Interstate 
Highway 

20 WC 2001 PG 76-22 5.1 
12.5 mm 

Sp Sandstone Below Microseal 

Waco 

Interstate 
Highway 
35 Layer 

#5 M 2002 PG 70-22 5.3 19 mm Sp Igneous / LS 
Below 14-15 inch 

HMA layers 

Wichita 
Falls 

State 
Highway 

59 DC 2007 PG 70-22 4.8 Type D Limestone Surface Layer 

Laredo 

Interstate 
Highway 
35 Layer 

#3 DW 2007 PG 76-22 4.4 
25 mm 

SFHMAC 
Traprock/River 

Gravel 

Under two HMA 
Layers, 4.25 in 
below surface 
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TABLE A- 2  Continued 

TxDOT 

District 
Location 

C
li

m
a
te

 

C
o
n

st
ru

ct
io

n
 

D
a
te

 

Binder 

Type A
C

  

(%
 o

f 
m

ix
 b

y
 

w
t.

) Mix 

Type 

Aggregate 

Type 

Layer of 

Interest 

Location 

Laredo 

Interstate 
Highway 
35 Layer 

#5 DW 2007 PG 70-22 5.9 
12.5 

mm Sp River Gravel 

Under four HMA 
Layers, 13 inch 
below surface 

Lufkin 
US Route 

69 WW 2003 PG 70-22 4.3 Type C River Gravel Surface Layer 

Tyler 
US Route 

259 WC 2007 PG 70-22 4.3 Type C 
Sandstone / 
Limestone Surface Layer 

Lubbock 
US Route 

82 DC 2008 PG 76-22 6.2 
CMHB-

F Limestone Surface Layer 

Lubbock 
US Route 

84 DC 2009 PG 70-22 4.8 
CMHB-

C 
River Gravel / 

Limestone Surface Layer 

Childress 
US Route 

83 DC 2008 PG 70-28 5.3 Type D Granite Surface Layer 

Yokum 

State 
Highway 

36 WW 2006 PG 64-22 4.9 Type D Limestone Surface Layer 

Atlanta 
US Route 

259 WC 2005 PG 76-22 5.6 Type D River Gravel Surface Layer 
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TABLE A- 3  Continued 

TxDOT 

District 
Location 

C
li

m
a
te

 

C
o
n

st
ru

ct
io

n
 

D
a
te

 

Binder 

Type A
C

  

(%
 o

f 
m

ix
 b

y
 

w
t.

) Mix 

Type 

Aggregate 

Type 

Layer of 

Interest 

Location 

Paris 

State 
Highway 

24 WC 2009 PG 64-22 6 Type D Sandstone Surface Layer 

Odessa 

Farm to 
Market 
1936 DW 2002 PG 70-22 7.3 

CMHB-
F Rhyolite Surface Layer 

Pharr 

Farm to 
Market 
2994 DW 2002 PG 70-22 5.5 Type D River Gravel Surface Layer 

Amarillo 
US Route 

54 DC 1998 PG 70-28 ? Type D River Gravel Below Seal Coat 

Paris 

State 
Highway 

19/24 WC 2000 ? ? Type D ? Surface Layer 

Bryan 

State 

M 2000 ? ? ? ? Surface Layer Highway 6 
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APPENDIX B 

STATISTICAL ANALYSIS DATA 

 

This appendix contains the statistical data tables from all linear regression analysis, 

including full, WP, and SH analysis. 

 

Full Data Set Analysis 

This section contains the output for the statistical analysis of the full testing data set from 

the JMP statistical analysis program. 

 

Stepwise Regression No Interactions 

TABLE B- 1  Stopping Rule for Full No Interactions 
Prob to Enter 0.25 

Prob to Leave 0.25 

 

TABLE B- 2  Regression Statistics for Full No Interactions 

S
S

E
 

D
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E
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S
E
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S

q
u

a
re

 

R
S

q
u

a
re

 

A
d

j 

C
p

 

p
 

A
IC

c
 

B
IC

 

1.862e+17 169 33195604 0.3429 0.3196 4.1911597 7 6605.096 6629.598 
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TABLE B- 3  Current Estimates for Full No Interactions 

L
o

c
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E
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te
re
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ra

m
e
te
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E
s
ti
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te

 

n
D

F
 

S
S

 

"
F

 R
a
ti

o
"
 

"
P

ro
b

>
F

"
 

X X Intercept 150458474 1 0 0.000 1 

    Age 0 1 9.61e+12 0.009 0.92594 

  X % Binder  -750754532 1 5.48e+15 4.969 0.02713 

  X % AV  -5566955.7 1 3.14e+16 28.481 3.01e-7 

  X Eve  -7591.12 1 3.31e+16 30.059 1.5e-7 

  X b 110951494 1 6.25e+15 5.674 0.01833 

  X shear  -2.146e+10 1 4.55e+15 4.131 0.04366 

    C1000/C0 0 1 8024910 0.000 0.99993 

    Climate # 0 1 1.75e+14 0.158 0.69147 

  X Location #  -9729255.8 1 3.66e+15 3.323 0.07007 

 

TABLE B- 4  Step History for Full No Interactions 
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te
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 S
S
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A
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B
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1 % AV Entered 0.0000 4.77e+16 0.1682 38.391 2 6635.88 6645.25 

2 Eve Entered 0.0000 3.03e+16 0.2750 13.387 3 6613.8 6626.24 

3 b Entered 0.0275 5.74e+15 0.2952 10.262 4 6610.93 6626.43 

4 shear Entered 0.0350 5.14e+15 0.3134 7.6754 5 6608.48 6627.01 

5 % Binder Entered 0.0413 4.72e+15 0.3300 5.4593 6 6606.33 6627.85 

6 Location # Entered 0.0701 3.66e+15 0.3429 4.1912 7 6605.1 6629.6 

 

TABLE B- 5  Summary of Fit for Full No Interactions 
RSquare 0.342947 

RSquare Adj 0.31962 

Root Mean Square Error 33195604 

Mean of Response 23444113 

Observations (or Sum Wgts) 176 

 

TABLE B- 6  Analysis of Variance for Full No Interactions 
Source DF Sum of 

Squares 
Mean Square F Ratio 

Model 6 9.7202e+16 1.62e+16 14.7015 

Error 169 1.8623e+17 1.102e+15 Prob > F 

C. Total 175 2.8343e+17  <.0001* 
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TABLE B- 7  Parameter Estimates for Full No Interactions 
Term   Estimate Std Error t Ratio Prob>|t| 

Intercept  150458474 22971866 6.55 <.0001* 

% Binder   -7.508e+8 3.368e+8  -2.23 0.0271* 

% AV   -5566956 1043140  -5.34 <.0001* 

Eve   -7591.12 1384.591  -5.48 <.0001* 

b  110951494 46577118 2.38 0.0183* 

shear   -2.15e+10 1.06e+10  -2.03 0.0437* 

Location #   -9729256 5336903  -1.82 0.0701 

 

TABLE B- 8  Sorted Parameter Estimates for Full No Interactions 
Term   Estimate Std Error t Ratio t Ratio Prob>|t| 

Eve   -7591.12 1384.591  -5.48  <.0001* 

% AV   -5566956 1043140  -5.34  <.0001* 

b  110951494 46577118 2.38  0.0183* 

% Binder   -7.508e+8 3.368e+8  -2.23  0.0271* 

shear   -2.15e+10 1.06e+10  -2.03  0.0437* 

Location #   -9729256 5336903  -1.82  0.0701 

 

Stepwise Regression Two Way Interactions 

TABLE B- 9  Stopping Rule for Full Two Way Interactions 
Prob to Enter 0.25 

Prob to Leave 0.25 

 

TABLE B- 10  Regression Statistics for Full Two Way Interactions 
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1.127e+17 155 26967122 0.6023 0.5510 10.280487 21 6550.484 6613.62 
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TABLE B- 11  Current Estimates for Full Two Way Interactions 
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X Intercept 94024309.8 1 0 0.000 1 

X Age -309885 3 1.56e+16 7.162 0.00016 

X % Binder 184285200 4 1.88e+16 6.480 7.56e-5 

X % AV -2258837.1 4 3.99e+16 13.725 1.33e-9 

X Eve -8204.5456 5 6.44e+16 17.710 7.4e-14 

X b 143980207 4 2.12e+16 7.302 0.00002 

X shear -1.214e+11 5 5.34e+16 14.681 8.9e-12 

X Climate # 1755096.83 2 4.32e+15 2.969 0.0543 

X Location # -6627094.3 5 1.86e+16 5.112 0.00023 

X (Age-2.64773)*(Eve-5814.88) 1678.91844 1 6.88e+15 9.454 0.00249 

X (Age-2.64773)*(shear-0.00025) 5.1628e+10 1 1.03e+16 14.143 0.00024 

X (% Binder-0.05286)*(b-0.07438) -8.0203e+9 1 1.55e+15 2.136 0.14588 

X (% Binder-0.05286)*(shear-0.00025) 2.4958e+13 1 1.21e+16 16.610 7.31e-5 

X (% Binder-0.05286)*(Location #-0.52841) 2034874971 1 9.01e+15 12.386 0.00057 

X (% AV-7.33624)*(Eve-5814.88) 1836.70152 1 1.39e+16 19.097 2.27e-5 

X (% AV-7.33624)*(b-0.07438) -43578362 1 3.06e+15 4.208 0.04191 

X (% AV-7.33624)*(shear-0.00025) 3.9098e+10 1 7.7e+15 10.594 0.00139 

X (Eve-5814.88)*(b-0.07438) -63327.191 1 5.27e+15 7.242 0.00791 

X (Eve-5814.88)*(Location #-0.52841) 4883.15125 1 2.53e+15 3.481 0.06397 

X (shear-0.00025)*(Location #-0.52841) -1.177e+11 1 3.2e+15 4.404 0.03748 

X Climate #*(Location #-0.52841) 7908895.37 1 3.93e+15 5.405 0.02138 

 C1000/C0 0 1 4.27e+14 0.586 0.44525 

 (Age-2.64773)*(% Binder-0.05286) 0 1 1.1e+12 0.001 0.96919 

 (Age-2.64773)*(% AV-7.33624) 0 1 4.09e+14 0.561 0.45483 

 (Age-2.64773)*(b-0.07438) 0 1 2.91e+14 0.398 0.52888 

 (Age-2.64773)*(C1000/C0-56026.6) 0 2 4.29e+14 0.293 0.74675 

 (Age-2.64773)*Climate # 0 1 4.6e+13 0.063 0.80245 

 (Age-2.64773)*(Location #-0.52841) 0 1 3.75e+14 0.514 0.47451 

 (% Binder-0.05286)*(% AV-7.33624) 0 1 4.12e+14 0.565 0.45348 

 (% Binder-0.05286)*(Eve-5814.88) 0 1 2.03e+13 0.028 0.86782 

 (% Binder-0.05286)*(C1000/C0-56026.6) 0 2 1.08e+15 0.739 0.47943 

 (% Binder-0.05286)*Climate # 0 1 3.73e+13 0.051 0.82166 

 (% AV-7.33624)*(C1000/C0-56026.6) 0 2 1.39e+15 0.957 0.38615 

 (% AV-7.33624)*Climate # 0 1 3.42e+14 0.469 0.49453 

 (% AV-7.33624)*(Location #-0.52841) 0 1 5.95e+14 0.817 0.36751 

 (Eve-5814.88)*(shear-0.00025) 0 1 9.75e+13 0.133 0.71552 

 (Eve-5814.88)*(C1000/C0-56026.6) 0 2 9.36e+14 0.640 0.52847 

 (Eve-5814.88)*Climate # 0 1 1.34e+14 0.183 0.66898 

 (b-0.07438)*(shear-0.00025) 0 1 9.03e+12 0.012 0.91169 

 (b-0.07438)*(C1000/C0-56026.6) 0 2 7.03e+14 0.480 0.61981 

 (b-0.07438)*Climate # 0 1 1.13e+12 0.002 0.9687 

 (b-0.07438)*(Location #-0.52841) 0 1 3.68e+14 0.504 0.47877 

 (shear-0.00025)*(C1000/C0-56026.6) 0 2 8.48e+14 0.580 0.56135 

 (shear-0.00025)*Climate # 0 1 5.04e+14 0.692 0.40667 

 Climate #*(C1000/C0-56026.6) 0 2 1.49e+15 1.024 0.3616 

 (Location #-0.52841)*(C1000/C0-56026.6) 0 2 9.34e+14 0.639 0.52897 
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TABLE B- 12  Step History for Full Two Way Interactions 

Step Parameter Action "Sig Prob" Seq SS RSquare Cp p AICc BIC 

1 (% AV-7.33624)*(Eve-5814.88) Entered 0.0000 9.26e+16 0.3268 76.212 4 6602.85 6618.35 

2 (% AV-7.33624)*(shear-0.00025) Entered 0.0041 1.2e+16 0.3690 64.902 6 6595.77 6617.29 

3 (% AV-7.33624)*(b-0.07438) Entered 0.0001 1.83e+16 0.4337 45.431 8 6581.14 6608.59 

4 (Eve-5814.88)*(Location #-0.52841) Entered 0.0008 1.32e+16 0.4805 32.486 10 6570.52 6603.78 

5 (% Binder-0.05286)*(Location #-
0.52841) 

Entered 0.0225 6.66e+15 0.5039 27.967 12 6567.02 6605.98 

6 (% AV-7.33624)*Climate # Entered 0.0388 5.53e+15 0.5234 24.893 14 6564.71 6609.27 

7 (Age-2.64773)*(shear-0.00025) Entered 0.0705 4.4e+15 0.5390 23.255 16 6563.75 6613.77 

8 (% Binder-0.05286)*(shear-0.00025) Entered 0.0199 4.39e+15 0.5545 19.634 17 6560.22 6612.93 

9 (Age-2.64773)*(Eve-5814.88) Entered 0.0163 4.54e+15 0.5705 15.824 18 6556.29 6611.65 

10 Climate # Removed 0.2708 2.03e+15 0.5633 14.422 16 6554.2 6604.22 

11 (Eve-5814.88)*(b-0.07438) Entered 0.0469 3.05e+15 0.5741 12.523 17 6552.3 6605.01 

12 (shear-0.00025)*(Location #-0.52841) Entered 0.0532 2.83e+15 0.5841 10.898 18 6550.63 6606 

13 Climate #*(Location #-0.52841) Entered 0.0880 3.62e+15 0.5968 10.269 20 6550.28 6610.86 

14 (% Binder-0.05286)*(b-0.07438) Entered 0.1459 1.55e+15 0.6023 10.28 21 6550.48 6613.62 
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FIGURE B- 1  Actual by predicted plot for full two way interactions. 

 

TABLE B- 13  Summary of Fit for Full Two Way Interactions 
RSquare 0.602302 

RSquare Adj 0.550986 

Root Mean Square Error 26967122 

Mean of Response 23444113 

Observations (or Sum Wgts) 176 

 

TABLE B- 14  Analysis of Variance for Full Two Way Interactions 
Source DF Sum of 

Squares 
Mean Square F Ratio 

Model 20 1.7071e+17 8.536e+15 11.7372 

Error 155 1.1272e+17 7.272e+14 Prob > F 

C. Total 175 2.8343e+17  <.0001* 
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TABLE B- 15  Parameter Estimates for Full Two Way Interactions 
Term   Estimate Std Error t Ratio Prob>|t| 

Intercept  94024310 23342271 4.03 <.0001* 

Age   -309885 1050546  -0.29 0.7684 

% Binder  184285200 3.235e+8 0.57 0.5697 

% AV   -2258837 1335148  -1.69 0.0927 

Eve   -8204.546 1218.641  -6.73 <.0001* 

b  143980207 41716655 3.45 0.0007* 

shear   -1.21e+11 2.14e+10  -5.67 <.0001* 

Climate #  1755096.8 1899530 0.92 0.3569 

Location #   -6627094 4894679  -1.35 0.1777 

(Age-2.64773)*(Eve-5814.88)  1678.9184 546.0321 3.07 0.0025* 

(Age-2.64773)*(shear-0.00025)  5.163e+10 1.37e+10 3.76 0.0002* 

(% Binder-0.05286)*(b-0.07438)   -8.02e+9 5.487e+9  -1.46 0.1459 

(% Binder-0.05286)*(shear-0.00025)  2.496e+13 6.12e+12 4.08 <.0001* 

(% Binder-0.05286)*(Location #-0.52841)  2.0349e+9 5.782e+8 3.52 0.0006* 

(% AV-7.33624)*(Eve-5814.88)  1836.7015 420.3001 4.37 <.0001* 

(% AV-7.33624)*(b-0.07438)   -43578362 21242934  -2.05 0.0419* 

(% AV-7.33624)*(shear-0.00025)  3.91e+10 1.2e+10 3.25 0.0014* 

(Eve-5814.88)*(b-0.07438)   -63327.19 23532.68  -2.69 0.0079* 

(Eve-5814.88)*(Location #-0.52841)  4883.1512 2617.327 1.87 0.0640 

(shear-0.00025)*(Location #-0.52841)   -1.18e+11 5.61e+10  -2.10 0.0375* 

Climate #*(Location #-0.52841)  7908895.4 3402003 2.32 0.0214* 
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TABLE B- 16  Sorted Parameter Estimates for Full Two Way Interactions 
Term Estimate Std Error t Ratio t Ratio Prob>|t| 

Eve  -8204.546 1218.641  -6.73  <.0001* 

shear  -1.21e+11 2.14e+10  -5.67  <.0001* 

(% AV-7.33624)*(Eve-5814.88) 1836.7015 420.3001 4.37  <.0001* 

(% Binder-0.05286)*(shear-0.00025) 2.496e+13 6.12e+12 4.08  <.0001* 

(Age-2.64773)*(shear-0.00025) 5.163e+10 1.37e+10 3.76  0.0002* 

(% Binder-0.05286)*(Location #-0.52841) 2.0349e+9 5.782e+8 3.52  0.0006* 

b 143980207 41716655 3.45  0.0007* 

(% AV-7.33624)*(shear-0.00025) 3.91e+10 1.2e+10 3.25  0.0014* 

(Age-2.64773)*(Eve-5814.88) 1678.9184 546.0321 3.07  0.0025* 

(Eve-5814.88)*(b-0.07438)  -63327.19 23532.68  -2.69  0.0079* 

Climate #*(Location #-0.52841) 7908895.4 3402003 2.32  0.0214* 

(shear-0.00025)*(Location #-0.52841)  -1.18e+11 5.61e+10  -2.10  0.0375* 

(% AV-7.33624)*(b-0.07438)  -43578362 21242934  -2.05  0.0419* 

(Eve-5814.88)*(Location #-0.52841) 4883.1512 2617.327 1.87  0.0640 

% AV  -2258837 1335148  -1.69  0.0927 

(% Binder-0.05286)*(b-0.07438)  -8.02e+9 5.487e+9  -1.46  0.1459 

Location #  -6627094 4894679  -1.35  0.1777 

Climate # 1755096.8 1899530 0.92  0.3569 

% Binder 184285200 3.235e+8 0.57  0.5697 

Age  -309885 1050546  -0.29  0.7684 
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WP Data Set Analysis 

This section contains the output for the statistical analysis of the WP testing data set 

from the JMP statistical analysis program. 

 

Stepwise Regression No Interactions 

TABLE B- 17  Stopping Rule for WP No Interactions 
Prob to Enter 0.25 

Prob to Leave 0.25 

 

TABLE B- 18  Regression Statistics for WP No Interactions 
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7.078e+16 90 28043799 0.3323 0.3101 1.7968536 4 3497.419 3509.454 

 

TABLE B- 19  Current Estimates for WP No Interactions 
Entered Parameter Estimate nDF SS "F Ratio" "Prob>F" 

X Intercept 88455130.2 1 0 0.000 1 

  Age 0 1 7.98e+14 1.015 0.31643 

  % Binder 0 1 1.54e+14 0.194 0.66103 

X % AV  -5490944.7 1 1.53e+16 19.462 2.84e-5 

X Eve  -6417.5212 1 1.31e+16 16.630 0.0001 

X b 108911120 1 2.7e+15 3.430 0.06732 

  shear 0 1 3.4e+14 0.430 0.51372 

  C1000/C0 0 1 6.09e+14 0.773 0.38166 

  Climate # 0 1 5.46e+14 0.692 0.40757 

 

TABLE B- 20  Step History for WP No Interactions 
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1 % AV Entered 0.0000 2.13e+16 0.2006 15.125 2 3509.94 3517.3 

2 Eve Entered 0.0003 1.13e+16 0.3069 3.1424 3 3498.7 3508.43 

3 b Entered 0.0673 2.7e+15 0.3323 1.7969 4 3497.42 3509.45 
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TABLE B- 21  Summary of Fit for WP No Interactions 
RSquare 0.328045 

RSquare Adj 0.306369 

Root Mean Square Error 27893276 

Mean of Response 20389014 

Observations (or Sum Wgts) 97 

 

TABLE B- 22  Analysis of Variance for WP No Interactions 
Source DF Sum of Squares Mean Square F Ratio 

Model 3 3.5324e+16 1.177e+16 15.1340 

Error 93 7.2357e+16 7.78e+14 Prob > F 

C. Total 96 1.0768e+17  <.0001* 

 

TABLE B- 23  Parameter Estimates for WP No Interactions 
Term Estimate Std Error t Ratio Prob>|t| 

Intercept 86557423 12128970 7.14 <.0001* 

% AV  -5376032 1229782  -4.37 <.0001* 

Eve  -6385.203 1561.699  -4.09 <.0001* 

b 125010964 57280946 2.18 0.0316* 

 

TABLE B- 24  Sorted Parameter Estimates for WP No Interactions 
Term Estimate Std Error t Ratio t Ratio Prob>|t| 

% AV  -5376032 1229782  -4.37  <.0001* 

Eve  -6385.203 1561.699  -4.09  <.0001* 

b 125010964 57280946 2.18  0.0316* 

 

Stepwise Regression Two Way Interactions 

TABLE B- 25  Stopping Rule for WP Two Way Interactions 
Prob to Enter 0.25 

Prob to Leave 0.25 

 

TABLE B- 26  Regression Statistics for WP Two Way Interactions 

S
S

E
 

D
F

E
 

R
M

S
E

 

R
S

q
u

a
re

 

R
S

q
u

a
re

 

A
d

j 

C
p

 

p
 

A
IC

c
 

B
IC

 

5.718e+16 84 26091154 0.4606 0.4028  -6.464288 10 3491.903 3516.66 
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TABLE B- 27  Current Estimates for WP Two Way Interactions 
Entered Parameter Estimate nDF SS "F Ratio" "Prob>F" 
X Intercept 6961705.26 1 0 0.000 1 

  Age 0 1 5.98e+14 0.878 0.3515 

X % Binder 884595663 2 6.01e+15 4.415 0.01503 

X % AV 4238329.9 3 1.45e+16 7.085 0.00027 

X Eve  -6450.5419 2 1.91e+16 14.053 5.44e-6 

X b 94926079.7 1 1.89e+15 2.778 0.09931 

X shear  -1.25e+11 2 4.12e+15 3.029 0.05368 

  C1000/C0 0 1 1.99e+14 0.289 0.59219 

X Climate # 5799546.83 2 7.57e+15 5.561 0.00539 

  (Age-2.59574)*(% Binder-0.05247) 0 2 1.22e+15 0.897 0.41177 

  (Age-2.59574)*(% AV-6.75847) 0 2 6.33e+14 0.459 0.63345 

  (Age-2.59574)*(Eve-5967.98) 0 2 6.1e+14 0.442 0.64433 

  (Age-2.59574)*(b-0.06807) 0 2 6.65e+14 0.482 0.61919 

  (Age-2.59574)*(shear-0.00063) 0 2 6.76e+14 0.491 0.61406 

  (Age-2.59574)*(C1000/C0-59190.7) 0 3 8.76e+14 0.420 0.73899 

  (Age-2.59574)*Climate # 0 2 6.28e+14 0.455 0.63606 

  (% Binder-0.05247)*(% AV-6.75847) 0 1 4.82e+14 0.706 0.40324 

  (% Binder-0.05247)*(Eve-5967.98) 0 1 1.88e+14 0.274 0.60204 

  (% Binder-0.05247)*(b-0.06807) 0 1 2.16e+14 0.314 0.57674 

  (% Binder-0.05247)*(shear-0.00063) 0 1 1.09e+14 0.159 0.69124 

  (% Binder-0.05247)*(C1000/C0-59190.7) 0 2 2.13e+14 0.153 0.85811 

X (% Binder-0.05247)*Climate # 938037143 1 4.65e+15 6.833 0.0106 

X (% AV-6.75847)*(Eve-5967.98) 1717.36382 1 3.58e+15 5.257 0.02436 

  (% AV-6.75847)*(b-0.06807) 0 1 3.64e+13 0.053 0.81862 

X (% AV-6.75847)*(shear-0.00063) 1.8576e+10 1 3.32e+15 4.878 0.02992 

  (% AV-6.75847)*(C1000/C0-59190.7) 0 2 1.99e+14 0.143 0.8671 

  (% AV-6.75847)*Climate # 0 1 4.88e+13 0.071 0.79078 

  (Eve-5967.98)*(b-0.06807) 0 1 4.39e+14 0.642 0.4253 

  (Eve-5967.98)*(shear-0.00063) 0 1 1.88e+14 0.274 0.6022 

  (Eve-5967.98)*(C1000/C0-59190.7) 0 2 7.71e+14 0.561 0.57297 

  (Eve-5967.98)*Climate # 0 1 1.84e+13 0.027 0.87062 

  (b-0.06807)*(shear-0.00063) 0 1 1.67e+14 0.243 0.6235 

  (b-0.06807)*(C1000/C0-59190.7) 0 2 1.99e+14 0.143 0.86695 

  (b-0.06807)*Climate # 0 1 1.39e+14 0.203 0.65361 

  (shear-0.00063)*(C1000/C0-59190.7) 0 2 4e+14 0.289 0.74967 

  (shear-0.00063)*Climate # 0 1 1.37e+13 0.020 0.88834 

  (C1000/C0-59190.7)*Climate # 0 2 4.89e+14 0.353 0.70331 
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TABLE B- 28  Step History for WP Two Way Interactions 
Step Parameter Action "Sig Prob" Seq SS RSquare Cp p AICc BIC 

1 (% AV-6.75847)*(Eve-5967.98) Entered 0.0000 3.58e+16 0.3379  -3.106 4 3496.63 3508.66 

2 (% Binder-0.05247)*Climate # Entered 0.0216 7.35e+15 0.4072  -5.783 7 3493.25 3511.9 

3 (% AV-6.75847)*(shear-0.00063) Entered 0.0723 3.77e+15 0.4428  -6.231 9 3492.39 3515.17 

4 b Entered 0.0993 1.89e+15 0.4606  -6.464 10 3491.9 3516.66 

 

 
FIGURE B- 2  Actual by predicted plot for WP two way interactions. 

 

TABLE B- 29  Summary of Fit for WP Two Way Interactions 
RSquare 0.460609 

RSquare Adj 0.402817 

Root Mean Square Error 26091154 

Mean of Response 20459172 

Observations (or Sum Wgts) 94 

 



 

116 

 

TABLE B- 30  Analysis of Variance for WP Two Way Interactions 
Source DF Sum of Squares Mean Square F Ratio 

Model 9 4.8831e+16 5.426e+15 7.9701 

Error 84 5.7183e+16 6.807e+14 Prob > F 

C. Total 93 1.0601e+17  <.0001* 

 

TABLE B- 31  Parameter Estimates for WP Two Way Interactions 
Term Estimate Std Error t Ratio Prob>|t| 

Intercept 6961705.3 33304712 0.21 0.8349 

% AV 4238329.9 4260034 0.99 0.3226 

Eve  -6450.542 1595.823  -4.04 0.0001* 

b 94926080 56955685 1.67 0.0993 

% Binder 884595663 4.33e+8 2.04 0.0442* 

shear  -1.25e+11 5.72e+10  -2.19 0.0316* 

Climate # 5799546.8 2414719 2.40 0.0185* 

(% Binder-0.05247)*Climate # 938037143 3.589e+8 2.61 0.0106* 

(% AV-6.75847)*(Eve-5967.98) 1717.3638 749.0205 2.29 0.0244* 

(% AV-6.75847)*(shear-0.00063) 1.858e+10 8.41e+9 2.21 0.0299* 

 

TABLE B- 32  Sorted Parameter Estimates for WP Two Way Interactions 
Term Estimate Std Error t Ratio t Ratio Prob>|t| 

Eve  -6450.542 1595.823  -4.04  0.0001* 

(% Binder-
0.05247)*Climate # 

938037143 3.589e+8 2.61  0.0106* 

Climate # 5799546.8 2414719 2.40  0.0185* 

(% AV-
6.75847)*(Eve-
5967.98) 

1717.3638 749.0205 2.29  0.0244* 

(% AV-
6.75847)*(shear-
0.00063) 

1.858e+10 8.41e+9 2.21  0.0299* 

shear  -1.25e+11 5.72e+10  -2.19  0.0316* 

% Binder 884595663 4.33e+8 2.04  0.0442* 

b 94926080 56955685 1.67  0.0993 

% AV 4238329.9 4260034 0.99  0.3226 
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SH Data Set Analysis 

This section contains the output for the statistical analysis of the WP testing data set 

from the JMP statistical analysis program. 

 

Stepwise Regression No Interactions 

TABLE B- 33  Stopping Rule for SH No Interactions 
Prob to Enter 0.25 

Prob to Leave 0.25 

 

TABLE B- 34  Regression Statistics for SH No Interactions 
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1.114e+17 79 37550340 0.3692 0.3372 4.3292168 5 3176.438 3189.932 

 

TABLE B- 35  Current Estimates for SH No Interactions 
Lock Entered Parameter Estimate nDF SS "F Ratio" "Prob>F" 

X X Intercept 202789168 1 0 0.000 1 

  X Age  -2405826.9 1 2.75e+15 1.949 0.16661 

  X % Binder  -1.5348e+9 1 1.2e+16 8.541 0.00453 

  X % AV  -6297987.4 1 2.3e+16 16.312 0.00012 

  X Eve  -6611.9024 1 1.13e+16 8.019 0.00587 

    b 0 1 1.8e+15 1.279 0.26149 

    shear 0 1 1.08e+15 0.762 0.38537 

    C1000/C0 0 1 1.3e+12 0.001 0.97604 

    Climate # 0 1 5.33e+10 0.000 0.99514 
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TABLE B- 36  Step History for SH No Interactions 
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1 % AV Entered 0.0000 3.41e+16 0.1934 20.159 2 3190.3 3197.29 

2 Eve Entered 0.0020 1.59e+16 0.2835 10.963 3 3182.55 3191.76 

3 % Binder Entered 0.0042 1.24e+16 0.3536 4.2616 4 3176.16 3187.55 

4 Age Entered 0.1666 2.75e+15 0.3692 4.3292 5 3176.44 3189.93 

 

 
FIGURE B- 3  Actual by predicted plot for SH no interactions. 

 

TABLE B- 37  Summary of Fit for SH No Interactions 
RSquare 0.36916 

RSquare Adj 0.337219 

Root Mean Square Error 37550340 

Mean of Response 26344571 

Observations (or Sum Wgts) 84 

 

TABLE B- 38  Analysis of Variance for SH No Interactions 
Source DF Sum of Squares Mean Square F Ratio 

Model 4 6.5185e+16 1.63e+16 11.5575 

Error 79 1.1139e+17 1.41e+15 Prob > F 

C. Total 83 1.7658e+17  <.0001* 
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TABLE B- 39  Parameter Estimates for SH No Interactions 
Term   Estimate Std Error t Ratio Prob>|t| 

Intercept  202789168 34613150 5.86 <.0001* 

Age   -2405827 1723308  -1.40 0.1666 

% Binder   -1.535e+9 5.252e+8  -2.92 0.0045* 

% AV   -6297987 1559368  -4.04 0.0001* 

Eve   -6611.902 2334.907  -2.83 0.0059* 
 

 

TABLE B- 40  Sorted Parameter Estimates for SH No Interactions 
Term   Estimate Std Error t Ratio t Ratio Prob>|t| 

% AV   -6297987 1559368  -4.04  0.0001* 

% Binder   -1.535e+9 5.252e+8  -2.92  0.0045* 

Eve   -6611.902 2334.907  -2.83  0.0059* 

Age   -2405827 1723308  -1.40  0.1666 

 

Stepwise Regression Two Way Interactions 

TABLE B- 41  Stopping Rule for SH Two Way Interactions 
Prob to Enter 0.25 

Prob to Leave 0.25 

 

TABLE B- 42  Regression Statistics for SH Two Way Interactions 
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4.277e+16 70 24719221 0.7578 0.7128 15.712622 14 3120.005 3149.408 
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TABLE B- 43  Current Estimates for SH Two Way Interactions 
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X Intercept  -237676550 1 0 0.000 1 

X Age 19403569.4 4 3.73e+16 15.256 5.12e-9 

X % Binder 5422172743 3 1.4e+16 7.615 0.00018 

X % AV  -5012172.5 4 3.05e+16 12.466 1.04e-7 

X Eve  -6906.3733 3 1.86e+16 10.172 1.21e-5 

X b 134333010 3 8.16e+15 4.453 0.00639 

X shear  -9.692e+10 3 4.83e+16 26.368 1.6e-11 

  C1000/C0 0 1 5.44e+13 0.088 0.7678 

  Climate # 0 1 1.07e+14 0.174 0.67829 

  (Age-2.75)*(% Binder-0.05331) 0 1 3.8e+13 0.061 0.80511 

X (Age-2.75)*(% AV-8.01733) 2008548.59 1 8.74e+15 14.296 0.00033 

X (Age-2.75)*(Eve-5673.72) 2123.38803 1 6.47e+15 10.587 0.00176 

  (Age-2.75)*(b-0.08236) 0 1 2.62e+14 0.426 0.5162 

X (Age-2.75)*(shear-0.00047) 1.0434e+11 1 2.93e+16 47.887 1.75e-9 

  (Age-2.75)*(C1000/C0-140631) 0 2 9.62e+13 0.077 0.92633 

  (Age-2.75)*Climate # 0 2 4.86e+14 0.390 0.67832 

  (% Binder-0.05331)*(% AV-8.01733) 0 1 5.67e+14 0.927 0.33911 

  (% Binder-0.05331)*(Eve-5673.72) 0 1 6.14e+14 1.005 0.31967 

X (% Binder-0.05331)*(b-0.08236)  -1.086e+10 1 1.75e+15 2.870 0.09467 

X (% Binder-0.05331)*(shear-0.00047) 2.6242e+13 1 1.24e+16 20.237 2.65e-5 

  (% Binder-0.05331)*(C1000/C0-140631) 0 2 1.62e+14 0.129 0.87915 

  (% Binder-0.05331)*Climate # 0 2 1.11e+14 0.089 0.91518 

X (% AV-8.01733)*(Eve-5673.72) 977.809056 1 2.5e+15 4.094 0.04685 

X (% AV-8.01733)*(b-0.08236)  -48793008 1 2.89e+15 4.727 0.03307 

  (% AV-8.01733)*(shear-0.00047) 0 1 8.41e+13 0.136 0.71354 

  (% AV-8.01733)*(C1000/C0-140631) 0 2 1.17e+14 0.094 0.91081 

  (% AV-8.01733)*Climate # 0 2 7.63e+14 0.618 0.54225 

  (Eve-5673.72)*(b-0.08236) 0 1 3.08e+14 0.501 0.48154 

  (Eve-5673.72)*(shear-0.00047) 0 1 9.93e+13 0.161 0.68986 

  (Eve-5673.72)*(C1000/C0-140631) 0 2 2.02e+14 0.161 0.85152 

  (Eve-5673.72)*Climate # 0 2 9.71e+14 0.790 0.45811 

  (b-0.08236)*(shear-0.00047) 0 1 5.45e+14 0.891 0.34843 

  (b-0.08236)*(C1000/C0-140631) 0 2 5.5e+13 0.044 0.9572 

  (b-0.08236)*Climate # 0 2 6.75e+14 0.545 0.58233 

  (shear-0.00047)*(C1000/C0-140631) 0 2 1.06e+14 0.084 0.91943 

  (shear-0.00047)*Climate # 0 2 8.83e+14 0.716 0.49216 

  (C1000/C0-140631)*Climate # 0 3 2.1e+14 0.110 0.95385 
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TABLE B- 44  Step History for SH Two Way Interactions 
Step Parameter Action "Sig Prob" Seq SS RSquare Cp p AICc BIC 

1 (Age-2.75)*(% AV-8.01733) Entered 0.0000 6.56e+16 0.3713 110.13 4 3173.83 3185.22 

2 (Age-2.75)*(% Binder-0.05331) Entered 0.0058 1.37e+16 0.4491 91.083 6 3167.43 3182.98 

3 (Age-2.75)*(Eve-5673.72) Entered 0.0126 1.06e+16 0.5091 77.337 8 3162.72 3182.16 

4 (b-0.08236)*(shear-0.00047) Entered 0.0050 1.39e+16 0.5877 60.057 11 3156.01 3180.79 

5 (Age-2.75)*(shear-0.00047) Entered 0.0085 6.71e+15 0.6257 50.799 12 3150.69 3177.09 

6 (% Binder-0.05331)*(shear-0.00047) Entered 0.0000 1.7e+16 0.7222 24.255 13 3128.55 3156.5 

7 (Age-2.75)*(% Binder-0.05331) Removed 0.9658 1.28e+12 0.7222 22.257 12 3125.67 3152.07 

8 (% Binder-0.05331)*(b-0.08236) Entered 0.0785 2.11e+15 0.7341 20.723 13 3124.87 3152.81 

9 (b-0.08236)*(shear-0.00047) Removed 0.5151 2.83e+14 0.7325 19.198 12 3122.49 3148.89 

10 (% AV-8.01733)*(b-0.08236) Entered 0.0837 1.96e+15 0.7436 17.907 13 3121.81 3149.75 

11 (% AV-8.01733)*(Eve-5673.72) Entered 0.0469 2.5e+15 0.7578 15.713 14 3120 3149.41 

 

 
FIGURE B- 4  Actual by predicted plot for SH two way interactions. 
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TABLE B- 45  Summary of Fit for SH Two Way Interactions 
RSquare 0.757768 

RSquare Adj 0.712782 

Root Mean Square Error 24719221 

Mean of Response 26344571 

Observations (or Sum Wgts) 84 

 

TABLE B- 46  Analysis of Variance for SH Two Way Interactions 
Source DF Sum of Squares Mean Square F Ratio 

Model 13 1.338e+17 1.029e+16 16.8445 

Error 70 4.2773e+16 6.11e+14 Prob > F 

C. Total 83 1.7658e+17  <.0001* 

 

TABLE B- 47  Parameter Estimates for SH Two Way Interactions 
Term   Estimate Std Error t Ratio Prob>|t| 

Intercept   -2.377e+8 90650077  -2.62 0.0107* 

Age  19403569 3410622 5.69 <.0001* 

% Binder  5.4222e+9 1.36e+9 3.99 0.0002* 

% AV   -5012173 1205292  -4.16 <.0001* 

Eve   -6906.373 1760.217  -3.92 0.0002* 

b  134333010 56795841 2.37 0.0208* 

shear   -9.69e+10 2.01e+10  -4.81 <.0001* 

(Age-2.75)*(% AV-8.01733)  2008548.6 531229.1 3.78 0.0003* 

(Age-2.75)*(Eve-5673.72)  2123.388 652.6022 3.25 0.0018* 

(Age-2.75)*(shear-0.00047)  1.043e+11 1.51e+10 6.92 <.0001* 

(% Binder-0.05331)*(b-0.08236)   -1.09e+10 6.41e+9  -1.69 0.0947 

(% Binder-0.05331)*(shear-0.00047)  2.624e+13 5.83e+12 4.50 <.0001* 

(% AV-8.01733)*(Eve-5673.72)  977.80906 483.2552 2.02 0.0469* 

(% AV-8.01733)*(b-0.08236)   -48793008 22441187  -2.17 0.0331* 
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TABLE B- 48  Sorted Parameter Estimates for SH Two Way Interactions 
Term Estimate Std Error t Ratio t Ratio Prob>|t| 

(Age-2.75)*(shear-0.00047) 1.043e+11 1.51e+10 6.92  <.0001* 

Age 19403569 3410622 5.69  <.0001* 

shear  -9.69e+10 2.01e+10  -4.81  <.0001* 

(% Binder-0.05331)*(shear-0.00047) 2.624e+13 5.83e+12 4.50  <.0001* 

% AV  -5012173 1205292  -4.16  <.0001* 

% Binder 5.4222e+9 1.36e+9 3.99  0.0002* 

Eve  -6906.373 1760.217  -3.92  0.0002* 

(Age-2.75)*(% AV-8.01733) 2008548.6 531229.1 3.78  0.0003* 

(Age-2.75)*(Eve-5673.72) 2123.388 652.6022 3.25  0.0018* 

b 134333010 56795841 2.37  0.0208* 

(% AV-8.01733)*(b-0.08236)  -48793008 22441187  -2.17  0.0331* 

(% AV-8.01733)*(Eve-5673.72) 977.80906 483.2552 2.02  0.0469* 

(% Binder-0.05331)*(b-0.08236)  -1.09e+10 6.41e+9  -1.69  0.0947 
 

 


