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ABSTRACT 

 

Impacts of high kinetic energy massive gold clusters (~ 500 keV Au400
+4

) exhibit 

significantly enhanced secondary ion yields relative to traditional atomic or polyatomic 

primary ions (e.g. Au3 and C60). The one-of-a-kind instrument used to generate these 

hypervelocity nanoparticles (~2 nm diameter, ~30 km/s) and monitor emissions from 

their impacts (SIMS) is described in detail for the first time. 

The projectile range of 520 keV Au400
+4

 is measured to be ~20 nm in amorphous 

carbon and projectile disintegration is observed at the exit of carbon foils as thin as 5 

nm. These experiments were performed by monitoring carbon cluster ions emitted from 

both sides of a foil impacted by the projectile. Surprisingly, clusters emitted in the 

forward direction are larger than those emitted backward. The composition of the mass 

spectra is shown to depend on both the thickness of the foil and the size of the projectile. 

Secondary ion yields for a variety of materials including peptides, lipids, drugs, 

polymers, inorganic salts, and various small molecules have been measured and 

molecular ion yields for many of these species exceed unity. Multiplicity measurements 

show that up to seven molecular ions of leucine-enkephalin (YGGFL) can be detected 

from the impact of a single projectile. SI yields measured with ~500 keV Au400
+4

 are 

generally one to two orders of magnitude greater than those obtained with 130 keV Au3
+
 

and 50 keV C60
+
 projectiles. 

The high molecular ion yields observed suggest the internal energies of ions 

emitted from massive cluster impacts are relatively low. In order to address this 
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hypothesis, a novel method for measuring secondary ion internal energies was developed 

using a series of benzylpyridinium salts. Using this method, the internal energies were 

measured to be ~0.19 eV/atom, which is a factor of five less than that seen in atomic-

SIMS. 

Sample metallization is shown to be ineffective for further increasing secondary 

ion yields with Au400, despite observations from previous molecular dynamic 

simulations. Coincidence mass spectrometry is applied to nanometric chemical 

segregations found on samples coated with thin layers of gold and silver. It is possible to 

measure the surface coverages of the metallic and underlying organic layers using mass 

spectrometry in a non-imaging mode.  
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NOMENCLATURE 

 

BPA Bisphenol A 

BPY Benzylpyridinium 

CFD Constant Fraction Discriminator 

CID Collision Induced Dissociation 

CMOS Complementary Metal-Oxide-Semiconductor 
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PTSA p-Toluenesulfonic Acid 
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SAMPI Surface Analysis and Mapping of Projectile Impacts 

SI Secondary Ion 

SIMS Secondary Ion Mass Spectrometry 
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TDC Time-to-Digital Converter 

TME Total Matrix of Events 

ToF Time of Flight 

QCM Quartz Crystal Microbalance 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Secondary Ion Mass Spectrometry 

The physical and chemical interactions of surfaces are regulated on a nanometric 

scale, representing a significant analytical challenge for their observation and 

quantification. Many techniques have been developed towards addressing this challenge, 

often providing complementary information which can be used in concert to generate 

nuanced characterizations of the sample of interest. Secondary ion mass spectrometry 

(SIMS) in particular has grown to be an indispensable tool in the surface scientist’s 

toolbox. This technique enables one to determine the chemical composition of a surface 

by monitoring the emission of surface-specific ions generated via impacts of primary 

projectile ions. The masses of secondary ions (SIs) created can be determined using any 

of the traditional mass spectrometric approaches, e.g. Time of Flight (ToF), quadrupole, 

magnetic sector, etc., yielding identifications for the elemental and molecular 

composition of the ions and thereby provides a chemical characterization of the top few 

layers (< 10 nm) of the surface being bombarded. This being said, there are many 

variables which affect the number and type of SIs detected for a given SIMS analysis. 

This introductory chapter explains the motivation for the SIMS investigations presented 

in this dissertation. In particular, the choice of hypervelocity nanoprojectiles is justified 

in terms of historical developments in primary ion source development. A brief overview 
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of SIMS is given, but for more detailed explanations readers are referred to reviews on 

the subject.
1-5

 

Dynamic vs. Static SIMS 

An important distinction within SIMS pertains to the affect an analysis has on the 

sample, i.e. whether or not the sample is destroyed by the analysis. For analyses which 

require the detection of trace species or chemicals located deep within the surface, it is 

possible to erode, or sputter, the surface such that material is removed and a larger 

volume of the sample is analyzed. By analyzing sufficiently large sample volumes, it 

becomes possible to achieve elemental detection limits at the parts per billion (ppb) level 

via what is known as dynamic SIMS.
1
 Additionally, by eroding the sample it is possible 

to map the distribution of chemical species as a function of depth within the surface. 

This mode of operation, known as depth profiling, is by definition a destructive analysis 

technique. The cutoff for distinguishing whether or not the sample is consumed during a 

SIMS analysis is determined by the dose of primary ions required to generate the 

secondary ion mass spectrum. Below ~10
13

 primary ions/cm
2
 the probability of multiple 

projectiles striking the same sample region is low and hence very little material is 

removed from the surface.
6
 This mode of operation, known as static SIMS, limits the 

ultimate sensitivity but reduces fragmentation of surface molecules, allowing for the 

ejection of intact molecular ions as well as the monitoring of submonolayer chemical 

coverages. In limiting the number of primary ions which can be used for an analysis, it 

becomes obvious that a projectile more efficient in creating SIs will produce a more 

informative mass spectrum. 
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Atomic SIMS 

Since the first application of “canal ray” induced secondary ion emission to 

surface analysis by Herzog and Viehbock,
7
 researchers have continually sought primary 

ion sources capable of producing more secondary ions for a given dose of primary ions. 

Early SIMS studies utilized atomic primary ion beams nearly exclusively due to the ease 

with which they can be generated and manipulated.
8
 The efficiency of a given primary 

ion can be described using a figure of merit known as the secondary ion yield, which is 

defined as the number of SIs emitted per primary ion impact. 

Two parameters of particular importance for describing SI yields observed in 

atomic ion bombardment are the projectile/target atom mass ratio and projectile kinetic 

energy. The number of atoms emitted from the surface is greatest when the impacting 

ion has a similar mass to the target atoms.
9
 This results in an optimal collision cross-

section and improves energy transfer from the projectile to the target atoms.  Increasing 

the impact energy of the SIMS projectile is one of the most reliable routes to improved 

SI yields.
10, 11

 However, at kinetic energies of ~100-150 keV,
12, 13

 sputter yields, and 

presumably SI yields, from atomic projectile impacts plateau at the point of maximal 

nuclear stopping power. Stopping power refers to the rate at which projectile energy is 

deposited in the solid during penetration. For eV to keV projectiles, “knock-on” 

interactions of the primary ion nucleus with nuclei of the solid largely determine the 

total stopping power. As the primary ion kinetic energy is further increased, these 

interactions become less frequent resulting in a reduction of the SI yield.  
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For higher energy species (MeV), electronic interactions come to dominate the 

stopping power term. In this way, SI yields can be recovered and further increased, but 

the feasibility of this approach has traditionally been limited by its requirement for large 

particle accelerators to generate sufficient ion kinetic energies. A proven alternative to 

electrostatic ion acceleration is the use of high energy fission fragments. MacFarlane and 

Torgerson showed in the 1970’s that fission fragments from a 
252

Cf source could be used 

to generate substantial yields of intact quasi-molecular ions using a relatively simple 

experimental arrangement.
14

 This plasma desorption mass spectrometry (PDMS) 

technique has given way to other ionization methods including matrix assisted laser 

desorption ionization (MALDI) and electrospray ionization (ESI) which are capable of 

producing more molecular ions for larger species without the limitations associated with 

a radioactive source.  MeV-SIMS remains an active field of research due to its prospects 

for molecular analysis of biologics.
15

 

Extensive sputter yield measurements for primary ions with various masses, 

charge states, and impact energies on different target materials have allowed for the 

development of detailed theoretical descriptions of the atomic ion sputtering process.
9, 13, 

16
 Sputtering refers to the process by which species are ejected from the surface by an 

incoming projectile. Generally speaking, keV atomic ion penetration in solids occurs in a 

ballistic fashion. This process is often described as a series of “billiard ball” collisions 

initiated by the primary ion “cue ball”. Kinetic energy is transferred to an ever increasing 

number of surface atoms. Through a series of intermediate collisions, a small fraction of 

the impacted atoms will have kinetic energies directed back towards the surface, as 
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shown in Figure I-1. Atoms and molecules within the top few layers of the surface with 

sufficient kinetic energy to overcome the surface binding forces are emitted. For a 

typical atomic ion bombardment, 0.01 to 100 atoms are emitted per incident primary ion. 

A small fraction of these sputtered species (up to 0.01)
17

 will undergo ionization to 

generate the desirable secondary ions which can then be mass analyzed. This theory of 

collision cascade sputtering described here along with models for describing thermal 

spike (heavy keV ions) and electronic (MeV ions) sputtering have been incorporated into 

a software package, known as The Stopping and Range of Ions in Matter (SRIM), 
18

 

which is widely-used in the fields of SIMS and accelerator physics. This program 

simulates atomic ion penetration and sputtering processes, providing quantitative range 

and sputter yield estimates which agree well with experimental measurements. 

Absolute secondary ion yields using atomic primary ions vary substantially 

depending on the projectile and target material considered. They are a convoluted result 

of the sputtering and ionization efficiencies and range from 10
-8

 to 10
-2

 SIs per primary 

ion.
1, 17

 This means that between 100 and 10
8
 primary ion impacts are required to 

generate a single analytical species. These values correspond to atomic secondary ions 

with molecular ion yields being still smaller. 

Polyatomic Cluster SIMS 

In an effort to overcome the vanishingly small ion yields of atomic primary ions, 

some researchers began turning to cluster ion projectiles for SIMS analyses. The original 

catalyst for these investigations was the observation that diatomic and triatomic ion 
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Figure I-1. Collision cascade process resulting in sputtered atoms. 
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beams generate a higher sputter yield than that of an equal velocity atomic ion multiplied 

by the number of atoms in the cluster.
19, 20

 Blain et al.
21

 and Appelhans and Delmore
22

 

concurrently reported the first observations that enhanced sputter yields could be 

translated into enhanced SI yields in 1989. This means that the enhancement factor     

shown in Equation 1.1 is greater than unity.
23

 

    
   

    

     
  

   
 (1.1) 

The effect is even more pronounced for high mass (> 200 amu) organic molecules which 

are poorly emitted during atomic ion bombardment.
22, 24

 A simple conclusion which can 

be drawn from equation 1 is that the more constituents a projectile contains, the higher 

the SI yield for a given species. Supralinear enhancement is retained for projectiles of up 

to 9 atoms but becomes linear with further increases in nuclearity.
12, 25

 These findings 

have resulted in the development of many new cluster projectiles which have steadily 

grown in size and complexity. 

The study by Blain et al. reported SI yield enhancements obtained with a variety 

of projectiles including coronene (C24H12), coronene dimer (C48H24), phenylalanine 

(C6H5CH2CH(NH3) COOH
+
), decarboxylated phenylalanine fragment 

(C6H5CH2CH(NH3)
+
), and cesium iodide cluster ((CsI)nCs

+
) primary ions.

21
 The source 

used to create these PIs was based on PDMS technology, using the 
252

Cf fission 

fragment to desorb and ionize these molecules from thin foil targets. These ions were 

then accelerated towards the sample surface to be used as SIMS primary ions. The 

flexibility of this source also enabled its use for the production of other cluster 

projectiles such as C60
+
 and heavy metal oxide clusters ((M2O3)nMO

+
; M = Bi, La; n = 0-
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3). 
26, 27

 For their study, Appelhans and Delmore developed a PI source capable of 

producing SF6
-
 and SF6

0
 projectiles from sulfur hexafluoride gas via electron capture.

22
 

This primary ion source and equivalent SF5
+
 sources have been used for many static 

SIMS analyses since this first example.
28-30

 

Development of the liquid metal ion source (LMIS)
31

 eventually led to its 

implementation as a SIMS cluster ion source. LMISs mate well to SIMS applications 

due to their range of cluster sizes produced, high ion 
25

current output, and excellent 

focusing characteristics. Benguerba et al. first applied a gold LMIS to SIMS, using Aun
+q

 

(n = 1-5, q = 1,2) clusters to measure enhancement factors for the range of projectiles.
32

 

The same study also incorporated a gallium LMIS, though only atomic ions were 

observed from this source. Gallium, indium, gold, and bismuth liquid metal ion sources 

have found wide use in the SIMS field, particularly for imaging applications.
33

 The 

development of LMISs for SIMS is of particular interest, as all data reported in this 

dissertation have been obtained using gold and bismuth LMISs. A detailed description of 

the production, operation, and characterization of the gold LMIS used can be found in 

refs. [34] and [35].  

 The energy dependence of polyatomic ion SI yields is largely an extension of the 

atomic ion study. Studies with SF5
+
 have shown that the sputter rate measured from 

cluster ion impacts in the keV energy range initially increase linearly.
36

 Expanded 

energy range measurements with Au1-5
+
 projectiles impacting a gold solid revealed that, 

like atomic projectiles, cluster sputter yields reach a maximum consistent with the 

nuclear stopping power.
12

 Another interesting finding from this study was that the 
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maximal sputter yields were obtained for clusters with the same total kinetic energy and 

not the same energy per atom. The sputter yield enhancement over the range of n = 1-5 

was determined to be proportional to n
2
.
12

 

Massive Cluster SIMS 

The search for even larger cluster ion sources has led to the development of 

massive cluster projectiles with significantly greater nuclearity than the polyatomic 

sources described above. Much of the technology for generating these large clusters has 

been adapted from the fields of micromachining
37

 and materials processing.
38

 It has long 

been known that large clusters exhibit enormous sputtering yields (up to 10
5
 atoms/PI)

39
 

which can be used to clean and smooth surfaces.
40

 

The first massive clusters to be used for SIMS analyses were large water
41

 and 

water/glycerol
42

 clusters. Beuhler and Friedman formed massive water clusters 

((H2O)nH
+
, n = 80-3000) using a free jet expansion of ionized water vapor in a carrier 

gas.
43

 Condensation of the gaseous water molecules results in the formation of singly 

ionized clusters at atmospheric pressure. The sizes of these clusters could be tuned by 

altering the carrier gas and temperature. After passing through a differential pumping 

region the desired cluster mass was selected using a quadrupole mass analyzer. Mahoney 

et al. showed that by increasing the liquid viscosity with glycerol it is possible to 

eliminate the need for differential pumping.
44

 This was done using an 

electrohydrodynamic ionization source which operates similar to an electrospray 

ionization source, only the emitter tip is maintained within the high vacuum region and 

not at atmosphere. In this way, multiply charged aqueous/glycerol clusters (mass ≈ 10
7
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amu, q > 100) are formed within the vacuum. Two other benefits to this approach are the 

production of a multiply charged projectiles and the ability to enhance secondary 

ionization via projectile matrix delivery. Increased charge states allow projectiles to 

obtain higher kinetic energies and therefore sputter yields with a given accelerating 

voltage. The authors also introduce to concept of matrix delivery via projectile impact 

which is done by adding ammonium acetate or other electrolytes to the water/glycerol 

mixture. On impact these electrolytes are dispersed within the plume, promoting 

ionization of the sputtered species. 

The discovery of buckminsterfullerene (C60)
45

 rapidly led to its implementation 

as a SIMS projectile. Della-Negra et al. 
46

 used a Cs ion gun to generate C60
-
 ions which 

were then injected into a tandem accelerator. At 200 keV these ions can be converted to 

C60
+q

 (q = 1-3) via electron stripping interactions with background nitrogen gas 

molecules. The projectiles were then accelerated to energies of up to 10 qMeV. 

Secondary ion yields in the 10’s of percent range were measured for various clusters of 

carbon atoms, CsI molecules, and valine molecules produced from high energy C60 

impacts.
47

 Diehnelt et al. later showed it was possible to generate C60
+
 using the same 

PDMS mediated approach described above where the fission fragment is used to desorb 

and ionize C60 from a thin layer deposited on a mylar foil.
48

 A more efficient effusion 

source was eventually developed and commercialized by the Vickerman group.
49, 50

 This 

source creates gaseous C60 via sublimation of buckminsterfullerene powder. Once in the 

gas phase, C60
+1,2

 can formed using electron impact ionization. Buckminsterfullerene has 
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become the reference standard for cluster ion projectiles
51

 due to its capabilities for 

molecular ion imaging
33

 and molecular ion depth profiling.
52

 

Massive argon clusters were the next projectiles to enter the SIMS arena. Gas 

cluster ion beam technology originally developed for smoothing semiconductor surfaces 

was adapted for SIMS by Yamada et al.
53

 These large clusters of argon atoms (Arn
+
, n = 

1000-4000)
54

 are created via supersonic expansion from a nozzle and then ionized via 

electron impact ionization. These beams have found particular application in molecular 

depth profiling due to the high depth resolution achievable.
55

 Another problem that 

argon clusters circumvent is the issue of underlayer damage. Previous molecular depth 

profiling studies with other projectiles have revealed decreases in the molecular ion 

signal as a function of depth. Massive argon clusters have small penetration depths and 

most if not all of the projectile atoms are evaporated from the surface for each impact.
56

 

This means that molecules below the sputtered layer remain intact and samples can be 

profiled to much greater depths.  

The newest massive primary ion source, introduced in 2004, is capable of 

producing clusters containing hundreds of gold atoms. By altering various instrumental 

parameters, Bouneau et al. found that much larger gold clusters could be formed from 

the same LMIS they used to produce polyatomic clusters.
57

 Specifically, this was done 

by increasing the extraction voltage applied to the source and concurrently adjusting the 

correct values on the Wien filter to pass projectiles with high m/q values. Projectiles 

produced by this source are multiply charged and range in size from the monatomic Au1
+
 

all the way up to Au120q
+q

 (q = 1-9). The most intense massive projectile produced by the 
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source has an n/z ≈ 100 with a most probable charge state of 4. Peptide yields measured 

using this Au400
+4

 projectile at 40 keV were 1000 times larger than yields measured with 

10 keV Au1
+
.
34

 The authors of this study also noted that peptide molecular ion yields 

actually increase with primary ion doses up to 2 x 10
13

 ions/cm
2
. This was contrasted 

with the Au5
+
 projectile which displayed a 10x reduction in molecular ion signal at a 

dose of just 8 x 10
12

 ions/cm
2
. The authors proposed that the implantation of these large, 

high mass clusters result in an increased nuclear stopping power, thereby increasing the 

amount of energy deposited in the near surface region. This matrix effect increases the 

sputter yield and consequently SI yield of the projectile. Despite the efficiency of this 

massive projectile, only two research groups, the original researchers at the Institute of 

Nuclear Physics in Orsay, France and the Schweikert group at Texas A&M University, 

currently operate gold LMISs capable of producing the massive gold clusters. However, 

with the introduction of a commercial massive gold cluster ion gun, the Cobra ExB from 

Orsay Physics, massive gold clusters are poised to become more prominent within the 

field of SIMS. 

Motivation for Hypervelocity Gold Nanoprojectiles 

Molecular dynamics simulations of massive gold clusters have proposed 

mechanisms for describing the massive cluster-solid interaction. These simulations offer 

estimates for various experimental parameters including projectile ranges
58-61

 and sputter 

yields.
62

 
63-65

 The interaction can roughly be divided into two categories depending on 

whether the projectile is impact a target with light or heavy atoms. Simulations suggest 

massive cluster impacts on light atom targets (organics) result in a hydrodynamic 
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penetration range that is proportional to E/n2/3, where E is the kinetic energy and n 

is the number of atoms in the projectile.66 These simulations also predict minimal 

sputtering of the organic material,67 though this observation is in disagreement 

with numerous experimental measurements of high SI yields for light atom organic 

molecules and minerals.
68-77  For heavy atom targets (metals, gold and silver in 

particular), massive cluster impacts are proposed to cause “the formation of surface heat 

spikes, resulting in violent microexplosions of the surface layers.”
64

 Indeed, many 

studies have proven massive gold clusters are efficient for analyzing metallic surfaces,
78

 

particularly metallic nanoparticles.
79-81

 Due to computational limitations, nearly all 

molecular dynamics simulations referenced above were limited to projectile kinetic 

energies of less than 50 keV, possibly explaining the discrepancy between the predicted 

sputter yields and the observed SI yields. 

The sparse data available for Au400 at high impact energies (0.2-4 MeV) shows 

that more than 10 glycine molecular ions can be generated for each projectile impact. 
82

 

Another article by Della-Negra et al. reports a mass spectrum obtained using a single 

projectile impact. These measurements advocate for increasing the impact energy 

beyond that currently available in the first generation massive gold cluster SIMS 

instrument at Texas A&M. However, the limited scope of test molecules analyzed at 

high energy leaves multiple questions to be answered. Do the SI yields for large organic 

molecules continue to increase with impact energy similar to the small glycine molecule 

(75 amu) studied? Can analytically significant ions still be generated at high impact 

energies or does fragmentation become more dominant?   
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The new instrument used for studies contained in this dissertation has been 

designed to accelerate clusters to energies of up to 130 qkeV, four times that of the 

previous gold cluster SIMS instrument. This increase was driven by the desire to 

maximize the attainable SI yields while maintaining a reasonable cost of construction 

and ease of operation. An added benefit of the Au400
+4

 projectile most commonly used is 

the high median charge state which allows for the generation of 520 keV projectiles 

using only a 130 kV accelerating potential.  

This dissertation reports a series of measurements utilizing massive gold cluster 

projectiles at these higher kinetic energies. This work has entailed the construction of a 

one-of-a-kind SIMS instrument, a detailed assessment of the instrument’s performance, 

measurements of physical parameters regarding the massive gold cluster-solid 

interaction, and application of this tool to describing nanoscale chemical heterogeneity 

within surfaces. This second generation instrument (described in Chapter II) follows on 

previous efforts by the Schweikert group to measure SI yields and multiplicity 

(described in Chapter IV) and implement coincidental ion mass spectrometry techniques 

(described in Chapter VI) using massive gold projectiles. Attributes of the projectile 

impact event such as collective effects in the cluster projectile’s penetration range 

(described in Chapter III) and the internal energies of emitted secondary ions (described 

in Chapter V) will also be addressed. Chapter VI will additionally detail an attempt to 

further increase SI yields via metallization of organic surfaces. The capability for 

analyzing positive SIs from massive cluster impacts in addition to negative SIs has also 

been realized for the first time in our laboratory. The instrument (shown in Figure I-2), 
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Figure I-2. Custom-built instrument featuring a high voltage LMIS platform coupled to two SIMS analysis chambers
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while large, is housed in a single, reasonably-sized room and can easily be operated by a 

single user. It represents a balance of theoretical projectile optimization and technical 

feasibility in a truly unique analytical tool that will be demonstrated throughout the 

following chapters.
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CHAPTER II 

INSTRUMENTATION AND METHODOLOGY 

 

 This chapter describes the instrumentation and methodology developed to enable 

observation of SI emission from surface impacts of gold clusters with impact energies of 

up to 130 qkeV. All data reported in the following chapters were obtained using this new 

gold cluster SIMS instrument which has been constructed at Texas A&M University. 

The major components of the instrument are shown in Figure II-1. The instrument 

description below follows the progression of a projectile impact event. These events 

begin with projectile beam creation, selection, focusing, and pulsation to obtain a single, 

mass-selected projectile which is directed towards the sample surface in one of two 

chambers available for analysis. Following projectile impact, electrons and ions are 

extracted from the sample surface and directed towards custom-built detectors. The 

construction of these detectors will be discussed as well as the electronics required for 

processing the signals they generate. A general procedure for operation of the instrument 

is provided with advice for troubleshooting common issues. As a second generation 

instrument, much of the methodology and instrumentation is replicated from the first 

generation which has been described in detail.
35, 83, 84

 

 Pegasus High Voltage Platform 

 Liquid Metal Ion Source. The novelty of the current gold cluster SIMS 

instrument derives from the implementation of a Pegasus high voltage ion source 

platform designed and built by collaborators at the Institute for Nuclear Physics in 
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Figure II-1. Labeled overview of the custom gold cluster SIMS instrument at Texas A&M University.
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Orsay (IPNO), France.
85

 This platform utilizes the same gold LMIS design as the first 

generation instrument. For details regarding the construction and operation of the gold 

LMIS readers are referred to the Ph.D. dissertations of Rickman and Pinnick.
35, 84

 

Briefly, the source is constructed from a tungsten wire (Ø 200 µm) which is wound into 

a barrel-shaped reservoir that is then filled with a Au-Si eutectic (97 % Au, 3 % Si, 

Academy Precision Metals, Albuquerque, NM). This eutectic has a melting point of 

~363 
o
C, much lower than the melting point of pure gold (~1,064 

o
C). Once prepared, 

the source is introduced to the LMIS positioning chamber which is pumped by an 

Adixen ATP 400 turbomolecular pump (400 l/s) and has a base pressure of ~10
-7

 torr. To 

initiate the source, a current is passed through the tungsten wire reservoir, heated the 

eutectic to its melting point. The source is maintained at a high voltage (6-10 kV) 

relative to a counter electrode, causing the molten eutectic to creep along an 

electrolytically etched tungsten needle which intersects the barrel. Once the eutectic 

reaches the tip of the needle, a Taylor cone
86

 is formed, creating gas phase droplets from 

the metallic liquid.  

Beam Characterization. A primary ion spectrum obtained from the Pegasus 

platform is shown in Figure II-2. This spectrum displays the relative intensities of all 

projectiles which can be observed from the Au/Si LMIS. The list of projectiles includes 

Au1-5
+2

, Au1-5Si
+2

, Au1-9
+
, Au1-9Si

+
, and large distribution of massive clusters (Aun

+q
). 

The major component of the gold beam is Au
+
. This is also observed using the platform 

Faraday cup, where the Au
+
 species typically exhibits a beam current of ~200 nA. As a 
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Figure II-2. PI spectrum observed from the Pegasus gold liquid metal ion source.
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reference, the beam current obtained for the entire gold beam is normally 250-300 nA. 

As Au2
+
, Au3

+
, and increasingly larger gold clusters are considered the fluence for each 

projectile is reduced. Odd-numbered clusters are preferred, as seen by the oscillating 

intensities of the various cluster sizes. The massive cluster distribution, seen as a hump 

at high masses in the spectrum, extends from m/q 2,000 up to m/q 30,000. The average 

massive cluster is determined by the current limitation applied to the extraction power 

supply. In the spectrum given, a 20 µA source current limitation was used providing a 

massive cluster distribution centered at m/q 8,000. In order to obtain a distribution 

centered at m/q 20,000 (corresponding to the Au400
+4

 projectile), the source extraction 

current is increased to 50 µA. This effectively increases the high voltage applied and 

results in the emission of larger gold “droplets” from the source. Clusters emitted under 

these conditions have been found to contain an average of 400 gold atoms and a charge 

state of +4, giving these projectiles an n/q ratio of ~100.
57

 

Lens and Wien Filter. Emitted gold ions are accelerated to ~7.5 keV through the 

counter electrode aperture (Ø 1.5 mm) which is positioned ~500 µm from the needle tip. 

The amount of gold extracted from the source is controlled by altering the current 

limitation for the high voltage power supply biasing the counter electrode. A second 

acceleration stage is used to give the projectiles a total kinetic energy of 20 keV. The 

beam of projectiles is then focused using a high voltage Einzel lens (~14.5 kV) and 

introduced to a Wien filter for mass selection. The source generates a beam of gold 

projectiles ranging in size from monatomic gold atoms to clusters with over 1,000 

constituents. Using crossed magnetic and electrostatic fields (Wien Filter) it is possible 
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to select a projectile (or distribution of projectiles) with a given mass to charge ratio. 

Technically the Wien filter is a velocity filter, but because projectiles are accelerated to a 

common kinetic energy, their velocities ( ) are proportional to the square root of their 

kinetic energy ( ), as shown in Equation 2.1, and they can thus be separated by mass 

( ). 

    
  

 
 (2.1) 

The trajectory for each ion is determined by the net effect of the Coulomb and Lorentz 

forces acting on it as shown in Equation 2.2. 

                                    (2.2) 

Rearrangement gives Equation 2.3 which shows that for a given electric field strength 

( ) and magnetic field strength( ), ions with a certain velocity (  ) will experience zero 

net force and therefore have a linear trajectory through the velocity filter. 

    
 

 
 (2.3) 

Substituting Equation 2.1 for the velocity we obtain Equation 2.4 

  
  

 
 

 

 
 (2.4) 

which shows these field strength settings are particular to a certain mass, given a 

constant kinetic energy. Substituting the definition for electric field strength (Equation 

2.5) and solving for the applied voltage ( ) gives Equation 2.6 

   
 

 
 (2.5) 

      
  

 
 (2.6) 
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where   is the distance between the electrostatic deflectors (12.3 mm for the Wien filter 

used). Selection of a given projectile is achieved by altering this voltage while 

maintaining a static magnetic field (~0.172 Tesla for 1.2 amps applied to the 

electromagnet). Equal potentials of opposite polarity (  ) are applied to 12 cm long 

deflector plates separated by 1.2 cm above and below the beam axis, with positive 

polarity on the top plate and negative polarity on the bottom plate. This means       

and Equation 2.6 becomes Equation 2.7 when the parameters for this particular Wien 

filter are used. 

       
 

  
                     

            

  
 

          

  
  (2.7) 

Here   is given in kilograms. Using conversion factors, Equation 2.8 allows for one to 

calculate the voltage which should be applied to obtain a projectile of a mass given in 

amu. 

    
    

  
 (2.8) 

 The magnet field strength of 0.172 T given above is an effective field strength 

which was back-calculated using a known set of voltage/projectile mass settings. The 

actual field strength is slightly higher. The field is underestimated because the 

electrostatic deflector rails are actually U-shaped rather than flat as shown in Figure II-3. 

This shape helps confine the beam in the horizontal direction, but it results in an 

effective electrode spacing that is smaller than the 0.123 m used in the calculation. 

Deflectors and Faraday Cup. Exiting the Wien filter, the mass-selected beam 

encounters a set of vertical and horizontal electrostatic deflectors which allow for minor 
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Figure II-3. Three-dimensional drawing showing Wien filter electrode geometries.
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adjustments of the beam trajectory. Afterwards the beam is collimated using one of four 

apertures (Ø 3 mm, 1 mm, 500 µm, and 200 µm) to reduce the fluence and beam  

diameter to the desired values. Each of the beam conditioning steps described above is 

monitored using a removable Faraday cup at this point. The beam current delivered to 

the Faraday cup is measured using a picoammeter (Keithley 6485) located on the 

platform. 

Accelerating Lens. Once beam conditions on the platform are optimized the 

Faraday cup is removed, allowing the beam to exit the platform and enter the trumpet-

shaped lens that accelerates ions to high energy (up to 120 qkeV). This accelerating lens 

is mounted within an insulating vacuum break which maintains the potential difference 

between the platform voltage and the grounded analysis chambers. This region is 

pumped by an Edwards EXT 255H turbomolecular pump (220 l/s) and has a base 

pressure of 5 x 10
-7

 torr. The source Einzel lens can be used to modify the focusing 

characteristics of the accelerating gap. In the current arrangement it is possible to obtain 

a quasi-parallel beam with a diameter of a few hundred micrometers for the massive 

cluster beam. It is also possible to change the Einzel lens potential to achieve a spot size 

of 10 µm. However this focal point occurs at ~20 cm from the accelerating gap which is 

within the beamline before the first analysis chamber. Design considerations for the 

platform with discussion of these focusing parameters are given in ref. [85]. 

A specially designed quad deflector system is mounted at the exit of the accelerating gap 

to accept the high energy beam and correct the trajectory of ions deflected by the 

accelerating lens. This deflector system, shown in Figure II-4, enables deflection of the  
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Figure II-4. Three-dimensional drawing quad deflector electrode geometries.  

Grounded entrance plate not shown.
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high energy beam through the use of extend electrode geometries and small inter-

electrode distances. Ceramic bearings are used to mount the electrodes with high 

mechanical precision while also providing electrical insulation from the grounded 

entrance and exit plates. 

Safety Interlock System. Figure II-5 shows the Pegasus platform with major 

components labeled. From these images it is possible to observe the high voltage 

insulator legs and vacuum break which isolate the platform from the floor and analysis 

chambers, respectively. This insulation allows the entire platform, including power 

supplies, vacuum pumps, and vacuum chamber, to be floated to upwards of 100 kV 

using a high voltage power supply (Spellman SL300). All pumps and power supplies are 

powered using an isolating transformer which allows passage of 120 V AC power while 

maintaining the 100 kV DC bias between the platform and ground. The Pegasus 

platform is located within a grounded safety cage that features a three part safety 

interlock system that shuts off the floating voltage case of an unauthorized entry. The 

safety interlock system includes a pressure switch mounted on the sliding cage of the 

door which ensures the door remains closed and locked during operation. There is also a 

switch that ensures the high voltage grounding rod used to ground the platform is 

properly mounted on the wall outside of the cage during operation. The final safety 

interlock comprises a key activated switch required to activate the high voltage. The 

same key is used for this interlock and the grounded safety cage such that the key must 

be removed from the interlock in order to unlock the cage and gain access. 
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Figure II-5. Pegasus high voltage ion source platform with major components labeled.
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Control Panel. All electrical components on the Pegasus platform are monitored 

and controlled from a central control panel located outside the grounded cage. Fiber 

optic cables covert reference voltages generated at the control panel into logic signal 

which are then transferred to the high voltage platform. The insulating properties of fiber 

optic cables allow the control panel to be maintained at ground while the platform is at 

high voltage. On the platform, the logic light pulses are converted back into reference 

voltages which are then input to each of the power supplies. Readback reference 

voltages from each power supply are transferred back to the control panel in the same 

manner so that applied voltages can be observed from the control panel. The beam 

collimator on the platform is operated using two (X and Y) motorized linear positioners 

(Orsay Physics). These positioners are controlled via fiber optics from a laptop at the 

control panel. A custom LabVIEW
®
 interface was developed for this purpose. The 

vacuum region of the Pegasus platform can be isolated from the analysis chambers using 

a pneumatically operated gate valve which is controlled from the control panel. In this 

way, either the platform or analysis chambers can be vented to atmosphere while 

maintaining vacuum on the opposite side of the gate valve. 

Pulsation Chamber. Immediately following the beamline gate valve is a 

pulsation chamber which houses deflectors for correcting the beam trajectory as well as 

a pulsing electrode. Prior to entering the deflector/pulsing plate assembly, the beam 

passes through a multi-slit collimator mounted on a linear positioner to eliminate stray 

projectile trajectories. This collimator has two slits (0.5 mm and 1 mm widths) that 

intersect the beam at a 45
o
 angle relative to horizontal. The deflector/pulser electrode 
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arrangement in Figure II-6 shows the 30 mm x 30 mm plates which are positioned 5 mm 

apart. The horizontal deflector plates feature one plate which is grounded while the 

opposite plate is biased. Vertical deflection is achieved by biasing the deflector above 

the beam. Time-varying high voltage logic pulses are applied to the plate below the 

beam line using a high voltage switch (Behlke HTS 151-03-GSM) which is driven by a 

pulse generator. This pulsing procedure, known as the differential impulse sweep 

method,
87

 disperses the beam in the vertical dimension above and below the beam axis 

such that only a small fraction of projectiles are able successfully pass through a 

collimators farther down the beamline. In the case of the first analysis chamber, three 

different apertures (Ø 5 mm, 500 µm, and 200 µm) mounted on an X,Y,Z stage 

(Huntington VF-108 and Huntington TS-275-155) ~30 cm from the pulsing chamber 

perform the collimation. For the second analysis chamber, a 2 mm aperture positioned 

~2 m from the pulsing chamber performs the collimation. The pulsing potential is varied 

from + 1 kV to -1 kV at a rate of 10 kHz when operating in linear time of flight (ToF) 

mode and 3 kHz when operating in reflectron ToF mode. A slower pulsing frequency is 

required in reflectron mode because the extended flight times of ions reduce the 

acquisition duty cycle. Under these pulsing conditions, the beam current is reduced via 

collimation in order to achieve a projectile impact rate of ~1,000 Hz. Following 

pulsation, the individual projectiles pass through a second quad-deflector unit which 

directs projectile trajectories towards the analytical surface and aligns the bombardment 

region with ion/electron extraction optics. 
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Figure II-6. Three-dimensional drawing showing pulsing chamber electrode geometries.
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First Analysis Chamber 

 Single projectiles isolated in time and space impact the analytical surface in one 

of two analysis chambers. The first chamber (base pressure of ~10
-6

 torr) features a high 

resolution reflectron ToF leg and an electron emission microscope. The second chamber 

(base pressure of ~10
-7

 torr) features a linear ToF leg and a flexible mounting system, 

enabling fundamental investigations which require instrument geometry modifications. 

Sample Holder. In the case of the first analysis chamber, samples are mounted 

within the custom designed sample holder shown in Figure II-7. Up to four 1 cm
2
 

samples can be loaded into the holder and then introduced to the vacuum chamber via a 

load-lock system. This system is operated by attaching the sample holder to a linear 

push/pull rod (MDC K-CRPP-1) and then clamping the rod’s KF 25 flange to a small 

introduction chamber on top of the analysis chamber. This chamber is evacuated by a 

rotary vane mechanical pump to a pressure of ~10
-2

 torr. A vacuum gate valve isolating 

the introduction chamber from the main analysis chamber is opened and the sample 

holder is transferred into the high vacuum chamber. The holder design features vertical 

grooves down either side which mate to grooves on the holder dock mounted in the 

analysis chamber. As the holder is lowered into the dock using the push rod, spring-

loaded set screws press the holder towards the front of the dock such that the holder can 

repeatedly be introduced to the same mounting position with precision. The sample dock 

is mounted on a Ø 0.500” ceramic rod which provides mechanical support and electrical 

insulation. Positioning of the entire assembly is controlled using an X, Y, Z stage 

(Thermionics FLMM-275-50-1 and Thermionics XY-B450C-T450T-2.5-1).  
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Figure II-7. Three-dimensional drawing of sample holder and docking station.
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Electron Optics. For negative ion analysis, the sample holder and dock are biased 

at -10 kV and the holder surface is positioned ~7 mm away from a grounded extraction 

electrode with a 3 mm aperture. This aperture acts as an immersion objective lens, 

accelerating electrons and negative ions away from the surface, through the hole, and 

into a series of ion optics which separate and analyze the different species. The 

trajectories of the 10 keV particles are focused to a point within a magnetic prism using 

a three element Einzel lens. The weak magnetic field (~30 Gauss) deflects the 

trajectories of the high velocity electrons by 45
o
, transferring the image of the surface 

impact location through the achromatic point of the prism. This process leaves the low 

velocity ion trajectories relatively unperturbed. Electrons continue on to a series oflenses 

and deflectors which transfer the electrons to a microchannel plate-based detector. The 

lens system is capable of operating as an electron emission microscope (EEM) when lens 

values are properly adjusted. This capability was not utilized for data presented in this 

dissertation. Instead, the lens system was operated in “collection” mode where settings 

are adjusted to optimize electron transmission without regard for imaging characteristics. 

For details on the electron mapping capabilities of the EEM, readers are directed to refs. 

[88-92]. 

The three-dimensional rendering in Figure II-8 shows the spatial arrangement of 

the various ion optics contained in the first analysis chamber. The EEM consists of the 

extraction lens, magnetic prism, two Einzel lenses, and set of deflectors shown in the 

figure as well as an additional Einzel lens, set of deflectors, and microchannel plate 

(MCP) detector not shown. The electron detector (Beam Imaging Solutions BOS-18) 
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Figure II-8. Three-dimensional drawing showing geometries for all electrodes housed in the first analysis chamber.
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features a phosphorus screen which enables visualization of electron impacts on the 

detector. This capability assists in optimization of the electron lenses and deflectors in 

collection mode. In imaging mode, the phosphorus screen projects a magnified image of 

the electron trajectories. A high speed CMOS (complementary metal-oxide-

semiconductor) camera can be used to record the illuminated spots generated by electron 

impacts. Multiple electrons are detected per projectile impact and, using a center of mass 

calculation, the projectile impact location on the surface can be determined. This impact 

location coordinate is coupled with the ToF mass spectrum for each projectile impact, so 

that a chemical map of the surface can be constructed. Again, this capability was not 

utilized for the current data set. The electron detector was simply used to generate a 

signal for initiating the ToF measurement. 

 Reflectron ToF. Returning to secondary ions exiting the magnetic prism, they 

next enter a second Einzel lens that corrects the trajectories which were focused to 

satisfy electron transmission. SIs then pass through a set of deflector plates on the way to 

a dual stage reflectron (IPNO)
93

 mounted 1.13 m from the sample surface.  The 

reflectron is tilted at an angle of 1.4
o
 below the beam axis so that ions enter the ion 

mirror, are reflected, and exit the ion mirror at an angle of ~2.8
o
 above their entrance 

trajectory. The SI detector is mounted in a grounded housing above the flight tube axis, 

63 cm from the entrance of the reflectron. The custom built detector assembly shown in 

Figure II-9 features a chevron MCP stack (Photonis 34251) with eight detection anodes 

mounted on a multi-angle tilt stage. The stage is designed to allow for tilt about the 

transverse horizontal axis (pitch, φ) and the vertical axis (swing, θ) using linear and  
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Figure II-9. Three-dimensional drawing of reflectron ToF multi-anode detector.
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rotary vacuum positioners. This capability allows the detection surface of the MCPs to 

be aligned parallel to the sample surface, thereby maximizing the achievable mass 

resolution in reflectron mode. 

Multi-Anode Detector. A new, high active area detector was developed to 

improve the detection efficiency of SIs. The new mounting scheme employed also has 

better mechanical stability which reduces the probability of MCP breakage over the 

previous generation detectors. The anode is based on previous designs which utilize 

printed circuit board (PCB) technology to form isolated conductive surfaces on top of an 

insulating substrate. The PCB material between the conductive anodes is removed to 

reduce charge accumulation from electron fluxes which are deposited on the insulating 

layer. The anodes independently transmit the transient voltage spikes from the MCP 

output to signal processing electronics. In this way, the dynamic range of the pulse 

counting detector is determined by the number of individual anodes on the circuit board.  

In the current instrument eight-anode boards are employed both in the reflectron 

detector and in the linear SI detector of the second analysis chamber. An eight-anode 

detector was chosen because the constant fraction discriminator (CFD) and time-to-

digital converter (TDC) units used both contain from eight individual processing ports. 

Taking advantage of precise machining procedures to reduce the size of gaps between 

the individual anodes to just 400 µm, an active area of over 96 % is achieved in the 

current multi-anode. Table II-1 shows how this detector compares to earlier versions. 

The transient voltage signal from each anode is transferred to a separate port 

within an 8-port CFD (Ortec CF8000) which converts the signal to a TTL logic pulse. 
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Table II-1. Comparison of Various Eight-Anode Detector Designs 

Detector  

Generation 

Distance Between 

Anodes (mm) 
% Active Area % Dead Space 

1 1.83 78.2 21.8 

2 0.84 89.8 10.2 

3 (current) 0.40 96.1 3.9 
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This signal is then transferred to the TDC (Orsay Physics CTNM4) which time stamps 

each signal relative to the start signal received with a time resolution of either 250 ps or 

400 ps, depending on the TDC model. The time-stamped SI signals are then saved on a 

personal computer by the data acquisition software. For more details regarding the 

electronics and signal processing methodology, please refer to Rickman’s dissertation.
84

 

Second Analysis Chamber 

 By moving the sample dock out of the beamline, it is possible to pass projectiles 

through the first analysis chamber and on to a second analysis chamber. The transfer 

tube between the chambers houses a high voltage Einzel lens which collects and 

refocuses the ~5 mm quasi-parallel beam of projectiles back down to a few hundreds of 

micrometers within the second analysis chamber. A three-dimensional drawing of this 

Einzel lens, which can be biased to ~35 kV, is shown in Figure II-10. As mentioned 

above, the second analysis chamber is designed to be easily modified according to the 

study at hand. For the purpose of this dissertation, the most commonly used 

experimental arrangement of this chamber will be described. 

The assembly shown in Figure II-11 allows for the analysis of samples mounted 

within the multi-sample holder, as in the first chamber. Samples can be introduced 

through a load-lock system here as well. The sample holder is again mounted on an 

X,Y,Z stage, but is instead positioned 10 mm away from a grounded extraction grid (90 

% transmission, Precision Eforming MN17). Unlike the first analysis chamber, both 

positive and negative SI analysis can be performed in chamber 2. The potential applied 
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Figure II-10. Three-dimensional drawing of the high voltage Einzel lens mounted between analysis chambers 1 and 2.
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Figure II-11. Three-dimensional drawing of second analysis chamber instrumental geometry.



 

43 

 

 

to the sample holder (± 10 kV) determines whether cations or anions are accelerated 

from the surface towards the SI detector 1.02 cm away. In the case of positive mode, 

protons are used to initiate the ToF measurement for heavier ions. This is done by 

deflecting the protons 30
o
 above the beam axis to a separate chevron MCP (Photonis 

30286) detector with a single anode. The 0 .126 Tesla field required for this deflection is 

generated by a 12,000 turn electromagnet. Deflection of the protons also results in a 

mass-dependent reduction in ion transmission. Significant losses are observed for ions 

below approximately 50 amu. Negative ion analysis is achieved by reducing the current 

through the magnet wire so that electrons and not hydrogen atoms are turned 30
o
. Ion 

transmission is recovered under these conditions. 

 The flexibility of the second analysis chamber is visible in Figure II-11. The 

central mounting block is machined so that the sample can be accessed from multiple 

different angles along the horizontal axis as well as above and below the block. The 

block is mounted via vented tubes which mate Con Flat flanges on the chamber. This 

mounting system gives excellent stability and alignment of ion optics. 

Instrument Operation 

 A schematic drawing of all internal components of the massive gold cluster 

SIMS instrument is shown in Figure II-12. This figure reveals the overall complexity of 

the device which arises from the number of components involved. To assist in the 

operation of the Pegasus platform, outlines of the startup, shutdown, and emergency 

shutdown protocols are included as Appendix A. These outlines give step by step 

procedures for initiating and terminating experiments with the high voltage ion source. A 
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Figure II-12. Schematic overview of all components of the custom gold cluster SIMS instrument at Texas A&M University.
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procedure for the acquisition of SIMS data is more difficult to provide, as experiments 

goals tend to vary depending on the study at hand. However, as a sample case, the 

general procedure for acquiring a mass spectrum using the Au400
+4

 projectile in the first 

analysis chamber is provided below. 

 Using the startup procedure in Appendix A, it is possible to obtain a 1-2 nA 

Au400
+4

 beam at the sample holder in chamber 1 with the collimator set to the largest 

aperture (5 mm). This can be confirmed using a picoammeter to measure the current 

from the beam focused onto the sample dock. Once an adequate beam is obtained at the 

dock, the pulse generator is initiated to reduce the beam fluence and the sample holder 

can be introduced via the load-lock system. All lenses, deflectors, and detectors as well 

as the reflectron and sample voltages can be turned on at this point. Provided that the 

applied voltages have not changed since that last instrument operation, some signal 

should be detected on both the electron and SI detectors.  

A PI spectrum can be obtained by using the pulser as a start signal and the 

electron signal as a stop. This procedure measures the time it takes projectiles to travel 

from the pulser to the sample surface. A peak should be observed in the ToF spectrum 

corresponding to Au400
+4

. To optimize this peak, all beamline deflectors (except those on 

the platform) should be varied to maximize the number of electron counts observed. 

Once a maximum is reached, the deflectors and magnet current should be varied to 

obtain the highest number of electron counts. At this point a smaller collimator (typically 

Ø 500 µm) can be introduced in place of the 5 mm collimator to eliminate stray 

projectiles, reduce the number of impacts, and purify the ToF spectrum. This is done by 
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varying the position of the collimator in the Y and Z dimensions until a maximum is 

found. The electron count rate should be ~1,000 counts /s. If the count rate is low the PI 

or electron beam trajectories need to be optimized. If the count rate is high, additional 

collimators should be introduced on the platform or before the pulsing chamber. Once a 

count rate of 1 kHz is achieved, the SI deflectors are varied to maximize the number of 

SI counts. 

A SI spectrum of ~10,000 events can now be obtained to test the experimental 

performance. Further optimization of the SI deflectors should be performed so that 

equivalent numbers of a selected ion are detected across all eight detector anodes. This 

anode distribution measurement is automated with the data acquisition software. Once 

the SI mass spectrum is sufficiently optimized, the total mass spectrum of 10
6
-10

7
 

impact events can be collected. At a rate of 1 kHz, a spectrum of 10
6
 events can be 

acquired in ~17 minutes. 

As an example of a mass spectrum which can be acquired in this manner, Figure 

II-13 shows a mass spectrum of glycine which was vapor deposited on a stainless steel 

support. From this spectrum it is possible to measure the mass resolution of the 

reflectron ToF analyzer to be ~1433 at mass 149. This value is significantly higher than 

the 200-300 mass resolution observed for a 1 m linear ToF (as in chamber 2). Also 

visible from this spectrum is the prolific production of glycine molecular clusters out to 

(5M-H)
-
. A more detailed description of the types, yields, and multiplicities observed 

from glycine and other test samples is provided in Chapter IV.
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Figure II-13. Mass spectrum of glycine vapor-deposited on a stainless steel substrate analyzed by 340 keV Au400
+4

. 
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Event-by-Event Bombardment Detection Methodology 

 Using individual projectile impacts to generate meaningful mass spectra 

constitutes a unique SIMS approach. This event-by-event bombardment detection 

methodology allows for the observation and measurement of fundamental phenomena 

that are not accessible when a beam or pulse of multiple projectiles is used. Each 

projectile impact event is characterized by the mass analysis of all SIs generated by a 

single PI impact before the next PI impacts the surface. Specialized electronics and 

software are used to acquire the data. 

Specifically, ion signals are collected in a digital, pulse counting mode such that 

detection of individual SIs are recorded into a mass spectrum for each impact event. This 

process is repeated up to 10
7
 times with all events summed to give a total mass spectrum. 

The data from each individual mass spectrum is retained by the Total Matrix of Events 

(TME) data acquisition software developed in-house. Using a custom data analysis 

software program (Surface Analysis and Mapping of Projectile Impacts, SAMPI),
92

 this 

information can be recalled in a variety of ways. One method is to measure the total ion 

multiplicity. This plot is a histogram which shows the number of ions detected for each 

impact event. A further option is the selected ion multiplicity function, which shows how 

many ions of a given type are emitted for each impact. The average values of the total 

and selected ion multiplicities are the total and selected SI yields, respectively. Examples 

of these multiplicity measurements are displayed in Chapter IV. 

It is also possible to generate coincidence mass spectra, which are composed of 

only the impact events which generate a selected ion of interest. The coincidence 
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spectrum is a display of all ions which are co-emitted with the ion of interest. 

Monitoring ion co-emission allows one to observe chemical distributions on surfaces at 

the spatial resolution of individual impact events. An example of how ion co-emission 

can be used to extract information about nanometric surface features is given in Chapter 

VI. Coincidence analysis has been expanded in the SAMPI program to include 

investigations of double-coincidence (spectra that produce two ions of interest) and anti-

coincidence (all spectra that do not produce the ion of interest). 

Time of Flight Mass Spectrometry 

 All mass spectra reported in the following chapters were acquired using time of 

flight (ToF) mass analysis. As the name suggests, ToF mass spectrometry measures 

differences in the times of flight for ions of different masses but identical kinetic 

energies. For a reflectron ToF arrangement, the total time of flight measured for a given 

ion is a sum of the time spent in each of the accelerating, first field free, reflectron, 

second field free, and decelerating regions, as shown in Equation 2.9. 

                               (2.9) 

The time spent in the accelerating region is determined by the Coulomb force acting on 

the charged particle in a uniform accelerating field. (Equation 2.10)  

       
      

 

     
 (2.10) 

where   is the particle mass,      is the distance across the accelerating region,   is the 

charge of the particle, and      is the accelerating voltage applied. The time spent in the 
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first and second field free regions can be found by assuming all potential energy of the 

accelerating field is translated into kinetic energy, as shown in Equation 2.11. 

           
 

 
    (2.11) 

where   is the velocity at the exit of the accelerating region. Rearranging and inserting 

the velocity definition (Equation 2.12), we obtain Equation 2.13. 

   
 

 
 (2.12) 

               
 

      
 (2.13) 

where      is the distance travelled in field free region 1 or 2. Time spent in the 

reflectron depends on the depth to which the ions penetrate (    ). This depth is given 

by Equation 2.14. 

      
 

  
 

     

       
 

     

    
 (2.14) 

where   is the length of the reflectron. The time required to penetrate to this depth is 

        
    

   
 (2.15) 

and the total time in the reflectron is 

              
     

   
 

     

 
 (2.16) 

The time spent in the decelerating region (created by the voltage applied to the font of 

the detector) is given by 

      
     

                       

      
 (2.17) 
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where      is the distance travelled in the decelerating region and      is the voltage 

applied to the detector. Incorporating all times we obtain Equation 2.18. 

                               

  
      

 

     
    

 

      
 

     

 
    

 

      
 

     
                       

      
 (2.18) 

This equation shows that the ToF for a given ion is proportional to the square root of its 

mass. The mass of any peak in a time of flight spectrum can be determined using a mass 

calibration to convert the ToF spectrum to a mass spectrum. Practically this is done by 

fitting Equation 2.19 to two or more known ToF/mass data points. 

            (2.19) 

where a is the slope and b is the intercept of a line. Depending on the spread of times 

measured for a given ion, the resultant peak in the mass spectrum will have a mass 

resolution ( ) of 

   
    

   
 

 

  
 (2.20) 

where    and    are the full widths of the time or mass peak at half the maximum 

intensity, respectively. The mass resolution parameter is a measure of the precision with 

which an ion mass is measured, with higher mass resolution being desirable. 
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CHAPTER III 

BI-DIRECTIONAL EMISSION FROM THIN CARBON FOILS 

 IMPACTED BY MASSIVE PROJECTILES
*
 

  

Introduction 

 It has long been recognized that the impact of hypervelocity massive clusters on 

solids differs in the resultant dynamics from those occurring for atomic or small cluster 

ions of comparable velocities
89, 94-96

. Yet little is known about this impact regime, 

beyond observations of impact craters/holes and reports of abundant secondary ion (SI) 

emission
47, 91, 97

. Visualization of impacts of individual massive clusters, e.g. 100 – water 

molecule ions or Aun
+q

 (100 ≤ n ≤1000; q = 1-10) at velocities of 10 to 100 km/s on thin 

carbon films shows craters of size and depth roughly correlated with the projectile size 

and energy
98-100

. Remarkably, their range significantly exceeds that of equal velocity 

atomic ions, a feature attributed to the clearing-the-way effect
58, 59

. This effect is not 

observed for polyatomic ions with up to seven atoms
101

 but is observed in simulations of 

13 atoms
102

. The effect also seems to disappear for projectiles with >200 keV/atom
103

. 

The morphological observations and molecular dynamic simulations indicate an energy 

deposition process in a hydrodynamic flow
61

. A distinct characteristic of the massive 

cluster solid impact is the extreme energy density and pressure transient. This provides a 

                                                 
*
 Part of this chapter is reprinted with permission from “Bidirectional Ion Emission from 

Massive Gold Cluster Impacts on Nanometric Carbon Foils” by J.D. DeBord, S. Della-

Negra, F.A. Fernandez-Lima, S.V. Verkhoturov, and E.A. Schweikert, 2012. The 

Journal of Physical Chemistry C, Copyright [2012] by the American Chemical Society. 
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medium for chemical reactions under non-classical conditions as they may occur, for 

example, in impacts of hypervelocity nano-sized dust particles in interstellar space
104

. 

 Data from previous impact experiments and simulations are ‘unidirectional’, that 

is, they either record the surface morphology or ejecta from the impact side, or they 

document projectile transmission with visualization of holes in carbon foils or excisions 

in virus particles
105

. In this study we recorded the concurrent SI emission in both 

directions from a thin carbon foil so that we could evaluate the parameters of the 

massive cluster – solid interaction which affect the SI emission, with particular attention 

given to the projectile size and target thickness. 

Experimental Details 

A schematic for the experimental setup is shown in Figure III-1. The instrument 

consists of a dual time of flight (ToF) mass spectrometer which permit the analysis of 

SI’s emitted from both sides of a thin carbon foil bombarded by massive clusters. A 

negative accelerating potential is applied to the thin foil sample while 90% transmission 

grids on either side of the target are maintained at ground. The transmission and 

detection efficiencies are equivalent for both ToF legs. For the presentation and 

discussion of the results we have decided to designate SI ejection back in the direction of 

incoming projectiles as backward emission and SI ejection in the opposite direction 

where, for some experiments, the projectiles exit the foil as forward emission. The 

impact of a massive cluster is detected via electron emission in the backward direction 

after magnetic deflection. The electron signal given by a microchannel plate detector 

serves as the start for both the forward and backward ToF measurements. This procedure 
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Figure III-1. Experimental setup for bi-directional ToF analysis 

 of SI’s from thin carbon foils. 
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creates the same impact trigger independent of sample thickness and avoids artifacts 

from holes in the foils. In order to monitor the fate of projectiles that pass through the 

foil, a second thin foil is utilized. For these experiments, both foils are positioned 

between the grounded extraction grids with the distance between the two foils estimated 

at 100 µm. 

Amorphous carbon foils with thicknesses of 5, 15, 20, and 40 nm were obtained 

from the Arizona Carbon Foil Company (Tucson, AZ). The thickness values given by 

ACF were monitored by Rutherford Backscattering (and the energy loss by Au1 at 0° 

incidence) with the range of the thicknesses being ±15% for a large area. Foils for mass 

spectrometric analysis were supported on an 81% transmission nickel grid. The 30° 

incidence angle of the projectile increases the path length by 15% (5, 15, 20, and 40 nm 

become 5.8, 17.3, 23.1, and 46.2 nm, respectively). 

Gold cluster beams were provided by the 130 kV Pegase platform described in 

ref. [85]. The different beams used include Au3
+
 and massive Aun

+q
 clusters with n/q = 

30, 50, 100, and 200. Beam specifications (energy, charge, etc.) are presented in Table 

III-1 with the median charge states extracted from data given in ref. [57].  

The experiments have been performed event by event with a bombardment rate 

of less than 1000 Hz whereby the term event refers to the impact of a single projectile 

and subsequent detection of emitted secondary ions prior to the impact of the next 

projectile. The impact frequency is achieved through the use of collimators and kHz 

range pulsation. A more detailed description of the event by event methodology can be 

found in ref. [73]. The n/q selection is monitored by the projectile ToF measurement 
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Table III-1. Gold Cluster Projectile Characteristics 

n/q <q> 
energy/q 

(keV) 

energy/at 

(keV/at) 

total 

energy 

(keV) 

n
2/3

 

area
a 

ET/n
2/3 

energy per 

unit area
a 

30 3 110 3.7 330 20 16.43 

50 3 110 2.2 330 28 11.69 

100 4 110 1.1 440 54 8.10 

200 5 110 0.55 550 100 5.50 

100 4 125 1.25 500 54 9.21 

 
a 
The cross-sectional area and energy per unit area are obtained assuming a ballistic model 

 (i.e., projectile range is proportional to the energy per unit area). 



 

57 

 

between the pulsing plates and the detection of electrons emitted backward from the 

target. 

Characterization of the Amorphous Carbon Foil Targets 

Separate samples were prepared for transmission electron microscopy (TEM) 

analysis by mounting the 5, 15, and 20 nm foils on copper TEM support grids. These 

samples were impacted with 130 qkeV Au100q
+q

 projectiles at an impact angle of 45
o
. 

Bright field TEM images were then obtained using an FEI Tecnai G
2
 F20 ST FE-TEM 

for impacted and non-impacted samples of each thickness. All analyses were performed 

with 200 keV electrons incident normal to the foil surface. 

Transmission electron microscopy was used to investigate the projectile 

bombardment. The foils were found to be largely intact, uniform, and free from pinholes. 

The TEM images provided in Figures III-2, III-3, III-4, and III-5 show surface features 

created by 130 qkeV Au100q
+q

 projectiles in 5, 15, 20, and 40  nm carbon foils, 

respectively. For the 5 nm foil, the amorphous carbon is completely removed from the 

tracks such that a hole is created, as shown by the lack of grainy features inside the hole. 

Similar holes were also observed for the 15 and 20 nm thick carbon foils, though some 

amorphous carbon material remains within the tracks either as a result of surface 

relaxation or incomplete penetration (Figures III-3 and III-4). The diameters of holes in 

the 5 nm foil range from 3-12 nm with the majority of holes measuring ~10 nm. Hole 

diameters in the 15 nm foil are reduced by nearly a factor of two relative to holes in the 5 

nm foil. Interestingly, the density of holes observed in the 5 and 15 nm foils are similar 
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Figure III-2.  (left) TEM image obtained from a 5 nm thick carbon foil impacted with 130 qkeV Au100q
+q

 projectiles. 

Projectile tracks appear as lighter circular regions. (right) High magnification image of a hole in the 5 nm foil shows the width 

of the hole to be approximately 10 nm. 
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Figure III-3.  (left) TEM image obtained from a 15 nm thick carbon foil impacted with 130 qkeV Au100q
+q

 projectiles. 

Projectile tracks appear as lighter circular regions. (right) High magnification image of partial holes in the 15 nm foil. 
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Figure III-4.  (left) TEM image obtained from a 20 nm thick carbon foil impacted with 130 qkeV Au100q
+q

 projectiles. 

Projectile tracks appear as lighter circular regions. (right) High magnification image of partial holes in the 20 nm foil. 
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Figure III-5.  (left) TEM image obtained from a 40 nm thick carbon foil impacted with 130 qkeV Au100q
+q

 projectiles. 

(right) High magnification image of projectile tracks in the 40 nm foil. 
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with ~10
9
 holes/cm

2
, but the number of holes in the 20 nm foil is drastically reduced. In 

fact, the tracks shown in Figure III-4 are only visible due to their contrast against a rare 

graphitic defect in the 20 nm foil. This result suggests that most of the projectiles are 

unable to pass through the 20 nm foil, and therefore brackets their range between 15 and 

20 nm. TEM images of the 40 nm amorphous carbon foil (Figure III-5) reveal graphitic 

particles formed during the manufacturing process which appear as dark features in the 

micrograph. These features represent only a small portion of the total surface area and 

are not expected to largely influence SI emission or projectile ranges. Projectiles tracks 

are barely visible in the 40 nm foil, especially under high magnification. These images 

provide direct evidence of projectile penetration through the impacted foils and provide 

a basis for interpreting the results that follow.  

The simultaneously acquired forward and backward mass spectra from 125 qkeV 

Au100q
+q

 projectiles impacting a 15 nm thick carbon foil are presented in Figure III-6. 

The carbon clusters emitted backward (Figure III-6a) show an odd-even oscillation 

similar to that observed with various other energy deposition mechanisms (e.g. 

collisional and electronic sputtering, laser ablation) on different carbon structures
48, 106-

108
. The well-studied backward cluster emission, with maxima of Cn

-
 occurring for even 

values of n, is explained by cluster ion fragmentation within the accelerating region
107

. 

The distribution of co-emitted clusters in the forward direction differs significantly from 

the backward distribution. Another significant difference between the spectra is the near 

absence of H
-
 and C

-
 in the forward mass spectrum. As shown in Figure III-6, the 

emission of molecular ions (lauryl sulfate, C12H25SO4
-
, mass 265; alkylbenzene 
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Figure III-6. Negative mode ToF mass spectrum obtained in the (a) backward and  

(b) forward directions from a 15 nm thick carbon foil impacted by 125 qkeV Au100q
+q

 projectiles. 
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sulfonate derivatives, C15-19H26-32SO3
-
, masses 294, 298, 312, 326, 340) attributed to 

surfactant chemicals is observed in the backward direction but not in the forward 

direction. All experiments have been performed with the same conditions of target 

preparation without surfactant observation in the forward direction. The reproducibility 

of the results has been measured in the forward direction, with a maximum yield 

variation of ±12.5 %, but no alteration of the carbon cluster distribution. In the backward 

direction, the ratio Y(Cn)/Y(CnH) changes by ~ 20 %, with this variation being related to 

the contribution of the surfactant. 

The experimental setup described allows for the study of effects induced by the 

variation of different instrumental parameters.  These parameters and the corresponding 

observables are summarized in Table III-2. For a given energy and cluster size the range 

and linear energy loss in a given solid are fixed. Therefore, variation of the sample 

thickness permits the observation of the energy density, interaction depth, and energy 

transfer mechanism in both the forward and backward directions. Similarly, we are able 

to determine the influence of the energy/velocity for a given projectile and the influence 

of the projectile size by adjusting these respective variables. 

Effect of Foil Thickness of Secondary Ion Emission 

Figure III-7 presents the simultaneously acquired ion yields in the forward and 

backward directions for three different foil thicknesses. In the case of the 5 nm foil 

(Figure III-7a), the SI yields and the Cn
-
 cluster distributions are similar for both 

directions. The momentum transfer process does not play a role in forward emission and 

the energy deposited by the projectile in the target volume induces almost the same SI 
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Table III-2. Summary of the Information Provided by Various Experimental Parameters 

parameters measurements information 

beam 

(Aun
+q

) 
sample SI emission backward emission forward emission 

velocity & 

n fixed 
thickness yields as f(thickness) depth of interaction 

depth of interaction or 

attenuation range 

velocity & 

n fixed 
thickness 

cluster distribution 

as f(thickness) 

depth of interaction, 

electronic excitation, 

coherent effect 

coherent motion signature 

velocity for a  

fixed n 
thickness 

yields as f(thickness), 

cluster 

distribution 

as f(thickness) 

influence of the impact 

energy 

range as f(V), 

energy loss as f(V), 

coherent motion 

n for a given 

velocity 
thickness 

yields as f(thickness), 

cluster distribution 

as f(thickness) 

influence of n 

range as f(n), 

coherent motion, 

energy loss as f(n) 
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Figure III-7.  Yields for H
-
 and carbon cluster (Cn

-
) species obtained in the 

forward and backward directions from (a) 5, (b) 15, and (c) 20 nm thick carbon foils 

impacted by 125 qkeV Au100q
+q

 projectiles. Corresponding interaction figures shown at 

right. 
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emission. The interaction volume and ion formation process are the same for both sides 

of the foil. This is supported by the observation of H
-
, C

-
, and C2

-
 and similar CnH

-
 

distributions. For the 15 nm foil (Figure III-7b), Cn
-
 and CnH

-
 distributions are different 

between the two directions. The backward emission is similar to that obtained with the 5 

nm carbon foil with H
-
, C

-
, and C2

-
 emission and a Cn

-
 distribution slightly shifted to 

larger clusters. This comparison indicates that the emission process does not change 

drastically and that the energy available for emission increases for the thicker foil. 

Concerning the forward emission, there is a significant shift toward carbon clusters with 

a high number of constituents as shown in Figure III-7. There is an increase of the total 

ion emission but a decrease in the yields of light ions such as H
-
, C

-
, CH

-
, and C2

-
. These 

results indicate that the emission process is different for the two sides and that the energy 

deposited in the solid is probably higher than in the 5 nm case. These two points are 

attributed to the increased interaction volume, where more projectile energy can be 

deposited. In the case of the 20 nm foil (Figure III-7c), the forward and backward carbon 

cluster distributions are similar to the previous 15 nm foil. The yields do not change for 

the backward direction, though a small shift toward higher mass is observed in the 

carbon cluster distribution relative to the 15 nm foil. These results indicate that the 

forward and backward emission processes do not change for the 15 and 20 nm foils. The 

backward SI yields are almost equal to the previous values, a sign that the plateau for 

energy deposition has been reached. In other words, the increased foil thickness does not 

increase the amount of energy useful for backward SI emission. Therefore, the depth of 

interaction must be smaller than 17.3 nm (15 nm/sin 30°). On the contrary, the increase 
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of the thickness from 15 nm to 20 nm induces a decrease of the forward SI emission by a 

factor of 10 without modification of the carbon cluster distribution. The rate of H
-
, C

-
, 

CH
-
, and C2

-
 emission disappears or is very low. The two consequences of this 

observation are that the added distance of 5.8 nm introduces an important attenuation for 

the energy transfer to the surface and that the depth of interaction for forward emission is 

less than 5.8 nm. The slowing down of the projectile leads to a decrease of the energy 

deposited at the foil surface facing the forward direction. This result allows the range of 

the Au100q
+q

 massive projectile in amorphous carbon at these energies to be bracketed 

between 15 and 20 nm, which is consistent with the TEM results. This range value 

deviates from the ballistic projection, where the theoretical range is proportional to the 

energy per cross sectional area as given in Table III-1. Such a deviation can be explained 

by electronic stripping which generates a high charge state on the projectile and causes 

additional slowing. The measured range lies between that of equal velocity atomic ions 

(3-6 nm for this energy range) and the range calculated from a ballistic model (~100 

nm). 

 The carbon cluster yields can be approximated by lognormal distributions as seen 

in Figure III-8. These curves show the increase of the average mass of the Cn
-
 

distribution as a function of the thickness for forward emission. The odd and even 

carbon clusters are addressed independently to show the lognormal fits have nearly the 

same function for each, despite the oscillatory nature of the yields. The curves show a 

general shift toward larger average cluster size with the increasing foil thickness, despite 

the yield reduction for the 20 nm foil. Analysis of the backward spectra (data not shown) 
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Figure III-8. Lognormal fits of the odd and even carbon cluster distributions  

of 5, 15, and 20 nm carbon foils observed in the forward direction. 
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reveals two contributions to the final cluster distribution: one for the light carbon species 

(C
-
, C2

-
, and C3

-
) and a second for the larger clusters. It appears that the mechanism for 

creation of lighter species is absent in the case of forward emission. 

Effect of Projectile Size and Energy on Secondary Ion Emission 

Forward and backward SI emission from a 15 nm thick carbon foil impacted by 

the gold trimer and various massive gold clusters are shown in Figure III-9. The 

interaction of Au3
+
 with a solid is very well defined, in particular for forward emission 

where only the independent collision cascades play a role. In this case, only atomic ions 

and small carbon clusters are emitted. The backward spectrum reveals the emission of 

larger carbon clusters out to C14
-
, but with yields 2-3 orders of magnitude lower than the 

massive projectiles. Concerning the massive clusters, the backward SI yields and carbon 

cluster distributions are the same for all massive cluster projectiles. The process of 

emission does not change with the nano-droplet constituent number from 90 to 1000 

gold atoms. The nearly constant value of the SI yields, regardless of the projectile, is 

surprising because with this set of projectiles the nano-droplet cross section increases by 

a factor of 5, the total energy by a factor of 2, and the range in the frame of a ballistic 

approach decreases by a factor of almost 3. The forward SI yields present a two order 

increase as a function of the projectile constituent number (n). This pronounced behavior 

does not largely affect the carbon cluster distribution. The process of ionic emission does 

not change, but the results indicate that the slowing down of the smaller particles is 

much quicker than that of the heavier particles, in spite of a much higher initial velocity. 

This observation contradicts the ballistic approach which may not apply in this velocity  
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Figure III-9. Negative ion yields for H
-
 and carbon cluster species obtained in the forward and backward directions from a 15 

nm thick carbon foil impacted by various size Aun
+q

 clusters at 110 qkeV.
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range. Also, for these clusters which have a majority of atoms at the surface of the 

projectile, atoms can be easily stripped or peeled during the penetration such that the 

shrinking or fragmentation of the projectile ultimately leads to the shorter range. For 

heavy particles, this process exists, but the inner core constitutes a more significant 

portion of the projectile and stripping does not significantly reduce the size of the 

projectile. 

The main result from this experiment is that the forward carbon cluster 

distribution is not affected by the massive projectile size or velocity; only the yields are 

increased for larger or faster projectiles. The forward emitted H
-
, C

-
, and C2

-
 yields 

increase more rapidly than the larger carbon clusters. The ionic emission of light 

elements requires processes which can only occur when the projectile velocity is not too 

low at the exit surface. Projectile passage across the surface leads to electronic 

excitation, allowing for an electron attachment mechanism. 

In Figure III-10, a comparison of the forward SI yields for massive clusters of 

different sizes and impact energies reveals the plateau of SI emission for the 15 nm thick 

carbon foil. There is a clear threshold of projectile size that develops, such that the n/q = 

30 and n/q = 50 projectiles are not capable of generating the maximum SI yields due to 

their supposed range limitations. Also, within the energy range of these experiments (95-

125 qkeV) there is only a moderate increase in the forward SI yields. This suggests that 

the n/q = 100 and n/q = 200 projectiles at these energies are able to fully penetrate the 15 

nm foil and deposit similar amounts of energy at the exit surface.
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Figure III-10. The carbon cluster ion yields in the forward direction from a 15 nm 

thick carbon foil as a function of projectile size and energy. 
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Projectile Fate After Impact 

As mentioned above, determining the fate of the projectile is critical for 

understanding the interaction it has within the solid. It is possible to observe the final 

state of the projectile after passage through the foil indirectly by monitoring the forward 

SI emission. Figure III-11 shows the forward SI yields from a single 5 nm foil as 

compared to two 5 nm foils separated by a 100 µm wide gap between. We observe an 

order of magnitude reduction in the SI yields between the single and double foil targets 

while maintaining nearly identical cluster distributions. It may be noted that the total 

thickness of the stacked foils is less than the 15 nm foil which gave abundant forward 

emission as shown in Figure III-7b. Using SI emission as an indicator for projectile 

transmission, we can assume that less than 10% of the projectiles penetrate the second 

foil sufficiently to cause emission in the forward direction. The most likely cause for this 

reduction is that the projectile fragments significantly at the exit of the first foil, 

generating smaller projectiles at low velocities which go on to impact the second foil. If 

the projectile retained most of its mass, then we would expect total ion yields 

comparable with the 5 and 15 nm thick carbon foils, signaling complete penetration. 

Instead, the data suggests that during passage within the solid, the massive gold cluster 

exhibits a cohesive motion between its constituents which is capable of generating 

energy deposition conditions suitable for large carbon cluster emission. In other words, 

the atoms of the cluster travel through the material in close proximity to one another, 

even up to depths of 20 nm. However, in the case when the cluster reaches the exit of the  
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Figure III-11. Forward SI yields from a single 5 nm and two stacked 5 nm carbon foils impacted 

by 125 qkeV Au100q
+q

. Proposed interaction schematics are shown for the (top right) 

single foil and (bottom right) stacked foils. 
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solid, the high charge state and internal energy of the projectile likely results in 

fragmentation/Coulomb explosion which reduces the projectile to atomic and small 

polyatomic components. This assumption of a high charge state has been used 

previously to explain the high emission yields of H
+
, H2

+
, H3

+
, and C

+
 observed in the 

backward direction
82

. There are some clusters within the size distribution of the beam 

that may retain a central core after penetration through the first foil which can continue 

on to cause forward emission from the second foil. 

Conclusion 

 We show that the foil thickness determines the observable cluster distribution for 

forward emitted ions, with thicker foils giving distributions shifted toward larger 

clusters. This observation reveals a new mechanism for ion emission based on the 

massive gold clusters’ ability to physically push material out of the carbon foil. The 

process can be considered mesoscopic in nature, akin to hydrodynamic penetration. The 

momentum of the projectile is more efficiently transferred to the ejecta as translational 

energy as opposed to internal, vibrational excitation. The reduction in energy density at 

the exit surface can also be deduced from the virtual absence of light ions in the mass 

spectrum. We suggest that carbon clusters emitted in the forward direction have a lower 

average internal energy than the corresponding backward-emitted clusters. This work 

also gives tangible evidence of projectile size dependent ranges proposed by previous 

theoretical work as a clearing-the-way effect. The ranges are larger than atomic ions of 

the same velocity (between 3 and 6 nm in our experiments), but are five to ten times 
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lower than values predicted by a ballistic model. Using a dual foil experiment, we are 

able to indirectly observe the disintegration of the massive gold clusters at the exit of a 

thin foil. During passage through a solid, the gold cluster constituent atoms are 

minimally scattered, i.e. they travel in a coherent motion. For foil thicknesses which are 

less than the projectile range, the impact energy cannot be dissipated and the projectile 

will fragment once it is no longer confined within the solid. 
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CHAPTER IV 

SI YIELD AND MULTIPLICITY MEASUREMENTS
*
 

 

Introduction 

 Much current research in the field of SIMS focuses on the issue of maximizing 

secondary ion (SI) yields to improve detection efficiency, especially for molecular 

species. Attempts to address this problem have been directed at either enhancing the 

ionization probability of sputtered species through the addition of a matrix, such as 

cesium,
109

 water clusters,
110

 ionic liquids,
111

 or glycerol,
112

 or improving the general 

secondary ion yield through the use of novel primary ions, such as C60,
26

 water 

clusters,
113

 argon clusters,
114

 or metal clusters.
115, 116

 Massive gold clusters have 

previously been proven as a path to improved SI yields.
73

 This research seeks to further 

display the efficiency of the Au400
+4

 projectile at high impact energies by describing the 

types, yields, and multiplicities of secondary ions observed for molecules from a variety 

of different chemical classes. This chapter reports data for various peptides, lipids, and 

small molecules which have been analyzed with the new high voltage Au400 SIMS 

platform. SI yields for the polymer poly(methylmethacrylate) are also provided in this 

dissertation in Chapter VI. Some test molecules are also used to assess the influence of 

impact energy on secondary ion yields within the energy range accessible by this 

                                                 
*
 Part of this chapter is reprinted with permission from “Characteristics of Positive and 

Negative Secondary Ions Emitted from Au3
+
 and Au400

+4
 Impacts” by J.D. DeBord, F.A. 

Fernandez-Lima, S.V. Verkhoturov, E.A. Schweikert, and S. Della-Negra, 2012. Surface 

and Interface Analysis, Copyright [2012] by John Wiley and Sons. 
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instrument as well as by comparison to measurements with other instruments. 

Measurements performed at 280-520 keV represent a relatively unexplored energy 

regime for the Au400
+4

 projectile, as previous experiments have been restricted to impact 

energies significantly higher
82

 or lower
72

 than those currently available. These previous 

measurements serve as a benchmark for assessing the overall performance of the new 

instrument. 

Peptides 

 The ability to detect and quantify peptide molecules on surfaces presents an 

important analytical challenge due to their pervasive biological relevance. The limited 

masses of many small peptides make them accessible for the SIMS technique, as 

evidenced by the many reports of SIMS peptide analyses.
117-122

 However, many of these 

studies are limited to the analysis of peptide fragment ions rather than the intact 

molecular species due to the low molecular ion yields afforded by atomic and small 

polyatomic projectiles. This significantly complicates unambiguous identification of 

peptide species, especially within a complex matrix. The use of multivariate statistics to 

generate fingerprint identifications of peptides from the fragment ions allows researchers 

to circumvent the need for molecular ions.
123, 124

 However, the ability to generate high SI 

yields of peptide molecular ions via SIMS greatly simplifies their analysis and 

eliminates the need for intensive spectral processing. To assess the efficiency of Au400 in 

this capacity, the current study presents molecular and fragment ion yields measured 

from four different peptides: leucine-enkephalin, angiotensin I, angiotensin II, and 

angiotensin III. 
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 Experimental Details. All peptides were purchased from Sigma Aldrich (St. 

Louis, MO). One mg/mL solutions of each peptide in 1:1 MeOH/H2O were electrospray 

deposited in atmosphere onto either stainless steel supports(negative mode) or gold-

coated silicon wafers (positive mode) from Silicon Vally Microelectronics (Santa Clara, 

CA). Substrates were chosen to eliminate spectral interferences because each displays 

limited ion emission in their respective polarities. Spectra containing ~10
6
 impact events 

were acquired using the experimental setup described in Chapter II. All data was 

collected using the event-by-event detection methodology with the negative ion analyses 

performed in chamber 1(520 keV impact energy) and positive analyses performed in 

chamber 2 (440 keV impact energy). Up to eight isobaric ions can be detected per 

impact event using the eight anode detector previously described. 

Types of Peptide Ions Observed. Representative negative and positive ion spectra 

for leu-enkephalin (YGGFL, Figure IV-1) are characterized by the abundant emission of 

intact molecular ion signals (transmission corrected yield of 1.7 molecular ions per PI in 

negative mode) as well as abundant small fragment ions (<200 amu), including peaks 

corresponding to atomized products such as  CN
-
 (transmission corrected yield of 2.1 in 

negative mode) and individual amino acid residues L, F, and Y. Peaks corresponding to 

the apparent synthetic impurity YGGGFL, which contains an extra glycine residue, and 

the leu-enkephalin dimer ((2M-H)
-
) are also visible as a deprotonated molecular ions in 

negative mode. Peaks corresponding to backbone fragmentation are curiously absent 

from the 200-500 mass region of the two spectra with the exception of the b2 and y2 

fragments observed in positive mode. Additional analysis of leu-enkephalin  
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Figure IV-1. (a) Negative and (b) positive mass spectra for a neat electrosprayed surface of leu-enkephalin analyzed 

by 520 keV and 440 keV Au400
+4

 projectiles, respectively.
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fragmentation as it pertains to the amount of internal energy accumulated in the 

molecule is presented in Chapter V. 

Similar observations of high molecular and fragment ion yields with the near 

absence of backbone fragment peaks are replicated for all other peptides analyzed. The 

negative ion spectrum of Angiotensin I (DRVYIHPFHL, Figure IV-2a) displays 

abundant low mass peaks for CN
-
, CNO

-
, and other small atomization-recombination 

products. Peaks at masses 224 and 249 correspond to the gold adduct ions AuCNH
-
 and 

Au(CN)2
-
, respectively. These species are formed when projectile atoms are re-emitted 

from the surface and combine with the thermodynamically stable CN
-
 species as 

described in previous reports.
77, 99

 These species are observed for nearly all nitrogen 

containing organic molecules when analyzed by Au400 and are seen for all four peptides 

in this study. Immonium ions for the arginine or proline (mass interference), aspartate, 

and histidine are observed in positive mode. A c1 fragment, named according to the 

Roepstorff and Fohlman system,
125

 is the largest identifiable fragment from angiotensin 

I. However, quasi-molecular ion species are observed in both positive and negative 

polarities. The negative spectrum shows a deprotonated molecular ion as well as a peak 

for the loss of water and a peak for the loss of water and ammonia. The positive 

molecular species are distributed among peaks for the protonated, sodiated, and 

potassiated ions. These ions with masses of over 1,300 amu occur with yields similar to 

small fragment species. With smaller projectiles, molecular ion yields are typically more 

than an order of magnitude less intense than small fragments.
126
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Figure IV-2. (a) Negative and (b) positive mass spectra for a neat electrosprayed surface of angiotensin I analyzed by 

 520 keV and 440 keV Au400
+4

 projectiles, respectively.
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Positive and negative ion spectra for angiotensins II and III are provided in 

Figures IV-3 and IV-4, respectively. The angiotensin II spectrum exhibits similar 

characteristics as those previously described. In addition to the immonium fragments and 

quasi-molecular ion peaks, fragments corresponding to the a3 fragment as well as an 

internal RV fragment are observed in positive mode. Reaffirming the assignment of the 

a3 fragment is the presence of a peak for a side-chain loss from the a3 fragment (da3). 

These species are the largest sequence specific fragments observed from the peptides 

analyzed. 

Spectra for angiotensin III reveal quasi-molecular ion peaks intense enough to be 

displayed on the same linear scale the low mass region, a rare observation for SIMS 

analyses. However, the presence of significant Aun
+
 peaks in the positive spectrum 

suggests the deposited sample layer does not completely cover the gold substrate within 

the analyzed beam spot. This means the molecular ion peaks would be even more intense 

given a full surface coverage. 

Peptide SI Multiplicity. By acquiring data using an event-by-event methodology, 

it is possible to access unique fundamental measurements such as the number of ions 

emitted for a given impact event, referred to as the multiplicity. With software developed 

in-house, one can extract not only the total number of ions emitted from an impact (total 

ion multiplicity), but also the number of a selected type of ion emitted per event (ion 

selected multiplicity). Figure IV-5 shows the total and selected ion multiplicities 

extracted from the negative mode leucine-enkephalin spectrum in Figure IV-1. Also 
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Figure IV-3. (a) Negative and (b) positive mass spectra for a neat electrosprayed surface of angiotensin II analyzed by 

 520 keV and 440 keV Au400
+4

 projectiles, respectively.
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Figure IV-4. (a) Negative and (b) positive mass spectra for a neat electrosprayed surface of angiotensin III analyzed by 

 520 keV and 440 keV Au400
+4

 projectiles, respectively.
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Figure IV-5. Total negative secondary ion multiplicity distributions for (a) 520 keV Au400

+4
 and (b) 50 keV Au3

+ 
and 

molecular ion selected multiplicity distributions for (a) 520 keV Au400
+4 

and (b) 50 keV Au3
+
 measured per projectile impact 

on a neat electrosprayed surface of leu-enkephalin. Results not corrected for transmission efficiency. 
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shown are the multiplicities observed from an analysis of the same sample using a 50 

keV Au3
+
 projectile. Considering first the case of Au400, the total ion multiplicity plot 

(Figure IV-5a) shows that the most probable number of ions emitted for a given event is 

~10. However the distribution extends out to more than 100 SIs detected per event. This 

causes the average number of SIs to be ~13.3. The selected ion multiplicity for the 

deprotonated molecular ion is similarly impressive, with up to 7 molecular ions being 

detected for some impact events. The detection of such high isobaric multiplicity is by 

no means efficient, considering all seven ions must strike seven out of eight different 

anodes, but it does confirm the existence of such events. The average number of 

molecular ions per impact is 1.7 (as given by the yield), with the distribution showing 

that more than ~75 % of impacts generating at least one molecular ion. It is also 

important to note that the figures given are not corrected for transmission efficiency, 

which is 59 % for this setup. 

 The distributions measured for Au3 impacts (Figure IV-5c,d) show that SI 

multiplicity is much lower for the small polyatomic projectile. For both the total and 

selected multiplicities, the most probable result of a gold trimer impact is that no SIs are 

detected. Even the most efficient Au3 impacts result in the detection of only 12 SIs. The 

multiplicity for molecular ion producing events is even lower, with more than 99 % of 

impacts not producing a detectable molecular ion. There are some events which produce 

up to 3 molecular ions, but the probability of such events is on the order of 10
-6

. For a 

typical acquisition of 10
6
 impacts this amounts to just one or two highly efficient impact 

events. 
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Peptide SI Yields. The yields for CN
-
 and two quasi-molecular ions observed 

from the four sample peptides in negative mode are shown in Figure IV-6a. These yields 

are calculated by dividing the area under the peak of interest by the total number of 

projectiles used to generate the signal (~10
6
). These values are corrected for the 

transmission efficiency in the first analysis chamber ToF (59 %). The graph reveals a 

few interesting trends. First, the yield of CN
-
 is greater than unity in all cases and varies 

by less than a factor of three for the different peptides. Second, the deprotonated 

molecular ion yield appears to show a mass dependence, such that the observable SI 

yield is inversely proportional to the mass of the peptide. Third, the yield of the (M-

H3O)
-
 species increases with the mass of the peptide. This finding suggests that the 

deprotonated molecular ions of larger peptides fragment to generate this water 

elimination product. Figure IV-6b gives the positive ion yields for two amino acid 

residues common to all four peptides (F and Y) as well as the protonated and sodiated 

molecular ion species. These values are corrected for a 90 % transmission efficiency of 

the second chamber ToF. The yields measured for most of these ions are in the range of 

1-10 %, with any mass dependent trends being difficult to discern. It is important to note 

once again that the angiotensin III sample was not completely coated with analyte and 

all yields are therefore underestimated by 10-20 %. The numerical yields for detected 

negative ions from angiotensins I, II, III, and leu-enkephalin are given in Table IV-1. 

Yields for Au(CN)2
-
 detected from each of the peptide samples are also provided. While 

not a characteristic fragment of the peptides, this adduct offers a method for monitoring 
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Figure IV-6. (a) Negative quasi-molecular ion yields measured from angiotensins I, II, 

III, and leu-enkephalin using 520 keV Au400
+4

. (b) Positive ion yields measured for F 

and Y immonium ions as well as the protonated and sodiated molecular ions for all 

peptides analyzed by 440 keV Au400
+4

. Data corrected for 59 % or 90 % transmission 

efficiency in negative or positive mode, respectively.
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Table IV-1. SI Yields for Negative Ions Obtained from Impacts of 520 keV Au400
+4

 on Neat Peptide Targets 

 Angiotensin I Angiotensin II Angiotensin III Leu-Enkephalin 

Ion Mass Yield Mass Yield Mass Yield Mass Yield 

M-H 1295 0.021 1045 0.044 931 [0.92] 554 [1.69] 

2M-H ---- ---- ---- ---- 1860 0.002 1109 0.043 

CN 26 [1.18] 26 [1.74] 26 [2.74] 26 [2.14] 

P/R 68 0.009 68 0.022 68 0.015 ---- ---- 

V 70 0.012 70 0.032 70 0.006 ---- ---- 

I/L 84 0.026 84 0.062 84 0.039 84 0.067 

D 86 0.013 86 0.034 ---- ---- ---- ---- 

R 98 0.025 98 0.061 ---- ---- ---- ---- 

H 108 0.019 108 0.039 108 0.020 ---- ---- 

F ---- ---- 118 0.055 118 0.013 118 0.015 

P ---- ---- 124 0.012 124 0.030 ---- ---- 

Y ---- ---- 134 0.030 134 0.012 134 0.018 

y1 ---- ---- 164 0.010 ---- ---- 130 0.093 

a2-NH3 ---- ---- 225 0.006 ---- ---- ---- ---- 

y2 ---- ---- 261 0.009 ---- ---- ---- ---- 

Y2 265 0.008 ---- ---- ---- ---- ---- ---- 

b2 ---- ---- ---- ---- ---- ---- 219 0.005 

Au(CN)2
-
 249 0.062 249 0.062 249 0.079 249 0.041 

Data corrected for 59% transmission efficiency. Values in brackets are underestimated 

 due to limited detection efficiency of the 8-anode detector for high multiplicity events.
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gold atoms which have been stripped from the projectile and re-emitted from the 

surface.
77, 99

 For the peptides analyzed, this yield varies by only a factor of two, 

confirming the various surfaces have similar densities, atomic compositions, and work 

functions. 

Lipids 

 Lipids play critical roles in the structural integrity of cell membranes,
127

 energy 

storage,
128

 and many other biological functions.
129

 They also constitute the majority of 

dried biological tissue by mass. Because lipids exist at such high natural concentrations 

within biological matter, they have proven particularly amenable to mass spectrometric 

imaging with MALDI and SIMS.
130, 131

 However, as in the peptide example, SIMS 

researchers have traditionally relied on fragment ion signals like PO3
-
 and 

phosphocholine (C5H15NO4P
+
) to map lipid distributions. These small fragments are not 

necessarily representative of the actual lipid distribution and do not provide information 

regarding the molecular composition cellular membranes. This study offers the Au400 

projectile as a means to generate higher SI yields for analytically significant lipid species 

that enable more informative descriptions of lipid distributions.
132, 133

 

Experimental Details. All lipids were obtained from Avanti Polar Lipids 

(Alabaster, AL). The lipid samples were dissolved in a Chloroform : Methanol : Water 

(65:35:8) (v:v) solution and sprayed onto stainless steel or gold-coated silicon wafer  

substrates. Spectra were obtained in the same manner as the peptide analysis. 

Types of Lipid Ion Observed. Five different lipids, each representing different 

lipid classes, were selected to investigate the types of ions which can be observed from 
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Au400 impacts on lipidic surfaces. Figure IV-7 displays positive and negative ion mass 

spectra obtained from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (16:0 PC). 

Characteristic ions from these spectra can be divided into three types: quasi-molecular 

ions, head group fragments, and tail group fragments. The positive spectrum of 16:0 PC 

gives abundant signals corresponding to many different head group fragments (masses 

86, 104, 125, 147, 166, 184, and 206) as well as the sodiated quasi-molecular ion at 

756.6 amu. This list includes the phosphocholine (mass 184) ion unique to lipids from 

the phosphocholine class. Proposed structures for all labeled peaks are provided in 

Figure IV-7. The tail group specific ion at mass 255 is observed only in negative mode 

due to the presence of the carboxylate moiety. Negative mode is also advantageous for 

the observation of PO3
-
, which is the most intense signal in the spectrum. The production 

of 16:0 PC quasi-molecular ions in negative mode necessitates elimination of the 

positively charged aminium group. This type of fragmentation is observed at masses 

718.5, 674.5, and 646.5. An apparent quasi-molecular ion peak positioned at mass 723 is 

observed, though the structure of this species is not obvious. 

 Figure IV-8 shows spectra for 1,2-dimyristoyl-sn-glycero-3-

phosphoethanolamine (14:0 PE). Intense Aun
+
 peaks in the positive spectrum suggest the 

14:0 PE coverage within the analysis spot is less than 100 % allowing for emission from 

the Au substrate. This molecule exhibits similar emission to 16:0 PC because both have 

similar head group structures, as shown by the identified analyte specific peaks. 

Abundant quasi-molecular ions are observed in both polarities via the addition or loss of 

a proton. Sodiated and di-sodiated molecular ions are also observed in positive mode. 
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Figure IV-7. (a) Positive and (b) negative mass spectra for a neat electrosprayed surface 

of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine analyzed by 520 keV and 440 keV 

Au400
+4

 projectiles, respectively.
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Figure IV-8. (a) Positive and (b) negative mass spectra for a neat electrosprayed surface 

of 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine analyzed by 520 keV and 440 

keV Au400
+4

 projectiles, respectively.
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Head group specific peaks are present in both spectra (positive: masses 125 and 147; 

negative: masses 123, 140, and 196) with most species involving rearrangement of the 

phosphoethanolamine group. For tail group specific peaks in the positive mode, a peak at 

mass 496.4 corresponding to the loss of phosphoethanolamine is observed. In negative 

mode, the alkane carboxylate tail group is seen like for 16:0 PC. A peak at mass 424 

from the loss of one fatty acid tail (not observed for 16:0 PC) is also labeled. 

 The sphingomyelin lipid analyzed (d18:1/16:0 SM) belongs to the sphingolipid 

class and consists of a phosphocholine head group mated to a ceramide tail structure. 

The ceramide structure contains a sphingosine tail and fatty acid tail as shown in Figure 

IV-9. Also shown in this figure are the mass spectral features in positive and negative 

polarities which can be attributed to d18:1/16:0 SM. The head group peaks previously 

identified for the phosphocholine head group (positive: masses 86, 104, 125, 147, 166, 

184, and 206; negative: masses 123, 168, and 224) are also present in these spectra. 

Quasi-molecular ion species are shown for both spectra, corresponding either to the 

addition of sodium in positive mode or the loss of the methyl or amminium group in 

negative mode. Curiously, no tail group specific peaks could be identified in either 

polarity. 

 To illustrate the Au400 projectile’s capability for identifying molecular species 

within a mixture, Figure IV-10 shows the negative spectrum obtained from a surface 

coated with a mixture of porcine cerebral sulfatides (major component 18:1/24:0 ST). 

Sulfatides are composed of a sulfated galactosyl head group coupled to a ceramide tail 

moiety. The acquired spectrum exhibits multiple fragments peaks from this sulfated  
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Figure IV-9. (a) Positive and (b) negative mass spectra for a neat electrosprayed surface 

of d18:1/16:0 sphingomyelin analyzed by 520 keV and 440 keV Au400
+4

 projectiles, 

respectively.
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Figure IV-10. Negative ion mass spectrum for a neat electrosprayed surface of a mixture of  

porcine cerebral sulfatides analyzed by 520 keV Au400
+4

 projectiles.  
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Figure IV-11. Major Molecular species observed from a mixture of porcine cerebral sulfatides.
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galactosyl head group including the abundant HSO4
-
 ion and peaks at masses 139, 199, 

257, 259, 261, and 300. Like in the case of sphingomyelin, no ceramide specific peaks 

are observed from the tail group. The peaks listed thus far classify the sample lipids as 

sulfatides, but offer no information regarding the molecular identities of the lipid 

species. In order to identify the actual structures, intact molecular ions are required. 

Figure IV-10 reveals many abundant molecular peaks for sulfatides in the range of 600 

amu to over 1300 amu. The structures for the most abundant species identified using the 

web-based Lipid Maps Structure Database
134

 are shown in Figure IV-11. These lipids, 

found in the 800-1,000 amu range, differ in three ways: (1) the lengths of the 

hydrocarbon tails (2) the presence or absence of a hydroxyl group on the fatty acid tail 

(3) the addition extra galactosyl moieties to the head group. Nearly all peaks in the 600-

1,300 amu range can be attributed to sulfatide-based lipids, with some species containing 

up to six linked saccharides in the head group. The ability to generate quasi-molecular 

ions from this range of sulfatide species is clearly essential for their proper 

identification. 

 The last lipid considered is 1-stearoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (18:0/18:1 PG). This lipid features a glycerophosphate head group which is 

linked to two fatty acid chains. The negative ion spectrum in Figure IV-12 reveals peaks 

corresponding to head (masses 153, 171, 211, 227) and tail (masses 281, 283, 509, and 

511) group fragments as well as the deprotonated molecular ion (mass 775.5). This list 

of peaks accounts for most of the abundant species with masses greater than 100 amu. 
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Figure IV-12. Negative ion mass spectrum for a neat electrosprayed surface of 1-stearoyl-2-oleoyl-sn-glycero-3-phospho-(1'-

rac-glycerol) analyzed by 520 keV Au400
+4

 projectiles.
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Au3 and Au400 Comparison. At higher masses, it is possible to observe dimer and 

trimer species of the 18:0/18:1 PG molecular ion. This is shown in Figure IV-13 ,which 

compares spectra obtained from the same 18:0/18:1 PG sample using 130 keV Au3
+
 and 

480 keV Au400
+4

 projectiles. This comparative measurement is made using the same 

instrumentation, detection scheme, and sample for both projectiles. In the case of 130 

keV Au3
+
, previous studies have shown that secondary ion emission reaches its 

maximum around 30-40 keV/atom 
135

; that is, the spectrum shown in Figure IV-13a 

corresponds to a near optimal impact energy for the polyatomic projectile (130 keV/3 ≈ 

43 keV/atom). A comparison between Figure IV-13a and 13b shows that the molecular 

ion signal for Au400
+4

 impacts increases by just over two orders of magnitude relative to 

Au3
+
 impacts. Also, the production of dimer and trimer species is unique to the massive 

cluster projectile. 

Energy Dependence of Lipid SI Yields. Figure IV-14 shows the variation of 

secondary ion emission as a function of projectile kinetic energy for the case of Au400
+4

 

impacts on a 18:0/18:1 PG model target. The secondary ion yield increases with 

projectile energy for all abundant analyte-specific and molecular ion signals. The 

negative ion yields displayed in Figure IV-14a increase by approximately 1.5-fold over 

the 340-520 keV energy range. Despite this rather limited energy range, it is possible to 

establish the trend of increasing ion yields. Also, the molecular ion yield appears to 

increase proportionally with the fragment species, such that greater fragmentation at 

high impact energies is not observed. 
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Figure IV-13. Negative ion mass spectra for a neat electrosprayed surface of 1-stearoyl-2-oleoyl-sn-glycero-3-phospho-(1'-

rac-glycerol) analyzed by (a) 50 keV Au3
+
 and (b) 520 keV Au400

+4
 projectiles, respectively. 
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Figure IV-14. Negative ion yields measured from 1-stearoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) using Au400 

over a range of impact energies. Data corrected for 59 % transmission efficiency.
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Lipid Ion Yields. Transmission corrected ion yields for all lipids discussed above 

are compiled in Table IV-2. The selected yields include the most abundant head group, 

tail group, and molecular ion observed for each species where available. Additional 

abundant quasi-molecular ions are included as well. PO3
-
 represents the most abundant 

species observed from the four phospholipid classes analyzed (18:0/18:1 PG, 16:0 PC, 

14:0 PE, and d18:1/16:0 SM). The transmission corrected yield for this species was 

greater than unity for three of the four molecules. The ion yields for all other fragment 

and molecular ions range from one percent up to a few ten’s of percent (0.01-0 .29 

SIs/projectile). 

Organic Molecules Below 300 amu 

 In addition to “large” molecule analysis, massive cluster remain viable for the 

investigation of smaller molecules as well. This section reports SI yields for these 

species with limited molecular masses. The test subjects selected for this study include a 

common synthetic precursor material (p-toluenesulfonic acid), a hormonal drug 

(diethylstilbestrol), a plastics additive (bisphenol A), an amino acid (glycine), and a 

series of benzylpyridinium salts used measure the internal  energies of emitted species in 

Chapter V. 

Experimental Details. P-toluenesulfonic acid, diethylstilbestrol, bisphenol A, 1-

(4-nitrobenzyl)pyridinium bromide), and glycine were purchased from Sigma Aldrich 

(St. Louis, MO). 1-(4-methoxyphenyl)methylpyridinium tetrafluoroborate, 1-(4-

methylphenyl)methylpyridinium bromide, and 1-(4-chlorophenyl)methylpyridinium 

chloride were purchased from the Florida Center for Heterocyclic Compounds 
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Table IV-2. Positive and Negative Secondary Ion Yields for Various Lipids Analyzed by 520 keV (Negative 

Mode) and 440 keV (Positive Mode) Au400
+4

 

 

Ion Polarity Species 18:0-1 PG 16:0 PC 14:0 PE 16:0-1 SM 24:0-16:1 ST 

Negative  

PO3
-
 (79) [2.50] [1.83]  [1.68] [0.80] ----- 

Head Group 0.29 (153) ----- 0.070 (140) 0.099 (166) ----- 

Tail Group 0.27 (281) 0.18 (255) 0.25 (277) ----- ----- 

(M-H)
-
 0.15 (775.5) ----- 0.074 (635.5) 0.19 (689)* 0.28 (891) 

(2M-2H+Na)
-
 0.038 (1574) ----- 0.022 (1294) ----- ----- 

(3M-3H+2Na)
-
 0.010 (2373) ----- ----- ----- ----- 

Positive 

Head Group ----- 0.20 (184) 0.035 (125) 0.40 (184) ----- 

(M+H)
+ 

----- ----- 0.082 (636.4) ----- ----- 

(M+Na)
+ 

----- 0.16 (756.5) 0.033 (658.4) 0.17 (726.6) ----- 

Ion masses given in parentheses. Data corrected for 59 % and 90 % transmission efficiencies in negative and positive modes, 

respectively. *Yield for (M-CH3-H)
-
 given. Values in brackets are underestimated due to limited detection efficiency of the 8-

anode detector for high multiplicity events.
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(Gainesville, FL). 1-(4-cyanobenzyl)pyridinium chloride was purchased from 

Otava (Toronto, Ontario, Canada). One mg/mL solutions of each molecule in 1:1 

MeOH/H2O were electrospray deposited in atmosphere onto either stainless steel 

supports(negative mode) or gold-coated silicon wafers (positive mode) from Silicon 

Vally Microelectronics (Santa Clara, CA). Substrates were chosen to eliminate spectral 

interferences because each displays limited ion emission in their respective polarities. 

Spectra were acquired as described previously. 

Types of Small Molecule Ions Observed. A series of small organic molecules are 

presented as test subjects for establishing the ion yields expected for molecular species 

in the low mass range. Negative ion spectra for three of these example molecules are 

included in Figure IV-15. All three molecules display intense deprotonated quasi-

molecular ion and dimeric molecular ion peaks. The p-toluenesulfonic acid (PTSA, 

Figure IV-15a) and diethylstilbestrol (DESB, Figure IV-15b) samples additionally give 

sodiated dimer species. The low mass regions (< 100 amu) of the diethylstilbestrol and 

bisphenol A (BPA) spectra contain carbon clusters of oscillating intensity, with even-

numbered clusters being more intense. This behavior is commonly observed for anionic 

carbon clusters.
107

 

The positive ion spectra measured for a series of five benzylpyridinium (BPY) 

salts are shown in Figure IV-16. These molecules are used to evaluate ion internal 

energies in Chapter V, but are presented here as models for positive SI yield 

measurements. The spectra are generally characterized by the production of only two 

analyte specific peaks corresponding to the intact molecular ion (M
+
) and the fragment  
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Figure IV-15. Negative ion mass spectra for neat electrosprayed surfaces of 

 (a) p-toluenesulfonic acid, (b) diethylstilbestrol, and (c) bisphenol A 

 analyzed using 520 keV Au400
+4

 projectiles.
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Figure IV-16. Positive ion mass spectra for neat electrosprayed surfaces of 

 (a) p-OCH3, (b) p-CH3, (c) p-Cl, (d) p-CN, and (e) p-NO2 BPY salts analyzed using 520 keV Au400
+4

 projectiles.
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formed through loss of a neutral pyridine ring ((M-C5H5N)
+
). The positive spectra shown 

also exhibit alkali metal contaminants Na
+
, K

+
, and Cs

+
. Surface mass spectrometry is 

particularly sensitive to alkali metal contamination due to the high ionization efficiencies 

of these ions.
136

 The cesium contamination observed derives from the CsI standard used 

to calibrate the ToF mass spectrometer. CsI is sputtered during analysis, coating nearby 

electrodes and allowing for transfer to subsequent samples which are analyzed. Inclusion 

of both analyte specific peaks, the alkali ion peaks, and an Au
+
 peak from the substrate 

in the p-NO2 BPY spectrum accounts for all major peaks observed in the spectra. 

Small Molecule Ion Yields. SI yields measured for p-toluenesulfonic acid, 

diethylstilbestrol, bisphenol A, and the amino acid glycine are provided in Table IV-3. 

The molecular ion yields for BPA and DESB are quite similar at 22 % and 31 %, 

respectively. A much higher molecular ion yield is measured for PTSA (206 %), likely 

due to the excellent ionization efficiency of the strong acid. Yields for the dimers of each 

species are again similar for BPA and DESB (~ 1.0 % each) with PTSA giving a yield 

nearly an order of magnitude higher (9.0 %). The PTSA spectrum also shows a peak for 

the trimer with a yield of nearly 1 %. 

Glycine is included in this ion yield investigation due to its previous use as a 

yield calibration standard at various Au400 impact energies.
82

 The glycine yields 

provided have been corrected for absolute detection efficiency, meaning these values 

account for a 59 % transmission efficiency and a ~35 % detection efficiency using an 

MCP detector for 10 keV ions in this mass range. This analysis shows that over six 

deprotonated glycine molecules are emitted on average for each Au400 impact event. The  
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Table IV-3. Negative Ion Yields for Various Small Organic Molecules Analyzed by  

520 keV Au400
+4

 

 

Molecule Ion Mass Yield 

Bisphenol A 

(M-H)
- 

227 0.22 

(2M-H)
-
 455 0.013 

Au
-
 197 0.017 

Diethylstilbestrol 

(M-H)
-
 267 0.31 

(2M-H)
-
 535 0.017 

Au
-
 197 0.014 

p-Toluenesulfonic acid 

(M-H)
-
 171 [2.10] 

(2M-H)
-
 343 0.090 

(3M-H)
-
 515 0.008 

SO3
-
 80 [0.62] 

Au
-
 197 0.018 

Glycine 

(M-H)
- 

75 [6.50] 

(2M-H)
-
 149 [0.91] 

CN
- 

26 [10.2] 

Au(CN)2
- 

249 0.38 

Au
-
 197 0.041 

 

Data corrected for 59 % transmission efficiency. Glycine data was acquired at 400 keV and is corrected  

for a 35.4% transmission and detection efficiency. Values in brackets are underestimated due to limited  

detection efficiency high multiplicity events using the 8-anode detector.
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yield for the CN
-
 fragment is even higher at over 10 SIs per impact. Moving to the 

glycine dimer (91 %) and Au(CN)2
-
 adduct (38 %) it is obvious that Au400

+4
 at 400 keV 

is capable of producing very high ion yields for some small molecule species. 

Energy Dependence. As suggested, glycine SI yield measurements have been 

performed over a range of energies and these previous measurements offer an excellent 

standard for assessing performance of the current instrumentation. Figure IV-17 shows 

data collected for glycine using the first generation gold cluster SIMS instrument at 

TAMU, the M.P. Tandem accelerator at the Nuclear Institute of Physics in Orsay 

(France), and the second generation gold cluster SIMS instrument at TAMU. The trend 

lines added show excellent agreement for the CN
-
, (M-H)

-
, and (2M-H)

-
 ion yields across 

the range of energies tested. The Au(CN)2
-
 yield measured is less than that predicted by 

the trendline by about a factor of 2.5. An explanation for this may be that the current 

measurement was performed in a reflectron ToF while previous measurement were done 

using a linear arrangement. If the gold adduct exists as a metastable ion, this species may 

dissociate in flight and be lost before detection. Despite this difference, the other ion 

yields presented establish both that SI yields in the 100 qkeV range fall on the previous 

trendlines and that the current instrumentation is operating properly. 

 A second example of the energy dependence of SI yields for small molecules can 

be provided using the BPY salts. The yields for the molecular ions of all five BPY 

species are plotted against the projectile kinetic energy used over the range of 160-440 

keV in Figure IV-18. The positive molecular ion yields measured in the second analysis 

chamber increase by nearly two orders of magnitude over this energy range. This 
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Figure IV-17. Negative ion yields measured from a neat glycine surface using Au400 over a range of impact energies.  

Absolute yields are reported, accounting for transmission and detection efficiencies. Part of the data reported in this figure is 

reprinted with permission from “Massive Clusters: Secondary Emission from qkeV to qMeV. New Emission Processes? New 

SIMS Probe?” by S. Della-Negra, J. Depauw, C. Guillermier, and E.A. Schweikert, 2011. Surface and Interface Analysis, 43, 

62-65, Copyright [2011] by John Wiley and Sons.
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Figure IV-18. Positive ion yields measured from neat BPY salt surfaces using Au400 over a range of impact energies.  

All yields are measured in coincidence with an H
+
 start signal and are corrected for 90 % transmission efficiency.
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variation is significantly greater than the factor of 1.5 increase observed for the 

18:0/18:1 PG example in negative mode. The reason for the drastic change in measured 

ion yields derives from the method of obtaining the ToF measurement. The event-by-

event methodology used necessitates a trigger particle to initiate the ToF measurement. 

In negative mode electrons serve as the start signal while in positive mode protons are 

used. The electron yields measured for a variety of surfaces using C60 and Au400 impacts 

have shown that many electrons are produced for each projectile impact.
89, 90

  

Despite previous reports of high H
+
 yields at slightly higher Au400 impact 

energies,
82

 this and other unpublished experiments suggest the proton yields decrease 

drastically with impact energies at the low end of the range being measured. This 

observation may be convoluted by decreased ion transmission through the magnetic 

deflector employed (see Chapter II). The result of a proton yield below unity is that 

instead of measuring the actual number of SIs per impact, the number of SIs emitted 

coincidentally with H
+
 is measured. This ability to measure coincidental ion emission 

can be used advantageously to monitor ion co-location (see Chapter VI), but in this case, 

the SI yield must be reported as relative to the detection of H
+
 start signals. Numerical 

values for the BPY ion yields are provided in Table IV-4. SI Yields for the 440 keV 

impact energy are the most reliable as the proton yield is expected to be close to if not 

greater than unity. The molecular ion yields at this impact energy range from 34 % to 61 

% for the various ions and the fragment ion yields range from 7.8 % to 119 %. The 

fragment ion yields vary significantly more due to differing fragmentation activation  
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Table IV-4. Positive SI Yields Measured for Various BPY Molecular and Fragment 

Ions Analyzed by Au400
+4

 at Different Impact Energies 

  Impact Energy (keV) 

Molecule Ion 160 280 360 440 

p-OCH3 
M

+ 
0.008 0.038 0.28 0.37 

(M-C5H5N)
+ 

0.070 0.31 1.24 [1.19] 

p-CH3 
M

+ 
0.014 0.067 0.39 [0.61] 

(M-C5H5N)
+ 

0.033 0.14 0.79 [0.94] 

p-Cl 
M

+ 
0.016 0.081 0.29 0.44 

(M-C5H5N)
+ 

0.027 0.14 0.43 [0.55] 

p-CN 
M

+ 
0.044 0.10 0.45 [0.55] 

(M-C5H5N)
+ 

0.047 0.10 0.37 0.37 

p-NO2 
M

+ 
------ 0.052 0.32 0.34 

(M-C5H5N)
+ 

------ 0.019 0.097 0.078 

 

Data corrected for 90 % transmission efficiency. Values in brackets are underestimated due to limited detection efficiency of 

the 8-anode detector for high multiplicity events. Yields measured using H
+
 as the ToF trigger particle.
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barriers for the molecules as discussed in Chapter V. SI yields on the order of 10
-9

 SIs/PI 

have previously been reported for the p-OCH3, p-Cl, and p-CN BPY molecules.
137

 This 

gives 440 keV Au400
+4

 roughly 8 orders of magnitude greater SI yields for these BPY 

salts. 

Inorganics 

Sample Preparation. CsI was purchased from Sigma Aldrich (St. Louis, MO).  

A One mg/mL solution of the salt in 1:1 MeOH/H2O was electrospray deposited in 

atmosphere onto a stainless steel supports. Mass spectra were obtained as described 

previously. 

Types of CsI Ions Observed. Cesium iodide has been used extensively as a mass 

spectrometric calibration standard and the types of observable ions have been well-

documented.
138

 The spectra and ion yields for CsI are reported as a means of gauging 

projected ion yields for similar inorganic salt materials. The positive and negative 

spectra of CsI shown in Figure IV-19 are characterized by the production of salt clusters 

coupled with a single anion or cation ((CsI)nCs
+
 or (CsI)nI

-
). The negative ion spectrum 

shows CsI clusters out to (CsI)9I
-
 at mass 2467 with each sequentially larger cluster 

reducing in intensity. The positive spectrum shows an even more extended distribution 

reaching out to (CsI)14Cs
+
 at mass 3773. It is important to note that this spectrum was 

acquired in the first analysis chamber using an H
+
 start generated without a strong 

deflecting magnet. Instead, all 8 of the CFD ports were summed to give the start signal 

while retaining the multiplicity afforded by the multi-anode detector. The transmission 

corrected SI yields for CsI clusters in both polarities are reported in Table IV-5. Yields 
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Figure IV-19. (a) Negative and (b) positive mass spectra for a neat electrosprayed 

surface of CsI analyzed by 520 keV and 340 keV Au400
+4

 projectiles, respectively.
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Table IV-5. Ion Yields Measured for CsI Clusters Analyzed with 

520 keV (Negative Mode, (CsI)nI
-
) and 340 keV (Positive Mode, 

(CsI)nCs
+
) Au400

+4
 

CsI Cluster Number Negative Ion Yield Positive Ion Yield 

0 [8.761] [7.161] 

1 [7.532] [7.138] 

2 [2.593] [3.272] 

3 [0.774] [0.907] 

4 0.273 [0.633] 

5 0.092 0.213 

6 0.082 0.193 

7 0.041 0.100 

8 ------ 0.062 

9 ------ 0.054 

10 ------ 0.038 

11 ------ 0.034 

12 ------ 0.029 

13 ------ 0.026 

14 ------ 0.022 

 

Data corrected for 59 % transmission efficiency. Values in brackets are underestimated 

due to limited detection efficiency of the 8-anode detector for high multiplicity events.
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reported for clusters 0-3 are underestimated due to the high yields of these species and 

the inherent limitations of the 8-anode detector (see Chapter II). The yields measured for 

the range of CsI cluster sizes stretch from ~ 8 SIs per impact for the Cs
+
 and I

-
 species 

down to a few percent for the largest clusters. 

Conclusion 

 The spectra and yields reported in this chapter offer a metric for assessing the 

efficiency of the Au400 projectile over a range of different chemical classes. The spectra 

are characterized with the production of many analytically significant peaks, including 

the molecular ion for all test cases. SI yields greater than unity are observed for easily 

ionizable small fragments (CN
-
, PO3

-
) low mass molecular ions (YGGFL, PTSA, CsI) 

with higher mass molecules giving yields in the range of 10
-2

 to 1 SIs/PI. These values 

are as much as 8 orders of magnitude greater than yields reported for atomic 

bombardment.
137

 

Total and selected SI multiplicities are reported for the peptide leu-enkephalin 

using the Au3 and Au400 projectiles. This comparison offers an insight into the efficiency 

of the Au400 projectile, given some events that produce upwards of 100 total SIs per 

event and 7 molecular ions per event. 

The utility of higher impact energies is shown by comparing SI yields for a range of 

impact energies. These measurements, performed with a glycerphospholipid, amino acid, 

and BPY salts, confirm that SI yields increase with projectile kinetic energy. This 

finding validates the effort invested in constructing this second generation instrument.
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CHAPTER V 

MEASUREMENT OF THE SECONDARY ION 

INTERNAL ENERGY DISTRIBUTION
*
 

  

Introduction 

Mass spectrometrists have long recognized the importance of ion internal energy 

for understanding the relative abundances of mass spectral peaks.
139

 The challenge is to 

quantify the amount of energy imparted to gas phase ions as a function of the ionization 

technique or other experimental parameters. Two approaches for observing secondary 

ion internal energies are presented. The first approach uses the pentapeptide leu-

enkephalin, a well-known calibration standard in mass spectrometry. Detailed 

descriptions of this molecule’s fragmentation enables its use as a measure of the internal 

energy accumulated during ionization
140

. Measurements using this fragmentation model 

are qualitative, allowing for rough comparisons to other excitation techniques. 

To extract more quantitative information regarding the energies of SIs emitted 

from massive metal cluster impacts, a second approach using tailored benzylpyridinium 

(BPY) probe ions is used. This suite of molecules is attractive for understanding the 

parameters involved in the generation and manipulation of gas phase ions because: (1) 

fragmentation largely proceeds via a single pathway; (2) substitution on the benzyl ring 

                                                 
*
 Part of this chapter is reprinted with permission from “Characteristics of Positive and 

Negative Secondary Ions Emitted from Au3
+
 and Au400

+4
 Impacts” by J.D. DeBord, F.A. 

Fernandez-Lima, S.V. Verkhoturov, E.A. Schweikert, and S. Della-Negra, 2012. Surface 

and Interface Analysis, Copyright [2012] by John Wiley and Sons. 
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enable control of the fragmentation activation barrier; (3) the series of molecules are all 

similar in mass and structure, giving them similar detection efficiencies in mass 

spectrometric applications; (4) the use of an organic molecular system should allow for 

extrapolation to predict internal energies of larger organic species. The benzylpyridinium 

ion system has been used to characterize a variety of ionization techniques including 

electrospray ionization,
141

 desorption electrospray ionization,
142

 matrix-assisted laser 

desorption ionization,
143

 electrospray droplet impact,
144

 atomic projectile secondary ion 

mass spectrometry (SIMS),
137, 145, 146

 and cluster projectile SIMS.
147

  

Two methods for applying these “thermometer ions” are described. The first 

utilizes the survival yield method first proposed by De Pauw et al.
141

 Internal energy 

distributions for species emitted from Au400
+4

 and Au3
+
 impacts are measured and 

compared to distributions previously measured for other ionization techniques. Again, 

like the leu-enkephalin model, this approach is largely qualitative and while useful for 

relative comparisons, does not provide the desired absolute quantitation. To achieve 

more accurate quantitation, a novel procedure for measuring internal energies using the 

BPY ions is presented for the case of Au400
+4

 impacts.  

Leucine-Enkephalin Model 

The leu-enkephalin sample was prepared and analyzed as stated in Chapter IV, 

with the negative (Figure V-1a) and positive (Figure V-1b) ion spectra for leu-

enkephalin characterized by abundant emission of intact molecular ions and immonium 

fragment ions. Only two backbone fragmentation peaks, the b2 and y2 fragments are 
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Figure V-1. (a) Negative and (b) positive mass spectra for a neat electrosprayed surface of leu-enkephalin analyzed by 

520 keV and 440 keV Au400
+4

 projectiles, respectively. 
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observed in positive mode, yet these have low intensities relative to the smaller 

fragments and molecular ion. Typically amino acid residues, such as the F, Y, and L 

immonium ions observed, result from multi-step fragmentation processes.
140

 These 

fragmentation mechanisms which are often observed in collision or surface induced 

dissociation (CID or SID) spectra necessitate the survival of many species along the 

fragmentation tree
140

. The observation of immonium ions without the corresponding 

parent ions suggests that these ions do not originate from traditional gas phase 

fragmentation processes but are instead formed under the high temperature/high pressure 

conditions within the projectile track.  

Molecular dynamics simulations have shown that the energy densities which 

develop within the track and at the crater rim are quite different
148

. This suggests there 

two general types of emission which can occur from Au400 impacts. Emission can occur 

from within the highly energized crater volume resulting in highly fragmented species, 

or from the crater rim resulting in molecular emission. Simulations and experimental 

results have indeed shown that molecular emission occurs from the rim of the impact 

crater, resulting in ions with internal energies sufficiently low that they survive for 

analysis 
94, 149

. Comparing to reported CID spectra of leu-enkephalin,
140

 we can 

approximate the internal energies imparted to molecular species. The ratio of intact 

molecular ions to backbone fragments is greater than that obtained with 9eV CID, 

suggesting the species emitted from the rim of Au400 impact craters have relatively lower 

internal energies. However, the ratio of backbone fragments to immonium ions is 

smaller than that observed in a 20 eV CID spectrum, meaning the other component of 
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the emission (close to “ground zero”) exhibits much greater initial internal energies than 

the collisionally activated ions. 

BPY Ion Survival Yield Method 

Figure V-2 shows the favored fragmentation pathway for a generic BPY ion 

which yields a substituted benzyl fragment ion (F
+
) and a neutral pyridine (Py

0
) 

molecule. By changing the benzyl side group, the activation barrier for this reaction can 

be modified such that different BPY ions can be used to probe various points along the 

internal energy distribution. Both theories of calculation described below utilize the 

framework of this tunable fragmentation pathway  

 

 

M+ F+ Py0

R

N
+

R

CH2

+

N

+

 

Figure V-2. Preferred Fragmentation Pathway for Benzylpyridinium Ions 

 

 

All samples were prepared and analyzed as described in Chapter IV. Five BPY 

molecules (p-OCH3, p-CH3, p-Cl, p-CN, and p-NO2) with a broad range of C-N bond 

strengths were chosen for experimental investigation. A representative spectrum for p-

CH3 BPY is provided in Figure V-3. The parent (mass 184) and daughter (mass 105) ion 

peaks represent the only identifiable signals from the BPY salt. Other abundant spectral 



 

126 

 

 

Figure V-3. Mass spectrum of p-CH3 BPY ion generated by 440 keV Au400
+4

 impacts. 

Fragmentation tail is highlighted in red. 
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signatures correspond to common surface contaminants (pump oil, residual gas, etc.). 

Preliminary measurements using the BPY ions were performed according to the original 

survival yield method.
146, 150

 This method entails plotting a quantity known as the 

survival yield versus the calculated activation barrier for each BPY ion. The survival 

yield is defined as the ratio of intact ions detected to the sum of intact and fragment ions 

detected as shown in Equation 5.1. 

     
  

      
 (5.1) 

This figure of merit quantifies the fraction of molecular species which survive for 

detection. Plotting these values against the corresponding C-N bond strengths, which 

were previously calculated via quantum mechanical calculations at the AM1 level,
151

 

generates a breakdown curve as shown as shown in Figure V-4a. Boundary conditions 

are assumed such that  the survival yield for theoretical molecules having critical bond 

energies of 0 eV and 3.5 eV would have survival yields of 0 and 1, respectively.
141

 These 

data points can be fitted with a sigmoidal curve, which upon differentiation gives the 

distribution of internal energy accumulated on the C-N bond for all molecules. Figure V-

4a shows the survival yield plots along with their sigmoidal fits for 440 keV Au400
+4

 and 

110 keV Au3
+
. Also plotted are previous data from the literature acquired using 

electrospray ionization (ESI)
142

 and fast atom bombardment (FAB)
146, 150

. The resultant 

internal energy distributions for the various ionization methods are shown in Figure V-

4b. The ESI and FAB experiments serve as references for well-recognized methods of 

“soft” ionization. The interesting feature common to all data except the FAB data from 
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Figure V-4. (a) Breakdown curves and (b) internal energy distributions for various ionization techniques. ESI data is 

 from ref. [142]. The 1991 FAB data is from ref. [150] and the 1986 FAB data is taken from ref. [146]. 
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ref. [150] is that they each have narrow internal energy distributions spanning from 

approximately 1-3 eV. The FAB data from ref. [150] displays a much broader internal 

energy distribution which tails off to much higher energies than the other plots shown. 

The differences between the two sets of FAB data are not addressed in the literature, but 

can likely be attributed to differences in experimental conditions. The positions of each 

distribution along the energy axis should be considered qualititative such that ions 

formed from Au3
+
 and Au400

+4
 impacts have relatively higher internal energies as 

compared to ESI and FAB. The kinetic shift calculations proposed in refs. [141, 152] to 

render this data quantitative are beyond the scope of this study. The current calculation is 

assumed to underestimate the actual internal energy distributions for Au3
+
 and Au400

+4
 

impacts, though the relative comparisons to ESI and FAB are maintained with such a 

systematic error. The similarity between these distributions is rather surprising 

considering the high energy densities created by the impacting projectiles. The narrow 

internal energy distribution for SI’s produced from Au400
+4

 impacts confirms the 

observation from peptide spectra that molecular ion emission results from a “soft” 

desorption/ionization mechanism. The fact that the Au400
+4

 distribution is shifted relative 

to FAB is also significant because these previous articles suggested that the extraction of 

analyte species from liquid matrices rather than solid surfaces reduces the internal 

energies of secondary ions. The present results support this prediction.  

However, as stated above, these distributions are not proper measures of the 

actual internal energy of the ion population but are instead defined as the sum of energy 

accumulated on the fragmenting bond. With this somewhat awkward definition, the 
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survival yield method is still useful as a comparative measure of internal energy by 

modifying parameters on a given instrument,
153

 but do not provide absolute values which 

can be directly compared across instrumentation and ionization techniques. This 

shortcoming is due to the fact that this procedure ignores the time domain.The time 

dependence of the fragmentation process necessitates an additional theoretical 

description of how the fragmentation rate for a given molecule depends on the internal 

energy imparted.  

BPY Ion Variable Fragmentation Ratio Method 

Subsequent studies have improved theoretical treatment of the BPY system to 

account for the time domain.
137, 154, 155

 For all three studies, RRKM unimolecular 

fragmentation theory was used in this capacity. Two of these recent studies recalculated 

the original AM1 critical bond energies at the B3LYP level to improve calculation 

accuracy and offered alternate descriptions of BPY ion transition states. Naban-Maillet 

et al.
155

 used a simple pre-exponential factor to characterize the transition states of all 

BPY ions. In a more rigorous approach, Morsa et al.
154

 performed DFT calculations to 

obtain ground state oscillator frequencies. However, the authors arbitrarily defined the 

transition state frequencies by eliminating the cleaving oscillator and reducing five 

random frequencies by 25%. 

In this section, the theoretical framework for extracting internal energy 

information from the analysis of BPY “thermometer” ions is revisited in two distinct 

thrusts. Firstly, the critical bond energies for all BPY ions are systematically re-

evaluated at semi-empirical, density functional, and ab initio levels of theory. 
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Additionally, the ground and transition state oscillator frequencies are calculated at each 

point along a relaxed potential energy scan to generate a fully developed quantum 

mechanical description of each molecule. Secondly, a novel approach to extracting ion 

rate constant and lifetime distributions for these ions from time of flight analyses is 

introduced. These developments allow for direct conversion of the experimentally 

measured rate constant distribution into an internal energy distribution via the RRKM 

formalism.
156, 157

 

Computational Details. All calculations were performed using the Gaussian 09 

suite of software.
158

  Density Functional Theory
159

 (DFT) calculations were performed 

using the B3LYP (Becke-3 exchange
160

 and Lee-Yang-Parr correlation
161

 functional) 

level of theory and a Pople triple- quality basis set with diffuse and polarization 

functions (BSI=6-311++G(2d,p))
162, 163

.  Full geometry optimizations were performed 

and stationary points were characterized via analytical frequency calculations for the 

parent, daughter ion, and pyridine molecules unless otherwise specified.  MP2/BSII 

(second-order Møller-Plesset perturbation theory
164

, BSII=6-311++G(d,p)
162, 163

) 

geometry optimizations and frequency calculations were performed on the p-Cl parent, 

daughter ion, and pyridine.  Dissociation energies were calculated from CCSD(T)/BSII 

(Coupled-Cluster Singles and Doubles with perturbative triples) Single Point Energies 

(SPE) calculations at the B3LYP/BSI optimized geometries 

(CCSD(T)/BSII//B3LYP/BSI).  Dissociation energies were also calculated at the 

AM1,
165 HF/BSI,

166
 B3LYP/BSI, MP2/BSII//B3LYP/BSI, MP3/BSII//B3LYP/BSI, 

MP4(SDQ)/BSII//B3LYP/BSI, and CCSD/BSII//B3LYP/BSI levels of theory.   Lastly, 
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the dissociation energy of the p-Cl model was also calculated at the 

CCSD(T)/BSII//MP2/BSII level.   

Sample Preparation. 1-(4-nitrobenzyl)pyridinium bromide was purchased from 

Sigma Aldrich (St. Louis, MO). 1-(4-methoxyphenyl)methylpyridinium 

tetrafluoroborate, 1-(4-methylphenyl)methylpyridinium bromide, and 1-(4-

chlorophenyl)methylpyridinium chloride were purchased from the Florida Center for 

Heterocyclic Compounds (Gainesville, FL). 1-(4-cyanobenzyl)pyridinium chloride was 

purchased from Otava (Toronto, Ontario, Canada). One mg/mL solutions of each BPY 

salt in 1:1 MeOH/H2O were electrosprayed onto separate gold-coated silicon wafers 

(Silicon Valley Microelectronics, Santa Clara, CA). 

Mass Spectrometry. All analyses were performed using the custom-built SIMS 

instrument described previously (Chapter II). Two time of flight spectra were generated 

for each BPY salt sample using 5 and 10 kV secondary ion accelerating potentials 

applied to the target. This procedure allows for the observation of ion fragmentation 

across two distinct time windows. The floating potential applied to the LMIS was 

adjusted to offset the potential applied to the sample which decelerates the projectile. In 

this way, a final impact energy of 110 x q keV (440 keV for Au400
+4

) is obtained 

regardless of the target potential. Upon impact, any secondary ions formed are 

accelerated (5 or 10 kV) across an 11 mm gap toward a 90% transmission grid 

maintained at ground. An electromagnet is used to deflect H
+
 (protons) toward a chevron 

microchannel plate (MCP) assembly. The prompt H
+
 signal generated is used to register 

the projectile impact and serves as a start for the ToF measurement. Secondary ions mass 
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40 and above traverse the magnet with minimal deflection along 1.019 m field free flight 

path. Ions pass through a second 90% transmission grid where they are post-accelerated 

across a 33 mm gap towards a second MCP detector which signals each ion arrival time. 

A diagram of the instrument setup is provided in Figure V-5. All secondary ions signals 

are acquired for each projectile impact event prior to subsequent impacts, with ~10
6
 

summed impact events constituting each mass spectrum. 

p-NO2 BPY Ion Exclusion. An original assumption in the survival yield method is 

that fragmentation proceeds exclusively along the pathway shown in Figure V-1. This 

means that the survival yield can be determined by considering only the M
+
 parent and 

F
+
 fragment. However, a detailed investigation of the p-NO2 spectrum (Figure V-6) 

reveals peaks at masses 90, 122, 169, and 199 which can be assigned to additional 

fragment species. This finding means the survival yield calculation should account for 

these products. When this correction is applied to the 440 keV Au400 breakdown curve in 

Figure V-4a, the breakdown curve in Figure V-7 is generated. This figure shows that the 

sigmoidal curve fit is greatly improved when accounting for the multiple pathways of 

fragmentation. The presence of these competitive fragmentation pathways for the p-NO2 

species is presumably due to the high C-N bond strength which becomes comparable 

with other bonds throughout the molecule. This analysis suggests the p-NO2 BPY ion 

does not follow a single fragmentation pathway as previously reported. As a result, this 

species is deemed unsuitable for the current investigation and is excluded from 

subsequent experimental considerations. 

 



 

134 

 

 

 

Figure V-5. (a) Schematic view of various electrode positions and ion trajectories.  

(b) Electrostatic potentials along the secondary ion flight path. Diagrams not drawn to scale. 
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Figure V-6. Mass spectrum of p-NO2 BPY ion generated by 440 keV Au400

+4
 impacts 

 showing multiple fragmentation products.
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Figure V-7. Survival yield values for five BPY ions generated by 440 keV Au400
+4

 impacts. 
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Bond Dissociation Energy Calculations 

The bond dissociation energies previously reported for the BPY ions were 

calculated nearly a decade ago at a computationally inexpensive, semi-empirical level 

(AM1).
167

 These values are critically important for an accurate measurement of the 

internal energy and so we initiated a study to reevaluate them at a variety of 

computational levels. This was done by calculating the zero-point energies of the intact 

ion, the daughter ion, and neutral pyridine for each of the BPY ions. The activation 

barrier for the reaction in Figure V-1 can be approximated by subtracting the zero-point 

energy of the parent from the sum of the daughter ion and neutral pyridine energies as 

shown in Equation 5.2.  

    
           

           
         

  (5.2) 

The results of these calculations are shown in Figure V-8 with their numerical values 

provided in Table V-1.  

This figure shows that the dissociation energies for each molecule vary by as 

much as an electronvolt across the levels of theory investigated. At the low end, AM1 

and B3LYP/BSI energies show modest agreement with the HF/BSI values. However, 

increasing the level of ab initio theory from HF/BSI to MP2/BSII//B3LYP/BSI (which 

accounts for dynamic electron correlation) results in a significant increase in the 

calculated bond strengths. As evermore computationally expensive models are 

considered, moving from MP2/BSII//B3LYP/BSI to MP3/BSII//B3LYP/BSI, 

MP4(SDQ/BSII//B3LYP/BSI, CCSD/BSII//B3LYP/BSI, and finally 

CCSD(T)/BSII//B3LYP/BSI, calculated values begin to converge about the
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Figure V-8. Dissociation energies calculated for five different benzylpyridinium ions at various levels of theory. 
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Table V-1. Dissociation Energies for Selected BPY Thermometer Ions 

              
  (eV) 

Level of 

Theory 
-OCH3 -CH3 -Cl -CN -NO2 

AM1 1.372 1.615 1.760 1.953 2.198 

B3LYP 1.325 1.699 1.890 2.282 2.400 

HF 1.146 1.523 1.746 2.129 2.291 

MP2 2.117 2.508 2.609 2.926 2.999 

MP3 1.893 2.275 2.419 2.772 2.886 

MP4 1.815 2.236 2.370 2.737 2.855 

CCSD 1.817 2.241 2.372 2.742 2.865 

CCSD(T) 1.840 2.267 2.375 2.736 2.843 
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CCSD(T)/BSII//B3LYP/BSI numbers. The agreement between the four highest level ab 

initio models serves as a confirmation that the molecular systems are adequately 

described. For the purpose of this study, dissociation energies calculated at the gold 

standard CCSD(T) level will be used. Dissociation energies for the full series of BPY 

ions from the literature have been recalculated at the CCSD(T)/BSII//B3LYP/BSI level 

and are presented in Table V-2. 

Measurement of the Rate Constant Distributions 

Time of flight mass spectrometry is well suited to determining ion fragmentation 

rates because the time domain is monitored directly. Fragmentation of ions in an 

accelerating field results in the production of daughter ions which exhibit a velocity 

deficit measurable by time of flight. Such a spread in velocities appears in the mass 

spectrum as tail on the fragment peak that extends upward in mass towards the parent 

ion as shown in the Figure V-3 inset. However, the observed peak is also a superposition 

of the kinetic energy distribution and instrumental apparatus function, which typically 

complicates extraction of the pure fragmentation component. The unimolecular 

fragmentation rate  
  

  
  of an ion is governed by the amount of internal energy available 

and can be described using a superposition of exponential decays as shown in Equation 

5.3: 

 
  

  
               

    

 
  

           

 

    

 
 (5.3) 

where      and      are the maximum rate constant and lifetime, respectively, for a 

given ion and   is equal to    .      and      are the distributions of rate constants 
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Table V-2. CCSD(T)/BSII//B3LYP/BSI 

Dissociation Energies for the Full Series of 

BPY Thermometer Ions 

Benzyl Substituent              
 (eV) 

*p-OCH3 1.840 

*p-CH3 2.267 

*p-Cl 2.375 

p-Br 2.371 

p-F 2.392 

o-CH3 2.393 

m-CH3 2.417 

m-OCH3 2.491 

-H 2.500 

m-F 2.668 

*p-CN 2.736 

m-CN 2.794 

*p-NO2 2.843 

 3,5-NO2 3.133 

*Molecule used in this study. 
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and lifetimes generated by the distribution of internal energies. A model previously 

reported in [168] uses the two-parameter power law function shown in Equation 5.4 to 

reproduce the conditional distribution of k values present in the fragmentation tail. 

 
  

  
                  (5.4) 

This function approximates the superposed exponential decays, retaining information 

about the initial internal energy distribution. Rather than directly fitting the function to 

the tail, we use its integral (Equation 5.5) to describe the area under the fragment peak. 

                     
  

 
 

              
    (5.5) 

This serves to normalize the effect of the initial ion kinetic energies and apparatus 

function. Here    corresponds to the time after projectile impact. When measuring the 

fragment peak area, the upper time boundary of the integration window determines the 

time frame over which fragmentation is monitored. The parent peak area can similarly 

be equated to the fraction of the initial population which does not fragment within the 

accelerating region as shown in Equation 5.6: 

                       
    

 
 

              
    (5.6) 

where      is the total time an intact parent ion spends in the accelerating region. In order 

to evaluate the a and c parameters, it is necessary to first generate a fragmentation ratio 

quantity which is analogous to the survival yield quantity described above. This ratio, 
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defined in Equation 5.7, must be measured under two different experimental conditions 

which probe different time windows of observation. 

  
  

  
 

            
   

               
 (5.7) 

This was done by measuring 
  

  
 at two different ion accelerating voltages (5 and 

10 kV) for each sample. In this way, the parent ion spends different amounts of time 

within the accelerating region and undergoes more or less fragmentation accordingly. 

This generates two versions of Equation 5.7, each with its own unique 
  

  
,   , and      

values. This system of two equations can then be solved to determine the common a and 

c parameters. Through the derivation provided in [168], it is possible to express the rate 

constant and lifetime distributions of the parent ion as a function of the calculated a and 

c parameters as shown in Equations 5.8 and 5.9.  

      
            

      
 (5.8) 

      
         

        
 (5.9) 

Rate constant and lifetime distributions calculated for the p-OCH3, p-CH3, p-Cl, and p-

CN BPY ions are provided in Figure V-9. Significant changes in the fragmentation ratios 

 
  

  
  were observed for the p-OCH3, p-CH3, and p-Cl BPY ions. However, the p-CN 

BPY ion fragmentation ratio changes by less than 15%, making the determination of a 

and c for this species less reliable, as evidenced by the shifted rate constant and lifetime 

distributions relative to the other three BPY ions. Despite this shift, the distribution 

ordering is retained. 
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Figure V-9. (a) Rate constant and (b) lifetime distributions measured  

for four BPY ions generated by 440 keV Au400
+4

 impacts. 
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The plots in Figure V-9 reveal the extreme ranges of frequencies and lifetimes 

the rate constant and lifetime distributions respectively cover. Each type of distribution 

correctly orders the four remaining BPY ions according to their critical bond energies. 

For the rate constant distribution (Figure V-9a), this means the slope of the left side of 

the distribution is decreasing for the strongly bound p-CN ion but increasing for the 

weakly bound p-OCH3 species. Each of the distributions rapidly decreases as the rate 

constant approaches the frequency of atomic oscillations. For the lifetime distributions 

(Figure V-9b), the right side of the p-CN distribution is extended toward longer lifetimes 

while the p-OCH3 distribution decreases more rapidly. The other two BPY ions are 

correctly ordered as well. The observed lifetimes are again limited to the time scale of 

atomic oscillations. 

RRKM Unimolecular Fragmentation Theory 

MassKinetics, a free RRKM-based mass spectrometry simulation program,
169

 

was used to calculate the energy dependent reaction rates for each BPY ion. The 

previously determined bond dissociation energies, ground state oscillator frequencies, 

and transition state oscillator frequencies are required for this calculation. The ground 

state frequencies for each parent ion were calculated at the B3LYP/BSI optimized 

geometry. To find the transition state along the bond dissociation reaction, a relaxed 

potential energy scan (B3LYP/BSI) along the C-N bond was performed with a step size 

of 0.1 Å for 30 steps. A frequency calculation was performed at each point and the 

highest point on the reaction path with 1 imaginary mode corresponding to the breaking 

of the C-N bond was used to estimate the transition state and its corresponding 
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frequencies. At longer C-N bond distances, an imaginary frequency emerges for each ion 

whose mode corresponds to a twisting motion of the parent ion and the pyridine (Figure 

V-10). For all ions this imaginary mode appears between 1.9-2.1 Å beyond their 

equilibrium C-N bond distances. Ground and transition state frequencies for the four 

BPY ions are provided in Table V-3. The MassKinetics software uses these frequencies 

to determine the number of quantized energy states at the transition state        
     

and the density of quantum states at the ground state geometry        for each molecule 

according to the traditional RRKM equation: 

      
      

   

     
 (5.10) 

where   is Planck’s constant. A plot of           versus   at a number of discrete 

energy values is generated by the MassKinetics program. These relationships are shown 

in Figure V-11 as the rate constant        versus energy. 

The traces for each ion originate at the critical energy because the reaction can 

not occur for internal energies less than this threshold. Above this threshold the rate 

constant rapidly increases as the internal energy increases but then levels off as the rate 

approaches the frequency of a single bond oscillation. The RRKM relationships show 

that for a given internal energy, the fragmentation rate for more weakly bound BPY ions 

is much higher than those with a greater critical energy. In order to generate an analytic 

function to describe the curves in Figure V-11, each dataset was fitted to Equation 5.11 

using the web-based curve fitting program available at zunzun.com. 

                      (5.11) 
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Figure V-10. Imaginary oscillator mode for the p-OCH3 BPY ion calculated at the B3LYP/BSI  

optimized geometry 2.1 Å beyond the equilibrium C-N bond distance. 
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Table V-3. B3LYP/6-311++G(2d,p) Oscillator Frequencies (cm
-1

) for Selected 

Benzylpyridinium Ions. 

 

p-OCH3 p-CH3 p-Cl p-CN 

Gnd Trans Gnd Trans Gnd Trans Gnd Trans 

14 24 17 9 15 9 17 5 

43 37 42 24 46 18 40 12 

54 53 54 41 50 40 47 15 

106 99 56 49 142 78 117 54 

164 138 159 88 178 92 144 57 

179 151 179 100 247 148 194 98 

220 191 273 166 275 273 260 153 

229 225 286 308 317 302 284 221 

279 242 328 311 365 376 339 352 

331 347 380 377 407 388 405 361 

345 372 407 392 420 392 411 388 

407 398 418 399 435 395 422 389 

430 418 449 423 452 423 448 417 

446 435 491 465 505 516 483 419 

462 446 519 509 601 622 560 556 

526 531 614 624 649 633 562 557 

545 555 657 641 660 665 612 601 

614 627 661 665 689 669 659 615 

651 641 696 686 697 671 662 646 

661 662 723 712 744 713 694 666 

697 708 771 716 774 751 718 711 

728 753 777 758 794 761 758 716 

774 763 786 762 842 838 777 753 

777 771 840 839 846 840 807 759 

792 818 854 846 871 864 847 842 

828 854 868 851 880 886 856 844 

852 866 881 887 952 959 876 873 

869 871 948 959 982 993 877 877 

882 887 975 983 987 999 955 955 

950 966 986 999 988 1005 982 991 

962 982 989 999 1010 1005 988 997 

980 994 1010 1008 1036 1013 993 1005 

988 1001 1018 1013 1043 1019 1006 1010 

1012 1003 1040 1021 1044 1027 1039 1012 

1025 1013 1042 1026 1079 1034 1043 1017 

1040 1020 1044 1027 1109 1048 1045 1022 

1042 1028 1065 1034 1122 1088 1079 1043 
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Table V-3. Continued 

p-OCH3 p-CH3 p-Cl p-CN 

Gnd Trans Gnd Trans Gnd Trans Gnd Trans 

1043 1032 1080 1048 1134 1093 1122 1070 

1079 1045 1121 1051 1141 1109 1145 1085 

1118 1079 1127 1089 1196 1157 1150 1093 

1121 1098 1149 1093 1209 1181 1197 1160 

1146 1119 1195 1165 1230 1213 1205 1179 

1168 1157 1212 1181 1237 1235 1222 1202 

1195 1166 1226 1208 1251 1287 1229 1233 

1201 1185 1234 1234 1295 1330 1235 1238 

1204 1198 1243 1242 1322 1362 1243 1281 

1232 1204 1257 1289 1353 1368 1304 1335 

1242 1229 1291 1347 1378 1388 1327 1371 

1256 1304 1335 1362 1404 1469 1359 1373 

1289 1320 1361 1372 1444 1478 1378 1389 

1304 1332 1379 1388 1489 1505 1405 1463 

1340 1343 1402 1406 1515 1518 1447 1475 

1366 1371 1420 1460 1529 1545 1489 1512 

1378 1386 1448 1480 1535 1567 1518 1517 

1401 1478 1488 1480 1605 1615 1535 1532 

1463 1484 1489 1488 1617 1621 1546 1579 

1477 1488 1494 1514 1632 1634 1599 1613 

1487 1498 1513 1518 1665 3153 1617 1616 

1498 1500 1533 1556 3073 3166 1649 1650 

1501 1509 1551 1573 3123 3173 1665 2316 

1512 1521 1609 1616 3165 3186 2334 3155 

1533 1559 1618 1622 3166 3190 3076 3158 

1552 1573 1647 1644 3199 3190 3126 3159 

1605 1620 1666 3017 3206 3200 3167 3183 

1618 1630 3033 3086 3207 3205 3170 3194 

1646 1642 3071 3128 3211 3212 3199 3195 

1666 3040 3087 3153 3214 3213 3203 3196 

3025 3114 3116 3167 3221 3273 3204 3202 

3070 3160 3121 3172 3228  3212 3211 

3092 3167 3157 3181   3214 3212 

3120 3169 3158 3181   3223 3258 

3155 3176 3177 3186   3227  

3160 3178 3181 3193     

3160 3179 3198 3195     

3198 3192 3209 3200     
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Table V-3. Continued 

p-OCH3 p-CH3 p-Cl p-CN 

Gnd Trans Gnd Trans Gnd Trans Gnd Trans 

3200 3204 3214 3206     

3209 3206 3220 3272     

3214 3210 3229      

3214 3219       

3220 3254       

3227        
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Figure V-11. RRKM relations calculated for four BPY ions. 
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where  ,  , and   are variable parameters. Differentiation of      with respect to   gives 

Equation 5.12: 

 
     

  
 

                      

      
 (5.12) 

Calculation of the Internal Energy Distributions 

The distribution over internal energies for each BPY ion can now be generated 

according to Equation 5.13: 

      
  

  
 

  

     

     

  
 

  
                   

              
   

      

                   

   
 (5.13) 

which is a product of the rate constant distribution (Figure V-9a) and RRKM fitting 

curve derivative. The resulting internal energy distributions are shown in Figure V-12. 

The p-CN BPY ion is shown separately in Figure V-13 because it gives a distribution 

that is wider and shaped differently than the other three molecules. This variation can be 

traced to the minimal change obtained for the fragmentation ratio  
  

  
  measured 

between the 5 and 10 kV accelerating potentials. Similarity in these values results in a 

broad range of a and c values (Equation 5.7) which can satisfy the system of equations. 

This makes their determination less precise and results in a poor description of the 

distribution shape. Conversely, significant differences in fragmentation ratios measured 

for the other three BPY ions make the sizes and shapes of their distributions more 

reliable. The a and c values for all molecules as well as other experimentally measured 

parameters are summarized in Table V-4. The p-OCH3, p-CH3, and p-Cl species give 
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Figure V-12. (a) Total internal energy distributions measured for the p-OCH3, p-CH3, 

and p-Cl BPY ions. Distributions are also normalized (b) to the number of atoms and (c) 

to the number of degrees of freedom. 
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Figure V-13. (a) Total internal energy distribution measured for the p-CN BPY 

ion. Distribution is also normalized to (b) the number of atoms and (c) the number of 

degrees of freedom.
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Table V-4. Summary of Experimentally Measured Parameters for Selected BPY 

Thermometer Ions 

Parameter p-OCH3 p-CH3 p-Cl p-CN 

5 kV 

   (ns) 30.1 30.0 30.1 30.1 

     (ns) 317 304 317 313 

       5.184 2.258 1.623 0.713 

10 kV 

   (ns) 21.5 21.3 21.5 21.3 

     (ns) 224 215 226 221 

      2.949 1.431 1.184 0.607 

  2.201 1.802 1.458 1.157 

  4.732x10
-8 

3.685x10
-8

 1.513x10
-8

 2.490x10
-9

 

  3.982 4.419 4.459 5.026 

  -1.790 -2.200 -2.295 -2.639 

  3.579 1.964 2.245 2.938 

    (eV) 4.291 5.371 5.186 5.925 

         (eV) 0.148 0.192 0.207 0.228 

        (eV) 0.053 0.069 0.075 0.082 
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narrow distributions with a full width of ~1 eV measured at half height. All four BPY 

ions give total internal energy distributions within the approximate range of 4-8 eV. 

Normalizing these distributions according to the number of atoms (Figure V-12b) or 

number of degrees of freedom (Figure V-12c) in the parent molecule reveals an 

interesting trend. The most probable internal energy value for each of the BPY ions 

occurs at a different energy. The relative spread in measured internal energy 

distributions is proportional to differences in the calculated critical bond energies (given 

in Table V-1). This suggests the bond dissociation energies have a second order effect 

which results in lower average internal energies measured with the more weakly bound 

BPY ions and vice versa. The first explanation of this effect centers on the quantum 

mechanical description of the BPY ion transition states used in the RRKM calculation. 

Loose transition state fragmentation reactions typically necessitate a variational RRKM 

description.
170

 This approach entails using a variable transition state for each molecule 

that changes as a function of the internal energy. Such calculations have traditionally 

been limited to small molecular systems, where the conversion of vibrational modes to 

translational or rotational modes can more easily be discerned. The variational RRKM 

method was therefore deemed beyond the scope of this study. 

It also remains that the actual energy distributions for the four BPY ions may in 

fact differ according to their inherent chemical stability. This is the first attempt to 

quantify the internal energy of secondary ions formed from massive cluster impacts. As 

such, the ions investigated so not originate as preformed ions in solution but as units 

within a crystal lattice. The effects of forming ions from the solid phase have largely 
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been ignored in our treatment and the differing energy distributions may signify that 

these effects are in fact important. 

Despite measuring different internal energy distributions with different BPY 

molecules, the goal of quantifying the energy of sputtered species has been met. All 

species have an average energy per atom of ~0.19 eV and an average energy per degree 

of freedom of ~0.070 eV. These results are reasonable when compared to previous 

internal energy measurements for various SIMS projectiles. Experiments for 9 keV Xe
+
 

projectiles measured the internal energies of sputtered metal clusters to be ~1-2 

eV/atom
171

 while internal energies of 0.17 eV/atom were reported for thymine molecules 

emitted from 25 keV Bi3
+
 impacts.

172
 Molecular dynamics simulations of 20 keV C60 

impacts on an octane surface suggest most intact emissions have energies less than 0.35 

eV/atom.
173

 The current result shows that emissions from the even more massive Au400 

projectile are similar if not lower in energy to those observed for smaller projectiles. 

An average internal energy of ~0.19 eV/atom has been reported for electrospray 

ionization using the same BPY ions as this study.
155

 The surprising result that ions 

formed under such energetic conditions as projectile impacts have internal energies 

comparable with those formed using a “soft” ionization techniques such as electrospray 

ionization suggests that cluster SIMS is a viable approach for the analysis of labile 

molecules. 

Conclusion 

Two different molecular systems are presented as models for measuring the 

internal energies of species emitted from cluster impacts on surfaces. The first, using the 
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leu-enkephalin peptide, offers a rough comparison to CID spectra and suggests two types 

of emission exist: “ground zero” emission and crater rim emission. A series of BPY ions 

is used to probe rim emission mechanism which is more important for understanding 

molecular ion emission. Using the survival yield method, it is possible to show relative 

similarities between the internal energy imparted via cluster impacts and other ionization 

mechanisms. The best method presented for extracting quantitative internal energy 

information involves the careful consideration of various quantum mechanical 

characteristics of the BPY ions as well as a new framework for measuring molecular 

lifetimes. 

A complete list of oscillator frequencies for the ground and transition states of 

multiple BPY are reported here, allowing for the elimination of empirical correction 

factors such as the pre-exponential factor and arbitrary frequency reduction in favor of a 

complete quantum mechanical description of the BPY system. Bond dissociation energy 

calculations show that AM1 and DFT calculations, with even larger basis sets than those 

previously used,
154, 155

 are still insufficient for a proper theoretical description. 

Agreement between the four highest level ab initio theories offers a confirmation that the 

CCSD(T) values presented offer a more accurate approximation of the BPY dissociation 

energies. Use of the traditional AM1 or B3LYP bond energies in the present study would 

have significantly underestimated all internal energy distributions, suggesting previous 

studies utilizing these values may have also underestimated the actual internal energies. 

The current method for determining ion internal energies via ToF mass 

spectrometry can be used as a metric for comparing various parameters across 
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instrumentation. This first implementation for hypervelocity nanoprojectile impacts 

allows for relative comparisons with previous measurements that show cluster SIMS is 

capable of producing ions with internal energies similar to traditionally “soft” ionization 

techniques. This study shows that it is possible to extract quantitative internal energy 

distributions via ToF measurements of benzylpyridinium salts.
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CHAPTER VI 

METAL-ASSISTED SIMS WITH MASSIVE PROJECTILES 

  

Introduction 

 The scope of secondary ion mass spectrometry for investigating organic surfaces 

is constrained by the secondary ion yield which is typically a small fraction of the 

sputtered material.
17

 Multiple approaches have been devised for enhancing the SI yield. 

26, 73, 109-112, 174, 175
 Among these the application of massive projectiles, e.g. C60 and Au400, 

26, 73
 or the use of matrix enhancement effects

109-112, 174, 175
 have been most effective in 

increasing the generation of analyte specific ejecta. The current study investigates SI 

emission observed when combining massive Au400 projectile bombardment with matrix 

enhancement, specifically noble metal (Ag, Au) deposition on organic surfaces. 

Molecular Dynamics simulations have suggested this combination may further increase 

the sputter yield.
67

 The enhancement is attributed to the greater stopping power of the 

noble metal which causes more of the projectile’s energy to be deposited in the near 

surface region, rather than in the depth of the solid where it cannot effect emission. This 

approach, termed metal-assisted secondary ion mass spectrometry (MetA-SIMS), 

achieves higher ion yields by increasing the overall sputter yield for a given primary ion. 

MetA-SIMS has previously been studied with various cluster primary ions 

including SF5
176

, C60
177

, and massive gold clusters
78

 with mixed success. The SF5 

projectile showed enhancement for a pharmaceutical drug and polyaromatic dye only in 

positive mode, massive gold clusters gave a 2-fold enhancement for a fragment ion but 
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significant reduction for the glycine molecular ion, and C60 showed little to no 

enhancement for a variety of test molecules. For SF5 and C60 primary ions, the limited 

enhancement could be attributed to the inefficient energy transfer from the light 

projectile atoms to much heavier gold atoms.
177

 Optimal energy transfer should occur 

when the projectile and target atoms are mass-matched, implying that massive gold 

clusters are well-suited for application in Au/MetA-SIMS. This work expands the study 

of MetA-SIMS with massive gold projectiles for analytes other than the experimental 

test case of glycine. 

 A critical consideration for the performance of MetA-SIMS is that metal 

deposition on organic surfaces occurs by nucleation from surface defect sites followed 

by growth and aggregation. This results in nanoscale islet formation for low coverages 

and intertwined peninsular structures at higher coverages.
178, 179

 The size and shape of 

the metallic deposits can affect the nature and abundance of the SI emission.
175, 180

 We 

test here the metallic surface coverage with a coincidence mass spectrometry method 

previously described.
76, 181, 182

 The samples examined below included a range of particle 

sizes, enabling the assessment of size limits for surface features that may be quantified 

with coincidence mass spectrometry. The use of ion co-emission to extract quantitative 

surface coverage information has previously been applied to micron-scale 

photolithography patterns
182

 and antibody-labeled nanoparticles (30 nm diameter) on 

cells
181

 However, these systems exhibit chemical segregations of uniform sizes which 

are larger than those used in the present study. The goal of this study was to address two 

distinct questions: (1) Does the addition of metal nanoparticles to an organic surface 
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result in improved secondary ion yields? and (2) Can coincidence mass spectrometry be 

used to quantify surface coverages of nanometric interfacial features which are smaller 

than the area sputtered by a single projectile? 

Experimental Details 

 Sample Preparation. Samples chosen for the investigation were poly(methyl 

methacrylate) (PMMA; (C5H8O2)n; Mw = ~2,000 Da; monomer mass m = 100.05 Da, 

from Sigma Aldrich, St. Louis, MO) and Irganox1010 (C73H108O12; MW = 1176 Da, from 

CIBA specialty chemicals, NV). The samples were dissolved in toluene with a 

concentration of 20 mg/ml each. Silicon wafers were cut into 1 cm
2
 and cleaned with 

isopropanol and then dried by flushing nitrogen gas. The sample solutions were then 

spin coated for 80 s on cleaned silicon substrates with a speed of 4000 rpm and 

acceleration of 15000 rpm/s. The thickness of these samples has been measured using 

spectroscopic ellipsometry and found to be 45 nm for PMMA and 47 nm for Irganox. 

 The samples were then metalized by physical vapor deposition (PVD) using an 

MBRAUN system, which is equipped with an MB EVAP evaporator, an MB evaporator 

chamber (SQ) – M- 1 and a thin film monitor (SIGMA SQC – 310).   Silver and gold 

metallization were done for thicknesses ranging from 0.5 to 15 nm.  The thickness 

measurement was obtained via a quartz crystal microbalance (QCM), assuming a 

sticking coefficient of 1 and the formation of uniform layers.  However, as noted earlier, 

the gold does not form a uniform layer on the organic samples, but rather forms islands 

whose sizes increase with the quantity of evaporated gold.   
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 Mass Spectrometry. All samples were analyzed in negative ion mode using 520 

keV Au400
+4

 projectiles from the custom SIMS instrument described previously (Chapter 

II). Approximately one million impact events are summed to give each mass spectrum. 

All ion yields for massive gold cluster analyses are calculated by dividing the peak area 

by the specific number of impact events used to generate the spectrum. The custom 

acquisition and processing software retains all ion co-emission information and allows 

one to extract only the events in which a given ion of interest is emitted. This generates a 

coincidental mass spectrum which allows for the calculation of surface coverages as 

detailed below.  

Duplicate samples were analyzed by collaborators at the Catholic University of 

Louvain (Belgium) using a TOF SIMS
5
 (ION-TOF) mass spectrometer. The 30 keV Bi

+
 

beam was obtained from an ION-TOF liquid metal ion source (≈ 0.85 pA AC current; 5 

kHz frequency; pulse width bunched down to 0.7 ns). To maximize detection efficiency, 

secondary ions were post accelerated by a high voltage (10 kV) in front of the detector. 

ToF spectra were obtained by collecting the secondary ion signals in the mass range of 0 

< m/q < 3,000 for 60 s bombardment of a 500 x 500 µm
2
 sample area. The number of 

primary ions used for each spectrum is ≈ 3.18 x 10
8
 ions, resulting in a dose of 1.27 x 

10
11

 ions/cm
2
. All ion yields from Bi

+
 analyses are calculated by dividing the peak area 

by the ion dose (3.18 x 10
8
). 

 Electron Microscopy. In order to understand the morphology of evaporated metal 

on the thin films, scanning transmission electron microscopy (STEM) imaging was done 

at 30 kV using a JSM-7600F scanning electron microscope from JEOL. The samples 
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(PMMA and Irganox) were dip coated on TEM grids (copper grids) and the metal (gold 

& silver) was deposited for different thicknesses varying from 0.5 nm to 15 nm on those 

dip coated grids. 

 STEM images were investigated using the Vision Assistant 8.2.1 image analysis 

software package from National Instruments.  This analysis software was used to 

measure the size of gold or silver particles formed on the surface.  The gold or silver 

deposits appear as dark objects on a light background. To measure these objects a 

manual brightness threshold to assign each pixel as metal or organic. The selected pixels 

were then investigated for the size of deposited silver or gold islands using a circle 

detection function, which recognizes circular objects within the image. This function 

outputs the radius, position, and area of each circle larger than two pixels in radius and 

this data was used further characterization of the samples. 

STEM Imaging 

Microscopy images obtained for the various thicknesses of Ag deposited on an 

Irganox 1010 film are shown in Figure VI-1. The other three sets of metal/substrate 

combinations similarly show highly uniform surface features which differ according to 

the amount of gold or silver present on the surface. Nanometric islets are initially 

formed, but these give way to an intricate network of irregularly-shaped structures as the 

metal surface coverage increases. Metal nanoparticle size distributions calculated from 

the STEM images for the Irganox 1010 samples with various amounts of silver are 

shown in Figure VI-2.  
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Figure VI-1. STEM images obtained for various amounts of silver 

 deposited on an Irganox 1010 film. Scale bars represent 100 nm. 
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Figure VI-2. Metal particle size distributions measured 

from STEM images in Figure VI-1. 
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These plots reveal the gradual shift in average particle diameter from around 2 

nm to over 30 nm for the 0.5 nm and 30 nm thick deposits, respectively. Also visible is 

the width of the size distribution, which also increases with the amount of metal 

deposited. The size distributions become bimodal for the 6, 8, 10, and 15 nm thick 

deposits, with a majority of particles being larger agglomerates and smaller features 

corresponding to interspersed islets. Information about the sizes of metal particles on the 

surface is critical for understanding and optimizing conditions for enhanced ion 

emission. Maximal kinetic energy should be transferred from the primary ion to the 

immediate surface region and so the metal particle should be sufficiently large to 

accumulate this energy. However, high surface coverages are required to obtain large 

particle sizes. This results in a depression in the signal which can be attributed to the 

partial metal overlayer. Metal particles surrounding the impact site will inhibit the 

emission of underlying organic material, somewhat negating the advantage of increased 

energy density.  

Poly(methyl methacrylate) 

 For the purpose of this study, PMMA was chosen as a representative polymer 

due to the abundant negative ions typically observed
183

. Bare PMMA samples as well as 

samples deposited with increasing amounts of gold and silver were analyzed with both 

the Bi
+
 and massive gold cluster projectiles. 

For both projectiles, the low mass region of the bare PMMA spectrum is 

characterized by the emission of small fragment species, including CH3O
-
 (mass 31), 

C3H3O
-
 (mass 55), C4H5O2

-
 (mass 85), C9H15O4

-
 (mass 187), and C10H17O4

-
 (mass 201). 



 

168 

 

SI yields for these species as a function of metal deposited are provided in Figure VI-3. 

A comparison of SI yields obtained by each projectile reveals that the 520 keV Au400 

projectile exhibits 2-3 orders greater SI yields than 30 keV Bi
+
 for most samples. None 

of the characteristic PMMA ions exhibit an enhancement from the metal overlayer. 

Instead, the yields decrease with the addition of metal, especially in the case of the gold-

coated samples analyzed by 520 keV Au400. 

In addition to the low mass PMMA fragment ions, larger polymer chains are 

detected. Figure VI-4 shows a negative mode mass spectrum obtained from a bare 

PMMA film analyzed by 30 keV Bi
+
. Seven different ion series can be identified, with 

each peak in these families being separated by 100.05 Da, corresponding to the methyl 

methacrylate monomer. Proposed ion structures in Figure VI-5 show that each of the 

series differ only in the terminating species at the site of the chain scission. Six of these 

ion families exhibit a strong mass dependence, with peak intensities decreasing for each 

incremental gain in chain length. This is especially evident for ion type A which is rather 

abundant for n = 1-3, but is not observed for n > 5.  

Fragment types C-G reveal chain lengths of up to 20-25 units. Ion type B exhibits 

a very different behavior, with a distribution that is shifted towards longer chain lengths. 

Species having 11-15 polymeric units are most abundant with shorter and longer chain 

lengths being reduced in intensity, though peaks are observed out to 30 units. This B 

type distribution likely represents the actual PMMA size distribution in some form. 
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Figure VI-3. SI yields for samples containing various amounts of silver and gold 

 on top of a PMMA film analyzed by massive gold clusters and Bi
+
.
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Figure VI-4. Negative mode mass spectrum from atomic-SIMS analysis of a PMMA surface. 

Peak colors correspond with ion structures in Scheme 1. 
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Figure VI-5. Proposed structures for fragment ions observed from Bi
+
 bombardment of PMMA.
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However, previous studies have shown that fragmentation induced by atomic ion 

bombardment may shift the observed distribution towards lower masses. In particular 

Aimoto et al. showed that 19 keV Au
+
 analysis of a 1,000 Da polyethylene glycol (PEG) 

surface suggested the average molecular weight was only 80% of this value while 

bombardment by 19 keV Au3
+
 gave a molecular weight distribution centered at ~1,000 

Da. In our case, the intensity distribution suggests the average molecular weight of the 

polymer is ~1300 Da rather than the prescribed 2,000 Da; however, this discrepancy can 

likely be attributed to fragmentation induced by the Bi
+
 projectile. Comparison with a 

PMMA spectrum from massive gold cluster analysis (Figure VI-6) does indeed show a 

B-type intensity distribution shifted towards higher masses, though a lack of sufficient 

mass resolution and post-acceleration result in reduced signal-to-noise for this mass 

range. Another qualitative difference is that only ion types C-G are not observed with the 

massive gold clusters and ion type A is only observed out to n = 3. These results 

reinforce the idea that atomic ions impart more internal energy to molecular species and 

in this case, allow for more energetically expensive fragmentation and rearrangement 

pathways. 

The ion yields for all B-type ions which do not suffer from Ag or Au cluster 

spectral interferences are summed and plotted as a function of the equivalent metal 

thickness in Figure VI-3. These ions do not demonstrate the strictly decreasing trend 

observed for low mass fragments. The aggregate SI yield does not significantly change 

for Au400 bombardment of silver metallized samples. Gold metallized samples show an 
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Figure VI-6. Negative mode mass spectrum from massive gold cluster SIMS analysis of a PMMA surface. 

 Observed polymer chain lengths are numbered. 
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initial dip in the B-type ion yield that is recovered as more gold is added. This suggests 

there may in fact be a modest signal enhancement which counteracts the effect of a 

molecular emission inhibiting metal layer. However, this enhancement is not strong 

enough to result in an overall SI yield increase. The gold metallized samples analyzed 

with Bi projectiles show a gradual ion yield increase with added gold resulting in a 

200% enhancement, but the silver metallized samples give a very different result. The 

aggregate yield ultimately decreases to ~30% of the native sample with added silver. In 

all cases, B-type ion yields measured for samples analyzed by Au400 are 2-3 orders of 

magnitude higher than the corresponding Bi analyses. 

Irganox 1010 

 Irganox 1010, a common polymer antioxidant additive, has served as a model 

analyte for many SIMS depth profiling studies of buried molecular layers.
55

 Irganox was 

also included in a previous MetA-SIMS investigation using Ga and C60 projectiles
177

, 

though these analyses were performed in positive ion mode. This study found that 

Irganox molecular, adduct, and fragment ion yields could be increased by an order of 

magnitude using gold metallization and a Ga analysis beam, but another order of 

magnitude was gained by simply using the C60 projectile on a bare Irganox surface. C60 

analysis of the metallized samples gave a slightly reduced molecular ion signal.  

Mass spectra from pristine, Ag metallized, and Au metallized Irganox 1010 

samples obtained using the massive gold cluster and Bi projectiles are shown in Figure 

VI-7. Mass spectra of the pristine surface obtained with the ToF SIMS
5
 instrument 

reveal a prominent deprotonated molecular ion peak (mass 1175.7) as well as multiple 
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satellite peaks. The higher mass peaks are due to 
13

C isotopic contribution while the 

lower mass peaks correspond to various combinations of hydrogen losses.
184, 185

 Phenolic 

hydrogen loss to form a carbonyl group as well as the subsequent formation of a quinine 

methide structure as shown in Figure VI-8 are well-known oxidation mechanisms for 

hindered phenolic antioxidants.
186

.  

In the case of Irganox 1010, each of the four (3,5-di-tert-butyl-4-

hydroxyphenyl)propanoate groups are available to undergo similar hydrogen losses, 

creating the envelope of peaks observed in the spectrum. This effect is especially evident 

upon addition of metal, causing the envelope of peaks to shift downward by 

approximately four mass units (loss of 4 hydrogen atoms) and broaden to over ten mass 

units. The prominence of these species after metal deposition suggests the 

dehydrogenation may be catalyzed by the metallic nanoparticles. This catalytic 

dehydrogenation is also observed in the case of massive gold projectile impact, though 

the lesser resolution gives a single peak which shifts in mass and is broadened. In 

addition to the molecular species, the common Irganox 1010 fragment ions are 

observed.
187

 These include peaks at masses 205.2 (C12H21O
-
), 231.2 (C16H23O

-
), and 

277.2 (C17H25O3
-
) corresponding to fragmentation at different point along the propanoate 

linker. 

The yields for these fragment ions as well as an aggregate sum of quasi-

molecular ion peaks, including isotope peaks, for all analyses are presented in Figure VI-

9. The sum of molecular ion peaks (excluding oxygen addition peaks) is used to directly 

compare yields from the two instruments independent of mass resolution. 
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Figure VI-7. Negative mode mass spectrum from samples containing various amounts of silver and gold 

 on top of an Irganox 1010 film analyzed by massive gold clusters and Bi
+
 projectiles. 
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Figure VI-8. Structures for dehydrogenated Irganox 1010 species. 
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Considering first the quasi-molecular emission from gold metallized samples measured 

with Bi
+
, a general increase in both fragment and molecular ions is observed upon 

addition of gold to the surface. This enhancement ranges from 1.5-fold for the mass 

231fragment peak to 4-fold for the molecular ion envelope. All three fragment ions 

tracked exhibit a yield plateau after the addition of roughly 2 nm of gold to the surface. 

This sample also provides the highest yield of molecular ion peaks.  The SI yield 

decreases slightly as more gold is added. Silver metallization reveals a different behavior 

in which the yields of all characteristic peaks initially decrease upon addition of 0.5 or 1 

nm of silver but recover for thicker metal depositions. A 5-fold molecular signal 

enhancement is obtained for the 8nm thick deposition. The mass 205 fragment shows a 

2-fold enhancement relative to the pristine sample while the other two fragments exhibit 

no enhancement for metallized samples relative to the non-metallized surface. A 

previous study comparing Ag and Au metallization also noted greater ion yield 

enhancements with Au relative to Ag. This was attributed the greater mass of the gold 

atoms which would result in greater energy deposition in the near surface region.
188

 

The SI signal depression caused by metallization for Au400 analysis is readily 

visible in Figure VI-9. All monitored signals show a strictly decreasing pattern upon 

metal addition. This signal reduction is most prominent for the molecular ion aggregate 

yield, which decreases by 2 orders of magnitude over the span of silver and gold 

thicknesses studied. This effect is also clearly observed in Figure VI-7 where the pristine 

sample gives a prominent quasi-molecular ion peak but just a 0.5nm metal deposition 
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Figure VI-9. Negative ion yields for samples containing various amounts of silver and gold on top of an 

 Irganox 1010 film analyzed by massive gold clusters and Bi
+
. 
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nearly eliminates this signal. The atomic and small metallic clusters present in these 

samples appear to poison the surface, such that molecular emission is significantly 

hindered. Molecular desorption from cluster impacts is proposed to occur by a fluid flow 

mechanism
82, 94

 from the rim of the crater generated by the impact. This mechanism may 

make cluster impacts especially sensitive to the presence of a metal overlayer. As shown 

in Figures VI-7 and VI-9, a weak signal enhancement of the molecular ion peak is 

observed for the 2 nm depositions of both silver and gold, but these SI yields remain 

much lower than those observed from the pristine sample. Overall, the metal layer 

results in a depression of SI yields observed from Au400 impacts, regardless of deposition 

thickness. 

Another interesting feature of the spectra in Figure VI-7 is the presence of 

multiple groups of peaks at higher masses than the molecular ion. These peaks groups 

are separated by 16 Daltons on average and correspond to sequential oxygen addition to 

molecules with varying degrees of dehydrogenation. The addition of up to ten oxygen 

atoms can be observed for the gold metallized samples. These features are observed only 

in the presence of metal nanoparticles analyzed with Bi
+
. The same features are not seen 

for the samples analyzed with Au400. Also, both Bi
+
 and massive projectile analysis 

result in the formation of adducts of the type AunC2xH2xO2y. This type of adduct is not 

seen for samples deposited with silver. 

Ion Yield Comparisons 

Figure VI-10 provides a summary of the optimal metallization conditions 

determined for each projectile. For 520 keV Au400 analysis, none of the metallized  



 

181 

 

 

 

Figure VI-10. Highest yields obtained for each of the characteristic PMMA and Irganox 1010 negative ions obtained 

from Bi and Au400 analyses. Sample metallization conditions are shown above each bar. Yields with no label were obtained 

from pristine surfaces of the analyte. 
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samples provided ion yields greater than the pristine sample. The 30 keV Bi projectile 

did show a significant enhancement upon metallization for many characteristic peaks, 

though the highest yields for all small PMMA fragments were obtained from the pristine 

sample. Gold metallization gives the best result for the B-type PMMA high mass ions 

and all characteristic Irganox 1010 fragments. Metallization with 8nm of Ag gave a 

slightly higher yield for the Irganox quasi-molecular ion than gold metallization, but 

generally 6-10 nm of gold on the surface appears to provide the best conditions for 30 

keV Bi
+
 analysis of the given analytes. Despite the enhancement observed with Bi, Au400 

provides 2-3 orders greater ion yields for all characteristic species.  

Surface Coverage Calculations 

The abundant SI emission reported for massive gold cluster bombardment 

enables its application in the event-by-event methodology described above. This unique 

SIMS approach allows one to extract information regarding ion co-location with a 

spatial resolution of ~10 nm.
79, 181, 182

 This approach has been well documented for 

quantifying the surface coverages of chemical segregations with sizes of at least 30 

nm.
181

 The goal of the current study is to determine whether or not it is possible to 

extend this methodology to the analysis of nanometric features (metal NP’s) which are 

smaller than the volume sputtered by a single massive gold cluster impact. This non-

imaging approach to measuring the coverage for a given chemical component of a 

surface relies on the ability to properly classify ensembles of impact events according to 

the type of ions formed. For the given binary system there are three possible types of 

impact expected. These include impacts on the bare organic substrate, direct impacts on 
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a metal NP, or impacts on the metal-organic interface. Each of these surface regions has 

a given probability for emitting ions specific to the substrate or overlayer. However, for 

NP’s smaller than the sputter volume, direct impacts will cause excavation of the 

underlying substrate and will no longer result in the exclusive emission of metallic 

species. This reduces the possible number of impact ensembles to those causing 

substrate emission and those causing both organic substrate and metal layer specific 

emission. Assuming that ions are emitted from the surface independent of one another, 

the probability of emitting both ions from a given impact event is the product of their 

individual yields gives Equation 6.1. 

           (6.1) 

Substituting the yield definition (    
  

    
 ), where IA is the observed intensity for ion 

A and Neff is the number of impacts within the ensemble of interest, gives Equation 6.2. 

  
   

    
  

  

    
 

  

    
 (6.2) 

Solving for Neff, we obtain Equation 6.3 which allows for a calculation of Neff through 

the measurement of the two individual ion intensities and their coincidental emission 

intensity. 

        
     

   
 (6.3) 

The ratio of the number of impacts which occur on the surface region of interest, Neff, to 

the total number of impact events used to generate the spectrum, Ntot, gives the surface 

coverage for the species of interest. 
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 Only the silver metallized sample sets are presented because re-emission of gold 

from the Au400 projectile precludes the quantification of Au from the surface. Two 

abundant characteristic ions were chosen for each of the chemical species. Masses 85 

(C4H5O2
-
) and 87 (C4H7O2

-
) were used for PMMA, masses 231 (C16H23O-) and 277 

(C17H25O3
-
) were used for Irganox 1010, and 107 (

107
Ag1

-
) and 216 (

107
Ag

109
Ag

-
) were 

used for the silver NP’s. The results from these analyses are provided in Figure VI-11. 

The Ag and PMMA coverages measured by SIMS for the range of Ag deposition 

amounts are plotted along with the surface coverages measured from the STEM images. 

The Ag coverages measured by SIMS show an increasing trend which parallels the 

increase observed by STEM, though for both sample sets the 0.5 nm deposition exhibits 

a greater surface coverage than the 1 nm deposition. It appears that the 0.5 nm samples 

actually contain more silver than the 1 nm samples. Despite this discrepancy in the 

amount of silver deposited, the SIMS approach properly detects the relative differences 

in Ag coverage between the 0.5 nm and 1 nm samples. This can also be seen indirectly 

via the coverage measurement of the organic layer. Here the 0.5 nm sample gives a 

smaller organic coverage than the 1 nm sample, again matching with the STEM. 

For samples with effective Ag thicknesses of less than 8 nm, the Ag coverage 

measured by SIMS is overestimated when compared to the STEM data. One factor that 

may contribute to the disagreement is the influence of impacts which occur adjacent to 

these small NP’s. According to STEM images, metal thicknesses of 8 nm and below  
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Figure VI-11. Comparison of surface coverages measured by STEM and SIMS for 

PMMA and Irganox 1010 surfaces coated by various amounts of silver. 



 

186 

 

correspond to average particle diameters of ≤ 20 nm, approaching the predicted diameter 

of the impact crater (~10 nm). Therefore, adjacent impacts can be expected to cause 

emission similar to that observed from direct impacts on the NP’s. This means the 

effective area causing NP-like emission is greater than the actual cross-sectional area of 

the NP, resulting in an exaggerated coverage measurement. The magnitude of this error 

is 10-15% though it may also be noted that STEM imaging was performed for replicate 

samples on a different substrate and not the same samples analyzed by SIMS. Another 

source of error in this quantification comes from the low silver surface coverage (< 10 

%) for some samples. This results in a low probability of Ag1
-
 and Ag2

-
 co-emission. As 

revealed by Equation 6.3, accurate measurement of the coincidental intensity (IAB) is 

critical for obtaining a reliable surface coverage measurement. The PMMA coverage 

measured for each sample conversely reveals an underestimation relative to STEM.  

Figure VI-11 also shows that both the Irganox and Ag coverages obtained for the 

silver-coated Irganox 1010 samples offer better agreement between the SIMS and STEM 

measurements. The 1 nm sample does show a pronounced deviation which is also 

reflected by the reduced Irganox 1010 coverage. Also visible is a systematic 

underestimation of Ag coverages for the 10 and 15 nm equivalent thicknesses on both 

the Irganox 1010 and PMMA surfaces. According to the STEM images, the Ag surface 

for these samples consists of interconnected peninsular morphology rather than the 

isolated NP’s observed for lower coverages. Previous studies have shown that the size of 

surface features results in the preferential emission of certain cluster ion sizes.
70
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This effect is further illustrated in Figure VI-12 which shows surface coverages 

measured from the Ag on PMMA sample set using the ion coincidence approach with 

sequentially larger Ag cluster ion pairs. Each increase in cluster size results in a 

somewhat reduced surface coverage. The apparent differences in coverages suggest 

coincidental ion emission can be used to reveal fine structure even within the nanometric 

Ag features. In order to observe events in which Ag5
-
 and Ag6

-
 are co-emitted from a 

single impact, the desorption volume of that impact must contain an abundance of Ag 

atoms. For impacts on small particles or a large particle-substrate interface, the yield of 

large Ag clusters is extremely low because sufficient material is not available for their 

formation. Therefore, the number of impacts capable of forming at least two of these 

large clusters (in coincidence) is restricted to those occurring on a thick, interior surface 

of the nanometric object. This selectivity is tunable, as shown by the range of measured 

surface coverages, such that each ion pair used exhibits a different level of specificity. In 

this way, a fine structure related to the size and shape of the nanometric objects can be 

observed. 

The depth of emission for the massive gold projectiles in silver can also be 

ascertained from this set of samples by monitoring the coincidental emission of Au-Ag 

adducts. These species result from the recombination of Au projectile atoms with Ag 

atoms from the surface. Similar AuxAgy cluster ions have been observed previously,
189

 

but this is the first report of bimetallic cluster formation by a projectile-surface adduct 

mechanism.
77

 There is a threshold for this emission mechanism because projectile atoms 

must first be stopped within the target before they can be re-emitted. A previous study 
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Figure VI-12. Comparison of silver surface coverages measured from the Ag on PMMA 

sample set using various pairs of silver cluster ions. The surface coverage measured by 

STEM is shown as a black line. 
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has shown that the stopping range of the Au400 projectile is 15-20 nm in amorphous 

carbon.
190

 Using the two isotopic peaks for AuAg
-
 (masses 304 and 306), the 

coincidental methodology described above allows one to calculate the percentage of 

impacts which result in Au-Ag adduct formation, independent of ionization efficiency 

considerations. By monitoring ion co-emission rather than a simple yield progression we 

are able to observe a threshold for adduct formation and hence the depth of emission for 

Au400 impacts. Figure VI-13a shows that the yields for AuAg
-
 (mass 304) and Ag

-
 (mass 

107) steadily increase as more silver is added to the surface. Au
-
 (mass 197) also shows a 

gradual yield increase which can again be attributed to enhanced stopping of the 

projectile by the thicker silver layer. These observations are contrasted with Figure VI-

13b which shows a clear threshold for AuAg
-
 forming impacts which occurs for silver 

overlayers with thicknesses of at least 4 nm. Despite uncertainty in the QCM 

measurement, this depth of 4-8 nm agrees well with the ~10 nm depth of emission 

previously reported for Au400 at a lower impact energy.
68

 

The percentage of impacts causing gold re-emission was also calculated using 

Au1
-
 and Au2

-
 signals and the results are included in Figure VI-13b. This plot shows an 

interesting decrease in the gold re-emission which coincides with the appearance of 

AuAg
-
 forming impacts. Because Au atoms must be generated from the projectile, gold 

is the limiting reagent for gold-silver adduct formation. This means that gold atoms are 

scavenged by the more abundant Ag species ejected, resulting in a decreased probability 

for pure gold emission. The only manifestation of this effect in the yield  
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Figure 13. (a) Au
-
, Ag

-
, and AuAg

-
 (masses 197, 107, 304, respectively) ion yields for PMMA surfaces coated with various 

amounts of silver. (b) The percentage of impacts which cause re-emission of either Au projectile species or Au-Ag adducts for 

various amounts of Ag on a PMMA surface. 
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progressions is the significant increase in Ag
-
 and AuAg

-
 yields between the 2 nm and 4 

nm samples which is not replicated for the Au
-
 yields.  

Conclusion 

According to the three test samples examined to date, the MetA-SIMS approach 

is not a viable method for improving secondary ion yields from massive gold projectile 

impacts. It seems that the previous enhancement observed for CN
-
 from glycine may be 

a unique case only applicable for thermodynamically stable species which can be formed 

through an atomization and recombination mechanism
99

. Despite the lack of a SI yield 

enhancement, the 520 keV Au400
+4

 projectile displayed 2-3 orders greater SI yields than 

all 30 keV Bi
+
 analyses, while also avoiding the added spectral complexity caused by 

sample metallization. This study also shows that this approach can be used to quantify 

surface coverages of nanometric features. However, we report increased error in this 

measurement for particles with diameters less than ~20 nm. The coincidence 

methodology also allows one to observe physical phenomena such as projectile-target 

adduct re-emission at the level of individual projectile impacts. 
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CHAPTER VII 

CONCLUSIONS
*
 

 

 This study has dealt with fundamental aspects of massive gold cluster impacts on 

surfaces relevant for molecular analysis. The parameters investigated include the 

projectile range, projectile fate after impact, depth of emission, SI yield, SI multiplicity, 

and SI internal energy. A test case for employing the event-by-event methodology to 

probe nanoscale chemical heterogeneity is displayed as well. A brief description of our 

findings follows. 

Physical Parameters of the Cluster-Solid Interaction 

 Carbon cluster emission from thin carbon foils (5-40 nm) impacted by individual 

Aun
+q

 cluster projectiles (95-125 qkeV, n/q = 3-200) reveals features regarding the 

energy deposition, projectile range, and projectile fate in matter as a function of the 

projectile characteristics. For the first time, the secondary ion emission from thin foils 

has been monitored simultaneously in both forward and backward emission directions. 

The projectile range and depth of emission were examined as a function of projectile 

size, energy, and target thickness. A key finding is that the massive cluster impact 

develops very differently from that of a small polyatomic projectile. The range of the 

                                                 
*
 Part of this chapter is reprinted with permission from “Characteristics of Positive and 

Negative Secondary Ions Emitted from Au3
+
 and Au400

+4
 Impacts” by J.D. DeBord, F.A. 

Fernandez-Lima, S.V. Verkhoturov, E.A. Schweikert, and S. Della-Negra, 2012. Surface 

and Interface Analysis, Copyright [2012] by John Wiley and Sons. Part of this chapter is 

also reprinted with permission from “Bidirectional Ion Emission from Massive Gold 

Cluster Impacts on Nanometric Carbon Foils” by J.D. DeBord, S. Della-Negra, F.A. 

Fernandez-Lima, S.V. Verkhoturov, and E.A. Schweikert, 2012. The Journal of Physical 

Chemistry C, Copyright [2012] by the American Chemical Society. 
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125 qkeV Au100q
+q

 (q ≈ 4) projectile is estimated to be 20 nm in amorphous carbon (well 

beyond the range of an equal velocity Au
+
). Also, using a double foil experiment, 

projectile disintegration can be observed at the exit of even a 5 nm thick foil. 

Secondary Ion Emission Characteristics 

 Massive gold clusters are a route to significant gains in secondary ion yields 

relative to other commonly used projectiles. At an impact energy of 520 keV, Au400
+4

 is 

capable of generating an average of >10 secondary ions per projectile with some impact 

events generating >100 secondary ions. The capability of this projectile for signal 

enhancement is further displayed through the observation of up to 7 deprotonated 

molecular ions from a single impact on a neat target of the model pentapeptide leu-

enkephalin. Positive and negative spectra of peptide spectra reveal two distinct emission 

regimes responsible for the emission of either intact molecular ions or small fragment 

species.  

To investigate whether the high energy density deposited by the massive cluster 

projectile imparts significant internal energy to SIs, a series of benzylpyridinium salts 

were used to measure the internal energy distribution of SIs. The theoretical and 

experimental implementation of this system has been refined to yield a much more 

accurate and robust method for performing internal energy measurements. The 

secondary ion internal energy distributions measured from 440 keV Au400
+4

 impacts are 

surprisingly narrow and low in energy (~0.19 eV/atom) when compared to keV atomic 

bombardment of surfaces (1-2 eV/atom). The results show that Au400
+4

 impacts are 

capable of generating molecular species with low internal energies. Molecular dynamics 
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simulations show that molecular emission occurs from the rim of an impact crater 

created by the projectile.
191

 This mechanism of ion emission is specific to massive 

clusters and results in species with lower internal energies.
173

 

Signal Enhancement by Metallization 

The feasibility of metal-assisted secondary ion mass spectrometry (MetA-SIMS) 

for increasing secondary ion yields from massive gold projectile impacts was 

investigated using polymeric and plastic additive test molecules. Poly(methyl 

methacrylate) (PMMA) and Irganox 1010 surfaces were deposited with various amounts 

of gold and silver and then analyzed using both Bi
+
 and Au400

+4
. The Bi

+
 primary ion 

displayed a five-fold ion yield increase for some species while the massive gold cluster 

exhibited significant suppression due to the metal overlayer, with more than a ten-fold 

decrease in ion yields for most species. Despite the enhancement with Bi
+
, yields 

observed from the neat surfaces with Au400
+4

 are two orders of magnitude greater for 

nearly all species.  

Chemical Analysis of Nanometric Surface Features 

The metal nanoparticles created by thermal deposition on organic substrates 

additionally provide a model system for testing the spatial resolution when quantifying 

nanoscale chemical segregations using coincidence mass spectrometry. Surface 

coverages for both the metal and organic components measured in a non-imaging follow 

the same trend as STEM imaging measurements. Also, the co-emission of metallic 

cluster ions serves as a sensitive tool for detecting differences in the sizes of 

nanoparticulate metal deposits. The variation in surface coverages measured with 
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different pairs of cluster ions shows that larger metallic clusters can only be produced 

from large metallic aggregations on the surface. 

Directions for Future Research 

 The construction of a one-of-a-kind research instrument has significantly 

expanded the scope of molecular surface analysis. Further research directions are 

detailed below. 

Perhaps the most obvious application for massive cluster SIMS is the 

investigation of biological surfaces. This instrument’s potential for molecular analysis of 

biological tissues and cells with nanometric spatial resolution is unparalleled among 

analytical techniques. An initial study observing lipid distributions in brain tissue has 

been performed.
132

 The event-by-event methodology is particularly well-suited drug 

delivery and biomarker tracing. Using ion co-emission, it may be possible to identify 

species which are co-located with a drug molecule, such as the active binding sites of 

target proteins. This tracing study could be done in a label-free manner. However, the 

analysis of complex surfaces without a priori knowledge of their molecular composition 

raises the issue of whether or not accurate molecular identifications can be assigned with 

a mass resolution of only ~1,500. A recent paper
192

 has reviewed the relationship 

between instrumental mass accuracy, which depends on mass resolution, and the number 

of possible chemical identifications. It showed that between 10
3
 and 10

5
 chemicals from 

the PubChem database
193

 can be found for peaks 200-800 amu (which includes nearly all 

molecules in this dissertation) if the accuracy of the mass determination is even as low as 

100 ppm. One method for improving the accuracy of molecular identification is the use 
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of coincidental mass spectrometry. This technique enables one to “filter” the spectrum 

and effectively reduce the number of components within the mixture.
71, 75

 This 

simplified spectrum enhances the certainty of identified species that are co-emitted with 

a species of interest. Despite this capability, molecular identification accuracy is limited 

by the current ToF analyzer. An instrumental geometry modification to incorporate an 

orthogonal reflectron ToF analyzer could improve spectral performance to the point 

where biomarker discovery studies are possible. Commercial instruments utilizing such 

analyzers are capable of achieving mass resolutions over 30,000 and mass accuracies 

below 1 ppm. 

Another direction for research which warrants attention is the study of photon 

emission from cluster impacts. Studies from the Schweikert group have established that 

photon emission does occur from cluster impacts
194, 195

 and that it can be specific to the 

analyte under observation, as shown by fluorescent emission from green fluorescent 

protein (GFP) and its analog red fluorescent protein (RFP).
196

 A potential application for 

this type of photon emission includes its use as a trigger signal for the ToF measurement. 

However, the solid angle of detection for the preliminary studies above were quite low 

(~0.6 π sr). It is possible to improve this detection efficiency by adding multiple 

photomultiplier tubes (PMTs) or an array of ball lenses to capture a greater fraction of 

the emitted photons. A proposed arrangement of the ball lens system is shown in Figure 

VII-1. 

The method for measuring ion internal energies presented in Chapter V is a tool 

that allows for quantitative comparisons under various experimental conditions. It is  
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Figure VII-1. Three-dimensional drawing showing the proposed placement of an array of  

fiber optic ball lenses to improve the detection efficiency of photon emission.
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interesting to consider how parameters such as the molecular environment and massive 

cluster size affect the internal energies of SIs. A study of MetA-SIMS with atomic 

projectiles showed that SI energies are reduced when a metallic overlayer is used.
137

 

Similar effects may be present for cluster bombardment. Perhaps the presence of a 

matrix which would mediate the energy transfer from projectile to SIs could reduce the 

energy accumulated in their vibrational modes. Another consideration is what effect the 

presence of ionization enhancing species, such as protonated water clusters ((H2O)H
+
)
119

 

or Cs
+
,
109

 have on the energies of ions formed. 

There are also improvements that could be made to the BPY molecular system 

utilized in Chapter V. Shortcomings could be overcome by the development of novel 

“thermometer” ions. One limitation is that fragmentation of BPY ions can only be 

monitored in positive ion mode. P-toluenesulfonic acid is one chemical that may enable 

SI internal energy measurements in negative mode. The spectrum of PTSA, shown in 

Chapter IV, suggests a single fragmentation pathway predominates (a prerequisite for 

the IE measurement method developed) according to the presence of two large peaks for 

the molecular ion and SO3
-
 fragments. In order for this molecule to be viable, 

dissociation energies and oscillator frequencies would need to be calculated and the 

fragmentation pathway would need to be verified. A second improvement upon the BPY 

system would be the development of a replacement system which incorporates a tight 

transition state along the fragmentation reaction coordinate. The loose transition state of 

BPY ion fragmentation complicates the calculation of RRKM fragmentation rate versus 

internal energy relations. A tight transition state can be identified and described more 
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easily in the RRKM formalism. This would improve the accuracy in transforming 

experimentally measured rate constant distributions into the desired internal energy 

distributions. 

 Nearly all data reported in this dissertation has been obtained using the Au400
+4

 

projectile. Many measurements have displayed the prolific SI emission from impacts of 

this projectile. However, the development of novel cluster ion sources should not stop 

here. Trends suggest that larger, more energetic projectiles can provide even higher SI 

yields and thereby improve the analytical capabilities afforded by a SIMS approach. One 

route to the generation of larger, more energetic projectiles is electrospray ionization of 

functionalized nanoparticles. Using this method it is possible to create highly charged 

nanoparticles that would enable acceleration to higher impact energies using a given 

accelerating voltage. As an example, 25 nm gold nanoparticles can be generated with 

upwards of 120 charges per particle.
197

 Using this primary ion, it would be possible to 

obtain an impact energy of nearly 16 MeV with the Pegasus high voltage platform. Also, 

the large number of atoms contained in a nanoparticle means that each atom carries only 

a small fraction of the projectile’s kinetic energy. This distributes energy over a larger 

area and results in a higher energy density at the surface, increasing the sputter yield.
191

 

A technical advantage of nanoparticle sources also exists. An electrosprayed solution of 

monodisperse nanoparticles is no longer a mixture of projectiles with a variety of 

different sizes that must be carefully filtered before analysis.
197

 Instead, the nanoparticle 

beam contains projectiles that differ only in charge state, though regardless of charge 

state, all projectiles would display a similar mode of interaction. Similarities exist 



 

200 

 

between this approach and others currently employed, such as desorption electrospray 

ionization (DESI), but the use of functionalized nanoparticles would allow for greater 

control of projectile characteristics. Experimental control of these parameters is essential 

for understanding the mechanics underlying SI emission, as evidenced by this 

dissertation. 
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APPENDIX A 

OPERATIONAL PROCEDURES FOR 

 THE PEGASUS ION SOURCE PLATFORM 

 

Startup Procedure 

1. Insure vacuum in platform chamber and main chamber are < 5x10
-6

 torr. 

2. Turn on fiber optic control panel 

3. Set extraction voltage to 10 kV. 

4. Set acceleration voltage to 20 KV. 

5. Slowly increase source current following the schedule below: 

a. For new source: 

i. Turn up current by 0.25 A every 10 min until 1.5 A is reached. 

ii. Turn up current by 0.05 A every 10 min until source emits or 2.2 

A is reached 

iii. If source does not emit, replace with new source. 

iv. If source emits, monitor emission voltage stability.  If unstable 

increase current by 0.05 A until stable. 

b. For used source 

i. Turn up current by 0.5 A every 5 min until 1.5 A is reached. 

ii. Set current to stable emission current from last operation. 

iii. If source is unstable or does not emit, increase current by 0.05 A 

every 5 min until stable emission. 

iv. If source still does not emit stably, replace with new source. 

6. Perform beam optimization using Faraday cup measurement of beam current and 

the following optimization loop: 

a. Optimize X,Y positioning. 

b. Optimize Einzel lens. 

c. Optimize horizontal and vertical deflection. 

d. If necessary, select projectile using Wien filter. 

i. To turn on Wien filter, set the current to 1.20 A 

ii. The necessary Wien filter voltage can be determined using the 

equation    
    

  
  where m is the m/q of the desired projectile in 

amu. 

e. Repeat steps a-d until optimal beam current is obtained. 

7. Close and lock cage door. 

a. Remove key and place in control panel. 

b. Insure that grounding pole is detached from the platform and is placed on 

storage hook interlock. 
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c. Insure that the cage gate is closed. 

8. Increase floating voltage on platform to desired voltage (100 kV max). 

a. Slowly increase floating voltage, pausing momentarily every 5 kV to 

avoid sparking. 

9. Insure beam current is still acceptable at high voltage. 

10. Open gate valve in beam line and introduce beam to analysis chamber. 

Experiment can now be performed using selected Aun
+q

 projectiles. 

 

Shutdown procedure 

1. Close gate valve to main chamber. 

2. Reduce platform floating voltage to 0 kV. 

a. Slowly reduce platform floating voltage, pausing momentarily every 5 kV 

to avoid sparking. 

3. Reduce horizontal and vertical deflectors to 0 V. 

4. Reduce Wien filter values to 0. 

5. Reduce Einzel lens to 0 kV. 

6. Reduce source current to 0 A. 

7. Reduce acceleration voltage to 0 kV. 

8. Reduce extraction voltage to 0 kV. 

9. Turn off fiber optic control panel. 

10. Remove key from control panel and open cage door. 

11. Ground the platform using grounding rod. 

Notes: 

A. Sparking: 

a. No action needs to be taken for isolated sparking (Rate of 1 spark/hour). 

b. In case of frequent sparking on platform, reduce floating voltage to 0 kV 

and troubleshoot source of discharge. 

B. Maintenance: 

a. Instrument room should be kept free of dust. 

i. Clean dusty items before bringing them into the room. 

ii. Floor should be swept once per week. 

iii. Lab bench and tables should be cleaned as needed. 

iv. Air filters in ceiling should be changed monthly. 

v. All platform insulators should be cleaned with ethanol and 

Kimwipes monthly.  
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Emergency Shutdown Procedure 

1. Turn off the power breaker 

 

 

 

 

 

 

2. Remove key from control panel 

 And open cage door 

 

 

 

 

 

 

 

3. Ground the platform using 

 Grounding rod.  

 

 

 

 

 

 

4. Call for assistance (see phone numbers 

on the CCCA Fire Alarm Roster) 

POWER BREAKER 

KEY 

CONTROL PANEL 

ALARM ROSTER 

GROUNDING ROD 


