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ABSTRACT

Record matching is a fundamental and ubiquitous part of today’s society. Anything

from typing in a password in order to access your email to connecting existing health

records in California with new health records in New York requires matching records to-

gether. In general, there are two types of record matching algorithms: deterministic, a

more rules-based approach, and probabilistic, a model-based approach. Both types have

their advantages and disadvantages. If the amount of data is relatively small, deterministic

algorithms yield very high success rates. However, the number of common mistakes, and

subsequent rules, becomes astronomically large as the sizes of the datasets increase. This

leads to a highly labor-intensive process updating and maintaining the matching algorithm.

On the other hand, probabilistic record matching implements a mathematical model that

can take into account keying mistakes, does not require as much maintenance and over-

head, and provides a probability that two particular entities should be linked. At the same

time, as a model, assumptions need to be met, fitness has to be assessed, and predictions

can be incorrect. Regardless of the type of algorithm, nearly all utilize a 0/1 field-matching

strucure, including the Fellegi-Sunter algorithm from 1969. That is to say that either the

fields match entirely, or they do not match at all. As a result, typographical errors can

get lost and false negatives can result. My research has yielded that using Jaro-Winkler

string comparator scores as predictors to a Bayesian logistic regression model in lieu of a

restrictive binary strucutre yields marginal improvement over current methodologies.
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1 INTRODUCTION

Record matching has always played an important role in our society. It can be utilized

directly when you input a username and a password to access an account. The database

has to take the information you provide and compare that to all the available records to

determine if there is a match. If your entry matches with what is in the database, then

you are granted access. If there is no match, then you usually get the response that the

password is incorrect or that no such username exists.

We have all encountered situations such as these, where we would like, even if we made

a mistake, the software to recognize the information as ours. However, it would obviously

not be ideal to match similar entries for account access. Hackers have a field day as it

is with accessing our accounts, so why give them more ammunition to work with? But,

on the other hand, there are many places where slight mistakes in data entry should not

necessarily result in a flat-out non-match.

For example, suppose you have lived in California for 20 years and then you move to New

York. It would be highly advantageous for ”new” information in New York to accurately

match to your ”current” information in California. However, what if there is a spelling

mistake, and the system in place does not have a rule for that? For example, the name

”Dominic” can be spelled ”Dominik” or even ”Dominique”. Now, handling this particular

spelling variation would not be difficult. The problem occurs when you deal with such a

large number of potential errors. Almost every first name could be spelled in multiple ways,

depending on the country or even the region within the country. Predicting how a partic-

ular name will be spelled can only occur if you are lucky (or experienced) enough to know

in advance how each name is spelled throughout the area. Last names can be a nightmare

to spell (in any country), addresses often have severe standardization issues, and business

names could be abbreviated. What’s worse still is that the number of common mistakes,

and subsequent rules, becomes astronomically large as the sizes of the datasets increase.

This leads to a highly labor-intensive process updating and maintaining the algorithm.
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This is where probabilistic record matching (PRM) comes into play. No need to worry

about a series of rules, having to modify algorithms when a new exception occurs, or lack

of scalability. A little time investment in formulating an adequate mathematical model

plus estimating a few key probabilities leads us to a much more easily scalable algorithm.

PRM models keying mistakes, spelling variations, business abbreviations and the like

in providing a probability that two entities should be linked. In looking at any arbitrary

dataset, suppose that there are 5 fields: first name, last name, day of birth, month of birth,

and year of birth. If we further suppose that the probability of a typographical error is

.10 for first name and .05 for all the other fields (which is reasonable according to Winkler

(2006)) then by Boole’s Inequality, the probability of a mistake in any of these fields is

less than or equal to .30. In other words, unless we can model the typographical errors

correctly, we can miss up to 30% of matches. If a particualr dataset has a million pairings,

that means about 300,000 false non-matches.

Aside from the obvious issues with mathematical models in general, there are other

issues specific to record matching itself. For example, name and address standardization

is a paramout issue in this field. Addresses can be reported in many different ways, with

or without abbreviations, with or without specific street, road, drive declarations, and so

on. If the data is time-dependent, addresses may be vastly different if the individual has

moved, or has changed his or her last name as a result of marriage. Business names can

be abbreviated, or even differentiated by area. These issues, while detrimental to any

predictive model, are somewhat controllable by comparison. Typograhical mistakes are a

relative nightmare because of their erratic nature. Some typographical mistakes are easily

predictable (such as the ”Dominic” vs ”Dominik” example from before). However, keying

mistakes are more difficult to predict. For example, there is no deterministic rule for saying

that ”Brown” and ”Brosn” are the same person, though there are models in place to take

into account key location. Lastly, some mistakes are just too severe for any model to

catch, regardless of how complicated the model or how many clerical reviewers you have
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at your disposal. In addition, one would not want to catch certain situations in which the

information is badly damaged due to the propensity of subsequent false matches.

It bears noting that there are many aspects of PRM which are worthy of research. For

example, estimating false matching rates are of paramount importance. It is necessary to

be able to adequately assess any given procedure and false-match rates tend to be the gold

standard for accomplishing this. The most foolproof way of achieving this would be to know

how many of the possible pairs are matches and non-matches. Then, given the output of

the record matching algorithm, you can compare the number of matches from the algorithm

with the actual number of matches and report on how many matches were actually caught.

This could be thought of as the sensitivity, or recall rate, of the algorithm, or how many

of the actual matches were captured by the algorithm. However, as you can easily see, we

do not actually know the matching status of all the pairs in a particular comparison. If

we did, then none of this would be necessary. There are numerous procedures (Fellegi and

Sunter (1969), Belin and Rubin (1995), among many others) that deal with the estimation

of false-match rates.

Another component of PRM which is of high research interest is the topic of blocking.

Given a million records in file A and another million records in file B, you can easily

see how computationally difficult the whole matter of matching becomes. The idea of

matching 1013 records can be a daunting task for any computer...and these are small in

comparison to the types of datasets the US Census deals with. So, blocking schemes are

designed that group together observations which have something in common. For example,

we could group observations together that were born in the same year, whose last names

start with the same letter, who live in a particular geographic region, and so on. There are

many variables that can be used in blocking, just as there are many schemes for blocking,

such as bi-gram indexing and canopy clustering with TFIDF (Term Frequency / Inverse

Document Frequency). What is noteworthy regarding blocking is that whatever is used as

the blocking key, i.e., first letter of last name, accuracy of that key is paramount to the

success of the subsequent record matching scheme.
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However, while both of these subtopics to record matching are highly useful and defi-

nitely in need of additional research, this discussion will be focusing solely on developing

a new methodology for the matching scheme itself. It is assumed that the methods devel-

oped here can be applied to any already-blocked observations that have been generated.

In terms of measuring the effectiveness of the proposed algorithm, this dissertation will

be focusing on recall, precision and F-Score, which is a weighted average of the prior two

assessments.

The rest of this dissertation will be organized as follows. Section 2 will consist of a

background into PRM, along with a discussion of notation and assumptions. Section 3 is

a literature review with respect to current record matching methodology. In addition, you

will see a glimpse into why I have chosen the logistic regression approach as the backbone of

my methodology. Section 4 will outline the theory behind the mathematical model being

developed. Section 5 will outline the details behind the simulation itself, including the

software, the variables, and incorporating missing and erroneous data in order to mimic

reality. Section 6 will cover implementation of both the baseline (Fellegi-Sunter), and the

proposed Bayesian Logistic Regression approach. Section 7 will discuss the results of the

comparison, both in terms of Bayesian Logistic Regression versus the Fellegi-Sunter and

using string comparators versus strict binary matching structures. Section 8 will describe

some potential future research to be done in this field. Section 9 will include a summary

and some concluding remarks.
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2 BACKGROUND

Record matching in and of itself is a relatively simple concept. Given two datasets

and one entry in the first dataset, can you find a match in the second dataset? We

determine matching records by looking at coincident fields between the records, such as

first name, last name, address, etc. Deterministically, this can be done by incorporating

rules to handle the many possible variations in the data. Probabilistically, we incorporate

a mathematical model in an attempt to extract a probability of two records matching

conditional on the comparison attributes. Within both these realms, most literature focuses

strictly on match/non-match structures with respect to the fields. For example, ”Dominic”

= ”Dominic” and the comparison attribute for First Name would be set to 1. However,

”Dominic” and ”Dominik” do not match entirely, so the comparison attribute for First

Name in this case would be set to 0. Instead of two fields matching absolutely or not

matching at all, we can use string comparators to output a similarity index for two fields.

From these outputs, we can build a model which will output the probability that two

particular entities match given the values of the comparison attributes.

What follows is a summary of the theory for PRM presented by Fellegi and Sunter

(1969).

2.1 Notation

Basically, you have two datasets, call them A and B, and you wish to partition all possible

comparisons (A×B) into two mutually exclusive subsets:

M = {(a, b) : a = b, a ∈ A, b ∈ B} (1)

and

U = {(a, b) : a 6= b, a ∈ A, b ∈ B} (2)
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where M constitutes the set of all matches and U constitutes the set of all unmatches or

non-matches.

How do we go about deciding whether or not two particular records reference the same

entity (i.e., match)? Well, we look at the fields that are common to both datasets (like

First Name, Last Name, Gender, etc.) Given these common comparison components, we

achieve our matching decision via a component by component comparison vector, com-

monly denoted by γ:

γj = [γj1, . . . , γ
j
K ] (3)

where

γji =

 1 if field i agrees for the jth pair

0 if field i does not agree for the jth
(4)

This is the most simplistic version of the comparison vector: either the fields match

completely (γji = 1) or they do not match at all (γji = 0).

Now, each of these components, γi, being an event, can have a conditional probability

attached to it, see Fellegi and Sunter (1969). In fact, there are two:

m(γ) = P (γ|(a, b) ∈M) = P (γ|M) (5)

u(γ) = P (γ|(a, b) ∈ U) = P (γ|U) (6)

The first probability, m(γ), represents the probability of observing a particular vec-

tor conditional on the fact that the two records associated with that vector are a match.

This probability is a proxy for measuring the reliability of the data being compared. It is

desirable that this probability be large for agreement patterns, i.e. patterns where most

components are 1, though this is not always the case. The second probability, u(γ), repre-

sents the probability of observing a particular vector conditional on the fact that the two
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Table 1: Subset of data used in calculating m- and u-probabilities.

A Fname A Lname A Gender B Fname B Lname B Gender Vector

Chris Johnson F Chris Johnson F 111
Chris Johnson F Robert Ordway M 000
Chris Johnson F Kathryn Lowry F 001
Robert Mills M Robert Ordway M 101
Joan Ordway F Robert Ordway M 010
Charles Hernandez M Billy Hernandez M 011
Chris Johnson F Chris Johnson M 110
Robert Mills M Robert Simons F 100
...

...
...

...
...

...
...

records associated with that vector are not a match. In terms of agreement configurations,

this probability is a proxy for measuring random matching chances. Obviously, we would

like these probabilities to be pretty low for agreement configurations, though in fields where

only a select number of values are possible (such as ’male’ and ’female’ for gender), a higher

u-probabilty is expected. In fact, in many algorithms, these u-probabilities are assigned as

simply 1 over the number of possible field values. So, in the case of gender, with only two

values (Male/Female), u(γGender) would be 1/2 = 0.5.

These conditional probabilities are paramount to the Fellegi-Sunter algorithm of PRM,

which many current-day algorithms either stem from or are compared with. For a better

insight into these vector probabilities, let us consider the following example. You have three

attributes/components (First Name, Last Name and Gender) and you wish to estimate the

m- and u-probabilities for the data listed above, assuming you know matching status (which

we usually do not know). In the strictly 0/1 matching scheme, there are 23 = 8 possible

vectors. Table 1 displays a subset of the type of data we would be looking at.

As you can see in Table 1, we have an example of each of the 8 possible scenarios

that can occur. We can break these down further into sub-categories. If these were the

only three categories involved, we would declare the first category to consist of the obvious

matches (row 1) and non-matches (row 2). It would be great if everything was so cut and

dried. The second category consists of mostly random matching, with gender much more
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likely to randomly match given that there are only 2 possible values (M and F). Row 3

shows us two females who share the same gender field, but nothing more. Row 4 shows

two males with the same first name, Robert. There is less variability in first name than

in last name, so we would expect random matching of last name to be rare. The third

category (Rows 5 and 6) shows us this situation as well as last name and gender matching.

Likely reasons for this would be that they are either related (brothers, cousins, husband

and wife, etc.) or that the last name is common, (such as Jones or Smith). These situations

are particularly challenging because it usually requires some sort of manual review to sort

this out without additional information. It can be quite difficult to predict exactly how

some mistakes occur. The last category is the most problematic: where first and last name

matches but gender does not. In situations like this, we could be dealing with situations

where a unisex first name is possible (like Chris in Row 7). Another possible reason is that

Robert could be Roberta (Row 8), but the person inputting the information accidentally

left off the last letter.

Going back to the first row, where it seemed we had an obvious match, the following

should be noted. Being a relatively common name, there could be many people named

”Chris Hernandez” in the world, each living at a different address. Having address would

help substantially in differentiating between these potential false-matches. An additional

problem would occur if the first dataset came from 2005 and the second one came from

2012. In that instance, the address may be different because ”Chris Hernandez” moved.

There are a lot of elements to consider when attempting to match two datasets together,

and what works for one pair of datasets may generalize very well.

Now, to demonstrate how we go about calculating m- and u-probabilities based on the

comparison vector components AND known matching status, we have Table 2.

In Table 2, the comparison vectors are given on the left, the number of pairs corre-

sponding to that vector are in the 2nd column, and the number of true matches and true

non-matches are given in the middle two columns. Granted, in reality, we do not know this

information, which makes estimation of the last two columns, the m- and u-probabilities, a

8



Table 2: Calculation of m- and u-probabilities.

Comparison vector (γ) ni Matches Non-Matches m(γ) u(γ)

111 10 10 0 10/10 = 1.00 0/150 = 0.00
110 1 0 1 0/10 = 0.00 1/150 = 0.01
101 1 0 1 0/10 = 0.00 1/150 = 0.01
100 1 0 1 0/10 = 0.00 1/150 = 0.01
011 1 0 1 0/10 = 0.00 1/150 = 0.01
010 1 0 1 0/10 = 0.00 1/150 = 0.01
001 68 0 68 0/10 = 0.00 68/150 = 0.44
000 77 0 77 0/10 = 0.00 77/150 = 0.51

Totals 160 10 150 1.00 1.00

bit of a challenge. Based on the dataset used to build Table 1, and the matching statuses,

we see that calculating m- and u-probabilities is quite simple, just like calculating a con-

ditional probability back in introductory statistics courses. The trick is, we do not know

the matching status, which means we can only estimate, not calculate, m(γ) and u(γ).

Once we have these conditional probabilities, methods for obtaining them forthcoming,

then weights are calculated based on a likelihood ratio statistic. The weights are calculated

as follows:

wi =
m(γi)

u(γi)
for i = 1, ...,K. (7)

These weights are further aggregated to create a composite score representing the prob-

ability that two particular records refer to the same entity:

w =
K∑
i=1

wi. (8)

If the composite score is above a certain point, then we claim the two records match

(labeled as A1 in Fellegi and Sunter (1969)). If the composite score is below a different

point, then we claim that the two records do not match (labeled as A3). If the score is

between these two thresholds, then we call them a possible match (A2) and we can either

match them, not match them, or perform additional review. Thus, we have a linkage rule,
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or decision function, which assigns probabilities to each of the three decisions:

d(γ) = {P (A1|γ), P (A3|γ), P (A2|γ)} (9)

where the three probabilities are constrained to sum to 1.

As in any classification scheme, there are two potential types of mistakes that can be

made. The first of these, called a Type I error, occurs when we match two entities together

that should not be matched together (i.e., false match) and is denoted by:

µ = P (A1|U) =
∑
γ∈Γ

u(γ)P (A1|γ). (10)

The second error, Type II, occurs when we do not match two entities that should have

been matched (i.e., false non-match) and is denoted by

λ = P (A3|M) =
∑
γ∈Γ

m(γ)P (A3|γ). (11)

The Fellegi-Sunter algorithm is deemed optimal in the sense that, given the probabilities

of false match and false non-match, we minimize the amount of clerical review performed

post-algorithm. As you will see, each algorithm is ”optimal” according to some metric.

2.2 Assumptions

Within the framework of the Fellegi-Sunter algorithm, in which much of this notation is

based, there are two assumptions involved in the calculation of the weights:

• conditional probability distributions, m(γ) and u(γ), must be known (or at least

estimated)

• probability distributions, m(γ) and u(γ), must also be statistically independent con-

ditional on matching status Fellegi and Sunter (1969)
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2.2.1 Known Conditional Probability Distributions

The first assumption is that the conditional probability distributions must be known (or

at least estimated). This can be relatively easily handled in the following ways:

• Assign the probabilities (Verykios et al. (2003))

• Estimate the probabilities (Fellegi and Sunter (1969))

• Apply a prior distribution (Judson (2006))

The first thing we could do would be to assign the probabilities to each of the fields.

There are a total of 2K conditional probabilities that would have to be assigned (2 for each

field we are comparing: the m- and the u-probability). If a domain-expert is available,

perhaps this could work. However, it is believed that this methodology is too subjective

and requires too many inputs and, as such, this method is usually avoided.

The second option would be to estimate these conditional probabilities. Within this

framework, there are two routes we can go.

• Estimate probabilities via pre-processing of external datasets

• Estimate probabilities via internal processing of configuration frequencies

The first of these approaches involves having a large set of already classified compar-

isons. One of the great challenges, however, has been ascertaining a large enough dataset

from which we can adequately estimate all 2K probabilities. For organizations like the

Bureau of the Census, where record linkage is a regular part of their operations, these

external datasets do exist and help substantially in building a model for subsequent data.

In most situations, however, the models are being built on the very same data that we

are trying to match. The second method, the one I am comparing my algorithm to, has

been around for over 40 years, presented by Fellegi and Sunter (1969). This involves vector

frequency in actually estimating these probabilities from within the dataset itself.
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The last method is the one which this dissertation is based upon. Using informative

priors, one could theoretically tailor the prior distributions for each parameter if domain-

specific information and/or previous record matching results were made available. Once

we have the posterior distributions, we can do a variety of things with them. We could

obtain their expected values and feed these numbers into a likelihood-ratio-statistic-based

weighting algorithm and make matching decisions.

2.2.2 Statistically Independent Conditional Distributions

The second assumption is that the conditional distributions must be statistically indepen-

dent given matching status. This is what allows us to treat the likelihood function as a

mere product of pdfs, which is what subsequently allows us to take the log of the product

and sum up the weights in the calculation of our composite score. Basically, it states the

following:

m(γ) = m1(γ1)×m2(γ2)× · · · ×mK(γK) (12)

u(γ) = u1(γ1)× u2(γ2)× · · · × uK(γK) (13)

where m(γ) and u(γ) are defined as in (5) and (6) respectively. Thus, we are stating, in

simpler terms, that the conditional probability of a particular vector given matching status

is equal to the product of the conditional probabilities of the individual components given

matching status. For example, the probability that first name, last name and gender agree

given that the records match is equal to the probability that first name agrees given the

records match times the probability that last name agrees given the records match times

the probability that gender matches given the records match.

This simplifying assumption is a bit more problematic because it is often violated in

practice. For example, consider address and last name data. If two records are supposed

to match, then the fact that addresses match would have an impact on whether last name

matches. However, Herzog et al. (2007) states that parameters estimated when the condi-

12



tional independence assumption is violated may still yield accurate decision rules in many

situations.

However we go about obtaining these probabilities, they are paramount for the imple-

mentation of the PRM scheme presented by Fellegi and Sunter, along with many others

based on it. Once we have these probabilities, we can calculate agreement and disagree-

ment weights, which will be subsequently summed together to give us a composite score,

a proxy for estimating the probability that two particular entities should be linked.
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3 LITERATURE REVIEW

This Section consists of two parts: (1) a general glimpse into the world of record

matching and the different methodologies available and (2) an in-depth look at the Bayesian

approach I am modifying.

3.1 The World of Record Matching

In terms of record matching, there are many different algorithms that have been employed.

The four principal directions, highlighted in Winkler (2006), are as follows:

• Conditional Independence (naive Bayes)

• Logistic Regression

• Boosting

• Support Vector Machines (SVM)

3.1.1 Conditional Independence

Those methods which incorporate the conditional independence assumption can essentially

be summarized in terms of the Fellegi-Sunter framework discussed above. In the Appendix,

you will find explicit equations which allow for implementation of the Fellegi and Sunter

(1969) algorithm. While we have already discussed how the conditional independence

assumption is frequently violated in practice, it is generally accepted that Naive Bayes

is computationally much faster and more straightforward than SVM, boosting, or logistic

regression, according to Winkler (2006).

In record linkage under conditional independence, the weights for individual field agree-

ments is summed to obtain the total agreement weight associated with that record pair.

The weighting of this type of record linkage is a straightforward linear weighting. Accord-

ing to Winkler (2006), in theory, SVM and boosting should outperform the conditional

independence model because the weights w are optimal for the type of linear weighting

14



used in the decision rule. One reason that SVM or boosting may not improve much is that

record linkage weights that are computed via an EM algorithm also tend to provide bet-

ter separation than weights computed under a pure conditional independence assumption.

Additionally, the conditional independence assumption may not be valid. If conditional

independence does not hold, then the linear weighting of the scores is not optimal.

Another noteworthy component with respect to the independence assumption is that

we are not only dealing with the independence of the vector conditional on the matching

status, but the independence of the typographical errors present in the records. In many

situations, if a typographical error exists in any one field of a particular record, it stands

to reason that the probability of additional errors would be higher.

3.1.2 Logistic Regression

Logistic Regression is a regression-based statistical methodology implemented to predict

the probability of being in a particular class (e.g., matching records) based on a series of

quantitative and/or categorical predictor variables. For a binary response variable Y (e.g.,

matching status), π(x) denotes the ”success” probability at value x (e.g., the comparison

component vector).

Regardless of the sampling mechanism, the logistic regression model may or may not

describe a relationship well. In one special case, it does necessarily hold. According to

Agresti (2007), suppose the distribution of X for subjects having Y = 1 is normal N(µ1, σ),

and suppose the distribution of X for subjects having Y = 0 is normal N(µ0, σ); that is

with different means but the same standard deviation. Then, a Bayes theorem calculation

converting from the distribution of X given Y = y to the distribution of Y given X = x

shows that P (Y = 1|x) satisfies the logistic regression curve. For that curve, the effect

of x is β =
µ1 − µ0

σ2
. If the distributions of X are bell-shaped but with highly different

spreads, then a logistic model containing also a quadratic term (i.e., both x and x2) often

fits well. In that case, the relationship is not monotone. Instead, P (Y = 1) increases

and then decreases, or the reverse. This part is relevant here because in Belin and Rubin
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(1995), the weights are transformed to be treated as normal distributions. As such, the

logistic regression methodology can be applied to these transformed values.

The following is an example of how logistic regression has been applied to the record

linkage problem. In fact, Harville and Moore (1999) say that the Fellegi-Sunter approach

and an iterative logistic regression are essentially equivalent. What follows is some under-

lying theory into Harville’s method. Understanding this is important to understanding the

method itself.

Let Bi(Bi > 0) be the bonus assigned for agreement of values of the i-th field. Let

Pi(Pi < 0) be the corresponding penalty for disagreement. Let A = set of i’s where the

values of the ith fields agree. We can write the final score as

SCORE =
∑
i∈A

Bi +
∑
j /∈A

Pj . (14)

Theorem 1: Let Xi = +1, when the values of the ith field agree, and Xi = −1

otherwise. Then there exist unique coefficients ai, and translations ti, such that

SCORE =

n∑
i=1

ai ∗ (Xi + ti) (15)

Corollary 1: Under the conditions in Theorem 1, (16) can be written as

SCORE = a0 +

n∑
i=1

aiXi (16)

with a0 =

n∑
i=1

aiti and the ai unique.

Step 1: Pair all potential linkages and develop agreement patterns in terms of the

Xi(Xi = ±1); then define Y = +1, if the unique identifiers agree, and Y = −1, otherwise.

For each pair, create the vector (X1, X2, ..., Xn, Y ).

Step 2: Use logistic regression to model the likelihood of Y as a function of Xi. This

will result in an equation similar to (14).
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From Corollary 1, we know that

SCORE = a0 +

n∑
i=1

aiXi (17)

with the ai unique for the set of Fellegi-Sunter bonuses and penalties. The same corollary

guarantees that there exist unique ti’s such that

a0 =
n∑
i=1

aiti. (18)

If we can determine the ti, we can combine (18) and (19) and then use Theorem 3.1 to

obtain the bonuses and penalties

Bi = ai × (+1 + ti) and

Pi = ai × (−1 + ti) for i = 1, 2, . . . n
(19)

Step 3: Suppose that we select a proper subset of the Xi and model the logistic

regression. We would get

SCORE∗ = a∗0 +
n∑
i=1

a∗iXi (20)

where a∗i = 0 when the ith matching variable has been dropped from the model. Analogous

to (19), we can assume that there exist unique t∗i such that

a∗0 =

n∑
i=1

a∗i t
∗
i . (21)

Note that when a∗i 6= 0 in (22), it will probably differ from that of ai in (19). Note also

that the t∗i in (23) will probably different from the ti in (20). Assume that we carefully

choose a subset such that a∗i = ai for all values i where the ith matching variable appears

in the subset. Under this condition, we will assume t∗i = ti. This allows us to eliminate

the ”*” on the ti’s in (23), so
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a∗0 =
n∑
i=1

a∗i ti. (22)

Eqs. (20) and (24) now define a system of 2 linear equations in n unknowns (the ti’s).

If we select a different proper subset, which generate coefficients a∗i = ai, we will be able

to create a third linear equation for this system. We can continue to iteratively select

proper subsets, model and add equations to the system until we have generated n linearly

independent equations. For a set of 5 predictors, there are 31 possible subsets, so getting

the 5 necessary equations to solve for the ti’s should not be a challenge.

Step 4 Solve the system of equations to find the unique values for each ti. Then

substitute into (21) to obtain the desired bonuses and penalties.

The advantages of this method are that logistic regression is a much easier method

to interpret than the complicated algebraic manipulations utilized in the Fellegi-Sunter

method. As logistic regression is a widely-used statistical procedure, teaching this method

would be less daunting due to its higher level of familiarity. According to Harville and

Moore (1999), the method is easy to use, gives good results, and the resulting parameters

are consistent with the principles outlined by Fellegi and Sunter.

While Winkler (2006) states that logistic regression is outperformed by support vector

machines and boosting, Ng and Jordan (2002) have demonstrated that logistic regression is

essentially an approximation of SVM. Based on this statement and Harville’s assessment, it

seems that SVM, logistic regression, and the Fellegi-Sunter (or conditional independence)

method are all different faces of the same methodology. While one way of interpreting this

is that SVM should perform better than logistic regression, I feel that it opens the door

for using logistic regression. As stated above, two advantages for using logistic regression

are familarity and interpretability.
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3.1.3 Boosting

Boosting is a maching learning method which attempts to ”boost” the accuracy of any

given learning algorithm, according to Schapire (1999). Basically, boosting takes a series

of weak learners and turns them into a single strong learner. A weak learner is defined to

be a classifier which is only slightly correlated with the true classification (i.e., it can label

examples better than random guessing). In contrast, a strong learner is a classifier that is

arbitrarily well-correlated with the true classification.

Boosting has its roots in a theoretical framework for studying machine learning called

the probably approximately correct (PAC) learning model. In this framework, the learner

receives samples and must select a generalization function (called the hypothesis) from a

certain class of possible functions. The goal is that, with high probability (the ”probably”

part), the selected function will have low generalization error (the ”approximately correct”

part).

According to Winkler (2006), with N steps of boosting, we select a set of initial weights

w0 and successively train new weights wi where the record pairs r that are misclassified

on the prevous step are given a different weighting. The starting weight, w0 is usually set

to 1
n for each record where n is the number of record pairs in the training data. As usual

with training data, the number in one class (matches) needs to be approximately equal to

the number of pairs in the other class (nonmatches). Various authors have demonstrated

that boosting is competitive with SVM. One research issue is determining situations where

boosting substantially outperforms the Fellegi-Sunter classification rule. Another research

issue, brought to attention by Winkler (2006) is whether it is possible to develop boosting

methods that work with only unlabelled data or work in a semi-supervised manner as is

done in record linkage.
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3.1.4 Support Vector Machines

A support vector machine is a concept in computer science for a set of related supervised

learning methods that analyze data and recognize patterns, used for classification and

regression analysis. The standard SVM takes a set of input data and predicts, for each

given input, which of two possible classes the input is a member of, which makes the SVM a

non-probabilistic binary linear classifier. Given a set of training examples, each marked as

belonging to one of two categories, an SVM training algorithm builds a model that assigns

new examples into one category or the other. An SVM model is a representation of the

examples as points in space, mapped so that the examples of the separate categories are

divided by a clear gap that is as wide as possible. New examples are then mapped into

that same space and predicted to belong to a category based on which side of the gap they

fall on.

The original SVM algorithm was invented by Vladimir Vapnik and the current standard

incarnation (soft margin) was proposed by Cortes and Vapnik (1995).

Classifying data is a common task in machine learning. Suppose some given data

points each belong to one of two classes and the goal is to decide which class a new

data point is in. In the case of support vector machines, a data point is viewed as a p-

dimensional vector (a list of p numbers), and we want to know whether we can separate

such points with a (p− 1)-dimensional hyperplane. This is called a linear classifier. There

are many hyperplanes that might classify the data. One reasonable choice as the best

hyperplane is the one that represents the largest separation, or margin, between the two

classes. So, we choose the hyperplane so that the distance from it to the nearest data point

on each side is maximized. If such a hyperplane exists, it is known as the maximum-margin

hyperplane and the linear classifier it defines is known as a maximum margin classifier, or

equivalently, the perceptron of optimal stability. Below, in Figure 1, we see three different

hyperplanes. The green hyperplane, represented by H3, does not separate the two different

classes (represented by black and white dots). The blue hyperplane, represented by H1,
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does separate the classes, but only by a small margin. The red hyperplane, represented by

H2, would be the maximum-margin hyperplane.

Figure 1: Looking at three different potential hyperplanes.

Ng and Jordan (2002) have demonstrated empirically and theoretically that SVM-like

procedures will often outperform naive Bayes. In theory, SVM should outperform basic

record linkage (possibly not by much) because the weights w are optimal for the type

of linear weighting used in the decision rule. One reason that SVM may not improve

much is that record linkage weights that are computed via an EM algorithm also tend to

provide better separation than weights computed under a pure conditional independence

assumption.

3.2 Bayesian Logistic Regression Meets Record Matching

This section presents the foundation to the Bayesian logistic regression methodology used

in my research. The idea presented by Judson (2006) was to establish a decision rule

from which a record pair could be declared a match or a non-match. This decision rule

made itself available in logistic regression, and the Bayesian twist came about because the

situation was treated as a latent model where the true matching status of the record pair

is unknown.

The most relevant element of Judson’s work, at least in terms of my research, is where

he shows the proportional relationship between the coefficients from a logistic regression
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model and the weights in the Fellegi-Sunter setup. To me, this provided the perfect link

in being able to compare my modification of his method (incoporating string comparator

scores in place of strictly binary predictors) to the original Fellegi-Sunter algorithm. The

link is proved below, with p representing the probability of two records being declared a

match given the comparator vector ~x

Fix any k ∈ {2, ...,K} where K represents the number of fields being compared.

We let the event M = {the ith record is a match}

with U = {the ith record is a non-match}

By assumption, log p
1−p = ~xi~β, holds in the population, thus

P [M |~x~β]

P [U |~x~β]
= exp(β0 + β1x1 + . . .+ βKxK) (23)

= exp(β0) exp(β1x1) . . . exp(βKxK)

We may set xk = 1 and xj = 0 for all j 6= k. Then:

P [M |xk]
P [U |xk]

= exp(β0) exp(βkxk). (24)

We solve for βk and obtain:

log

[
P [M |xk]
P [U |xk]

(
1

exp(β0)

)]
= βk. (25)

Utilizing Bayes’ Theorem, we can rewrite the conditional probabilities in the first part

of the above equation as follows:

P [M |xk] =
P [xk|M ]P [M ]

P [xk|M ]P [M ] + P [xk|U ]P [U ]
, (26)

P [U |xk] =
P [xk|U ]P [U ]

P [xk|M ]P [M ] + P [xk|U ]P [U ]
.

Substituting these equations back into the equation for βk yields
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log

P [xk|M ]P [M ]
P [xk|M ]P [M ]+P [xk|U ]P [U ]

P [xk|U ]P [U ]
P [xk|M ]P [M ]+P [xk|U ]P [U ]

(
1

exp(β0)

)
= βk (27)

Simplifying the fraction within the natural log gives us:

log

[
P [xk|M ]

P [xk|U ]

(
P [M ]

P [U ]

)(
1

exp(β0)

)]
= βk (28)

Taking the exponential of both sides yields eβk ∝ P [xk|M ]

P [xk|U ]
=
m(γk)

u(γk)
, the Fellegi-Sunter

weight.

This information allows us to apply a statistical model to the field of record matching,

measure the impacts of various predictors, assess any potential interactions between said

predictors, and perform model diagnostics to assess model fit. In other words, it provides

structure and flexibility, two things the Fellegi-Sunter algorithm lack.

It is worthy of note here that I am not employing the exact same procedure. Markov

chain Monte Carlo (MCMC) is being implemented in order to evaluate the posterior dis-

tribution and to be able to incorporate more subjective/informative prior distributions.

As of the writing of this dissertation, the prior distributions are limited to simply Normal

distributions with 0 mean and very large variances (essentially, non-informative). Future

directions of this research would include the incorporation of subjective priors, as well as

the latent model approach.

3.3 Jaro-Winkler String Comparator

In this digital age of information saturation, it is not uncommon to find excessive typo-

graphical mistakes in data entry. There have been many different attempts to understand

the nature of these errors in an attempt to reconcile them. There are probabilistic models

that will take into account which hand and finger are typically used to key a letter and

then attempt to correct potential mistakes by looking at the keys surrounding the one

that was pressed. For example, a potential mistype would be to write ”Brosn” instead

of ”Brown”. Almost any human would be able to discern what the correct word should
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be, but a probabilistic model can do this as well, recognizing that ”Brosn” is more likely

to mean ”Brown” than ”Broan”, ”Broxn”, ”Brodn”, or any other potential replacement

letter surrounding the letter ”s”. The point here is that there are many ways to reconcile

typographical errors.

The Jaro-Winkler (JW) similarity index is simply another attempt at incorporating

some automated function to gauge string similarity. It is a variant of the Jaro metric that

takes into consideration matching characters at the beginning of the strings. The higher

the JW index for two strings is, the more similar the strings are. The JW metric is designed

and best suited for short strings such as person names. The score is normalized such that

0 equates to no similarity and 1 is an exact match. The Jaro distance (Jaro (1989)), dj , of

two given strings s1 and s2 is

dj =
1

3

(
m

|s1|
+

m

|s2|
+
m− t
m

)
(29)

where

• m is the number of matching characters, and

• t is half the number of transpositions.

Two characters from s1 and s2, respectively, are considered matching only if they are

not farther than

bmax(|s1|, |s2|)
2

c − 1.

Each character of s1 is compared with all its matching characters in s2. The number of

matching (but different sequence order) characters divided by the numeric value ’2’ defines

the number of transpositions. For example, in comparing CRATE and TRACE, only ’R’

’A’ ’E’ are the matching characters, i.e., m = 3. Although ’C’ and ’T’ appear in both

strings, they are farther than 1.5 characters apart (i.e., (5/2) - 1 = 1.5). Therefore, t=0.

The bxc function represents the largest integer value equal to or smaller than x.
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The Jaro-Winkler distance Winkler (1990) uses a prefix scale p which gives more favor-

able ratings to strings that match from the beginning for a set prefix length l. Given two

strings s1 and s2, their Jaro-Winkler distance dw is

dw = dj + (lp(1− dj)) (30)

where

• dj is the Jaro distance for strings s1 and s2

• l is the length of common prefix at the start of the string up to a maximum of 4

characters

• p is a constant scaling factor for how much the score is adjusted upwards for having

common prefixes. This should not exceed 0.25. Otherwise, the distance can become

larger than 1. The standard value for this constant in Winkler’s work is p = 0.1.

Back to our example, ”Dominic” vs. ”Dominik”; if we look at the Jaro score for these

two strings, we get a score of

dj =
1

3

(
6

7
+

6

7
+

6− 0

6

)
= 0.9048.

If we boost the score using the Winkler modification since the first four letters match, we

get a score of

dw = 0.9048 + (4(0.1)(1− 0.9048)) = 0.9429.

If we can retain this score, then we would preserve 94% of the information given in this

pair of fields, instead of throwing away all that information because they do not exactly

match.

Due to the way in which the likelihood is defined, incorporating these string similarity

scores does not adversely impact the design of the likelihood. Obviously, we are no longer
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dealing with a series of Bernoulli trials. In terms of the Fellegi-Sunter algorithm, this

approach has the disadvantage that we will not be able to estimate all the m- and u-

probabilities for each possible vector. A method of circumventing this issue would be to

assign some threshold (say 0.85) beyond which we call the strings a match (1) and below

which we say they do not match (0). Thus, we would return to the binary structure which

is inherent to the Fellegi-Sunter algorithm. However, now, we have created a second point

in the process by which we are using a threshold, which is essentially arbitrary, if not data-

dependent. The first point being at the string comparator index step, with the second

coming at the matching decision step.
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4 LIKELIHOOD APPROXIMATION

Let us assume that lists A and B are independent random samples drawn from popula-

tions A and B, respectively. In addition, let lists A and B consist of n and m individuals,

respectively, with n ≤ m. We will condition on the longer list, i.e., the one from popula-

tion B. The information recorded for the ith individual on list A is {(Yij , γij) : 1 ≤ j ≤ m},

where Yij = 1 if individual i ∈ A matches with j ∈ B and 0 otherwise, and γij representes

the vector of comparators for this particular pair (i, j). It should be noted that this binary

structure is the most common comparator structure with regards to record matching. One

of the modifications presented in my research is to extend the parameter space from binary

{0, 1} to continuous on the [0,1] scale by way of the Jaro-Winkler string comparators dis-

cussed in the previous Section. For convenience, let us use the following notation: (Yi,Γi),

where Yi = (Yi1, . . . , Yim)T and Γi is the m× p matrix with jth row γij , j = 1, ...,m.

If the sample size n is small in comparison to the sizeN of populationA, then the sample

from A constitutes an approximate multinomial experiment. The number of categories is

m + 1 times the number, C, of different values that can be taken on by the comparator

matrix Γ. The category probabilities can be written as follows:

π(r, s) = P (Yi1 = 0, . . . , Yir = 1, Yi(r+1) = 0, . . . , Yim = 0,Γi = Cs),

r = 1, . . . ,m, s = 1, ..., C,

(31)

and

π(m+ 1, s) = P (Yi1 = 0, . . . , Yim = 0,Γi = Cs), s = 1, ..., C (32)

where C1, . . . ,CC denote the possible values taken by the comparator matrix.

In (33), we are saying that record i ∈ A matches with r ∈ B. In (34), we are saying

that record i ∈ A does not match with any records in B. As you can see, we are making the

assumption that each individual in sample A matches with AT MOST one observation in
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sample B. This write-up does not take into account when a particular observation matches

with more than one individual. There is a place for either approach in the field of record

matching.

Since the event Yi1 = 0, . . . , Yir = 1, Yi(r+1) = 0, . . . , Yim = 0 is equivalent to the event

Yir = 1, we have

π(r, s) = P (Yir = 1|Γi = Cs)fΓ(Cs), r = 1, ...m (33)

where fΓ is the pmf of Γ in the strictly binary {0, 1} case or the pdf of Γ in the Jaro-

Winkler string comparator score case. Let us assume that P (Yir = 1|Γi = Cs) is the same

for r = 1, . . . ,m. This conditional probability is the quantity of interest in this research.

As a practical matter, it is undoubtedly necessary to parameterize P (Yir = 1|Γi = Cs).

A simplifying assumption is the following:

P (Yir = 1|Γi) = P (Yir = 1|γir) (34)

This states that if we have the comparator vector for the pair of names (i, r), then knowing

the comparator vectors of i and each of the other names on list B is not necessary for

purposes of predicting Yir. Also, we assume that

P (Yir = 1|γir) = f(γir|θ) for all r (35)

for some vector-valued parameter θ. Inferring θ is now the goal of the investigation.

The likelihood has the form

L(θ) =
∏

i∈Smatch

f(γiri |θ)
∏

i∈Sc
match

[
1−

m∑
r=1

f(γir|θ)

]
n∏
i=1

fΓ(Γi) (36)

where Smatch is the set of indices i such that Yiri = 1 for 1 ≤ ri ≤ m.

For the purposes of MCMC, the quantity

n∏
i=1

fΓ(Γi) is just a constant of proportionality.

Thus, the posterior for θ is completely free of this quantity.
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The form of the parametric probability function, f(γ|θ), chosen for this research is of

logistic form:

log

[
f(γ|θ)

1− f(γ|θ)

]
= θ0 +

p∑
j=1

θjγj (37)

where γj is the jth component of γ, j = 1, . . . , p.

Ultimately, we wish to devise a method for predicting matches on a new set of data

(Ỹi, Γ̃i), i = 1, . . . , l. In this situation, only Γ̃1, . . . , Γ̃l are known. Suppose we assume

that (Ỹi, Γ̃i), i = 1, . . . , l, follow the same parametric model as do (Yi,Γi), i = 1, . . . , n. In

addition, we assume that, given θ, the two datasets are independent of each other. Letting

D represent the original set of data, the posterior predictive distribution would then be

calculated in the following manner:

m(ỹ1, . . . , ỹl|Γ̃1, . . . Γ̃l,D) =

∫
Θ L(θ)Lnew(θ)π(θ)dθ∫

Θ L(θ)π(θ)dθ
(38)

where Lnew(θ) is the likelihood of the new data set ỹ1, . . . , ỹl and π is the prior for (Θ).
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5 DETAILS OF A VIRTUAL SIMULATION

While obtaining data for which records can be matched is a simple task unto itself,

obtaining a pair of datasets where all possible combinations have known matching status is

considerably more difficult. There is a considerable amount of effort that goes into discern-

ing a large number of matched or non-matched pairs. As a result of this limitation, this

dissertation only presents simulated data, which were simulated using a software package

called LINKSOLV from a company called Strategic Matching, led by Michael H. McGlincy.

The purpose of this type of simulation is to output records with information that would

be expected on accident and ambulance forms. In addition, unique identifier numbers at-

tached to each observation allow 100% knowledge of matching status, which is crucial when

training a model. The specific data that are being matched are crash reports (CRASH)

and ambulance run reports from Emergency Medical Services (EMS). As McGlincy (2006)

writes, many times, it can be difficult to match individuals from crashes to ambulance run

reports because each particular organization records different information and they are

not necessarily consistent on which information is obtained, or even if that information is

accurate. Simulating record linkage data can give individuals and corporations the oppor-

tunity to build training models on data in which one already knows the matching status

of a particular pair (unique identifiers are outputted with the simulated data for matching

purposes).

There are 22 different variables simulated in the record linkage software that are com-

mon to both the CRASH and EMS datasets. Those variables, their descriptions, and the

number of possible values are outlined in Table 3. The description is important because

it provides us with a bit of context in terms of the data and why particular predictors are

significant to the prediction of matching status. The number of possible values is impor-

tant because it outlines an interesting paradox in record matching. In terms of how many

possible values there are, for some of the variables, the number is fixed, like with Sex or

KABCO). On the other hand, other variables will be data-dependent (indicated as such by
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”look at data”), like the County in which the incident occurred, or the number of different

Soundex codes.

In general, a predictor with too few possible values (like Gender) will do very poorly

in terms of record matching. Intuitively, this is not surprising, for often two people are

the same gender, but are not the same individual. Mathematically, we can articulate this

argument in the following fashion: In calculating weights for the Fellegi-Sunter method, see

Equation (7), we are taking the ratio of m(γ) to u(γ) and summing the logarithms of those

ratios. Since m(γ) should be greater than u(γ) for agreement configurations (otherwise,

the data is too messy to be useful to any algorithm), the ratio should be greater than 1

and the logarithm of this ratio should be greater than 0. In the case of u(γGender), we are

dealing with a value that will be close to 0.5. This means that if m(γGender) is close to

0.5, then the ratio will be close to 1 and the logarithm will be close to 0. As such, Gender

would contribute very little to the Fellegi-Sunter algorithm, in much the same way that it

contributes little to the logistic regression setting.

The flip side of this paradox is considerably more troubling. If a variable has too many

possible values (i.e., bordering on the unique) then that does not bode well either for record

linkage purposes. The reason here is twofold: (1) the sparseness of the data for each unique

value makes coming up with maximum likelihood estimates difficult and (2) the uniqueness

of the data may drown out other variables in terms of predictive power. Regarding the first

point, if we had a seemingly unique variable, then the comparator score for that unique

variable (e.g. SSN) would almost line up perfectly with the matching status. For example,

if the two SSN’s match, then the probability of the records matching would likely be 1.

For two SSN’s that did not match, the probability of those records matching would likely

be 0. As such, we would have perfect or near perfect discrimination; Agresti (2007)

For the CauseOfInjury variable, the ICD-9 E code refers to the International Classifi-

cation of Diseases and is designed to promote international comparability in the collection,

processing, classification, and presentation of mortality statistics. With respect to First-

Soundex and LastSoundex, Soundex codes are output via a phonetic algorithm designed
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to encode homophones in the same representation so that they can be linked regardless

of spelling. For example, Dominic and Dominik, while spelled differently, would have the

same Soundex code of D552. Soundex codes, and their counterpart, the New York State

Identification and Intelligence System (NYSIIS) are used very frequently in record match-

ing as this helps to eliminate inconsistencies in data entry. FIPS county codes are five digit

Federal Information Processing Standard codes which uniquely identify counties. The first

two digits actually correspond to the FIPS state code while the last three encompass the

county code.

There are two parameters under the user’s control in simulating this data: Error Prob-

ability and Missing Probability. As anyone can guess, data collection can be an erroneous

affair, assuming that data is even collected. This phenomenon is particularly prevalent in

record matching. Many times there will be variables that have missing values. Reasons for

this include there not being enough time to collect the data, an individual choosing not

to answer a question, surveys getting lost in the mail, and so on. If data is obtained, it

may not be accurate. If data is hand-written, the person keying in the data may either

make a mistake in reading the responses, or may make a typographical (a.k.a ”fat-finger”)

mistake. Regardless of how data is collected and/or keyed in, typographical mistakes are

ubiquitous. Even worse, data can be falsified or fraudulent for any number of possible

reasons. As such, attempting to build training models on perfect data will not generalize

well to any real datasets. The missing and error probabilities for each of the 22 variables

is listed in Table 4. There were two different datasets involved in the construction of this

final model: DS1 represents the better looking data in terms of missing and erroneous data.

The model here, however, did quite well, and the quality of the data was a considerable

contributor to that success. As such, we upped the ante by increasing the probability of

missing/erroneous for DS2, the messier data. Ultimately, the process flow treats DS1 as

the training dataset, building the model, and then scoring the model on DS2.

The record matching simulation software does have some issues of its own that should

be pointed out and taken into account when considering modeling results. For example,

32



Table 3: Description of common variables simulated in record matching software.

Variable Description # of possible values

Age Age in years look at data
BirthDate Date of birth of occupant (m/d/yyyy) look at data
CauseOfInjury Crash Information coded as ICD-9 E code (E810.0) look at data
Collide Type of crash coded like Std E Code

(NO, OBJ, OTH, PED, TRN, VEH) 6
County Location of crash as FIPS county code look at data
Date Date of crash (m/d/yyyy) look at data
Time Time of crash (hh:mm) look at data
CrashZip Location of crash as USPS zipcode look at data
FirstInitial Initial of occupant’s first name 26
FirstSoundex Soundex code of occupant’s first name 876096
HomeZip Location of residence as USPS zipcode look at data
KABCO Injury Severity (K=Killed, A=Incapacitating Injury

B=Non-incapacitating Injury,
C=Possible Injury, O=No Injury 5

LastInitial Initial of occupant’s last name 26
LastSoundex Soundex code of occupant’s last name 876096
PartInj Injured body part (NO=None, HD=Head,

CH=Chest, BK=Back, AR=Arms, LG=Legs) 6
PlateNbr License Plate Number (A123456) look at data
Race Race (LT=Light, DK=Dark) 2
SSN Social Security Number (123456789) look at data
Safety Safety equipment used (N=No, Y=Yes, X=N/A) 3
Seat Seating position coded like Std E Code

(DRV=Driver, PAS=Passenger) 2
Sex Sex of occupant (F=Female, M=Male) 2
Vehicle Type of vehicle coded like Std E Code

(MC=Motorcycle, MV=Motor Vehicle) 2

the error generation algorithm (controlled by the error probability given above) randomly

substitutes a different value for the correct value in each character location. The rationale

behind this is that in health care records, the birthdate or social security number of a spouse

or other family member may be substituted in place of the patient’s. In situations such as

this, it would not be surprising to see situations where the name of the driver on the police

crash report would be completely different from a cousin’s information at the hospital. This

makes the prospect of record matching difficult in these, ideally rare, scenarios. Also, if
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Table 4: Probabilities of Error/Missing of simulated variables.

Variable P(Miss) - DS1 P(Error) - DS1 P(Miss) - DS2 P(Error) - DS2

Age 0.05 0.02 0.10 0.04
BirthDate 0.05 0.02 0.10 0.04
CauseOfInjury 0.05 0.002 0.10 0.004
Collide 0.05 0.002 0.10 0.004
CrashCounty 0.05 0.002 0.10 0.004
CrashDate 0.05 0.002 0.10 0.004
CrashTime 0.05 0.02 0.10 0.04
CrashZip 0.05 0.002 0.10 0.004
FirstInitial 0.05 0.02 0.10 0.04
FirstSoundex 0.05 0.02 0.10 0.04
HomeZip 0.05 0.02 0.10 0.04
KABCO 0.05 0.05 0.10 0.10
LastInitial 0.05 0.02 0.10 0.04
LastSoundex 0.05 0.02 0.10 0.04
PartInj 0.05 0.05 0.10 0.10
PlateNbr (A123456) 0.05 0.02 0.10 0.04
Race 0.05 0.02 0.10 0.04
SSN 0.05 0.02 0.10 0.04
Safety 0.05 0.02 0.10 0.04
Seat 0.05 0.002 0.10 0.004
Sex 0.05 0.002 0.10 0.004
Vehicle 0.05 0.002 0.10 0.004

data are time-dependent, addresses and last names can easily be modified, making adequate

record matching even more complicated.
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6 IMPLEMENTATION

The Implementation Section itself will consist of two parts: (1) a collaboration be-

tween the Fellegi-Sunter (FS) algorithm with a cost-based algorithm designed by Verykios

et al. (2003) for declaring matches in the case where binary values are the inputs and

(2) the modification of Judson’s Bayesian logistic regression (BLR) taking into account

Jaro-Winkler string comparator scores.

6.1 The Champion: FS

The baseline algorithm is a mix of two different algorithms. The first one, which comes

straight from Fellegi and Sunter (1969), is what I used to estimate the conditional proba-

bilities. From there, these probabilities are fed into the second algorithm, from Verykios

et al. (2003), along with some cost matrix elements, to calculate and aggregate the weights.

Finally, matching decisions are made based on how these composite scores compare to par-

ticular thresholds.

For the FS approach, four things are required:

1. Cost matrix elements (user-provided)

2. Conditional probabilities of comparison vector given matching status (estimated by

FS)

3. Overall probabilities of matching (estimated by FS)

4. Data vectors (data-provided)

The only foreign element here is the cost matrix. The cost matrix elements used in

Verykios’ algorithm are meant to generalize the idea of minimizing error probability. In

certain business applications, it may be more pertinent to minimize false matches over false

non-matches, or vice versa. In the context of minimizing errors, false matches and false

non-matches are treated equally.
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The setup for, and equation used in calcuating, the conditional probabilities m(γ)

and u(γ) are presented in the second section of the Appendix. Given those conditional

probabilities, we input them into the likelihood ratio statistic along with the data vectors.

Here, the likelihood scores will be calculated and aggregated to yield the composite scores

utilized in the decision-making process.

Using (7), (12) and (13),

log
u(γ)

m(γ)
= log

u1(γ1) · u2(γ2) · · ·uK(γK)

m1(γ1) ·m2(γ2) ·mK(γK)
, (39)

which can also be written as follows:

log
u(γ)

m(γ)
= log

u1(γ1)

m1(γ1)
+ log

u2(γ2)

m2(γ2)
+ · · ·+ log

uK(γK)

mK(γK)
=

K∑
i=1

log
ui(γ

i)

mi(γi)
. (40)

Now, because the comparison vector components are binary in nature (and subse-

quently, the conditional distributions are both Bernoulli trials, the log-likelihood-ratio

statistic is expressed in the following manner:

γi|M ∼Bernoulli(pi)

mi(γi = 1) = P (γi = 1|M) = pi

mi(γi = 0) = P (γi = 0|M) = 1− pi

γi|U ∼Bernoulli(pi)

ui(γi = 1) = P (γi = 1|U) = qi

ui(γi = 0) = P (γi = 0|U) = 1− qi

log

(
u(γi)

m(γi)

)
= log

(
qγii (1− qi)1−γi

pγii (1− pi)1−γi

)
(41)

= log
(
qγii (1− qi)1−γi

)
− log

(
pγii (1− pi)1−γi

)
(42)

= [γilogqi + (1− γi)log(1− qi)]− [γilogpi + (1− γi)log(1− pi)] (43)
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= γilog
qi
pi
− γilog

1− pi
1− qi

+ log
1− qi
1− pi

(44)

= γi

[
log

qi
pi

+ log
1− pi
1− qi

]
+ log

1− qi
1− pi

(45)

= γi

[
log

qi(1− pi)
pi(1− qi)

]
+ log

1− qi
1− pi

(46)

Based on (48), (42) can be rewritten as follows:

log
u(γ)

m(γ)
=

K∑
i=1

γi

[
log

qi(1− pi)
pi(1− qi)

]
+

K∑
i=1

log
1− qi
1− pi

. (47)

Now, given this summation, we can calculate the likelihood scores from the data vectors

and the estimated conditional probabilities (pi and qi) from the Fellegi-Sunter algorithm.

Given these likelihood scores, we compare those to a couple of thresholds. These thresholds

are dependent on the cost matrix elements as well as the overall probability of matching.

The cost matrix looks like the following:


cA1M cA1U

cA2M cA2U

cA3M cA3U

 .

These thresholds are meant to minimize the overall cost of the record matching associ-

ated with three different results

1. Type I Errors (false matches) (cA1U - first row, second column of cost matrix)

2. Type II Errors (false non-matches) (cA3M - third row, first column of cost matrix)

3. Additional Review (cA2M and cA2U - second row of cost matrix)

The thresholds from Verykios’ model are calculated via the cost matrix elements and

the a priori probabilities of matching:

λ =
π0

1− π0
· cA2M − cA1M

cA1U − cA2U
(48)
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µ =
π0

1− π0
· cA3M − cA2M

cA2U − cA3U
(49)

Using the log-likelihood score (the composite score) and these thresholds, the following

decisions are made:

Decision =


Match log u(γ)

m(γ) < λ

Possible Match λ < log u(γ)
m(γ) < µ

No Match log u(γ)
m(γ) > µ

(50)

Typically, the cost matrix elements would be provided by the client or customer.

6.2 The Challenger: BLR

The Bayesian Logistic Regression setup is implemented via the MCMC procedure in the

SAS software. Markov chain Monte Carlo (MCMC) is a simulation method which allows

one to sample from non-standard probability distributions utilizing a Markov chain. One

of the desired properties of MCMC is that as the number of simulations increases, the sub-

sequent distribution converges to the stationary distribution. In Bayesian statistics, we are

often interested in obtaining posterior and posterior predictive distributions. The posterior

is proportional to the product of a prior distribution and a likelihood distribution. Spe-

cific to the posterior predictive distribution, integration is key in calculating probabilities,

which is precisely where MCMC’s true power can be actualized. At the same time, how-

ever, I utilize the posterior distribution in my research when I perform my cross-validation

scheme. The MCMC procedure in SAS uses a random-walk Metropolis algorithm to obtain

posterior samples.

It bears noting that, after viewing initial outputs, modifications were made to the

MCMC methodology itself. For example, the number of burn-in values, initially defaulted

at 1000, has been boosted to 7500. The reason for this is that the Geweke diagnostics

were significant for three of the parameters, ultimately indicating that convergence had

not been reached and that more initial observations needed to be discarded. Also, the
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level of thinning increased quite substantially from 5 to 250. This occurred because the

autocorrelation diagnostics indicated a significant correlation between iterations. Thinning

is a method commonly used in MCMC as a means of systematically selecting a sample from

the MCMC iterations, as a means of reducing autocorrelation since the samples generated

by MCMC have high positive autocorrelation. Because of the significant increase in terms

of thinning and the additional burn-in values, we generated a total of 250,000 observations,

yielding a total of 970 observations used to approximate the posterior distribution.

Wrapped around this MCMC procedure is a leave-one-out cross-validation approach

used for model selection. There are 22 variables in the initial model, but not all of these

are significant in predicting matching status. The design of the cross-validation is as follows:

1. Create all possible combinations of the pairs

2. Remove first pair

3. Run PROC MCMC on remaining pairs to obtain posterior distribution

4. Given posterior distribution and covariates, calculate matching probability (p)

5. If p > 0.50, assign pair as a match

6. Repeat steps 2 through 5 for all possible combinations

7. Given true matching status, calculate Recall, Precision, F-Score

Of course, the threshold for deciding a match is arbitrary and, as will be discussed in

the coming Section, can be tuned to suit specific needs.

Beyond the simulation of the datasets, there were additional steps taken with regard

to the data in an attempt to improve the performance of the Bayesian logistic regression

model. Those modifications are listed below:

• Trailing 0’s removed from SOUNDEX variables
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• BirthDate partitioned into Month, Day and Year

- Removed ’19’ from year

• Threshold changed from 0.5 to 0.15

The first change likely requires a bit of explanation as to how the SOUNDEX variable

works. SOUNDEX is a phonetic algorithm which basically breaks words down into how

they sound. The idea behind this algorithm, and the similar NYSIIS (New York State

Identification and Intelligence System), is to group together words that sound the same, in

an attempt to alleviate spelling errors. The rules, applied to my name, ”Dominic,” are as

follows:

1. Retain the first letter of the name and drop all other occurrences of a, e, i, o, u, y, h,

w

Dominic → Dmnc

2. Replace consonants with digits as follows (after the first letter)

b, f, p, v → 1

c, g, j, k, q, s, x, z → 2

d, t → 3

l → 4

m, n → 5

r → 6

Dmnc → D552

3. Two adjacent letters (in the original name) with the same number are coded as a

single number, as are two letters with the same number separated by either ’h’ or

’w’. However, such letters separated by a vowel are coded twice.
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4. Continue until you have one letter and three numbers. If you run out of letters,

simply pad the ending with 0’s.

In terms of the Jaro-Winkler string comparator score, that last rule is paramount. A lot

of the records had trailing zeroes, which artifically inflates the comparator score, leading

to false matches.

The second change occurred because the simulation outputs birthdates in the following

format: mm/dd/19yy. As all birthdates are listed in this fashion, the string comparator will

see the ”/” and the ”19” and raise the score. Since the slashes and the first two numerals

in the year provide no distinctive power, these were removed them from the dataset as well.

As we progress further into the 21st century, the first two digits of the year will become

more important. However, with only 2 possible values (19 and 20), we encounter a similar

problem as with Gender and this particular component will likely not be significant.

The final change occurred after the procedure had already run and I had the opportunity

to see what the distribution of probabilities looked like. In addition, I can run the algorithm

at different thresholds of matching in an effort to optimize the algorithm in terms of Recall

and Precision (vis-a-vis the F-Score). While it may make intuitive sense to place this

probability at 0.5, that is not usually the most optimal in terms of maximizing F-Score.

The Results Section will expound more on the ultimate choice of the threshold along with

some ideas for why 0.5 was not optimal.

As you will notice, there are some predictors that have very few values, indicating that

they are unlikely to provide a lot of predictive power to the overall matching scheme. Some

of these variables actually do have something to provide, while others with more possible

values (and seemingly higher differentiability) are not as significant. The rationale behind

this is that while not having very many fields is bad (Dominic Jann and Bob Jones are

both males, but obviously not the same person), the same is actually true for having too

many fields, because then you do not have enough data per predictor value to provide a

good model.

As you can already tell, in terms of constructing a logistic regression model, there are

41



going to be some redundancies given the aforementioned list of variables. For this reason,

those variables providing less specific information were removed. For example, Age and

BirthDate essentially give the same information, but whereas age is likely restricted to

between 16-100 (only 85 possible values), BirthDate can assume a much larger number

of values (365*85=31025). The total number of possible values is important in terms of

predictive value. Obviously, a variable with a larger amount of variation would be better

suited for determining matching pairs than a variable with only 2 levels, such as gender.

The prior distributions used in the MCMC were strictly non-informative. Each coeffi-

cient had a N (0, 1002) prior distribution. As the data structure was not well-understood,

it was thought that beginning with non-informative priors would allow the data to speak

for itself. It would be most advantageous to see how tweaking these prior distributions

would impact the final model and its ability to discern matching status.
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7 RESULTS

7.1 Variable Selection

In Section 5, the variables used in the modeling were described in more detail. After running

leave-one-out cross-validation on the first set of simulated data, the following variables were

found to be the most significant in adequately predicting matching probability:

• BirthDate

• Collide

• CrashZip

• FirstSoundex

• LastInitial

• PartInj

• Safety

An obvious question after seeing this list would be ”Why these particular variables?” If

you notice in the list, refer to Section 5 for a refresher on what the variables are, you will

notice that there is quite a mix of variable types. For example, variables such as Birthdate

have a much broader range of values. It is unlikely that multiple people are going to share

the same birthday. Thus, if two records match on BirthDate, it would stand to reason

that the probability of matching for those particular records is going to increase. If they

do not match on Birthdate, a variable that will not change with time or relocation, then,

odds are, they do not match. What is curious, however, is that Social Security Number

(SSN) was not included in the final list. Part of the reason for this is that Social Security

Number does not necessarily uniquely identify individuals. There is evidence that, after the

Social Security Administration was formed in 1935, many people believed new employment
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signified a new social security number. In addition, employers used to submit applications

on behalf of former employers so that earnings could be deposited in a particular account.

It is worthy of note that the only real comparisons made between the FS algorithm and

the Bayesian Logistic Regression were based on only three predictors. The reason for this

is as follows: in Fellegi and Sunter (1969), the method has an unmistakable caveat: ”if, in

fact, there are more than three components (fields, attributes, etc.), they can be grouped

until there are only three left.” While there is no denying that these groupings can occur,

the obvious question becomes, ”How do we group them?” I have found that the success of

the algorithm depended in large part on which variables where used and how they were

grouped. This makes a direct, one-to-one comparison between my modified BLR algorithm

and the FS algorithm quite difficult for anything beyond 3 predictors.

What are we most concerned about in terms of results with respect to record matching?

Well, like any classification scheme, there are several measures we are interested in:

• Recall =
# correctly assigned matches

# total true matches

• Precision =
# correctly assigned matches

# total assigned matches

• F1 Score = 2 · Precision · Recall

Precision + Recall

Recall is a measure of how many true matches the algorithm obtains, whereas Precision

is a measure of how many correct matches the algorithm assigns. In general, as one of these

last two measures increases, the other decreases, making it difficult to completely assess a

classification scheme in terms of one or the other. For example, if we increase the threshold

by which we define a match, then our Precision is likely to increase, owing to the fact that

it takes more to be assigned as a match. By the same token, because it takes more to be

a match, fewer pairs will be assigned as matches, thereby decreasing the Recall. This is

where the F1 Score helps us. It considers both the Precision and the Recall in terms of a

weighted average.
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Another element that is of interest is that of computation time. In this era of super-

computers and megabyte download speeds, many times companies are just as interested,

if not more so, in the efficiency of a particular algorithm or process than the accuracy of

it. Some may be willing to sacrifice a percentage point or two in terms of an accuracy

statistic to gain hours or days on an algorithm’s run time. Unfortunately, my algorithm

does not improve on the baseline Fellegi-Sunter algorithm in terms of computation time.

Due to the MCMC nature of my algorithm, the many simulations that are performed in

creating posterior and posterior predictive distributions adds considerably to the run time.

However, it should be noted that my algorithm is not meant to be run on entire datasets

or entire combinations of all possible pairs. While the Fellegi-Sunter algorithm, and many

others, do focus considerably on computation speed as well as accuracy, still many other

algorithms focus more of their attention on the accuracy. The reason for this is because

of blocking. Blocking is discussed more in the introduction as its relevance is more per-

tinent there and I am not incorporating a blocking scheme here. So, while my algorithm

may not perform as well as the baseline Fellegi-Sunter in terms of computation speed, the

elevated accuracy combined with a good blocking scheme will yield better results in terms

of adequate matching.

7.2 Comparing FS to BLR

There are two ways in which these can be run. One can use the more traditional binary

(0/1) structure in terms of how they define γ or one can use something of a more contin-

uous nature (e.g., string comparator scores). For the Fellegi-Sunter algorithm, in order to

calculate the conditional probabilities m(γ) and u(γ), the comparator components must be

of a binary nature. This does not necessarily mean one can not use the string comparators

in this case, but it does mean that a threshold will have to be defined in terms of what

constitutes a ”match” and what constitutes a ”non-match” in terms of γ. This is not to be

confused with the threshold defined at the end of any record-matching algorithm in which

one must decide where to draw the line between the matching population (M) and the non-
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Table 5: Results on first set of simulated data comparing FS procedure with BLR.

Method Comp Time (s) FPR Recall Precision F1 Score

FS 6 0.1003 0.9705 0.8997 0.9338
BLR 10920 0.0068 0.9607 0.9932 0.9767

matching population (U). This is one disturbing aspect of the Fellegi-Sunter algorithm that

is not seen in the generalized linear model method I am performing. The only threshold

component in what I am doing is the same threshold prevalent in any record-matching:

beyond what point does a final score/probability constitute a matching pair?

There are two different elements to the results worth highlighting. The first is the

more relevant, in which I compare my PROC MCMC procedure with the Fellegi-Sunter

algorithm on a select subset of data. Table 5 presents this information for the 93025

comparisons that were assigned in my initial analysis.

What does this table tell us? Well, first and foremost, the FS procedure is not a bad

procedure. If it were, it would not have gained the acclaim and application it has over the

course of the past 4+ decades. However, we do see that BLR performs better in terms of

Precision, meaning that when the algorithm selects a match, it is more likely to be a correct

match than the FS procedure. Because the Recall numbers are so close, the subsequent F1

score also indicates that the MCMC procedure is a slightly better approach. A somewhat

disturbing trend is that the FS procedure accuracy tends to deterioriate as the number of

comparisons went up. For example, Table 6 outlines what happens to FS as the number

of comparisons increases.

Table 6: How FS deterioriates as # of comparsisons increases.

# of comps Comp Time (s) FPR Recall Precision F1 Score

93025 6 0.1003 0.9705 0.8997 0.9338
2917020 1260 0.2429 0.9606 0.7571 0.8468
11022732 7200 0.3180 0.9561 0.6820 0.7961

As we can see, while the Recall stays virtually the same across the 3 sizes, the Precision
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(and, subsequently, the F1 Score) steadily declines. A consistent Recall and a decreasing

Precision indicate that the same matches are being classified as matches, but that there

is an increasing number of incorrectly matched pairs. As you may notice in Table 5, it

took about 10,920 seconds (or slightly over 3 hours) to run the MCMC procedure on a

seemingly small set of data. Again, I must reiterate that this procedure is meant to be run

on data that is already blocked. Having said that, while Table 6 provides evidence that

FS deteriorates as sample sizes increase, I do not have such a table for MCMC. As we can

see in Table 5, it took MCMC 1820 times longer to analyze the same data. If we simply

extrapolated, which would actually be conservative in this case, the MCMC procedure

would take 1820*1260=2,293,200 seconds (or approximately 27 days).

7.3 Final Model

The final Bayesian Logistic Regression model is the following:

ln

(
p

1− p

)
= −32.6608 + 22.6693γBirthDate + 2.0365γCollide + 12.8769γCrashZip

+14.5329γFirstSoundex + 5.4063γLastInitial + 2.0610γPartInj + 1.4925γSafety

−7.9291γBirthDateγCrashZip − 12.2675γBirthDateγFirstSoundex − 2.3669γCrashZipγLastInitial

SAS outputs certain Bayesian model diagnostics by default and those are included

below:
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Figure 2: Coefficients for Bayesian Logistic Regression model.

Figure 3: Monte Carlo Standard Error and Standard Deviation.

Figure 4: Autocorrelations at Lags 1, 5, 10, 50 for data thinned by every 250th iteration.
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Figure 5: Geweke Diagnostics testing convergence of Markov chain.

Figure 6: Effective Samples Sizes for each parameter.

There are several things that we can tell from these tables. First and foremost, Figure 2

indicates that all the coefficients are statistically different from 0, reinforcing their inclusion

in the model. Judging by the fact that the Monte Carlo Standard Error (MCSE) in Figure 3

is no more than 3.21% of the standard deviation for any of the parameters, we can conclude

that the parameters are well-captured here. In terms of posterior autocorrelations, Figure

4, none of the Lag 1 autocorrelations are larger than 0.21 in absolute value, indicating that

we have essentially removed any dependencies by way of thinning every 250th observation.

Figure 5 outlines the Geweke diagnostics which indicate that almost all of the coefficients

have converged. Lastly, Figure 6 tells us the effective sample size, or how many independent

observations we have extracted from the Monte Carlo simulations. Since the effective

sample sizes for each of the coefficients is close to the actual sample size, we can feel
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confident that we have attained good mixing. The autocorrelation time in the second

column of Figure 6 is inversely proportional to the effective sample size.

The trace plots, autocorrelation (ACF) plots and posterior densities for each of the

parameters in the final model can be found in the Appendix.

One thing that should be pointed out about the Geweke diagnostics is that they are

highly sensitive to large sample sizes. This is similar to issues found with the Shapiro-

Wilk statistics in assessing normality in that slight deviations from normality will lead

to rejecting the null hypothesis of normality. The same phenomenon is known to occur

with the Geweke diagnostics. In order to show this, I took the entire Markov chain,

including those 7500 observations that would ultimately be burned in, thinned by every

250th observation, and I broke down the chain into blocks of 30. Doing this resulted in

33 blocks with 30 observations in each. Figure 7 lays out 4 graphs breaking down exactly

how the Markov chain looks for the β1 coefficient. The distributions look very similar

across blocks, indicating that, while the Geweke diagnostics would have us believe that

convergence has not occurred, convergence has, in fact, been achieved. Table 7 outlines

some summary statistics for each of the blocks. The same graphics and tables can be

found in the Appendix for the other 3 coefficients (β4, β7, β11) that were at least marginally

significant according to the Geweke diagnostics.
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Table 7: Summary statistics for β1(γBirthDate).

Block # Mean St Dev Minimum Maximum

1 22.569 0.973 20.681 24.592
11 23.008 1.408 20.054 26.598
22 22.480 1.300 18.703 24.710
33 22.502 1.358 19.547 25.027

Figure 7: Breakdown of Markov chain for β1(γBirthDate).

7.4 Finding Optimal Threshold

Once we homed in on what has become the final model, the last step became ascertaining

the true value of the ”optimal” threshold. Now, the term optimal deserves some attention,

because it has been used in many different senses. For example, in Fellegi and Sunter

(1969), they state that, ”for fixed levels of error, the rule minimizes the probability of

failing to make positive dispositions.” In other words, they were homing in on what is
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commonly referred to as ”manual/clerical review”. The algorithm Verykios et al. (2003) is

optimal with respect to a particular cost matrix, in which false matches, false non-matches,

and even clerical review, can be assigned various costs in order to minimize expenditure.

This is a sort of generalization to the FS algorithm in that they assume the cost of a false

match is not equal to that of a false non-match, which may be applicable depending on

the business setting. In Judson (2006), it is stated that ”−β̂0 is the optimally predictive

threshold for the nonlinear threshold record linkage rule”, in which this threshold is meant

to ensure that if the probability of a match is larger than 0.50, we declare the pair a

match. In this sense, ”optimal” is not referring to manual review, for here, we are looking

at only two partitions of the decision space (match or non-match). Rather, ”optimal” is

in reference to minimizing misclassification (false negative and false positive). It is in this

sense that I am using optimality. Via the aforementioned ”F-Score”, I can measure the

algorithm’s ability not only to capture all the possible matches (Recall), but to measure

the accuracy of those deemed matches (Precision).

While it may seem counterintuitive to consider any thresholds other than 0.5, Table 8

will provide you with the evidence needed to fully understand why my threshold is slightly

different.

An obvious question here is, ”Why would a counterintuitive threshold such as 0.15 be

deemed optimal?” I offer up two possible theories for this. First, and foremost, the 0.50

threshold presented as optimal in Judson (2006) is merely a theoretical point at which

one could define a subsequent threshold within the Bayesian logistic regression setting. In

practice, none of their posterior probabilities of matching given the data ever made it above

0.50. Secondly, the Jaro-Winkler comparator scores yield many zeroes in terms of predictor

variables for the model used here. As such, many matching probabilities will be essentially

0 with only a select few non-zero values. Those non-zero probabilities, for true matches,

will range from close to 1 (where all fields match between records) all the way down to

0 (in cases where spousal information was utilized instead of patient information). Due

to how right-skewed the posterior probability distribution is, we can pull that threshold a
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Table 8: Determining probability threshold for final model.

Threshold FPR Recall Precision F1 Score

0.10 14.242 82.829 85.758 0.843
0.15 9.503 81.756 90.497 0.859
0.20 8.202 79.707 91.798 0.853
0.25 7.549 77.659 92.451 0.844
0.30 5.776 76.390 94.224 0.844
0.35 5.732 72.195 94.268 0.818
0.40 3.963 70.927 96.037 0.816
0.45 3.523 69.463 96.477 0.808
0.50 3.477 67.707 96.523 0.796
0.55 3.170 65.561 96.830 0.782
0.60 3.040 62.244 96.961 0.758
0.65 2.031 61.171 97.969 0.753
0.70 2.020 56.780 97.979 0.719
0.75 1.546 55.902 98.454 0.713
0.80 1.183 48.878 98.817 0.654
0.85 1.073 44.976 98.927 0.618
0.90 0.519 37.366 99.481 0.543
0.95 0.339 28.683 99.661 0.445

little closer to 0 in order to increase recall without losing too much in precision.

7.5 Interaction Effects

It was determined that three different interactions effects were statistically significant. As

you can see in the Final Model section, those interaction effects are the following:

1. BirthDate*CrashZip

2. BirthDate*FirstSoundex

3. CrashZip*LastInitial
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Figure 8: Interaction plot showing how BirthDate and FirstSoundex impact matching
probability.

These three graphs highlight how the probability of matching is impacted across varying

levels of the predictors. For each graph, if the variable is not inherently involved in the

interaction, it is assumed to be equal to 1. The rationale behind this was that setting these

values too low made the predictors of interest irrelevant, as too many non-matching fields

yield very low probabilities of matching.

Figure 8 highlights how the probability of being declared a match changes for different

values of γFS and γBD. What we can see here is that if the comparator score for BirthDate

is 0, represented by the lowest (dark blue) line, then it takes a value of at least 0.65 from

the FirstSoundex comparator score before that particular pair of records would be deemed

a match. As you can see, the optimal threshold of 0.15 is indicated to highlight at what

point records are classified as matches. However, if the comparator score for BirthDate

is 1 (indicating completely matching birthdates), then the value of FirstSoundex becomes

irrelevant, as the matching probability hovers around 1 regardless of FirstSoundex. Here,

we can graphically see how the interaction between BirthDate and FirstSoundex plays out.

The following graphs highlight similar patterns for the other two interactions listed.
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Figure 9: Interaction plot showing how BirthDate and CrashZip impact matching proba-
bility.

Figure 10: Interaction plot showing how LastInitial and CrashZip impact matching prob-
ability.

For the interaction plot between BirthDate and CrashZip in Figure 9, we see much

of the same pattern as we saw between BirthDate and FirstSoundex, but not quite as

strong. Case in point, where the value of Gamma FirstSoundex needed to be above 0.65

in order for a pair to be deemed a match when Gamma BirthDate was 0, now CrashZip

only needs to be above 0.5. In the BirthDate*FirstSoundex setting, if BirthDate ≥ 0.7,

the value of FirstSoundex was irrelevant as a match would have been declared. In the

BirthDate*CrashZip setting, that boundary drops to BirthDate ≥ 0.6. As such, the dif-

ferences are subtle, but they highlight why the interaction effect between BirthDate and

FirstSoundex was deemed more significant than that between BirthDate and CrashZip.
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With the interaction effect between LastInitial and CrashZip, indicated by Figure 10,

we see that, for all intents and purposes, because the optimal threshold was found to be

0.15, the interaction is not of real consequence here. In essence, the only value of LastInitial

that would make the value of CrashZip relevant in terms of declaring matches would be at

0. Now, while that may not seem significant, it should be noted that 95% of all the record

pairs in this dataset were 0’s, and there is little reason to believe this would not be the

case in future datasets.
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8 FUTURE WORK

While the methodologies discussed here have advanced the field of record matching

beyond the restrictive binary structure of field-matching predictors, it does require training

data. Judson (2006) ups the ante in his paper by considering a latent model approach.

Not surprisingly, the success of that algorithm was considerably worse due to the lack of

knowledge on matching status. It would be interesting to see how this Bayesian logistic

regression model setup with the Jaro-Winkler comparator scores would perform in a latent

model setting.

In addition to removing the knowledge we have on matching status, perhaps pursuing

other prior distributions would yield even better results here, or at the very least, give the

latent model somewhat of a headstart. All the prior distributions used in the current setup

are noninformative by nature. One could apply the ”today’s posterior is tomorrow’s prior”

mentality, run the algorithm with non-informative priors, gain more informative posterior

distributions, and re-run the algorithm on a new set of data whose structure mimics that of

the training data. If subject domain expertise exists for helping build an adequate model,

then we need not run record matching in a vacuum.
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9 CONCLUSION

Much has been contributed to the field of record matching in the past 4+ decades since

Ivan Fellegi and Alan Sunter blew the doors off the field in their ground-breaking article.

Virtually every record matching algorithm either extends their algorithm or compares it

to their own. The computational advantage and high accuracy of their algorithm are

what have allowed them to remain mainstays far into the information age. However,

everything must be done on a binary scale and that lends itself to unnecessary restriction.

In addition, the computational advantages are afforded due to a sometimes statistically

invalid assumption made by the authors in which they assume the conditional independence

of the comparator vector distributions given matching status.

My algorithm makes no such assumptions regarding the conditional independence of

the predictors given matching status. It does, however, inherit assumptions required by

logistic regression. In particular, we have assumed that the logit of the odds of matching

is a linear function of comparators and products of comparators.

The Bayesian logistic regression model allows us to incorporate some interpretability

and flexibility into the scheme. From a business perspective, we can take what has been

presented here and inform managers and technicians alike which variables to invest addi-

tional time in with regards to record matching. We have shown here that incorporating

the string comparator scores leads to an improvement in terms of the ability to correctly

identify true matching records. We have also shown that the intuitively chosen posterior

probability of 0.50 does not yield optimality in terms of precision and recall. While imple-

menting the Markov chain Monte Carlo schemes can take a considerable amount of time,

especially if we are dealing with large datasets and many components, a common method

for circumventing this issue is blocking, by which you are increasing the likelihood of false

positives, but you are also increasing the recall rate of the algorithm.

Ultimately, what we would like is to take the model built by the training dataset and

apply this to a real-life dataset, similar in structure to that of the training dataset, but
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where matching status is unknown. Through collaborations with multiple entities, we could

bring together disparate data sources and evaluate the success of the model on the new

dataset.

The default proposal distribution utilized by the MCMC procedure in SAS is that of the

multivariate normal. This is done due to the continuous nature of the prior distributions.

This proposal distribution can be changed to the t-distribution in order to sample more

from the tails. This can help with the mixing of the Markov chain if some of the parameters

have a skewed tail.

There are many approaches to record matching, some statistical in nature, others based

predominantly on computer science. This paper is meant primarily to provide an alterna-

tive approach to those restricted by their binary structures as well as to those looking for

a leg up in terms of accurately extracting positive matches.
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APPENDIX

PROC MCMC Sample Code

Below is sample code for the MCMC procedure in the SAS software:

proc mcmc data=diss.y_and_gamma outpost=diss.posterior nmc=500

thin=5 seed=246810;

parms (beta0 beta1 beta2 beta3) 0;

prior beta0 beta1 beta2 beta3 ~ normal(mean = 0, var = 1e6);

p = logistic(beta0 + beta1*Gamma_BirthDate + beta2*Gamma_SSN +

beta3*Gamma_FirstSoundex;

model Y ~ binary(p);

preddist outpred=diss.PPD nsim=50;

run;

Geweke Diagnostics Graphical Evidence

This section presents the same information found in Figure 7 and Table 7 in the Re-

sults Section, specific to the other three coefficients found to be statistically significant

(β4(γCrashZip), β7(γPartInj) and β11(γBirthDate∗CrashZip))
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Figure 11: Breakdown of Markov chain for β4(γCrashZip).

Figure 12: Breakdown of Markov chain for β7(γPartInj).
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Table 9: Summary statistics for β4(γCrashZip).

Block # Mean St Dev Minimum Maximum

1 12.839 1.135 10.518 14.661
11 13.052 1.412 10.529 16.736
22 12.703 1.059 11.320 15.766
33 13.109 1.379 10.377 16.032

Table 10: Summary statistics for β7(γPartInj).

Block # Mean St Dev Minimum Maximum

1 2.106 0.176 1.796 2.388
11 2.101 0.158 1.774 2.357
22 2.030 0.177 1.637 2.367
33 2.050 0.177 1.699 2.415

Figure 13: Breakdown of Markov chain for β11(γBirthDate∗CrashZip).

Final Model Parameter Diagnostics

Here, you will find the paramter diagnostics referenced in the Results Section.

64



Table 11: Summary statistics for β11(γBirthDate∗CrashZip).

Block # Mean St Dev Minimum Maximum

1 -7.994 0.983 -9.511 -6.414
11 -8.218 1.626 -13.106 -5.822
22 -7.880 1.217 -11.280 -5.755
33 -7.982 1.305 -10.620 -5.597

Figure 14: Trace plot, ACF and posterior density estimate for β0 (Intercept).

Figure 15: Trace plot, ACF and posterior density estimate for β1 (BirthDate).
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Figure 16: Trace plot, ACF and posterior density estimate for β2 (Collide).

Figure 17: Trace plot, ACF and posterior density estimate for β4 (CrashZip).

Figure 18: Trace plot, ACF and posterior density estimate for β5 (FirstSoundex).
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Figure 19: Trace plot, ACF and posterior density estimate for β6 (LastInitial).

Figure 20: Trace plot, ACF and posterior density estimate for β7 (PartInj).

Figure 21: Trace plot, ACF and posterior density estimate for β8 (Safety).
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Figure 22: Trace plot, ACF and posterior density estimate for β11 (BirthDate * CrashZip).

Figure 23: Trace plot, ACF and posterior density estimate for β12 (BirthDate * First-
Soundex).

Figure 24: Trace plot, ACF and posterior density estimate for β28 (CrashZip * LastInitial).

Equations for Fellegi-Sunter Algorithm
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The following notation refers to the frequencies of various configurations of γ, the

vector of comparison components. Since they are not conditional frequencies, they can be

obtained as direct counts by comparing the files A and B:

Mk: the proportion of ”agreement” in all components except the kth; any

configuration in the kth component

Uk: the proportion of ”agreement” in the kth component; any configuration

in the others

M : the proportion of ”agreement” in all components

The following are the equations which form the basis for Fellegi and Sunter’s weighting

scheme:

Mk =
N

NANB

3∏
j=1,j 6=k

mj +
NANB −N
NANB

3∏
j=1,j 6=k

uj ; k = 1, 2, 3 (51)

Uk =
N

NANB
mk +

NANB −N
NANB

uk (52)

M =
N

NANB

3∏
j=1

mj +
NANB −N
NANB

3∏
j=1

uj . (53)

We introduce the transformation

m∗k = mk − Uk (54)

and

u∗k = uk − Uk. (55)

Substituting mk and uk from (38) and (39) into (36) we obtain

N

NANB
m∗k +

NANB −N
NANB

u∗k = 0. (56)
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Substituting (38) and (39) into (35) and then substituting in the resulting equations

u∗k from (40) we obtain

3∏
j=1,j 6=k

m∗j =
NANB −N

N

Mk −
3∏

j=1,j 6=k
Uj

 , k = 1, 2, 3. (57)

Denoting

Rk = Mk −
3∏

j=1,j 6=k
Uj , k = 1, 2, 3, (58)

we obtain by multiplying the three equations under (41) and by taking square roots

3∏
j=1

m∗j =

(
NANB −N

N

) 3
2

 3∏
j=1

Rj

 1
2

. (59)

Dividing (43) by (41) and putting

X =
√

(NANB −N)/N (60)

Bk =

√√√√ 3∏
j=1,j 6=k

Rj/Rk, k = 1, 2, 3, (61)

we get

m∗k = BkX, k = 1, 2, 3, (62)

and, from (38) to (40),

mk = Uk +BkX, k = 1, 2, 3, (63)

uk = Uk −Bk/X, k = 1, 2, 3. (64)

We can now substitute into (37) mk and uk from (47) and (48) respectively and N as

expressed from (44). We obtain
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1

X2 + 1

3∏
j=1

(Uj +BjX) +
X2

X2 + 1
(Uj −Bj/X) = M. (65)

After expanding (49), some cancellations and substitution of Bk from (45), we get the

following quadratic equation in X:

√√√√ 3∏
j=1

Rj(X
2 − 1) +

 3∏
j=1

Uj +

3∑
i=1

RjUj −M

X = 0. (66)

The positive root of this equation is

X =

M −
3∑
j=1

RjUj −
3∏
j=1

Uj +

√√√√√
M − 3∑

j=1

RjUj −
3∏
j=1

Uj

2

+ 4
3∏
j=1

Rj

 /2

√√√√ 3∏
j=1

Rj .

(67)

The estimates of mk, uk and N are now easily obtained from (44), (47) and (48).

Having solved these equations, we can proceed to estimate the specific values of m(γ)

and u(γ) which are required. We introduce some additional notation which, as before,

refers to observable frequencies:

Mk(γ
k
i ) = the proportion of ”agreement” in all components except the kth, the

specific configuration γki in the kth component

U1(γ2
i ) = the proportion of ”agreement” in the first, γ2

i in the second and any

configuration in the third component

U1(γ3
i ) = the proportion of ”agreement” in the first, any configuration in the sec-

ond component and γ3
i in the third

U2(γ1
i ) = the proportion of γ1

i in the first, ”agreement” in the second and any

configuration in the third component

The required values of m(γki ) and u(γki ) are estimated as

m(γ1
i ) =

M1(γ1
i )− u3U2(γ1

i )

m2(m3 − u3)
(X2 + 1) (68)
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m(γ2
i ) =

M2(γ2
i )− u3U1(γ2

i )

m1(m3 − u3)
(X2 + 1) (69)

m(γ3
i ) =

M3(γ3
i )− u2U1(γ3

i )

m1(m2 − u2)
(X2 + 1) (70)

u(γ1
i ) =

m3U2(γ1
i )−M1(γ1

i )

u2(m3 − u3)

X2 + 1

X2
(71)

u(γ2
i ) =

m3U1(γ2
i )−M2(γ2

i )

u1(m3 − u3)

X2 + 1

X2
(72)

u(γ3
i ) =

m2U1(γ3
i )−M3(γ3

i )

u1(m2 − u2)

X2 + 1

X2
. (73)

The formulae (52) to (57) are easily verified by expressing the expected values of the

quantities Mk(γ
k
i ), U1(γ2

i ), etc. in terms of mk, uk, m(γki ) and u(γki ), dropping the expected

values and solving the resulting equations (there will be two equations for each pair m(γki )

and u(γki )). The necessary and sufficient conditions for the mechanical validity of the

formulae in this section are that

mk 6= uk, k = 1, 2, 3

and

Rk > 0, k = 1, 2, 3.

Since

mk = m(Sk) = Pr(Sk|M)

and

uk = u(Sk) = Pr(Sk|U)
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clearly for sensible definitions of ”agreement” mk > uk should hold for k = 1, 2, 3. In this

case, Rk > 0 will hold as well. The latter statement can easily be verified by substituting

(1) and (2) into (8).

Complete Datasets from Background Section

Here you will find the complete data alluded to in Table 1 and utilized in Table 2 for

the construction of the m- and u-probabilities.

Table 12: Complete data used in calculating m- and u-probabilities.

AFname ALname AGender BFname BLname BGender V ector

Chris Johnson F Chris Johnson F 111

Chris Johnson F Robert Ordway M 000

Chris Johnson F Kathryn Lowry F 001

Chris Johnson F Mable Martinez F 001

Chris Johnson F Joanne Fowler F 001

Chris Johnson F David Miller M 000

Chris Johnson F Ryan Costello M 000

Chris Johnson F Luis Smith M 000

Chris Johnson F Rosa Sawyer F 001

Chris Johnson F Charles Hernandez M 000

Chris Johnson F Chris Johnson M 110

Chris Johnson F Robert Mills M 000

Chris Johnson F Robert Simons F 001

Chris Johnson F Billy Hernandez M 000

Chris Johnson F Joan Ordway F 001

Chris Johnson F Dominic Jann M 000

Robert Ordway M Chris Johnson F 000

Robert Ordway M Robert Ordway M 111

Robert Ordway M Kathryn Lowry F 000
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Table 12: continued

AFname ALname AGender BFname BLname BGender V ector

Robert Ordway M Mable Martinez F 000

Robert Ordway M Joanne Fowler F 000

Robert Ordway M David Miller M 001

Robert Ordway M Ryan Costello M 001

Robert Ordway M Luis Smith M 001

Robert Ordway M Rosa Sawyer F 000

Robert Ordway M Charles Hernandez M 001

Robert Ordway M Chris Johnson M 001

Robert Ordway M Robert Mills M 101

Robert Ordway M Robert Simons F 100

Robert Ordway M Billy Hernandez M 001

Robert Ordway M Joan Ordway F 010

Robert Ordway M Dominic Jann M 001

Kathryn Lowry F Chris Johnson F 001

Kathryn Lowry F Robert Ordway M 000

Kathryn Lowry F Kathryn Lowry F 111

Kathryn Lowry F Mable Martinez F 001

Kathryn Lowry F Joanne Fowler F 001

Kathryn Lowry F David Miller M 000

Kathryn Lowry F Ryan Costello M 000

Kathryn Lowry F Luis Smith M 000

Kathryn Lowry F Rosa Sawyer F 001

Kathryn Lowry F Charles Hernandez M 000

Kathryn Lowry F Chris Johnson M 000

Kathryn Lowry F Robert Mills M 000
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Table 12: continued

AFname ALname AGender BFname BLname BGender V ector

Kathryn Lowry F Robert Simons F 001

Kathryn Lowry F Billy Hernandez M 000

Kathryn Lowry F Joan Ordway F 001

Kathryn Lowry F Dominic Jann M 000

Mable Martinez F Chris Johnson F 001

Mable Martinez F Robert Ordway M 000

Mable Martinez F Kathryn Lowry F 001

Mable Martinez F Mable Martinez F 111

Mable Martinez F Joanne Fowler F 001

Mable Martinez F David Miller M 000

Mable Martinez F Ryan Costello M 000

Mable Martinez F Luis Smith M 000

Mable Martinez F Rosa Sawyer F 001

Mable Martinez F Charles Hernandez M 000

Mable Martinez F Chris Johnson M 000

Mable Martinez F Robert Mills M 000

Mable Martinez F Robert Simons F 001

Mable Martinez F Billy Hernandez M 000

Mable Martinez F Joan Ordway F 001

Mable Martinez F Dominic Jann M 000

Joanne Fowler F Chris Johnson F 001

Joanne Fowler F Robert Ordway M 000

Joanne Fowler F Kathryn Lowry F 001

Joanne Fowler F Mable Martinez F 001

Joanne Fowler F Joanne Fowler F 111
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Table 12: continued

AFname ALname AGender BFname BLname BGender V ector

Joanne Fowler F David Miller M 000

Joanne Fowler F Ryan Costello M 000

Joanne Fowler F Luis Smith M 000

Joanne Fowler F Rosa Sawyer F 001

Joanne Fowler F Charles Hernandez M 000

Joanne Fowler F Chris Johnson M 000

Joanne Fowler F Robert Mills M 000

Joanne Fowler F Robert Simons F 001

Joanne Fowler F Billy Hernandez M 000

Joanne Fowler F Joan Ordway F 001

Joanne Fowler F Dominic Jann M 000

David Miller M Chris Johnson F 000

David Miller M Robert Ordway M 001

David Miller M Kathryn Lowry F 000

David Miller M Mable Martinez F 000

David Miller M Joanne Fowler F 000

David Miller M David Miller M 111

David Miller M Ryan Costello M 001

David Miller M Luis Smith M 001

David Miller M Rosa Sawyer F 000

David Miller M Charles Hernandez M 001

David Miller M Chris Johnson M 001

David Miller M Robert Mills M 001

David Miller M Robert Simons F 000

David Miller M Billy Hernandez M 001

76



Table 12: continued

AFname ALname AGender BFname BLname BGender V ector

David Miller M Joan Ordway F 001

David Miller M Dominic Jann M 001

Ryan Costello M Chris Johnson F 000

Ryan Costello M Robert Ordway M 001

Ryan Costello M Kathryn Lowry F 000

Ryan Costello M Mable Martinez F 000

Ryan Costello M Joanne Fowler F 000

Ryan Costello M David Miller M 001

Ryan Costello M Ryan Costello M 111

Ryan Costello M Luis Smith M 001

Ryan Costello M Rosa Sawyer F 000

Ryan Costello M Charles Hernandez M 001

Ryan Costello M Chris Johnson M 001

Ryan Costello M Robert Mills M 001

Ryan Costello M Robert Simons F 000

Ryan Costello M Billy Hernandez M 001

Ryan Costello M Joan Ordway F 000

Ryan Costello M Dominic Jann M 001

Luis Smith M Chris Johnson F 000

Luis Smith M Robert Ordway M 001

Luis Smith M Kathryn Lowry F 000

Luis Smith M Mable Martinez F 000

Luis Smith M Joanne Fowler F 000

Luis Smith M David Miller M 001

Luis Smith M Ryan Costello M 001
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Table 12: continued

AFname ALname AGender BFname BLname BGender V ector

Luis Smith M Luis Smith M 001

Luis Smith M Rosa Sawyer F 000

Luis Smith M Charles Hernandez M 001

Luis Smith M Chris Johnson M 001

Luis Smith M Robert Mills M 001

Luis Smith M Robert Simons F 000

Luis Smith M Billy Hernandez M 001

Luis Smith M Joan Ordway F 000

Luis Smith M Dominic Jann M 001

Rosa Sawyer F Chris Johnson F 001

Rosa Sawyer F Robert Ordway M 000

Rosa Sawyer F Kathryn Lowry F 001

Rosa Sawyer F Mable Martinez F 001

Rosa Sawyer F Joanne Fowler F 001

Rosa Sawyer F David Miller M 000

Rosa Sawyer F Ryan Costello M 000

Rosa Sawyer F Luis Smith M 000

Rosa Sawyer F Rosa Sawyer F 111

Rosa Sawyer F Charles Hernandez M 000

Rosa Sawyer F Chris Johnson M 000

Rosa Sawyer F Robert Mills M 000

Rosa Sawyer F Robert Simons F 001

Rosa Sawyer F Billy Hernandez M 000

Rosa Sawyer F Joan Ordway F 001

Rosa Sawyer F Dominic Jann M 000
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AFname ALname AGender BFname BLname BGender V ector

Charles Hernandez M Chris Johnson F 000

Charles Hernandez M Robert Ordway M 001

Charles Hernandez M Kathryn Lowry F 000

Charles Hernandez M Mable Martinez F 000

Charles Hernandez M Joanne Fowler F 000

Charles Hernandez M David Miller M 001

Charles Hernandez M Ryan Costello M 001

Charles Hernandez M Luis Smith M 001

Charles Hernandez M Rosa Sawyer F 000

Charles Hernandez M Charles Hernandez M 111

Charles Hernandez M Chris Johnson M 001

Charles Hernandez M Robert Mills M 001

Charles Hernandez M Robert Simons F 000

Charles Hernandez M Billy Hernandez M 011

Charles Hernandez M Joan Ordway F 000

Charles Hernandez M Dominic Jann M 001
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