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ABSTRACT 

 

The MixAlco™ process uses an anaerobic, mixed-culture fermentation to convert 

lignocellulosic biomass to carboxylate salts. The fermentation broth must be clarified so 

that only carboxylate salts, water, and minimal impurities remain. Carboxylate salts are 

concentrated by evaporation and thermally decomposed into ketones. The ketones can 

then be chemically converted to a wide variety of chemicals and fuels. 

The presence of excess lime in the thermal decomposition step reduced product 

yield. Mixtures of calcium carboxylate salts were thermally decomposed at 450 °C. Low 

lime-to-salt ratios (g Ca(OH)2/g salt) of 0.00134 and less had a negligible effect on 

ketone yield. In contrast, salts with higher lime-to-salt ratios of 0.00461, 0.0190, and 

0.272 showed 3.5, 4.6, and 9.4% loss in ketone yield, respectively. These losses were 

caused primarily by increases in tars and heavy oils; however, a three-fold increase in 

hydrocarbon production occurred as well. To predict ketone product distribution, a 

random-pairing and a Gibbs free energy minimization model were applied to thermal 

decompositions of mixed calcium and sodium carboxylate salts. Random pairing appears 

to better predict ketone product composition. 

For sodium and calcium acetate, two types of mixed sodium carboxylate salts, 

and two types of mixed calcium carboxylate salts, activation energy (EA) was determined 

using three isoconversional methods. For each salt type, EA varied significantly with 

conversion. The average EA for sodium and calcium acetate was 226.65 and 556.75 

kJ/mol, respectively. The average EA for the two mixed sodium carboxylate salts were 
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195.61, and 218.18 kJ/mol. The average EA for the two mixed calcium carboxylate salts 

were 232.78, and 176.55 kJ/mol. In addition, three functions of conversion were 

employed to see which one best modeled the experimental data. The Sestak-Berggren 

model was the best overall. Possible reactor designs and configurations that address the 

challenges associated with the continuous thermal decomposition of carboxylate salts are 

also presented and discussed. 

Methods of fermentation broth clarification were tested. Flocculation showed 

little improvement in broth purity. Coagulation yielded broth of 93.23% purity. Filtration 

using pore sizes from 1 µm to 240 Daltons increased broth purity (90.79 to 98.33%) with 

decreasing pore size. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

Fossil fuels (e.g., petroleum, natural gas, and coal) currently meet most global 

energy needs; however, growing demand for these depleting resources [1] causes price 

instability and shortages. Also, fossil fuel combustion causes global warming, acid rain, 

and pollution [2, 3]. To meet the growing energy needs and help reduce U.S. dependence 

on foreign oil with a domestic fuel supply, renewable and non-polluting “green” energy 

sources are becoming increasingly important. Converting biomass into biofuels as a 

“green” energy source does not cause net increase in atmospheric carbon dioxide [4, 5] 

because biomass growth removes the same amount of carbon dioxide from the 

atmosphere that was released during biofuel combustion [2]. The two most common 

biofuels are bioethanol and biodiesel, which are made from starchy grains and seed oils, 

respectively. 

Lignocellulosic biomass is the largest biological renewable energy source in the 

world, with a production of ~200×10
9
 tons/year [6, 7]. To unlock the potential of 

lignocellulose, which is much more abundant and less costly than other forms of 

biomass, new technologies are required. One promising option is the carboxylate 

platform, which produces liquid fuels from lignocellulose [8]. 

An example of the carboxylate platform is the MixAlco™ process, which 

converts biomass to liquid fuels and industrial chemicals. It reduces dependence on 

fossil fuels, provides an alternative to more expensive renewable energy resources, and 

is more easily scaled down than thermochemical techniques. The MixAlco™ process 
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(Figure 1-1) is a biomass-to-energy technology that biologically converts biomass (e.g., 

lignocellulose, lipids, proteins, carbohydrates) into carboxylate salts via anaerobic 

mixed-acid fermentation. The carboxylate salts are concentrated and chemically 

converted into chemicals, solvents, and fuels (e.g., ketones, alcohols, gasoline) [9-11]. In 

the fermentation step, biomass is fermented by a mixed culture of microorganisms to 

produce carboxylic acids. After the fermentation step, metal hydroxide, carbonate, or 

bicarbonate buffers are added to convert the acids to their corresponding carboxylate 

salts, which are then precipitated via a dewatering process. The salts are thermally 

decomposed to form ketones (e.g., acetone), hydrogenated to produce mixed alcohols 

(e.g., isopropanol), and catalytically converted to hydrocarbons (e.g., gasoline, jet fuel). 

This continuous and versatile process produces liquid fuels that can be fully used by 

existing engines, uses nearly any biomass feedstock (minimizing market distortions and 

food scarcity), has low capital and operating costs, does not require sterile operating 

conditions or added enzymes, and has already reached the demonstration level of 

development. 

 

 

Figure 1-1.  MixAlco™ process diagram. 
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This research focuses on the thermal decomposition of the carboxylate salts to 

ketones as shown in Equation 1-1. 

  OOM      OOM
 
→    O     M  O  

(1-1) 

R can be any hydrocarbon group and M can be any metal (generally, any alkali metal or 

half of any alkaline earth metal). For purposes of this research, M can be either a sodium 

ion or half of a calcium ion and R can be any one of the groups associated with the nine 

carboxylic acids produced from MixAlco™ fermentations [12-14]. This reaction was 

first observed by Eugene Melchior Peligot who thermally decomposed calcium acetate 

to yield acetone [15]. Later, Williamson demonstrated the same reaction with other 

calcium carboxylate salts, as well as mixtures of calcium carboxylate salts, which 

yielded mixtures of corresponding ketones. Since then, the thermal decomposition of 

numerous carboxylate salts has been studied [16]. The ketone yield from the thermal 

decomposition of various individual and mixed carboxylate salts has been studied in a 

variety of environments [17-21]. Several researchers have even studied reaction 

mechanisms using tracer isotopes [22-31]. These studies have resulted in a multitude of 

proposed mechanisms, none of which are soundly conclusive. Various mechanisms have 

been proposed involving carbanions [29, 31] (Equations 1-2 and 1-3), carbonium ions 

[24, 25] (Equation 1-4), free radicals [22, 23, 28] (Equation 1-5), and a four-center 

intermediate [27] (Equation 1-6), also known as a concerted mechanism. Unfortunately, 

none of the proposed mechanisms fully explain the data, leading some investigators to 

propose that decomposition proceeds by more than one mechanism [25]. 
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Models of this thermal decomposition reaction must be developed to make this 

step in the MixAlco™ process a viable unit operation that can be scaled up for 

commercial use, optimized, and have the flexibility necessary to accommodate different 
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types of carboxylate salts. In addition, how the decomposition is affected by impurities 

commonly found in MixAlco™ salts must also be characterized. 

This study looks at the following areas: 

 Accurately modeling product composition from the thermal decomposition of 

carboxylate salts with and without additives. 

 Defining kinetic parameters and developing a mechanism(s), that describes the 

thermal decomposition of individual and mixed carboxylate salts. 

 Developing simple methods for determining kinetic parameters. 

 Developing reactors to decompose salts in a continuous fashion on a commercial 

scale. 

1.1. Legal disclaimer 

MixAlco™ is a registered trademark of Terrabon, Inc. Unless otherwise noted in 

this document, inclusion of such trademark in this document does not imply support or 

endorsement by Terrabon, Inc. 
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2. THERMAL DECOMPOSITION OF MIXED CALCIUM CARBOXYLATE 

SALTS: EFFECTS OF LIME ON KETONE YIELD* 

 

2.1. Introduction 

In the MixAlco™ process, lignocellulosic biomass is first pretreated with 

calcium hydroxide (lime) to increase digestibility and is then fermented by a mixed 

culture. Carboxylic acids (e.g., acetic, propionic, and butyric acid) are the desired 

products of the fermentation. Calcium carbonate buffers the fermentation pH between 

5.8 and 6.2; thus, the corresponding carboxylate salts (e.g., calcium acetate, propionate, 

and butyrate) are formed. The fermentation broth is clarified and then dewatered, which 

involves evaporating all volatiles in the broth, leaving the precipitated solids. After 

dewatering, the remaining solids are mostly calcium carboxylate salts with small 

amounts of cells, extracellular proteins, and minerals.  

 

 

 

 

 

 

 

_____________________________________________ 

*Reprinted from Biomass and Bioenergy, 35, Landoll M, Holtzapple MT, Thermal 

decomposition of mixed calcium carboxylate salts: effects of lime on ketone yield, 

3592–3603, Copyright (2011), with permission from Elsevier. 
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The carboxylate salts are thermally decomposed to yield their corresponding 

ketones, as shown in Equation 2-1. 

(  OO )  a   (   OO )
 
→    O      a O  

(2-1) 

To fully convert the acids to their corresponding salts, additional lime is added before 

the dewatering step. If not enough lime is added, the un-ionized acids that are not 

converted to salts will be lost to the vapor phase during evaporation. At about pH 8, the 

carboxylic acids completely convert to their corresponding salts. At a commercial scale, 

the simplest way to ensure sufficient lime addition is to add a slight excess of lime, 

which then becomes incorporated into the remaining solids. Young [32] stated that 

thermal decomposition of calcium acetate in the presence of free lime decreased acetone 

yield. Other sources state that thermal decomposition of carboxylate salts in the presence 

of lime yields higher amounts of hydrocarbons, thereby decreasing ketone yield [16, 21, 

33]. This competing reaction is shown in Equation 2-2.  

(  OO )  a   (   OO )   a(O )
 
 
 
→                a O  (2-2) 

For the purpose of this study,   and  ’ in both equations can be any one of nine groups 

associated with the nine carboxylic acids listed in Table 2-1. 
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Table 2-1.  Acid and corresponding salt profiles of reagent-grade salts. 

Carbon 

Number Acid 

Acid 

(wt. %) 

Salt 

(wt. %) 

2 Acetic 54.69 56.77 

3 Propionic 14.71 14.57 

4 Isobutyric 0.94 0.90 

4 Butyric 11.12 10.66 

5 Isovaleric 0.70 0.66 

5 Valeric 6.39 5.97 

6 Caproic 8.03 7.37 

7 Heptanoic 2.90 2.62 

8 Octanoic 0.52 0.47 

 

To develop a viable process, it is necessary to address the following questions: 

Does the presence of excess lime in mixed carboxylate salts affect the ketone yield upon 

thermal decomposition? If so, how sensitive is the ketone yield to the presence of lime 

and what byproducts are produced? To answer these questions, mixtures of reagent-

grade calcium carboxylate salts were thermally decomposed with varying amounts of 

lime to determine if there were any changes in ketone yield and product composition. 

The use of reagent-grade salts eliminated reactions associated with impurities found in 

fermentation salts allowing changes in the ketone yield to be attributed to the presence of 

excess lime. The reagent-grade salt composition closely mimicked that of salts from 

fermentation broth. For comparison, fermentation salts were employed in one sample 

run. In this section, any solid mixture composed of mostly calcium carboxylate salts will 

be described as feed salts. 
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2.2. Materials and methods 

2.2.1. Preparation of salts 

Reagent-grade feed salts were prepared by mixing the corresponding reagent-

grade carboxylic acids with equimolar amounts of calcium hydroxide in deionized water 

resulting in a solution of pH 8. The composition of the acids and corresponding salts 

were verified by gas chromatography (Table 2-1). These acid and corresponding salt 

profiles are typical of what has been reported for anaerobic mixed-culture fermentation 

[12-14]. A 2-L aliquot of this solution was taken and evaporated in a glass beaker. The 

dry solids (reagent-grade feed salts) were collected and weighed. To additional 2-L 

aliquots, excess lime was added to make solutions of pH 9, 10, 11, and 12. These 

solutions were also evaporated in glass beakers and the remaining reagent-grade feed 

salts were collected and weighed. Another 2-L aliquot of pH 8 solution was evaporated 

and 20% excess lime (0.2 g Ca(OH)2/g feed salt) was added to the remaining reagent-

grade feed salts. Fermentation feed salts were prepared using clarified broth from a 

MixAlco™ fermentation (Terrabon, Inc, Houston, TX). Clarification was performed 

using a proprietary process involving flocculant and a decanter centrifuge. The broth was 

adjusted to pH 9 by adding excess lime and then evaporated to collect the fermentation 

feed salts (see Table 2-2). For each solution, the amount of excess lime per amount of 

carboxylic salt (lime-to-salt ratio) was calculated (Table 2-3). 
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Table 2-2.  Acid and corresponding salt profile of fermentation feed salts. 

Carbon 

number Acid 

Acid 

(wt. %) 

Salt 

(wt. %) 

2 Acetic 48.87 50.92 

3 Propionic 12.44 12.38 

4 Isobutyric 0.91 0.87 

4 Butyric 21.92 21.10 

5 Isovaleric 1.25 1.17 

5 Valeric 6.65 6.24 

6 Caproic 6.80 6.26 

7 Heptanoic 0.93 0.84 

8 Octanoic 0.23 0.20 

 

Table 2-3.  Salt content and lime-to-salt ratio for feed salts from each solution. 

  Salt Content Lime-to-Salt Ratio 

Solution Type (g salt/g solid) (g Ca(OH)2/g salt) 

pH 8 Reagent grade 0.862 0 

pH 9 Reagent grade 0.860 0.000672 

pH 10 Reagent grade 0.860 0.00134 

pH 11 Reagent grade 0.861 0.00461 

pH 12 Reagent grade 0.845 0.0190 

20% Lime Reagent grade 0.697 0.272 

pH 9
 

Fermentation broth
c 

0.795 0.000672 
c
 Fermentation feed salts provided by Terrabon, Inc. 
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2.2.2. Apparatus 

Figure 2-1 is a schematic of the apparatus. Reactions occurred in a 2-L stirred 

reactor (Parr 4501, Parr Instrument Co., Moline, IL). As Figure 2-2 illustrates, the 

reactor head contained five ports. Port 1 was connected to the holding chamber. Port 2 

was connected to a pressure gauge for pressure measurement. Port 3 was connected to a 

ball valve for pressure relief. Port 4 was connected to a series of three condensers 

(Figure 2-3). Port 5 was the thermal well for the thermocouple. Figure 2-4 shows the 

details of the holding chamber. It was equipped with a screw conveyor, which acted as a 

loading mechanism to deliver feed salts into the reactor. It also contained a unique “fan 

valve” to keep the feed salts in the vessel until the desired temperature in the reactor was 

reached. The fan valve consisted of a stationary plate mounted to the housing of the 

feeder and a rotating seal plate attached to the center shaft of the screw conveyor. Before 

feed salts were placed into the feeder, the rotating seal plate was set to a position that 

completely covered the opening of the stationary plate. In this way, feed salts were kept 

in the feeder. When the screw conveyor was turned on, the seal plate rotated and feed 

salts flowed through the opening of the stationary plate. Figure 2-5 shows the fan 

function in detail. 
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Figure 2-1.  Schematic of apparatus used to thermally decompose feed salts and collect 

products. 
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Figure 2-2.  Parr 4501 reactor. 
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Figure 2-3.  Condenser and graduated collection tube (collection vessel). 
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Figure 2-4.  Holding chamber. 

 



 

16 

 

 
Figure 2-5.  Phases of the “fan valve” (top view). 

 

stationary plate 

rotating seal plate 

Phase 1. Before the screw conveyor was 

turned on, the rotating seal plate 

completely covered the opening of the 

stationary plate. 

Phase 2. The conveyor was turned on.  

The seal plate rotated with the screw 

conveyor revealing the opening in the 

stationary plate.  Feed salt loading 

commenced.  The shaded area represents 

the opening. 

Phase 3. The seal plate rotated to the 

position that provided the maximum 

opening area for feed salt loading. 

Phase 4. The rotating seal plate started to 

cover the opening again.  Then the 

rotating seal plate returned to Phase 1 and 

the process was repeated until the screw 

conveyor was turned off. 
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The reactor had a 100-µm porous stainless steel filter (Figure 2-6) fitted to the 

outlet that retained solid particles but allowed vapor to pass through. It was set inside the 

reactor at the mouth of Port 4. Glass beads were used in the reactor to ensure adequate 

mixing and to provide thermal mass to help maintain the temperature during delivery of 

feed salts. Temperature was maintained with a 1500-W heating jacket connected to an 

Omega C9000A temperature controller and Type-K thermocouple. Port 4 of the reactor 

was connected by a ¼-in stainless steel tube to three glass condensers (Figure 2-3) (Ace 

Glass, #8757-35) in series. The first had ice/water (0 °C), the second had dry 

ice/isopropanol (–78 °C), and the third had liquid nitrogen (–196 °C). Because of the 

large range in molecular weights of the product vapors, multiple condensing stages were 

necessary to ensure maximum product condensation while minimizing solid formation 

on the condenser surfaces. Each condenser had its own collection vessel for catching 

condensate, which was immersed in the same cooling media as was used in the 

condenser to keep the condensate from re-vaporizing. The last condenser exited to a gas 

sampling vessel and vacuum pump (Welch DuoSeal #1400B-01), both of which could be 

sealed from the system with valves. 



 

18 

 

 

Figure 2-6.  Sintered filter. 

  

To the condenser 

Top view of the filter and 

the relative position of the 

mixer axis. 

Bottom view of the filter 

and the relative position of 

the mixer axis. 

Side view of the filter 

when it is connected to the 

reactor head. 

Mixer axis 
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2.2.3. Thermal decomposition of feed salts 

Charges of prepared feed salts with constant moisture content were weighed 

(average weight 25 g). In a typical run, 1450 g of borosilicate glass beads (VWR 

Scientific Product, # 89091-366) were placed in the reactor and the charge of feed salts 

was placed in the holding chamber. The reactor was sealed and the vacuum pump 

evacuated the system (~0.4 kPa). The three cooling media were added to their respective 

condensers and collection vessels. The temperature controller maintained the reactor at 

450 °C (±5 °C). Once at temperature, the screw conveyor was turned on to deliver the 

charge of feed salts into the reactor and the valve to the vacuum pump was closed. After 

90 min elapsed, the temperature controller was turned off and the reactor cooled. The 

condensers came to room temperature and the valve on the gas sampling vessel was 

closed and removed for gas analysis. The liquid product was removed from the 

collection vessels and the non-aqueous fraction was decanted. Both the aqueous and 

non-aqueous fractions were weighed and analyzed. When the reactor had cooled to near 

room temperature, the residual solids were weighed and dissolved with 200.0 mL of 3-M 

H3PO4 and 300.0 mL of deionized water. Residual solids not dissolved in the solution 

were filtered using an Advantec MFS #5C filter. The filtrate was analyzed via gas 

chromatography to determine the amount of unreacted salts in the residual solids. The 

average mass balance closure was 98.3%. The average fractional conversion was 0.881. 

Fermentation feed salts were thermally decomposed at Terrabon, Inc. using a similar 

apparatus and experimental conditions.  
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2.2.4. Solids analysis 

Calcium carboxylate salts are hygroscopic, usually forming a monohydrate in the 

presence of water vapor [34]. All feed salts were dried to a constant moisture content at 

105°C for at least 24 h and placed in a desiccator. Samples of feed salts were weighed 

(0.3 g) and dissolved with 2 mL of 3-M phosphoric acid. The mixture was then diluted 

to 10 mL with deionized water. Solutions of both dissolved feed salts and dissolved 

residual solids were mixed with equal parts of a 1.162 g/L solution of 4-methyl-valeric 

acid (internal standard) and 3-M phosphoric acid. Acid analysis was performed using an 

Agilent 7890A gas chromatography (GC) system equipped with a flame ionization 

detector (FID), and an Agilent DB-FFAP: J&W 123-3232 column. Injection volume was 

0.2 µL and inlet temperature was 230 °C. Carrier gas was helium at 103 kPa (gauge) at a 

flow rate of 3.78 mL/min. The temperature profile was 40 °C for 2 min, ramped to 200 

°C at 20 °C/min, and held for 2.5 min. Outlet temperature was 230 °C. The run lasted for 

12.5 min. Carboxylate salt compositions and the amount of salts per amount of solid 

(salt content) were calculated from the acid compositions of the solutions reported by the 

GC for each lime-to-salt ratio (Table 2-3) and for all residual solids. 

The amount of carboxylate salts delivered into the reactor was calculated based 

on the measured salt content. The amount of carboxylate salts thermally decomposed 

was calculated by subtracting the amount of carboxylate salts delivered from the amount 

of carboxylate salts in the residual solids. In addition to non-decomposed carboxylate 

salts, other components in the residual solids included calcium carbonate (from the 

primary reaction), lime, quicklime, and tars and heavy oils (from product degradation). 
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On a theoretical basis, the amount of calcium carbonate was calculated from the amount 

of carboxylate salts decomposed. The presence of tars and heavy oils was observed by 

visual inspection and the quantity was estimated using a mass balance.  

(g) CaCO–  (g)product  Gas–                                        

(g)product  Liquid–  (g) decomposed Salts  (g) oilsheavy  & Tars

3


 (2-3) 

No attempt was made to determine the composition of the tars and heavy oils, nor the 

quantity of lime or quicklime. 

2.2.5. Liquid analysis 

Condensate samples were diluted 10:1 with reagent-grade methanol and analyzed 

using an Agilent 7890A GC system coupled to an Agilent 5975C mass spectroscopy 

detector (MS). Injection volume was 0.2 µL and inlet temperature was 280 °C. Carrier 

gas was helium at 48.3 kPa (gauge) at a flow rate of 1 mL/min. An Agilent HP-5MS 5% 

Phenyl Methyl Silox column was used at a temperature profile of 40 °C for 5 min, 

ramped to 250 °C at 10 °C/min, and held for 5 min. Outlet temperature was 230 °C. The 

run lasted for 31 min. Components determined by MS with a match quality of less than 

50 were classified as “unknown liquids.” Water content of condensate samples was 

determined using a Mettler Toledo V20 series Karl Fisher volumetric titrator (titrant: 

Fisher Chemical, Aqualine Complete 5K #AL2250R-1; solvent: Fisher Chemical, 

Aqualine Matrix K #AL2300R-1). Water content was subtracted from the total liquid 

product to determine amounts of all other liquid components. 

2.2.6. Gas analysis 

Gas sampling vessels were filled with helium to 34.5 kPa (gauge) at a measured 

temperature. Gas samples were analyzed using a SRI 8610C GC equipped with helium 
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ionization and thermal conductivity detectors. The sample loop was 0.1 µL. Carrier gas 

was helium at 186 kPa (gauge) at a flow rate of 20 mL/min. Restek Molecular 13X 

80/100 mesh and ShinCarbon ST, 100/200 mesh columns were used at a temperature 

profile of 65 °C for 6 min, ramped to 200 °C at 16 °C/min, and held for 7 min. The run 

lasted for 21.5 min. Volume percentages (% v/v) reported by the GC for each gas 

component was converted to grams using the ideal gas law. 

2.3. Theory/calculations 

Random pairing of R groups is a simple model to predict the mole fractions of 

the ketone products ( K

ijx ) and is the only model to predict product composition found in 

the literature. Ludlam [18] used it to predict mole fractions of ketones resulting from the 

thermal decomposition of a binary mixture of calcium carboxylate salts. Because 

random pairing assumes that the kinetic rate for the production of each ketone is equal, 

the mole fraction of each ketone is simply the product of the mole fractions of the two R 

groups that compose each ketone. The formulas and calculations used in random pairing 

are detailed in Section 3.3. 

Alternatively, rather than using a kinetic model, product composition could be 

modeled on the basis of thermodynamic stability. Gibbs free energy minimization finds 

the product composition with the lowest Gibbs free energy. Reactant and product species 

as well as initial amounts must be defined. The product composition with the lowest 

Gibbs free energy is found using an element balance around all reaction species. Unlike 

the random-pairing model, non-expected products can be included in Gibbs free energy 

minimization as well. Gibbs free energy minimizations were performed using Aspen 
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Plus, V7.2 (Aspen Technology, Inc.) using the NRTL properties method. The input 

summary of the simulation is included in Appendix A. 

Using nine different R groups, 45 different combinations of “expected ketones” 

can be produced (i.e., all ketones that would be produced if only the reaction described 

in Equation 2-1 occurred). Any other ketones or compounds produced from thermal 

decomposition that were not predicted by the random-pairing model are considered 

“non-expected products.” For Gibbs free energy minimization, amounts of calcium 

acetate, propionate, butyrate, and valerate were used in proportions that simulate 

reagent-grade feed salts. Parameters necessary for Gibbs free energy minimization were 

not available for the remaining calcium carboxylate salts used in the experiment. Using 

four different R groups, 10 different combinations of expected ketones can be produced. 

2.4. Results and discussion 

Figure 2-7 shows a negative correlation between the yield of expected ketones 

and the lime-to-salt ratio of the feed salts. There was no statistically significant 

correlation (p = 0.443) between the first three lime-to-salt ratios (0, 0.000672, and 

0.00134) and the expected ketone yield, indicating that the expected ketone yield is not 

affected, with statistical significance, by a lime-to-salt ratio of 0.00134 or less. This is 

expected because at a lime-to-salt ratio of 0.00134 or less there is not enough lime 

present for the reaction in Equation 2-2 to have a measureable impact on the expected 

ketone yield. A negative correlation (p = 0.067) occurred when a lime-to-salt ratio of 

0.00461 was included in the statistical analysis. A stronger negative correlation (p = 

0.008) occurred when all six lime-to-salt ratios were included. At a lime-to-salt ratio of 



 

24 

 

0.00461, 0.0190, and 0.272 there was a 3.5, 4.6, and 9.4% loss in base-line expected 

ketone yield, respectively. This indicates that the expected ketone yield decreases, with 

statistical significance, at lime-to-salt ratios above 0.00134. 

Table 2-4 gives yields of all expected ketones for each lime-to-salt ratio of the 

reagent-grade feed salts and the fermentation feed salts. Only expected ketones that were 

produced are listed. Analysis of non-expected product yields (Table 2-5) shows an 

increase in the production of hydrocarbons during thermal decomposition as the lime-to-

salt ratio increases. Gaseous hydrocarbon production remained relatively constant for 

lime-to-salt ratios of 0.0190 and less. At a lime-to-salt ratio of 0.272, methane, ethane, 

and ethene production increased by a factor of 2.5, 15, and 3, respectively. Production of 

liquid hydrocarbons (aromatics, olefins, and paraffins) also increased as the ratio of 

excess lime increased; up to a factor of 5 at a lime-to-salt ratio of 0.272. Although 

overall hydrocarbon production increased with higher lime-to-salt ratios, its increase did 

not account for the majority of the decrease in expected ketone yield. Figure 2-8 shows 

that the majority of the expected ketone yield loss resulted from increased production of 

tars and heavy oils. It also shows that production of non-expected ketones remained 

fairly constant whereas production of oxygenates and syngas (H2 + CO) decreased 

slightly as the lime-to-salt ratio increased. 
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Figure 2-7.  Yield of expected ketones for each lime-to-salt ratio. 
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Table 2-4.  Expected ketone yield analysis. 

  Lime-to-Salt Ratio (g Ca(OH)2/g salt) 

  0 0.000672 0.00134 0.00461 0.0190 0.272 (0.000672)
c
 

Compound Name Carbon # Yield
d
 (g/g salt reacted) × 10

3
 

2-propanone 3 73.10 71.81 90.55 98.35 44.67 84.40 45.48 

2-butanone 4 82.18 65.41 62.15 64.15 65.19 58.41 34.06 

3-methyl-2-butanone 5 4.761 5.379 4.001 3.762 5.839 1.804 2.649 

2-pentanone 5 68.03 69.91 57.56 54.23 71.80 53.16 68.51 

3-pentanone 5 10.57 12.47 7.391 7.900 13.88 7.465 6.130 

2-methyl-3-pentanone 6 1.841 – 1.152 1.407 2.070 0.7440 0.6284 

4-methyl-2-pentanone 6 3.831 4.936 3.503 1.003 5.561 2.292 2.647 

2-hexanone 6 40.16 46.09 37.78 35.24 47.36 34.38 31.73 

3-hexanone 6 14.38 20.30 13.37 12.59 21.61 13.63 28.83 

2,4-dimethyl-3-pentanone 7 0.4602 – – – – 0.2259 – 

2-methyl-3-hexanone 7 0.2015 – – 0.2862 0.9316 – 1.077 

5-methyl-3 hexanone 7 0.7112 1.069 0.6226 0.5709 1.191 0.4717 0.8079 

2-heptanone 7 50.17 48.28 51.71 45.95 46.06 46.94 38.55 

3-heptanone 7 7.783 9.688 7.852 7.230 9.744 7.804 10.28 

4-heptanone 7 4.499 6.404 5.327 4.632 6.348 5.249 29.67 

2,5-dimethyl-3-hexanone 8 – 0.3768 – – – – – 
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Table 2-4.  Continued         

  Lime-to-Salt Ratio (g Ca(OH)2/g salt) 

  0 0.000672 0.00134 0.00461 0.0190 0.272 (0.000672)
c
 

Compound Name Carbon # Yield
d
 (g/g salt reacted) × 10

3
 

2-methyl-3-heptanone 8 0.2433 0.3067 0.2608 0.2498 0.3750 0.1451 0.8204 

2-methyl-4-heptanone 8 0.3383 0.5550 0.3940 0.3503 0.5519 0.2762 1.481 

2-octanone 8 16.29 15.44 18.38 16.90 11.30 15.68 6.464 

3-octanone 8 8.713 10.98 9.816 9.603 8.201 9.081 11.25 

4-octanone 8 4.281 6.492 5.252 5.114 4.895 4.753 18.50 

2,6-dimethyl-4-heptanone 9 – 0.2191 0.1506 0.2091 – 0.0967 – 

2-methyl-3-octanone 9 – 0.2780 – 0.2400 0.2387 0.1290 0.3393 

2-methyl-4-octanone 9 – 0.2093 – 0.1678 0.2835 – 0.5301 

2-nonanone 9 0.9587 0.9528 1.229 1.173 0.7352 0.8735 0.7684 

3-nonanone 9 2.305 2.916 2.944 2.809 2.243 2.442 1.693 

4-nonanone 9 5.431 8.287 7.036 7.142 6.113 5.912 25.97 

5-nonanone 9 – – – – 0.1150 – 0.2495 

2-methyl-3-nonanone 10 – – – – 0.2835 – – 

2-methyl-4-nonanone 10 0.1674 0.1256 – 0.1343 0.2430 – 0.4910 

3-decanone 10 – 0.1256 0.2259 0.2765 0.2835 – 0.6661 

4-decanone 10 – – 0.3142 – – 0.2016 – 
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Table 2-4.  Continued         

  Lime-to-Salt Ratio (g Ca(OH)2/g salt) 

  0 0.000672 0.00134 0.00461 0.0190 0.272 (0.000672)
c
 

Compound Name Carbon # Yield
d
 (g/g salt reacted) × 10

3
 

5-decanone 10 2.932 4.567 4.076 4.260 3.518 3.221 13.01 

6-undecanone 11 1.339 2.291 1.715 2.459 1.612 1.450 11.51 

6-dodecanone 12 0.2510 1.052 0.3232 0.5990 0.4380 0.7417 4.909 

6-tridecanone 13 – – – – – – 1.430 

7-tridecanone 13 – – – – 0.0810 – – 

Total ketone  405.94 416.90 395.08 389.00 383.76 361.98 401.13 

Theoretical yield (%)  91.77 94.25 89.32 87.94 86.76 81.83 88.97 

c
 Fermentation feed salts provided by Terrabon, Inc.                                                                                              

d
 Reported values have been multiplied by 10

3
.     
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Table 2-5.  Non-expected product yield analysis. 

 Lime-to-Salt Ratio (g Ca(OH)2/g salt) 

 0 0.000672 0.00134 0.00461 0.0190 0.272 (0.000672)
c 

Compound Yield
d
 (g/g salt reacted) × 10

3 

Non-expected ketones 4.328 6.951 8.728 6.933 7.782 8.184 33.56 

Other oxygenates        

Acids 0.1424 0.4187 0.3890 0.4049 0.0788 – 3.766 

Aldehydes – – – – – – 0.6284 

Esters 0.7423 – – 0.9397 – – – 

Ethers 0.5164 – 2.688 4.162 1.256 – 0.2693 

Alcohols – 1.123 0.121 1.046 0.9316 0.1830 1.526 

Hydrocarbons        

Aromatics – – – – 0.1215 – 3.905 

Olefins 0.1291 0.2371 0.7907 0.1673 0.04051 0.8064 2.885 

Paraffins – – – 0.4028 0.2835 0.1142 0.8528 

Methane 7.4 10.6 5.3 8.1 4.1 18 n/a 

Ethane 0.18 0.38 0.56 0.44 – 4.8 n/a 

Ethene 0.19 0.41 0.05 0.35 – 0.65 n/a 
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Table 2-5.  Continued        

 Lime-to-Salt Ratio (g Ca(OH)2/g salt) 

 0 0.000672 0.00134 0.00461 0.0190 0.272 (0.000672)
c 

Compound Yield
d
 (g/g salt reacted) × 10

3
 

Other        

Hydrogen 0.79 0.96 0.45 0.31 0.29 1.0 n/a 

Carbon monoxide 3.5 2.2 0.99 1.0 0.56 0.91 n/a 

Carbon dioxide 8.3 9.2 10 6.9 – 1.8 n/a 

Tars and heavy oils 17.3 2.3 25.5 28.1 50.3 52.1 184 

Unknown liquids 4.511 5.059 2.891 5.391 3.654 2.477 16.04 

Total non-expected 

products 48.1 39.9 58.7 64.7 69.3 91.1 247.4 
c
 Fermentation feed salts provided by Terrabon, Inc. 

d
 Reported values have been multiplied by 10

3
.    
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Figure 2-8.  Distribution of products from thermal decomposition of reagent-grade feed 

salts. 
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It is assumed that all carbon dioxide produced was the result of ketone 

degradation, because calcium carbonate does not decompose at the reactor temperature 

(450°C) [35]. Ketone degradation was kept to a minimum by rapidly cooling the product 

as it exited the reactor and by maintaining a vacuum (~0.4 kPa). Analysis of gas samples 

revealed small amounts of oxygen, which could have reacted with the products to form 

carbon dioxide. Degradation of some of the ketones themselves could have also led to 

carbon dioxide production [36-38]. Production of carbon dioxide decreased as the lime-

to-salt ratio increased. At 325 °C, lime begins decomposing to calcium oxide (quick 

lime) and water vapor [35]. As calcium carboxylate salts decompose into ketones and 

calcium carbonate, lime simultaneously decomposes into quicklime and water vapor. 

Quick lime absorbs carbon dioxide to form calcium carbonate until equilibrium pressure 

(0.0024 kPa at 450° C) is reached [39]. Lime also absorbs carbon dioxide in the presence 

of water vapor to form calcium carbonate [40]. These are the two most likely causes for 

the decrease in carbon dioxide. Similarly, Duruz [41] found that adding hydroxide to the 

thermal decomposition of sodium propionate greatly destabilized the reaction, with 

decomposition occurring at much lower temperatures. The production of hydrocarbons 

was increased and the production of carbon dioxide decreased. By contrast, there was no 

increase in the production of tars and heavy oils. 

It can only be speculated as to why increased lime increased the production of 

tars and heavy oils. It is assumed that the tars and heavy oils result from ketone 

degradation, which occurs at the reactor temperature [42, 43]. Visual inspection [18] of 

the thermal decomposition of feed salts indicates that they become viscid and semi-
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transparent, but not quite liquid, indicating that the crystals must melt before 

decomposition occurs [34]. However, as the crystal melts, the reaction occurs so quickly 

that the ketone vapor and solid calcium carbonate evolve before the entire crystal melts, 

thus the feed salts cannot become completely liquid. Thermal decomposition of feed salt 

particles most likely resembles a heterogeneous shrinking core. The surface of the 

unreacted layer melts, forming a liquid film. Decomposition occurs in this film, leaving 

behind a solid layer of calcium carbonate. Because excess lime and quicklime are also 

solids at the decomposition temperature, they could form a solid matrix that impedes 

newly formed ketones from exiting the liquid film into the vapor space, thus allowing for 

higher rates of ketone degradation. 

From the fermentation feed salts, total expected ketone yields were comparable 

to those from reagent-grade feed salts with a lime-to-salt ratio of 0.00134. This shows 

that a lime-to-salt ratio above 0.00134 has a larger effect on expected ketone yield loss 

than impurities normally found in fermentation feed salts. Yields of tars and heavy oils, 

liquid hydrocarbons, acids, and non-expected ketones from fermentation feed salts were 

approximately 10, 18, 13, and 5 times larger than those from reagent-grade feed salts, 

respectively. Thermal decomposition products of fermentation feed salts also contained 

nitrogen, sulfur, and phosphorous impurities. Gas product analysis was not available for 

thermal decomposition of the fermentation feed salts. The increased production of non-

expected products from thermal decomposition of fermentation feed salts could result 

from degradation of expected ketones caused by the presence of impurities, or from 
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thermal decomposition of the impurities themselves. Most likely, it is a combination of 

both. 

From the experiment, expected ketones with the same carbon number were 

summed and compared to their respective random-pairing sums for each lime-to-salt 

ratio and the fermentation feed salts (Figure 2-9). The same was done for the expected 

ketones from the Gibbs free energy minimization. Because some of the carboxylate salts 

used in the experiment could not be included in the Gibbs free energy minimization, a 

direct comparison to experimental data could not be made. Instead, Gibbs free energy 

minimization sums were compared to respective random-pairing sums (Figure 2-10). 

The random-pairing model predicts an exponential distribution of expected 

ketone carbon numbers with a maximum at carbon number 3. In contrast, the 

experimental data from reagent-grade feed salts have a plateau from carbon numbers 3–5 

or in some cases a maximum at carbon number 5. Carbon numbers above 5 follow trends 

similar to those of random pairing. In addition, experimental values with carbon 

numbers of 6 and 7 exceed their random-pairing values for every lime-to-salt ratio. For 

the fermentation salts, carbon number distributions are shifted as well, but with a 

maximum at carbon numbers of 6 or 7. There also appears to be larger-than-expected 

amounts of ketones with larger carbon numbers (9–12).  
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Figure 2-9.  Comparison of experimental and random pairing carbon number 

distributions of expected ketones for each lime-to-salt ratio (■ Experimental ■  andom 

pairing); (a) 0.000, (b) 0.000672, (c) 0.00134, (d) 0.00461, (e) 0.0190, (f) 0.272, (g) 

0.000672 (fermentation feed salts). 
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Figure 2-10.  Comparison of Gibbs free energy minimization and random pairing carbon 

number distributions of expected ketones from reagent-grade salts (■ Gibbs free energy 

minimization ■  andom pairing). 
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unlikely. Moreover, ketones with larger carbon numbers are more fragile and would be 

expected to have higher degradation rates, which is observed in expected ketones from 

reagent-grade feed salts with carbon numbers larger than 8. It is more likely that thermal 

decomposition is not best modeled by random paring. Perhaps this model could be 

improved if weighted coefficients were assigned to each pair when calculating the mole 

fractions for each expected ketone. This would account for the fact that some ketones are 

0.00

0.06

0.12

0.18

3 4 5 6 7 8 9

Y
ie

ld
 

(g
/g

 s
al

t 
re

ac
te

d
) 

Carbon number 



 

37 

 

kinetically favored over others during decomposition. These coefficients would most 

likely be specific to given reaction conditions. 

The Gibbs free energy minimization model predicts expected ketones with 

carbon numbers from 3–9. It predicts a maximum at carbon number 4 instead of 3, 

which is predicted by random pairing. Expected ketones with a carbon number of 5 and 

higher follow trends similar to those in the experimental results with the exception of 

carbon number 8. 

For the reagent-grade experiments shown in Figure 2-9, the pattern is distinctive 

which makes the reagent-grade salts an ideal choice for comparing the two models. 

Fermentation salts were excluded from the comparison because the high level of 

impurities introduces unnecessary complexity. The trends predicted by random pairing 

(i.e., an exponential distribution starting at carbon number 3) are not consistent with the 

experimental data. The shift in maximum carbon number in the Gibbs free energy 

minimization is more similar to the experimental data. 

This study provides the first evidence that Gibbs free energy minimization may 

be a better model for predicting ketone profiles than random pairing. A model that 

considers both the thermodynamic and kinetic aspects of the thermal decomposition, as 

well as the production of by-products, would most likely follow experimental data the 

best. Future studies should explore this in more depth. 

2.5. Conclusions 

Upon dewatering, the pH of fermentation broth may be as high as 10 without 

statistically significant expected ketone yield losses during thermal decomposition. 
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Above pH 10 (i.e., feed salts with lime-to-salt ratios higher than 0.00134), larger 

amounts of tars and heavy oils and hydrocarbons are produced upon thermal 

decomposition. This increased production of non-expected products causes losses in 

expected ketone yields, the majority of which come from tars and heavy oils. In the 

thermal decomposition of fermentation feed salts, the production of non-expected 

ketones, acids, hydrocarbons, tar and heavy oils, and other impurities are much higher 

because of impurities in the fermentation feed salts. To a first approximation, the 

random-pairing model predicts expected ketone yields from the thermal decomposition 

of calcium carboxylate salts; however, there is significant disagreement particularly at 

low carbon numbers. Perhaps better agreement with experimental data can be achieved 

by using weighting factors to account for ketones that are kinetically favored. Gibbs free 

energy minimization is an alternative approach that follows the experimental data more 

closely than those of random pairing. Experimental data show that carbon numbers of 4–

8 are favored, with 5 being the maximum. 
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3. MODELING PRODUCT COMPOSITON AND YIELD FROM THE 

THERMAL DECOMPOSITION OF CARBOXYLATE SALTS 

 

3.1. Introduction 

In the MixAlco™ process, carboxylate salts are thermally decomposed to yield 

their corresponding ketones, as shown in Equation 3-1. 

M (  OO–)  M (   OO–)
 
→    O     M  O  

(3-1) 

The cation (M
+
) depends upon the buffering agent used in the fermentation and can be 

monovalent or divalent. At a commercial scale, it is necessary to predict the product 

composition and yield for a variety of carboxylate salt compositions. Two models 

(random pairing and Gibbs free energy minimization) were compared by their ability to 

predict the product composition of thermally decomposed salts. In addition, product 

yields from the thermal decomposition of each carboxylate salt mixture were measured 

and compared. Two types of carboxylate salts, one with monovalent (sodium) cations 

and one with divalent (calcium) cations, were examined. For both types of carboxylate 

salts, three mixtures with varying compositions of acetate, propionate, butyrate, and 

valerate were used for this study. One mixture contained mostly low-molecular-weight 

salts (i.e., acetate and propionate), another contained equimolar amounts of acetate, 

propionate, butyrate, and valerate salts, and the other contained mostly high-molecular-

weight salts (i.e., butyrate and valerate). Using these six different carboxylate salt 

mixtures, the effectiveness of both models could be assessed for the thermal 

decomposition of carboxylate salts with different cations and various carboxylate salt 
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compositions. All carboxylate salt mixtures contained reagent-grade components to 

eliminate effects of impurities commonly found in fermentation salts. 

3.2. Materials and methods 

3.2.1. Preparation of salts 

For each of the three salt profiles, acid solutions were prepared by mixing the 

individual reagent-grade carboxylic acids. In this section, any mixture composed of 

calcium or sodium carboxylate salts will be described as either calcium salts or sodium 

salts. To make the three calcium salt mixtures, aliquots from each of the three acid 

solutions were taken and mixed with stoichiometric amounts of calcium hydroxide in 

deionized water resulting in a solution of pH 8. Similarly, the three sodium salt mixtures 

were prepared by mixing aliquots of the three acid solutions with stoichiometric amounts 

of sodium carbonate in deionized water resulting in a solution of pH 8. The mixtures 

were evaporated in glass beakers and the dry solids (calcium and sodium carboxylate 

salts) were collected and weighed. Each of the salt mixtures was ground with mortar and 

pestle and dried in an oven at 105 °C for at least 24 h. Salt compositions were verified by 

gas chromatography (Table 3-1). 

 

Table 3-1.  Salt profile of each carboxylate salt mixture. 

  Salt composition 

 Salt Content Acetate Propionate Butyrate Valerate 

Salt mixture (g salt/g solid) (mol %) 

Low-MW Ca salts 0.892 40.53 30.27 19.29 9.91 

Equimolar Ca salts 0.866 23.56 23.93 25.28 27.23 

High-MW Ca salts 0.881 10.44 20.34 29.59 39.64 

Low-MW Na salts 0.934 40.89 27.93 20.44 10.75 

Equimolar Na salts 0.924 24.81 24.22 25.08 25.90 

High-MW Na salts 0.951 9.36 19.01 30.11 41.52 
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3.2.2. Thermal decomposition of carboxylate salts 

The apparatus used to thermally decompose the carboxylate salts was the same as 

described in Section 2.2.2. It was modified by removing the holding chamber and 

plugging Port 1 because the holding chamber was not necessary for this study. Charges 

of prepared carboxylate salts with constant moisture content were weighed. The average 

charge of calcium salts was 67 g and the average charge of sodium salts was 57 g. In a 

typical run, 1500 g of borosilicate glass beads (VWR Scientific Product, # 89091-366) 

were placed in the reactor and the charge of carboxylate salts was added on top of the 

glass beads. The reactor was sealed and the vacuum pump evacuated the system (~0.4 

kPa). The three cooling media were added to their respective condensers and collection 

vessels. The heating jacket was turned on and the temperature controller maintained the 

reactor at 450 °C (±5 °C) for the calcium salts and 470 °C (±5 °C) for the sodium salts. 

Once the reactor temperature reached 200 °C, the valve to the vacuum pump was closed. 

After 180 min elapsed, the temperature controller was turned off and the reactor cooled. 

The condensers came to room temperature and the valve on the gas sampling vessel was 

closed and removed for gas analysis. The liquid product was removed from the 

collection vessels and the non-aqueous fraction was decanted. Both the aqueous and 

non-aqueous fractions were weighed and analyzed. When the reactor had cooled to near 

room temperature, the residual solids were weighed and were then dissolved with 350.0 

mL of 3-M H3PO4 and 150.0 mL of deionized water. Residual solids not dissolved in the 

solution were filtered with a 0.2-µm cellulose acetate filter (VWR International, #28145-

477). Via gas chromatography, the filtrate was analyzed to determine the amount of 
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unreacted salts in the residual solids. The average mass balance closure was 98.8% for 

the calcium salts and 98.9% for the sodium salts. The average fractional conversion was 

0.909 for the calcium salts and 0.903 for the sodium salts. 

A Carbolite HTR 11/75 rotary reactor furnace with a viewing panel was used to 

visually inspect the thermal decomposition of one calcium and sodium salt sample. 

Samples (30 g) were placed in the reaction vessel and a purge gas of N2 at a flow rate of 

50 mL/min was used for all runs. All runs in the rotary reactor furnace used a heating 

rate of 10 °C/min. 

Differential scanning calorimetry (DSC) was performed on one sample of the 

calcium and sodium salts using a Mettler Toledo Polymer DSC, located in room 405W 

in the 1959 Wing of the Chemistry Building at Texas A&M University, using a purge 

gas of N2 at a flow rate of 50 mL/min. Sample sizes were approximately 10 mg and the 

heating rate used for each run was 10 °C/min. 

3.2.3. Solids analysis 

All carboxylate salts were dried to a constant moisture content at 105°C for at 

least 24 h and placed in a desiccator. Samples of carboxylate salts were weighed (0.15 g) 

and dissolved with 1–3 mL of 3-M phosphoric acid. The mixture was then diluted to 10 

mL with deionized water. Solutions of both dissolved carboxylate salts and dissolved 

residual solids were mixed with equal parts of a 1.162 g/L solution of 4-methyl-valeric 

acid (internal standard) and 3-M phosphoric acid. Acid analysis was performed using an 

Agilent 7890A gas chromatography (GC) system equipped with a flame ionization 

detector (FID), and an Agilent DB-FFAP: J&W 123-3232 column. Injection volume was 
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0.2 µL and inlet temperature was 230 °C. Carrier gas was helium at 103 kPa (gauge) at a 

flow rate of 3.78 mL/min. The temperature profile was 40 °C for 2 min, ramped to 200 

°C at 20 °C/min, and held for 2.5 min. Outlet temperature was 230 °C. The run lasted for 

12.5 min. Carboxylate salt compositions and the amount of salts per amount of solid 

(salt content) were calculated from the acid compositions of the solutions reported by the 

GC for each carboxylate salt mixture (Table 3-1) and for all residual solids. 

The amount of carboxylate salts delivered into the reactor was calculated based 

on the measured salt content. The amount of carboxylate salts thermally decomposed 

was calculated by subtracting the amount of carboxylate salts delivered from the amount 

of carboxylate salts in the residual solids. In addition to non-decomposed carboxylate 

salts, other components in the residual solids included calcium or sodium carbonate 

(from the primary reaction) and tars and heavy oils (from product degradation). On a 

theoretical basis, the amount of calcium carbonate was calculated from the amount of 

carboxylate salts decomposed. The presence of tars and heavy oils was observed by 

visual inspection and the quantity was estimated using a mass balance.  

(g) CaCO–  (g)product  Gas–                                        

(g)product  Liquid–  (g) decomposed Salts  (g) oilsheavy  & Tars

3


 (3-2) 

No attempt was made to determine the composition of the tars and heavy oils. 

3.2.4. Liquid analysis 

Condensate samples were analyzed using an Agilent 7890A GC system coupled 

to an Agilent 5975C mass spectroscopy detector (MS). Injection volume was 0.2 µL and 

inlet temperature was 280 °C. Carrier gas was helium at 48.3 kPa (gauge) at a flow rate 

of 1 mL/min. An Agilent HP-5MS 5% Phenyl Methyl Silox column was used at a 
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temperature profile of 40 °C for 5 min, ramped to 250 °C at 10 °C/min, and held for 5 

min. Outlet temperature was 230 °C. The run lasted for 31 min. Components determined 

by MS with a match quality of less than 50 were classified as “unknown liquids.” Water 

content of condensate samples was determined using a Mettler Toledo V20 series Karl 

Fisher volumetric titrator (titrant: Fisher Chemical, Aqualine Complete 5K #AL2250R-

1; solvent: Fisher Chemical, Aqualine Matrix K #AL2300R-1). Water content was 

subtracted from the total liquid product to determine amounts of all other liquid 

components. 

3.2.5. Gas analysis 

Gas sampling vessels were filled with helium to 34.5 kPa (gauge) at a measured 

temperature. Gas samples were analyzed using a Wasson ECE GC equipped with two 

flame ionization detectors (FID) and two thermal conductivity detectors (TCD) and nine 

proprietary columns. Injection volume was 1.0 mL. The oven temperature profile was 50 

°C for 3 min, ramped to 120 °C at 10 °C/min, then ramped to 160 °C at 5 °C/min, and 

held for 2.5 min. Outlet temperature was 250 °C. The run lasted 20 min. Volume 

percentages (% v/v) reported by the GC for each gas component were converted to 

grams using the ideal gas law. 

3.3. Theory/calculations 

Random pairing of R groups is a simple model to predict the mole fractions of 

the ketone products ( K

ijx ) and is the only model to predict product composition found in 

the literature. Ludlam [18] used it to predict mole fractions of ketones resulting from the 

thermal decomposition of a binary mixture of calcium carboxylate salts. Because 
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random pairing assumes that the kinetic rate for the production of each ketone is equal, 

the mole fraction of each ketone is simply the product of the mole fractions of the two R 

groups that compose each ketone. Because the mole fraction of each R group is equal to 

the mole fraction of the carboxylic salt from which it comes 

   
     

     
  (3-3) 

where 
S

ix  and S

jx  are mole fractions of any of the carboxylate salts used in the thermal 

decomposition. The number-average molecular weight ( KM ) of the total ketone mixture 

is calculated by summing the products of each permutation of K

ijx  and its corresponding 

molecular weight ( K

ijM ). 
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The weight fraction ( K

ijw ) of each ketone permutation is 
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The weight fraction ( K

aŵ ) of the a
th

 ketone is 

 ̂ 
 
  {

 ( 
  

 
)     if     

   
           if     

0             if     

 (3-6) 

This algorithm accounts for the fact that when   ≠  , two permutations produce the same 

ketone. The number-average molecular weight of the feed salts ( SM ) is 
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where S

iw  and S

iM  are the weight fraction and the molecular weight of the carboxylate 

salts present, respectively. For calcium (and other divalent cations) carboxylate salts, one 

mole of salt produces one mole of ketone. For sodium (and other monovalent cations) 

carboxylate salts, two moles of salt produces one mole of ketone. Therefore, the 

theoretical yield for any ketone product mixture is  

Theoretical yield   
 

 
 
 

 

 
 
   [

Total grams of ketone

Total grams of salt
] (3-8) 

where   is the valence number of the cation. The theoretical yield for the a
th

 ketone is  

Theoretical yield
 
   ̂ 

 
 
 

 
 
 

 

 
 
 (3-9) 

Alternatively, rather than a kinetic model, product composition could be modeled 

on the basis of thermodynamic stability. Gibbs free energy minimization finds the 

product composition with the lowest Gibbs free energy. Reactant and product species as 

well as initial amounts must be defined. The product composition with the lowest Gibbs 

free energy is found using an element balance around all reaction species. Unlike the 

random-pairing model, non-expected products can be included in Gibbs free energy 

minimization as well. Gibbs free energy minimizations were performed using Aspen 

Plus, V7.3 (Aspen Technology, Inc.) using the NRTL properties method. An input 

summary of one of the simulations is included in Appendix B. 
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Using four different R groups (acetate, propionate, butyrate, and valerate), 10 

different combinations of “expected ketones” can be produced (i.e., all ketones that 

would be produced if only the reaction described in Equation 3-1 occurred). Any other 

ketones or compounds produced from thermal decomposition that were not predicted by 

the random-pairing model are considered “non-expected products.” 

3.4. Results and discussion 

From the experiment, the composition of expected ketones from the thermal 

decomposition of calcium salts were compared to the product compositions from the 

random-pairing model and from Gibbs free energy minimization model in order of 

increasing ketone molecular weight (Figure 3-1). As expected, the low-molecular-weight 

calcium salts yielded mostly low-molecular-weight ketones, the high-molecular-weight 

calcium salts yielded mostly high-molecular-weight ketones, and the equimolar calcium 

salts yielded mostly ketones in the middle of the molecular weight distribution. 

For the low-molecular-weight calcium salts, there are three peaks in the ketone 

product distribution. The random-pairing model shows the first peak occurs at 2-

butanone, the second peak at 3-hexanone, and the third peak at 4-octanone, which agrees 

with experimental results. The Gibbs free energy minimization model shows the first 

peak occurring at 2-butanone, the second peak at 3-heptanone, and the third peak at 5-

nonanone, which is not consistent with experimental results. In addition to the random-

pairing model being a better predictor of experimental ketone product distribution peaks, 

it tends to predict ketone product compositions that are closer to experimental product 

compositions than does the Gibbs free energy minimization model. 
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Figure 3-1.  Comparison of experimental (■), random pairing (■), and Gibbs free energy 

minimization ( ) distributions of expected ketones for each calcium salt mixture; (a) 

low-MW Ca salts, (b) equimolar Ca salts, (c) high-MW Ca salts. 
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For the equimolar calcium salts and the high-molecular-weight calcium salts, 

there are three peaks in the ketone product distribution. The random-pairing model 

shows the first peak occurs at 2-hexanone, the second peak at 3-heptanone, and the third 

peak at 4-octanone for both salt compositions. These both agree with the experimental 

results. The Gibbs free energy minimization model shows the first peak occurs at 2-

hexanone, the second peak at 3-heptanone, and the third peak at 5-nonanone for both salt 

compositions, which does not agree with the experimental results. Again, for both 

calcium carboxylate salt compositions, the random-pairing model agrees better with the 

peaks in the experimental ketone product distribution and better predicts experimental 

ketone product composition than does the Gibbs free energy minimization model. 

For the three different compositions of calcium salts, the random-pairing model 

fits the experimental results better than the Gibbs free energy model. This is evidence 

that the thermal decomposition of calcium salts most likely proceeds by random paring. 

However, even with the random-pairing model there are some significant deviations 

between the predicted and experimental product compositions of the higher-molecular-

weight ketone compositions. This most likely results because high-molecular-weight 

ketones are less stable at decomposition temperatures and therefore have higher 

degradation rates. As the calcium salt composition shifts to high-molecular-weight 

carboxylate salts, which produce more high-molecular-weight ketones, the random-

pairing model becomes less reliable. 

The findings in this study differ from the findings in Section 2, which show that 

the random-pairing model did not fit the experimental data as well. It was not possible to 
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determine whether or not the Gibbs free energy minimization model was better because 

a direct comparison was not possible, but the trend it predicted was closer to that of the 

experimental data. In this section, only the low-molecular-weight calcium salt results are 

compared to the calcium salt results with lime-to-salt ratios of 0–0.00134 in Section 2. 

This is because the average carboxylate salt molecular weights are similar and it was 

shown that such small amounts of lime had negligible effects on product composition. In 

Section 2, there were significant deviations between the predicted and experimental 

compositions of acetone. The remaining ketone product compositions generally agreed 

with the random-pairing model. It is not known why such a discrepancy exists. 

The compositions of expected ketones from the thermal decomposition of 

sodium salts were also compared to the product compositions from the random-pairing 

model and from Gibbs free energy minimization model in order of increasing ketone 

molecular weight (Figure 3-2). For each sodium salt composition, the peaks in ketone 

product distribution predicted by random-pairing and Gibbs free energy minimization 

are similar to peaks predicted for each calcium salt composition. However, the 

experimental results from the thermal decomposition of sodium salts followed the model 

results until 2-hexanone. Compositions of high-molecular-weight ketones were much 

lower than either model. In large part, this was caused by the significantly higher 

production of tars and heavy oils and hydrocarbons. The fact that the production of tars 

and heavy oils is so much more than that of hydrocarbons suggest the loss in ketone 

yield most likely results from product degradation and not a change in reaction or 
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mechanism. This makes it impossible to determine which model is best for the sodium 

salts. 

Table 3-2 gives yields of all expected ketones for each carboxylate salt mixture. 

Theoretical yields of expected ketones for the calcium salts were relatively similar with 

no apparent trend with respect to carboxylate salt composition. For the calcium salts, the 

average yield of expected ketones was 83.88% of theoretical with a 5.59% difference 

overall. For the sodium salts, yields of expected ketones were much lower than those for 

the calcium salts. Further, the yield decreased as the average carboxylate salt molecular 

weight increased suggesting that high-molecular-weight sodium carboxylate salts have 

lower expected ketone yields than low-molecular-weight sodium carboxylate salts. For 

the sodium salts, the average yield of expected ketones was 39.94% of theoretical, less 

than half of that for calcium salts, with a 43.30% difference overall. 

For the calcium salts, liquid product began to appear in the condensers from 170–

180 °C. Upon reaching the final reactor temperature, more than 50% of the calcium salts 

had reacted. This was evident from the amount of liquid product present at 450 °C. For 

the sodium salts, liquid product began to appear in the condensers from 410–420 °C. The 

majority of the sodium salts reacted once the final reactor temperature of 470 °C was 

reached. According to Hurd [16], divaltent salts tend to have better ketone yields than 

monovalent salts. For alkali metals, ketone yields improve with decreasing atomic 

number. For alkaline earth metals, ketone yields improve with increasing atomic 

number. 
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Figure 3-2.  Comparison of experimental (■), random pairing (■), and Gibbs free energy 

minimization ( ) distributions of expected ketones for each sodium salt mixture; (a) 

low-MW Na salts, (b) equimolar Na salts, (c) high-MW Na salts. 
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Table 3-2.  Expected ketone yield analysis for calcium and sodium salts. 

 

Low-MW 

Ca salts 

Equimolar 

Ca salts 

High-MW 

Ca salts 

Low-MW 

Na salts 

Equimolar 

Na salts 

High-MW 

Na salts 

Compound Name Yield
d
 (g/g salt reacted) × 10

3
 

2-propanone 51.11 19.76 3.66 42.49 18.58 5.19 

2-butanone 92.53 50.38 17.22 66.07 38.71 17.54 

2-pentanone 60.64 47.00 23.57 44.64 39.00 27.77 

2-hexanone 32.60 50.83 34.51 21.23 34.51 33.41 

3-pentanone 36.25 27.38 17.29 16.79 11.58 8.48 

3-hexanone 49.26 55.27 49.09 15.46 14.14 16.91 

3-heptanone 25.78 58.40 70.33 6.77 12.01 18.31 

4-heptanone 17.39 30.95 38.74 3.64 4.74 8.37 

4-octanone 17.42 62.89 106.28 3.55 8.53 18.92 

5-nonanone 4.397 31.89 72.79 1.48 4.41 12.60 

Total ketone 387.4 434.8 433.5 222.1 186.2 167.5 

Theoretical yield (%) 83.96% 86.18% 81.49% 49.45% 38.21% 32.16% 

d Reported values have been multiplied by 103. 

 

Ludlam described calcium carboxylate salts as becoming viscid and semi-

transparent, but not quite liquid during thermal decomposition [18], indicating that the 

crystals must melt before decomposition occurs [34]. This was confirmed using the 

rotary furnace with viewing port to visually inspect the thermal decomposition and the 

DSC plot in Figure 3-3a, which shows a sharp melt peak at 350 °C. For calcium 

carboxylate salt particles, thermal decomposition most likely resembles a heterogeneous 

shrinking core. The surface of the unreacted layer melts, forming a liquid film. 

Decomposition occurs in this film, leaving behind a solid layer of calcium carbonate. 

Sodium carboxylate salts melt well before they thermally decompose. DSC (Figure 3-



 

54 

 

3b) shows that they undergo this phase transition from 170–190 °C. This was also 

confirmed visually using the rotary furnace. For sodium carboxylate salts, thermal 

decomposition occurs completely in the liquid phase with ketones bubbling out as 

vapors and sodium carbonate precipitating out as a solid. 

 

  

 

Figure 3-3.  DSC plot for (a) low-molecular-weight calcium salts and (b) low-

molecular-weight sodium salts. 
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Analysis of non-expected product yields (Table 3-3) shows that the majority of 

expected ketone yield loss occurred because of the production of tars and heavy oils. The 

yield of tars and heavy oils increased with the average carboxylate salt molecular 

weight. It is assumed that the tars and heavy oils result from ketone degradation, which 

occurs at the reactor temperature (450–470 °C) [42, 43]. Ketone degradation can produce 

intermediates that oligomerize into longer chain byproducts. Ketone degradation was 

minimized by rapidly cooling the product as it exited the reactor and by maintaining a 

vacuum (~0.4 kPa). Calcium and sodium carbonate that form as the reaction proceeds 

could form a solid matrix that impedes newly formed ketones from exiting the liquid 

film into the vapor space. This could be especially significant towards the end of the 

decomposition when the amount of carbonates are much more than the amount of 

carboxylate salts, thus allowing for ketone degradation. The fact that sodium salts 

thermally decompose at much higher temperatures could partially explain why they 

produce approximately four times as much tars and heavy oils. 
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Table 3-3.  Non-expected product yield analysis for calcium and sodium salts. 

 

Low-MW 

Ca salts 

Equimolar 

Ca salts 

High-MW 

Ca salts 

Low-MW 

Na salts 

Equimolar 

Na salts 

High-MW 

Na salts 

Compound Yield
d
 (g/g salt reacted) × 10

3
 

Non-expected ketones 4.519 4.448 2.607 2.593 3.137 4.652 

Other oxygenates 

      Acids – 0.1348 – – – – 

Aldehydes 0.1221 0.1348 – 0.1108 0.2137 0.4229 

Esters – 0.08984 0.2209 – – – 

Ethers 0.4514 – – – – – 

Alcohols 0.1628 0.3144 0.2209 0.2709 0.2631 0.4017 

Hydrocarbons 

      Aromatics 0.3257 0.5391 0.2650 1.945 0.4461 5.201 

Olefins 2.261 2.531 5.179 19.87 38.91 37.09 

Paraffins 4.462 5.477 7.592 4.723 20.11 18.78 

Other 

      Hydrogen 0.7556 1.400 1.768 4.626 5.703 7.007 

Carbon monoxide 3.126 2.050 2.064 22.91 – – 

Carbon dioxide 0.9768 0.06052 0.06240 0.1575 4.661 4.665 

Tars and heavy oils 57.03 52.32 80.61 194.8 233.2 280.6 

Unknowns 4.685 3.731 1.769 2.739 4.845 6.322 

Total non-expected 

products 78.88 73.23 102.4 254.8 311.5 365.1 
d Reported values have been multiplied by 103. 

 

Another significant loss in expected ketone yield was from the production of 

hydrocarbons. As with tars and heavy oils, the hydrocarbon yield increased as the 

average carboxylate salt molecular weight increased. Sodium salts produced 5 times as 

many hydrocarbons as the calcium salts. This could be because the higher thermal 

decomposition temperature of sodium salts leads to more ketone degradation and, it 

could be because the decomposition mechanism shifts from a more concerted 

mechanism to more of a free radical mechanism. The majority of the hydrocarbons 

produced from calcium salts were in the form of paraffins. The majority of hydrocarbons 

produced from sodium salts were in the form of olefins. The production of olefins from 
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sodium salts was approximately 9.5 times higher than that from calcium salts, and the 

production of paraffins from sodium salts was approximately 2.5 times higher than that 

from calcium salts. The production of hydrogen from sodium salts was also higher, 

approximately four times as much, than from calcium salts. The increased production of 

both olefins and hydrogen is strong evidence that the higher decomposition temperature 

of sodium salts leads to more thermal cracking. 

There was no significant trend between the production of carbon dioxide and 

carboxylate salt composition, or the production of carbon monoxide and carboxylate salt 

composition. It is assumed that all carbon dioxide and carbon monoxide produced 

resulted from ketone degradation, because neither calcium carbonate nor sodium 

carbonate decomposes at the reactor temperature [35, 44]. Analysis of gas samples 

revealed small amounts of oxygen, which could have reacted with the product to form 

carbon dioxide and carbon monoxide. Degradation of some of the ketones themselves 

could have also led to carbon dioxide production [36-38]. This is evident by fact that 

both carbon dioxide and paraffin production were higher for the thermal decomposition 

of sodium salts. 

Thermal decomposition of calcium and sodium salts produced similar amounts of 

non-expected ketones and other oxygenates. There was no significant trend between 

either carboxylate salt composition and production or cation species and production. 

The trends mentioned above suggest that high-molecular-weight carboxylate salts form 

tars and heavy oils as well as well as hydrocarbons and hydrogen more readily than low-

molecular-weight carboxylate salts. Of those three products, tars and heavy oils are the 
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most prevalent. The production of hydrocarbons, hydrogen, and tars and heavy oils from 

sodium salts are also approximately 4 times higher than from calcium salts. These 

results, along with others in the literature, suggest that carboxylate salts with divalent 

cations give higher expected ketone yields, and thus lower non-expected product yields, 

than carboxylate salts with monovalent cations. 

3.5. Conclusions 

For the thermal decomposition of calcium salts, the random-pairing model 

matched the ketone product distribution more closely than the Gibbs free energy 

minimization model. Both models agree with the experimental data for low-molecular-

weight ketone composition and both show some deviations from the experimental data 

for high-molecular-weight ketone composition. However, the random-pairing model 

follows the trends in ketone product distribution and deviates less from the experimental 

data than Gibbs free energy minimization. For the sodium salts, it is not possible to 

determine which model fits the experimental data better because large amounts of 

degradation products are formed. Calcium salts begin thermally decomposing at much 

lower temperatures (170–180 °C) than do sodium salts (410–420 °C). For calcium salts, 

the expected ketone yield was not significantly affected by carboxylate salt composition. 

For sodium salts, the expected ketone yield decreased with increasing average 

carboxylate salt molecular weight. The average expected ketone yield for sodium salts 

was less than half that for calcium salts. The loss in expected ketone yield was primarily 

caused by the increased production in tars and heavy oils and hydrocarbons. These 

byproducts are most likely the result of product degradation. Tars and heavy oils were 
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the predominant byproduct and increased with average carboxylate salt molecular 

weight for both calcium and sodium salts; however, sodium salts produced 4 times more 

tars and heavy oils than did the calcium salts. Hydrocarbons also increased with average 

carboxylate salt molecular weight for both calcium and sodium salts, with sodium salts 

producing 9 times more hydrocarbons than calcium salts. Because of poor ketone yields 

and large production of tars and heavy oils, sodium carboxylate salts would not be 

recommended for use in a commercial-scale MixAlco™ biorefinery. 
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4. MODELING THE KINETICS OF THERMAL DECOMPOSITION OF 

SODIUM CARBOXYLATE SALTS* 

 

4.1. Introduction 

Using the MixAlco™ process, the thermal decomposition of carboxylate salts is 

a critical step in converting biomass into useful chemicals and fuels. Kinetic models and 

parameters for these decompositions are necessary to design and size commercial-scale 

reactors. The carboxylate salts are thermally decomposed to yield their corresponding 

ketones, as shown in Equation 4-1. 

M (  OO–)   M (   OO–)
 
→    O     M  O  

(4-1) 

For purposes of this study, M
+
 is a sodium ion, but generally can be any alkali metal or 

half of any alkaline earth metal. 

 

 

 

 

 

 

 

_____________________________________________ 

*Reprinted from Biomass and Bioenergy, 45, Landoll M, Holtzapple MT, Kinetics study 

of thermal decomposition of sodium carboxylate salts, 202–195, Copyright (2012), with 

permission from Elsevier. 
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The aim of this study is to first properly model the thermal decomposition of a 

simple carboxylate salt (sodium acetate) and then apply that model to the thermal 

decomposition of a mixture of reagent-grade carboxylate salts similar to that produced 

by the MixAlco™ process. Finally, the model is tested using actual carboxylate salts 

from a MixAlco™ fermentation. The first step was to determine the activation energy 

(EA) for the thermal decomposition of all three salt types using three isoconversional 

methods. Next, functions of conversion were proposed to model each of the thermal 

decompositions using three isothermal models. The use of reagent-grade salts eliminated 

reactions associated with impurities found in fermentation salts, allowing measured 

kinetics to be attributed solely to the thermal decomposition of the carboxylate salts. 

4.2. Materials and methods 

4.2.1. Preparation of salts 

In this section, any solid mixture of sodium carboxylate salts will be described as 

sodium salts. Anhydrous sodium acetate (Mallinckrodt Chemicals, AR (ACS), 99.0%) 

was used for this study. It was ground with mortar and pestle and sieved into a particle 

size range of 150–212 µm. The sodium acetate was then dried at 105 °C for 24 h and 

placed in a desiccator. 

Reagent-grade sodium salts were prepared by mixing the corresponding reagent-

grade carboxylic acids with equimolar amounts of reagent-grade sodium carbonate in 

deionized water, resulting in a solution of pH 8.5. These acid and corresponding salt 

profiles are typical of what has been reported for anaerobic mixed-culture fermentation 

[12-14]. A 2-L aliquot of this solution was evaporated in a glass beaker. The precipitated 
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reagent-grade sodium salts were collected, weighed, and dried at 105 °C for at least 24 h. 

The sodium salts were ground with mortar and pestle and washed with chloroform to 

remove any residual acids. The sodium salts were separated into the same particle size 

range as sodium acetate and then dried at 105 °C for an additional 24 h and placed in a 

desiccator. Acid and corresponding salt compositions were verified by gas 

chromatography (Table 4-1). 

Fermentation sodium salts were prepared using clarified broth from a MixAlco™ 

fermentation buffered with sodium carbonate (Terrabon, Inc, Houston, TX). 

Clarification was performed using a proprietary process involving ultra-filtration and 

reverse osmosis. The broth was adjusted to pH 9 by adding excess sodium carbonate and 

was then evaporated to collect the fermentation sodium salts. The fermentation sodium 

salts were ground and separated into a particle range in the same manner as the reagent-

grade sodium salts. Acid and corresponding salt compositions were verified by gas 

chromatography (Table 4-1). 
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Table 4-1.  Acid and corresponding salt profiles of reagent-grade and fermentation 

sodium salts. 

   Reagent-grade salts Fermentation salts 

Carbon 

number Acid 

Acid 

(wt. %) 

Salt 

(wt. %) 

Acid 

(wt. %) 

Salt 

(wt. %) 

2 Acetic 37.48 40.46 45.13 47.68 

3 Propionic 14.75 14.97 19.77 19.63 

4 Isobutyric 1.43 1.39 1.33 1.27 

4 Butyric 12.23 11.87 18.25 17.33 

5 Isovaleric 2.60 2.44 3.22 2.95 

5 Valeric 10.43 9.79 6.69 6.14 

6 Caproic 13.44 12.28 4.20 3.75 

7 Heptanoic 5.63 5.04 1.11 0.97 

8 Octanoic 2.01 1.77 0.31 0.27 
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4.2.2. Thermal decomposition 

Thermal gravimetric analysis (TGA) decompositions were performed in a 

Netzsch TG 209 C thermal analyzer, located in room 610 in the Brown Engineering 

Building at Texas A&M University. Samples were weighed (5–10 mg) into 100-µL 

aluminum sample pans. A purge gas of N2 at a flow rate of 20 mL/min was used for all 

runs. For isothermal runs, the temperature was ramped up to the set temperature at a rate 

of 20 °C/min. Non-isothermal runs used heating rates of 1, 2, 4, 8, and 16 °C/min. A 

blank sample pan was also run at each heating rate as a baseline and subtracted from the 

corresponding sample run to account for thermal drift. 

A Carbolite HTR 11/75 rotary reactor furnace with a viewing panel was used to 

visually inspect the decomposition reaction. Samples of 30 g were placed in the reaction 

vessel and a purge gas of N2 at a flow rate of 50 mL/min was used for all runs. All runs 

in the rotary reactor furnace used a heating rate of 10 °C/min. 

4.2.3. Solids analysis 

Samples of reagent-grade and fermentation sodium salts were weighed (0.3 g) 

and dissolved with 2 mL of 3-M phosphoric acid. The mixture was then diluted to 10 mL 

with deionized water. Solutions of dissolved sodium salts were mixed with equal parts of 

a 1.162 g/L solution of 4-methyl-valeric acid (internal standard) and 3-M phosphoric 

acid. Acid analysis was performed using an Agilent 7890A gas chromatograph (GC) 

system equipped with a flame ionization detector (FID), and an Agilent DB-FFAP: J&W 

123-3232 column. Injection volume was 0.2 µL and inlet temperature was 230 °C. 

Carrier gas was helium at 103 kPa (gauge) at a flow rate of 3.78 mL/min. The 
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temperature profile was 40 °C for 2 min, ramped to 200 °C at 20 °C/min, and held for 

2.5 min. Outlet temperature was 230 °C. The run lasted for 12.5 min. Carboxylate salt 

compositions and the amount of sodium salts per amount of solid (salt content) were 

calculated from the acid compositions of the solutions reported by the GC (Table 4-1). 

Solids remaining in the sample pan after thermal decomposition were not analyzed for 

composition. 

4.3. Theory/calculations 

All kinetic analysis was based on the rate equation shown in Equation 4-2 

  

  
      ( ) (4-2) 

where t is time, X is conversion, and k is the rate coefficient given by Equation 4-3 

       exp ( 
  

  
)  (4-3) 

where T is absolute temperature, R is the ideal gas constant, A is the frequency factor, 

and EA is the activation energy. The normalized weight of reactant (W) can be used in 

place of X. The equation for W is given by 

    
  –   

 0 –   

   ( – ) (4-4) 

where m is the weight of the sample at a given t, m0 is the initial weight of the sample, 

and mf is the final weight of the sample. W will range from 1 to 0 as the decomposition 

proceeds forward, which is the opposite of X. Using W as a metric of conversion instead 

of X eliminates the need for a correction coefficient from global weight-loss kinetic 

analysis [45]. Substituting Equations 4-3 and 4-4 into Equation 4-2 gives 
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–
  

  
     exp (–

  

  
)  ( ) (4-5) 

If a linear heating rate is used, then 

  

  
     (4-6) 

where   is the heating rate. 

Several isoconversional methods were used: Friedman (FR) method [46, 47], Li-

Tang (LT) method [48-50], and Vyazovkin (V) non-linear procedure [51-53]. The 

Friedman method is a differential method based on Equation 4-7. 

ln [–
  

  
]    ln[   ( )]  – 

  

  
 (4-7) 

The Li-Tang method is based on taking the logarithm of Equation 4-5, multiplying by 

dW, and integrating to give Equation 4-8. 

∫ ln [–
  

  
]   

 

 0

   (     0) ln[ ]    ∫ ln[ ( )]  

 

 0

 – 
  

 
∫

  

 

 

 0

 (4-8) 

The Vyazovkin procedure is an integral method based on minimizing the condition 

shown in Equation 4-9. 

∑ ∑ [
 (         )   

 (         )   

] 

 

 ≠ 

 

 

  min (4-9) 

where 

 (    )   
  

 
 ( ) (4-10) 

and n is the number of heating rates used for the procedure. The function p(x) is the 

temperature integral, which is substituted by an approximation. Several temperature 
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integration approximation integrals are available (e.g., the Doyle approximation [54] and 

the Coats-Redfern approximation [55]). For this study, the fourth rational expression of 

the Senum and Yang approximation [56] (Equation 4-11) was used, because it is the best 

approximation over the entire x ratio range [57] 

  ( )   
   

 
(

                    

 4    0       0      40      0
) (4-11) 

where 

    
  

  
 (4-12) 

Each of these isoconversional methods allow the dependence of EA on W to be evaluated 

without a prior knowledge of the explicit form of f(W). For thermal decompositions 

where more than one reaction or mechanism occurs, EA represents an overall or “global” 

EA which is a measure of all reactions/mechanisms occurring at a given value of W. For 

the Friedman method, EA is calculated from the slopes of the plots of ln(–dW/dt) versus 

1/T for each value of W. For the Li-Tang method, EA is calculated from the slopes of the 

plots of I{ln(–dW/dt)} versus I{1/T} for each value of W, where I{} denotes the negative 

definite integral from 1 to W. Figure 4-1 and 4-2 show the plots generated for the 

Friedman and Li-Tang methods, respectively. 



 

68 

 

 

Figure 4-1.  Friedman method plot for reagent-grade sodium salts. Slopes of dashed 

lines are used to calculate EA at each W. 

 

 

Figure 4-2.  Li-Tang method plot for reagent-grade sodium salts. I{} denotes the 

negative definite integral from 1 to W. Slopes of dashed lines are used to calculate EA at 

each W. 
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For the Vyazovkin method, EA is varied until the left-hand side is minimized. The 

smallest theoretical value possible is given by 

Theoretical min    (  –  ) (4-13) 

Five different heating rates were used in this study, therefore 20 is the theoretical 

minimum. If four different heating rates were used, 12 would be the theoretical 

minimum. 

There are many functions of W that model different types of thermal 

decompositions of solids [58]. The most common are listed in Table 4-2. 

 

Table 4-2.  Expressions of f(W) for the most common models of thermal decomposition 

of solids. 

Model f(W) 

n
th

-order    

Exponential law ( – ) 

Power law  ( – )
( – )  ⁄

 

Prout-Tompkins  ( – ) 

Avrami-Erofeev     – ln( )  
( – )  ⁄

 

Uni-dimensional diffusion (parabolic law)   ( – ) 
– 

 

Bi-dimensional diffusion  – ln( )  
– 

 

Tri-dimensional diffusion   ( )
  ⁄
  –   ⁄  

– 
⁄  

Ginstein-Brouhnstein     –  ⁄ –  
– 

⁄  

Sestak-Berggren ( – )
 
   – ln( )  
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In this study, three models were chosen for comparison: n
th

-order, Avrami-Erofeev, and 

Sestak-Berggren. The n
th

-order model (Equation 4-14) is the simplest model and is most 

commonly used in the literature, especially in initial kinetic studies. 

  ( )      (4-14) 

where n is the reaction order. With respect to W, the integrated form (g(W)) of Equation 

4-14 is given by Equation 4-15. 

  ( )   
   –      

  –  
 (4-15) 

The Avrami-Erofeev (A-E) model (Equation 4-16) was originally developed to 

describe the kinetics of random nucleation and growth of nuclei on thermally 

decomposing crystals [58-61]. It was chosen for comparison because it describes 

sigmoid decomposition curves. 

  ( )     [–ln( )](  –  )  ⁄  (4-16) 

With respect to W, the integrated form of Equation 4-16 is given by Equation 4-17. 

  ( )   [–ln( )]  ⁄  (4-17) 

The Sestak-Berggren (S-B) model (Equation 4-18) was developed to be a general 

model that could be used to model any type of thermal decomposition [62-65]. 

  ( )   (  –  )   [–ln( )]  (4-18) 

The three exponents allow Equation 4-18 to account for a number of different 

mechanisms (such as n
th

-order kinetics, autocatalysis, diffusion, etc.). For example, if m 

and p are set to zero, Equation 4-18 becomes Equation 4-14 and models n
th

-order 
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kinetics. If p is set to zero, it can model autocatalysis. There is no analytical solution to 

the integrated form of Equation 4-18. 

To check the goodness of fit for each model, experimental values were compared 

to each of the model values using standard error (θ), given by Equation 4-19. 

 θ   
√∑ (

         –         

        
)
 

 
 

(4-19) 

where exp denotes experimental values, mod denotes values from the models, and N is 

the total number of measurements from all isothermal runs. For this equation, a perfect 

fit would yield a θ of zero.  

Figure 4-3 diagrams the procedure used to determine the kinetic parameters and 

function of W for the thermal decomposition of carboxylate salts. Carboxylate salts were 

thermally decomposed with TGA both isothermally, using several different 

temperatures, and non-isothermally, using multiple linear heating rates. The three 

isoconversional methods were chosen to determine the dependency of EA on W using 

data from the non-isothermal runs. Each method used a different approach to determine 

EA at a given W. The results of each method were compared to check for similarity in 

trends of EA vs. W. At each value of W, EA from each of the methods were averaged to 

give an average ĒA as a function of W (ĒA (W)). Values of ĒA at each W from 0.95–0.05 

were then averaged to give an overall average ÊA.
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Figure 4-3.  Flow diagram of procedure used to determine dependence of EA on W using Friedman (FR), Li-Tang (LT), and 

Vyazovkin (V) methods as well as to optimize n
th

-order, Avrami-Erofeev (A-E), and Sestak-Berggren (S-B) models and 

indentify which is best for the thermal decomposition of carboxylate salts.
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The three f(W) models were compared to the isothermal data and optimized for 

best fit. To be considered a viable model, its EA value had to be within one standard 

deviation of its respective ÊA value. The ideal model had the lowest value of θ, a parity 

plot slope and R
2
 value closest to unity, and an EA closest to its respective ÊA. This 

procedure is the recommended by multiple researchers who are experts in the field and 

follows the same methodology as ASTM E1641–07, Standard Test Method for 

Decomposition Kinetics by Thermogravimetry, and E2070–08, Standard Test Method 

for Kinetic Parameters by Differential Scanning Calorimetry Using Isothermal Methods. 

4.4. Results and discussion 

The following sections describe the phase behavior of the sodium carboxylate 

salts as well as non-isothermal and isothermal decompositions. 

4.4.1. Phase behavior 

Sodium acetate and both the reagent-grade and fermentation sodium salts melt 

before the onset of thermal decomposition. Visual inspection of the sodium salts during 

heating showed sodium acetate melting at approximately 325–330 °C and the reagent-

grade and fermentation sodium salts both melting at approximately 225–230 °C. 

4.4.2. Non-isothermal decomposition 

Figures 4-4 through 4-8 show the thermal decomposition curves for reagent-

grade sodium acetate, reagent-grade sodium salts, and fermentation sodium salts for all 

five heating rates used in this study. Sodium acetate begins decomposing at 

approximately 350 °C, whereas reagent-grade and fermentation sodium salts both begin 

decomposing at approximately 290 °C. For both reagent-grade and fermentation sodium 
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salts, there is a discontinuity in the curves that begins at a W of approximately 0.10; the 

discontinuity is greater for fermentation sodium salts. The discontinuity indicates that a 

different reaction or mechanism becomes predominant. The sodium acetate curve is 

continuous throughout the entire decomposition. Heating rates of 1, 2, 4, 8, and 16 

°C/min were used for each of the three isoconversional methods employed. The same 

methods and heating rates were used for the decomposition of all three sodium salt 

types. 

Figure 4-9 shows how EA varies with W for each isoconversional method used 

for each sodium salt type. For each value of W, only EA values with R
2
-values of 0.65 

and above were considered for the Friedman and Li-Tang methods and EA values with a 

minimization value of 22 or less for the Vyazovkin method. For sodium acetate, the 

three isoconversional methods showed varying trends of EA with respect to W; however, 

when the average of the EA values for each W was taken, the standard deviation was less 

than 5%. For reagent-grade and fermentation sodium salts, the trends of EA vs. W for the 

three isoconversional methods were similar. For each sodium salt type, Table 4-3 shows 

the average of the three EA values from the three isoconversional methods (ĒA (W)) for 

selected values of W. It also contains the ÊA and corresponding standard deviations for 

each sodium salt type. 
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Figure 4-4.  Thermal decomposition curves for sodium acetate, reagent-grade sodium 

salts, and fermentation sodium salts at a heating rate of 1 °C/min. 

 

 

Figure 4-5.  Thermal decomposition curves for sodium acetate, reagent-grade sodium 

salts, and fermentation sodium salts at a heating rate of 2 °C/min. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 350 450 550

W
 

T (°C) 

Na acetate

Reagent-grade

Fermentation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 350 450 550

W
 

T (°C) 

Na acetate

Reagent-grade

Fermentation



 

76 

 

 

Figure 4-6.  Thermal decomposition curves for sodium acetate, reagent-grade sodium 

salts, and fermentation sodium salts at a heating rate of 4 °C/min. 

 

 

Figure 4-7.  Thermal decomposition curves for sodium acetate, reagent-grade sodium 

salts, and fermentation sodium salts at a heating rate of 8 °C/min. 
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Figure 4-8.  Thermal decomposition curves for sodium acetate, reagent-grade sodium 

salts, and fermentation sodium salts at a heating rate of 16 °C/min. 
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Figure 4-9.  Dependence of EA on W for (a) sodium acetate, (b) reagent-grade sodium 

salts, and (c) fermentation sodium salts. 
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Table 4-3.  Dependence of ĒA on W for each sodium salt type. 

 ĒA (W) (kJ/mol) 

W Sodium acetate Reagent-grade salts Fermentation salts 

0.95 192.46 156.17 – 

0.90 213.87 156.10 175.29 

0.85 215.95 167.42 152.52 

0.80 218.42 177.48 160.62 

0.75 220.31 185.83 187.81 

0.70 222.02 190.95 192.54 

0.65 224.78 194.52 196.36 

0.60 227.30 197.53 198.29 

0.55 230.21 199.71 200.64 

0.50 233.16 201.19 203.29 

0.45 234.61 202.81 205.82 

0.40 235.58 204.01 207.63 

0.35 235.84 205.04 210.85 

0.30 235.78 206.31 222.19 

0.25 235.89 208.03 231.98 

0.20 236.03 209.40 244.60 

0.15 235.00 211.08 285.85 

0.10 232.20 219.72 393.78 

0.05 227.03 223.33 257.17 

ÊA 226.65 195.61 218.18 

Standard deviation 11.11 19.25 54.56 
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For all three sodium salt types, ĒA (W) increases as thermal decomposition 

proceeds forward. The ÊA of sodium acetate is significantly higher than the ÊA for both 

reagent-grade and fermentation sodium salts. This suggests that EA for the 

decomposition of higher molecular weight sodium salts is lower than that of sodium 

acetate and presumably EA decreases with increasing molecular weight. The increased ÊA 

for fermentation sodium salts over the ÊA for reagent-grade sodium salts most likely 

results from impurities. Contributing to this increase is the spike in ÊA around W = 0.1. 

This most likely results from the onset of impurity decomposition. A thermal 

decomposition in which EA values vary significantly with W indicates that multiple 

reactions and/or mechanisms occur at different times throughout the reaction. This 

suggests that the thermal decomposition of sodium acetate proceeds by more than one 

mechanism. Most likely, it starts as a decomposition mechanism and then gradually 

shifts to a diffusion or product degradation mechanism as the amount of sodium 

carbonate surpasses the amount of sodium acetate. For the case of reagent-grade and 

fermentation sodium salts, dependence of EA on W is expected. Because multiple species 

are present, multiple reactions occur at different rates during the decomposition as 

temperature increases. In addition, multiple mechanisms are likely present in the 

decomposition of reagent-grade sodium salts and even more so for fermentation sodium 

salts, because of the presence of impurities. 

4.4.3. Isothermal decomposition 

Isothermal decompositions were used to evaluate f(W) for each sodium salt type. 

Sodium acetate decompositions were performed at 400, 410, and 420 °C, and the range 
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of W used for modeling was from 0.95–0.05. Reagent-grade sodium salts 

decompositions were performed at 390, 400, and 410 °C, and the range of W used for 

modeling was from 0.95–0.05. Fermentation sodium salts decompositions were 

performed at 380, 390, and 400 °C, and the range of W used for modeling was from 

0.95–0.15. Figure 4-10 shows the isothermal decomposition curves for each of the 

sodium carboxylate salt types at each temperature. Each of the three models was fit to 

the experimental data. For the n
th

-order and Avrami-Erofeev models, Equations 4-15 and 

4-17 were plotted against t, respectively, and k was determined from the slope of the 

resulting line. Values of n were found by minimizing θ. Because the Sestak-Berggren 

model does not have an analytical solution for its integrated form, Equation 4-18 was 

combined with Equations 4-3 and 4-5 and the natural log was taken of both sides, 

resulting in Equation 4-20. 

ln (–
  

  
)    ln( )    ln( – )     ln( )     ln  – ln( )   (4-20) 

Values of k were determined from the intercept of Equation 4-20 (i.e., ln(k)), whereas m, 

n, and p were found by minimizing θ. Values of EA and A were calculated using the k 

values from the three isothermal runs and Equation 4-3. 
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Figure 4-10.  Isothermal decomposition curves for (a) sodium acetate, (b) reagent-grade 

sodium salts, and (c) fermentation sodium salts. 
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Table 4-4 gives the kinetic parameters for sodium acetate, reagent-grade sodium 

salts, and fermentation sodium salts. Figure 4-11 shows how dW/dt varies with W using 

the three isothermal models for each of the three sodium salt types. For sodium acetate, 

the Avrami-Erofeev and the Sestak-Berggren models fit the experimental data equally 

well because θ for both models was very similar. However, EA for the Sestak-Berggren 

model is a much closer fit to the one determined using the isoconversional methods (ÊA). 

For the reagent-grade sodium salts, the n
th

-order and Sestak-Berggren models have very 

similar values of θ and both give values of EA similar to ÊA of reagent-grade salts; 

however, the Sestak-Berggren model is slightly closer to the ÊA of reagent-grade salts. 

For the fermentation sodium salts, the Sestak-Berggren model fits the best because it has 

the lowest θ and the value of EA is closest to ÊA of fermentation sodium salts. 

 

Table 4-4.  Kinetic parameters for the thermal decomposition of the three sodium salt 

types. 

Model 

Average EA 

(kJ/mol) 

Average A 

(min
–1

) m n p θ 

Sodium acetate 

n
th

-order 243.95 ± 0.22 2.75 × 10
16 

– 0.55 – 0.1574 

Avrami-Erofeev 242.79 ± 0.22 2.32 × 10
16

 – 1.66 – 0.1144 

Sestak-Berggren 228.28 ± 0.18 1.29 × 10
15

 –4.14 2.12 4.14 0.1137 

Reagent-grade sodium salts 

n
th

-order 207.00 ± 0.20 4.29 × 10
13

 – 0.30 – 0.1350 

Avrami-Erofeev 209.77 ± 0.21 7.27 × 10
13

 – 2.18 – 0.2414 

Sestak-Berggren 192.06 ± 0.16 2.36 × 10
12

 –1.44 0.75 1.31 0.1319 

Fermentation sodium salts 

n
th

-order 171.95 ± 0.29 3.20 × 10
11

 – 1.38 – 0.5921 

Avrami-Erofeev 169.00 ± 0.31 1.44 × 10
11

 – 0.86 – 0.6891 

Sestak-Berggren 211.20 ± 0.19 1.33 × 10
14

 –35.90 16.48 35.80 0.2918 
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Figure 4-11.  Dependence of dW/dt on W for (a) sodium acetate (@ 420 °C), (b) 

reagent-grade sodium salts (@ 410 °C), and (c) fermentation sodium salts (@ 400 °C). 
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A case can be made that the Avrami-Erofeev model is suitable for sodium acetate 

and that the n
th

-order model is suitable for reagent-grade sodium salts; however, the 

Sestak-Berggren model fits the fermentation sodium salts best and it fits sodium acetate 

and reagent-grade sodium salts equally as well, if not slightly better than the other two 

models. The Sestak-Berggren model is best overall, suitable for sodium carboxylate salts 

with a wide range of compositions and varying degrees of purity. It is better equipped to 

handle the complex nature of the thermal decomposition of all three sodium salt types. 

To illustrate this, Figure 4-12 shows parity plots in which experimental values Wexp were 

plotted against model values Wmod from the Sestak-Berggren model for all three 

isothermal temperatures for each sodium salt type. Table 4-5 gives the slopes and R
2
 

values for each parity plot from all three models. The Sestak-Berggren model is again 

shown to be the best overall. All three slopes from the Sestak-Berggren model differ 

from unity by less than 1% and all three R
2
 values are 0.979 and greater. Figures 4-13 to 

4-15 compare the time required to achieve W of 0.01, 0.05, and 0.10 for each sodium salt 

type using the Sestak-Berggren model. 
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Figure 4-12.  Parity plots (Wexp vs. Wmod) of the Sestak-Berggren model for (a) sodium 

acetate, (b) reagent-grade sodium salts, and (c) fermentation sodium salts. 
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Table 4-5.  Parameters from parity plots (Wexp vs. Wmod) of each model for the three 

sodium salt types. 

Model Slope R
2 

Sodium acetate 

n
th

-order 1.010 0.983 

Avrami-Erofeev 0.929 0.976 

Sestak-Berggren 0.995 0.979 

Reagent-grade sodium salts 

n
th

-order 0.992 0.979 

Avrami-Erofeev 1.001 0.921 

Sestak-Berggren 0.994 0.979 

Fermentation sodium salts 

n
th

-order 1.101 0.958 

Avrami-Erofeev 1.098 0.958 

Sestak-Berggren 1.007 0.990 

 

 

Figure 4-13.  Time of thermal decomposition required to achieve W of 0.01, 0.05, and 

0.10 for sodium acetate. 
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Figure 4-14.  Time of thermal decomposition required to achieve W of 0.01, 0.05, and 

0.10 for reagent-grade sodium salts. 

 

 

Figure 4-15.  Time of thermal decomposition required to achieve W of 0.01, 0.05, and 

0.10 for fermentation sodium salts. 

1

10

100

400 420 440 460 480 500

t 
(m

in
) 

T (°C) 

0.01

0.05

0.10

1

10

100

1000

400 420 440 460 480 500

t 
(m

in
) 

T (°C) 

0.01

0.05

0.10



 

89 

 

Two other studies have determined EA and A for the thermal decomposition of 

sodium acetate. Reed and Thornley [27] measured weight loss over the course of the 

thermal decomposition for five isothermal runs with temperatures from 428–452 °C. 

Afzal et al. [44] measured W using TGA. The data were analyzed using the Coats and 

Redfern method [55], which is an integral approximation method using a single non-

isothermal run with a constant heating rate. The kinetic parameters from both studies are 

given in Table 4-6. Both studies used n
th

-order kinetics over limited ranges of W which 

is not suitable for the complex nature of the thermal decomposition of sodium acetate. In 

addition, neither study used multiple heating rates to determine how EA varied with W or 

determine an average EA. 

 

Table 4-6.  Kinetic parameters of the thermal decomposition of sodium acetate from 

other studies. 

 EA (kJ/mol) A (min
–1

) Reaction order Range of W 

Reed and 

Thornley 161.92 7.21 × 10
9 

2 1.0–0.25 

Afzal et al. 173.55 ± 0.26 – 2 0.86–0.13 
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4.5. Conclusions 

Using three different isoconversional methods, the ÊA values were found for 

sodium acetate, reagent-grade sodium salts, and fermentation sodium salts. The EA of all 

three sodium salt types varies with W. In part, this is because of the complex nature of 

the thermal decomposition of the sodium salts and more so because there are many 

reacting species in the decomposition of reagent-grade and fermentation sodium salts. 

Using isothermal decompositions, three models were tested for each sodium salt 

type. For each of the three sodium salt types, the Sestak-Berggren model had the lowest 

value of θ and gave EA values closest to the values of ÊA. This implies that the Sestak-

Berggren model is most suitable for modeling sodium carboxylate salts with a variety of 

compositions and degrees of purity. 
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5. MODELING THE KINETICS OF THERMAL DECOMPOSITION OF 

CALCIUM CARBOXYLATE SALTS 

 

5.1. Introduction 

Using the MixAlco™ process, the thermal decomposition of carboxylate salts is 

a critical step in converting biomass into useful chemicals and fuels. Kinetic models and 

parameters for these decompositions are necessary to design and size commercial-scale 

reactors. The carboxylate salts are thermally decomposed to yield their corresponding 

ketones, as shown in Equation 5-1. 

M (  OO–)   M (   OO–)
 
→    O     M  O  

(5-1) 

For purposes of this study, M
+
 is a calcium ion, but generally can be any alkali metal or 

half of any alkaline earth metal. 

The aim of this study is to first properly model the thermal decomposition of a 

simple carboxylate salt (calcium acetate) and then apply that model to the thermal 

decomposition of a mixture of reagent-grade carboxylate salts similar to that produced 

by the MixAlco™ process. Finally, the model is tested using actual carboxylate salts 

from a MixAlco™ fermentation. The first step was to determine the activation energy 

(EA) for the thermal decomposition of all three salt types using three isoconversional 

methods. Next, functions of conversion were proposed to model each of the thermal 

decompositions using three isothermal models. The use of reagent-grade salts eliminated 

reactions associated with impurities found in fermentation salts, allowing measured 

kinetics to be attributed solely to the thermal decomposition of the carboxylate salts. 
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5.2. Materials and methods 

5.2.1. Preparation of salts 

In this section, any solid mixture of calcium carboxylate salts will be described 

as calcium salts. Calcium acetate hydrate (Alfa Aesar, Ward Hill, MA, 97.0%) was used 

for this study. It was ground with mortar and pestle and sieved into a particle size range 

of 25–45 µm. The calcium acetate was then dried at 105 °C for 24 h and placed in a 

desiccator. The moisture content after drying was 16.5%, which was in the form of 

hydrated crystalline structure. 

Reagent-grade calcium salts were prepared by mixing the corresponding reagent-

grade carboxylic acids with equimolar amounts of reagent-grade calcium hydroxide in 

deionized water, resulting in a solution of pH 8.5. These acid and corresponding salt 

profiles are typical of what has been reported for anaerobic mixed-culture fermentation 

[12-14]. A 2-L aliquot of this solution was evaporated in a glass beaker. The precipitated 

reagent-grade calcium salts were collected, weighed, and dried at 105 °C for at least 24 

h. The calcium salts were ground with mortar and pestle and washed with chloroform to 

remove any residual acids. The calcium salts were separated into the same particle size 

range as calcium acetate and then dried at 105 °C for an additional 24 h and placed in a 

desiccator. Acid and corresponding salt compositions were verified by gas 

chromatography (Table 5-1). 

Fermentation calcium salts were prepared using clarified broth from a 

MixAlco™ fermentation buffered with calcium carbonate (Terrabon, Inc, Houston, TX). 

Clarification was performed using a proprietary process involving ultra-filtration and 
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reverse osmosis. The broth was adjusted to pH 9 by adding excess calcium hydroxide 

and was then evaporated to collect the fermentation calcium salts. The fermentation 

calcium salts were ground and separated into a particle range in the same manner as the 

reagent-grade calcium salts. Acid and corresponding salt compositions were verified by 

gas chromatography (Table 5-1). 

 

Table 5-1.  Acid and corresponding salt profiles of reagent-grade and fermentation 

calcium salts. 

   Reagent-grade salts Fermentation salts 

Carbon 

number Acid 

Acid 

(wt. %) 

Salt 

(wt. %) 

Acid 

(wt. %) 

Salt 

(wt. %) 

2 Acetic 54.13 56.21 64.90 66.74 

3 Propionic 15.55 15.41 8.44 8.29 

4 Isobutyric 0.96 0.92 1.31 1.24 

4 Butyric 11.05 10.60 17.18 16.31 

5 Isovaleric 0.69 0.64 0.68 0.63 

5 Valeric 6.13 5.74 1.46 1.35 

6 Caproic 7.60 6.98 4.12 3.74 

7 Heptanoic 3.31 2.99 0.96 0.86 

8 Octanoic 0.56 0.50 0.96 0.84 
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5.2.2. Thermal decomposition 

Thermal gravimetric analysis (TGA) decompositions were performed in a 

Mettler-Toledo TGA/DSC 1, located in room 1417 in the 1972 Wing of the Chemistry 

Building at Texas A&M University. Samples were weighed (5–10 mg) into 100-µL 

aluminum sample pans. A purge gas of Ar at a flow rate of 20 mL/min was used for all 

runs. For isothermal runs, the temperature was ramped up to the set temperature at a rate 

of 20 °C/min. Non-isothermal runs used heating rates of 2, 4, 8, and 16 °C/min. A blank 

sample pan was also run at each heating rate as a baseline and subtracted from the 

corresponding sample run to account for thermal drift. 

A Carbolite HTR 11/75 rotary reactor furnace with a viewing panel was used to 

visually inspect the decomposition reaction. Samples of 30 g were placed in the reaction 

vessel and a purge gas of N2 at a flow rate of 50 mL/min was used for all runs. All runs 

in the rotary reactor furnace used a heating rate of 10 °C/min. 

5.2.3. Solids analysis 

Samples of reagent-grade and fermentation calcium salts were weighed (0.3 g) 

and dissolved with 2 mL of 3-M phosphoric acid. The mixture was then diluted to 10 mL 

with deionized water. Solutions of dissolved calcium salts were mixed with equal parts 

of a 1.162 g/L solution of 4-methyl-valeric acid (internal standard) and 3-M phosphoric 

acid. Acid analysis was performed using an Agilent 7890A gas chromatograph (GC) 

system equipped with a flame ionization detector (FID), and an Agilent DB-FFAP: J&W 

123-3232 column. Injection volume was 0.2 µL and inlet temperature was 230 °C. 

Carrier gas was helium at 103 kPa (gauge) at a flow rate of 3.78 mL/min. The 
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temperature profile was 40 °C for 2 min, ramped to 200 °C at 20 °C/min, and held for 

2.5 min. Outlet temperature was 230 °C. The run lasted for 12.5 min. Carboxylate salt 

compositions and the amount of calcium salts per amount of solid (salt content) were 

calculated from the acid compositions of the solutions reported by the GC (Table 5-1). 

Solids remaining in the sample pan after thermal decomposition were not analyzed for 

composition. 

5.3. Results and discussion 

The formulas and calculations used in the kinetic analysis of the thermal 

decomposition of calcium salts are detailed in Section 4.3. The following sections 

describe the phase behavior of the calcium carboxylate salts as well as non-isothermal 

and isothermal decompositions. 

5.3.1. Phase behavior 

Calcium acetate and both the reagent-grade and fermentation calcium salts melt 

at the onset of thermal decomposition. Visual inspection of the calcium salts during 

heating showed calcium acetate becomes viscid but not fully liquid during the thermal 

decomposition, which occurs at approximately 435–445 °C. The reagent-grade and 

fermentation calcium salts behave similarly at approximately 330–350 °C. 

5.3.2. Non-isothermal decomposition 

Figures 5-1 through 5-4 show the thermal decomposition curves for calcium 

acetate, reagent-grade calcium salts, and fermentation calcium salts for all four heating 

rates used in this study. These thermal decomposition curves show that the calcium 

acetate sample begins to lose significant weight at approximately 350 °C, and the 
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reagent-grade and fermentation calcium salts samples both begin to lose significant 

weight at approximately 320 °C. For calcium acetate and the fermentation calcium salts, 

there is a discontinuity in the curves that begins at a W of approximately 0.25. For the 

reagent-grade calcium salts, there is a discontinuity that begins at a W of approximately 

0.10. These discontinuities indicate that a different reaction or mechanism becomes 

predominant. 

 

 

Figure 5-1.  Thermal decomposition curves for calcium acetate, reagent-grade calcium 

salts, and fermentation calcium salts at a heating rate of 2 °C/min. 
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Figure 5-2.  Thermal decomposition curves for calcium acetate, reagent-grade calcium 

salts, and fermentation calcium salts at a heating rate of 4 °C/min. 

 

 

Figure 5-3.  Thermal decomposition curves for calcium acetate, reagent-grade calcium 

salts, and fermentation calcium salts at a heating rate of 8 °C/min. 
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Figure 5-4.  Thermal decomposition curves for calcium acetate, reagent-grade calcium 

salts, and fermentation calcium salts at a heating rate of 16 °C/min. 
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Heating rates of 2, 4, 8, and 16 °C/min were used for each of the three 

isoconversional methods employed. The same methods and heating rates were used for 

the decomposition of all three calcium salt types. Figure 5-5 shows how EA varies with 

W for each isoconversional method used for each calcium salt type. For each value of W, 

only EA values with R
2
-values of 0.85 and above were considered for the Friedman and 

Li-Tang methods and EA values with a minimization value of 13 or less for the 

Vyazovkin method. Of the three calcium salt types, calcium acetate displays the largest 

variation in EA during thermal decomposition. All three isoconversional methods show 

similar trends of EA with respect to W and indicate that EA highly depends on W for 

calcium acetate. All three isoconversional methods show similar trends of EA vs. W for 

the reagent-grade and fermentation calcium salts. For both the reagent-grade and 

fermentation calcium salts, EA values are much less variable, each having a standard 

deviation of approximately 19% of the respective ÊA. In addition, EA significantly 

depends on W only at the beginning and ends of thermal decomposition for the reagent-

grade and fermentation calcium salts. For each calcium salt type, Table 5-2 shows the 

average of the three EA values from the three isoconversional methods for selected 

values of W (ĒA (W)). It also contains the ÊA and corresponding standard deviations for 

each calcium salt type. 



 

100 

 

 

Figure 5-5.  Dependence of EA on W for (a) calcium acetate, (b) reagent-grade calcium 

salts, and (c) fermentation calcium salts. 
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Table 5-2.  Dependence of ĒA on W for each calcium salt type. 

 ĒA (W) (kJ/mol) 

W Calcium acetate Reagent-grade salts Fermentation salts 

0.95 285.83 203.57 299.50 

0.90 440.37 207.86 218.60 

0.85 607.75 209.60 183.13 

0.80 722.23 206.17 175.56 

0.75 778.28 205.05 174.66 

0.70 786.91 206.49 175.54 

0.65 768.09 208.81 176.32 

0.60 737.34 211.82 175.21 

0.55 700.33 215.20 171.83 

0.50 663.27 219.23 167.20 

0.45 625.21 224.08 162.04 

0.40 580.60 228.92 157.08 

0.35 627.63 233.33 151.91 

0.30 569.57 237.73 148.13 

0.25 351.84 240.51 150.75 

0.20 324.72 242.18 166.81 

0.15 321.02 249.30 176.88 

0.10 322.96 285.13 161.24 

0.05 364.28 389.45 162.05 

ÊA 556.75 232.87 176.55 

Standard deviation 179.78 43.15 33.55 
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For calcium acetate, ĒA (W) increases steeply and then decreases as thermal 

decomposition proceeds forward. For the reagent-grade calcium salts, ĒA (W) increases 

slightly at first and then steeply at the end as thermal decomposition proceeds forward. 

For the fermentation calcium salts, ĒA (W) decreases as thermal decomposition proceeds 

forward. The ÊA of calcium acetate is significantly higher than the ÊA for both reagent-

grade and fermentation calcium salts. This suggests that EA for the decomposition of 

higher molecular weight calcium salts is lower than that of calcium acetate and 

presumably EA decreases with increasing molecular weight. The decreased ÊA for 

fermentation calcium salts from that of reagent-grade calcium salts most likely results 

from impurities. 

A thermal decomposition in which EA values vary significantly with W indicates 

that multiple reactions and/or mechanisms occur at different times throughout the 

reaction. This suggests that the thermal decomposition of calcium acetate proceeds by 

more than one mechanism. Most likely, it resembles that of a heterogeneous shrinking 

core described in Sections 2.4 and 3.4. It begins as a decomposition mechanism on the 

particle surface as it melts and thermal decomposition begins to occur in the resulting 

liquid layer. As the thermally decomposing liquid layer moves inward, a porous outer 

layer of calcium carbonate remains. This causes the mechanism to gradually resemble 

one of diffusion, because the product vapors must migrate out of the calcium carbonate 

layer to leave the particle. The apparent EA of a reaction decreases as it becomes 

diffusion limited. EA for both calcium acetate and fermentation calcium salts decreases 

towards the end of decomposition, suggesting diffusion becomes more predominant. For 
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the case of reagent-grade and fermentation calcium salts, EA is expected to depend on W. 

Because multiple species are present, multiple reactions occur at different rates during 

the decomposition as temperature increases. In addition, multiple mechanisms are likely 

present in the decomposition of reagent-grade calcium salts and even more so for 

fermentation calcium salts, because of the presence of impurities. 

5.3.3. Isothermal decomposition 

Isothermal decompositions were used to evaluate f(W) for each calcium salt type. 

Calcium acetate decompositions were performed at 390, 400, 410, and 420 °C, and the 

range of W used for modeling was from 0.95–0.10. Both the reagent-grade and 

fermentation calcium salts decompositions were performed at 390, 400, and 410 °C, and 

the range of W used for modeling was from 0.95–0.05. Figure 5-6 shows the isothermal 

decomposition curves for each of the calcium carboxylate salt types at each temperature. 

Each of the three models was fit to the experimental data. For the n
th

-order, Avrami-

Erofeev, and Sestak-Berggren models, values of k, EA, and A were determined using the 

method described in Section 4.4. Values of m, n, and p were found by minimizing θ. 
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Figure 5-6.  Isothermal decomposition curves for (a) calcium acetate, (b) reagent-grade 

calcium salts, and (c) fermentation calcium salts. 

 

-0.1

0.1

0.3

0.5

0.7

0.9

0 5000 10000 15000 20000 25000 30000 35000 40000

W
 

t (s) 

390 °C

400 °C

410 °C

420 °C

a 

-0.1

0.1

0.3

0.5

0.7

0.9

0 5000 10000 15000 20000 25000

W
 

t (s) 

390 °C

400 °C

410 °C

b 

-0.1

0.1

0.3

0.5

0.7

0.9

0 5000 10000 15000 20000 25000 30000 35000

W
 

t (s) 

390 °C

400 °C

410 °C

c 



 

105 

 

Figure 5-7 shows how dW/dt varies with W using the three isothermal models for 

each of the three calcium salt types. Table 5-3 gives the kinetic parameters for calcium 

acetate, reagent-grade calcium salts, and fermentation calcium salts. For calcium acetate, 

the n
th

-order and the Sestak-Berggren models fit the experimental data equally well 

because θ for both models was very similar. However, EA for all three models is less 

than half of the one determined using the isoconversional methods (ÊA). It could be that 

only the EA at the beginning and/or the end of thermal decomposition was measured 

using the isothermal methods for calcium acetate. For the reagent-grade calcium salts, 

the n
th

-order and Sestak-Berggren models also have very similar values of θ, but the 

Sestak-Berggren model gives an EA closer to the ÊA of reagent-grade calcium salts. For 

the fermentation calcium salts, the Avrami-Erofeev model has the lowest θ and the 

Sestak-Berggren model has the highest. However, the Sestak-Berggren model has the 

closest values of EA to the ÊA of fermentation calcium salts. 
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Figure 5-7.  Dependence of dW/dt on W for (a) calcium acetate (@ 400 °C), (b) reagent-

grade calcium salts (@ 390 °C), and (c) fermentation calcium salts (@ 390 °C). 
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Table 5-3.  Kinetic parameters for the thermal decomposition of the three calcium salt 

types. 

Model 

Average EA 

(kJ/mol) 

Average A 

(s
–1

) m n p θ 

Calcium acetate 

n
th

-order 215.45 ± 0.21 5.25 × 10
12 

– 1.38 – 0.1395 

Avrami-Erofeev 193.59 ± 0.17 8.24 × 10
10

 – 0.85 – 0.1949 

Sestak-Berggren 240.14 ± 0.23 2.12 × 10
14

 –9.88 5.14 9.62 0.1472 

Reagent-grade calcium salts 

n
th

-order 293.04 ± 0.23 2.26 × 10
20

 – 2.00 – 0.1575 

Avrami-Erofeev 296.86 ± 0.24 1.99 × 10
20

 – 0.51 – 0.3530 

Sestak-Berggren 246.44 ± 0.04 1.84 × 10
17

 6.25 0.31 –5.50 0.1686 

Fermentation calcium salts 

n
th

-order 126.68 ± 0.24 1.39 × 10
6
 – 1.24 – 0.2742 

Avrami-Erofeev 129.26 ± 0.23 3.20 × 10
6
 – 0.63 – 0.2613 

Sestak-Berggren 200.54 ± 0.15 4.40 × 10
15

 51.13 –14.63 –48.18 0.3526 

 

A case can be made that the n
th

-order and Sestak-Berggren models are both 

suitable for calcium acetate and reagent-grade calcium salts, even though neither model 

gives an EA value close to the ÊA for the calcium salts. For the fermentation calcium 

salts, it appears that both the n
th

-order and Avrami-Erofeev models fit best, but the 

Sestak-Berggren model gives the closest EA value to the ÊA of fermentation calcium 

salts. From the values in Table 5-3, it is very difficult to determine which model is best 

for each calcium salt type and especially difficult to determine which is best overall. 

To better determine which model is best, parity plots were made in which 

experimental values Wexp were plotted against model values Wmod of each isothermal 

temperature for each calcium salt type. Table 5-4 gives the slopes and R
2
 values for each 

parity plot from all three models. From this table, it is apparent that the n
th

-order and 

Sestak-Berggren model fit the experimental data from calcium acetate equally well. The 

n
th

-order model has a slope slightly closer to unity, but the Sestak-Berggren model has a 
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slightly higher R
2
 value. For the reagent-grade and fermentation calcium salts, the 

Sestak-Berggren model fits the experimental data best. Figure 5-8 shows parity plots 

from the Sestak-Berggren model for all three isothermal temperatures for each calcium 

salt type. Because it fits calcium acetate equally well and fits reagent-grade and 

fermentation calcium salts the best, the Sestak-Berggren model is best overall. It is the 

most suitable for calcium carboxylate salts with a wide range of compositions and 

varying degrees of purity and it is better equipped to handle the complex nature of the 

thermal decomposition of all three calcium salt types. Figures 5-9 to 5-11 compare the 

time required to achieve W of 0.01, 0.05, and 0.10 for each calcium salt type using the 

Sestak-Berggren model. 

  

Table 5-4.  Parameters from parity plots (Wexp vs. Wmod) of each model for the three 

calcium salt types. 

Model Slope R
2 

Calcium acetate 

n
th

-order 1.004 0.953
 

Avrami-Erofeev 1.025 0.934 

Sestak-Berggren 0.960 0.966 

Reagent-grade calcium salts 

n
th

-order 0.981 0.973 

Avrami-Erofeev 0.978 0.918 

Sestak-Berggren 1.019 0.995 

Fermentation calcium salts 

n
th

-order 0.553 0.903 

Avrami-Erofeev 0.715 0.948 

Sestak-Berggren 1.005 0.983 
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Figure 5-8.  Parity plots (Wexp vs. Wmod) of the Sestak-Berggren model for (a) calcium 

acetate, (b) reagent-grade calcium salts, and (c) fermentation calcium salts. 
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Figure 5-9.  Time of thermal decomposition required to achieve W of 0.01, 0.05, and 

0.10 for calcium acetate. 

 

 

Figure 5-10.  Time of thermal decomposition required to achieve W of 0.01, 0.05, and 

0.10 for reagent-grade calcium salts. 

1

10

100

1000

420 430 440 450 460 470 480 490 500

t 
(m

in
) 

T (°C) 

0.01

0.05

0.10

1

10

100

1000

390 400 410 420 430 440 450

t 
(m

in
) 

T (°C) 

0.01

0.05

0.10



 

111 

 

 

Figure 5-11.  Time of thermal decomposition required to achieve W of 0.01, 0.05, and 

0.10 for fermentation calcium salts. 
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Several studies have previously attempted to determine the kinetic parameters of 

the thermal decomposition of calcium acetate and other calcium carboxylate salts. Mu 

and Perlmutter [35] studied the thermal decomposition of calcium acetate using TGA. 

Only one run was used at a heating rate of 1 °C/min. Using a simple differential method 

and n
th

-order kinetics, the data were fit to a linear form of Equation 5-2. 

–
  

  
     exp (–

  

  
)     (5-2) 

To maintain linearity, the thermal decomposition had to be split into two 

regimes. The first regime was between W of 0.98 and 0.63, and the second between 0.63 

and 0.02. Table 5-5 gives the resulting kinetic parameters. Both regimes were found to 

be 2
nd

 order. The presence of two different regimes suggests a change in mechanisms as 

the reaction proceeds. A single EA cannot be used to describe the thermal decomposition 

over the entire range of W because EA varies with W. Mu and Perlmutter even admit that 

not all of the solid decompositions studied follow simple n
th

-order kinetics because of 

diffusional resistance in the solid reactant and product. 
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Table 5-5.  Kinetic parameters of the thermal decomposition of calcium carboxylate 

salts from other studies.  

 Calcium carboxylate salt 

 
Calcium 

acetate 

Calcium 

propionate 

Calcium 

butyrate 

Fermentation 

calcium salts 

Yeh     

Yield (%) 71.3 ± 16.9 77.5 ± 10 72.3 ± 3.4 96.8 ± 5.8 

EA (kJ/mol) 247.72 105.01 64.16 46.01 

A (min
–1

) 1.402 × 10
17 

2.332 × 10
7
 9348.8 485.36 

Reaction order 1 1 1 1 

Adelson     

Yield (%) 93.1 ± 0.9 87.5 ± 0.7 94.4 ± 0.9 – 

EA (kJ/mol) 642.6 ± 28.0 2327 ± 162
a 

386.5 ± 15.8 – 

  691.7 ± 73.3
b 

  

A (min
–1

) 109.4 ± 0.4 414.7 ± 0.4
a 

66.12 ± 0.22 – 

  121.1 ± 0.2
b 

  

Reaction order 1 1 1 – 

Mu and Perlmutter 
 

   

EA (kJ/mol) 142.3 ± 2.5
c 

– – – 

 197.9 ± 2.1
d 

   

A (min
–1

) 1.26 × 10
9c 

– – – 

 4.16 × 10
13d 

   

Reaction order 2 – – – 
a
 398 °C and below 

b
 399 °C and above 

c 
W:  0.98–0.73 

d 
W:  0.73–0.02 

 

Adelson and Yeh, former members of the Holtzapple research group, also 

separately attempted to determine kinetic parameters for the thermal decompositions of 

calcium acetate, propionate, and butyrate as well as calcium carboxylate salts from a 

MixAlco™ fermentation [66, 67]. Both studies measured the accumulation rate of liquid 

product during thermal decomposition as a measure of conversion using the apparatus 

described in Section 2.2.2. Table 5-5 summarizes the measured yields and kinetic 
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parameters. Adelson used one non-isothermal run for calcium acetate, propionate, and 

butyrate. There was little control over the heating rate, which varied from 0.2–0.7 

°C/min and was not very linear in some cases. Using the simple differential method, the 

data were also fit to a linear form of Equation 5-2. Adelson assumed all calcium salt 

decompositions to be 1
st
 order. To maintain linearity, he had to split the thermal 

decomposition of calcium propionate into two regimes. In addition, Adelson conducted 

two isothermal runs with calcium acetate at 416 and 433 °C for measuring product 

selectivity. The data from these runs was used to determine the EA for calcium acetate to 

be 344.31 kJ/mol, which is approximately half of what he reported in Table 5-5. The EA 

reported for the first regime of calcium propionate also seems high for this type of 

reaction. 

Yeh used a series of isothermal runs from 400–500 °C in intervals of 

approximately 20 °C for each calcium salt type. Using the same linear form of Equation 

5-2, he found the order of thermal decomposition for each calcium salt type to be 

approximately 1.0 and therefore, assumed first-order kinetics for determining EA and A 

for each calcium salt type. Yeh had poor temperature control in his experiments, 

sometimes with as much as 4 °C of variation, and he also used limited ranges of W (0.7–

0. ) to determine the kinetic parameters. Yeh’s EA values for calcium propionate, 

butyrate, and fermentation salts also seemed to be quite low. 

Both studies used n
th

-order kinetics, which is not very suitable for the complex 

nature of the thermal decomposition of calcium salts, although for calcium acetate, it has 
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been shown to be as good as the Sestak-Berggren model. In addition, neither study used 

multiple heating rates to determine how EA varied with W or to determine an average EA. 

Since these early investigations, the following potential problems with the 

methods have been identified: 

 Conversion was calculated with respect to time by measuring the accumulated 

volume of liquid product. The fraction of conversion was set equal to the volume 

fraction and did not consider any gasses evolved during the decomposition or any 

non-decomposed salts left in the reactor. In addition, equating liquid fraction to 

the fraction of conversion only holds true if the liquid density remains constant 

over time. Liquid density was not measured over time to determine if it remained 

constant. 

 Any water vapor and heavier ketones that contacted the dry/ice isopropanol 

condenser would freeze to the surface, introducing error in the measured liquid 

fraction. 

 The liquid product composition was not determined over time. The liquid was 

assumed to be pure theoretical product with no presence of byproducts or water 

from waters of hydration. Analysis of the total liquid product was performed 

after the reaction was complete for several runs. Liquid product from calcium 

acetate and propionate and were found to contain 1–5% byproducts. In addition, 

99.5% of the liquid product from calcium butyrate was non-theoretical, yet for 

every value of A and EA calculated, a 100% theoretical yield was assumed. 
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 The final degree of conversion of the feed salts was not measured. Instead, it was 

assumed to go to 100% completion. Using TGA, it is possible to directly measure 

the mass of the sample over time as it thermally decomposes, eliminating the 

need to determine it from product measurements over time. TGA also allows 

temperature and heating rate measurements that are superior to the apparatus 

used by Adelson and Yeh. 

One advantage of the methods used by Adelson and Yeh over using TGA is that 

the carboxylate salts are thoroughly mixed as they are thermally decomposed which 

minimizes diffusion effects and product degradation. Attempts are made to keep the 

samples and particle sizes prepared for TGA small so that diffusion effects are 

minimized. Another advantage is the ability to collect product samples during or after 

thermal decomposition. Product vapor could be analyzed if the TGA were used in 

conjunction with a Fourier-transform infrared (FTIR) spectrometer or a GC-MS. 

5.4. Conclusions 

Using three different isoconversional methods, the ÊA values were found for 

calcium acetate, reagent-grade calcium salts, and fermentation calcium salts. All three 

calcium salt types have EA that varies with W. In part, this is because of the complex 

nature of the thermal decomposition of the calcium salts and more so because there are 

many reacting species in the decomposition of reagent-grade and fermentation calcium 

salts. 

Using isothermal decompositions, three models were tested for each calcium salt 

type. For calcium acetate, the n
th

-order and Sestak-Berggren models seem to work 
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equally well at modeling the experimental data. Both models have similar values of θ 

and similar parity plot parameters. The thermal decomposition of calcium acetate is very 

difficult to study. EA values from isothermal methods are similar only to the lower ĒA 

values from isoconversional methods, not the ÊA of calcium acetate. For reagent-grade 

and fermentation calcium salts, the Sestak-Berggren model gives EA values closest to the 

respective ÊA and has parity parameters closest to unity even though it does not have the 

lowest value of θ. Because the Sestak-Berggren model works best for all three calcium 

salt types, it is most suitable for modeling calcium carboxylate salts with a variety of 

compositions and degrees of purity. 
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6. KETONE REACTOR CONCEPTS AND DESIGNS 

 

6.1. Introduction 

For the thermal decomposition of carboxylate salts to be viable step in the 

MixAlco™ process, it must be a relatively inexpensive continuous process. This section 

explores reactors used in the past to perform similar thermal decompositions as well as 

possible reactor designs that address the challenges associated with the continuous 

thermal decomposition of carboxylate salts from MixAlco™ fermentations. Potential 

continuous reactor designs and reactor configurations will be presented and discussed. 

Topics include continuous solids movement through a sealed reactor, phase changes 

occurring prior to and during decomposition, rapid removal of gaseous products, 

achieving sufficient heat transfer, and single reactors vs. multiple reactors in series. 

After its discovery in 1834, the thermal decomposition of calcium acetate to 

acetone was the primary industrial process for making acetone until WWI when it was 

replaced by acetone-producing fermentations, the dehydrogenation of isopropyl alcohol, 

and the partial oxidation of propane and butane [15]. At the time, it was described as the 

dry distillation of acetate of lime. Acetate of lime referred to the calcium acetate formed 

by neutralizing pyroligneous acid, an aqueous solution of primarily acetic acid that 

results from the pyrolysis of wood. Initially, thermal decompositions were performed in 

batches using fire-heated retorts similar to the one shown in Figure 6-1. A geared stirring 

arm provided mixing throughout the thermal decomposition. A vapor line connected the 

retort to a tar and dust trap and then into a condenser. Vapor lines were equipped with 
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cleaning rods to clear any dust and tar accumulation. The retorts were charged with 300–

700 lbm of calcium acetate and heated to 380 °C. Tar and dust were mostly contained in 

the trap whereas acetone and water vapor, along with some volatile impurities, were 

condensed and collected in a storage tank. At the end of the decomposition, steam was 

blown through the retort to sweep out the remaining vapors. The tar and dust trap was 

then heated with steam to drive off any remaining acetone. 

 

 

Figure 6-1.  Fire-heated retort and collection equipment used for the thermal 

decomposition of calcium acetate to acetone. Courtesy of Young [32], page 247. 

 

Direct-firing of the outer wall of the retort caused over-heating of the calcium 

acetate at the inner wall, which increased formation of char, tars, and impurities. To 

overcome this, retorts such as the one shown in Figure 6-2 were employed. Calcium 

acetate was placed on trays that were rolled into the retort on wheeled racks. In addition 
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to eliminating over-heating, it made removal of the residual solids and insertion of fresh 

calcium acetate faster and cleaner, and it reduced loss of heat. 

 

 

Figure 6-2.  Retort with trays on wheeled racks and collection equipment for the thermal 

decomposition of calcium acetate. Courtesy of Young [32], page 250. 

 

6.2. Continuous reactor design factors 

6.2.1. Feeding of carboxylate salts into reactor 

Carboxylate salts can be fed into the reactor as either solids or liquids. In the case 

of feeding solid carboxylate salts, they can have either a crystalline or an amorphous 

structure with varying degrees of waters of hydration present in the matrix. In the case of 

feeding liquid carboxylate salts, they are actually in a very concentrated aqueous phase. 

If the solution is at or above saturation, a slurry will be present. 
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Feeding liquids is easier than solids because it requires less sophisticated 

equipment to seal against outside conditions and to meter the flow. Depending on the 

carboxylate salt composition and water content, the liquid feed can be so viscous that a 

specialized pump is necessary, or that a minimum water content must be maintained to 

keep viscosity low. Feeding liquids also introduces more water into the reactor than 

solids. This additional water must be heated and vaporized, thus significantly increasing 

reactor heat duty. In addition, the water must be separated from the ketone product after 

collection. Because of the high reactor temperatures, excess water tends to flash 

immediately upon entering the reactor, initially generating large amounts of steam that 

can entrain unreacted solids and remove them from the reactor through the vapor outlets. 

Feeding solids introduces much less water into the reactor, thus reducing the heat 

duty and the amount of water separation from the ketone product. However, solids are 

much harder to feed and to meter the flow, which requires more sophisticated solids-

handling equipment. Because product vapor can escape through the solids-loading 

mechanisms, they must be delivered in sealed hoppers, which are subject to channeling 

and bridging without proper agitation. At least two feed hoppers are required for 

continuous operation so that one delivers solids to the loading mechanism while the 

other(s) were charged with solids. Valves between each of the hoppers and loading 

mechanism are necessary to switch between hoppers. Solids entering into the reactor 

must be kept at temperatures above the product condensation point, otherwise liquids 

will condense on the solids impeding their ability to flow properly and causing them to 

cake on the loading mechanism surfaces. Additionally, purge gases on the hopper are 
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necessary to keep product vapors from migrating into the hopper and condensing. Such a 

purge gas would not be necessary if a vacuum were employed in the reactor. 

6.2.2. Phase changes in the reactor 

As mentioned in Section 3, the process of thermally decomposing carboxylate 

salts undergoes phase changes. Whether fed as a liquid or a solid, once the carboxylate 

salts enter the reactor, excess water begins to vaporize immediately. All excess water is 

removed from the salts at approximately 190–210 °C. At that point, the carboxylate salts 

are either a crystalline solid (in the case of calcium carboxylate salts) or a wax-like 

amorphous solid (in the case of sodium carboxylate salts). It is important to note that 

higher molecular weight calcium carboxylate salts form amorphous solids as well. 

Impurities in the feed, along with rapid dehydration, can also keep the carboxylate salts 

from forming crystals. As the temperature of the carboxylate salts continues to quickly 

rise, they begin to melt. Melting points can vary widely depending on cation and 

carboxylate salt composition. Some carboxylate salts will melt completely before 

thermal decomposition begins (i.e., sodium carboxylate salts) whereas others will begin 

to thermally decompose before they have fully melted (i.e., calcium carboxylate salts). 

Regardless, a liquid phase of carboxylate salts is necessary for thermal decomposition to 

occur. During this melt/thermal decomposition step, the carboxylate salts can become 

very viscid and sticky and can coat the interior surfaces of the reactor. This diminishes 

the effectiveness of the heat transfer surface in the reactor. This viscid and sticky phase 

also negatively affects ketone yields. Ketone vapors form in the liquid layer as it 

thermally decomposes and must migrate into the vapor space to be removed from the 
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reactor. As the viscosity of the liquid layer and its thickness increase, so does the degree 

of ketone degradation. Degradation products can include tars and heavy oils that can 

further impede ketone vapors as they are formed. As thermal decomposition proceeds, 

the carbonates of the carboxylate salts begin to form and precipitate out of the 

decomposing liquid phase, which forms a paste-like mixture. This solid-liquid mixture 

can also coat the interior surfaces of the reactor, further impeding heat transfer into the 

reactor and the transfer of ketone vapors into the vapor space to be removed from the 

reactor. As the thermal decomposition reaches completion, the residual solids are 

composed mostly of solid carbonates with small amounts of liquid tars and heavy oils 

and non-volatile impurities. Large amounts of tars and heavy oils in the residual solids 

can hinder its flowability. Tars and heavy oils can stick to the heating surfaces of the 

reactor along with the carbonates and non-volatile impurities and continue to react, 

forming a layer of char that can be very hard to remove. In addition, this layer greatly 

reduces the heat transfer into the reactor. 

6.2.3. Removal of product vapors and solids from the reactor 

Once fully reacted, residual solids can be removed by gravity or mechanically. If 

the residual solids are flowable and not sticky, they can be removed by gravity through 

an outlet opening. If the residual solids are not flowable and/or are sticky, they can stick 

to the outlet over time and clog it. In this case, some mechanical means of removal is 

necessary. As with feeding, both methods require that residual solids be removed to a 

sealed collection container to prevent product vapors from escaping. For continuous 

operation, two or more such collection containers with valves are required so that one is 
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collecting the residual solids while the other(s) are being emptied. A purge gas on the 

collection containers is needed to prevent product vapors from migrating in and 

condensing. Such a purge gas would not be necessary if a vacuum were being employed 

in the reactor. In addition, the outlet line must be heated above the product condensation 

point to inhibit condensation as well. 

Immediate removal of the product vapor from the reactor is critical because 

prolonged exposure to the reactor temperatures causes ketone degradation. Removing 

product vapor from the reactor also must be done in a way that only the vapor is 

removed and the liquid/solid reactants and products remain in the reactor. If the vapor 

flow rate is high enough, liquid and solid particles can be entrained and exit the reactor. 

Like the residual solids outlet, if the entrained particles are sticky they can stick to the 

vapor outlet and clog over time, and therefore require some mechanical means of 

removal. The vapor outlet line(s) also must be heated above the product condensation 

point. The line(s) must be heated from the reactor to a point along the line where 

condensing product cannot return to the reactor. If the vapor flow rate is not too high and 

the entrained particles are not sticky, a sufficiently long vapor outlet line can be used to 

gravity settle any entrained particles back to the reactor. Otherwise, filtering and/or 

mechanical cleaning of the vapor lines is necessary. 

6.2.4. Rapid removal of product vapor: sweep gas vs. vacuum 

To minimize the rate of ketone degradation, it is necessary to keep the partial 

pressure of the ketone vapor low and to remove it from the high-temperature reactor so it 

can be cooled rapidly. This is especially true for the high-molecular-weight ketones. 
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Both sweep gas and vacuum create a low partial pressure of ketone vapor and a pressure 

gradient to move the product vapor out of the reactor. Ludlam [18] and Young [17] used 

CO2 sweep gas whereas Ardagh et al. [21] and Goodwin [19] used N2 sweep gas. Hurd 

[16] stated that “fairly high yields of good product” could be achieved with no sweep gas 

as long as the decomposition temperature did not exceed the decomposition temperature 

of the product, but even better yields were attained with the use of an inert sweep gas. 

He also suggested a vacuum when high-molecular-weight ketones were produced. 

Several industrial practices simply operated at atmospheric conditions with no sweep gas 

or vacuum. With sweep gas, the product vapor can be moved out of the reactor to be 

cooled much faster than by using a vacuum. However, because of the higher vapor flow 

rate, solid particles in the reactor are more likely to become entrained using a sweep gas 

and enter the condensers. This creates the need for more sophisticated equipment to filter 

the vapor product as it exits the reactor. Not only does this require more capital, but it 

increases pressure drop, which inhibits the removal of vapor product from the high-

temperature reactor. With a vacuum, less filtering is necessary. Another disadvantage to 

using a sweep gas is that both the product vapor and the sweep gas must be cooled to 

condense the product vapor. Not only is there an energy penalty for cooling additional 

sweep gas, but an extra energy penalty comes indirectly from much lower heat transfer 

coefficients (15–40 W/(m
2
·K)) that are present while cooling the sweep gas and product 

vapor to condensation point. Using a vacuum, only the product vapor must be cooled 

and condensed. This requires less cooling duty and has a higher overall heat transfer 

coefficient (200–400 W/(m
2
·K)). 
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6.3. Reactor designs 

An auger, similar to the one shown in Figure 6-3, can be used to move solids in 

and out of the reactor. A rotary valve could also be used to perform this function. A 

rotary valve consists of a shaft-driven wheel with several vanes that rotate in a housing 

with an inlet and outlet. Augers and rotary valves that move solids into the reactor are 

very difficult to seal, especially at higher temperatures. Sealing the shaft that turns the 

internal parts is usually accomplished with a mechanical seal. A very small clearance is 

typically kept between the tips of the vanes or auger flighting and the inner housing wall, 

which minimizes blow-by of fluids. To better seal against fluid leakage, seals can be 

added to the tips of the vanes and auger flighting that contact the inner housing. This 

causes the operating temperature of the augers and rotary valves to be limited by the 

operating temperature of the seals. In addition, the seals are usually much more 

susceptible to wear than the rest of the moving components, shortening the operating 

life. If the carboxylate salts are fed into the reactor as a liquid, then a pump that can 

handle high-viscosity fluids can be used to transport feed into the reactor. 

 

 

Figure 6-3.  Auger for feeding solid carboxylate salts into reactor. 
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Residual solids can be removed using an auger similar to the one shown in 

Figure 6-3 or a rotary valve. If the residual solids are sticky and adhere to the auger 

walls and flighting, a system of parallel augers could be used so that the rotating 

flighting of one auger “scrapes” and cleans the rotating flighting of the adjacent auger. 

Once the carboxylate salts enter the reactor, they must be constantly agitated to 

maintain flowability and avoid char formation, which impedes heat transfer and 

increases ketone degradation. In addition, the carboxylate salts must be moved 

continuously through the reactor or series of reactors. Figures 6-4 and 6-5 show a single-

shaft reactor design that could accomplish this. The reactor is a horizontal tube with a 

shaft containing rows of paddles. A close-up of the paddles is the section view given in 

Figure 6-6. Four rows of paddles are shown in Figure 6-4 and 6-5, but more or fewer 

could be used depending on the shaft diameter. Heating is achieved by a jacket around 

the outside of the tube in which heating media (i.e., high-temperature heating oil or 

molten salts) is passed. Additionally, heating media passed through the shaft or electric 

heaters in the shaft could supply heat to the reactor as well. As carboxylate salts are fed 

into the reactor, they are immediately slung to the reactor wall by the paddles. The shaft 

is rotated sufficiently fast to keep the carboxylate salts against the reactor wall, forming 

an annulus as it proceeds through the reactor. As vapors form, they can escape into the 

center of this annulus and travel to the feed-end where they are removed through the 

vapor outlet. To aid in this removal, a sweep gas or vacuum may be employed. As the 

solids reach the end of the reactor, they are removed through the residual solids outlet to 

an auger or rotary valve. 
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Figure 6-4.  Single-shaft ketone reactor. 
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Figure 6-5.  Single-shaft ketone reactor section view. 
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Figure 6-6.  Close-up of paddles on single-shaft ketone reactor. 

 

Solids residence time can be adjusted by rotating some or all of the paddles. If 

less residence time is desired, paddles can be oriented to push the solids through faster; 

if more residence is desired, paddles can be oriented to provide some back-mixing. A 

small clearance must be kept between the tips of the paddles and the reactor wall so that 

if a layer of sticky salts or char forms, the thickness will be minimized. Inert aggregates, 

such as sand, steel ball bearings, or round zirconium pellets, can be feed with the salts to 

mechanically abrade deposits and layers that could form on the reactor walls and shaft. 

The aggregate can be heated before entering the reactor to add thermal mass as well. For 
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these purposes, Holtzapple et al. [9] suggested passing heated steel shot through a 

similar type of reactor with the salts. 

Mechanical seals are used to seal the shaft as it penetrates the endplates. They are 

mounted to the endplates along with the bearing assembly. If mounted directly to the 

endplate, the mechanical seal must be able to operate at the reactor temperatures. If 

lower operating temperatures are required for the mechanical seal, a thermal insulator 

(i.e., ceramic) could be placed between the mechanical seal and bearing mount as shown 

in Figure 6-6. The thermal insulator must have significantly higher thermal resistance 

than the reactor endplate material. Mechanical seals typically require a fluid to help seal 

the face, keep debris out of the seal face, and provide cooling. If a sweep gas were being 

employed in the reactor, it could also serve as the fluid for the mechanical seal, 

eliminating contamination issues. If a vacuum were employed in the reactor, a viscous 

liquid must be used with the mechanical seal so that contamination into the reactor is 

minimized. 

A reactor such as the one shown in Figure 6-5 has been built and operated by 

Terrabon, Inc (Houston, TX) at their research facility, Energy Independence I, in Bryan, 

TX. It has an inner diameter of 10 in, a length of 6 ft, and a shaft diameter of 4 in. The 

shaft has two rows of paddles and a maximum rotation rate of 400 rpm. It has operated 

with calcium carboxylate salts (fed as solids) and sodium carboxylate salts (fed as 

liquids). Operating data are given in Table 6-1. A tracer study, performed using lithium 

and copper (II) chloride, showed the residence time was approximately 11.5 min with 
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sodium carboxylate salts fed at 0.27 kg/min. Terrabon continues to operate and optimize 

this reactor. 

 

Table 6-1.  Operating data from Terrabon’s ketone reactor 

 Calcium carboxylate salts Sodium carboxylate salts 

Feed rate (kg/min) 0.25–0.30 0.22–0.32 

Purity (wt. salt/wt. feed ) 0.67–0.74 0.30–0.55 

Moisture content (%) 13–16 20–40 

Mean reactor temperature (°C) 380–400 380-400 

Conversion (X) 0.88–0.98 0.91–0.98 

Yield (%) 60–65 75–90 

 

One disadvantage of the single-shaft reactor design is that agitation and axial 

movement of the solids are both affected by the shaft rotation rate. Slowing the rotation 

rate of the shaft also slows the movement of solids and therefore increases residence 

time. It also reduces the degree of agitation and perhaps prevents the solids from forming 

a true annulus. The paddles can be tilted forward or back to adjust residence time 

without sacrificing shaft speed; however, this is a labor- and time-intensive process that 

would require the reactor to be shut down and disassembled. By incorporating two 

shafts, the reactor design shown in Figure 6-7 allows agitation and residence time to be 

controlled independently while allowing changes during operation. The bottom shaft 

contains paddles that agitate the solids in chambers whereas the top shaft is equipped 

with auger flighting to carry the solids from one chamber to the next. The reactor is 

composed of a larger bottom tube connected to a smaller top tube running parallel to its 
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axis. The tubes are connected by a narrow slot which runs almost the entire length of 

each chamber (see close-up section view in Figure 6-8). Not shown is the jacket that 

surrounds the reactor to hold the heating media. Carboxylate salts enter via the feed inlet 

and then fall through the narrow slot into the bottom tube where they are agitated with 

paddles. The paddles can be equipped with wire brushes to scrape the walls and remove 

sticky salts and char build-up. As with the single-shaft reactor, aggregates can be 

preheated and fed with the carboxylate salts to avoid build-up on the reactor wall and 

shaft as well as provide thermal mass. As the paddles pass the slot, centrifugal force 

flings some of the solids into the top tube where the rotating auger flighting conveys it in 

the next chamber. Once the solids leave the last chamber, they exit through the residual 

solids outlet. Vapor exits the reactor through outlets located above each chamber. To 

prevent solids from leaving through the vapor outlets, filter inserts are placed in each 

one. The filter media is a porous metal that can withstand the reactor temperatures and 

have the same radius as the top tube so there is no obstruction to the auger flighting. One 

disadvantage of the double-shaft reactor is that it is more prone to fouling and clogging 

by salts that reach a highly viscous state or if char forms in the narrow slots. If this 

occurs, the reactor must be disassembled and cleaned often, which would be very time 

and labor intensive. If this were the case, the single-shaft reactor is the preferred choice. 
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Figure 6-7.  Double-shaft ketone reactor shown with four chambers. 
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Figure 6-8.  Close-up of double-shaft ketone reactor showing slotted access between the 

agitation chamber and conveyor shaft. 

 

Each chamber in the double-shaft reactor is like a continuous stirred tank reactor 

(CSTR), so it can be viewed of as a series of CSTRs. The reactor in Figure 6-7 is shown 

with four chambers, but could be made with fewer or more depending on the desired 

residence time of each chamber as well as the desired overall residence time. Figure 6-9 

shows a prototype of double-shaft reactor with one chamber. It was made of acrylic so 

that the agitation and conveying of solids could be confirmed visually. It was tested with 

calcium carbonate. It was able to vigorously agitate and could convey the solids at a rate 

of up to 3 kg/min. 
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Figure 6-9.  Acrylic prototype of double-shaft ketone reactor. 

 

Several reactors could be assembled in series to handle the different phases 

through which the carboxylate salts might transition during thermal decomposition. The 

carboxylate salts could first enter a single-shaft reactor to accomplish the dehydration 

step separate from the thermal decomposition step. If the carboxylate salts were then 

very viscous or would become viscous upon further heating, they would enter another 

single-shaft reactor along with heated aggregate so that build-up on the reactor surfaces 

would be minimized. This second reactor produces the majority of the ketone vapors. An 

auger or rotary valve would be placed between the first and second reactors to minimize 

mixing of the resulting vapors.  
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As the resulting solids formed, they could then be dropped into a double-shaft 

reactor. The last remaining carboxylate salts need more time to thermally decompose 

and the double-shaft reactor could provide more residence time with less length of tube. 

Because of the wire brushes that would scrape the reactor walls, it is also more suited to 

handle the residual solids and the chars that form. In this configuration, water vapor 

would be produced in the first reactor and ketone vapor would be produced in the last 

two, eliminating the need for additional downstream separation. 
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7. CLARIFICATION OF FERMENTATION BROTH 

 

7.1. Introduction 

After the fermentation step in the MixAlco™ process, the exiting broth, which is 

mostly water, contains small amounts of undigested biomass, cells, extracellular 

proteins, and non-fermentables (e.g. minerals) in addition to the carboxylic acids. To 

optimize ketone yields during thermal decomposition, it is necessary to remove as much 

of these impurities as possible. Some impurities will settle out of the broth, the rest form 

a suspension and additional separation is needed. To overcome this problem, two 

methods were tested: filtration and flocculation/coagulation. The broth used in the study 

was taken from a MixAlco™ fermentation using food scraps as a substrate and nutrient 

source and ammonium bicarbonate (NH4HCO3) as the buffering agent. Acid 

compositions were verified by gas chromatography (Table 7-1). 

 

Table 7-1.  Acid profile of fermentation broth buffered with ammonium bicarbonate. 

Acid Carbon number Acid (wt. %) 

Acetic 2 48.94 

Propionic 3 3.48 

Isobutyric 4 1.05 

Butyric 4 17.31 

Isovaleric 5 0.47 

Valeric 5 1.76 

Caproic 6 0.11 

Heptanoic 7 0.87 

 

The first clarification method used membranes to filter the impurities out of the 

broth. A problem inherent to all membrane and filter separation is fouling (blinding). 
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Fouling is caused primarily by the formation of a boundary layer that accumulates 

naturally on the membrane surface during filtration. In addition to reducing flux through 

the membrane, this boundary or gel layer acts as a secondary membrane that reduces the 

native design selectivity of the primary membrane. To overcome this, a vibratory shear-

enhanced process (VSEP) was used to help eliminate fouling by producing intense shear 

waves on the face of a membrane. These shear waves are created by vigorously vibrating 

the membrane element in a direction tangent to the face of the membrane. The shear 

waves produced by the vibration cause solids and foulants to be lifted off the membrane 

surface and remixed with the bulk material flowing across it. This high-shear processing 

exposes the membrane pores for maximum throughput, which is typically 3 to 10 times 

the throughput of conventional cross-flow systems. 

The second clarification method used of flocculants and coagulants. A colloidal 

suspension arises because of negative or positive charges present on the colloid surfaces. 

These like charges repel each other and keep the colloids suspended. Many of the 

impurities present in the broth formed a colloidal suspension. A coagulant carries the 

opposite charge of the colloid. It neutralizes the charges on the colloid by binding to it, 

which allows the colloids to form particles, assemble into flocs, and precipitate from the 

mixture. Flocculants are polymers with ionic side-chains that adsorb to the colloid 

particles surfaces, thus binding them into agglomerates or clumps that fall out of the 

mixture. Flocculants destabilize the suspension by both bridging and charge 

neutralization. 
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7.2. Material and methods 

7.2.1. Filtration 

A Pallsep PS10 (Pall Corporation, Port Washington, NY) was used with 

membranes to perform all filtrations. Seven membranes were used with varying pore 

sizes and materials (Table 7-2). 

 

 

Figure 7-1.  Pallsep PS10 located at Cater-Matill Hall, Texas A&M University; College 

Station, TX. 

  

Filter assembly 

 

Torsion bar 

Eccentric mass 

assembly 

Motor 

 

Control panel 

 



 

141 

 

Table 7-2.  Membrane pore sizes and materials. 

Membrane pore size Membrane material 

240 Da TFC polyamide 

800 Da Sulfonated sulfone 

20 kDa Polyethersulfone 

50 kDa Polyethersulfone 

100 kDa Polysulfone 

0.1 µm PTFE on polyester 

1 µm PTFE on rigid polyester 

 

7.2.2. Liquid analysis 

Acid compositions of the influent (fermentation broth), permeate, and retentate 

were determined using the same method described in Section 2.2.5. Purities of the 

influent and permeate were determined by adding 5-mL samples to pre-weighed 

crucibles with excess Ca(OH)2 (lime) to convert the carboxylic acids and/or the 

ammonium carboxylate salts into their corresponding calcium carboxylate salts. Acid 

concentrations from the GC-FID were used to determine the necessary amounts of lime 

to be added. The crucibles containing the solutions were placed in a 105 °C oven to dry 

for 36 h. The weights of the solids were measured and the calculated weight of the 

calcium carboxylate salts and the excess lime were subtracted to give the weight of the 

impurities, given in Equation 7-1. 

(g) salts ecarboxylat calcium Calculated–                         

(g) lime Excess–  (g) solids Total  (g) Impurities 
 (7-1) 

Each calcium carboxylate salt weight was converted into its ammonium carboxylate salt 

equivalent. The purity was calculated using Equation 7-2. 
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100
(g) salts ecarboxylat ammonium  totallTheoretica  (g) Impurities

(g) salts ecarboxylat ammonium  totallTheoretica
  (%)Purity  




 

(7-2) 

The amount of energy needed to filter one gallon of fermentation broth was 

calculated using Equation 17-3. 

    
 . 5  0

– 

0. 
   (7-3) 

where  P is the pressure drop across the filter (lbf /in
2
) and E is the specific energy 

(kWh/gal). A pump efficiency of 0.6 was assumed. 

7.3. Results and discussion 

The purity of the influent broth was 73.99%. For membrane filtration using 

VSEP, Table 7-3 shows the average flow rates and purities attained with each of the 

membranes tested. These membranes yielded acceptable purities that could be further 

processed; however, with such low flow rates and high pressures (30–300 psi), they 

would likely not be economically viable. 

 

Table 7-3.  Results of each membrane used to filter fermentation broth. 

Membrane pore 

size 

Maximum flow 

rate Pressure drop 

Purity of 

permeate (%) 

Energy cost 

(kWh/gal) 

  μm 20 mL/min 20 psi 90.79 2.42 × 10
-4 

0.  μm 12 mL/min 20 psi 90.16 2.42 × 10
-4 

100 kDa 8 mL/min 20 psi 90.15 2.42 × 10
-4 

50 kDa 7 mL/min 35 psi 90.07 4.23 × 10
-4 

20 kDa 6.5 mL/min 35 psi 95.18 4.23 × 10
-4 

800 Da 5 mL/min 70 psi 96.51 8.46 × 10
-4 

240 Da 3.1 mL/min 60 psi 98.33 7.25 × 10
-4 
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A coagulating agent (Qemifloc FL 54 CLV) and a flocculating agent (Zetag 

7867) were tested for their effectiveness in clarifying fermentation broth. Multiple tests 

were done to determine the proper pH, temperature, mixing process, and amount of 

flocculant or coagulant needed to obtain optimum clarity. It was found that a pH of 7 at 

room temperature (25 °C) was ideal for forming flocs using both agents. 

Zetag 7867 is a poly-cationic flocculant that is 40% cationic. It is shipped as an 

oil-emulsion that must be diluted to at least 1% and allowed to set for a minimum of 30 

min to properly activate the polymers. Better activation is achieved by further dilution 

and longer set periods, which is recommended for liquids with higher percentages of 

solids. The amount of flocculant added is also crucial because the polymers tend to be 

less dense than water and too much will cause the flocs to float rather than settle to the 

bottom. The flocculant must also be added and stirred gently because high shear forces 

caused by rapid mixing will tear the flocs apart. Using a 0.125% Zetag 7867 solution, 10 

mL was gently mixed into 100 mL of fermentation broth at room temperature. Once 

flocs had formed, the solution sat without mixing for 30 min to allow the flocs to settle. 

Only a small amount of the colloids came out of the suspension and settled with the 

flocs. Even though this slightly improved the clarity, a significant amount of the 

suspension still remained. Further treatments with the flocculant did not improve the 

clarity any further. The exact purity of the flocculated broth was not measured, but was 

presumed to be less than 90%. 

Qemifloc FL 54 CLV is a cationic coagulant that is 45% 

polydimethyldiallylammonium chloride in water. Before using, the entire solution must 
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be diluted to at least 2% and shaken rapidly using vortexing or sonication. This allows 

proper activation of the polymer as well as proper mixing when added for clarification. 

For fermentation broth, a concentration as high as 2.5% worked, but 1% was best. The 

least diluted solution is preferred because the carboxylate salts become diluted as well. 

When 5 mL of 1% Qemifloc solution was added to 25 mL of fermentation broth and 

shaken rapidly for 2 min, floc formation was observed and required approximately 8 h of 

settling time. Further treatment with 10 mL of the 1% Qemifloc solution yielded even 

better clarity. After centrifugation, the purity of the coagulated broth was 93.23%. 
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8. CONCLUSIONS 

 

8.1. Summary 

8.1.1. Product yields and composition 

Upon dewatering, the pH of fermentation broth may be as high as 10 without 

statistically significant expected ketone yield losses during thermal decomposition. 

Above pH 10 (i.e., feed salts with lime-to-salt ratios higher than 0.00134), larger 

amounts of tars and heavy oils and hydrocarbons are produced upon thermal 

decomposition. This increased production of non-expected products causes losses in 

expected ketone yields, the majority of which come from tars and heavy oils. In the 

thermal decomposition of fermentation feed salts, the production of non-expected 

ketones, acids, hydrocarbons, tar and heavy oils, and other impurities are much higher 

because of impurities in the fermentation feed salts.  

To a first approximation, the random-pairing model predicts expected ketone 

yields from the thermal decomposition of calcium carboxylate salts typical of a 

MixAlco™ fermentation; however, there is significant disagreement particularly at low 

carbon numbers. Gibbs free energy minimization is an alternative approach that appears 

to follow the experimental data more closely than those of random pairing, although a 

direct comparison of the data was not possible. For the thermal decomposition of 

calcium salts comprised of acetate, propionate, butyrate, and valerate, the random-

pairing model matched the ketone product distribution more closely than the Gibbs free 

energy minimization model. Both models agree with the experimental data for low-
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molecular-weight ketone composition and both show some deviations from the 

experimental data for high-molecular-weight ketone composition. However, the random-

pairing model follows the trends in ketone product distribution and deviates less from 

the experimental data than Gibbs free energy minimization. For the sodium salts 

comprised of acetate, propionate, butyrate, and valerate, it is not possible to determine 

which model fits the experimental data better because of the high rates of product 

degradation. Overall it appears that the random-pairing model is best. 

Calcium salts begin thermally decomposing at much lower temperatures (170–

180 °C) than do sodium salts (410–420 °C). For calcium salts, the expected ketone yield 

was not significantly affected by carboxylate salt composition. For sodium salts, the 

expected ketone yield decreased with increasing average carboxylate salt molecular 

weight. The average expected ketone yield for sodium salts was less than half that for 

calcium salts. The loss in expected ketone yield was primarily caused by the increased 

production in tars and heavy oils and hydrocarbons. These byproducts are most likely 

the result of product degradation. Tars and heavy oils were the predominant byproduct 

and increased with average carboxylate salt molecular weight for both calcium and 

sodium salts; however, sodium salts produced 4 times more tars and heavy oils than did 

the calcium salts. Hydrocarbons also increased with average carboxylate salt molecular 

weight for both calcium and sodium salts, with sodium salts producing 9 times more 

hydrocarbons than calcium salts. Because of poor ketone yields and large production of 

tars and heavy oils, sodium carboxylate salts would not be recommended for use in a 

commercial-scale MixAlco™ biorefinery. 
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8.1.2. Kinetics of thermal decomposition 

Average EA values were found for sodium and calcium acetate, mixtures of 

reagent-grade sodium and calcium salts, and fermentation sodium and calcium salts 

using three different isoconversional methods that employed TGA curves at different 

heating rates. For all carboxylate salts and salt mixtures examined, EA varied 

significantly with W. In part, this is because of the complex nature of the thermal 

decomposition of the carboxylate salts and more so because there are many reacting 

species in the decomposition of reagent-grade and fermentation carboxylate salts. Three 

models were tested for each carboxylate salt and salt mixture using isothermal 

decompositions. For each of the three sodium salt types, the Sestak-Berggren model had 

the lowest value of θ and gave EA values closest to the ones given by the isoconversional 

methods. For calcium acetate, the n
th

-order and Sestak-Berggren models seemed to work 

equally well at modeling the experimental data. Both models had similar values of θ and 

similar parity plot parameters. The thermal decomposition of calcium acetate is very 

difficult to study. EA values from isothermal methods were similar only to the lower EA 

values from isoconversional methods, not the average EA. For reagent-grade and 

fermentation calcium salts, the Sestak-Berggren model gave EA values closest to the 

ones given by the isoconversional methods and had parity parameters closest to unity 

even though it did not have the lowest value of θ. The degree of success the Sestak-

Berggren model has in modeling the all of the experimental data implies that it is most 

suitable for modeling carboxylate salts with a variety of compositions and degrees of 

purity. 
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8.1.3. Broth clarification and ketone reactor design 

Reactor designs of the past used to thermally decompose calcium acetate were 

reviewed. Phase behavior of carboxylate salts throughout the decomposition process and 

the potential challenges they pose to feeding carboxylate salts, conveyance of solids, and 

removal of products were considered. Two designs of continuous reactors were explored 

along with several configurations between the two. In addition, operating data were 

given for a continuous ketone reactor in operation. 

Flocculation of fermentation broth showed little improvement in purity. Filtration 

of the fermentation broth was performed using pore sizes from 1 µm – 240 Daltons. 

Broth purity increased with decreasing pore size, from 90.79–98.33%. Filtration yielded 

the purest broth, but was energy intensive. Coagulation of the fermentation broth yielded 

93.23% purity and required little energy, making it the most desirable method of 

clarification. 

8.2. Future research 

8.2.1. Effects of lime on thermal decomposition of calcium carboxylate salts 

The thermal decomposition of carboxylate salts with cations other than calcium 

(i.e., sodium, potassium, magnesium) could be tested to see if the presence of lime 

affects yield and the production of byproducts. 

8.2.2. Modeling product composition from thermal decomposition of carboxylate salts 

In addition to calcium and sodium carboxylate salts, carboxylate salts with 

another monovalent cation (i.e., potassium) and another divalent cation (i.e., 

magnesium) could be tested and compared to the random-pairing model and the Gibbs 
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free energy minimization model. Modifications to both models could be implemented. 

Better agreement between the random-pairing model and experimental data could be 

achieved by including weighting factors to account for ketones that are kinetically 

favored. If mechanisms other than those mentioned in Section 2 and 3 could be 

developed and validated to explain the existence of certain non-theoretical products, the 

random-pairing model could then be further modified to include these new products as 

theoretical. 

For the sodium carboxylate salts, the Gibbs free energy minimization model 

could be modified to include the non-theoretical ketones and hydrocarbons, as well as 

carbon dioxide, carbon monoxide, and hydrogen. If these byproducts are 

thermodynamically favored, it would help explain their presence in significant quantities 

from the experimental data. This could be done to other types carboxylate salts where 

there are significantly large amounts of byproducts. 

8.2.3. Kinetics of thermal decomposition of carboxylate salts 

In addition to calcium and sodium carboxylate salts, carboxylate salts with other 

cations (i.e., potassium and magnesium) could be tested using TGA and the methods 

described in Section 4.3. To determine trends in molecular weight and cations, more 

individual carboxylate salts (i.e., propionate, butyrate, octanoate, etc.) could be studied 

in terms of kinetic parameters for their thermal decompositions. Mechanisms that 

account for the products from the thermal decomposition of individual or mixed 

carboxylate salts could be developed into a kinetic model and tested. Combinations of 

mechanisms could be tested by using certain ranges of W for each mechanism. To test 
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for autocatalysis, carbonates and oxides of the respective carboxylate salts could be 

added at the beginning of the thermal decomposition to determine if there is a decrease 

in EA. Additionally, additives to the thermal decompositions could be tested for 

improved product yield, decreased activation energy, and lower melting point.  

8.2.4. Continuous reactors 

Small-scale continuous reactors of various designs could be built and tested with 

a variety of carboxylate salts. Design parameters that relate length, inner diameter, shaft 

diameter, shaft rotation rate, and feed rate should be developed. If necessary, these 

parameters could be developed for different types of salts, but they should be as 

universal as possible. Different methods for removing and minimizing fouling caused by 

the various stages of thermal decompositions could be developed and tested. Heating the 

carboxylate salts through the reactor walls can be problematic because heat transfer from 

a metal surface to a solid particle is very small. The heat transfer becomes even worse 

when fouling becomes significant. Different methods of heating the carboxylate salts 

could be developed (e.g., microwaves, electromagnetic induction, etc.). 
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APPENDIX A:                                                                                                           

INPUT SUMMARY FROM GIBBS FREE ENERGY MINIMIZATION SIMULATION 

FOR SIMULATED CALCIUM FEED SALTS IN ASPEN PLUS, V7.2 

 

; 

;Input Summary created by Aspen Plus Rel. 24.0 at 14:52:26 Wed Apr 20, 2011 

;Directory   Filename C:\Users\m0l9510\AppData\Local\Temp\~ap4a00.txt 

; 

 

 

DYNAMICS 

    DYNAMICS RESULTS=ON 

 

IN-UNITS SI FLOW='gm/min' MASS-FLOW='gm/min' MOLE-FLOW='mol/min'  & 

        VOLUME-FLOW='l/min' PRESSURE=torr TEMPERATURE=C DELTA-T=C  & 

        HEAD=meter FLUX='l/sqm-sec' MASS-FLUX='gm/sqcm-s'  & 

        PDROP-PER-HT='torr/m' PDROP=torr INVERSE-PRES='1/torr'  

 

DEF-STREAMS MIXCISLD ALL  

 

SIM-OPTIONS  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    SIM-OPTIONS OLD-DATABANK=NO  

 

DESCRIPTION " 

    Solids Simulation with Metric Units :  

    C, bar, kg/hr, kmol/hr, Gcal, cum/hr.  

       

    Property Method: None  

       

    Flow basis for input: Mass  

 

DATABANKS 'APV72 PURE24' / 'APV72 AQUEOUS' / 'APV72 SOLIDS' /  & 

        'APV72 INORGANIC' / NOASPENPCD 

 

PROP-SOURCES 'APV72 PURE24' / 'APV72 AQUEOUS' / 'APV72 SOLIDS' & 

         / 'APV72 INORGANIC' 
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COMPONENTS  

    "CA(ACE)2" CAC4H6O4 /  

    "CA(PRO)2" "CA(PROP)2" /  

    "CA(BUT)2" "CA(BUT)2" /  

    "CA(PEN)2" "CA(PENT)2" /  

    CACO3 CACO3-A /  

    ACETONE C3H6O-1 /  

    2-BUTANO C4H8O-3 /  

    2-PENTAN C5H10O-2 /  

    2-HEXANO C6H12O-D3 /  

    3-PENTAN C5H10O-4 /  

    3-HEXANO C6H12O /  

    3-HEPTAN C7H14O-E1 /  

    4-HEPTAN C7H14O-E2 /  

    4-OCTANO C8H16O-D3 /  

    5-NONANO C9H18O-E2 /  

    WATER H2O  

 

FLOWSHEET  

    BLOCK REACTOR IN=SALT OUT=KETONE  

 

PROPERTIES NRTL  

 

PROP-DATA REVIEW-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    PROP-LIST DGSFRM / DHSFRM  

    PVAL "CA(PRO)2" -333 / -353  

    PVAL "CA(BUT)2" -333 / -353  

    PVAL "CA(PEN)2" -333 / -353  

    PROP-LIST DGSFRM  

    PVAL "CA(ACE)2" -333  

 

PROP-DATA NRTL-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    PROP-LIST NRTL  
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    BPVAL 2-BUTANO WATER 0.0 201.3011000 .3000000000 0.0 0.0  & 

        0.0 73.30000000 100.0000000  

    BPVAL WATER 2-BUTANO 0.0 1087.744000 .3000000000 0.0 0.0  & 

        0.0 73.30000000 100.0000000  

    BPVAL 2-PENTAN WATER -5.934900000 1958.433200 .2000000000  & 

        0.0 0.0 0.0 0.0 65.00000000  

    BPVAL WATER 2-PENTAN 12.19090000 -2447.230200 .2000000000  & 

        0.0 0.0 0.0 0.0 65.00000000  

    BPVAL 2-HEXANO WATER -4.093900000 1410.315900 .2000000000  & 

        0.0 0.0 0.0 10.00000000 50.00000000  

    BPVAL WATER 2-HEXANO 11.95150000 -1999.085700 .2000000000  & 

        0.0 0.0 0.0 10.00000000 50.00000000  

    BPVAL 2-BUTANO 3-PENTAN 0.0 -289.8223000 .3000000000 0.0  & 

        0.0 0.0 80.31000000 99.40000000  

    BPVAL 3-PENTAN 2-BUTANO 0.0 382.0600000 .3000000000 0.0  & 

        0.0 0.0 80.31000000 99.40000000  

    BPVAL 3-PENTAN WATER 2.783500000 1584.356800 .2000000000  & 

        0.0 -1.230600000 0.0 3.000000000 162.1000000  

    BPVAL WATER 3-PENTAN 115.2036000 -6954.594700 .2000000000  & 

        0.0 -15.44790000 0.0 3.000000000 162.1000000  

    BPVAL 3-PENTAN 3-HEXANO 0.0 246.3425000 .3000000000 0.0  & 

        0.0 0.0 101.4000000 123.8000000  

    BPVAL 3-HEXANO 3-PENTAN 0.0 -202.2620000 .3000000000 0.0  & 

        0.0 0.0 101.4000000 123.8000000  

    BPVAL 3-HEXANO WATER -1.825700000 821.2336000 .2000000000  & 

        0.0 0.0 0.0 20.00000000 30.00000000  

    BPVAL WATER 3-HEXANO 10.54260000 -1605.540600 .2000000000  & 

        0.0 0.0 0.0 20.00000000 30.00000000  

    BPVAL 3-PENTAN 4-HEPTAN 0.0 190.4777000 .3000000000 0.0  & 

        0.0 0.0 101.4000000 144.1000000  

    BPVAL 4-HEPTAN 3-PENTAN 0.0 -187.3279000 .3000000000 0.0  & 

        0.0 0.0 101.4000000 144.1000000  

    BPVAL 3-HEXANO 4-HEPTAN 0.0 -351.8266000 .4500000000 0.0  & 

        0.0 0.0 123.4000000 144.1000000  

    BPVAL 4-HEPTAN 3-HEXANO 0.0 732.7732000 .4500000000 0.0  & 

        0.0 0.0 123.4000000 144.1000000  

    BPVAL 4-HEPTAN WATER 252.7309000 -12207.13960 .2000000000  & 

        0.0 -36.19950000 0.0 0.0 75.00000000  

    BPVAL WATER 4-HEPTAN 237.5792000 -11507.97750 .2000000000  & 

        0.0 -33.95300000 0.0 0.0 75.00000000  

    BPVAL 5-NONANO WATER 11.78610000 -1049.309000 .2000000000  & 

        0.0 0.0 0.0 10.00000000 50.00000000  

    BPVAL WATER 5-NONANO 11.74130000 -1035.711100 .2000000000  & 

        0.0 0.0 0.0 10.00000000 50.00000000  
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    BPVAL ACETONE 2-BUTANO -8.098500000 2364.934300 .3000000000  & 

        0.0 0.0 0.0 56.20000000 79.50000000  

    BPVAL 2-BUTANO ACETONE 5.102500000 -1083.495700 .3000000000  & 

        0.0 0.0 0.0 56.20000000 79.50000000  

    BPVAL ACETONE 3-PENTAN 0.0 -222.5506000 .3000000000 0.0  & 

        0.0 0.0 56.20000000 101.7000000  

    BPVAL 3-PENTAN ACETONE 0.0 276.5292000 .3000000000 0.0 0.0  & 

        0.0 56.20000000 101.7000000  

    BPVAL ACETONE WATER 6.398100000 -1808.991000 .3000000000  & 

        0.0 0.0 0.0 20.00000000 95.10000000  

    BPVAL WATER ACETONE .0544000000 419.9716000 .3000000000 0.0  & 

        0.0 0.0 20.00000000 95.10000000  

 

DEF-STREAM-C CONVEN MIXED CISOLID  

 

PROP-SET ALL-SUBS  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    PROPNAME-LIS VOLFLMX MASSVFRA MASSSFRA RHOMX MASSFLOW 

TEMP  & 

        PRES UNITS='kg/cum' SUBSTREAM=ALL  

;  "Entire Stream Flows, Density, Phase Frac, T, P"  

     

 

STREAM SALT  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    SUBSTREAM MIXED TEMP=21. PRES=5. <torr>  & 

        MASS-FLOW=12. <gm/min>  

    MASS-FRAC WATER 1.  

    SUBSTREAM CISOLID TEMP=21. PRES=5. <torr>  & 

        MASS-FLOW=88. <gm/min>  

    MASS-FRAC "CA(ACE)2" 0.645 / "CA(PRO)2" 0.166 /  & 

        "CA(BUT)2" 0.121 / "CA(PEN)2" 0.068  

 

BLOCK REACTOR RGIBBS  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
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        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    PARAM TEMP=450. PRES=5. <torr>  

    PROD CACO3 SS / ACETONE / 2-BUTANO / 2-PENTAN /  & 

        2-HEXANO / 3-PENTAN / 3-HEXANO / 3-HEPTAN / 4-HEPTAN / & 

        4-OCTANO / 5-NONANO / WATER  

 

UTILITY BFW GENERAL  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    COST PRICE=0. <$/kg>  

    PARAM UTILITY-TYPE=GENERAL PRES=1. PRES-OUT=50. <psig>  & 

        TIN=90. <F> VFR-OUT=1. CALOPT=FLASH  

    COMPOSITION WATER 1.  

 

UTILITY CW GENERAL  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    COST PRICE=0.013 <$/tonne>  

    PARAM UTILITY-TYPE=WATER PRES=1.25 PRES-OUT=1. TIN=90. <F>  & 

        TOUT=120. <F> CALOPT=FLASH  

 

EO-CONV-OPTI  

 

STREAM-REPOR MOLEFLOW MASSFLOW MOLEFRAC MASSFRAC  & 

        PROPERTIES=ALL-SUBS  

 

PROPERTY-REP NOPARAM-PLUS  

; 

; 

; 

; 

; 
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APPENDIX B:                                                                                                           

INPUT SUMMARY FROM GIBBS FREE ENERGY MINIMIZATION SIMULATION 

FOR EQUIMOLAR SODIUM CARBOXYLATE SALTS IN ASPEN PLUS, V7.3 

 

; 

;Input Summary created by Aspen Plus Rel. 25.0 at 16:22:26 Thu Apr 12, 2012 

;Directory G:\Papers\Product Compostion Model Comparison\Aspen  Filename 

C:\Users\m0l9510\AppData\Local\Temp\~ap94e7.txt 

; 

 

 

DYNAMICS 

    DYNAMICS RESULTS=ON 

 

IN-UNITS SI FLOW='gm/min' MASS-FLOW='gm/min' MOLE-FLOW='mol/min'  & 

        VOLUME-FLOW='l/min' PRESSURE=torr TEMPERATURE=C DELTA-T=C  & 

        HEAD=meter FLUX='l/sqm-sec' MASS-FLUX='gm/sqcm-s'  & 

        PDROP-PER-HT='torr/m' PDROP=torr INVERSE-PRES='1/torr'  

 

DEF-STREAMS MIXCISLD ALL  

 

DESCRIPTION " 

    Solids Simulation with Metric Units :  

    C, bar, kg/hr, kmol/hr, Gcal, cum/hr.  

       

    Property Method: None  

       

    Flow basis for input: Mass  

       

 DATABANKS 'APV73 PURE25' / 'APV73 AQUEOUS' / 'APV73 SOLIDS' /  & 

        'APV73 INORGANIC' / NOASPENPCD 

 

PROP-SOURCES 'APV73 PURE25' / 'APV73 AQUEOUS' / 'APV73 SOLIDS' & 

         / 'APV73 INORGANIC' 

 

COMPONENTS  

    "NA(ACE)" C2H3NAO2 /  

    "NA(PRO)" "NA(PROP)" /  

    "NA(BUT)" "NA(BUT)" /  

    "NA(PEN)" "NA(PENT)" /  

    NA2CO3 NA2CO3 /  
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    "CA(ACE)2" CAC4H6O4 /  

    "CA(PRO)2" "CA(PROP)2" /  

    "CA(BUT)2" "CA(BUT)2" /  

    "CA(PEN)2" "CA(PENT)2" /  

    CACO3 CACO3-A /  

    ACETONE C3H6O-1 /  

    2-BUTANO C4H8O-3 /  

    2-PENTAN C5H10O-2 /  

    2-HEXANO C6H12O-D3 /  

    3-PENTAN C5H10O-4 /  

    3-HEXANO C6H12O /  

    3-HEPTAN C7H14O-E1 /  

    4-HEPTAN C7H14O-E2 /  

    4-OCTANO C8H16O-D3 /  

    5-NONANO C9H18O-E2 /  

    WATER H2O  

 

CISOLID-COMPS "NA(ACE)" "NA(PRO)" "NA(BUT)" "NA(PEN)" NA2CO3  & 

        "CA(ACE)2" "CA(PRO)2" "CA(BUT)2" "CA(PEN)2" CACO3  

 

FLOWSHEET  

    BLOCK REACTOR IN=SALT OUT=KETONE  

 

PROPERTIES NRTL  

 

PROP-DATA REVIEW-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    PROP-LIST DGSFRM / DHSFRM  

    PVAL "CA(PRO)2" -333 / -353  

    PVAL "CA(BUT)2" -333 / -353  

    PVAL "CA(PEN)2" -333 / -353  

    PROP-LIST DGSFRM  

    PVAL "CA(ACE)2" -333  

 

PROP-DATA NRTL-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  
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    PROP-LIST NRTL  

    BPVAL 2-BUTANO WATER 0.0 201.3011000 .3000000000 0.0 0.0  & 

        0.0 73.30000000 100.0000000  

    BPVAL WATER 2-BUTANO 0.0 1087.744000 .3000000000 0.0 0.0  & 

        0.0 73.30000000 100.0000000  

    BPVAL 2-PENTAN WATER -3.665100000 1273.258900 .2000000000  & 

        0.0 0.0 0.0 31.73000000 193.7300000  

    BPVAL WATER 2-PENTAN 10.16230000 -1845.002800 .2000000000  & 

        0.0 0.0 0.0 31.73000000 193.7300000  

    BPVAL 2-HEXANO WATER -1.868200000 750.4318000 .2000000000  & 

        0.0 0.0 0.0 31.73000000 195.5300000  

    BPVAL WATER 2-HEXANO 9.448700000 -1244.305000 .2000000000  & 

        0.0 0.0 0.0 31.73000000 195.5300000  

    BPVAL 2-BUTANO 3-PENTAN 0.0 -289.8223000 .3000000000 0.0  & 

        0.0 0.0 80.31000000 99.40000000  

    BPVAL 3-PENTAN 2-BUTANO 0.0 382.0600000 .3000000000 0.0  & 

        0.0 0.0 80.31000000 99.40000000  

    BPVAL 3-PENTAN WATER -2.748400000 1090.512100 .2000000000  & 

        0.0 0.0 0.0 31.73000000 193.7300000  

    BPVAL WATER 3-PENTAN 9.367900000 -1637.873300 .2000000000  & 

        0.0 0.0 0.0 31.73000000 193.7300000  

    BPVAL 3-PENTAN 3-HEXANO 0.0 246.3425000 .3000000000 0.0  & 

        0.0 0.0 101.4000000 123.8000000  

    BPVAL 3-HEXANO 3-PENTAN 0.0 -202.2620000 .3000000000 0.0  & 

        0.0 0.0 101.4000000 123.8000000  

    BPVAL 3-HEXANO WATER -1.825700000 821.2336000 .2000000000  & 

        0.0 0.0 0.0 20.00000000 30.00000000  

    BPVAL WATER 3-HEXANO 10.54260000 -1605.540600 .2000000000  & 

        0.0 0.0 0.0 20.00000000 30.00000000  

    BPVAL 3-PENTAN 4-HEPTAN 0.0 190.4777000 .3000000000 0.0  & 

        0.0 0.0 101.4000000 144.1000000  

    BPVAL 4-HEPTAN 3-PENTAN 0.0 -187.3279000 .3000000000 0.0  & 

        0.0 0.0 101.4000000 144.1000000  

    BPVAL 3-HEXANO 4-HEPTAN 0.0 -351.8266000 .4500000000 0.0  & 

        0.0 0.0 123.4000000 144.1000000  

    BPVAL 4-HEPTAN 3-HEXANO 0.0 732.7732000 .4500000000 0.0  & 

        0.0 0.0 123.4000000 144.1000000  

    BPVAL 4-HEPTAN WATER -1.022800000 760.5935000 .2000000000  & 

        0.0 0.0 0.0 31.73000000 193.7300000  

    BPVAL WATER 4-HEPTAN 10.11390000 -1200.776700 .2000000000  & 

        0.0 0.0 0.0 31.73000000 193.7300000  

    BPVAL 5-NONANO WATER -.0793000000 609.3645000 .2000000000  & 

        0.0 0.0 0.0 31.73000000 193.7300000  

    BPVAL WATER 5-NONANO 12.25860000 -1173.838000 .2000000000  & 
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        0.0 0.0 0.0 31.73000000 193.7300000  

    BPVAL ACETONE 2-BUTANO -8.098500000 2364.934300 .3000000000  & 

        0.0 0.0 0.0 56.20000000 79.50000000  

    BPVAL 2-BUTANO ACETONE 5.102500000 -1083.495700 .3000000000  & 

        0.0 0.0 0.0 56.20000000 79.50000000  

    BPVAL ACETONE 3-PENTAN 0.0 -222.5506000 .3000000000 0.0  & 

        0.0 0.0 56.20000000 101.7000000  

    BPVAL 3-PENTAN ACETONE 0.0 276.5292000 .3000000000 0.0 0.0  & 

        0.0 56.20000000 101.7000000  

    BPVAL ACETONE WATER 6.398100000 -1808.991000 .3000000000  & 

        0.0 0.0 0.0 20.00000000 95.10000000  

    BPVAL WATER ACETONE .0544000000 419.9716000 .3000000000 0.0  & 

        0.0 0.0 20.00000000 95.10000000  

    BPVAL 3-HEPTAN WATER -1.215900000 797.4041000 .2000000000  & 

        0.0 0.0 0.0 31.73000000 193.7300000  

    BPVAL WATER 3-HEPTAN 10.55680000 -1328.926700 .2000000000  & 

        0.0 0.0 0.0 31.73000000 193.7300000  

 

DEF-STREAM-C CONVEN MIXED CISOLID  

 

PROP-SET ALL-SUBS  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    PROPNAME-LIS VOLFLMX MASSVFRA MASSSFRA RHOMX MASSFLOW 

TEMP  & 

        PRES UNITS='kg/cum' SUBSTREAM=ALL  

;  "Entire Stream Flows, Density, Phase Frac, T, P"  

     

 

STREAM SALT  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    SUBSTREAM MIXED TEMP=21. PRES=5. <torr> MASS-FLOW=0. <gm/min>  

    MASS-FRAC WATER 1.  

    SUBSTREAM CISOLID TEMP=21. PRES=5. <torr>  & 

        MASS-FLOW=100. <gm/min>  

    MASS-FRAC "NA(ACE)" 0.1969 / "NA(PRO)" 0.2251 / "NA(BUT)"  & 

        0.2671 / "NA(PEN)" 0.311  
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BLOCK REACTOR RGIBBS  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    PARAM TEMP=450. PRES=5. <torr>  

    PROD NA2CO3 SS / ACETONE / 2-BUTANO / 2-PENTAN /  & 

        2-HEXANO / 3-PENTAN / 3-HEXANO / 3-HEPTAN / 4-HEPTAN / & 

        4-OCTANO / 5-NONANO / WATER  

 

UTILITY BFW GENERAL  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    COST PRICE=0. <$/kg>  

    PARAM UTILITY-TYPE=GENERAL PRES=1. PRES-OUT=50. <psig>  & 

        TIN=90. <F> VFR-OUT=1. CALOPT=FLASH  

    COMPOSITION WATER 1.  

 

UTILITY CW GENERAL  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 

        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    COST PRICE=0.013 <$/tonne>  

    PARAM UTILITY-TYPE=WATER PRES=1.25 PRES-OUT=1. TIN=90. <F>  & 

        TOUT=120. <F> CALOPT=FLASH  

 

EO-CONV-OPTI  

 

STREAM-REPOR MOLEFLOW MASSFLOW MOLEFRAC MASSFRAC  & 

        PROPERTIES=ALL-SUBS  

 

PROPERTY-REP NOPARAM-PLUS  

; 

; 

; 

; 

; 


