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ABSTRACT

Genetic data analysis has been capturing a lot of attentions for understanding the

mechanism of the development and progressing of diseases like cancers, and is cru-

cial in discovering genetic markers and treatment targets in medical research. This

dissertation focuses on several important issues in genetic data analysis, graphical

network modeling, feature selection, and covariance estimation. First, we develop a

gene network modeling method for discrete gene expression data, produced by tech-

nologies such as serial analysis of gene expression and RNA sequencing experiment,

which generate counts of mRNA transcripts in cell samples. We propose a general-

ized linear model to fit the discrete gene expression data and assume that the log

ratios of the mean expression levels follow a Gaussian distribution. We derive the

gene network structures by selecting covariance matrices of the Gaussian distribution

with a hyper-inverse Wishart prior. We incorporate prior network models based on

Gene Ontology information, which avails existing biological information on the genes

of interest. Next, we consider a variable selection problem, where the variables have

natural grouping structures, with application to analysis of chromosomal copy num-

ber data. The chromosomal copy number data are produced by molecular inversion

probes experiments which measure probe-specific copy number changes. We propose

a novel Bayesian variable selection method, the hierarchical structured variable se-

lection (HSVS) method, which accounts for the natural gene and probe-within-gene

architecture to identify important genes and probes associated with clinically rele-

vant outcomes. We propose the HSVS model for grouped variable selection, where

simultaneous selection of both groups and within-group variables is of interest. The

HSVS model utilizes a discrete mixture prior distribution for group selection and

group-specific Bayesian lasso hierarchies for variable selection within groups. We

further provide methods for accounting for serial correlations within groups that

incorporate Bayesian fused lasso methods for within-group selection. Finally, we
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propose a Bayesian method of estimating high-dimensional covariance matrices that

can be decomposed into a low rank and sparse component. This covariance struc-

ture has a wide range of applications including factor analytical model and random

effects model. We model the covariance matrices with the decomposition structure

by representing the covariance model in the form of a factor analytic model where

the number of latent factors is unknown. We introduce binary indicators for esti-

mating the rank of the low rank component combined with a Bayesian graphical

lasso method for estimating the sparse component. We further extend our method

to a graphical factor analytic model where the graphical model of the residuals is

of interest. We achieve sparse estimation of the inverse covariance of the residuals

in the graphical factor model by employing a hyper-inverse Wishart prior method

for a decomposable graph and a Bayesian graphical lasso method for an unrestricted

graph.
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1. INTRODUCTION

1.1 Problem Formulation

Significant advances in DNA sequencing strategies over the past decade have rev-

olutionized the field of genomic research, allowing for development of many genome-

wide technologies like microarray, serial analysis of gene expression (SAGE), RNA se-

quencing, and molecular inverse probes (MIPs) experiments. These high-throughput

technologies make deep genome sequencing and transcription quantification, and pro-

vide information on up to thousands of genes simultaneously. Availability of vast

amounts of high-dimensional data opens up a new opportunity to understand the

mechanism of biological processes, and, as well, brings up challenges in methodol-

ogy development for analyzing data of different types and characteristics. In this

dissertation, we concern several important issues in genetic data analysis including

graphical network modeling, feature selection, and covariance estimation. We pro-

pose novel statistical methods and models to address the nature of different types of

genetic data, and attempt to move towards more structured approaches to leverage

information in statistical analysis.

1.2 Organization

In Section 2, we propose an algorithm for modeling gene networks based on dis-

crete gene expression data. We specifically focus on the discrete expression data

from serial analysis of gene expression experiments (Velculescu et al., 1995). We

assume that the observed counts of mRNA transcripts are from independent Poisson

processes, with the mean rates to be the true transcriptional levels. The log ra-

tios of the mean counts are considered to follow a multivariate normal distribution,

whose inverse covariance matrix gives the conditional independence structure of the

gene network model. We utilize a conjugate prior for the covariance matrices, the
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hyper-inverse Wishart distribution introduced by Dawid and Lauritzen (1993), and

an MCMC-based algorithm to identify graphical models. Furthermore, we propose

a prior for the graphical models based on GO information, which utilizes prior in-

formation on the genes of interest obtained in biological research as well as inducing

sparsity in the graphical models as is assumed in gene regulatory networks. We con-

duct simulation studies to examine the performance of our discrete graphical model

and apply the method to real discrete datasets in identifying the gene regulatory

networks.

In Section 3, we concern the issue of hierarchical feature selection in analysis

of copy number data. Changes in chromosomal copy numbers have been identified

as important causes of cancer (Pinkel and Albertson, 2005), and hence analysis of

chromosomal copy number alterations has the potential to identify genetic markers

and treatment targets for cancers. In this section, we consider a high-dimensional

copy number profile obtained from molecular inversion probes experiments which

measure probe copy number changes. Our goal is to ascertain probe-specific copy

number alterations that are correlated with patient clinical characteristics. Since the

probes located in the coding region of one gene can be taken as a natural group, we

propose a Bayesian variable selection method, the hierarchical structured variable

selection (HSVS) method, which accounts for the natural grouping structures in

the data and simultaneously selects both gene groups and within-gene probes. The

HSVS model utilizes a discrete mixture prior distribution for group selection and

group-specific Bayesian lasso hierarchies for variable selection within groups. We

further accounts for serial correlations within a gene by incorporating Bayesian fused

lasso methods for within-group selection. Through simulations we establish that our

method results in lower model errors than other methods when a natural grouping

structure exists. We apply our method to an MIP study of breast cancer and show

that it identifies genes and probes that are significantly associated with clinically

relevant subtypes of breast cancer.
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In Section 4, we consider the problem of estimating high-dimensional covariance

matrices of a particular structure, which is a summation of low rank and sparse

matrices. This covariance structure can be applied to multiple statistical models

such as factor analytical model, random effects model, and conditional covariance

model. We propose a novel Bayesian method of estimating the covariance matrices

with such decomposition structure by rewriting the covariance model in the form of

a factor analytic model where the number of latent factors is unknown. Our object

is to estimate the covariance as well as recovering the rank of the low rank compo-

nent and the support of the sparse component. We estimate the rank of the low

rank component through factor selection with latent binary indicators, and use a

Bayesian graphical lasso selection prior for the sparse component estimation. Simu-

lation studies show that our method can recover the rank and the sparsity of the two

components respectively with high frequencies. We further extend our method to a

graphical factor analytic model, by which we recover the number of factors as well as

the graphical model of the residuals. To induce sparsity in the inverse covariance of

the residuals, we employ a hyper-inverse Wishart prior method for modeling decom-

posable graphs, and a Bayesian graphical lasso method for unrestricted graphs. We

show through simulations that the extended model can recover both the number of

latent factors and the graphical model of the residuals successfully when the sample

size is sufficient relative to the dimension.

Finally, we summarize our main findings and suggest future research directions

in Section 5.
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2. GRAPHICAL MODEL INFERENCE FOR DISCRETE GENE EXPRESSION

DATA

2.1 Introduction

A gene network is a collection of genes that influence the expression levels of

each other indirectly through their RNA or protein products. Gene network infer-

ence is a task critical for revealing signaling pathways in cells, understanding the

occurrence and development of diseases like cancers, and identifying target genes

for disease treatment. With the development of genome-wide technologies like RNA

fingerprinting, expressed sequence tag sequencing, serial analysis of gene expression

(SAGE), and microarrays, high dimensional gene expression data become available

for mapping the interactions between thousands of genes simultaneously. Current

statistical modeling of gene networks is primarily based on continuous gene expres-

sion profiles obtained from microarray experiments, with the gene expression data

assumed to follow a Gaussian distribution, which has many well-established proper-

ties.

In this section, we propose an algorithm for modeling gene networks based on

discrete gene expression data. We specifically focus on the discrete data from SAGE

experiments (Velculescu et al., 1995). In a SAGE experiment, all the mRNA tran-

scripts of a cell sample are collected and a 10-base DNA fragment is released from

each mRNA transcript, which is called a SAGE tag. The number of the tags with

the same nucleotide sequence is then counted in a cell sample. Since the nucleotide

sequence of a tag is specific to the mRNA from which the tag is released, the count

of the tags of a particular sequence gives the amount of their corresponding mRNA

transcripts in a cell sample. Note that the counts of mRNAs from SAGE experiments

are relative quantities with respect to the total number of transcripts collected in a

cell sample. In a typical SAGE experiment, a large number of mRNA transcripts

(often from 30,000 to 100,000) are collected from each cell sample.
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Similar to microarray, SAGE produces a snapshot of gene expression profiles by

measuring the levels of mRNA transcription in a cell sample. However, SAGE pro-

vides gene expression profiles with a higher level of genome coverage than microarray,

because SAGE is not limited to expression analysis of known genes, as is microarray.

Furthermore, SAGE experiments give the relative amount of each gene’s mRNAs

with respect to the total mRNA transcripts in a cell sample. Thus we can compare

mRNA levels among libraries generated by different laboratories. Due to these u-

nique features of SAGE experiments, analysis of SAGE data plays an important role

in biological and biomedical areas, such as prediction of new gene function and iden-

tification of target genes for disease treatment. In this section, we explore discrete

SAGE datasets for gene network structures with an undirected graph.

There have been many approaches to network modeling with Gaussian graphical

models. In a Bayesian setting, Gaussian graphical models are based on hierarchical

specifications for the covariance matrix (or precision matrix) using global conjugate

priors on the space of positive-definite matrices, such as the inverse Wishart prior

or its equivalents. Dawid and Lauritzen (1993) introduced an equivalent form as the

hyper-inverse Wishart (HIW) distribution. This construction enjoys many advan-

tages, such as computational efficiency, due to its conjugate formulation and exact

calculation of marginal likelihoods (Scott and Carvalho, 2008). Giudici (1996) used a

prior for the covariance matrix that is a mixture of HIW priors with fixed parameter-

s over decomposable graphs and calculated the posterior probability of each graph.

Armstrong et al. (2009) extended this method by proposing a prior that assigns equal

probabilities over graph sizes and utilized a conditional Markov chain Monte Carlo

(MCMC) sampler. These methods have been extended for nondecomposable graphs

using reversible-jump algorithms (Giudici and Green, 1999; Brooks, Giudici, and

Roberts, 2003). Moreover, the G-Wishart prior distribution has been proposed as a

generalization of HIW priors that is suitable for nondecomposable graphs (Roverato,

2002; Atay-Kayis and Massam, 2005). Gaussian graphical models have been widely

5



used to infer the regulatory relationship among genes for continuous gene expression

data at the transcriptional level (Wu, Ye, and Subramanian, 2003; Dobra et al., 2004;

among others). The conditional independence arising out of a Gaussian graphical

model is flagged by the zero off-diagonal elements in the inverse covariance matrix.

In this section, we develop Bayesian graphical models for discrete gene expres-

sion data. We assume that the observed counts of mRNA transcripts in a SAGE

experiment are from Poisson processes, with the means to be the true transcriptional

levels. The log ratios of the mean counts are considered to follow a multivariate nor-

mal distribution. That is, the expression levels of genes are regulated by each other

through a Gaussian graphical model underlying the log ratios of the means, whose

inverse covariance matrix gives the conditional independence structure of the undi-

rected gene network. We utilize the conjugate HIW prior to sample the covariance

matrices and an MCMC-based algorithm to identify graphical models. Furthermore,

we propose a prior for the graphical models based on GO information, which utilizes

prior information on the genes of interest obtained in biological research as well as

inducing sparsity in the graphical models as is assumed in gene regulatory networks.

We obtain the GO information from the GO consortium, which provides a con-

trolled vocabulary of terms describing gene product characteristics in the aspects

of cellular component, molecular function, and biological process (Ashburner et al.,

2000). For each of the three fields, GO terms are organized in a hierarchical di-

rected acyclic graph (DAG) structure, reflecting the associations between ontology

terms. For example, the biological process terms “calcium-mediated signaling” and

“leukemia signaling” are two daughter terms of the term “intracellular signaling,”

meaning that they are two kinds of intracellular signaling; and “intracellular signal-

ing” is a daughter term of “signaling transduction.” Hence, two genes sharing the

same or similar GO terms in biological process may have the same or similar cellular

functions. Based on this idea, methods have been developed to measure the semantic

similarity between GO terms and gene products (Resnik, 1999; Wang et al., 2007).
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These gene similarity measures based on associated GO terms have been used in

gene clustering and gene function prediction (Kustra and Zagdanski, 2006).

In our method, we apply GO-derived semantic similarity measurements to gene

network modeling. We measure the functional semantic similarity of each pair of

the genes of interest based on the relatedness of their associated GO terms. The

semantic similarity score is then taken as the prior probability of an edge between

the two genes in the gene network. Using this method, we derive a prior for the

graphical model by taking the product of the prior probabilities of the edges in the

graph. This GO-based prior on the gene network incorporates biological information

of the genes into gene network modeling as well as bringing scientifically interpretable

sparsity in the inferred graphical models.

We introduce our Bayesian hierarchical model and the GO-based prior derivation

in Section 2.2. We describe a model selection method based on false discovery rates

(FDRs) for inferring graphical models from posterior samples in Section 2.3. In

Section 2.4, we show the results of a simulation study evaluating the performance of

the discrete graph modeling method. In Section 2.5, we present the result of a real

SAGE data analysis to model the gene networks in breast cancer cells. Finally, a

short summary of our method is included in Section 2.6. The schemes of posterior

sampling are detailed in Appendix A.

2.2 Probability Model

Let X denote an n× q matrix of discrete gene expression profiles, with Xij to be

the observed mRNA count of gene j (j = 1, · · · , q) obtained in a SAGE experiment

for the ith (i = 1, · · · , n) individual. Since a SAGE experiment counts the transcripts

of a gene given a large total number of transcripts in a cell sample, we assume that

each count, Xij, follows a Poisson distribution with mean λij. We consider λij, the

expected count of the transcripts given a total number of transcripts, as the true

transcriptional expression amount of gene j in the ith cell sample. We assume that

7



the log ratios of λi = (λi1, ..., λiq)
′ for i = 1, · · · , n follow a multivariate normal

distribution Np(µ,Σ). The likelihood is specified as follows:

Xij ∼ Pois(λij),

log(λi) ∼ Nq(µ,Σ).

This is a special case of popular generalized linear mixed models (Zeger and

Karim, 1991; Breslow and Clayton, 1993). In this framework, we assume a graphical

model through Σ to account for the association structure among the underlying log

ratios of the expression levels in a cell sample. Our focus is to infer the graphical

model by selecting the covariance matrix Σ.

2.2.1 Bayesian Gaussian Graphical Models

In a Bayesian framework, Gaussian graphical modeling is based on hierarchical

prior specifications for the covariance matrix Σ at the two levels: a prior distribution

for Σ under each graph and a prior distribution over different graphs. Before giving

the details about the hierarchical priors, we first describe the notations on Gaussian

graphical models.

An undirected graph is a pair of G = (V,E) with a vertex set V = {1, ..., q}

and an edge set E ⊆ V × V . Nodes i and j are adjacent or connected in G if

(i, j) ∈ E, whereas i and j are conditionally independent if (i, j) /∈ E. A graph G

with E = V × V is called a complete graph. Complete subgraphs C ⊂ V are called

cliques; the joint subset of two cliques is called a separator S. If a graph G could

be partitioned into a sequence of subgraphs (C1, S2, C2, ..., CK) such that V =
⋃
k Ck

and Sk = Ck−1

⋂
Ck are complete for all k = 1, ..., K, G is called a decomposable

graph (Lauritzen, 1996). In this section, we consider the decomposable graphs. For

a covariance matrix Σ, let Ω = Σ−1 be the inverse covariance matrix, or the precision

matrix. Nodes i and j are conditionally independent, given other nodes, if and only

8



if Ωij = 0. Thus, the undirected graph G is given by the configuration of nonzero

off-diagonal elements of Σ: E = {(i, j) : Ωij 6= 0}.

Let M(G) be the set of all symmetric positive-definite matrices Σ satisfying E =

{(i, j) : Ωij 6= 0}. Given a decomposable graph G = (V,E), Dawid and Lauritzen

(1993) introduced the HIW distribution for a covariance matrix Σ ∈ M(G), with

parameters (δ,Φ), denoted by Σ ∼ HIW(G, δ,Φ). The probability density function

(pdf) is given by

p(Σ|G, δ,Φ) =

∏K
k=1 p(ΣCk |δ,ΦCk)∏K
k=2 p(ΣSk |δ,ΦSk)

,

where δ ∈ R+ is a degree-of-freedom parameter, Φ ∈M(G) is a symmetric positive-

definite scale matrix, and Ck and Sk are the cliques and separators of the graph G

respectively. The terms p(ΣCk |δ,ΦCk) denote the inverse Wishart (IW) density of

ΣCk ∼ IW(δ,ΦCk) with the pdf

p(ΣCk |δ,ΦCk) ∝ |ΣCk |−(δ/2+|Ck|) exp

{
−1

2
tr(Σ−1

Ck
ΦCk)

}
.

The HIW distribution is a conjugate prior distribution for the covariance matrix

Σ ∈M(G). Specifically, if q-dimensional random variables Xi follow an independent

and identical (iid) multivariate normal distribution Nq(0,Σ) for i = 1, . . . , n, and

Σ follows HIW(G, δ,Φ), the posterior of Σ is Σ|X,G ∼ HIW(G, δ + n,Φ + X ′X).

The closed form of the posterior distribution for Σ plays a key part in the posterior

inference based on an MCMC algorithm.
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2.2.2 Hierarchical Model

To facilitate computation and notation, we reparameterize log(λij) as θij through-

out the rest of the section. We assume the complete hierarchical model for a discrete

gene expression dataset as follows:

Xij ∼ Pois(λij), (2.1)

θi ∼ Nq(µ,Σ)., (2.2)

p(µ|Σ, G) ∝ constant, (2.3)

Σ|δ, r, G ∼ HIW(G, δ, rIq), (2.4)

r ∼ Unif(0, c), (2.5)

G ∼ π(G), (2.6)

where δ, r, and c are fixed, positive hyperparameters and Iq is a q × q identity

matrix. Equations (2.3) and (2.4) specify the prior for the mean and covariance

matrix, respectively. We assume an improper constant prior for µ, as our focus is on

the structures of Σ−1. The prior for Σ is HIW(G, δ,Φ) as described in Section 2.2.1.

We restrict the graph G of Σ to be decomposable so that the prior for Σ is a mixture

of HIW distributions over all decomposable graphs. We consider δ = 3 as reflecting

the lack of prior information on Σ, and specify the hyperparameter Φ as rIq, where

r is assumed to follow a uniform hyperprior on the interval (0, c) as in equation (2.5)

for some large value of c.

Notice that given the priors for µ and Σ as specified above, we can integrate out

µ and Σ and obtain a marginalized prior on θ given the graph G as

p(θ|G, δ, r) ∝ h(G, δ, rIq)

h(G, δ + n− 1, rIq + Sθ)
,

10



where Sθ =
∑n

i=1(θi− θ̄)(θi− θ̄)′. The term h(G, δ, rIq) is the normalizing constant

for the HIW(G, δ, rIq) distribution given by

h(G, δ, rIq) =

∏K
k=1 |

rICk
2
|(
δ+|Ck|−1

2
)Γ|Ck|

(
δ+|Ck|−1

2

)−1

∏K
k=2 |

rISk
2
|(
δ+|Sk|−1

2
)Γ|Sk|

(
δ+|Sk|−1

2

)−1 ,

where Γq(x) = πq(q−1)/4
∏q

j=1 Γ(x + (1 − j)/2) is the multivariate gamma function.

The marginalized prior leads to a collapsed Gibbs algorithm in sampling G, which

substantially accelerates the graphical model search task and is valued when the

graph G is our focus in the inference.

We induce the prior π(G) in equation (2.6) by assigning an independent pri-

or probability of an edge, p(eij), to each pair of nodes (i, j), so that π(G) =∏
(i,j)∈E p(eij = 1) ·

∏
(i,j)/∈E p(eij = 0). Without prior information, a choice of p(eij)

could be the Bernoulli-Beta hierarchical prior. Scott and Berger (2010) showed that

when the hyperparameters of the Beta distribution is (1, 1), the marginalized prior

probability of a graphical model containing k edges out of q(q− 1)/2 potential edges

in a graph G is p(k) ∝
(
q(q−1)/2

k

)−1
. Hence, such choice of prior encourages sparsity

in the inferred graphical models. In the context of gene expression network model-

ing as in the section, we borrow information on relatedness between genes based on

biological studies and derive a prior π(G) from the ontology terms associated with

the genes of interest.

2.2.3 GO-based Prior for G

As mentioned above, GO terms describe gene product characteristics in a con-

trolled vocabulary. A pair of genes with the same or closely related ontology terms

in biological process are thought to be potentially associated in signaling pathway

or expression regulation. We measure the relatedness of all pairs of genes in terms

of their associated ontology terms and derive the priors p(eij) that are proportional
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to the measurements. Here we use the functional semantic similarity as a measure

of the relatedness of two genes.

The semantic similarity measures the similarity of two GO terms by evaluating

how much information the two terms share. Here we use Wang et al.’s measure

(Wang et al., 2007), which is based on the relative locations of the terms in the DAG

structure of the GO graph and their semantic relations with the ascendant terms

that subsume the two terms. For a GO term A, let TA denote the set of all its

ancestor terms including term A itself, and SA(t) be defined as the contribution of a

term t ∈ TA to the semantics of A based on the relative locations of t and A in the

GO graph. The semantic similarity score between two GO terms (A,B) is defined as

follows:

SGO(A,B) =

∑
t∈TA∩TB

{
SA(t) + SB(t)

}∑
t∈TA SA(t) +

∑
t∈TB SB(t)

,

which is within (0, 1). Usually one gene is annotated by many GO terms. The

functional similarity between two genes G1 and G2, Sim(G1, G2), is then calculated

by averaging the semantic similarity scores for all pairs of their associated terms. The

functional similarity score between any two genes (Gi, Gj) is within (0, 1), where a

value close to 0 indicates the two genes unlikely to be related and a value near

1 indicates close relatedness of the two genes in cellular functioning. Hence, we

consider the score as a natural prior probability of an edge between the two genes,

i.e. p(eij = 1) = Sim(Gi, Gj).

We derive the prior for the graph G = (V,E) based on the GO similarity scores

as:

π(G) =
∏

(i,j)∈E

p(eij = 1)
∏

(i,j)/∈E

p(eij = 0),

=
∏

(i,j)∈E

Sim(Gi, Gj)
∏

(i,j)/∈E

{1− Sim(Gj, Gj)}.
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With the above prior on the graph G, we actually assign a prior probability to the

existence or absence of each edge in the graph. As a high similarity score between

two genes reflects their potential relatedness in gene regulation, the specified prior

favors the graph model that includes edges between semantically similar genes.

2.3 Model Selection Using False Discovery Rates

The posterior sampling schemes we have outlined explore the model space and

result in MCMC samples of graph G at each iteration. One method of summarizing

the information in the samples is to pick the graph model that is visited mostly

by the sampler. However, this particular graph may only appear in a very small

proportion of MCMC samples. An alternative strategy is to utilize all of the MCMC

samples and average over the various models visited by the sampler. This model

averaging approach weighs the evidence of significance for each edge separately using

all MCMC samples. We outline an approach to conduct Bayesian model selection

based on controlling the false discovery rate (FDR) (Benjamini and Hochberg, 1995).

Suppose we have T posterior samples of graph G = (V,E) from an MCMC

computation, which are represented as T sets of edge indicators {e(t)
ij : i < j}. If

(i, j) ∈ E(t) we have e
(t)
ij = 1; else e

(t)
ij = 0. Let pij represent the posterior probability

of including the edge (i, j) in the graph. We can estimate pij to be the relative

number of times the edge (i, j) is present in the graph across the T MCMC samples:

pij =
1

T

T∑
t=1

I{e(t)
ij = 1},

where I( · ) is an indicator function.

We assume that for some significance threshold φ, any edge (i, j) with pij > φ

is considered as significant and is included in the graph G. Then the graph with

E = {(i, j) : pij > φ} includes all the edges considered to be significant. Note that

(1 − pij)’s can be interpreted as estimates of the local FDRs (Storey, 2003) as they
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measure the probability of a false positive if an edge (i, j) is significant but not in

the true graph. The significance threshold φ can be determined based on classical

Bayesian utility considerations, such as in Müller et al. (2004), based on the elicited

relative costs of false positive and false negative errors, or can be set to control the

overall average Bayesian FDR. (See Morris et al., 2008; Baladandayuthapani et al.,

2010; and Bonato et al., 2011 for detailed expositions in other settings).

Thus given a global FDR bound α ∈ (0, 1), we are interested in finding the

threshold value φα for flagging the set of edges {(i, j) : pij > φ} as potentially

relevant and labeling them as discoveries. This implies that the threshold φα is a

cut-off on the (model-based) posterior probabilities that corresponds to an expected

Bayesian FDR of α, which means that 100α% of the edges identified as discoveries are

expected to be false positives. The threshold φα is determined in the following way:

For all (i, j) : i < j, we sort pij in descending order to yield p(k), k = 1, ..., q(q− 1)/2.

Then, φα = p(ξ), where ξ = max{(k∗) :
∑k∗

k=1(1 − p(k))/k
∗ ≤ α}. The set of edges

{(i, j) : pij > φα} can be claimed to be positive in the graph based on an average

Bayesian FDR of α.

2.4 Simulation Study

In this section, we conduct a simulation study to examine the performance of our

method. We set q = 25 and consider three scenarios that portray different complexity

levels of the networks in generating data. We assume that the discrete data matrix

X is generated from the model,

Xij ∼ Pois(eθij),

θi ∼ Nq(µ,Σ),

where θi = (θi1, . . . , θiq)
′. The covariance matrix, Σ, or its corresponding precision

matrix, Ω = Σ−1 is specified as follows:
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• Model 1: We assume that Σ is the covariance matrix of a Gaussian AR(1)

process with the element σij = 0.7|i−j|. The specification of Σ corresponds

to a band-diagonal precision matrix Ω of bandwidth 1, where only 4% of the

off-diagonal elements are zero.

• Model 2: We assume that Σ is the covariance matrix of a Gaussian AR(4)

process with the element of Ω = Σ−1 to be ωij = 2I{|i− j| = 0} − 0.5I{|i− j| =

1} − 0.8I{|i− j| = 2}+ 0.2I{|i− j| = 3}+ 0.3I{|i− j| = 4}. The precision matrix

Ω is a band-diagonal matrix of bandwidth 4, where 30% of the off-diagonal

elements are zero.

• Model 3: The true decomposable graph G is specified such that about 15% of

the off-diagonal elements in the corresponding precision matrix are set to be

zero. The true Σ is then generated from the HIW distribution HIW(G, 3,Φ)

conditional on the graph G, where Φ is an arbitrary positive definite matrix.

The configurations of the nonzero off-diagonal elements in the precision matrices

as specified in models 1, 2, and 3 are shown in Figure 2.1. For each model, datasets

Ω1 Ω2 Ω3

Fig. 2.1. The zero patterns of the precision matrices specified in
the models 1 (left), 2 (middle), and 3 (right) in the simulation study.
Zero entries in the precision matrices are indicated in white color,
while nonzero entries are in black.
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are generated of three sample sizes n = 25, 50, and 100. Our proposed Bayesian model

for discrete data is used to estimate the network structure based on the posterior

samples of 15,000 iterations after 5,000 burn-in iterations. The prior for the graph

π(G) is taken to be constant since no biological GO information is available for

simulated data.

For comparison, we transform the simulated data into log ratios, and assume a

Gaussian graphical model for the log-transformed data with the hierarchy:

log(Xi) ∼ Nq(µ,Σ).,

p(µ|Σ, G) ∝ constant,

Σ|δ, r, G ∼ HIW(G, δ, rIq),

r ∼ Unif(0, c),

G ∼ π(G).

The above Gaussian graphical model has the same hierarchical priors on µ and Σ

as in our discrete graphical model, but has a different likelihood. The posterior

distributions and the MCMC sampling schemes of the parameters µ,Σ, r, G are the

same as described in Appendix A except that the log(θ) is replaced with log(X).

To evaluate the performance of the methods, we calculate the true positive rates

(TPRs) and the false positive rates (FPRs) defined as

TPR =
TP

TP + FN
, FPR =

FP

TN + FP
,

where TP, FP, TN, and FN denote the number of true positive, false positive, true

negative, and false negative edges, respectively. Figure 2.2 shows the plots of TPRs

versus FPRs as we vary the decision threshold on the posterior probabilities of edge

inclusion, which are called the receiver operating characteristic (ROC) curves, based

on one simulation result under each of the three settings and n = 50. The figure
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shows that the ROC curves of the discrete graph models are closer to the upper left

corner than those of the Gaussian graph models for the three simulation settings,

indicating a better performance of our method in estimating the discrete graphs.

Table 2.1 summarizes the mean numbers of false positive edges and false negative

edges over 20 replications. The graph models are selected as described in Section 2.3

based on thresholds corresponding to an FDR of α = 0.20. In accordance with

the ROC curves, the discrete graph models have significantly fewer false negatives

than the Gaussian graph models, suggesting a higher sensitivity of our method to

the edges in a graph. As the sample size increases, both the FPRs and the FNRs

decrease obviously in our discrete graph models compared with those in the Gaussian

graphical models. When the sample size increases to 100, our method estimates the

discrete models optimally, especially for the sparse model, model 1, which has FPRs

of less than 10% on average and FNRs of 0%.
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Fig. 2.2. Plots of true positive rates versus false positive rates as
the threshold on the posterior probabilities of inclusion in the model
is varied (i.e. ROC curves). The curves are based on one simulation
run under each of the three scenarios described in Section 2.4 and
of the sample size n = 50 . The solid lines correspond to the ROC
curves for the discrete graph models, while the dashed lines for the
Gaussian graph models.
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2.5 Real Analysis

2.5.1 SAGE Dataset and Pre-Processing

We apply our algorithm in modeling the gene expression network of 25 genes.

These genes are identified to be differentially expressed in breast cancer cells by com-

parison of SAGE expression files followed by statistical tests (Allinen et al., 2004;

Porter et al., 2001). The SAGE dataset of these 25 genes is composed of 50 SAGE li-

braries obtained from carcinoma breast tissue cells. These libraries are publicly avail-

able for sharing at the Human SAGE Genie website

(http://cgap.nci.nih.gov/SAGE). This website, motivated by the Cancer Genome

Anatomy Project (CGAP), is a platform where researchers share their SAGE dataset-

s that are generated from diverse cancer and normal tissues in many laboratories.

Sequencing resources vary across laboratories, so each SAGE library has a different

total number of tags. As a consequence, the variances of errors are not in the same

Table 2.1
Simulation results under different network reconstruction methods
for model 1, 2, and 3. The mean false positive edges and the mean
false negative edges over 20 replications are presented in the table
with the standard deviations in parentheses. FP: false positive; FN:
false negative. See Section 2.4 for details about the models.

true graph discrete graph model Gaussian graph model
Model n No edges Edges FP edges FN edges FP edges FN edges
Model 1 25 276 24 71.45 (14.84) 5.45 (1.43) 65.15 (12.98) 9.65 (1.98)

50 276 24 49.55 (13.33) 0.65 (0.81) 60.70 (10.75) 6.55 (1.79)
100 276 24 23.95 ( 5.06) 0.00 (0.00) 50.65 ( 8.91) 3.10 (1.55)

Model 2 25 210 90 64.00 (10.02) 45.10 (4.74) 54.30 ( 9.92) 52.95 (5.40)
50 210 90 48.65 (14.41) 30.35 (4.43) 55.35 ( 8.66) 46.75 (4.51)
100 210 90 26.60 ( 8.21) 11.40 (3.36) 52.05 (12.69) 37.55 (4.13)

Model 3 25 253 47 50.85 (10.58) 19.95 (2.80) 52.50 (11.47) 30.80 (4.11)
50 253 47 43.60 (10.56) 14.70 (2.25) 48.30 (10.17) 26.60 (3.94)
100 253 47 26.80 ( 8.47) 9.80 (2.86) 39.70 ( 8.35) 19.05 (3.91)
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scale. Hence, we normalize the tag frequencies in each library by scaling them so

that the total numbers of tags are 20,000 in all libraries.

2.5.2 The Inferred Gene Expression Network

The functional semantic similarity is calculated for each pair of the 25 genes of

interest as discussed in Section 2.2.3 using the Bioconductor package GOSemSim

(Yu et al., 2010). The semantic similarity scores are obtained for biological process

GO terms for each pair of genes. Figure 2.3 shows the intensities of the calculated

priors on the edges between all pairs of genes in a color map, where the darkness

of a lattice is proportional to the prior probability of including the edge in a graph.

The prior on a graph is then assigned as the product of the prior probabilities as

discussed in Section 2.2.3.
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The proposed Bayesian discrete graphical model is applied to the discrete SAGE

data to estimate the network structure and model selection is based on the posterior

samples of 50,000 iterations after 10,000 burn-in iterations. The Bayesian estimates

of the graphs are obtained by averaging each edge separately and graph models are

selected based on an FDR of α = 0.20. The resulting gene network is displayed in

Figure 2.4 (a), which is partially supported by biological studies.

The genes NFKB1 and NFKB2 encode the subunits of a transcription factor

NF-κB, which is known in biological research to stimulate the expression of genes

involved in a wide variety of biological functions. The target genes of NF-κB include

CD44, COL1A2, CXCL1, FOS, FN1, HSPA5, SAT1, and TACSTD2, which are

identified in our inferred network. The promoters of these target genes are all found

to contain the NF-κB binding site for transcriptional regulation. Biological studies

also find that TACSTD2, the gene encoding a cell surface receptor, transduces an
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Fig. 2.4. The inferred networks in real SAGE data analysis using
the discrete graphical model. (a) The prior for the graph G is derived
from GO-based functional semantic similarities. (b) The prior for G
is constant for all graphs.
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intracellular calcium signal and contributes to tumor pathogenesis by activating the

ERK/MAPK pathway (Cubas et al., 2010). This discovery is consistent with the

constructed gene network in which TACSTD2 is connected to FOS, NF-κB, and

IGFBP7, which are involved in the ERK/MAPK pathway.

The gene COL1A2 encodes one of the chains for type I collagen, the major com-

ponent of extracellular matrix in skin and other tissues. Research in biology has

found that the synthesis of the chain is highly regulated by different cytokines and

transcription factors at the transcriptional level. These protein factors involved in

COL1A2 regulation include AP1, a family of transcription factors containing the

protein product of FOS; NF-κB, the protein product of NFKB1/2; ERK1/2, which

can be activated by TACSTD2; and IGFs, which interact with IGFBP7-encoded

proteins (Ghosh, 2002). The protein product of FN1 gene is also known to interact

with the chain of type I collagen encoded by COL1A2 (Sipes et al., 1993). These

findings directly support the dependency between COL1A2 and its neighbors in the

inferred gene network. Some other biological discoveries also agree with our network

such as the transcriptional regulation of IL-8 by CEBPB (Weber et al., 2003) and

SOD2-related oxidative stress induced expression of CXCL1 (Wu et al., 2009).

To test the sensitivity of the network inference to the GO-derived prior probabili-

ties, we reanalyze the real data without the priors induced based on GO information,

i.e. the prior of each graph is constant. The resulting network as shown in Figure 2.4

(b) is much more complex than the GO-based network, including more than 100 edges

between the 25 genes.

2.6 Discussion

In this section, we extend the Bayesian graphical model for gene networks to dis-

crete expression data from SAGE experiments. We model the count data of mRNA

transcripts with independent Poisson distributions, and assume that the log ratios

of the Poisson means follow a multivariate normal distribution, whose inverse covari-
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ance matrix gives the conditional independence structure of the gene network. We

utilize a conjugate prior for the covariance matrix and a collapsed Gibbs sampling

algorithm for a fast graphical model search. In addition, we incorporate biological

information on genes in our algorithm, by measuring the GO-based semantic similar-

ity between each pair of genes as the prior for a graph. The derivation of GO-based

priors is rooted in the biological characteristics of gene regulation. Regulation of

gene expression usually occurs between two genes involved in the same metabolic or

signaling pathways. Hence, two genes with unrelated gene functions are unlikely to

have a direct regulation relationship.

Simulation studies show that our method of modeling discrete gene expression

data estimates the network structures with lower FNRs and FPRs than the Gaus-

sian graphical models that are applied to the log-transformed data. In addition,

simulation results show that our discrete graph model performs obviously better as

sample size increases, and leads to optimal predicted models for moderate sample-

size/dimension ratios (=4). We also apply this algorithm to a real SAGE dataset

of 25 genes. We show in the result that the derived gene network model with our

method agrees with some discoveries in the traditional biological research, which

partially supports our model.
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3. BAYESIAN HIERARCHICAL STRUCTURED VARIABLE SELECTION

METHODS WITH APPLICATION TO MIP STUDIES IN BREAST CANCER

3.1 Introduction

3.1.1 Molecular Inversion Probe-based Arrays for Copy Number Mea-

surement

Changes in chromosomal copy numbers have been identified as important caus-

es of cancer (Pinkel and Albertson, 2005). Chromosomal copy number alteration

(CNA) can lead to over-expression of pro-oncogenes or silence of tumor suppressor

genes, and affect cellular functions in cell division or programmed cell death (Guha et

al., 2008). The accumulation of these DNA errors will eventually influence the devel-

opment or progression of carcinogenesis; hence, chromosomal copy number analysis

has the potential to elucidate tumor progression and identify genetic markers for

cancer diagnosis and treatment. CNAs, as gains and losses, are frequent events in

breast tumors and occur in patterns that are thought to distinguish genetic paths

to tumorigenesis and influence the clinical behavior of the disease (Rennstam et al.,

2003; van Beers and Nederlof, 2006).

Many techniques have been developed for the genome-wide detection of CNAs,

such as array-based comparative genomic hybridization (CGH), bacterial artificial

chromosome CGH, and oligonucleotide array-based CGH (Pinkel et al., 1998; Iafrate

et al., 2004; Lucito et al., 2003). A technique that has recently been used for the

measurement of allele copy numbers is the molecular inversion probe (MIP) (Hard-

enbol et al., 2003; Wang et al., 2007). Unlike other CNA measuring techniques such

as the CGH methods, the MIP assay requires sequences at the ends to bind genomic

DNA simultaneously and utilizes enzymatic steps (ligation) to capture specific loci.

The circularization method ensures a high degree of specificity in identifying the

loci of interest and reduces cross-talk between probes. The MIP assay generates
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genotype data as well as copy numbers, which can be used for sample tracking and

data quality assessment. Most banked samples with clinical follow-up data are from

formalin-fixed, paraffin-embedded (FFPE) tissues, which generally show degraded

DNA in the cells. Wang et al. (2007) show that the MIP technology, which requires

only a small (∼40bp) target binding site, is more accurate in measuring probe copy

numbers for degraded FFPE-derived DNA. Other advantages of the MIP assay are

the low amount of DNA sample required, its high levels of multiplexing, and its

reproducibility. Refer to Hardenbol et al. (2003) and Wang et al. (2007) for more

detailed descriptions of the MIP assay.

In this section, we focus on the analysis of a novel high-dimensional MIP dataset

from 971 samples of early-stage breast cancer (stages I and II) collected through

the Specialized Programs of Research Excellence (SPORE) in breast cancer at the

University of Texas MD Anderson Cancer Center for the purpose of improving risk

prediction for disease recurrence. The dataset includes full genome quantifications for

330,000 MIPs from tumor cells of patients using high-density OncoscanTMarrays from

AffymetrixTM. A detailed description of the dataset with regard to data collection,

pre-processing and normalization is provided in Section 3.6.1. Briefly, the resulting

(normalized) data for downstream statistical analysis consist of the log2 intensity

ratios of the copy numbers in test samples to the copy numbers in normal reference

cells for all probes. Hence, for a cell sample with the normal probe copy number

(= 2), the normalized value is log2(2/2) = 0; for a probe with a gain of measured

copy numbers (> 2) the log ratio is positive, and for a probe with a loss of copy

numbers (< 2) the log ratio is negative. The magnitudes of intensity ratios in the

positive and negative direction are indicative of multiple probe-level gains and losses,

respectively.

In addition to the MIP copy number profiles, we have data on a number of relevant

clinical outcomes from these patient samples, such as the clinical subtype of breast

cancer defined by tumor markers (i.e., hormone receptor status, HER2 status, Ki67),
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tumor size, and lymph node status, as well as other clinicopathological characteristics

such as age, stage, tumor grade, histology, and type of treatment (Thompson et al.,

2011). Our main focus in this section is to identify MIPs that are significantly

associated with the clinical and pathologic characteristics of the tumors with an

emphasis on clinical subtypes. Discovering and validating CNAs that correlate with

tumor characteristics will identify regions of high interest for further investigation as

clinically useful diagnostic and treatment biomarkers.

We assume that many of the acquired chromosomal events act jointly in medi-

ating the biological effects. Thus it is of high interest to model the joint effects of

CNAs detected using the MIP probes and discover regions of the genome that exhibit

significant associations – in contrast to univariate single MIP analysis, which might

miss regions with weak marginal but important joint effects on the clinical outcomes.

However, inferential challenges for the MIP copy number dataset include not only

its high-dimensionality but also that markers tend to be spatially correlated because

the MIPs are indexed by genomic location. We propose a novel structured “hunt-

ing” approach to identify areas of the genome that are significantly associated with

clinically relevant outcomes. We follow the two-level hierarchical structure induced

by biology: a gene level and MIP-within-gene level architecture. Thus we group

contiguous MIPs (as per their genomic location) by their unique gene annotation

and treat the genes (group) as the first level of the hierarchy and the MIPs within

the genes (subgroup) as the second level of the hierarchy.

To illustrate our main idea, in Figure 3.1 we show an example plot of the partial

MIP copy number profile for a randomly selected patient sample, where the x-axis

is the genomic location and each vertical line is the log-intensity ratio for an MIP

probe. The different line type patterns correspond to the gene groups, indicating the

uniquely annotated gene structures on the chromosome. There are several features

exemplified in the plot. There exists substantial variability both within and between

the genes, primarily due to different numbers of probes mapped to each gene and
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different probes within the same gene contributing differently, both positively and

negatively. Also there exists serial correlation between the probes within the same

gene, given their proximity by genomic location. Biologically, our gene-centric se-

lection approach is of more interest to our scientific collaborators since there exists

substantial knowledge about genes as functional units and the analytic result is more

interpretable in terms of a medical diagnosis. In addition, for a specific gene, differ-

ent probes may confer different factors to the gene’s function and thus it is of equal

interest to identify predictive probes within a selected gene. Therefore, in our study,

we want to select both genes and within-gene probes that are significantly associated

with clinically relevant outcomes – leading to a statistical formulation of hierarchical

structured variable selection.
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Fig. 3.1. Copy number profile from a tumor sample. The log-
ratios are plotted on the vertical axis against their genomic position
(in MB). The line type patterns indicate the gene structures on the
chromosome.
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3.1.2 Relevant Statistical Literature

Variable selection is a fundamental issue in statistical analysis and has been

extensively studied. Penalized methods such as the bridge regression (Frank and

Friedman, 1993), the lasso regression (Tibshirani, 1996), the SCAD regression (Fan

and Li, 2001), the LARS regression (Efron et al., 2004) and the OSCAR regression

(Bondell and Reich, 2008) have been proposed due to their relatively stable perfor-

mance in model selection and prediction. The lasso method has especially gained

much attention. It utilizes an L1-norm penalty function to achieve estimation shrink-

age and variable selection. In a Bayesian framework, the variable selection problem

can be viewed as the identification of nonzero regression parameters based on pos-

terior distributions. Different priors have been considered for this purpose. Mitchell

and Beauchamp (1988) propose a “spike and slab” method that assumes the prior

distribution of each regression coefficient to be a mixture of a point mass at 0 and

a diffuse uniform distribution elsewhere; this is extended by George and McCulloch

(1993; 1997), Kuo and Mallick (1998), and Ishwaran and Rao (2005) in different

settings. Other methods specify absolutely continuous priors that approximate the

“spike and slab” shape, shrinking the estimates toward zero (Xu, 2003; Bae and

Mallick, 2004; Park and Casella, 2008; Griffin and Brown, 2007; 2010). In particu-

lar, Park and Casella (2008) extend the frequentist lasso with a full Bayesian method

by assigning independent and identical Laplace priors to the regression parameters.

The above mentioned methods ignore the grouping structure that appears in

many applications such as ours. The individual-level variable selection methods

tend to select more groups than necessary when selection at group level is desired.

To accommodate group-level selection, Yuan and Lin (2006) propose the group lasso

method, in which a lasso penalty function is applied to the L2-norm of the coefficients

within each group. This method is subsequently extended by Raman et al. (2009) in

a Bayesian setting. Zhao et al. (2009) generalize the group lasso method by replacing

the L2-norm of the coefficients in each group with the Lγ-norm for 1 < γ ≤ ∞. In the
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extreme case where γ =∞, the coefficient estimates within a group are encouraged

to be exactly the same. However, these grouped model selection methods carry out

selection only at group level, not at within-group level; that is, they only allow for the

variables within a group to be in or out of the model simultaneously. More recently,

some frequentist methods have been developed for selection at both group level and

within-group level. Wang et al. (2009) reparameterize predictor coefficients and

selected variables by maximizing the penalized likelihood with two penalizing terms.

Ma et al. (2010) propose a clustering threshold gradient-directed regularization

(CTGDR) method for genetic association studies.

In this section, we propose a Bayesian method to perform the variable selection

on hierarchically structured data given that the grouping structures are known. We

propose a novel hierarchical structured variable selection (HSVS) prior that gener-

alizes the traditional “spike and slab” selection priors of Mitchell and Beauchamp

(1988) for grouped variable selection. Specifically, instead of the uniform or multi-

variate normal distribution of the traditional “spike and slab” methods, we let the

“slab” part in the prior be a general robust shrinkage distribution such as a Laplace

distribution, which leads to the well-developed lasso-type penalization formulations.

Unlike other group selection methods, which usually utilize lasso penalties for group-

level shrinkage and selection, our proposed prior uses selection priors for group-level

selection that are combined with a Laplace “slab” to obtain Bayesian lasso esti-

mates for within-group coefficients, thus achieving group selection and within-group

shrinkage simultaneously. More advantageously, because the full conditionals of the

model parameters are available in closed form, this formulation allows for efficient

posterior computations, which greatly aid our analysis of high-dimensional datasets.

Using full Markov chain Monte Carlo (MCMC) methods, we can obtain the pos-

terior probability of a group’s inclusion, upon which posterior inference can then

be conducted using false discovery rate (FDR)-based methods, which are crucial in

high-dimensional data. Our method thresholds the posterior probabilities for group
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selection by controlling the overall average FDR while within-group variable selection

is conducted based on the posterior credible intervals of the within-group coefficients

obtained from the MCMC samples. Furthermore, we propose extensions to account

for the correlation between neighboring coefficients within a group by incorporating

a Bayesian fused lasso for within-group variable selection. Due to the conjugate na-

ture of model formulation, our method could also be easily extended to nonlinear

regression problems for discrete response variables.

The rest of Section 3 is organized as follows. In Section 3.2 we propose our

hierarchical Bayesian models for simultaneous variable selection at both group and

within-group levels. In Section 3.3, we extend the Bayesian models for variable selec-

tion of generalized linear models. In Section 3.4, we show the FDR-based methods

for group selection. Simulation studies are then carried out and discussed in Section

3.5. We apply the models to the real MIP data analysis in Section 3.6 and conclude

with a discussion in Section 3.7. The technical details including the full conditional

distributions and the posterior sampling algorithm are described in Appendix B.

3.2 Probability Model

Let Y = (Y1, . . . , Yn)T denote the clinical outcomes/responses of interest from n

patients/samples and X denote the n × q-dimensional covariate matrix of q probes

from MIP measurements. For ease of exposition we present the model for the Gaus-

sian case here and discuss generalized linear model extensions for discrete responses

in Section 3.3. The model we posit on the clinical outcome is

Y = U b + Xβ + ε,

where U denotes the fixed effects of non-genetic factors/confounders such as age at

diagnosis, tumor size, and lymph node status with associated parameters b. We

further assume that the data matrix X and the coefficients β are known to be
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partitioned into G groups/genes, where the gth group contains kg elements for g =

1, ..., G. We assume that a given probe occurs in only one gene (group), which is

trivially satisfied for these data since the probes are grouped by genomic location and

mapped to a uniquely annotated gene. Thus, we write X = (X1, ...,XG), with β =

(β1, ...,βG) denoting the group-level coefficients and βg = (βg1, ..., βgkg) denoting

the within-group coefficients. The error terms ε = (ε1, . . . , εn) are assumed to be

independently and identically distributed N (0, σ2) for the Gaussian responses. Our

key construct of interest is the q-dimensional coefficient vector β, which captures the

association between the probe measurements and the clinical outcome. Hereafter

we propose a novel hierarchical prior construction based on the natural hierarchical

structure of the probe measurements that simultaneously selects relevant genes and

significant probes-within-genes. We present the independent case first, wherein we

assume the within-group coefficients are independent and subsequently extend the

method in Section 3.2.2 to account for within-group correlations.

3.2.1 Hierarchical Structured Variable Selection Model

At the group level, we employ a “selection” prior and introduce a latent binary

indicator variable γg for each group g with the following interpretation: when γg = 0,

the coefficients βg of the gth group have a point mass density at zero, reflecting that

the predictors in the gth group are not selected in the regression model; conversely,

when γg = 1, the gth group is selected in the model. At the within-group level,

we assign a robust “shrinkage” prior and use the scale mixture normal distribution
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(Andrews and Mallows, 1974; West, 1987) for each element in βg conditional on

γg = 1. Our hierarchical formulation of the prior can be succinctly written as

βg|γg, σ2, τ 2
g ∼ (1− γg)δ{βg=0kg} + γgNkg(0kg , σ

2Dτg ),

where Dτg = diag( τ 2
g1, ..., τ

2
gkg

),

γg|p ∼ Bernoulli(p),

τ 2
gj|λg ∼ G(•), (3.1)

where δ• represents the Dirac delta measure that places all its mass on zero, τgj’s

are the Gaussian scaling parameters of the “slab” distribution, and G(•) is a general

mixing distribution. By setting G to different mixing distributions, various shrinkage

properties can be obtained. In this dissertation, we let G(•) be an exponential distri-

bution, τ 2
gj|λg ∼ Exp(λ2

g/2), with a rate parameter, λg for gth group. This prior leads

to well-developed lasso formulations with a (group-specific) penalty/regularization

parameter λg for the gth group. Other formulations are possible as well, such as the

normal-exponential-gamma prior of Griffin and Brown (2007) and normal-gamma

prior of Griffin and Brown (2010), by using other families of scaling distributions.

We call our prior in (2.1) the hierarchical structured variable selection (HSVS) prior,

which has the following properties: (1) It generalizes the spike and slab mixture

priors of Mitchell and Beauchamp (1988) to grouped settings, and accommodates

robust shrinkage priors for the slab part of the prior replacing the uniform slab.

(2) The within-group shrinkage follows the well-developed lasso formulation, which

promotes sparseness within selected groups and automatically provides interval es-

timates for all coefficients. (3) The hierarchy allows for the simultaneous selection

and shrinkage of grouped covariates as opposed to all-in or all-out group selection

(Yuan and Lin, 2006) or two-stage methods (Ma et al., 2010; Wang et al., 2009). (4)

Most importantly, it is computationally tractable for large datasets since all full con-
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ditionals are available in closed form, which greatly aids our MCMC computations

and subsequent posterior inference, as we show hereafter.

In order to gain more intuition regarding this prior, Figure 3.2 (a) shows the

schematic plot of an HSVS prior distribution versus a Bayesian group lasso prior

distribution. In each plot, the density of the HSVS and the group lasso prior is

imposed on a group composed of two individual variables with coefficients β1 and

β2. The “spike” at zero in the HSVS prior introduces group-level sparsity by simul-

taneously forcing both variables in the group to zero when β1 and β2 are both small

in value. The Laplace distribution elsewhere in the prior shrinks individual coeffi-

cients within a group toward zero, which in return influences the group selection. In

contrast, the Bayesian group lasso prior simultaneously shrinks β1 and β2 and does

not lead to within-group selection; whereas our HSVS prior results in both group

and within-group variable shrinkage and selection, as is evidenced in Figure 3.2 (b)

– which shows an example plot of the posterior distribution for the two coefficients

in a group with an HSVS and a Bayesian group lasso prior, respectively.

To complete the prior specifications in the Gaussian case, we use a diffuse Gaus-

sian prior N (0, cI) for the coefficients for fixed effects b, where c is some large val-

ue. For the parameter p that controls the group level selection, we use a conju-

gate Beta hyperprior: Beta(a, b) with (fixed) parameters a and b. We estimate the

group-specific lasso parameters λ2
1, ..., λ

2
G and specify a common gamma mixing dis-

tribution Gamma(r, δ), ensuring their positivity. We use the improper prior density

π(σ2) = 1/σ2 on the error variance, which leads to a closed form of the full condition-

al distribution. These hyperpriors result in conjugate full conditional distributions

for all model parameters, allowing for an efficient Gibbs sampler. (See Appendix A

in Supplementary Materials for the full conditional distributions and corresponding
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Fig. 3.2. Schematic plot of prior and posterior distribution of the
hierarchical structured variable selection (HSVS) method. (a) Left:
the density curve of an HSVS prior for a group with two variables;
Right: a Bayesian lasso prior for a group with two variables. (b)
Left: an example plot of the posterior distribution for a group with
two variables when an HSVS prior is applied; Right: an example plot
of the posterior distribution for the group of two variables when a
Bayesian lasso prior is applied.
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Gibbs sampling schemes.) Our full hierarchical model for the HSVS linear model

can be succinctly written as

Likelihood: y|U ,X ,β, σ2 ∼ Nq(U b + Xβ, σ2In),

Priors: b ∼ N (0, cI ),

βg|γg, σ2, τ 2
g ∼ (1− γg)δ{βg=0kg} + γgNkg(0kg , σ

2Dτg ),

where Dτg = diag( τ 2
g1, ..., τ

2
gkg

),

Hyperpriors: γg|p ∼ Bernoulli(p), τ 2
gj|λg ∼ Exp(

λ2
g

2
), p ∼ Beta(a, b),

λ2
g ∼ Gamma(r, δ), σ2 ∼ 1/σ2.

3.2.2 Fused Hierarchical Structured Variable Selection Model

In the proposed HSVS construction above, we utilize a group-specific binary indi-

cator for group-level selection and a Bayesian lasso method via independent Laplace

priors for within-group shrinkage, which is invariant to the permutation of the order

of the group-specific variables. In situations where there exists a natural ordering

of the variables, such as ours, where the probes within a gene have a natural or-

der with respect to their genomic positions, it might be useful to account for the

“serial” structure of such data. For this purpose, we extend our HSVS model by

implementing a Bayesian fused lasso for within-group variable selection.

The (frequentist) fused lasso is defined by Tibshirani et al. (2005) using the

following penalization framework:

β̂ = arg min{
∑
i

(yi −
∑
j

xijβj)
2}, subject to

q∑
j=1

|βj| ≤ λ1 and

q∑
j=2

|βj − βj−1| ≤ λ2,
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where, in comparison with the regular lasso, the fused lasso utilizes two regulation

parameters. The first parameter λ1 encourages sparsity in the coefficient estimation

and the second parameter λ2 reduces the differences between neighboring coefficients,

thus encouraging smoothness in the coefficient profiles βj as a function of j and

accounting for the adjacency structure of the data. Kyung et al. (2010) derive the

Bayesian version of the fused lasso for non-grouped settings.

In our second proposed prior, the fused-HSVS, we incorporate the Bayesian fused

lasso in the hierarchical model for within-group variable selection, as follows:

βg|γg, σ2, τ 2
g ,ω

2
g ∼ (1− γg)δ{βg=0kg} + γgNkg

(
0kg , σ

2Σβg

)
,

where Σ−1
βg

=


1

τ2g1
+ 1

ω2g1
− 1

ω2g1
··· 0

− 1

ω2g1

1

τ2g2
+ 1

ω2g1
+ 1

ω2g2
··· 0

...
...

...
...

0 0 ··· 1

τ2
gkg

+ 1

ω2
g(kg−1)

 ,
γg|p ∼ Bernoulli(p),

τ 2
gj|λ1g ∼ Exp(

λ2
1g

2
), for j = 1, ..., kg,

ω2
gj|λ2g ∼ Exp(

λ2
2g

2
), for j = 1, ..., kg − 1,

where τgj’s are the variances of the individual coefficients within a group and ωgj’s

introduce correlations between neighboring coefficients in the prior. By using the

exponential hyperpriors with the regularization parameters, λ1g’s and λ2g’s, the hi-

erarchy shrinks the coefficient estimates and reduces the difference in neighboring

coefficients.

As with the independent HSVS model, we can assign a beta hyperprior distribu-

tion to the parameter p and diffuse gamma hyperprior distributions Gamma(r1, δ1)

and Gamma(r2, δ2) to the two sets of regularization parameters {λ1g : g = 1, ..., G}

and {λ2g : g = 1, ...G}, respectively. We use the same prior parameters for λ1g’s

and λ2g’s. However, different values could be used for each set. These choices of
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hyperprior densities lead to conjugate conditional posterior distributions, which can

then easily join the other parameters in the Gibbs sampler. The full hierarchical

model with fused within-group priors is formulated as follows:

Likelihood: y|U ,X ,β, σ2 ∼ Nq(U b + Xβ, σ2In),

Priors: b ∼ N (0, cI ),

βg|γg, σ2, τ 2
g ,ω

2
g ∼ (1− γg)δ{βg=0kg} + γgNkg

(
0kg , σ

2Σβg

)
,

Hyperpriors: γg|p ∼ Bernoulli(p), τ 2
gj|λ1g ∼ Exp(

λ2
1g

2
), ω2

gj|λ2g ∼ Exp(
λ2

2g

2
),

p ∼ Beta(a, b), λ2
1g ∼ Gamma(r1, δ1), λ2

2g ∼ Gamma(r2, δ2),

σ2 ∼ 1/σ2.

3.2.3 Choice of Hyperparameters

For the parameters of the beta prior on p in the HSVS and the fused-HSVS

models, we set (a, b) = (1, 1), which is a uniform prior. This choice of prior results in

the prior probability of a model containing k groups out of G potential groups being

p(k) ∝
(
G
k

)−1
(Scott and Berger, 2010), which encourages sparsity in model selection.

More informative choices can be accommodated using appropriate specifications of

these parameters. For the gamma priors of λ2
g in the HSVS model and of λ2

1g,

λ2
2g in the fused-HSVS model, we consider the shape parameters (r, r1, r2) to be

1, as in Kyung et al. (2010) and Park and Casella (2008), such that the prior

densities approach 0 sufficiently fast, and we use the empirical Bayes estimator of

the rate parameters (δ, δ1, δ2). For example, conditional on r = 1, the empirical

Bayes estimator of δ in the HSVS model is δ(k) = G∑
g Eδ(k−1) (λ2g |y)

at the kth iteration.
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3.3 Generalized Hierarchical Structured Variable Selection Model for

Discrete Responses

Due to the conjugate construction of both the HSVS and fused-HSVS models,

they can be extended to discrete responses using the latent variable formulations as

in Albert and Chib (1993) and Holmes and Held (2006). We present the binary case

and note that extensions to multinomial and ordinal responses can be dealt with in

a similar manner.

Suppose that n binary responses, Y1, ..., Yn, are observed and that Yi has a

Bernoulli distribution with probability pi. We then relate the predictor variables

with the responses using a probit regression model

Pr(Yi = 1|β) = Φ(X ′iβ),

where Φ is the normal cumulative distribution function. Following Albert and Chib

(1993) we introduce n independent latent variables Z1, ..., Zn, such that,

Yi =

 1, Zi ≥ 0;

0, Zi < 0,

Zi = Uib + Xiβ + εi, εi ∼ N (0, 1),

where the prior on β parallels the developments in Sections 2.1 and 2.2 with Yi’s

replaced by Zi’s, giving rise to our generalized-HSVS model. The generalized-HSVS

model leads to a truncated normal for the full conditional distribution of Zi. Hence

Zi’s can easily be embedded in the Gibbs sampling. The posterior distribution and

Gibbs sampling of Zi’s are detailed in Appendix B.
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3.4 Model Selection Using False Discovery Rates

The posterior sampling schemes we have outlined explore the model space and

result in MCMC samples of both the group indicators and the corresponding within-

group coefficients at each iteration. The groups that are significant predictors may

appear in most of the posterior samples; whereas the others may appear less often.

We summarize the information in the samples for conducting model selection by using

the false discovery rate (FDR)-based model averaging approach as in Section 2.4.

The detail of the FDR-based model selection method and its theoretical basis

are discussed in Section 2.4. Briefly, suppose we have T posterior samples of a

parameter set from an MCMC computation. Recall that by our prior structures, for

each MCMC iteration, a certain set of variable groups is included in the regression

model whose group indicator γ
(t)
g = 1, where γ

(t)
g is the value of γg at the tth MCMC

iteration. Let pg represent the posterior probability of including the gth group in the

model, g = 1, ..., G, which can be estimated by:

pg =
1

T

T∑
t=1

I{γ(t)
g = 1}.

We assume that for some significance threshold φ, any variable group with pg > φ is

significant, and thus is included in the regression model. We choose the threshold φ in

the following way to control the overall FDR at a pre-determined value α ∈ (0, 1): for

all the groups g = 1, ..., G, we sort pg in descending order to yield p(g), g = 1, ..., G.

Then, φα = p(ξ), where ξ = max{g∗ :
∑g∗

g=1(1 − p(g)/g∗) ≤ α}. Thus, the set of

groups Xφα = {g : pg > φα} can be claimed as significant in the regression model

based on an average Bayesian FDR of α. For the within-group selection, we select

individual variables (conditional on the significant groups) based on the posterior

credible intervals of the coefficients.
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3.5 Simulation Studies

We conducted two detailed simulation studies to evaluate the operating char-

acteristics of our method in the context of a linear regression model and a probit

regression model (closely mimicking our real MIPs data), as presented in Sections

3.5.1 and 3.5.2 respectively.

3.5.1 Simulations for Linear Regression Models

We first assumed a simple linear model,

Y = Xβ + ε,

and considered five scenarios that portray different aspects of the data generating

process, with the following specification of the covariate matrix, X .

• Model I: We first generated twenty-one latent random variables Z1, ..., Z20 and

W from independent standard normal distributions. The covariates X1, ..., X20

were defined as Xi = (Zi + W )/
√

2. We considered 20 variable groups for

the regression model, where the ith group, i = 1, ..., 20, is composed of all the

terms in a fourth-degree polynomial of Xi. The datasets were simulated from

the following true model

Y = X3 +
1

2
X4

3︸ ︷︷ ︸ −1

2
X6 +

2

3
X4

6︸ ︷︷ ︸ +2X9 −
3

2
X3

9︸ ︷︷ ︸+ε,

where ε ∼ N (0, 22). We collected 100 observations from each run. This model

is similar to the settings used in Yuan and Lin (2006), where the predictors

have a natural grouping structure. However, our study is different in that

not all elements in a group are present in the true models, i.e., some of the
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within-group coefficients are set to zero. Hence, selections at both group and

within-group levels are desired for the model.

• Model II: We generated the covariates X1, ..., X20 as in model I. We then

considered 20 variable groups for the regression model, where the ith group,

i = 1, ..., 20, is composed of all the terms in a fourth-degree polynomial of Xi.

However, the data were simulated from a true model with a total of 9 vari-

able groups, each containing only 2 terms of the fourth-degree polynomial. We

collected 100 observations from each run. This model has the same setting as

model I except for the sparsity level in the true model, with model II being

less sparse (having more variables) than model I.

• Model III: We generated twenty latent variables Z1, ..., Z20 independently from

a standard normal distribution. We then considered 20 groups for the regression

model, with each group composed of four variables, Xij for j = 1, ..., 4. Xij’s

were generated as Xij = (Zi + eij)/
√

2, where eij ∼ N (0, 1). The data were

simulated from the true model

Y = X31 +X32 +X33︸ ︷︷ ︸ +
4

3
X61 +

1

2
X62︸ ︷︷ ︸ +

1

3
X91 −X93 − 2X94︸ ︷︷ ︸+ε,

where ε ∼ N (0, 22). We collected 100 observations from each run. In model

III, the four candidate variables within the same group are correlated, with

a correlation r = 0.5; whereas the variables between groups are independent.

The true model includes partial elements within three groups. Hence, selections

at both group and within-group levels are desired for the model.

• Model IV: We generated twenty latent variables Z1, ..., Z20 independently from

a standard normal distribution. We then considered 20 groups for the regres-

sion model, with each group composed of four variables, Xij for j = 1, ..., 4.

Xij’s were generated as Xij = (Zi + eij)/
√

1.01, where eij ∼ N (0, 0.12). The
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data were simulated from the same model as in model III. We collected 100

observations from each run. This model has the same setting as model III, ex-

cept that the variables within the same group have a much higher correlation,

r = 0.99.

• Model V: We generated ten latent variables Z1, ..., Z10 independently from a

standard normal distribution. We then considered 10 groups for the regression

model, with each group composed of 10 variables, Xij, j = 1, ..., 10. Xij’s were

generated in the same fashion as in model III. The data were simulated from

the true model

Y = X31 +X32 +X33 +X34 +X35 +X36︸ ︷︷ ︸ −X61 −X62 −X63 −X64︸ ︷︷ ︸+ε,

where ε ∼ N (0, 22). We collected 100 observations from each run. Thus,

model IV includes two predictive groups, each group having a block of constant

nonzero coefficients. We use model IV to compare the performance of the HSVS

and fused-HSVS method when collinearity between neighboring coefficients is

present in a group.

For each dataset generated from models I, II, III, or IV, the HSVS, the group

lasso, the regular lasso, and the stepwise selection methods were used to estimate the

coefficients. For each dataset generated from model V, the HSVS, the fused-HSVS,

and the group lasso methods were used to estimate the coefficients. The Bayesian

estimates were posterior medians using 10, 000 iterations of the Gibbs sampler after

1, 000 burn-in iterations. Significant groups were selected based on an FDR of α =

0.10. The regular lasso, and the group lasso methods estimated coefficients using the

lars (Efron et al., 2004) and grpreg (Breheny and Huang, 2009) packages respectively,
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with the tuning parameters selected using Cp-criterion and 5-fold cross validation.

To evaluate the performance of each method, we use the true model error defined as

ME(β̂) = (β̂ − β)′X ′X (β̂ − β). (3.2)

Table 3.1 summarizes the average model errors over 200 runs, along with the number

of false positive (FP) and false negative (FN) groups/individual variables selected

for each method. The results show that the HSVS method has slightly smaller model

errors than the group lasso method and significantly smaller model errors than the

lasso and stepwise methods for models I, II and III; but it performs no better than the

group lasso for model IV, where there are extremely high correlations within groups.

For the group-level selection, the HSVS method is similar in performance to the group

lasso method. However, the HSVS method has an obviously higher false negative

rate than the group lasso when the number of nonzero groups increases, as indicated

in model II. For the within-group-level selection, we use the 95% posterior credible

intervals based on MCMC samples to select significant variables within the FDR-

based significant groups. Table 3.1 shows that the method performs better overall

than other methods, with lower false positive rates, although at the price of small

false negative rates. This is expected since we use the Bayesian lasso formulation,

which shrinks within-group coefficients toward zero. Hence, the model tends to

deselect the within-group variables that have only weak effects on the response. In

our simulation study, the model has higher probabilities of obtaining false negatives

for those variables whose true coefficients are less than 0.5 in absolute value.

The results of the model V estimation show that the fused-HSVS method has low-

er model errors than the other two. In addition, the fused-HSVS method performs

better than the HSVS in within-group-level selection, with both lower false positive

and false negative rates. The results indicate that the fused-HSVS method is better

when the variables within a group have similar effects on the response. Compared

to the HSVS prior, the fused-HSVS prior leads to less varying coefficient estimates
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within a group, due to the constraint on the differences between neighboring coeffi-

cients.

3.5.2 Simulations Based on Real Data

In this section, we present the results from simulations for high-dimensional gen-

eralized linear models closely mimicking our real breast cancer data presented in

Section 3.6.2. Specifically, we simulated data from a probit regression model,

Pr(Yi = 1|β) = Φ(X ′iβ), (3.3)

where Φ is the cumulative distribution function of a standard normal distribution.

We considered 61 groups that were composed of 917 variables, with the grouping

structure similar to the gene-probe architecture of the breast cancer data. The data

matrix, X , was generated with the following two correlation structures:

• Model VI: The data matrix, X , were partitioned by columns where each subma-

trix Xg corresponds to the covariates of the gth group. The grouping structures

were the same as the breast cancer data. For each group g, the corresponding

submatrix, Xg , was independently generated from Nkg(0,Σ) with the element

of Σ to be, σij = 0.5|i−j|.

• Model VII: As with model VI, the data matrix, X , were partitioned by columns

where each submatrix Xg corresponds to the covariates of the gth group. The

grouping structures were the same as the breast cancer data. For each group g,

the corresponding submatrix, Xg , was independently generated from Nkg(0,Σ).

Differently, the element of Σ was set to be σij = 0.9|i−j|. Hence the model has

a higher level of within-group correlations in generating X than model VI.

For each model, we collected 900 observations for each run. The generalized

HSVS, the generalized fused-HSVS, and the generalized group lasso methods were
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compared in estimating models VI and VII. As in Section 3.5, the Bayesian estimates

were posterior medians using 10, 000 iterations of the Gibbs sampler after 1, 000 burn-

in iterations. Significant groups were selected based on an FDR of α = 0.10. The

generalized group lasso method estimated coefficients using the grpreg (Breheny and

Huang, 2009) package with the tuning parameters selected by 5-fold cross validation.

The average model errors over 40 runs are presented at the bottom of Table 3.1,

along with the false positive (FP) and false negative (FN) numbers of selected group-

s/individual variables for each method. In accordance with the real analysis results,

the HSVS and the fused-HSVS methods are similar in performance. Furthermore,

the two HSVS-based methods have slightly lower model errors than the generalized

group lasso method, as well as better performance in within-group variable selection

as evidenced by the FP and FN rates.

3.6 Application to Genomic Studies of Breast Cancer Subtype

3.6.1 MIP Study on Breast Cancer

Breast tumor samples with complete clinical and follow-up data and adequate

tumor DNA from FFPE tissue blocks were identified through the Specialized Pro-

grams of Research Excellence (SPORE) in breast cancer at MD Anderson Cancer

Center. The samples were obtained from a retrospective study of 2, 409 women diag-

nosed with pathologic stage I or II breast cancer who were surgically treated at MD

Anderson between 1985 and 2000. Clinical information, including the patient’s age,

stage, tumor size, lymph node status, nuclear grade, estrogen receptor (ER) status,

and progesterone receptor (PR) status, was also collected. The breast tumor samples

were classified into four subtypes based on immunohistochemical analysis of ER, PR,

HER2, and Ki67: luminal A (ER+Ki67low), luminal B (ER+Ki67high), HER2neu+,

and triple-negative breast cancer (TNBC) (ER−PR−HER2−). DNA extracts from

FFPE tumor samples and 10% matched normal samples (from the same patients)
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Table 3.1

Simulation results under different model specifications. The mean
errors over 200 replications for models I to V and the mean errors
over 40 replications for models VI and VII are presented in the table;
standard deviations are shown in parentheses. FP: false positive; FN:
false negative. See Section 3.5.1 and Section 3.5.2 for details about
the models.

Group of Variables Within-group Variable
Model Error FP FN FP FN

Model I:
HSVS 0.22 (0.09) 0.0 (0.0) 0.0 (0.0) 0.14 (0.37) 0.79 (0.55)
Group Lasso 0.29 (0.15) 0.02 (0.15) 0.0 (0.0) 6.06 (0.63) 0.0 (0.0)
Lasso 0.64 (0.21) 11.41 (3.23) 0.0 (0.0) 18.42 (7.35) 0.28 (0.45)
Stepwise 1.92 (0.52) 17 (0.0) 0.0 (0.0) 74 (0.0) 0.0 (0.0)
Model II:
HSVS 0.78 (0.26) 0.0 (0.0)0.26 (0.44) 0.65 (0.88) 4.39 (1.28)
Group Lasso 0.84 (0.25) 0.1 (0.36)0.25 (0.16) 18.35 (1.49) 0.05 (0.31)
Lasso 1.02 (0.30) 9.19 (1.68) 0.0 (0.0 22.97 (7.38) 0.93 (0.89)
Stepwise 1.85 (0.48) 11 (0.0) 0.0 (0.0) 62 (0.0) 0.0 (0.0)
Model III:
HSVS 0.47 (0.18) 0.02 (0.14) 0.0 (0.0) 0.14 (0.37) 0.71 (0.79)
Group Lasso 0.53 (0.36) 0.07 (0.33) 0.0 (0.0) 4.27 (1.31) 0.03 (0.3)
Lasso 1.36 (0.60) 10.35 (5.32) 0.0 (0.01)19.95 (15.99) 1.13 (0.99)
Stepwise 3.33 (0.57) 17 (0.0) 0.1 (0.0) 72 (0.0) 0.0 (0.0)
Model IV:
HSVS 0.48 (0.23) 0.07 (0.25) 0.0 (0.0) 0.0 (0.0) 7.99 (0.10)
Group Lasso 0.46 (0.26) 2.29 (1.54) 0.0 (0.0) 13.16 (6.15) 0.0 (0.0)
Lasso 0.78 (0.89) 6.13 (5.52)0.02 (0.12)10.28 (12.68) 4.34 (1.23)
Stepwise 3.30 (0.58) 17 (0.0) 0 (0.0) 72 (0.0) 0.0 (0.0)
Model V:
HSVS 0.37 (0.13) 0.01 (0.07) 0.0 (0.0) 0.52 (0.68) 0.37 (0.60)
Fused-HSVS 0.29 (0.12) 0.02 (0.14) 0.0 (0.0) 0.35 (0.58) 0.21 (0.45)
Group Lasso 0.40 (0.16) 0.37 (0.48) 0.0 (0.0) 13.7 (4.84) 0.0 (0.0)
Model VI:
Generalized HSVS 0.05 (0.03) 0.0 (0.0)0.15 (0.36) 0.20 (0.41) 1.15 (0.80)
Generalized Fused-HSVS0.06 (0.03) 0.0 (0.0)0.15 (0.36) 0.28 (0.51) 0.85 (0.83)
Generalized Group Lasso0.13 (0.05) 2.1 (1.75) 0.0 (0.0)12.43 (11.41) 0.0 (0.0)
Model VII:
Generalized HSVS 0.08 (0.13) 0.0 (0.0) 1.8 (0.85) 0.13 (0.68) 6.95 (1.54)
Generalized Fused-HSVS0.08 (0.12) 0.0 (0.0)1.68 (0.92) 0.15 (0.58) 6.28 (1.74)
Generalized Group Lasso0.19 (0.16) 2.5 (1.81)1.43 (0.59)16.93 (17.18) 2.85 (1.19)
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were prepared for copy number measurements in the AffymetrixTMMIP laboratory,

which was blinded to all sample and subject information. The copy numbers mea-

sured from the MIP assay were then pre-processed following the AsCNAR method

(Yamamoto et al., 2007), with the normal samples used as reference samples. See

Thompson et al. (2011) for more details regarding the pre-processing steps.

The MIP data contain the copy numbers of 330, 000 probes from tumor cells of

971 patients with breast cancer. More than 167, 000 probes were mapped to the

coding regions of functional genes, with the number of probes located in the same

gene ranging from 1 to more than 100. The dataset will be submitted to the NCBI

database following the publication of Thompson et al. (2011).

3.6.2 Analysis Results

We applied our algorithm to the MIP assay dataset to identify genes as well as

probes that are significantly associated with the clinically relevant subtypes of breast

cancer. Among the 971 breast cancer samples, 389 are classified as luminal A, 156 as

luminal B, 158 as HER2neu+, 184 as TNBC, and 84 as unclassified. For our proof of

principle, we modeled the TNBC subtype using the MIP copy numbers. We elected

to focus on the TNBC subtype as TNBC is among the more aggressive breast tumors

for which there are no known treatment targets or prognostic factors; thus, results

from our efforts would be of high interest. Hence, we have binary response variables,

with Yi = 1 if patient i has the TNBC subtype, and Yi = 0 otherwise.

We modeled the binary response using the HSVS model for generalized linear

models as discussed in Section 3.3. The candidate variables are the 167, 574 probes

that are mapped to the coding regions of unique genes, with the probes in the same

gene treated as a group. We ran our HSVS models for each chromosomal arm sepa-

rately and used 10, 000 MCMC iterations with a burn-in of 1, 000 for inference. The

convergence of the MCMC chains was assessed based on the Geweke diagnostic test

(Geweke, 1992), which tests equality of the means of two nonoverlapping parts of a
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chain (the first 0.1 and the last 0.5 by default). The Geweke statistic asymptotically

follows a standard normal distribution if the means are truly equal. The test on the

MCMC samples on a random sample of model parameters indicated stationarity of

the chains since the statistics were within (−2, 2). Based on the posterior probabil-

ities from the MCMC samples and an FDR of α = 0.10, we selected 271 genes for

the HSVS model. These genes were identified as significantly amplified (positive) or

deleted (negative) in TNBC samples compared with other subtypes. Figure 3.3(a)

shows the posterior probabilities of the genes on two chromosomes, with the dashed

line indicating the FDR threshold. Genes are considered significant if their proba-

bilities exceed the threshold. Figure 3.3(b) shows the posterior median coefficient

estimates and the corresponding 95% credible intervals for the probes for two gene

groups.

The Ingenuity System was used to perform a functional analysis based on the

associated ontology terms of these selected genes and to generate Figure 3.4. Fig-

ure 3.4(a) shows that the immune response term is enriched in genes deleted from

the TNBC subset. The cellular proliferation, development, and signaling-associated

terms are enriched in both gene sets. Specifically, the genes amplified in the TNBC

samples include the enzymes associated with oxidative phosphorylation (as seen in

Figure 3.4(b)), gene RBBP8 (retinoblastoma binding protein 8) in the DNA damage

response pathway, oncogenes such as PI3K (phosphoinositide-3-kinase) and SOS1

(son of sevenless homolog 1), and oncogenic transcription factor ETS1 (v-ets ery-

throblastosis virus E26 oncogene homolog 1-avian) (Chinnadurai, 2006; Dittmer,

2003). Other genes deleted in the TNBC samples are BTG2 (BTG family, member

2), which correlates with increased survival in breast cancer; PLK2 (polo-like kinase

2), which is associated with checkpoint-mediated cell cycle arrest; IRS1 (insulin re-

ceptor substrate 1), suppressor of metastasis in breast cancer; IL9 (interleukin-9)

and IL13 (interleukin-13), which are associated with triggering immune response;
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Fig. 3.3. Data analysis results: (a) The posterior probabilities of
being included in the model in MCMC samples for the genes on
chromosome 7 (left panel) and 12 (right panel). The dashed line
indicates the FDR threshold where genes with probabilities above the
line are considered significant; (b) The posterior median estimates
with 95% credible intervals for the probes in two significant genes
groups. The gene names are shown on the top of each plot.

and THBS1 (thrombospondin 1), an angiogenesis inhibiting factor (Eckerdt et al.,

2005; Gibson et al., 2007; Lawler, 2002).
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Fig. 3.4. Functional analysis of selected genes by the Ingenuity Sys-
tem. (a) Ontology terms associated with the genes that have a gain
or loss of copy numbers in the TNBC data; (b) Ingenuity pathway
depicting oxidative phosphorylation. The complexes denoted by the
solid ellipses show the points at which each of the five genes (enriched
in copy-number) plays a role in this pathway.
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We also applied the fused-HSVS model to the MIP dataset. Based on the pos-

terior probabilities from the MCMC samples and an FDR of 0.10, 294 genes were

selected by the fused-HSVS model, with 232 genes the same as those identified by

the HSVS model. A functional analysis shows that the basic cellular function, devel-

opment, and signaling-associated terms are similar across the gene sets identified by

the two methods (as seen in Figure 3.5(a)). Most of the genes of interest mentioned

above, which were selected by the HSVS model, were also selected by the fused-

HSVS model. Figure 3.5(b) shows the coefficient estimates for the two methods as

well as the frequentist group lasso method when applied to a truncated MIP dataset

of 1041 probes located in the coding region of 140 genes on chromosome 1. All the

genes identified by the frequentist group lasso method also showed signals based on

the HSVS methods. However, only two of them were considered significant with the

FDR-based selection method. Comparing the HSVS and fused-HSVS models, the

latter identified one more gene than the HSVS model, whose group members had

very small coefficient estimates (0 to 0.20). The result further supports that the

incorporation of the Bayesian fused lasso into our hierarchical model increases the

performance of selecting large groups of variables with weak predictor members.

3.7 Discussion

In this section, we propose a novel Bayesian hierarchical method, HSVS, which

performs both group-level and within-group-level variable selection simultaneously.

We conducted simulation studies with various settings to evaluate the operating

characteristics of our method. We found our HSVS method to be a strong variable

selector at both group and within-group levels, which satisfies the need for parsimo-

nious model selection. The method performs better overall than the group lasso and

the regular lasso methods when both group-level and within-group-level selections

are desired. However, the performance of the HSVS method decreases when the true

model is less sparse or the variables have only weak effects on the response, due to the
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joint effect of the spike and slab and the lasso priors used in our method. In addition,

the HSVS method performs slightly worse than the group lasso method when high

correlations exist within groups, since we use the Bayesian lasso for within-group

selection, which is not robust to such correlations.

We applied the method to a genetic association analysis of an MIP dataset col-

lected from breast cancer patients, which gives new clues about genes that may be

associated with TNBC. For example, it is generally accepted that cancer cells metab-

olize glucose by glycolysis rather than the more efficient oxidative phosphorylation.

The identified copy-number gain of the genes associated with oxidative phosphory-

lation provides new information about the heterogeneous tumor group defined by

TNBC. The copy-number gain of RBBP8 also indicates an effect of the oxidative

stress caused by the enhanced oxidative phosphorylation in TNBC samples. Other

genes that play important roles in regulating cell cycle, suppressing metastasis, and

triggering immune response were identified as being deleted in TNBC patients, which

may explain the aggressive property of the TNBC subtype.

Considering the natural ordering of probes within a gene in the MIP data, we

extend the HSVS model by replacing the independent Laplace priors with the fused

lasso priors for within-group-level selection. The implementation of the Bayesian

fused lasso method encourages neighboring coefficients within a group to be close

in value. This is expected in the genetic association study of the MIP data since

the copy numbers of neighboring probes within a gene are thought to have similar

effects on breast cancer development. The analysis suggests that the fused-HSVS

prior tends to have a higher sensitivity than the HSVS prior for the genes whose

probe variables have consistently weak regression coefficients.

There are several possible extensions of our HSVS-based models to more general

settings in which variables have grouping structures. Examples of such applications

include polynomial effects of the same factor, genes belonging to the same pathway,

and proteins composing the same molecular complex. Another interesting extension
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would be in a survival context for time-to-event responses, which will address the

more important biological question of finding prognostic markers for cancer progres-

sion. Finally, we can easily extend the hierarchical model by changing the “slab”

part of the group prior for different purposes such as stronger within-group variable

selection using various types of shrinkage priors. We leave these tasks for future

consideration.
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Fig. 3.5. Analysis results for the fused-HSVS model. (a) Compar-
ison of the functional terms associated with the genes indicated by
the HSVS (black color) and fused-HSVS (light grey color) methods.
The plot is generated by the Ingenuity System; (b) Comparison of
the coefficient estimates of a truncated MIP dataset for the HSVS
model and fused-HSVS model. The left plot shows the posterior me-
dian estimates of the HSVS model with 95% credible intervals; the
right plot shows the posterior median estimates of the fused-HSVS
model with 95% credible intervals. The cross symbols in (b) are the
coefficient estimates of the frequentist group lasso method.
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4. BAYESIAN LOW RANK AND SPARSE COVARIANCE DECOMPOSITION

4.1 Introduction

Estimation of covariance matrices is a fundamental issue in multivariate analysis

and many statistical applications including modeling genetic data, brain imaging,

climate data, and many other fields. Suppose y1, . . . ,yn are q-dimensional random

vectors which follow an independent and identical (iid) multivariate Gaussian distri-

bution Nq(µ,Σ). It is well known that the sample covariance Σ̂ =
∑n

i=1(yi− ȳ)(yi−

ȳ)′/(n − 1) is not a stable estimator of the population covariance matrix, Σ, when

the dimension of the covariance matrix is large relative to the sample size.

A number of approaches have been proposed for stable estimation of a high-

dimensional covariance matrix efficiently. Pourahmadi (1999, 2000) and Huang et

al. (2006) estimated the covariance matrix by parameterizing the Cholesky decom-

position of its inverse. Leonard and Hsu (1992), Chiu et al. (1996), and Deng and

Tsui (2010) modeled the matrix logarithm of the covariance matrix. Ledoit and

Wolf (2004) constructed a shrinkage estimator which is a linear combination of the

sample covariance matrix and a pre-chosen matrix. Others focused on parsimonious

modeling by identifying zero off-diagonal elements in the covariance matrices or their

inverse (Yuan and Lin, 2007; Friedman et al., 2008; Levina et al., 2008; Bien and

Tibshirani, 2011; among others). In a Bayesian framework, Wong et al. (2003) used

a selection prior for off-diagonal elements of the partial correlation matrix to identify

zeros in an inverse covariance matrix. Talluri et al. (2011) and Wang (2012) used

Byesian graphical lasso priors for sparse inverse covariance matrix estimation. Oth-

ers employed a hyper-inverse Wishart (HIW) prior for covariance selection given a

decomposable Gaussian graphical model (Lauritzen, 1996; Giudici and Green, 1999;

and Armstrong et al., 2009), which was extended for nondecomposable graphical

models by Giudici and Green (1999), Roverato (2002), Brooks et al. (2003), and

Atay-Kayis and Massam (2005).
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Luo (2011) introduced a different covariance structure for high-dimensional dataset-

s, which can be decomposed into the summation of a low-rank and sparse matrix

as

Σ = L+ S, (4.1)

where L is a low rank component and S is a sparse component. This decomposition of

covariance matrices for dimension reduction has a wide range of applications includ-

ing factor analytical model, random effects model and conditional covariance model,

where the low rank component L indicates that the variation of the random vector

can be explained by a small number of common factors or principal components,

and the sparse part S displays the variance/covariance between the variables condi-

tional on these latent common factors. Luo (2011) proposed a frequentist approach,

LOREC, which regularizes Σ̂ by the Frobenius norm and uses a composite penalty

on the trace norm of L and the l1 norm of S to achieve the low-rank and sparse com-

ponent estimation respectively. In this dissertation, we propose a likelihood-based

Bayesian approach to estimate a covariance matrix with the decomposition structure

in equation (4.1), and extend our method for graphical factor analysis.

We represent the q×q low-rank matrix L utilizing a singular value decomposition

(SVD) as follows

L = MDτM
T , (4.2)

where M ∈ Rq×r∗ , the diagonal matrix Dτ = diag(τ 2
1 , ..., τ

2
r∗) ∈ Rr∗×r∗ consists

of singular values of L, and r∗ denotes the true rank of L. This decomposition

ensures positive definiteness of Σ and determines the rank of L, which is given by

the dimension of Dτ . When L is low-rank, r∗ << q. This representation of the

covariance matrix has the same structure as in a factor analytic model, where M

could be viewed as the latent factor loadings matrix, the singular values τ 2
k ’s as
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the variances of the latent factors, and the sparse component S as the covariance

matrix of the residuals. In our Bayesian method, we estimate L and S through

the factor analytic model, which has an unknown number of factors and a sparse

covariance matrix of the residuals. To estimate the rank of L, i.e. the number of

true factors, we introduce a binary indicator for each factor separating factor selection

and singular value estimation, and use a hierarchical prior strongly penalizing the

rank of L, as is desired for the low rank property of L. To achieve sparsity in S

estimation, we propose a Bayesian graphical lasso selection method, which combines

a lasso-type prior for covariance element shrinkage and a variable selection prior

enforcing weak elements to be exactly zero. We assign priors such that most of

the parameters have closed-form conditional posterior distributions, which facilitate

the Monte Carlo Markov chain (MCMC) computation and also allow an automatic

choice of the regularization parameters.

In statistical applications such as gene expression and financial data analysis,

we often are interested in the graphical model of the variables, which is flagged by

zero pattern in the off-diagonal of S inverse. In these cases, the sparsity in C = S−1

instead of S is desired for graphical model inference. For this purpose, we extend our

method to a graphical factor analytic model so that it achieves sparsity in estimating

C. We employ a conjugate HIW prior on S in the graphical factor analytic model

when S is restricted to decomposable graphs, and use a Bayesian graphical lasso

selection prior on C when the graph is unrestricted. We show through simulations

that the extended model can recover both the number of latent factors and the

graphical model of the residuals successfully when the sample size is sufficient relative

to the dimension.

The rest of the section is organized as follows. In Section 4.2, we describe our

proposed Bayesian model for low rank and sparse covariance matrix estimation. In

Section 4.3 we report results from simulation studies to assess the operating charac-

teristics of our method. A real data analysis of gene expression data is included in

56



Section 4.4. In Section 4.5 we extend our method to develop a graphical factor ana-

lytic model to handle data where selection of the latent factors as well as inference of

the graphical model among variables are both of interest, and show the application

of the graphical factor analytic model to a gene expression dataset. We provide a

discussion and conclusion in Section 4.6. The full conditional distributions and the

posterior sampling algorithm are described in Appendix C.

4.2 Proposed Bayesian Low Rank and Sparse Covariance Model

Consider a q × n data matrix y, with each column vector yi for i = 1, . . . , n

following an iid Gaussian distribution

yi ∼ Nq(0,Σ). (4.3)

We assume that the covariance matrix Σ could be decomposed as a sum of a low

rank component L and a sparse component S, with L to be represented as a singular

value decomposition MDτM
T as in equation 4.2. Hence we have

Σ = MDτM
T + S. (4.4)

Note that the representation of the covariance in equation (4.4) can be viewed from

the standpoint of a latent factor analytic model:

Y = MF + ε, (4.5)

where M is the q × r∗ latent factor loadings matrix, the diagonal elements in Dτ

are the variances of F , the r∗-dimensional vector of random factors, and S is the

covariance matrix of the residuals ε. Grzebyk, Wild and Chouanière (2004) gave

a sufficient condition for the identification of a multi-factor model with correlated

residuals as in (4.4). However, our main focus here is on the inference of covari-
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ance matrices Σ. Thus, we do not restrict our method to a unique solution for Σ

decomposition.

Since we do not know the rank of L, i.e. the number of latent factors r∗ in the

model, we need to both estimate the number of factors and the variances of the

factors. To separate the two tasks, we introduce an extra binary indicator matrix Z.

Our proposed Bayesian model is

Σ = M(ZDτ )M
T + S, (4.6)

where Dτ is a diagonal matrix with positive diagonal elements τ 2
k for k = 1, . . . , r

for some r > r∗, and Z is a diagonal matrix with binary entries zk ∈ {0, 1} for

k = 1, . . . , r along the diagonal. While τk gives the variance of the kth latent factor,

the indicator zk determines if the latent factor is included in the model. In this way,

we separate the recovery of rank and the estimation of the singular values of L. The

rank of L, r∗, is only determined by the number of 1’s in the diagonal of Z. Now

the estimation of r∗ is equivalent to selecting the true number of latent factors in

a factor analytic model. In our method, we choose a relatively large integer r ≤ q

which is supposed to be much larger than r∗, and expect that the diagonal entries

of Z is sparse. If the estimates of Z diagonals are not sparse, we increase the value

of r.

We can rewrite the likelihood model in (4.3) and (4.6) as the regression-type

representation of a latent factor analytic model:

yi = MZfi + εi, for i = 1, . . . , n (4.7)

fki ∼ N (0, τ 2
k ), for k = 1, . . . , r

εi ∼ Nq(0, S),

where fi = (f1i, . . . , fri)
T are the values of the r-dimensional latent factor vector in

the ith replication for i = 1, . . . , n. If zk = 1, the kth factor, k = 1, . . . , r, is a true
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factor of the variables Y with variance τ 2
k ; otherwise, the kth factor is not included

in the factor model. By rewriting the model in the form of a linear regression

problem, we can assign conjugate priors to M , Z and D, which leads to closed-form

full conditional distributions of the parameters and facilitates the posterior sampling

using a Gibbs algorithm.

4.2.1 Prior Specification for the Low Rank Component

To complete model specification, we need to assign priors to the set of parameters

{M,Z,D, S} in the hierarchical likelihood model (4.7), where M,Z,D give the low

rank component L, and S is the sparse component. Let mjk be the element of M in

the jth row and kth column, and Mk = (m1k, . . . ,mqk)
′ be the kth column vector of

M , which could be viewed as the loading vector of the factor k on the variables. We

assume that Mk has a Gaussian prior:

Mk ∼ Nq(0,
1

q
Iq), k = 1, . . . , r,

where Iq is a q × q identity matrix. Note that for a large dimension q, the columns

of M are approximately orthogonal. Furthermore, by assigning the prior variance

of mik to be 1/q, we reduce the variability of mik, shift the variability to the single

element τ 2
k in Dτ , and obtain a relatively stable estimate of L.

The binary diagonal matrix Z is modeled as

zk ∼ Bernoulli(pk), k = 1, . . . , r,

where pk is the prior probability of zk = 1. The values of pk determine the strength

of the penalization that is assigned to the rank of L as r∗ = rank(L) is equivalent

to the number of zk = 1. Since L is assumed to be of low-rank, most of the prior
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probabilities are expected to be small or zero. We model these probabilities with the

following hyper-prior distribution:

pk ∼ (1− π)I{pk = 0}+ πBeta(ap, bp),

The hyper-prior of pk is a Beta distribution mixed with a point mass at 0 with

probability π, where π is drawn from a Beta prior distribution Beta(aπ, bπ). The

sparseness of the diagonals of Z is explicitly imposed through the hyperparameters

(ap, bp) and (aπ, bπ). When aπ/(aπ + bπ) � 1, pk has a high prior probability to be

zero; when ap/(ap + bp)� 1, pk is still likely to be close to zero if it is not zero. To

impose high penalization on the rank of L, we choose (aπ, bπ) = (1/q, (q− 1)/q) and

(aπ, bπ) = (1, r).

Each diagonal entry τ 2
k in Dτ corresponds to the variance of the kth factor. Hence

we can assign a conjugate Inverse-Gamma prior

τ 2
k ∼ IG(aτ , bτ ), k = 1, . . . , r,

which leads to a closed form of the posterior conditional distribution. Another option

is to specify an improper prior distribution for τ 2
k , p(τ 2

k ) ∝ 1/τ 2
k .

4.2.2 Prior Specification for the Sparse Component

In order to achieve adaptive shrinkage of the sparse component S, we use a

Bayesian graphical lasso prior for estimating the sparse matrix S. In the graphical

lasso method, an l1 penalty term is assigned to S, which, in a Bayesian framework,

is equivalent to independent exponential priors on the diagonal elements Sjj, j =

1, . . . , q, and double exponential priors on the off-diagonal elements Sjj′ , j < j′.

However, the Bayesian graphical lasso method does not set the off-diagonal elements

to exact zeros, which is desired for the sparse S estimation. To this end, we modify
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the method by placing a point mass at 0 in the double exponential priors. The priors

are detailed as follows:

Sjj|λ ∼ Exp(
λ

2
), j = 1, . . . , q,

Sjj′|λ, ρjj′ ∼ (1− ρjj′)I{Sjj′ = 0}+ ρjj′Laplace(λ), j < j′,

where I( · ) is an indicator function. We choose a conjugate gamma hyper-prior dis-

tribution for the shrinkage parameter λ and a conjugate Beta hyper-prior distribution

for the selection parameters ρjj′ :

λ ∼ Gamma(aλ, bλ),

ρjj′ ∼ Beta(aρ, bρ).

In this construction, the hyper-parameter λ shrinks the covariance elements toward

zero, while ρjj′ controls the probability that the (j, j′) element will be enforced to be

a zero. In our experiments, we specify (aλ, bλ) = (1, 1) for a diffuse prior for λ, and

(aρ, bρ) = (0.5, 0.5) for a noninformative prior of ρjj′ .
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The complete hierarchical model can be succinctly summarized as

yi ∼ Nq(MZfi, S), i = 1, . . . , n

fki ∼ N (0, τ 2
k ), k = 1, . . . , r

 (4.8)

Mk ∼
1

q
Nq(0,

1

q
Iq),

zk ∼ Bernoulli(pk),

pk ∼ (1− π)I{pk = 0}+ πBeta(ap, bp),

π ∼ Beta(aπ, bπ),

τ 2
k ∼ IG(aτ , bτ ),


(4.9)

Sjj ∼ Exp(
λ

2
), j = 1, . . . , q

Sjj′ ∼ (1− ρjj′)I{Sjj′ = 0}+ ρjj′Laplace(λ), j < j′

λ ∼ Gamma(aλ, bλ),

ρjj′ ∼ Beta(aρ, bρ),


(4.10)

where i denotes the sample, k denotes the latent factor, i = 1, . . . , n, and k = 1, . . . , r.

4.3 Simulation Studies

We conducted a detailed simulation study to evaluate the operating characteris-

tics of our method. We considered three covariance models to generate the data:

• Model 1: Σ = UDUT + I, where U ∈ Rq×3 with orthonormal columns, and

D = diag(8, 8, 8) · (q/n). This covariance model comes from a factor model

with independent residuals.

• Model 2: Σ = 0.311T + S, where S is block diagonal with each square block

matrix B of dimension 5, and B = 0.711T + 0.3I. This covariance matrix

simulates a random effect model, with the covariance of the residuals to be

block diagonal.
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• Model 3: Σ = UDUT + S, where U and D are the same as in model 1, and S

is a block diagonal matrix as in model 2. This covariance model comes from a

factor model with the covariance of the residuals to be block diagonal.

For each model, 50 observations were generated from the multivariate Gaussian

distribution Nq(0,Σ) with varying dimensions q = 50, 100, and 200. We compared

our proposed Bayesian model for low-rank and sparse covariance decomposition with

the frequentist LOREC method (Luo, 2011) in estimating the covariance matrices as

well as recovering the rank of L and sparsity of S. The estimates of the parameters

using the Bayesian method were based on the posterior samples of 5000 iterations

after 1000 burn-in iterations. The tuning parameters for the LOREC estimators were

picked by 5-fold cross validation using the Bregman divergence loss as in Luo (2011).

Table 4.1 compares the performance of covariance estimation with our Bayesian

method, Luo’s LOREC method, and the sample covariance over 20 replicates mea-

sured by the l1 norm and the Frobenius norm. The two matrix norms are defined

as follows: Let X = (Xij) be any matrix; |X|1 =
∑

i

∑
j |Xij| gives the l1 norm, and

|X|F =
√∑

i

∑
j X

2
ij gives the Frobenius norm. While the LOREC estimator per-

forms better for the random effect model, our Bayesian estimator has lower losses for

the factor model with independent residuals. The two methods have similar losses

in term of the norms for the factor model with correlated residuals. Both of them

are better than the sample covariance in all models.

Table 4.2 summarizes the inference results in the recovery of rank of L and sparsity

of S. The table shows that the Bayesian estimator can recover the true rank of the low

rank components with high frequencies for all the three models, with the successful

recovery rates close to the LOREC estimator. Furthermore, our method has much

lower false positive rates in support recovery of S when S is non-diagonal, at the price

of a little higher false negative rates. The above results indicate that our method can

recover both the rank and the sparsity of the two components with high frequencies.
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Table 4.1
Simulation results for Bayesian low rank and sparse matrix decompo-
sition for model 1, 2 and 3. The mean results over 20 replications are
presented in the table with the standard deviations in parentheses.
See Section 4.5.5 for details about the models.

Losses of Covariance Estimators
model 1 model 2 model 3

L1 norm Frobenius L1 norm Frobenius L1 norm Frobenius
q=50 Bayesian 11.90 (1.82) 8.46 (0.82) 12.89 (1.63) 11.62 (1.46) 13.40 (2.02) 9.78 (0.70)

LOREC 13.64 (1.76) 9.15 (0.68) 11.84 (1.77) 9.12 (0.98) 13.55 (1.73) 9.75 (0.70)
Sample 15.18 (2.12) 11.63 (0.78) 13.98 (2.95) 11.06 (1.27) 13.69 (1.99) 10.75 (0.86)

q=100 Bayesian 15.28 (2.45) 10.00 (0.78) 25.48 (2.74) 16.13 (1.17) 20.89 (3.81) 15.93 (1.00)
LOREC 16.54 (2.19) 10.37 (0.96) 23.67 (2.98) 14.18 (1.68) 21.97 (3.18) 15.40 (0.96)
Sample 20.74 (1.90) 17.36 (0.52) 26.18 (4.64) 20.08 (1.80) 25.39 (5.00) 19.51 (1.43)

q=200 Bayesian 29.90 (3.98) 18.16 (1.15) 49.83 (6.28) 32.71 (10.94) 35.58 (4.10) 25.23 (1.21)
LOREC 32.79 (4.06) 19.31 (1.77) 48.96 (7.51) 28.02 (6.09) 39.66 (3.37) 23.68 (1.04)
Sample 42.58 (2.56) 35.42 (0.97) 54.49 (4.96) 37.6 (1.66) 45.16 (5.25) 35.76 (1.75)
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Table 4.2
Simulation results for Bayesian low rank and sparse matrix decom-
position for model 1, 2 and 3. The mean results over 20 replications
are presented in the table with the standard deviations in parenthe-
ses. FP: false positive discoveries; FN: false negative discoveries. See
Section 4.5.5 for details about the models.

Rank Recovery
model 1 model 2 model 3

%(3 factors) mean(se) %(1 factors) mean(se) %(3 factors) mean(se)
q=50 Bayesian 95 2.95 (0.22) 90 0.90 (0.31) 80 2.80 (0.41)

LOREC 100 3.00 (0.00) 100 1.00 (0.00) 40 2.05 (1.00)
q=100 Bayesian 90 2.90 (0.31) 80 1.20 (0.41) 85 2.85 (0.37)

LOREC 95 2.95 (0.22) 100 1.00 (0.00) 50 2.35 (0.93)
q=200 Bayesian 100 3.00 (0.00) 90 0.92 (0.28) 90 2.9 (0.31)

LOREC 90 2.90 (0.31) 100 1.00 (0.00) 80 2.7 (0.66)
Sparsity Recovery

model 1 model 2 model 3
FN FP FN FP FN FP

q=50 Bayesian 0 (0) 7.75 (4.06) 2.60 (1.90) 40.95 (11.38) 13.45 (7.96) 21.7 (8.16)
LOREC 0 (0) 6.00 (15.75) 0.00 (0.00) 188.25 (50.49) 6.20 (3.07) 518.25 (93.35)

q=100 Bayesian 0 (0) 13.70 (6.33) 15.90 (4.28) 68.90 (15.48) 33.40 (6.06) 37.95 (11.33)
LOREC 0 (0) 3.00 (8.05) 0.05 (0.22) 508.25 (97.80) 5.85 (3.10) 1011.6 (304.4)

q=200 Bayesian 0 (0) 2.0 (1.73) 103.0 (11.91) 34.6 (41.13) 157.0 (15.19) 10.7 (3.01)
LOREC 0 (0) 0.8 (1.47) 0.6 (1.26) 1175.6 (265.0) 6.4 (4.03) 1848.3 (495.0)
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4.4 Covariance Estimation on Gene Expression Dataset

In this section, we applied the Bayesian low rank and sparse decomposition model

to estimating the covariance of a gene expression dataset from Stranger et al. (2007).

The dataset was composed of 60 unrelated individuals of Northern and Western

European ancestry from Utah (CEU). There were four replicates for each individual.

The raw data were background corrected, quantile normalized across replicates of

each individual, and then median normalized across all individuals. We considered

100 genes in our dataset which are most variable among all the genes available in

the gene expression profile. Thus we had n = 60 and q = 100 in our dataset.

We estimated the covariance matrix using our Bayesian method with the LOREC

estimator and the sample covariance as comparison. Figure 4.1 displays a heatmap

showing the absolute intensities of three covariance matrix estimates. Compared to

the sample covariance matrix, the LOREC estimator regulates the sample covariance

estimate by shrinking all the off-diagonal elements uniformly, whereas the Bayesian

decomposition model shrinks more of the elements with strong signals on the top left

corner while keeps the abundant elements with moderate signals at the same time.
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Fig. 4.1. Heatmaps of the absolute of covariance estimates by (a)
sample covariance (b) Bayesian decomposition method (c) LOREC
estimator.
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The Bayesian method and the LOREC estimator also decompose the covari-

ance matrix into low rank and sparse components in the gene expression data. The

LOREC estimator identifies a rank 1 component, and our Bayesian method identi-

fies a low rank component of rank 2. The singular vector of a rank 1 component

is equivalent (up to a multiplying constant) to the loading in a single factor model,

and therefore we obtain the single loading vector from the rank 1 component of the

LOREC estimator. We also obtain the loadings matrix corresponding to the two

random factors identified by our Bayesian decomposition model. Figure 4.2 shows

the scatter plots of the two loadings by the Bayesian model versus the single loading

by the frequentist LOREC method, one of which corresponds to a correlation close

to 1. It suggests that the Bayesian model identifies one latent factor with a similar

loading as the LOREC estimator.
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Fig. 4.2. Scatter plots of the single factor loading identified by
LOREC versus the two factors loadings identified by the Bayesian
decomposition model. The correlation between the two loading vec-
tors on the left subplot is 0.98, and the correlation between the two
loading vectors on the right subplot in 0.12.

Figure 4.3 displays the sparse support of the residual covariance component ob-

tained by the Bayesian decomposition method as well as the LOREC estimator. The
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LOREC estimator identifies nonzero correlations predominantly on the left corner of

the sparse component, whereas the Bayesian decomposition model detects nonzero

correlations overspreading the sparse matrix. This difference in the support of the

sparse component agrees with the patterns in the covariance estimators plotted in

Figure 4.1.

(a) (b)

Fig. 4.3. Matrix plot indicating the sparse support of the residual
covariance component by (a) Bayesian decomposition method (b)
LOREC estimator.

4.5 Bayesian Graphical Latent Model

4.5.1 Introduction

As shown in the hierarchical likelihood model (4.7), the covariance model could be

represented as a latent factor model. We assume in our proposed hierarchical model

in (4.8)-(4.10) that the covariance matrix S of the residuals εi in the latent factor

model is sparse, and use a Bayesian graphical lasso selection prior to achieve sparsity
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in S. However, in many applications of factor analysis including gene expression

data and financial data analysis, the graphical Markov models are of more interest

as they represent the conditional dependence among a set of observed variables. In

this section, we extend the latent factor model in (4.8) by assuming that the inverse

covariance matrix of the residuals, C = S−1, is sparse, whose nonzero pattern in

the off-diagonal elements gives the conditional dependence arising out of a graphical

model. The extended latent factor model with sparse S−1 is a sparse graphical factor

model with the number of factors unknown.

Factor analytic models have been extensively studied for summarizing the vari-

ance and covariance patterns in multivariate data. With advances in computational

tools such as MCMC algorithms, Bayesian methods for factor analysis have been

rapidly developed as seen in Geweke and Zhou (1996), Aguilar and West (2000),

and Rowe (2003) among others. Lopes and West (2004) explored the inference

on the number of latent factors in a factor model with a reversible jump MCM-

C method. Other recent Bayesian factor analysis incorporated different modeling

structures through the columns of the factor loadings matrix (Lopes and Carvalho,

2007; Carvalho et al., 2008). However, all of the methods assume that the covariance

matrix of the residuals is diagonal. That is, all the associations among the observed

variables are exclusively contributed to the latent factors. Giudici (2001) induced the

concept of a graphical factor analytic model, which generalizes factor analytic models

by allowing the concentration matrix of the residuals to have non-zero off-diagonal

elements. He used an HIW prior (Dawid and Lauritzen, 1993) for inference on the

concentration matrices restricted to decomposable graphical models, and assigned a

uniform prior on all decomposable graphs.

We make the following contributions in our extended model. First, we recover

the number of factors as well as the graphical models in a graphical factor analytic

model. Second, we propose a novel prior on the decomposable graphs for the HIW

method, which induces adaptive sparsity in the inferred graphical models. Finally,
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we extend the method from modeling only decomposable graphs with HIW priors

to unrestricted graphs by using a Bayesian graphical lasso selection method. Hence,

this framework allows for additional flexibility both in the aspect of the analysis of

common factors and the modeling of graphical models.

4.5.2 The Graphical Factor Model with Unknown Number of Factors

Before introducing the graphical factor analytic model, we first describe the no-

tations in a graphical model. Let Y be a q−dimensional vector of random vari-

ables. A conditional independence graph is a pair of G = (V,E) with the vertex set

V = {1, ..., q} and the edge set E ⊆ V ×V . Nodes j and j′ are adjacent or connected

in G if (j, j′) ∈ E, whereas j and j′ are conditionally independent if (j, j′) /∈ E. A

graph G with E = V ×V is called a complete graph. Complete subgraphs P ⊂ V are

called cliques; the joint subset of two cliques is called a separator denoted by Q. If a

graph G could be partitioned into a sequence of subgraphs (P1, Q2, P2, ..., PK) such

that V =
⋃
k Pk and Qk = Pk−1

⋂
Pk are complete for all k = 1, ..., K, G is called a

decomposable graph (Lauritzen, 1996). For a covariance matrix S of the variables

Y, let C = S−1 be the inverse covariance matrix, or the precision matrix. Nodes

j and j′ are conditionally independent, given other nodes, if and only if Cjj′ = 0.

Thus, the graph G is given by the configuration of nonzero off-diagonal elements of

C: E = {(j, j′) : Cjj′ 6= 0}.

The standard factor model relates each sample of size q, yi, to an underlying

r∗-dimensional vector of common random factor fi via the linear regression model

yi = M fi + εi,

where M is the q×r∗ factor loadings matrix, fi = (f1i, . . . , fr∗i)
T are the values of the

factors in ith replication, and εi are the residuals independent of the latent factors.

In classical factor models with pre-specified number of factors, the factors fi are
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assumed to follow an independent normal distribution Nr∗(0, Ir∗), and the residuals

εi are from an independent normal Nq(0, S) with S = diag(s11, . . . , sqq).

We relax the assumptions in our model in the following two aspects: (1) the

number of underlying factors, r∗, is unknown, and is thought to be much smaller

than some pre-specified integer r. Since the number of common factors is usually

small, we pick a moderate to large value of r and expect only a small fraction of the

factors are selected. (2) εi ∼ Nq(0, S) with C = S−1 to be a sparse concentration

matrix. That is, we allow nonzero off-diagonal elements in the concentration matrix

C so that the unobserved variables could be dependent on each other conditional on

the latent factors.

A sufficient condition for identification of a graphical factor model with a single

factor and multiple factors is given in Stanghellini (1997) and Guidici (2001) re-

spectively. However, from a Bayesian viewpoint, identification is of less theoretical

concern but more important for posterior computation as discussed in Guidici (2001).

When the graphical factor model is unidentifiable (with more than one solutions),

the likelihood would be flat, and the posterior distribution of parameters would be

multimodal except for extremely informative priors.

Our objective is to select the true number of factors out of r candidate factors,

and to recover the sparse graphical model of the variables represented by the nonzero

pattern in C as well. For factor selection, we introduce a binary indicator zk for each

candidate factor k and assume the factor model in the following linear regression

form

yi = MZfi + εi,

where Z is an r× r diagonal matrix with zk ∈ {0, 1} to be the kth diagonal element,

and fki is distributed as N (0, τ 2
k ). In words, a random factor k is a common factor

of the observed variables with variance τ 2
k if zk = 1; otherwise, it will be excluded
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from the factor model. Hence, the hierarchical specification of the graphical factor

model is

yi = MZfi + εi, i = 1, . . . , n

fki ∼ N (0, τ 2
k ),

εi ∼ N (0, S),

where C = S−1 is sparse. Notice that this graphical factor model parallels the

Bayesian covariance decomposition model in equations (4.8), except that now the

inverse covariance matrix of εi is modeled to be sparse.

4.5.3 Bayesian Hierarchical Model for Decomposable Graphs

For factor selection and loadings estimation in the graphical factor model, we

use the same modeling method as in the Bayesian covariance decomposition model.

That is, we assign the same priors for M ,Z, and Dτ as in equations (4.9). Hence

the graphical factor model has the same likelihood as the Bayesian covariance de-

composition model in equations (4.8), and the same hierarchy for factor estimation

as in equations (4.9). The only difference lies in the assumption and the modeling

method for S, the covariance matrix of the residuals. In this section, we focus on

the modeling method when the graphical models of the residuals are restricted to

be decomposable. The Bayesian model for nondecomposable or unrestricted graphs

will be discussed in the next section.
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When the graphical models of the residuals are restricted to be decomposable,

we allow the covariance matrix of the residuals S to follow a mixture of HIW priors

over decomposable graphs as

S ∼HIW(G, δ,Φ),

G ∼p(G),

where δ ∈ R+ is a fixed degree-of-freedom parameter, Φ is a symmetric positive-

definite scale matrix, and p(G) is the mixing prior over decomposable graphs. The

HIW distribution was introduced by Dawid and Lauritzen (1993) with the probability

density function (pdf) given by

p(S|G, δ,Φ) =

∏K
k=1 p(SPk |δ,ΦPk)∏K
k=2 p(SQk |δ,ΦQk)

,

where Pk and Qk are the cliques and separators of the graph G respectively. The

terms p(SPk |δ,ΦQk) denote the inverse Wishart (IW) density of SPk ∼ IW(δ,ΦPk)

with the pdf

p(SPk |δ,ΦPk) ∝ |SPk |−(δ/2+|Pk|) exp
{
− 1

2
tr(S−1

Pk
ΦPk)

}
.

The HIW distribution is a conjugate prior distribution for the covariance matrix S.

Specifically, if q-dimensional random variables xi follow an iid multivariate normal

distribution Nq(0, S) for i = 1, . . . , n, and S follows HIW(G, δ,Φ), the posterior of

S is S|x, G ∼ HIW(G, δ+n,Φ + xTx). The closed form of the posterior distribution

for S plays a key part in the posterior inference based on an MCMC algorithm. In

our model, we consider δ = 3 as reflecting the lack of prior information on S, and

specify Φ = Iq.

Let eij be a binary indicator denoting whether the edge (i, j) is included or

excluded from the graphical model. One option for the mixing prior p(G) is to
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assign an independent prior probability of an edge, p(eij) ∈ (0, 1), to each pair of

nodes (i, j), so that π(G) =
∏

(i,j)∈E p(eij = 1) ·
∏

(i,j)/∈E p(eij = 0). However, such

priors with a uniform probability controlling the sparsity of the graph G are not

satisfactory in performance. In this dissertation, we propose a new prior of G which

induces adaptive sparsity in the graphical models as:

G ∝ exp(−|G|ξ),

where ξ is a positive value penalizing on the size of the graph G. Varying ξ penalizes

a graph size with different strength. A large value of ξ (> 3) constrains the graph

to be extremely sparse, while a value of ξ near zero approximates a uniform prior

on all graphs. In the Bayesian method, we assign a uniform prior between 0 and a

large value (e.g. 5) on ξ, and estimate ξ using an MCMC algorithm. Such choice

of prior lets the data choose the intensity of the penalization on the graph size and

leads to adaptive sparsity in the inferred graph G. When the graph is restricted

to be decomposable, the hierarchy for modeling the covariance of residuals in the

graphical factor model can be summarized as follows:

S ∼ HIW(G, δ,Φ),

G ∼ exp(−|G|ξ),

ξ ∼ Unif(0, 5).

 (4.11)

4.5.4 Bayesian Hierarchical Model for Unrestricted Graphs

In this section, we assume the graphical model of the residuals is unrestricted.

In Section 4.2.2, we employ a Bayesian graphical lasso selection prior to achieve

sparse estimation of S. We now apply the Bayesian graphical lasso selection prior

on C, the inverse of S. As mentioned above, the graphical lasso prior on a matrix

C is equivalent to independent exponential priors on the diagonal elements Cjj,
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j = 1, . . . , q, and double exponential priors on the off-diagonal elements Cjj′ , j <

j′. However, the Bayesian graphical lasso method does not set the off-diagonal

elements in C to exact zeros. Hence similarly, we add a point mass at 0 in the

double exponential priors. The priors are detailed as follows:

Cjj|λC ∼ Exp(
λC

2
), j = 1, . . . , q,

Cjj′|λC , ρCjj′ ∼ (1− ρCjj′)I{Cjj′ = 0}+ ρjj′Laplace(λC), j < j′.

Again, we choose a conjugate Gamma hyper-prior distribution for the shrinkage pa-

rameter λC and a conjugate Beta hyper-prior distribution for the selection parameters

ρCjj′ :

λC ∼ Gamma(aλ, bλ),

ρCjj′ ∼ Beta(aρ, bρ), j < j′.

As mentioned above, the hyper-parameter λC shrinks the covariance elements toward

zero, while ρCjj′ controls the probability that the (j, j′) element will be enforced to be

a zero. Based on our experiments, we find that noninformative priors on ρCjj′ would

lead to significant inaccuracy in estimating S, and influence the factor selection and

loadings estimation. In this case, we specify (aλ, bλ) = (1, 1) for a diffuse prior for

λC , and (aρ, bρ) = (1, q) for a sparse prior of ρCjj′ .

The hierarchical model for a sparse graphical factor model with unrestricted

graphs can be summarized as follows:

Cjj ∼ Exp(
λC

2
),

Cjj′ ∼ (1− ρCjj′)I{Cjj′ = 0}+ ρjj′Laplace(λC),

λC ∼ Gamma(aλ, bλ),

ρCjj′ ∼ Beta(aρ, bρ).


(4.12)
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4.5.5 Application

In this section, we applied the graphical factor analytic model to the analysis of

simulated datasets as well as a real dataset. In the simulation, we considered three

graphical factor models to generate datasets.

• Model 4: An initial simulation study considered a one-factor model for a 30-

dimensional random vector. The factor loading vector M was randomly gen-

erated with ‖M‖ = 1, the variance of the factor was set to be τ 2 = 4, and

the covariance matrix of the residuals S corresponded to an AR(1) model with

Sjj′ = 0.7|j−j
′|.

• Model 5: The second simulation considered a two-factor model for a 30-

dimensional random vector. The q × 2 factors loadings matrix M = (M1,M2)

with |{j : Mj1 6= 0}| = q/2, {j : Mj2 6= 0} = {1, . . . , q}\{j′ : M1j′ 6= 0}, and

‖M1‖ = ‖M2‖ = 1. The variances of the factors were τ 2 = (4, 4), and the

covariance matrix of the residuals S was a block diagonal matrix with each

square block matrix B of dimension 5, and B = 0.711T + 0.3I.

• Model 6: The third simulation considered a one-factor model for a 30-dimensional

random vector. The factor loading vector M was randomly generated with

‖M‖ = 1, the variance of the factor was set to be τ 2 = 4,, and the covariance

matrix of the residuals S corresponds to a nondecomposable graphical model

depicted in Figure 4.4.

We generated datasets with varying sample size n = 100, 300 for each model. The

proposed graphical factor model with HIW prior method was used to recover the

number of factors and the decomposable graph in model 4 and 5, and the graphical

factor model with Bayesian graphical lasso method was used for model 6. The

estimates of the Bayesian method for model 4 and 5 were based on the posterior

samples of 10000 iterations after 5000 burn-in iterations, and the estimates of the
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Fig. 4.4. Graphical structure of model 6 in the simulations in Section 4.5.5

Bayesian method for model 6 were based on the posterior samples of 5000 iterations

after 1000 burn-in iterations. The estimates of the factor number were the posterior

modes of the number of selected factors, and the graphical model estimates were

based on an overall FDR rate of 0.20.

Table 4.3 summarizes the results in estimating the number of factors and the

graphical model of the residuals over 20 replications. The results indicate that our

Bayesian graphical factor analytic model can recover the number of true latent factors

most of the times. Besides, it can recover the graphical model of the residuals with

both low rates of false positives and false negatives when the sample size is sufficient

relative to the dimension.

We also applied the graphical factor models to a microarray gene expression

dataset from Liu et al. (2011), which was generated from 176 primary breast cancer

patients. We focused on 26 mRNA transcripts whose coding genes are known to lie

in the estrogen receptor (ER) pathway. The estrogen pathway regulates a variety of

genes and plays key roles in the development or progression of breast carcinogenesis.

We analyzed the data with the two graphical factor models. The graphical fac-

tor model for decomposable graphs identifies two latent factors, and the model for
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Table 4.3
Simulation results for Bayesian graphical factor analytic models for
model 4, 5 and 6. The mean results over 20 replications are presented
in the table with the standard deviations in parentheses. FP: false
positive; FN: false negative. See Section 4.5.5 for details about the
models.

Rank Recovery
model 4 model 5 model 6

Sample Size %(1 factor) mean(se) %(2 factor) mean(se) %(1 factor) mean(se)
n=100 95 1.05 (0.22) 70 2.40 (0.68) 75 1.25 (0.44)
n=300 100 1.00 (0.00) 95 1.95 (0.22) 100 1.00 (0.00)

Graph of Residuals
model 4 model 5 model 6

Sample Size FN(se) FP(se) FN(se) FP(se) FN(se) FP(se)
n=100 0.05 (0.22) 7.15 (0.49) 17.35 (3.69) 6.00 (1.68) 0.45 (1.05) 15.8 (2.75)
n=300 0.00 (0.00) 6.90 (0.31) 3.30 (1.59) 9.00 (1.86) 0.00 (0.00) 17.25 (1.80)

unrestricted graphs does not detect any latent factors. The adjacency matrices cor-

responding to the inferred graphical models are plotted in Figure 4.5, depicting the

conditional dependency relationship among the variables. Some of the genes have

multiple sets of oligonuleotide sequences on the microarray, and hence have multiple

appearances including the estrogen receptor gene (ESR1a, ESR1b), MYBL1 (MY-

BL1a, MYBL1b, MYBL1c, MYBLd), TFF3 (TFF3a, TFF3b, TFF3c, TFF3d), XBP

(XBP1a, XBP1b), and IGF1R (IGF1Ra, IGF1Rb).

The graph in Figure 4.5(a) is decomposable derived by the HIW method, and

the graph Figure 4.5(b) is nondecomposable derived by the Bayesian graphical lasso

method. The decomposable graph is much sparser than the nondecomposable graph,

which is probably due to the restriction of decomposition using the HIW method.

This difference in sparsity level resulting from the graph restriction also explains the

different numbers of selected latent factors by the two methods. Comparison of the

two graphs also indicates a lot of shared features, especially in the positive linking

of multiple probe sets for one gene, which partially supports the inference results.
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Fig. 4.5. Adjacency matrix of the genes involved in ER pathway de-
picting the graphical model of the residuals inferred by (a) Bayesian
graphical factor model for decomposable graph (b) Bayesian graph-
ical factor model for unrestricted graph. Some genes have multiple
sets of oligonuleotide sequences on the microarray, and hence the ap-
pearance of multiples of some genes: estrogen receptor itself (ESR1a,
ESR1b), MYBL1 (MYBL1a, MYBL1b, MYBL1c, MYBL1d), TF-
F3 (TFF3a, TFF3b, TFF3c, TFF3d), XBP (XBP1a, XBP1b), and
IGF1R (IGF1Ra, IGF1Rb).

4.6 Discussion

In this report, we propose a Bayesian method of estimating covariance matri-

ces of a particular structure, which is a summation of a low rank and a sparse

component. Different from the frequentist LOREC method, which is based on the

sample covariance estimate only, our Bayesian method of covariance decomposition is

likelihood-based. Hence, it takes the variability of the variables into consideration in

case of q >> n and shrinks the covariance elements of varying intensities differently,

as indicated in the real data analysis. We model the low rank and sparse component

in the form of a latent factor model with correlated residuals. The representation

79



of the decomposable covariance facilitates a Bayesian inference by using conjugate

priors on all the parameters except for the off-diagonal elements in the sparse compo-

nent. Simulations indicate that such representation favors the covariance estimation

for a latent factor model but does not perform as good as the frequentist LOREC

method for a random effect model.

We further extend our method to a graphical factor analytic model, in which we

perform inference on both the number of factors and the sparse graphical model of

the residuals. Simulation studies show that the methods can successfully recover the

number of factors as well as the graphical model when the sample size is sufficient

relative to the dimension. However, simulations (not presented here) also indicate

that in the case of q >> n, the methods tend to choose over-sparse graphical models

of the residuals. This is reasonable: when the sample size is small, the estimate of

the covariance of the residuals S would be inaccurate resulting in significant change

in S inverse estimate. In high-dimensional low-sample-size condition, the Bayesian

methods would choose the most sparse estimate of S inverse that fits the data.
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5. CONCLUSIONS

We have considered three aspects of statistical analysis of genetic data, graphical

network modeling, feature selection, and covariance estimation. We propose new

statistical approaches to derive information from the datasets while accounting for

different natures of the genetic data.

In Section 2, we focus on developing methods for graphical modeling of count

data from SAGE experiments. We propose a generalized linear model to fit the

count data with the log ratios of the mean levels assumed to follow a Gaussian

distribution. We model the underlying gene network with the prior on the covariance

matrix to be a mixture of HIW distributions, and derive graph structures with an

FDR-based method, which thresholds posterior inclusion probabilities of edges in

MCMC sampling. A prior on graphs is derived based on gene relatedness measured

by shared GO terms, which takes existing biological information as a priori.

In the next section, we concern feature selection for chromosomal copy number

data from MIP experiments, which consist of variables with natural grouping struc-

tures. The goal is to select genes at group level as well as probes at within-group level

that are correlated to clinically relevant outcomes simultaneously. We propose the

HSVS model, which utilizes a discrete mixture prior distribution for group selection

and group-specific Bayesian lasso hierarchies for variable selection within groups.

Considering the potential serial correlations among the probes with a gene, we fur-

ther provide method incorporating Bayesian fused lasso methods for within-group

selection.

In Section 5, we consider covariance estimation of Gaussian-distributed variables,

whose variation can be partially explained by a small number of common factors or

principal components, and the covariance conditional on these latent common fac-

tors is sparse. In this case, the covariance matrix can be decomposed into a low rank

and sparse component. We model such structured covariance in the form of a factor
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analytic model where the number of latent factors is unknown, and introduce binary

indicators with a strong selection prior to estimate the rank of the low rank com-

ponent combined with a Bayesian graphical lasso method for the sparse component

estimation. The Bayesian covariance decomposition method is further extended to a

graphical factor analytic model where sparsity in inverse covariance of the residuals is

desired. We use the method to model the conditional independence structures among

the variables while accounting for potential latent factors underlying the variables.

We consider both decomposable graph modeling with hyper-inverse Wishart prior

methods and nondecomposable graph modeling with Bayesian hierarchical graphical

lasso methods.

We can further develop the proposed models accounting for varying characteristic

of data. For example, we may model the gene network of the count data from SAGE

with negative binomial or overdispersed Poisson instead of Poisson distribution to

adjust for the overdispersion existing in SAGE data. In the copy number data

analysis, we can extend the HSVS method for the existence of overlapping coding

regions in the hierarchical structured data. We leave these tasks for future studies.
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APPENDIX A

POSTERIOR INFERENCE FOR GRAPHICAL MODEL INFERENCE FOR

DISCRETE GENE EXPRESSION DATA

In this section, we present the full conditional posterior distributions and the

MCMC algorithm to generate posterior samples of the parameters in the Bayesian

hierarchical model for discrete gene network inference. With the hierarchical mod-

el specified in Section 2.2.2, the full conditional posterior distributions for Gibbs

sampling are as follows:

θij|X,µ,Σ ∝ exp

{
−(θij − µ̃j)2

2σ̃2
j

− eθij + tijXij

}
,

µ̃j = µj + Σj(−j)Σ
−1
(−j)(−j)(θi(−j) − µ(−j)),

σ̃2
j = σ2

j − Σj(−j)Σ
−1
(−j)(−j)Σ(−j)j,

G|θ, r ∝ h(G, δ, rIq)

h(G, δ + n− 1, rIq + Sθ)
·π(G),

Sθ =
n∑
i=1

(θi − θ̄)(θi − θ̄)′,

r|θ,G ∝ h(G, δ, rIq)

h(G, δ + n− 1, rIq + Sθ)
,

µ|θ,Σ ∼ Nq(θ̄,Σ/n),

Σ|θ, r,G ∼ HIW(G, δ + n− 1, rIq + Sθ),

where Σj(−j) is the jth row vector of Σ excluding the jth element, and likewise

with Σ−1
(−j)(−j), θi(−j), and µ(−j).

The parameters µ and Σ can be sampled from the conditional distributions in

closed form, while the parameters θij’s, r, and G are generated using a random walk

Metropolis-Hastings (MH) algorithm within the Gibbs sampling. The details of the

MH algorithm for θij’s, r and G are as follows:
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� MCMC for θij: Given the current state θcij, generate a proposal θpij from a

normal distribution N (θcij, σ
2
θ), with the standard deviation σθ chosen properly

for fast moving. The proposal θpij is accepted with the probability

α(θcij, θ
p
ij) = min

{
1,
f(θpij|X,µc,Σc)

f(θcij|X,µc,Σc)

}
,

where f denotes the full conditional distribution of θij.

� MCMC for r: Given the current state rc, generate a proposal log(rp) from

a normal distribution N (log(rc), σ2
r), with the standard deviation σr chosen

properly. We generate the MCMC samples of r in the log scale to ensure

positivity. The proposal rp is then accepted with the probability

α(rc, rp) = min

{
1,
f(rp|θc, Gc)

f(rc|θc, Gc)

}
,

where f denotes the full conditional distribution of r.

� MCMC for G: Let {eij : i < j} be the set of edge indicators where eij = 1 if

(i, j) ∈ E and eij = 0 otherwise. In an iteration with the current state of graph

Gc = (V,Ec), we choose a pair (i, j) at random and change the state of the

edge, i.e. epij = 1− ecij. If the proposed state Gp = (V,Ep) is decomposable, the

proposal is accepted as a new state with the probability

α(Gc, Gp) = min

{
1,
f(Gc|θc, rc)
f(Gp|θc, rc)

}
,

where f denotes the full conditional distribution of G. If the proposed state

Gp = (V,Ep) is not decomposable, then choose another pair (i, j) until the

proposal graph is decomposable.

Notice from the above formulations that the conditional distributions of G and r

for Gibbs sampling is marginalized over µ and Σ. Hence µ and Σ are not necessary

for sampling the graph model G, resulting in a more efficient collapsed sampler.
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However, posterior Σ samples are still generated in our MCMC algorithm to facilitate

the sampling of θij’s.
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APPENDIX B

POSTERIOR INFERENCE FOR BAYESIAN HIERARCHICAL STRUCTURED

VARIABLE SELECTION METHODS

In this section we present the full conditional distributions for the Bayesian HSVS

methods and the Gibbs sampling algorithm used to update the parameters.

B.1 The HSVS method

With the hyperpriors assigned as described in Section 2.1, the full conditional

posterior distributions are in closed form as follows:

• βg| · ∼ (1− γg)δ{βg=0kg} + γgNkg(σ̃2
g µ̃g, σ̃

2
gσ

2), where

µ̃g = XT
g (Y −X(g)β(g))

σ̃2
g =



τ−2
g1 · · · 0
... 0

. . .
...

0 · · · τ−2
gkg

+XT
g Xg


−1

• γg| · ∼ Bernoulli(pg), where

pg = 1− (1− p)/{1− p+ p · |σ̃
2
g |0.5

τg1···τgkg
· exp(

µ̃Tg σ̃
2
g µ̃g

2σ2 )}

• p| · ∼ Beta(
∑

g γg + a,
∑

g(1− γg) + b),

• τ 2
gj| · ∼ (1− γg)Exp(

λ2g
2

) + γgGIG(1
2
, λ2

g,
β2
gj

σ2 ),

• λ2| · ∼ Gamma(r + kg, δ +
∑

j τ
2
gj),

• σ2| · ∼ Inv −Gamma(n−1+p
2

, 1
2
(Y −Xβ)′(Y −Xβ) + 1

2

∑
g βg

′Dτgβg).
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In the conditional distribution of τ 2
gj, GIG is the abbreviation for “generalized

inverse Gaussian” distribution. A random variable x following a GIG distribution

with the parameter set (p, a, b) has a probability density function as follows:

f(x|p, a, b) =
(a/b)p/2

2Kp(
√
ab)

xp−1 exp{−ax+ b/x

2
},

where Kp is a modified Bessel function.

The closed form of full conditional distributions allows for an efficient Gibbs

sampler, with block updating of (β1, ...,βG), σ2, (γ1, ..., γG), p , (τ 2
11, ..., τ

2
GkG

), and

(λ1, ..., λG) in sequence. Particularly, in the tth iteration, τ
2(t)
gj (j = 1, ..., kg) is drawn

from GIG(1
2
, λ

2(t−1)
g , β

2(t)
gj /σ

2(t)) if γ
(t)
g = 1; else, τ

2(t)
gj is drawn from Exp(λ

2(0)
g /2).

This is a case of the reversible jump MCMC (Green 1995), where the number of

parameters changes when the value of γg switches between 0 and 1. Here we use

a pseudo-prior algorithm, introduced in Carlin and Chib (1995), by sampling τ
2(t)
gj

from Exp(λ
2(0)
g /2).

B.2 The fused-HSVS method

For the fused-HSVS model, the resulting full conditional posterior distributions

are also in closed form:

• βg| · ∼ (1− γg)δ{βg=0kg} + γgNkg(σ̃2
g µ̃g, σ̃

2
gσ

2), where

µ̃g = XT
g (Y −X(g)β(g))

σ̃2
g =

{
Σ−1
βg

+XT
g Xg

}−1

• γg| · ∼ Bernoulli(pg), where

pg = 1− (1− p)/{1− p+ p · |Σβg |−0.5|σ̃2
g |0.5 exp(

µ̃Tg σ̃
2
g µ̃g

2σ2 )}

• τ 2
gj| · ∼ (1− γg)Exp(

λ21g
2

) + γgGIG(1
2
, λ2

1g,
β2
gj

σ2 ), for j = 1, ..., kg

• ω2
gj| · ∼ (1− γg)Exp(

λ22g
2

) + γgGIG(1
2
, λ2

2g,
(βgj−βg(j−1))

2

σ2 ), for j = 1, ..., kg − 1.
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With the above full conditional distributions, we use the Gibbs algorithm, with

block updating of (β1, ...,βG), σ2, (γ1, ..., γG), p , (τ 2
11, ..., τ

2
GkG

), and (ω2
11, ..., ω

2
G,kG−1)

in sequence. As with the HSVS model, we impose a Beta(a,b) prior on p, a Gamma(r1, δ1)

prior on λ1g’s, and a Gamma(r2, δ2) prior on λ2g’s. These hyperpriors lead to con-

jugate full conditional distributions Beta(
∑

g γg + a,
∑

g(1 − γg) + b), Gamma(r1 +

kg, δ1 +
∑

j τ
2
gj), and Gamma(r2 +kg−1, δ2 +

∑
j ω

2
gj), respectively. Thus (p, λ1g, λ2g)

can simply join the other parameters in the Gibbs sampler.

B.3 The generalized-HSVS method

In a generalized linear model framework as specified in Section 3, we have the full

conditional posterior distribution of the latent variables Zi, i = 1, ..., n as follows:

Zi|β, Yi = 1 ∝ N (X ′β, 1) truncated at the left by 0,

Zi|β, Yi = 0 ∝ N (X ′β, 1) truncated at the right by 0.

The full conditional distribution of Zi is a truncated normal. Hence Zi’s can partic-

ipate in the Gibbs sampling described in Sections B.1 and B.2.
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APPENDIX C

POSTERIOR INFERENCE FOR BAYESIAN COVARIANCE

DECOMPOSITION

C.1 Posterior sampling schemes for Bayesian covariance decomposition

In this section, we present the full conditional posterior distributions and a Gibbs

sampling algorithm to generate posterior samples of the parameters. Note that all the

parameters have closed-form full conditional distributions except for the elements in

the sparse matrix S. In this case, we employ the Metropolis Hastings (MH) algorithm

to simulate the parameters in S.

Sampling the factor loadings matrix M :

Let Mk = (m1k, . . . ,mqk))
T be the kth column vector of M , and M(−k) be the

matrix of M excluding the kth column. The full conditional distribution of Mk for

k = 1, . . . , r is

Mk|y,M(−k), f, S ∼ Nq(µMk ,ΣM
k ),

where ΣM
k =

{
S−1(

∑n
i=1 f

2
ki)+qIq

}−1

, and µMk = ΣM
k S

−1(y−M(−k)f(−k) · )fTk · . Hence

we can draw samples of each column of M from a multivariate Gaussian distribution.

Sampling the random factors f :

Let f be an r × n matrix with fki to be the value of kth factor in ith replicate.

Then fk · = (fk1, . . . , , fkn) is the kth row vector of f , and f(−k) · denotes the matrix

of f excluding the kth row. Note fk · could be viewed as the unobserved values of the

random factor k in the n replicates. The full conditional distribution of the transpose

of fk · for k = 1, . . . , r is

fTk · |y,M, f(−k) · , S, zk, τ 2
k ∼ (1− zk)Nq(0, τ 2

k In) + zkNn(µfk , σ
f
kIn),
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where σfk =
(
MT

k S
−1Mk + τ−2

k

)−1

, and µfk = σfk

{
MT

k S
−1(y−M(−k)f(k) · )

}T
. Hence

we can draw samples of each row of f from a mixed multivariate Gaussian distribution

conditional on the binary indicator zk.

Sampling the binary diagonal matrix Z:

The full conditional of each diagonal element of Z, zk, is a Bernoulli distribution:

zk|y,M, f, S, τ 2
k , pk ∼Bernoulli(p∗k),

where p∗k = 1− (1− pk)/
{

1− pk + pk ·
(
σfk
τ2k

)n
2 · exp

(
− 1

2

(µfk)Tµfk
σfk

)}
.

Sampling probabilities pk and π:

The full conditional of pk for k = 1, . . . , r is

pk|zk = 1 ∼ Beta(ap + 1, bp),

pk|zk = 0 ∼ (1− π∗)I{pk = 0}+ π∗Beta(ap, bp + 1),

where π∗ = πbp
ap+bp−πap .

The full conditional of π is

π ∼ Beta

(
aπ +

∑
k

I{pk = 0}, bπ +
∑
k

I{pk 6= 0}

)
.

Sampling the positive diagonal matrix Dτ :

The full conditional of each diagonal element of Dτ , τ
2
k , for k = 1, . . . , r is

τ 2
k |zk, fk · ∼ (1− zk)IG(aτ , bτ ) + zkIG

(
aτ +

n

2
, bτ +

fk · fTk ·
2

)
.

Sampling the diagonal elements Sjj:
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The full posterior conditional density of the diagonal element Sjj, for j = 1, . . . , q,

is

p(Sjj| · ) ∝ det(S)−n/2 exp{−1

2
tr(S−1Λ)− λ

2
Sjj}.

Without loss of generality, suppose that j = p. Let S =

 S−j,−j S−j,j

Sj,−j Sjj

.

With the property of matrices, we have

det(S) = det(S−j) · det(Sjj − Sj,−jS−1
−j,−jS−j,j),

∝(Sjj − c), where c = Sj,−jS
−1
−j,−jS−j,j.

S−1 =

 S−j + S−1
−j,−jS−j,j(Sjj − c)−1Sj,−jS

−1
−j,−j −S−1

−j,−jS−j,j(Sjj − c)−1

−(Sjj − c)−1Sj,−jS
−1
−j,−j (Sjj − c)−1

 ,
=

 S−1
−j,−j 0

0 0

+

 S−1
−j,−jS−j,j

−1

 (Sjj − c)−1
[
Sj,−jS

−1
−j,−j −1

]
.

tr(S−1Λ) =tr
( S−1

−j,−j 0

0 0

Λ
)

+ tr
( S−1

−j,−jS−j,j

−1

 (Sjj − c)−1
[
Sj,−jS

−1
−j,−j −1

]
Λ
)
,

=tr
( S−1

−j,−j 0

0 0

Λ
)

+ d(Sjj − c)−1,

where d =
[
Sj,−jS

−1
−j −1

]
Λ

 S−1
−j,−jS−j,j

−1

 .
Hence, we have

p(Sjj| · ) ∝ (Sjj − c)−n/2 exp{−d
2

(Sjj − c)−1 − λ

2
Sjj}I{Sjj > c}.
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The above distribution does not seem to be in a closed form. We now transform

Sjj to ν = Sjj − c, then the conditional density of ν is

p(ν| · ) ∝ ν−n/2 exp{−(d/ν + λν)/2}I{ν > 0},

which is a generalized inverse Gaussian distribution with parameters (1− n/2, d, λ).

Therefore, at each MCMC iteration, we can draw a sample of ν from the generalized

inverse Gaussian distribution, and obtain Sjj = ν + c.

Sampling the off-diagonal elements Sjj′:

The full posterior conditional density of the off-diagonal element Sjj′ , j < j′ is

p(Sjj′ | · ) ∝ det(S)−n/2 exp{−1

2
tr(S−1Λ)}((1− ρjj′)I{Sjj′ = 0}+ ρjj′

λ

2
exp(−λ|Sjj′|)).

Without loss of generality, suppose that j = p−1 and j′ = p. Let S =

 S−(jj′) S−(jj′),jj′

Sjj′,−(jj′) Sjj′,jj′

,

where Sjj′,jj′ =

 Sjj Sjj′

Sjj′ Sj′j′

.

With the property of matrices, we have

det(S) ∝ det(Sjj′,jj′ −B), where B = Sjj′,−(jj′)S
−1
−(jj′)S−(jj′),jj′ ,

S−1 =

 S−1
−(jj′) 0

0 0

+

 S−1
−(jj′)S−(jj′),jj′

−I2

 (Sjj′ −B)−1
[
Sjj′,−(jj′)S

−1
−(jj′) −I2

]
,

tr(S−1Λ) =tr(

 S−1
−(jj′) 0

0 0

S) + tr((Sjj′,jj′ −B)−1D),

where D =
[
Sjj′,−(jj′)S

−1
−(jj′) −I2

]
Λ

 S−1
−(jj′)S−(jj′),jj′

−I2

 .
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Hence, we have

p(Sjj′ | · ) ∝ det(Sjj′,jj′ −B)−n/2exp{−1

2
tr((Sjj′ −B)−1D)} × p(Sij|λ, ρjj′),

∝ exp

{
−1

2

(Sj′j′ −B22)D11 + (Sjj −B11)D22 − 2(Sjj′ −B12)D12)

(Sjj −B11)(Sj′j′ −B22)− (Sjj′ −B12)2

}
·
{

1− (Sjj′ −B12)2

(jj′jj −B11)(Sj′j′ −B22)

}−n/2
· {(1− ρjj′)I{Sjj′ = 0}+ ρjj′

λ

2
exp(−λ|Sjj′|)}.

We transform Sjj′ to ν = Sjj′ − B12 and let a = Sjj − B11, b = Sj′j′ − B22, then

the conditional density of ν is

p(ν| · ) ∝(1− ρjj′)g(ν)I{ν = −B12, ν
2 < ab}+

ρjj′λ

2
g(ν),

where g(ν) = (1− ν2

ab
)−n/2 exp

{
− bD11+aD22−2D12ν

2(ab−ν2)
− λ|ν +B12|

}
I{ν2 < ab}.

The continuous part of the conditional distribution of ν, g(ν), cannot be sam-

pled directly. Furthermore, g(ν) is nonconcave and therefore the sampler may be

trapped locally if we use the random-walk MH algorithm within the Gibbs sampling.

Since g(ν) only has density over (−
√
ab,
√
ab) and is zero elsewhere, we construct a

piecewise uniform proposal distribution approximating g(ν).

We choose κ− 1 equally spaced grids between (−
√
ab,
√
ab), −

√
ab = ν0 < ν1 <

· · · < νκ =
√
ab, which divide the domain of ν into κ intervals of width 2

√
ab/κ. The

piecewise uniform is as follows:

ga(ν) =



g(ν0+ν1
2

) if ν0 < ν ≤ ν1

g(ν1+ν2
2

) if ν1 < ν ≤ ν2

· · ·

g(νκ−1+νκ
2

) if νκ−1 < ν ≤ νκ
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The independent MH proposal for generating ν = Sjj′ −B12 is given by

q(ν| · ) ∝(1− ρjj′)g(ν)I{ν = −B12, ν
2 < ab}+

ρjj′λ

2
ga(ν).

Samples of ν could be generated using an inverse-CDF method from the proposal

distribution and the proposal ν∗ is accepted with the probability

α = min

{
1,
p(ν∗)

q(ν∗)
/
p(νc)

q(νc)

}
,

where νc = Scjj′ − B12 denotes the current state of ν. The piecewise uniform pro-

posal distribution avoids the local-trap problem and can be sampled easily using

an inverse-CDF method. Furthermore, q(ν| · ) approximates the distribution p(ν| · )

more accurately with the increases of the number of grids. Based on our simulations,

100 grids are enough for a fast convergence of Sjj′ .

C.2 Posterior sampling schemes for graphical factor model

We derive the full conditionals for all the parameters and perform the posterior

inference using a Gibbs sampling algorithm. Note that the prior specification for

the parameters {M, zk, τk} in the graphical factor analytic models parallels the hi-

erarchical model in equations 4.9, so the full conditionals of these parameters for a

Gibbs algorithm are the same as in Section C.1. In this section, we just present the

sampling algorithm of the parameter set {S,G, ξ} for a decomposable graph of the

residuals, and {C, λC , ρC} for an unrestricted graph of the residuals, in sequence.

Sampling {S,G, ξ} for decomposable graphical models

• Sampling of S: The full conditional distribution of S is

S|G, y,M, f ∼ HIW(G, δ + n,Φ + Λ),
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where Λ = (y−Mf)(y−Mf)T . Hence we can generate posterior samples of S

directly from the HIW distribution conditional on other parameters.

• Sampling of G: The conditional distribution of G is

G|y,M, f, ξ ∝ h(G, δ,Φ)

h(G, δ + n− 1,Φ + Λ)
· exp{−|G|ξ}.

The term h(G, δ,Φ) is the normalizing constant for the HIW(G, δ,Φ) distribu-

tion given by

h(G, δ,Φ) =

∏K
k=1 |

ΦPk
2
|(
δ+|Pk|−1

2
)Γ|Pk|

( δ+|Pk|−1
2

)−1∏K
k=2 |

ΦQk
2
|(
δ+|Qk|−1

2
)Γ|Qk|

( δ+|Qk|−1
2

)−1
,

where Γp(x) = πp(p−1)/4
∏p

j=1 Γ(x+ (1− j)/2) is the multivariate gamma func-

tion. Note that the conditional distribution of G is marginalized over S and

hence only dependent on M , f and ξ. This marginalized posterior conditional of

G leads to a collapsed Gibbs algorithm in sampling G, accelerating the graphical

model search task. To sample the graph G from the conditional distribution,

we use a random walk MH algorithm within the Gibbs sampling.

Let {ejj′ : j < j′} be the set of edge indicators where ejj′ = 1 if (j, j′) ∈ E and

ej,j′ = 0 otherwise. In an iteration with the current state of graph Gc = (V,Ec),

we choose a pair (j, j′) at random and change the state of the edge, i.e. epjj′ =

1 − ecjj′ . If the proposed state Gp = (V,Ep) is decomposable, the proposal is

accepted as a new state with the probability

α(Gc, Gp) = min

{
1,
p(Gc|y,M c, f c, ξc)

p(Gp|y,M c, f c, ξc)

}
,

where p( · ) denotes the posterior conditional distribution of G. If the proposed

state Gp = (V,Ep) is not decomposable, then choose another pair (j, j′) until

the proposal graph is decomposable.
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• Sampling of ξ: The conditional distribution of ξ is

ξ|G ∝ exp{−|G|ξ}∑
G∗ exp{−|G∗|ξ}

I{ξ ∈ (0, 5)}.

We use a random-walk MH algorithm to generate posterior samples of ξ. Given

the current state ξc, generate a proposal log(ξp) from a normal distribution

N (log(ξc), σ2
ξ ), with the standard deviation σξ chosen properly. We generate

the MCMC samples of ξ in the log scale to ensure positivity. The proposal ξp

is then accepted with the probability

α(ξc, ξp) = min

{
1,
p(ξp|Gc)

p(ξc|Gc)

}
,

where p( · ) denotes the full conditional distribution of ξ.

Sampling {C, λC , ρC} for unrestricted graphical models

For convenience, let Λ = (y −Mf)(y −Mf)T .

• Sampling of the diagonal elements of C, Cjj, for j = 1, . . . , q: The full condi-

tional density of Cjj is

p(Cjj| · ) ∝(detC)n/2 exp
(
− 1

2
ΛjjCjj −

λC

2
Cjj

)
IC∈M+ .

Without loss of generality, suppose that j = q. Let C = R′R be the Cholesky

decomposition of C where the matrix R = (Rjj′) is upper triangular. Then

p(Cjj| · ) ∝(Cjj − c)n/2 exp
{
− (

Λjj

2
+
λC

2
)Cjj

}
ICjj>c,

where c =
∑q−1

j=1 R
2
j,q does not depend on Cjj. Let ν = (Cjj − c), then the

conditional distribution of ν is

p(ν| · ) ∝νn/2 exp
{
− (

Λjj

2
+
λC

2
)ν
}
Iν>0,
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which follows Gamma(n
2

+ 1,
Λjj+λ

C

2
). Hence, we can draw samples of ν from

the Gamma distribution first, and obtain Cjj = ν + c.

• Sampling of the off-diagonal elements of C, Cjj′ , for j < j′: The complete

conditional density of Cjj′ is

p(Cjj′| · ) ∝(detC)n/2 exp(−Λjj′Cjj′)IC∈M+ · p(Cjj′|ρCjj′ , λC).

Without loss of generality, suppose that j = q − 1 and j′ = q. Then using

Lemma 2 of Wong et al.(2003),

p(Cjj′| · ) ∝
{

1− (Cjj′ − a)2

cb2

}n/2
exp(−Λjj′Cjj′)I|Cjj′−a|<b

√
c · p(Cjj′|ρCjj′ , λC),

∝I|Cjj′−a|<b√c ·
[
(1− ρCjj′)

{
1− (Cjj′ − a)2

cb2

}n/2
ICjj′=0

+ ρCjj′
{

1− (Cjj′ − a)2

cb2

}n/2
exp{−Λjj′Cjj′ − λC |Cjj′ |}ICjj′ 6=0,

where a =
∑q−2

j=1 Rj,q−1Rj,q, b = Rq−1,q−1, and c = R2
q−1,q + R2

q,q do not depend

on Cjj′ . Now transform Cjj′ to ν = (Cjj′ − a)/(b
√
c), and let κ = −a/(b

√
c).

The full conditional density of ν is

p(ν| · ) ∝ (1− ρCjj′)(1− ν2)n/2Iν=κ,|ν|<1 +
ρCjj′λ

C

2
g(ν),

where g(ν) = (1−ν2)n/2 exp{−Λjj′(νb
√
c+a)−λC |νb

√
c+a|}. The continuous

part of the conditional distribution of ν, g(ν), cannot be sampled directly. Since

g(ν) only has density over (−1, 1) and is zero elsewhere, we can use an indepen-

dent MH algorithm as the sampling algorithm for Sjj′ in Section C.1. The de-

tails of the independent MH algorithm are explained in Section C.1. Briefly, we

choose κ− 1 equally spaced grids between (-1,1), −1 = ν0 < ν1 < · · · < νκ = 1,

which divide the domain of ν into κ intervals of width 2/κ, and construct a
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piecewise uniform distribution ga(ν) approximating g(ν). The independent MH

proposal for generating ν is then given by

q(ν| · ) ∝(1− ρCjj′)g(ν)I{ν = κ, |ν| < 1}+
ρCjj′λ

C

2
ga(ν).

Samples of ν could be generated using an inverse-CDF method from the proposal

distribution, and the proposal ν∗ is accepted with the probability

α = min

{
1,
p(ν∗)

q(ν∗)
/
p(νc)

q(νc)

}
,

where νc = (Cc
jj′ − a)/(b

√
c) denotes the current state of ν. Samples of Cjj′ are

obtained as Cjj′ = νb
√
c+ a.
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