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ABSTRACT

The aim of this work is to develop and validate a continuum model for the simu-

lation of the thermomechanical response of a shape memory polymer(SMP). Rather

than integral type viscoelastic model, the approach here is based on the idea of two

inter-penetrating networks, one which is permanent and the other which is transient

together with rate equations for the time evolution of the transient network. We

find that the activation stress for network breakage and formation of the material

controls the gross features of the response of the model, and exhibits a “thermal

Bauschinger effect”. The model developed here is similar to a thermoviscoelastic

model, and is developed with an eye towards ease of numerical solutions to bound-

ary value problems. The primary hypothesis of this model is that the hysteresis of

temperature dependent activation-stress plays a lead role in controlling its main re-

sponse features. Validation of this hypothesis is carried out for the uniaxial response

from the experimental data available in the literature for two different SMP samples:

shape memory polyurethane and Veriflex, to show the control of the evolution of the

temperature sensitive activation stress on the response.

We extend the validated 1D model to a three dimensional small strain continuum

SMP model and carry out a systematic parameter optimization method for the iden-

tification of the activation stress coefficients, with different weights given to different

features of the response to match the parameters with experimental data. A com-

prehensive parametric study is carried out, that varies each of the model material

and loading parameters, and observes their effect on design-relevant response char-

acteristics of the model undergoing a thermomechanical cycle. We develop “response

charts” for the response characteristics: shape fixity, shape recovery and maximum

stress rise during cooling, to give the designer an idea of how the simultaneous vari-

ation of two of the most influential material parameters changes a specific response

parameter.

To exemplify the efficacy of the model in practical applications, a thermovis-

coelastic extension of a beam theory model will be developed. This SMP beam

theory will account for activation stress governed inelastic response of a SMP beam.

An example of a three point bend test is simulated using the beam theory model. The

numerical solution is implemented by using an operator split technique that utilizes
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an elastic predictor and dissipative corrector. This algorithm is validated by using

a three-point bending experiment for three different material cases: elastic, plastic

and thermoplastic response. Time step convergence and mesh density convergence

studies are carried out for the thermoviscoelastic FEM model. We implement and

study this model for a SMP beam undergoing three-point bending strain recovery,

stress recovery and cyclic thermomechanical loading.

Finally we develop a thermodynamically consistent finite continuum model to

simulate the thermomechanical response of SMPs. The SMP is modelled as a

isotropic viscoplastic material where thermal changes govern the evolution of the

activation stress of the material. The response of the SMP in a thermomechanical

cycle is modelled as a combination of a rubbery and a glassy element in series. Us-

ing these assumptions, we propose a specific form for the Helmholtz potential and

the rate of dissipation. We use the technique of upper triangular decomposition for

developing the constitutive equations of the finite strain SMP model. The resulting

model is implemented in an ODE solver in MATLAB, and solved for a simple shear

problem. We study the response of the SMP model for shear deformation as well as

cyclic shear deformation at different initial temperatures. Finally, we implement the

thermomechanical cycle under shear deformations and study the behaviour of the

model.
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1. INTRODUCTION, LITERATURE REVIEW AND MOTIVATION

1.1 Shape Memory Polymers: Behavior, Morphology and Classification

Stimuli-responsive polymers undergo relatively large, abrupt, and physical or

chemical changes in response to small external changes in stimuli [5]. Smart mate-

rials refer to a subset of these materials that can (1) recognize the stimulus in its

surrounding environment as a signal and respond reversibly, and (2) be able to judge

the magnitude of the signal and react with an optimal or useful response by either

changing its physical or mechanical properties [6, 7].

As shown in Figure 1.1, the stimulus can be physical or chemical with a variety

Stimuli Responsive Polymers

Stimuli Response
Physical
Temperature
Electric field
Magnetic field
Mechanical Stress

Chemical
ph
Chemical agents
Biochemical stimulus
Ionic factors

Shape
Colour
Refractive index

Actively Moving Polymers

Shape Memory Polymers Shape Changing Polymers

Light

Moisture retention
Permeability

One shape + TemporaryDifferent shapes + Persistant

Figure 1.1: Parent tree structure for shape memory polymers

of possibilities. The response can manifest itself depending on the morphological

changes involved. We are interested in a subset of these possibilities, where the stim-

ulus is thermal and the response is restricted to shape change and these are known

as actively moving polymers. These can be categorized as (1) shape changing poly-

mers that change their shape gradually, as long as they are exposed to the stimulus.

Removal of the stimulus initiates return of original shape, and (2) shape memory
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polymers where the stimulus is used to program the polymer, and then deformed to

a temporary shape. Even after removal of stimulus and deformation load, the poly-

mer shows memory of the temporary shape. On the reapplication of the stimulus,

the polymer shows memory of the permanent shape.

In this work we will focus on thermally responsive shape memory polymers

A AB B B
Load Cool Unload Heat

A: Permanent shape - Rubbery above transition temperature

B: Temporary shape - glassy below transition temperature

a b c d e

(a) Processes

ε

σ

T
Tg

1

2

3

4

a

b

c

d

e

(b) Material response

Figure 1.2: The processes and corresponding material responses involved in a ther-
momechanical cycle to observe the shape memory effect

(SMPs) and study their behavior in detail. As shown in Figure 1.2, they “lock-

in” a deformed shape in response to a thermal signal and, subsequently, “unlock”

the deformed shape and revert to their original “undeformed” shape when subject

to another thermal signal. The thermal signal stimulates structural changes of the

SMPs at a certain temperature, called the transition temperature. This transition

temperature could correspond to Tg glass-transition (for amorphous polymers) or the

Tm melting temperature (for polymers with crystalline phases), which gives rise to

different kinds of shape-memory behavior [8]. SMPs can be easily deformed (with

response similar to an elastomeric rubber, with modulus of magnitude 10-50MPa) to

give a temporary shape at low-working temperatures below their transition temper-

ature (0-90◦C). Here the SMP is glassy(with modulus of 500-1000MPa) and holds

on to this shape at low temperatures. Upon heating above their transition tempera-

ture, they return to their original structure, where it is rubbery again. Thus a SMP

exhibits a change of shape and modulus while undergoing the shape memory effect,
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Reversible netpoints determining temporary shape
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Figure 1.3: Characterization Methods for shape memory polymers based on perma-
nent netpoints and temporary netpoints [1]

and either or both of these effects can be used for design purposes.

On the morphological level, Kelch and Lendlien [8] observe that SMPs consist of

at least two components: switching domains and permanent networks. The switching

domains act as a molecular switch with a well-defined Tm or Tg, and enable the fixa-

tion of the temporary shape. These domains form a temporary-network, which can

be made to persist over long periods of time by suitably lowering the temperature,

below transition. The permanent network that determines the permanent shape of

the SMP consists of physical netpoints associated with a high thermal transition

temperature or covalent netpoints. Classification of thermally induced SMPs could

be defined by identifying unique characteristics, such as morphology (amorphous or

semicrystalline), nature of crosslinks (chemical vs physical), or the underlying mech-

anism responsible for the shape memory effect. The nature of the netpoints, which

determine the permanent and the temporary shape respectively, could be used to

categorize SMPs as shown in the Figure (1.3) which is reproduced from the work of

Wagermaier, Kratz, et al. [1].
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1.2 Review of Application Areas of SMPs

SMPs have been the subject of intense interest for designers in the last decade,

because of their ability to change their mechanical properties in response to external

non-mechanical stimuli, thus rendering them useful as sensors and actuators in a

variety of applications. The fields of application for SMPs are diverse, ranging from

packaging, electronics, textiles, to biomedical and aerospace applications [9]. These

materials have the potential to revolutionize the design of a wide variety of devices

ranging from human exoskeletons for people with disabilities to morphing wings and

blades for aircrafts.

The central characteristics of a SMP response that concern an application-designer

include the following:

Shape Fixity measures the extent to which the SMP is able to hold on to its tem-

porary shape while unloading. Refer to Figure 1.4a,1.4b.

Shape Recovery measures the extent to which the SMP returns to its original

shape at the end of the cycle. Refer to Figure 1.4a,1.4b.

Stress Recovery measures the stress needed to restrain the SMP at fixed dimen-

sions while the specimen attempts to undergo shape recovery upon applying stimulus.

Refer to Figure 1.4c,1.4d.

Depending on where the application lies, SMPs are designed or analysed to en-

hance the particular parameter driving the application. Refer to Figure 1.5. For

example, if the application were a SMP repair patch, which is used to patch up

dented bodies of vehicles, it would involved being deformed to conform to the body

of the vehicle and frozen at that shape [10]. The first property - shape fixity would

be of crucial importance here, and the patch would be designed to show excellent

shape fixity. On the other hand, if the SMP is being used as a stent, where it is

inserted into the body in its least invasive shape, and on reaching the target area, it

recovers to its original permanent shape [11], the second property - shape recovery

parameter is of most importance. Design for the third property - the stress recovery

parameter comes to the fore in actuator applications, where the SMP may be used

hold open a valve, push a button, or in biomedical applications such as implants to

compete against compressive forces of body tissues.

As observed in the recent paper by Xie [14], since SMPs exhibit large recoverable

strain, applications of SMPs have primarily been advertised and concentrated in this

area. However for a SMP to be useful, it is not necessary for it to exhibit large strain
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Figure 1.4: The processes and corresponding material responses involved in a shape
recovery (top) and stress recovery (bottom) thermomechanical cycle
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Figure 1.5: Examples of property dependent applications of SMPs.

  

(a) Switchable adhesion using SMP micro
pillars[12]

  

(b) Wrinkle Based Structural Colors[13]

Figure 1.6: Examples of small strain applications of SMPs
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behaviour. Several real world applications of shape memory polymers involve small

strain changes. Examples of this include the following: Reddy et al. [12] used small

strain deformations to create gecko inspired thermo-reversible adhesive pads. Lizards

can reversibly adhere to surfaces because of the surface topography of their pads,

that are covered with fine structures of particular dimensions and geometry. The

switching between adhesive and non-adhesive states is mainly due to the tip direc-

tion of the fine structures. The smart adhesive pads uses the same principle, where

the change in the tip direction in the adhesive pad is caused by fine SMP pillars, as

shown in Figure 1.6a. The thermally actuated SMP pillars are tilted in deformed

state. This small strain deformation can still produce adhesive stress of 3N/mm2 by

the pad surface. Different attempts in making a gecko inspired reversible adhesion

systems have been conducted by Xie et al. [15] and Kim et al. [16]. Other small

strain applications have shown up in the creation of localized surface wrinkles based

structural colors [13], as shown in Figure 1.6b. SMP is used as the wrinkle substrate,

and surface wrinkling is created when a rigid thin film supported on the SMP and

compressed laterally beyond a critical strain. Strains as low as 2.6% are sufficient to

generate wrinkles [14].

1.3 Review of Characterization Methods of SMP Behavior and Macro-

scopic Experiments

Tailored characterization methods to obtain a complete description of the mea-

surements of the shape memory behavior are thermomechanical tensile or bending

experiments. A few of the most heavily cited experimental data on SMP character-

ization in recent literature that is relevant to our work, along with the information

on the type of experiments, the cases considered and data available are listed in

Table 1.1. The obtained shape-memory properties are strongly influenced by tem-

perature dependent test parameters like deformation and fixation temperature or

applied heating and cooling rate.

Apart from the mechanical characterization experiments, it is important to un-

derstand which material properties of the SMP govern the shape memory behavior.

Experiments to conduct these studies are more challenging, as they involve synthe-

sizing chemically tunable samples that exhibit different material properties, and only

a handful of researchers address this in the literature. Buckley et al. [21] studied

the effect of crosslink density on the shape recovery response of polytetrahydrofu-
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Table 1.1: Selected list of available experimental data

Author Material Experiment Specs

Tobushi et al. Base: Polyurethane Load: Uniaxial tension
1997 [2] Source: Mitsubishi Levels: 2.4%, 4% and 10% strain
Citation hits by google
scholar: 49

Series: MS5510 Cases: (a) unconstrained free strain recovery
(b) stress recovery under full constraint and
then unloading

Liu et al. Base: Epoxy resin Load: 3-point Flexure
2003 [17] Source: CTD Levels: 10%, 25%, 50%, and 100% strain,

and 25% strain for temperature rate at 1, 3,
5◦C/min

Citation hits by google
scholar: 30

Series: DP7AR Cases: (a) unconstrained free strain recovery

Liu et al. Base: Epoxy resin Load: Uniaxial tension and compression
2006 [3] Source: CRG Levels: ±9% strain
Citation hits by google
scholar: 83

Series: Veriflex Cases: (a) unconstrained free strain recov-
ery(b) stress recovery under full constraint at
the pre-deformation strain (c) stress recovery
under full constraint at low temperature un-
loading strain

Baer et al. Base: Polyurethane Load: Uniaxial tension
2007 [18] Source: Mitsubishi Levels: 20 and 100% strains, at 37 and 80◦C
Citation hits by google
scholar: 26

Series: MP5510 Cases: (a) isothermal free strain recovery (b)
constrained stress recovery

Khan et al. Base: Epoxy resin Load: Shear
2008 [19] Source: CRG Levels: Applied shear rate was 0.01/s with

maximum shear strain limited to approxi-
mately 60%

Citation hits by google
scholar: 6

Series: Veriflex Cases: (a) constrained stress recovery

Tobushi et al. Base: Polyurethane Load: 3-point Flexure
2008 [20] Source: Mitsubishi Levels: 2.4%, 4% and 10% strain
Citation hits by google
scholar: 6

Series: MM6520 Cases: (a) unconstrained free strain recovery
(b) stress recovery under full constraint and
then unloading
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rane/polycaprolactone glycol. The rubbery modulus was increased by increasing the

crosslink density, and this resulted in the increase of the temperature of maximum

shape recovery rate and the shape recovery rate. Buckley also observes that the some

parameters that are important to the SMP behaviour are the initial temperature, the

temperature range and the rubbery modulus. Yakacki et al. [22] studied the shape

recovery response of the polymer stents (SMP formed by photopolymerization of

tert-butyl acrylate and poly(ethylene glycol) dimethacrylate) at body temperature,

as a function of Tg, crosslink density, geometrical perforation, and θhigh. Gunes et

al. [23] studied the effects of thermal expansion on shape memory performance of

shape memory polyurethanes. Some important observations from this work include

(1) the shape recovery process and the thermal expansion behavior counteract each

other. A relatively low value of thermal expansion strain in comparison to recovered

strain is desired for proper shape memory actions of SMP, (2) large thermal expan-

sion strains comparable to the strains imposed on specimens in the stretching step

might decrease the value of recovered strain, (3) the thermal expansion effect may

be much more crucial for SMPs with low recoverable strains (8-10%) and with high

trigger temperatures.

Macroscopic applications of SMPs include utensils for handicapped patients, ban-

dages or casts for patients with motion disabilities [6], morphing wing structures,

SMP repair patches for dented vehicle fenders, reformable mandrels [10]. As can

be seen on studying these applications from their references, the SMP sample is

subjected to bending load. Although uniaxial characterization experiments can be

found abundantly in literature over the last decade, bending characterizations are

less than a handful [17, 20], inspite of the fact that majority of the applications of

SMPs involve bending and large displacements of beams and plates. The benefit

of looking at bending experiments as opposed to uniaxial experiments are not re-

stricted to application areas alone, but characterization problems themselves. For

example, as Liu et al. [17] point out in their paper, in tension or compression,

thermal stresses arise from constrained thermal expansion or contraction, leading to

difficulties in separating the various mechanisms during deformation. Upon cooling,

the applied stress can increase at a fixed strain, while in the flexural deformation the

thermal contraction is not as severely constrained. Other advantages are that large

displacements studies can be achieved in flexure at much more modest strain levels.

A drawback is that the stress and strain are nonuniform and therefore more difficult
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to analyze. Liu et al. [17] carried out several cases of thermomechanical cycle for

a SMP epoxy sample, DP7AR in a three point bending setup, specifically the max-

imum initial temperature, applied deformation, heating/cooling rate and load rate.

They noticed that the primary factors affecting shape recovery response of the SMPs

are the initial high temperature at which the sample is deformed and the applied

stress/strain level. They also observed that higher cooling rates during constant hold

under cooling, necessitate lower temperatures for complete shape fixity, but raise the

peak recovery stress. Also, lower heating rates during recovery increase the peak

recovery stress. Tobushi et al. [20] carried out modified thermomechanical cycle on

a polyurethane SMP sample in three point bending setup. They carry out various

case studies to observe relationships between irrecoverable strain rate and holding

time or holding temperature.

1.4 Review of SMP Models

Establishing appropriate models to simulate the shape memory processes and

to predict the shape memory properties should be helpful for the development and

application of SMPs. Constitutive models are critical for predicting the deforma-

tion and recovery of SMPs under a range of different constraints, in a way that is

accessible to designers of components and applications that use these materials, but

are scant in the literature [3]. In a recent review, Wagermaier et al. [1] state that

the majority of research activities of the last decade on SMPs were focused on the

experimental characterization of the shape memory effect and its principal physical

understanding. However, they also note that only a few studies concentrated on the

development of constitutive theories that describe the thermomechanical properties

of SMPs at the macroscopic level. The key issue in the design of SMP based devices

is a thorough understanding of the constitutive response of these materials under

complex force and temperature protocols and the identification of the parameters

that will serve to characterize the response of these materials and will allow for a

detailed comparison of their properties [24]. Models for the shape fixity and recovery

behavior have been developed by Tobushi et al. [25, 2, 26, 20], Abrahamson et al.

[27], Takahashi et al. [28], Lee et al. [29], Lin and Chen [30], Bhattacharyya and

Tobushi [31], Hong et al. [32], Liu et al. [3], Diani et al. [33]. Compared to the

vast literature on experimental data on SMPs and SMP composites, the literature

on SMP models is still growing only modestly.
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The approaches in modeling techniques that have developed over the last decade

Table 1.2: Classification of few models in the current literature that deal with the
macroscopic responses of pure SMPs

Rheological Phenomenological

Ad-hoc Thermodynamic Concepts

Rate Type Tobushi et al. [25, 2, 26,
20] Lin and Chen [30],
Bhattacharya [31], Abra-
hamson [27]

Ghosh & Srinivasa [34],
Diani [33]

Liu and Gall [3], Qi et al.
[35]

History De-
pendent

Hong Yu [32] − Barot et al. [36], Chen et
al. [37], Kim et al. [38]

from 1997 to 2010 can be classified into rheological and phenomenological approaches

as shown in Table 1.2. Initial rheological modeling attempts mainly focused on cap-

turing the shape recovery characteristics qualitatively. The more recent advances on

the morphological studies encouraged thermodynamically motivated phenomenolog-

ical models over the last five years. However in the attempt to encompass all the

physical aspects of the material, the resulting phenomenological models are compli-

cated and there is no assistance available to an application designer who can use

simple models to predict the SMP responses even approximately.

The model developed by Tobushi et al [2] takes irreversible deformation and ther-

mal strains of shape memory polyurethanes into account. Tobushi and coworkers

have added a friction element into the standard linear viscoelastic model to simulate

the behaviors of shape memory polyurethanes. They have carried out a series of

creep tests of shape memory polyurethanes at different temperatures. They propose

that if the strain exceeds particular threshold strain, irreversible deformation occurs.

Also, the temperature change that would cause thermal expansion is accounted for

by simply adding a coefficient of thermal expansion to terms involving the rate of

strain, without any thermodynamic considerations as seen in Eq. (4) in Tobushi et

al [2]. As a result, their model can be shown to be theormodynamically inconsistent

even for pure thermoelasticity.

The model proposed by Lin and Chen [30] employs two Maxwell elements con-
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nected in parallel to describe the shape memory properties of shape memory polyurethane.

Their modeling results and experimental data show some deviation, which the au-

thors ascribe to the polydispersed glass transition temperature of the studied sam-

ples. The model can qualitatively explain the occurrence of shape memory behaviors.

However, since the dampers in the model are both viscous, there is no truly irrecov-

erable strain at the end of the process. Furthermore, the model was not developed

using thermodynamical principles.

Abrahamson et al. [27] utilize a friction element in their model to account for the

irrecoverable strain at the end of the cycle, that progresses from fully stuck to fully

free over a finite range of strain. It was found that the stress-strain curve predicted

by the model and that obtained by experiment agreed well. However, Abrahamson’s

model does not take the thermal expansion of the material,which is a crucial param-

eter to the material response, into consideration during the change of temperature.

A more recent work is the three-dimensional small-strain internal state variable

constitutive model for uniaxial experiments by Liu et al. [3]. The model uses two

internal variables variables to account for the micromechanical structures: frozen

fraction describing the volume fraction of the frozen phase, and stored strain de-

scribing the strain that is stored (memorized) in the material during freezing. The

entropic strain energy is gradually stored during cooling and released during reheat-

ing as free recovery strain or constrained recovery stress. The model was validated

for uniaxial experiments carried out inhouse by the authors, for various loading con-

ditions and strain levels.

Diani et al. [33] developed a three dimensional thermoviscoelastic constitutive

model formulated in finite strains. This model was based on the viscoelastic prop-

erties of crosslinked SMP networks and was thermodynamically motivated. The de-

formation gradient is split into elastic and viscous parts, and the stress is split into

entropic(following the Neo-Hookean model) and internal energy(defined in terms of

Hencky strain measure) parts. The conditions on the evolution of the viscous part

of the deformation gradient when the material is completely rubber or completely

glassy is specified. The mechanical dissipation equation is obtained from the Clausius

Duhem inequality, and the evolution of the deformation gradients for temperatures

ranging between above glass transition temperature to below glass transition, are

defined to satisfy the mechanical dissipation equation.

Following a similar approach to Liu’s work, Chen and Lagoudas [37] developed a
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three-dimensional constitutive model which can account for the non-linear material

response to large deformations. This model, proposed on the framework of thermoe-

lasticity, incorporates the concepts of stored strain and a frozen volume fraction. The

constitutive equation proposed by this model, in its general form, can be interpreted

as a rule of mixtures with contributions due to deformations in the frozen and active

phase as well as a contribution due to deformations which are frozen upon cooling.

The linearized version of this model for small deformation as a subsequent work was

validated using data generated by Liu et al., however the large deformation model

was not validated due to lack of sufficient data in the literature.

Barot and Rao [39]and Barot, Rao and Rajagopal [36] have developed models

for SMPs undergoing shape setting through partial crystallization using a thermo-

dynamical approach developed by Rajagopal and Srinivasa [40] using the maximum

rate of dissipation criterion.

Although the attempts at modeling the SMP response have increased dramati-

cally in the last decade, there have only been a handful of attempts at implementing

the SMP models in a finite element setup to study the response for different load

configurations or sample geometries, as listed below:

Qi et al. [35] proposed a volume fraction evolution model based on their ex-

perimental findings on SMP, where they used the concept of the first order phase

transition for the deformation from the rubbery state to viscoplastic glassy state.

This model was implemented in a user material subroutine (UMAT) in the finite

element software package ABAQUS. The model was tested for isothermal uniaxial

compressions at different temperatures and strain rates, and the response showed

similar trends to experimental data. It was also tested for free recovery and con-

straint recovery cases, and the model trend agreed with experimental data only for

the former case.

Nuygen et al. [41] incorporated a nonlinear Adam Gibbs model of structural

relaxation and a modified Eyring model of viscous flow into a finite deformation

thermoviscoelastic framework, which involved a fictive temperature concept and a

nonlinear formulation of the Adam Gibbs model. This model was implemented nu-

merically in a finite element setup, where the internal variables were computed by

applying a backwards Euler scheme, and the predictor corrector integration scheme.

The boundary value problem was that of a cylindrical SMP plug subjected to uniax-

ial thermomechanical compression. The model was tested for unconstrained strain
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recovery and constrained stress recovery cycles.

Reese et al. [42] propose a large strain model, in a macromechanical as well a

micromechanical format, employing the rule of mixtures for the energy parts of the

rubbery and the glassy phase. They have implemented both the models in the the

finite element software “FEAP”, to investigate the thermomechanical response of a

three dimensional cylindrical system, followed by a more realistic stent structure.

Srivasatava et al. [43] proposed a large deformation constitutive theory, using

a “multimechanism” generalization of the classical Kroner Lee multiplicative de-

composition of the deformation gradient. They implemented the model in a user

material subroutine (UMAT) in ABAQUS/Standard for thermomechanical loading

of a ring shaped structure, a flat diamond-lattice-shaped structure and compared it

with experimental data. Finally they studied the model response in a cylindrical

diamond-lattice-shaped structure approximating a SMP stent.

Diani et al. [44] proposed a model combining a generalized Maxwell model with

the WLF equation, with specified parameters. Since both the generalized Maxwell

model and the WLF equation are available in the ABAQUS/Standard, the model

was implemented directly using these built-in features, and studied for various cases.

These include the torsion shape recovery of a thin rectangular bar for various heating

rates.

Baghani et al. [45] modified the model presented by Liu et al. [3] and pre-

sented the evolution law for internal variables for cooling and heating. They im-

plemented the constitutive model within a user material subroutine (UMAT) in

ABAQUS/Standard, and simulated the torsion of a rectangular bar and a circular

tube, and compared the results with experimental data.

1.5 Motivation and Problem Formulation

Our approach, while similar in the use of thermodynamical ideas to that of Barot

et al., differs from these models is the following ways: (1) we are focused on shape

setting through glass transition and not through a real phase change, making our

modeling task much simpler, (2) their approach is based on a history integral as seen

from Eq. (34) in Barot et al. [36]. This leads to considerable complications in solving

boundary value problems. Our approach is based on a much simpler rate type con-

stitutive equations using a thermoplasticity like approach, leading to simple ODEs

for homogeneous deformations and coupled PDEs and ODEs for general boundary
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value problems. A Helmholtz potential based approach will be adopted [40] for the

development of the constitutive equations for continuum model, using the maximum

rate of dissipation criterion for the evolution of inelastic strain. The primary hypoth-

esis of this model is that the hysteresis of temperature dependent activation-stress

plays a lead role in controlling its main response features. This hypothesis will be

validated and its implications on the model predictive capabilities as well as on the

morphological understanding of the behavior of SMPs will be studied.

Most works in the literature use the continuum models of SMPs and incorporate

it in a finite element setup for the applications of the SMP by writing a user-defined

routine in FEM packages. Apart from issues with implementing complex non-linear

3D continuum models, this is computationally expensive and/or masks parametric

design and control features that should be transparent and easily available to the

designer. The loading conditions in the thermomechanical cycle studied are mainly

uniaxial loading or torsion loading. While applications of shape memory materials

utilize rods, plates or shells (for example: locking mechanisms, morphing air foils,

repair patches, handicap casts, mandrels), there is a major stumbling block in the

design of devices that use these materials i.e the non-availability of smart structural

models such as beams, plates and shells that will allow designers to quickly evaluate

alternative designs and carry out feasibility studies. Euler Bernoulli, Timoshenko,

and other beam theories have been extended to formulate plate theories within gen-

eral elastic and plastic regimes. This has lead to the development of specialized

discrete elements that are utilized within a finite element framework to simulate

complex geometries subject to complex loading conditions giving rise to various de-

formation modes. Analogous to this, the development of a SMP beam theory as

a first step will establish the necessary background needed to develop specialized

discrete elements that can be utilized to represent shape memory behavior (with

the necessary degrees of freedom and temperature dependence) for structures. This

will enable us to represent the shape memory behavior in a computationally effi-

cient manner, that can be utilized for design exploration and optimization. There

is thus a need to develop a unified framework for the simplistic modeling (both the-

oretical and computational) of such components which is capable of simultaneously

accounting for the special geometry of these components as well as multiple field

dependent behaviors i.e include deformations coupled with hysteretic and thermal

phenomena.This acts as the motivation to develop a thermoviscoplastic beam theory
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model for SMPs.

The particular problems that we are addressing in this work, shall target three

important questions in the field and present solutions for them:

1. Is it possible to develop a simple model for SMPs with as few constitutive pa-

rameters as possible, such that it will capture the behavior of these polymers?

The initial modeling attempts in the literature in the 1990s were rheological

models but they lacked in physical correlation of the morphogical changes in

the SMP, and were ad hoc in their development without any thermodynam-

ical considerations. Phenomenological models with thermodynamic concepts

and phase evolution theories are now growing in the recent literature in the

2000s, and are developed with insights from the microstructural behavior of

the SMPs but it is extremely difficult for an application engineer to work with

these models and simulate responses of SMPs with 2D or 3D geometries or

complex loading patterns. Most of these large strain models are linearized to

small strain for validations, or the 3D models are reduced to 1D for actual

simulation/validation. The validations are mostly qualitative. A strict error

analysis of the results with experimental data is lacking. Would a thermo-

dynamically consistent rheological model with physical motivation be able to

address these shortcomings?

2. The primary hypothesis of this work shall explore the possibility of interpreting

SMP responses as yield stress governed materials. Is it possible to control the

gross responses of the SMP by controlling only this single variable of the model,

which can give designers an approximate simulation and prediction of SMP

responses for different loading conditions? Can this thermal hysteresis of the

yield-stress be motivated as the underlying physical concept that controls the

response of these polymers? Once this is sufficiently analyzed, it can act as a

further motivation to explore cyclic thermomechanical responses of SMPs.

3. The last decade has seen an intense exploration of the uniaxial responses of the

SMPs. As this area gets saturated, and attempts increases in the morphological

investigations of the polymers, an area that has gotten ignored in the process

is that of application oriented model development of SMPs. We shall address

this area and show the efficacy of the model developed here by extending it to

a beam theory model. The numerical implementation developed will be such
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that this should keep the parameter controls and their evolution transparent

to the designer, and make it sufficiently computationally inexpensive to carry

out simulations for different load configurations and load levels. This will also

act as a first step for the development of a complete beam, plate, shell theory

for smart materials.

4. SMPs are capable of exhibiting large and complicated deformations. Most of

the existing constitutive models of SMPs that are extensively referred to have

been limited to one-dimensional small deformations [25, 3] or else the existing

finite deformation models are reduced to linearized small strain models for val-

idation purposes[46]. More importantly, these finite deformation models are

motivated by non-linear responses of SMPs, but are studied for only uniax-

ial responses. Instead, we use the insights from the small strain model and

develop a finite deformation model for the SMPs. We study the non-linear

behavior of the model for shear deformations, that include isothermal, cyclic

and thermomechanical loading cases.

1.6 Objective and Scope

The primary objective of this dissertation is the development and prediction of the

thermomechanical response of SMP for different loading configurations. Specifically,

the aims of this study are as follows:

1. A thermodynamically consistent 1D model and a corresponding small strain

3D model will be developed that can simulate the gross response of a SMP

undergoing a thermomechanical cycle. The validation of the model will include

the following targets:

(a) Validation of the activation stress hypothesis as the controlling parame-

ter for the SMP response. The estimated parameters will be used for prediction

of the SMP response under different loading conditions for the experimental

data obtained for uniaxial loading conditions on two different SMP samples:

polyurethane and Veriflex[2, 3].

(b) Estimation of yield stress coefficients from the error optimization of the

model response.
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(c) Quantification of the effect of thermal expansion. Its implications shall

be compared with the observations made by Gunes et. al. [23].

(d) Parametric study of the model parameters and a sensitivity analysis of

the chosen response variables.

2. A beam theory model will be developed using the small strain 3D model, and

a simple numerical implementation in the form of the operator-split approach

will be used to analyse the beam theory model. This will include different

recovery cases for thermodynamical cycle for a three point bend experiment on

a SMP beam.

3. A thermodynamically consistent finite strain 3D model will be developed from

insights gained from the small strain model. This model will be able to simulate

the gross responses of the SMP undergoing a shear thermomechanical cycle

compared with experimental observations [19].

4. Prescription of method to develop a SMA-SMP based multifunctional smart

material system, that allows for the combined material system to have different

tunable characteristics in different temperature ranges. This will include design

guidelines and device ideas for proof of concept of these working systems.

Given the lack of experimental data on the actual polymer temperature versus that

of the ambient atmosphere, and the extremely slow deformation rates, we will as-

sume that the temperature of the polymer is the same as that of the surrounding

atmosphere. Thus, we shall not be dealing with the heat equation in this work,

rather we shall take temperature changes to the material as a defined input. Explicit

history dependence of the material response, and moisture absorption capabilities of

the material is outside the scope of this work. The material properties of the material

like modulus and viscosity depend on heating and cooling processes which affects the

material behavior, but instead of interpreting this dependence as being functions of

temperature, as abundantly done in the literature, we look at the properties as two

values corresponding to the rubbery and glassy phases, and switch between these

values as the temperature dependent activation-stress moves from the rubbery to

glassy phase and back.
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1.7 Structure of the Dissertation

The structure of the dissertation is as follows:

1. Chapter 1 presents the research topic, with relevant literature survey and back-

ground information on shape memory polymers, including their behavior, ap-

plications, characterization methods, experimental studies and model develop-

ment techniques. We propose the problem and the scope of the dissertation.

2. In Chapter 2, we demonstrate a Helmholtz potential based approach for the

development of a 1D model for a SMP undergoing a thermomechanical cycle.

We also propose the hypothesis of the activation stress as the primary con-

trolling factor of the response of SMPs. We validate this hypothesis for the

thermomechanical of SMPs for shape memory polyurethane and shape memory

epoxy resin.

3. In Chapter 3, we extend the Helmholtz potential based 1D model developed

in Chapter 2 to a small strain 3D version. We also establishing a systematic

method to compute the coefficients of activation stress equation using an error

optimization technique between the model results and the experimental data.

We conduct an extensive parametric study of the model material parameters

and loading conditions, and present a sensitivity analysis to the designer for

SMP applications.

4. In Chapter 4, we develop an Euler Bernoulli beam theory for the small strain

SMP model developed in Chapter 3. The boundary value problem that the

SMP model is subjected to is a three point bending experiment. The im-

plementation consists of developing a time stepping algorithm for the elastic

predictor dissipative corrector loop. The beam theory model is subjected to

validation and convergence studies, and finally implemented for a three point

bend thermomechanical cycle.

5. In Chapter 5, we use the insights from the small strain model in Chapter 3 to

develop a thermodynamically consistent finite deformation continuum model

to simulate the thermomechanical response of SMPs. The SMP is modeled

as a isotropic thermoviscoelastic material where thermal changes govern the

evolution of the activation stress of the material. For the development of the
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finite strain model, we follow the general technique of upper triangular or QR

decomposition. The response of the model is studied for shear deformation for

various temperature conditions, shear rates, cyclic loading and thermomechan-

ical cycles.

6. In Chapter 6, we discuss a method for developing SMA-SMP multifunctional

smart material system, that allow for the material system to have different

tunable characteristics in different temperature ranges. Guidelines to form

such smart systems have been established by estimating the volume fractions of

the individual constituents. Various ideas for “smart-bias” tools/devices have

been proposed, such that they can operate under three different temperature

regimes, with one material constituent being passive and the other active at a

given temperature.

7. We close in Chapter 7 with some final remarks on the different aspects of the

work in this dissertation, and a discussion on future research directions.
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2. TWO NETWORK THEORY BASED ONE DIMENSIONAL MODEL FOR

SMPS∗

2.1 Introduction

This chapter deals with the development of a two-network thermodynamically

consistent model in a state-space form and shows that most of the gross features of a

SMP depend on the yield-stress of the material. It is demonstrated that a systematic

application of fundamental thermodynamic principles coupled with a suitable choice

for the Helmholtz potential and suitable kinetic equations for the inelastic variables

will allow the development of a complete simulation of the behavior of a class of

shape memory polymeric materials. A number of significant features of the response

can be deduced by a careful observation of the available experimental data.

1.) There is a hysteresis in the activation stress function of the material during heat-

ing and cooling.

2.) The yield stress of the material evolves differently depending on the extent to

which the material has been strained.

3.) The thermal expansion behavior of the material significantly enhances the stress

rise in the material during cooling due to contraction, but opposes the strain recov-

ery by heating due to expansion. The contrasting behavior of the thermal expansion

during cooling and heating makes the material response very sensitive to the coeffi-

cient of thermal expansion of the material.

The model that we propose takes into account these three phenomena. Given

the lack of experimental data on the actual polymer temperature versus that of the

ambient atmosphere, and the extremely slow deformation rates, we will assume that

the temperature of the polymer is the same as that of the surrounding atmosphere.

Thus, we shall not be dealing with the heat equation in this work, rather we shall

take temperature changes to the material as a defined input. The solution of the sys-

tem equations for a simple thermomechanical cycle shall be simulated in MATLAB.

The results of the simulation are in qualitative and quantitative agreement with ex-

periments performed on two different shape memory polymer samples: polyurethane

∗Reprinted with permission from P. Ghosh and A. R. Srinivasa, “A Two-network Thermome-
chanical Model of a Shape Memory Polymer”, International Journal of Engineering Science, vol.
49, no. 9, pp. 823–838, Copyright [2011] by Elsevier Limited
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and epoxy resin. We find that modeling the hysteresis of the activation stress of the

material during temperature changes is the key to the results.

2.2 The Thermomechanical Cycle and Morphology Changes

(a)

ε

σ

T
Tg

1

2

3

4

(b)

Figure 2.1: (a) The processes taking place in a thermomechanical cycle (b) Typical
response data for a SMP sample undergoing a thermomechanical cycle. The curve 1
indicates the high temperature deformation. Curve 2 is the shape fixing process at
constant strain, under cooling. Curve 3 is the relaxation of the stress at constant low
temperature. Curve 4 is the strain recovery process under no load condition through
heating.

The experiment carried out to observe the shape memory behavior of a SMP is a

thermomechanical cycle as illustrated in Figure (2.1).

1. Initial conditions: At (a): The material is considered stress free above the glass

transition temperature θg = θg+20◦C. All strains are measured from this state. This

current shape is recognized as the “permanent shape” of the material.

2. Process 1©: From (a) to (b): High temperature stretching : The temperature is

held fixed at θmax and the strain is increased steadily at a constant prescribed rate

g1 to give the temporary shape to the material, and then the strain is held constant

for a time 0 < t < t1.

3. Process 2©: From (b) to (c): Cooling and fixing the temporary shape: The strain

is fixed at g1 and the temperature is lowered to θmin = θg− 20◦C at a predetermined
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rate ‘−f1’.

4. Process 3©: From (c) to (d): Relaxing the stress : Now the temperature is fixed

at θmin and the stress is gradually relaxed to zero at a predetermined rate ‘−g2’.

During this process, material is observed to still be in its temporary shape.

5. Process 4©: From (d) to (e): Recovering the original shape: Now the body is

heated at rate ‘f1’ in a stress-free state back to the original temperature to recover

the original shape. The strain slowly relaxes and the material is back to its original

shape.

The typical material response for the thermomechanical tests is shown in Fig-

ure (2.1-Right). The thermomechanical cycle also involves strain and stress-relaxing

rate, and cooling and heating rates, which is not evident in these graphs. In the fol-

lowing work, we have extracted information from the above experimental data and

plotted them against time.

To model the shape memory phenomenon, we borrow ideas from the two-network

theory for polymeric materials dating back to Tobolsky and Andrews [47] and To-

bolksy, Prettyman and Dillon [48] and introduce just two networks; one of which is

a permanent-network responsible for permanent shape retention and recovery while

the other network is a temporary-network which can be made to persist over long

periods of time by suitably lowering the temperature. This latter network is respon-

sible for the shape fixity properties of the polymer at low temperatures. Furthermore

the interactions between the two networks are related to the shape fixity and shape

recovery parameters. Changes in morphology of an SMP during a thermomechanical

cycle: (Figure (2.2))

1. State (a) to (b): As the polymer is stretched, the permanent network, i.e poly-

mer chains with permanent nodes (shown as black circles) in the figure, deforms

due to the partial uncoiling of the polymeric chains between the cross-links.

When two chains come close enough they stick together momentarily and form

temporary nodes (shown as grey circles) before breaking off (shown as white

jagged circles) continuously at high temperature, because of the electrostatic

attraction between the individual chains. The connections between these tem-

porary nodes form the temporary network.

2. State (b) to (c): Material is cooled, mobility of the chains decreases and the

temporary nodes that are formed hold parts of the chains immobile exhibiting
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Figure 2.2: Change in morphology in a two-network model of the material during
a thermomechanical cycle. Network 1: Permanent network consisting of polymer
chains with permanent nodes, and network 2: Temporary network consisting of
connections between the temporary nodes

“stickiness” and makes the polymer glassy.

3. State (c) to (d): On unloading of the material, the permanent network will have

a tendency to coil back to its initial configuration. However, the temporary

nodes “lock-in” the deformed state of the permanent network here as they are

extant at low temperatures.

4. State (d) to (a): Subsequent heating increases the mobility of the chains, and

the rate of breaking and reforming of temporary nodes starts rising once again.

This “unlocks” the permanent network which now take over and recoil the

polymer back to its original state.

2.3 Development of a Two-network One Dimensional Model

Rajaogopal and Wineman [49] developed a constitutive theory for the response

of materials based on the two-network theory of Tobolsky and Andrews[47]. In

this work, we follow their approach and present a thermodynamically consistent
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rheological model for shape memory polymers.

It is clear from the morphological discussion in section (2.2) that the model

simulating this kind of response should have:

1. Two viscoelastic components: A rubbery one which is apparent at high tem-

peratures for the permanent network and a glassy one which is apparent at low

temperatures for the temporary network,

2. activation behavior which is temperature sensitive so that it allows strains to

be “locked-in” at low temperatures and “unlocked” at high temperatures,

The model shown in Figure (2.3) represents a mechanical visualization of a model

that has all the necessary features to model for the SMP response in a thermome-

chanical cycle. In Figure (2.3), E1 and E2 denote the modulus of the rubbery

ER

EG
η

κ

εve εe

Figure 2.3: The proposed mechanical model for the SMP. The spring E1 together
with the viscous dashpot η represents the rubbery response of the material , the
spring E2 represents that glassy response and the frictional element k represents the
locking behavior.

and glassy springs respectively, η is the viscosity of the viscous dashpot, and k is

the activation stress of the friction dashpot of the model. The rubbery spring in the

model represents the non-linear rubbery response of the material, at temperatures
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beyond the glass transition. The glassy spring represents the glassy response at tem-

peratures below the glass transition (when the rubbery spring is “locked”) and the

stress is relaxed. To elaborate, the dashpot is a frictional dashpot that is tempera-

ture sensitive. Below the glass transition, the frictional dashpot locks, and prevents

the rubbery network from deforming further, leading to a “locked in” strain. On the

other hand, at high temperature, the dashpot ceases to operate i.e., its resistance

vanishes, and the material behaves like an elastic rubber.

In this work, we will use the finite strain measure ε = (λ − 1), where λ is the

stretch ratio, and all our stress measures will be with respect to the reference con-

figuration. In other words, we are using a referential description for the 1D response

in this work. We assign the stress σ1, which is a first Piola-Kirchoff stress, as the

non-linear rubbery response and, stress σ2 as the dissipative response. εve is the

strain of the dampers in parallel, representing the locked in shape of the polymer,

while εe is the strain of the glassy spring. To the mechanical strain ε1 shown in the

figure we shall have to add the thermal strain of the material so that we now have

the total strain ε of the material. Thus, taking α to be the thermal expansion of the

material, the elastic strain is given as:

εe = ε− εve − α(θ − θhigh) (2.1)

In the above equation α is not a constant, but is actually a function of tempera-

ture, and θ is the absolute temperature of the SMP sample (assumed to be uniform),

and the form α(θ − θhigh) is written for convenience. For this development, we shall

be dealing with the temperature dependence of the thermal expansion of shape mem-

ory polyurethanes[23], and the thermal strains directly in the case of epoxy resin[3].

Consider a one-dimensional continuum, i.e., a wire, made of shape memory polymer,

lying along the X-axis of a co-ordinate system and is heated above its glass-transition

temperature so that it is in its rubbery state. A preliminary list of state variables

is given by S = (σ, ε, εve, θ). The foundation of the thermodynamical approach

presented here is that, the non-dissipative properties of the material are derivable

from a single potential, namely the Helmholtz potential for the continuum, while the

dissipative properties are explored through the manifestation of the second law of

thermodynamics, using the role of the rate of mechanical dissipation as a mechanism

for entropy generation[40].
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We begin with the equation of state in terms of the internal energy as below,

following Callen [50]:

u = û(ε, εve, ζ) (2.2)

where u is the internal energy per unit refenence length of the system, ζ is the entropy

of the 1-D continuum per unit reference length. In terms of Eq. (2.2), the absolute

temperature θ is given by θ = ∂u
∂ζ

.

The energy conservation equation in the absence of body forces can be written

as:

ρr
du

dt
= σ

dε

dt
− dq

dX
+ r (2.3)

where , q is the axial heat flux and r is the lateral rate of heat transfer per unit

reference length.

The Helmholtz potential being the legendre transform of the internal energy with

respect to the entropy, it is related to the energy through

ψ = u− θζ (2.4)

The entropy ζ now becomes a function of Helmholtz free energy as below:

ζ = −∂ψ
∂θ

(2.5)

Now, we can take the time derivative of the internal energy function in Eq. (2.4):

du

dt
=

d

dt
ψ̂(ε, εve, θ)−

∂ψ

∂θ

dθ

dt
− θ d

dt

∂ψ

∂θ
(2.6)

We reduce the energy conservation equation in terms of the Helmholtz potential

by substituting equations (2.4), (2.5), (2.6) into Eq. (2.3) and arrive at the heat

equation:

θζ̇ = {σε̇− (
∂ψ

∂ε
ε̇+

∂ψ

∂εve
ε̇ve)} −

dq

dX
+ r (2.7)

The terms in the equation above are:

Rate of heating = {Rate of heating due to mechanical effects} + axial heat flow +

latent heat

The terms within the curly brackets in Eq. (2.7) is representative of the thermome-

chanical coupling. The first term inside the curly brackets represents the mechanical
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power (or deformation power) supplied to the wire, while the second two terms rep-

resent the rate of decrease in recoverable mechanical work. The sum of these terms

represents the net mechanical power dissipated by the system. We hence introduce

the rate of dissipation ξ through

σε̇− (
∂ψ

∂ε
ε̇+

∂ψ

∂εve
ε̇ve) := ξ (2.8)

where ξ ≥ 0 as effected by the second law of thermodynamics. The terms in the

equation above are:

Supply of mechanical power - Rate of recoverable mechanical work = Net

mechanical power dissipated

The above identity is referred to as the dissipation relation or the reduced energy

relation. This identity can also be equated in the following manner, which represents

the reduced energy-rate of dissipation relation for the system:

σε̇− (ψ̇|θfixed) = ξ (2.9)

We now have to characterize the material response by relating the energy stor-

age elements in the proposed model to the Helmholtz potential and the dissipated

elements in the model to the rate of dissipation function in the Eq. 2.9.

The Helmholtz potential ψ function depends on the state variables (ε, εve, θ) and

is assumed to be of the form∗:

ψ = aεve
2 − bεve4 +

1

2
E2(ε− εve − α(θ − θhigh))2 (2.10)

The above form is not expected to be valid for arbitrary strains but only for strains

upto 10 - 15%. The rate of dissipation will also be a function of the state variables

(ε, εve, θ), and will depend on how the mechanical work is dissipated due to internal

viscous and frictional effects. The rate of dissipation depends upon the visocelastic

strain rate and is assumed to have the following simple form

ξ = ηε̇2ve + k|ε̇ve| (2.11)

∗since we are not interested in the heat flux problem, we have suppressed the purely temperature
dependent part of the Helmholtz potential.
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The first term represents the rate of dissipation through the viscous damper mod-

eled as a viscous effects, while the second term accounts for the rate of dissipation

through the frictional effects.

Substituting Eq. (2.10) in Eq. (2.8) results in the following:

σ.ε̇−(E2(ε−εve−α(θ−θhigh)))ε−(2aεve−4bεve
3−E2(ε−εve−α(θ−θhigh)))ε̇ve = ξ̂(ε̇ve)

(2.12)

Based on the assumption that the material possesses instantaneous hyperelastic re-

sponse, the total stress σ is given by:

σ =
∂ψ

∂ε
= E2(ε− εve − α(θ − θhigh)) (2.13)

In the light of the Eq. (2.13), Eq. (2.12) reduces to

ξ̂(ε̇ve) = −(2aεve − 4bεve
3 − E2(ε− εve − α(θ − θhigh)))ε̇ve (2.14)

Using the stress in Eq. (2.13), the above equation can be reduced further as below,

and this is used as the constraint for the system

ξ̂(ε̇ve) = (σ − (2aεve − 4bεve
3))ε̇ve (2.15)

We are thus led to the development of a kinetic equation for εve which will satisfy

the above equation. Now we shall use the maximum rate of dissipation criterion[51],

which states that the system will evolve such that the actual value of ε̇ve is that

which maximizes ξ subject to the constraint Eq. (2.15). Hence by using the stan-

dard method of calculus of constrained maximization as explained in Segel [52], we

extremize ξ subject to the constraint Eq. (2.15) using the method of Lagrange mul-

tipliers:

Thus the value of ε̇ve that extremizes ξ is:

ε̇ve =
1

η
(σ − (2aεve − 4bεve

3) + k(sgn(ε̇ve))) (2.16)

The dissipative response of the rubbery network is described by means of this kinetic

equation. As can be seen from the model figure, the change in amount of stretch
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of the rubbery spring, is related to the rate of change of εve and this in turn is de-

termined by the nature of the frictional dashpot. Notice that the above expression

holds only when ε̇ve 6= 0, which occurs only when σ2 > k̂, i.e only when the stress

in the friction damper is greater than the activation-stress, the damper will have a

velocity. Otherwise if σ2 6 k̂, then ε̇ve will have to remain zero, because the stress

in the friction damper has not yet exceeded its activation-stress, hence the damper

remains locked.

The second law of thermodynamics requires that the dissipation of the system con-

sidered always be non-negative, which is automatically satisfied by the above consid-

eration. The cases that arise from this lead us to three threshold conditions which

are stated as the kinetic equation of the model:

ε̇ve =


0, |(σ − (2aεve − 4bεve

3))| 6 k̂;
1
η
(σ − (2aεve − 4bεve

3)− k̂), (σ − (2aεve − 4bεve
3)) > k̂;

1
η
(σ − (2aεve − 4bεve

3) + k̂), (σ − (2aεve − 4bεve
3)) < −k̂

(2.17)

The above set of cases can be written in a compact form as

ε̇ve =
1

η
{〈σ − (2aεve − 4bεve

3)− k̂〉 − 〈−σ + (2aεve − 4bεve
3)− k̂〉} (2.18)

where 〈x〉 = 1
2
(x+ ‖x‖).

The state of the material is represented by the variables S = (σ, ε, εve, θ). Equa-

tions (2.13) and (2.17) represent two constitutive equations for the response of the

material. The remaining two equations needed to solve for this four-variable system

can be specified in the control equation of stress/strain input and the input function

of the temperature θ.

2.4 Normalizing Variables

We will now normalize the equations with respect to pertinent experimental val-

ues so that the material parameters identified for the validation case can be used to

for prediction of different experimental variables.

(1) The glass transition temperature θg.
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(2) The maximum strain applied ε0 from experimental results.

(3) The typical stress response at high temperature and constant applied strain, σ0,

from experimental results.

(4) The non-dimensionalization of the time, since this is connected with the kinetic

response.

The parameters used to normalize the equations here are C =
σ0

ε0
and ᾱ =

αθ0

ε0
.

Note that ᾱ is still a function of θ̄. Thereafter, the non-dimensional quantities are

tabulated as in Table (2.1). Besides the above non-dimensional quantities, we take

the values for the parameters enlisted in Table (2.2), which are decided based on

normalizing the experimental data from Tobushi’s[2] and Liu’s[3]experimental data

so that comparison of model and experimental data is sensible.

Table 2.1: Dimensional quantities and corresponding non-dimensional quantities

Dim σ ε t θ a b E2 η

Nondim σ̄ =
σ

σ0
ε̄ =

ε

ε0
t̄ =

t

t0
θ̄ =

θ

θg
ā =

2a

C
b̄ =

4bε0
2

C
Ē2 =

E2

C
η̄ =

η

t0C

Table 2.2: Parameter values for normalization and their significance in the samples

Param
εmax for tests on
Polyurethane

εmax for tests on
Epoxy resin Significance

2.4% 4% 10% 9.1% −9.1% 0%

σ0Mpa 0.796 1.251 2.069 0.85 -0.8 0 Experimental value of stress at
constant θhigh and applied con-
stant εmax

ε0 0.023 0.040 0.096 0.091 -0.091 0 Experimental applied constant
εmax

θgK 328 343 Glass-transition temperature of
sample

t0sec 100 100 Glass-transition temperature of
sample

2.5 Non-dimensional Set of System Equations

We view the SMP as a dynamical system i.e., one whose state changes are given

by a suitable differential equation. We have obtained the system of model equations
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for the material in state evolution form.

Force or Strain Control:

A(t̄) ˙̄σ +B(t̄) ˙̄ε = g(t̄) (2.19)

State Equation:

Eq.(2.13) can be rewritten in rate form as follows:

˙̄σ − Ē2 ˙̄ε+ Ē2 ˙̄εve + Ē2(
dᾱ

dθ̄
(θ̄ − θhigh

θg
) + ᾱ) ˙̄θ = 0 (2.20)

Kinetic Equation:

ε̇ve =


0, |(σ̄ − (ā+ b̄ε̄ve

2)ε̄ve)| 6 k̄;
1

η̄
(σ̄ − (ā+ b̄ε̄ve

2)ε̄ve − k̄), (σ̄ − (ā+ b̄ε̄ve
2)ε̄ve) > k̄;

1

η̄
(σ̄ − (ā+ b̄ε̄ve

2)ε̄ve + k̄), (σ̄ − (ā+ b̄ε̄ve
2)ε̄ve) < −k̄

(2.21)

Temperature Specification:
˙̄θ = f(t̄) (2.22)

2.6 Simulation of the SMP Response

2.6.1 Implementation of the System Equations

The state evolution form derived in the previous section will translate as follows

to be fed into a suitable manner into MATLAB:

Ṡ = f(S, t) (2.23)

where S represents the variables that model the current state of the system and f is

a function of the state variables and time. We will include the activation-stress as

another variable for convenience in solving these equations in an numerical solver,

details of this are discussed in Sec. (2.7.1). Thus, we can proceed to feed the

equations (2.19) to (2.22) in the form A(x,θ,t)ẋ = p(x,θ,t) +Q(x,θ,t)x, which is solved by

the ODE45 solver in MATLAB.
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A(t̄) B(t̄) 0 0 0

0 0 1 0 0

1 −Ē2 Ē2(
dᾱ

dθ̄
(θ̄ − θhigh

θg
) + ᾱ) Ē2 0

0 0 0 1 0

0 0 −dk̂
dθ

0 1





˙̄σ

˙̄ε
˙̄θ

˙̄εve
˙̄k

 (2.24)

=


g(t̄)

f(t̄)

0

0

0

+


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
1
η̄
a2 0 0 − 1

η̄
(ā+ b̄εve

2)a2 − 1
η̄
a3

0 0 0 0 0




σ̄

ε̄

θ̄

ε̄ve

k̄


where,

a =


0, |(σ̄ − (ā+ b̄ε̄ve

2)ε̄ve)| 6 k̄;

1, (σ̄ − (ā+ b̄ε̄ve
2)ε̄ve) > k̄;

−1, (σ̄ − (ā+ b̄ε̄ve
2)ε̄ve) < −k̄

(2.25)

2.6.2 Simulation Specifications of the Thermomechanical Cycle

Since we are dealing with rate equations to describe the system, we have extracted

the experimental data from Tobushi’s and Liu’s work with respect to time, which

are then used in the governing equations as shown below.

Initial conditions: In terms of the state variables as shown in the section above,

{σ̄, ε̄, θ̄, ε̄ve, k̄} = {0, 0, θhigh, 0, 0}.

Table 2.3: Process inputs with respect to time

Process
Stress/ Strain
rate input g(t̄)

Stress Control:
A(t̄)

Strain Con-
trol: B(t̄)

Temperature
rate i/p i.e f(t̄)

a-b : 0 < t < t1 g1(t̄) 0 1 0
b-c : t1 < t < t2 0 0 1 -f1(t̄)
c-d : t1 < t < t2 −g2(t̄) 1 0 0
d-e : t3 < t < t4 0 1 0 f1(t̄)
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For this the specifications of the processes are obtained from experimental data of

Polyurethane[2] and Epoxy resin[33] as tabulated in Tables 2.3 and 2.4.

Table 2.4: Specifications of the processes obtained from experimental data of
polyurethane and epoxy resin

Process Specification For Polyurethane For Epoxy resin

Strain-rate 5-50% per minute 0.03-3% per minute
Loading and unloading hold-time 120 minutes 127 minutes
Heating and cooling rate ±4 K/min ±1K/min
Total rise or drop in temperature 40 K 85 K

2.7 Temperature Dependence Form of Material Parameters

2.7.1 The Activation Stress Parameter

The key to the SMP response is the idea of “change in geometry on demand”.

This kind of response requires two things: a signal to commence the change and

energy to do it. The signal is represented by the activation threshold value which

depends upon temperature and strain. The energy for change is the LHS of the

energy dissipation equation 2.9. The variation of the activation stress controls the

response of the SMP. The activation-stress of the material has a sensitive dependence

on temperature, and the material yields differently depending on not just the current

value of the temperature but also on whether the temperature of the material dropped

or increased from the previous time-step. Thus there is a hysteresis of the activation-

stress from the cooling to the heating cycle, which gives the different trends of the

stress-rise during cooling and the strain-recovery during heating. The unrecovered

strain at the end of the cycle is also explained by this hysteresis, because of the

inelastic yielding of the material in the thermomechanical cycle. These considerations

suggest that the activation-stress rate has the following functional form, and thus

the activation-stress varies as shown in Figure (2.4).

˙̄k = f̂(θ̄, ε̄, sgn(
dθ̄

dt̄
))
dθ̄

dt̄
(2.26)
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(a) (Left) The stress response mimics the activation-stress trend during
cooling, which is negligible until θ = 0.98, after which it steadily rises
to reach a maximum of 1.65. (Right) The strain response mimics the
activation-stress trend during heating. There is unrecovered strain at the
end of the process, along with activation-stress in the material. This rem-
nant of the activation-stress will affect the response of the material in the
next test-cycle performed on the material.
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(b) (Left) The rate of activation-stress during cooling is negligible until θ = 0.98,
after which the rate of activation-stress rises steadily, effecting in the rise of
stress shown in 2.4a-Left. This rate of activation-stress along with thermal
expansion of the material helps control the peak rise of the activation-stress and
thus in the stress response of the material towards the end of the cooling process.
(Right) The rate of activation stress during heating is decreasing steadily until
θ = 0.95, to take into account the increasing thermal strain, and result in the
negligible recovery in the strain during the beginning of heating process, as
shown in 2.4a-Right. The activation-stress rate is increasing after θ = 1.01, to
give a gentler decrease in the activation-stress and correspondingly in the strain
recovery response as seen in 2.4a-Right, and to also control the unrecovered
strain at the end of the process at θ = 1.06.

Figure 2.4: Variation of (a)activation-stress with temperature in a thermomechani-
cal cycle and (b)activation-stress rate with temperature during cooling and heating
processes, for experimental data of polyurethane with maximum strain of 4%.
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The factors that become important in this setup are as follows:

θ̄high and θ̄low: The value of the activation stress is kept at a low minimum kmin,

almost zero, so that in the initial range of high temperature stretching, the

instantaneous rise in stress in the dry-friction damper overcomes its activation-

stress and hence the inelastic strain starts rising in the dampers. Once the stress

reaches a constant value, there is no more sliding of the dry-friction damper,

and hence the inelastic strain gets “locked-in” after the initial rise. On the

other hand, at low temperature towards the end of the cooling range, the

activation stress of the dashpots reaches it maximum limit for that particular

temperature. The stress in the dashpot network, even though in compression

in the stress-relaxation range, its magnitude never exceeds the activation-stress

and hence the friction dashpot helps “lock” the inelastic strain for this range

as well.

θ̄: A typical observation regarding polymeric materials that thermally transition be-

tween a rubbery and glassy phase is that the number of secondary nodes formed

at lower temperature is significantly higher than those formed at high tempera-

ture, and this number is a function of temperature [53]. Therefore the resistance

provided by the temporary nodes in the polymer at low temperature will be

significantly higher than that at high temperature, and is a function of temper-

ature. Thus the activation-stress of the material is temperature dependent and

changes during heating or cooling of the material during a thermomechanical

cycle. During cooling, the stress of the material rises. This is effected mainly

by allowing stress in the dashpots to the rise by varying the activation stress

of the material. The stress in the dashpots overcomes the activation-stress and

hence the friction dashpot slips further. The rate of activation-stress of the

material ˙̄k here is prescribed to be zero till almost above glass-transition, and

starts rising rapidly only at lower temperatures below glass-transition[54]. Be-

cause of this, the rise in stress can be controlled carefully, and kept constant till

temperature drops to θg, and then the stress is made to rise in desired fashion

at lower temperatures. Thus a sigmoidal function f̂1 is used which asymptotes

between kmin and kmax.

dθ̄

dt̄
: In this work we propose that the resistance provided by the networks during the

cooling process at constant deformation is different than that during heating
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at no load. During cooling at constant deformation, the resistance provided

by the temporary network consists only of the temporary nodes formed during

cooling. No additional temporary nodes are formed, as the permanent network

polymer chain mobility is decreasing. However, during heating at no load

condition, the resistance provided by the temporary network consists not only

of the temporary nodes formed at low temperature, but also new temporary

nodes that are formed as the permanent network polymer chains recoil to new

configurations during heating. Therefore there is a hysteresis in the resistance

provided by the temporary network during the cooling and heating regime of

the thermomechanical cycle. The activation stress controls the way the inelastic

strain evolves. Having the same function of rate of activation-stress during

heating, as specified for cooling f1 in the above point, leads to unsatisfactory

strain recovery from the model. Also, complete recovery of the activation-stress

implies complete recovery of the inelastic strain at the end of heating, which

will not mimic the residual strain recovery at the end of the cycle. For finer

control on the response curves of stress and strain during cooling and heating

respectively, it becomes obvious that different trends of activation stress k̄1 and

k̄2 (see Figure (2.4a)) are needed depending on whether the material is cooled

or heated, i.e whether sign(
dθ̄

dt̄
) < or > 0. Thus Eq. (2.26) will depend on

three cases as follows:

˙̄k =


0, if

dθ̄

dt̄
= 0;

f̂1(θ̄, ε̄)
dθ̄

dt̄
, if sgn(

dθ̄

dt̄
) = −ve;

f̂2( ¯θ, ε̄)
dθ̄

dt̄
, if sgn(

dθ̄

dt̄
) = +ve;

(2.27)

This hypothesis suggests that the material yields differently depending on not

just the current value of the temperature but also on whether the temperature of

the material dropped or increased from the previous time-step. f̂2 is adjusted so

that desired shape recovery is obtained and is reduced to a value that will give

ideal residual shape recovery response. This adjustment was done by extracting

a Gaussian curve-fit to get an approximate idea of the functional form that will

fit data for all three strain levels for validation. The residual activation-stress

at the end of heating range will affect the next cycle of loading, and will account
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for the thermal hardening of the material under cyclic loading. Thus the stress

and strain response during cooling and heating respectively, can be controlled

by adjusting f̂1 and f̂2. This can be witnessed in Figure (2.4b). For example,

the initial constant strain response during heating is maintained by keeping

k̄max high enough at the end of the cooling cycle, so that the activation stress

takes a while before it becomes comparable to the stress in the dampers. Only

then the the inelastic strain gets “unlocked”, and strain recovery begins.

ε̄: Another typical observation made for polymer materials is that as the material is

deformed, the polymer chains uncoil and stretch out. As the polymer chains

are stretched, the chain mobility decreases, thus increasing the chin entangle-

ments and formation of temporary nodes. Therefore, the resistance provided

by the temporary nodes increases as the polymer is deformed to higher strain

levels. It becomes evident that the rate of activation stress of the material be-

ing dependent on θ̄ and sgn(
dθ̄

dt̄
), it has the same trend regardless of the strain

level. However the strain recovery of polyurethane during heating for the three

different strain levels we are working with for validation, have different trends

(Refer Sec. 2.8). It is also evident in the compression and tension experiments

of epoxy resin, that the strain level implies different yield tendencies of the ma-

terial. Although the maximum stress rise during cooling and the thermal strain

Opposing Factor during heating (refer to Sec. (2.7.2) contribute in the strain

recovery characteristics at different strain levels, the changes accounted for are

not satisfactory. Thus, the activation stress rate needs to take into account the

strain level the material is at, to affect the strain recovery differently at differ-

ent strain levels. Note that the rate activation stress is only a linear function

of the strain, and this dependence will disappear for the activation-stress, and

hence not cause any inconsistencies with the assumptions for the rate of dissi-

pation function. Thus we have the rate of activation stress as ˙̄k = f̂1(θ̄, ε̄)
dθ̄

dt̄

for cooling and ˙̄k = f̂2(θ̄, ε̄)
dθ̄

dt̄
for heating.

Taking all these factors into consideration, the final equations of rate of activation

stress have the following form:

f1 = aε+ δ1b(sinh(−cπ(θ − θ1)))

f2 = −dε− δ2e(1− (f tanh(mθ + n))2)
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where, m = 2/(θmax − θ2), n = 1−mθmax
and, a, b, c, d, e, f are constants depending on material type and applied εmax, θ1

and θ2 are limiting values of θ until which there is no rise/fall in the stress/strain

during the cooling/heating cycle. This is determined from the experimental data, for

example, refer to the experimental data for maximum applied strain of 4% in Figure

2.4, where these values will be θ1 = 0.98 (value of θ until which there is no stress

rise in the cooling process) and θ2 = 0.95 (value of θ until which there is no strain

recovery in the heating process), and

δ1 =

{
1, ∀ θ 6 θ1;

0, ∀ θ > θ1;
(2.28)

δ2 =

{
0, ∀ θ < θ2;

1, ∀ θ > θ2;
(2.29)

The rate of activation-stress specified by the above equations for the experimental

data is as shown in Figure (2.4b).

2.7.2 The Effect of Thermal Expansion

Figure 2.5: Variation of thermal strain with temperature. Take note of (a) Thermal
strain for constant high temp value α1, axis on LHS and associated unaccounted
thermal strain, (b) Thermal strain for constant low temp value α2, axis on RHS and
associated unaccounted thermal strain,(c) Thermal strain for varying values of α,
axis on LHS
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The thermal expansion of the material is dependent on temperature. Let us consider

the typical shape memory polyurethane thermal response as shown in Figure (2.5).

The average thermal expansion coefficient in the rubbery state (α1 = 21.6X10−5K−1)

is about two times of that in the glassy state (α2 = 11.8X10−5K−1)[23]. All thermal

strains being measured with reference to the high temperature, the thermal strains at

lower temperatures, are the largest. The thermal behavior of the material although

aids in the cooling process, it counteracts the recovery behavior during the heating

process(refer to Figure (2.6)). This counteraction is what causes the total strain

to rise at the initial period of heating, and this can be controlled by the thermal

strain completely. The material response is very sensitive to the thermal expansion

coefficient, and the final rise of stress at the end of cooling range and the rise of

strain during the start of heating range are affected severely by it. Therefore, a more

accurate specification of the thermal expansion gives closer results to the actual ex-

perimental data. Note however that the thermal strains of the material is dependent

on the temperature alone, and this role of thermal expansion in the strain recovery

process reduces with increasing strain levels, because the total amount of strain to be

recovered is rising while the amount gained back by the thermal expansion remains

the same at all strain levels. Hence, for the polyurethane experiments, at low strain

levels, the thermal strain accounts for almost 20% of the total strain as shown in the

contributing factor C. F. values in Table. (2.5), but at high strain levels its effect

is only 4%. This implies that at increasing strain levels, 96% of the recovery will

have to be dictated by the yielding of the material and not the thermal expansion.

Also, as discussed previously, the strain recovery process and the thermal expansion

process during heating counteract each other, as see in Figure (2.6). This implies

that a relatively low value of thermal expansion in comparison to recovered strain

is desired for improved shape memory effect. This is measured in terms of opposing

factor O.F, as shown in Table. (2.5), lower O.Fs being desirable.
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Figure 2.6: Plots of viscoelastic, thermal and elastic strain and their combination
to produce the total strain in the complete cycle. Notice that the thermal strain is
opposite to the damper strain during recovery, and the effect is pronounced at the
beginning of recovery

Table 2.5: Comparison of the strain responses and thermal strains, of shape memory
polyurethane at various applied strain (εmax) levels

εmax Shape fixity Shape recovery C.F =
εth
εmax

(%) O.F =
C.F

R(%) F (%) R (%)

2.4 84.33 87.5 19.35 0.22
4 87.5 82.5 11.61 0.14
10 83 94 4.64 0.04
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2.8 Results of Validation and Prediction of 1D Model using Referred

Experimental Data

With the development of a one-dimensional model complete, we will now compare

the simulations with experimental data from two different polymers.

2.8.1 Shape Memory Polyurethane

We will compare our simulations with the experimental data provided by Tobushi

et al. [2]. In their experiments, the polyurethane used had a glass transition of 328

K, the thickness of the specimen was about 70 ηm, the width was 5 mm, gauge length

25 mm and total length of 75mm. The activation-stress function was chosen such

that the model gave reasonable results for all three strain levels. The simulation
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Figure 2.7: Comparison of the experimental data of polyurethane by Tobushi et al
[2] with the prediction of the model developed here for εmax = 4%

results shown in Figure (2.7) compare the results of the model and experimental

data for εmax = 4%. The parameters a, b and η are selected to control the stress
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response of the model during the initial high-temperature stretching (process a-b).

These values are used to predict for lower and higher strain levels, in Figures 2.8

and 2.9. The stress vs. strain graph will show how the non-linearity of the response

comes into play. For higher strains this can be seen in Figure (2.9). The activation-

stress functions are chosen to control the stress-rise during cooling (process b-c) and

the strain recovery during heating (process d-e) as discussed in Section 2.7.1. The

parameter E2 is selected to control the strain response i.e the shape fixity, during low

temperature stress relaxation (process c-d). Using these parameter values we predict

the SMP response for different strain levels of εmax = 2.4% and εmax = 10%.

The activation-stress rate function chosen for this material response is depen-
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Figure 2.8: Comparison of the experimental data of polyurethane by Tobushi et al
[2] with the prediction of the model developed here for maximum applied strain of
2.4%

dent on strain levels, and hence with change in the maximum strain applied in the

thermomechanical cycle, the activation-stress changes slightly to accommodate the

changing responses in the strain levels. The non-linear response becomes obvious
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Figure 2.9: Comparison of the experimental data of polyurethane by Tobushi et al
[2] with the prediction of the model developed here for maximum applied strain of
10%

at this higher strain level as can be seen in the stress vs. strain plot here. The

parameters a and b were chosen to exhibit non-linearity in the model. The stress rise

during cooling, for the chose activation-stress function, is not satisfactory and this

consequently affects the strain recovery during heating.

2.8.2 Shape Memory Epoxy Resin

The second sample that we will consider is that of Epoxy resin that was exper-

imentally investigated by Liu et al. [3]. A thermal strain function ε̄thermal = f̂(θ̄)

is fitted from experimental data, and used in the model in the rate form directly as

below, rather than in terms of the conductivity ᾱ previously. Using the parameter

values for the validation of tension εmax = 9% in Figure 2.10, we predict the SMP

response for compression εmax = − 9% in Figure 2.11 and no load cases in Figure

2.12.
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Figure 2.10: Comparison of the experimental data of epoxy by Liu et al [3] with the
prediction of the model developed here under tension of 9.1%
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Figure 2.11: Comparison of the experimental data of epoxy by Liu et al [3] with the
prediction of the model developed here under compression of 9.1%
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Figure 2.12: Comparison of the experimental data of epoxy by Liu et al [3] with the
prediction of the model developed here in the undeformed case
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2.9 Conclusions from the 1D Model

The activation-stress of the friction dashpot plays the lead role in controlling

the response of the model during heating and cooling. Different functions of the

activation-stress evolution during heating versus cooling processes give improved

results in strain recovery. The suggests that there is a hysteresis in the activation

stress of the material when it undergoes a heating-cooling cycle. The activation stress

rate as a function of the strain of the material, affects the recovery behavior during

heating, and simulates the significantly different strain recoveries at the different

strain levels. This suggests that that the yielding of the material is influenced by the

extent to which it is loaded. For a detailed discussion of these findings, refer to the

work by Ghosh and Srinivasa[34]. The hypothesis of the thermal hysteresis of the

activation stress is thus validated for the 1D model, and proves to have reasonable

predictive capacity as seen from the different cases predicted in the results section

for two different polymer systems. We will use this hypothesis in the extension of

the model to a three-dimensional setup.
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3. SMALL STRAIN THREE DIMENSIONAL MODEL WITH PARAMETRIC

ANALYSIS AND ERROR OPTIMIZATION

3.1 Introduction

The Helmholtz potential-based approach, proposed and developed as a 1D model

(refer to Chapter 2) will be employed here for the development of the small strain 3D

continuum model, using the maximum rate of dissipation criterion for the evolution

of inelastic strain. The primary hypothesis of the model has been that the hysteresis

of temperature dependent activation-stress plays a lead role in controlling its main

response features. This hypothesis has been validated and its implications on the

model predictive capabilities as well as on the morphological understanding of the

behavior of SMPs were studied in the previous chapter. In this chapter, we will

extend this approach to 3 dimensions (small strain) in a fairly simplistic way and

further establish a method to compute the coefficients of the model using a systematic

weighted error computation and minimization technique. We then move on to a

detailed study of the effect of each material parameter on the response characteristics

of the model. This helps conduct a sensitivity analysis of the parameters, where

we can provide the designer with solutions such as the control of which particular

material parameter will affect which response. Since the response of the SMPs is

complicated, with two or more material parameters affecting a single response, we

provide response surface maps for some of the response characteristics to give the

designer a better understanding of the control of a particular response by varying two

controlling material parameters simultaneously. Similar parametric study is done for

some of the control parameters of the experiment such as the cooling rate εmax and

heating rate θmax. This extensive study gives a fairly good idea of how the model

works and few insights into the SMP behavior itself.

3.2 Development of the Three Dimensional Model

The experiment that we shall be considering in this work is a thermomechanical

cycle on a shape memory polymer from the work carried out on a polyurethane sam-

ple by Tobushi et al. [2] as described in Chapter 2 Figure 2.1.

A detailed development of the Helmholtz potential-based 1D multi-network model

was presented in Chapter 2. Here, we retain its important features for the develop-
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ment a small strain 3D model. Consider a SMP sample at a temperature θh > θg.

This will be considered as the reference configuration of the body, and all strain

measurements will be made relative to this reference configuration. Let this body

undergo a displacement u(x, t). The small strain ε =
1

2
(∇u + ∇uT ) of the body

can be separated into deviatoric and volumetric parts as ε = γ +
1

3
eI where, γ is

the deviatoric strain, and
1

3
eI, is the volumetric strain, where e = trε. The two

network model for the SMP is made up of a permanent “backbone” network that

is responsible for shape recovery and a temporary or transient network that is re-

sponsible for the shape fixing phenomena. We introduce the idea of viscoelastic

strain εve that represents the “locked in” shape of the polymer i.e it corresponds to

the strain of the temporary network. The elastic strain εe = ε − εve − α(θ − θh)

represents the strain of the permanent network. As the polymer is stretched, the

permanent networks deform due to the partial uncoiling of the polymeric chains be-

tween cross-links. Thus εe represents sliding and well as expansion or contraction

behaviour of the permanent network chains. The temporary network on the other

hand, is created whenever temporary nodes are formed between two chains sticking

together momentarily. The temporary nodes are broken whenever two chains slide

apart, thus breaking the temporary network. The temporary network is locked at

glassy state, i.e at temperatures below glass transition. This behaviour is captured

by the strain εve. We assume that these temporary networks are formed only due

to the sliding of chains over one another, and not during expansion or contraction.

Therefore assuming viscoelastic incompressibility: trεve = 0, the viscoelastic strain

is purely deviatoric εve = γve.

Based on the 1D model of the SMP, which had Helmholtz potential of the form,

ψ1D =
1

2
EG(ε− εve − α(θ − θh))2 +

1

2
ERεve

2 (3.1)

We begin the thermodynamical modelling of the response of the material by

assuming that the Helmholtz potential is the sum of the strain energy of the glassy

or temporary network and that of the permanent network

ψ = ψpermanent + ψtransient
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=
1

2
CG(ε− εve − α(θ − θh)I) · (ε− εve − α(θ − θh)I) +

1

2
CRεve · εve + f(θ)

(3.2)

For the purposes of the current study, we assume that glassy and rubbery moduli

are isotropic. The glassy and the rubbery stiffness matrices are given as

CG = kGI⊗ I + 2µG(I − 1

3
I⊗ I) (3.3)

=
(
kG −

2µG

3

)
I⊗ I + 2µGI

CR = kRI⊗ I + 2µR(I− 1

3
I⊗ I) (3.4)

=
(
kR −

2µR

3

)
I⊗ I + 2µRI

where kG is the glassy bulk modulus, kR is the rubbery bulk modulus, µG is the glassy

shear modulus, µR is the rubbery shear modulus, and α is the thermal expansion.

There are researchers in this field who propose the moduli of SMPs as anisotropic.

Beblo et al. [55] have conducted experiments to investigate the strain induced

anisotropic properties of SMP Veriflex. These observations have been made for

large strain applications of 40% and 70%. They have observed decreased trans-

verse stiffness and increased axial toughness when the material is subjected to high

strain applications. The anisotropic behavior shows up while heating the polymer

across the Tg, and the constant, isotropic stiffness values above and below Tg that is

generally considered in the literature, have been discouraged by researchers in this

area. Hypotheses regarding the morphological changes in the material that cause

the observed anisotropic effects have been offered, but these ideas remain fairly new

and complex in the SMP field. Behl et al. [9, 56] have commented on strain in-

duced anisotropy, their primary focus being SMPs with carbon nanotubes and other

light induced SMPs. It is proposed that on heating the SMP beyond the transition

temperature, the orientation of the switching segments change from an oriented con-

formation to a random one. The mechanical property changes caused due to this

shift from anisotropic characteristics to isotropic behavior. However, in view of the

fact that these observations are crucial only in large deformation cases, and also

that the data for designing or characterizing such behavior is limited, for the current
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purposes we assume isotropy in the SMP response. However, the procedure that we

follow here is such that it can be extended to anisotropic materials.

Thus, in terms of material properties, ψ becomes

ψ =
1

2

((
kG −

2µG

3

)
I⊗ I + 2µGI

)
(ε− εve − α(θ − θh)I) · (ε− εve − α(θ − θh)I)

(3.5)

+
1

2

((
kR −

2µR

3

)
I⊗ I + 2µRI

)
εve · εve

=
1

2

(
kG −

2µG

3

)(
trε− 3α(θ − θh)

)2

+ µG

(
ε− εve − α(θ − θh)I

)
·
(
ε− εve − α(θ − θh)I

)
+ µRεve · εve

As for the Helmholtz potential, we propose the following dissipation rate, similar

to that of the 1D model of the SMP:

ζ = ηRėve
2 + ηGγ̇ve · γ̇ve + κ||ε̇ve|| (3.6)

= ηGε̇ve · ε̇ve + κ
√
ε̇ve · ε̇ve

We begin with the energy dissipation equation,

σ · ε̇− ψ̇|θ=c = ζ (3.7)

The stress in the material can be derived from the Helmholtz potential as follows:

σ =
∂ψ

∂ε
(3.8)

=
(
kG −

2µG

3

)(
trε− 3α(θ − θh)

)
I + 2µG

(
ε− εve − α(θ − θh)I

)
Volumetric stress: (3.9)

σv =
(
kG −

2µG

3

)(
trε− 3α(θ − θh)

)
I (3.10)

Deviatoric stress: (3.11)

τ = 2µG

(
ε− εve − α(θ − θh)I

)
(3.12)
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Thus, we derive σ · ε̇ and ψ̇ for the energy dissipation equation as follows:

σ · ε̇ =
(
kG −

2µG

3

)(
trε− 3α(θ − θh)

)
trε̇+ 2µG

(
ε− εve − α(θ − θh)I

)
· ε̇ (3.13)

and

ψ̇|θ=c =
(
kG −

2µG

3

)(
trε− 3α(θ − θh)

)(
trε̇
)

(3.14)

+ 2µG

(
ε− εve − α(θ − θh)I

)
·
(
ε̇− ε̇ve

)
+ 2µRεve · ε̇ve

Subtracting Eq. (3.14) from Eq. (3.13), and substituting the answer into the

energy dissipation equation, Eq. (3.7), we get the constraint that needs to be satisfied

for the system in terms of the dissipation as below:

ζ = 2µG

(
ε− εve − α(θ − θh)I

)
· ε̇ve − 2µRεve · ε̇ve (3.15)

We now use the maximum rate of dissipation criterion to obtain the evolution equa-

tion for εve. However, compared to the one dimensional case, the maximization is

much more involved. We begin by first introducing function h as a function of the

rate of dissipation ζ( ˙εve) and the constraint in Eq. 3.15, where λ is the Lagrange

multiplier,

h = ζ + λ
(

2µG

(
ε− εve − α(θ − θh)I

)
· ε̇ve − 2µRεve · ε̇ve − ζ

)
(3.16)

We now partially differentiate h with respect to the Lagrange multiplier λ and the

independent variable that defines ζ, which is ε̇ve

∂h

∂λ
= 0

=⇒ ζ = 2µG

(
ε− εve − α(θ − θh)I

)
· ε̇ve − 2µRεve · ε̇ve (3.17)

∂h

∂ ˙εve
= 0

=⇒ ∂ζ

∂ ˙εve
+ λ(τ − 2µRεve −

∂ζ

∂ ˙εve
) = 0 (3.18)

Rearranging the terms in Eq. (3.18) and then taking a dot product of the rearranged

equation with ε̇ve, should again give the LHS in the constraint form of ζ derived in
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Eq. 3.15, as shown in the steps below

λ

λ− 1
(τ − 2µRεve) =

∂ζ

∂ ˙εve
(3.19)

λ

λ− 1
(τ − 2µRεve) · ε̇ve =

∂ζ

∂ ˙εve
· ε̇ve

λ

λ− 1
ζ =

∂ζ

∂ ˙εve
· ε̇ve (3.20)

Substituting the definition of ζ from Eq. (3.6)

λ

λ− 1
(ηGε̇ve · ε̇ve + κ

√
ε̇ve · ε̇ve) = 2ηGε̇ve · ε̇ve + κ

√
ε̇ve · ε̇ve

λ

λ− 1
=

2ηGε̇ve · ε̇ve + κ
√
ε̇ve · ε̇ve

ηGε̇ve · ε̇ve + κ
√
ε̇ve · ε̇ve

(3.21)

Substituting this result back into Eq. 3.19

2ηGε̇ve + κ
ε̇ve√
ε̇ve · ε̇ve

=
2ηGε̇ve · ε̇ve + κ

√
ε̇ve · ε̇ve

ηGε̇ve · ε̇ve + κ
√
ε̇ve · ε̇ve

(τ − 2µRεve)

=
2ηG||ε̇ve||2 + κ||ε̇ve||
ηG||ε̇ve||2 + κ||ε̇ve||

(τ − 2µRεve) (3.22)

We note that we have ε̇ve in terms of its norm. We want to find the evolution

equation ε̇ve, and so we first proceed to find the value of the norm of ε̇ve as follows.

Taking the norm of both sides, we have

2ηG||ε̇ve||+ κ
||ε̇ve||
||ε̇ve||

=
2ηG||ε̇ve||2 + κ||ε̇ve||
ηG||ε̇ve||2 + κ||ε̇ve||

||τ − 2µRεve|| (3.23)

ηG|| ˙εve||+ κ =
∣∣∣∣τ − 2µRεve

∣∣∣∣ ...η, κ > 0

|| ˙εve|| =
1

ηG

(∣∣∣∣τ − 2µRεve
∣∣∣∣− κ)

Let Φ = τ − 2µRεve (3.24)

φ =
(
||Φ|| − κ

)

Thus || ˙εve|| =
1

ηG

(
||Φ|| − κ

)
=
φ

η
(3.25)
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Depending on how the value of ||Φ|| compares with κ, Eq. (3.25) gives us the

following conditions .

||Φ|| = κ =⇒ || ˙εve|| = 0 (3.26)

||Φ|| > κ =⇒ || ˙εve|| is non− zero

||Φ|| < κ =⇒ || ˙εve|| is set to zero

Now that we have the value of || ˙εve||, we proceed to determine ˙εve. Rearranging

terms in Eq. (3.22):

(
2ηG +

1

||ε̇ve||
)
ε̇ve =

2ηG||ε̇ve||2 + κ||ε̇ve||
ηG||ε̇ve||2 + κ||ε̇ve||

(τ − 2µRεve) (3.27)

ε̇ve =
||ε̇ve||

ηG||ε̇ve||+ κ
(τ − 2µRεve) (3.28)

Substituting Eq. (3.25) into this result

˙εve =
1

ηG
(||Φ|| − κ)

Φ

||Φ||
Rewriting

˙εve =
φ

ηG

Φ

||Φ||
˙εve =

1

ηG

(
||τ − 2µRεve|| − κ

) τ − 2µRεve
||τ − 2µRεve||

(3.29)

As per Eq. (5.32), for the condition when || ˙εve|| is zero, we will have ˙εve = 0,

evident from Eq. (3.28). For the condition when || ˙εve|| is non-zero, we will have ˙εve

take its final form as shown in Eq. (3.29). Thus the three cases of || ˙εve||, give ˙εve as

the following two possibilities:

˙εve =

 0, ∀ ||τ − 2µRεve|| ≤ κ;
1

ηG

(
||τ − 2µRεve|| − κ

) τ − 2µRεve
||τ − 2µRεve||

, ∀ ||τ − 2µRεve|| > κ;
(3.30)

3-D state space rate type constitutive model for SMPs

1. State Variables: ε, εve, θ, σ
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2. Elastic Response:

σ =
(
kG −

2µG

3

)(
trε− 3α(θ − θh)

)
I + 2µG

(
ε− εve − α(θ − θh)I

)
3. Flow Rule: ˙εve =

φ

ηG

τ − 2µRεve
||τ − 2µRεve||

4. Activation Conditions:

φ =

{
0, ∀ ||τ − 2µRεve|| ≤ κ;

||τ − 2µRεve|| − κ, ∀ ||τ − 2µRεve|| > κ;
(3.31)

We shall now non-dimensionalize the equations as described next.

3.3 Non-dimensionalization of the Model Equations

Non-dimensionalizing Variables

We choose the following variables as the non-dimensional parameters, based either

on their control on the SMP behavior (ER, θg) as reported in the literature, or their

influence as a loading parameter in the experiment (ε0, t0)

(1) The typical rubbery modulus ER, from experimental results ∼ 27Mpa.

(2) The maximum axial strain applied ε0 from experimental results ∼ 0.024.

(3) The glass transition temperature θg ∼ 328.

(4) The non-dimensionalization of the time t0, since this is connected with the kinetic

response.

The non-dimensional quantities using these variables are tabulated in Table 3.1.

Table 3.1: Dimensional quantities and corresponding non-dimensional quantities for
the small strain model

Dim σ ε t θ α ηG kG,R,µR

Nondim σ̄ =
σ

ERε0
ε̄ =

ε

ε0
t̄ =

t

t0
θ̄ =

θ

θg
ᾱ =

αθg
ε0

η̄G =
ηG

ERt0
•̄ =

•
ER

In the current form, the constitutive equation and the kinetic equation have six

dimensional parameters: kR, kG, α, ηG, µR, µG.
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Non-dimensional Equations

Thus we begin with the rate form of the constitutive equation:

σ̇ =
(
kG −

2µG

3

)(
trε̇− 3

(∂α
∂θ

(θ − θh) + α
)
θ̇
)
I + 2µG

(
ε̇− ˙εve −

(∂α
∂θ

(θ − θh) + α
)
θ̇I
)

(3.32)

˙̄σ
ERε0
t0

=
(
k̄GER −

2µ̄GER

3

)ε0
t0

(
tr˙̄ε− 3

( ∂ᾱ

θg
2∂θ̄

(θ̄ − θ̄h)θg +
ᾱ

θg

) ˙̄θθg

)
I

+ 2µ̄GER
ε0
t0

(
˙̄ε− ˙̄εve −

( ∂ᾱ

θg
2∂θ̄

(θ̄ − θ̄h)θg +
ᾱ

θg

) ˙̄θθgI
)

˙̄σ =
(
k̄G −

2µ̄G

3

)(
tr˙̄ε− 3

(∂ᾱ
∂θ̄

(θ̄ − θ̄h) + ᾱ
) ˙̄θ
)
I + 2µ̄G

(
˙̄ε− ˙̄εve −

(∂ᾱ
∂θ̄

(θ̄ − θ̄h) + ᾱ
) ˙̄θI
)

Similarly for the kinetic equation:

˙εve =
1

ηG
(||Φ|| − κ)

Φ

||Φ|| (3.33)

˙̄εve
ε0
t0

=
1

η̄GERt0
ERε0(||Φ̄|| − κ̄)

Φ̄

||Φ̄||

˙̄εve =
1

η̄G
(||Φ̄|| − κ̄)

Φ̄

||Φ̄||

where

Φ̄ = τ̄ − 2µ̄R ¯εve

Thus we now have the constitutive equation and the kinetic equation in non-

dimensional form in Eq. (3.32) and Eq. (3.33). There are six non-dimensional

parameters of the equations: k̄R, k̄G, ᾱ, η̄, µ̄R

C̄G =
(
k̄G −

2µ̄G

3

)
I⊗ I + 2µ̄GI (3.34)

C̄R =
(
k̄R −

2µ̄R

3

)
I⊗ I + 2µ̄RI (3.35)

We will implement all the equations in the form of differential equations, so that
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we can use a differential solver for the computations. Thus for the implementation,

we need to find the rate form of the state variables as follows.

Rate form for the elastic law:

[ ˙̄σ] =
(
k̄G −

2µ̄G

3

)(
tr˙̄ε− 3

(∂ᾱ
∂θ̄

(θ̄ − θ̄h) + ᾱ
) ˙̄θ
)
I + 2µ̄G

(
˙̄ε− ˙̄εve −

(∂ᾱ
∂θ̄

(θ̄ − θ̄h) + ᾱ
) ˙̄θI
)

(3.36)

=
(
C̄G

)[
˙̄ε−

(∂ᾱ
∂θ̄

(θ̄ − θ̄h) + ᾱ
) ˙̄θI
]
− 2µ̄G[ ˙̄εve]

=
(
C̄G

)[
˙̄ε−

(
C̄α

) ˙̄θI
]
− 2µ̄G[ ˙̄εve]

Rate form for the activation stress:

˙̄κ = f̂(θ̄, ε̄, sgn( ˙̄θ)) ˙̄θ (3.37)

Rate form for the thermal conductivity:

˙̄α =
∂ᾱ

∂θ̄
˙̄θ (3.38)

Rate form for the inelastic strain:

[ ˙̄εve] =
1

η̄G
(||Φ̄|| − κ̄)

[Φ̄]

||Φ̄|| (3.39)

[Φ̄] = [τ̄ ]− 2µ̄R[ ¯εve]

3.4 Comparison to the 1D SMP Model

The original 1D model was

˙̄ε1D =
( 1

ĒG

)
˙̄σ1D + ˙̄εev1D

+
(
C̄α

) ˙̄θ (3.40)

˙̄εev1D
=

1

η̄

(
σ̄1D − ĒRε̄ev1D

− σ̄y
)

(3.41)

(3.42)

The 3D model is as follows

[ ˙̄σ] =
(
C̄G

)[
˙̄ε−

(
C̄α

) ˙̄θI
]
− 2µ̄G[ ˙̄εve] (3.43)
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[ ˙̄εve] =
1

η̄G

〈
||[τ̄ ]− 2µ̄R[ε̄ve]|| − κ̄

〉 [τ̄ ]− 2µ̄R[ε̄ve]

||[τ̄ ]− 2µ̄R[ε̄ve]||

<> are Macauley brackets.

Thus,

[˙̄ε] =
(
C̄−1

G

)[
[ ˙̄σ] + 2µ̄G[ ˙̄εve]

]
+
(
C̄α

) ˙̄θ[I]

Consider uniaxial stress applied to the sample. Thus we have σ̄11 = f

˙̄ε11 =
(
C̄−1

G11

)[
[ ˙̄σ11] + 2µ̄G[ ˙̄εev11 ]

]
+
(
C̄−1

G12

)[
[ ˙̄σ22] + 2µ̄G[ ˙̄εev22 ]

]
(3.44)

+
(
C̄−1

G13

)[
[ ˙̄σ33] + 2µ̄G[ ˙̄εev33 ]

]
+
(
C̄α

) ˙̄θ

Now σ̄22, σ̄33 = 0 and ˙̄εev22 , ˙̄εev33 = −1

2
˙̄εev11 Thus,

˙̄ε11 =
(
C̄−1

G11

)[
˙̄σ11

]
+
(

2C̄−1
G11
− C̄−1

G12
− C̄−1

G13

)
µ̄G

[
˙̄εev11

]
+
(
C̄α

) ˙̄θ (3.45)

=
( 1

ĒG

)[
˙̄σ11

]
+
(

2
1

ĒG
+
νG
ĒG

+
νG
ĒG

)
µ̄G

[
˙̄εev11

]
+
(
C̄α

) ˙̄θ

=
( 1

ĒG

)[
˙̄σ11

]
+
(2(1 + ν)

ĒG

)
µ̄G

[
˙̄εev11

]
+
(
C̄α

) ˙̄θ

=
( 1

ĒG

)[
˙̄σ11

]
+
( µ̄G
µ̄G

)[
˙̄εev11

]
+
(
C̄α

) ˙̄θ

=
( 1

ĒG

)
[ ˙̄σ11] + [˙̄εev11 ] +

(
C̄α

) ˙̄θ

This resembles the strain of the 1D model in Eq. (3.40)

Now consider the inelastic strain evolution in the 3D model for the uniaxial loading:

[˙̄εve] =
1

η̄G

(
||[τ̄ ]− 2µ̄R[ε̄ve]|| − κ̄

) [τ̄ ]− 2µ̄R[ε̄ve]

||[τ̄ ]− 2µ̄R[ε̄ve]||
(3.46)

Therefore,

˙̄εev11 =
1

η̄G

(
||[τ̄ ]− 2µ̄R[ε̄ve]|| − κ̄

) τ̄ 11 − 2µ̄Rε̄ev11

||[τ̄ ]− 2µ̄R[ε̄ve]||
(3.47)

=
1

η̄G

(
||[τ̄ ]− 2µ̄R[ε̄ve]|| − κ̄

)2

3

(σ̄11 − 3µ̄Rε̄ev11)

||[τ̄ ]− 2µ̄R[ε̄ve]||
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Now we compare the activation stress for 3D and 1D model:

||[τ̄ ]− 2µ̄R[ε̄ve]|| =
√

(τ̄ 11 − 2µ̄Rε̄ev11)2 + (τ̄ 22 − 2µ̄Rε̄ev22)2 + (τ̄ 33 − 2µ̄Rε̄ev33)2

=

√
(
2

3
σ̄11 − 2µ̄Rε̄ev11)2 + (−1

3
σ̄11 + µ̄Rε̄ev11)2 + (−1

3
σ̄11 + µ̄Rε̄ev11)2

=

√
(
2

3
σ̄11 − 2µ̄Rε̄ev11)2 +

1

4
(
2

3
σ̄11 − 2µ̄Rε̄ev11)2 +

1

4
(
2

3
σ̄11 − 2µ̄Rε̄ev11)2

=

√
3

2
(
2

3
σ̄11 − 2µ̄Rε̄ev11)2

=

√
3

2
(
2

3
σ̄11 − 2µ̄Rε̄ev11)

=

√
2

3
(σ̄11 − 3µ̄Rε̄ev11) (3.48)

Substituting above result into Eq. (3.47), we get,

˙̄εev11 =
1

η̄G

(√2

3
(σ̄11 − 3µ̄Rε̄ev11)− κ̄3D

)2

3

(σ̄11 − 3µ̄Rε̄ev11)√
2

3
(σ̄11 − 3µ̄Rε̄ev11)

=
1

η̄G

(√2

3
( ˙̄σ11 − 3µ̄Rε̄ev11)−

√
2

3
κ̄1D

)2

3

(σ̄11 − 3µ̄Rε̄ev11)√
2

3
(σ̄11 − 3µ̄Rε̄ev11)

=
2

3η̄G

(
(σ̄11 − 3µ̄Rε̄ev11)− κ̄1D

)(σ̄11 − 3µ̄Rε̄ev11)

(σ̄11 − 3µ̄Rε̄ev11)

=
2

3η̄G

(
σ̄11 − 3µ̄Rε̄ev11 − κ̄1D

)
=

2

3η̄G

(
σ̄11 − 3

ĒR
2(1 + νR)

ε̄ev11 − κ̄1D

)
...νR ≈ 0.5

=
2

3η̄G

(
σ̄11 − ĒRε̄ev11 − κ̄1D

)
(3.49)

Thus the activation stress may be different for 3D and 1D as seen in Eq. 3.48, but

it will result in the same viscoelastic strain for both 1D and 3D model, because of

the assignment of η3D =
2

3
η1D and κ3D =

√
2

3
κ1D in Eq. 3.49.
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3.5 Implementation of the Small Strain 3D Model

For homogeneous deformations, the control equation will look as follows:

(A)[ ˙̄σ] + (B)[˙̄ε] = [f(t̄)] (3.50)

[ ˙̄θ] = [g(t̄)]

where,

(A(t̄)): 6X6 matrix representing the combination of components of stress that are

known

(B(t̄)): 6X6 matrix representing the combination of the components of strains that

are known

[f(t̄)]: 6 term column vector representing the way in which these known components

change with time

[g(t̄)]: 1 term vector representing the way in which temperature changes with time

Given the loading scheme as described by Eq. (3.50), and given the initial condi-

tion of σ̄, ε̄, ε̄ve, θ̄, and t̄, we find ˙̄σ and ˙̄ε over the whole time range by the following

steps:

The state evolution form derived above will translate as follows to be fed into a

suitable manner into MATLAB:

Ṡ = f(S, t) (3.51)

where S represents the variables that model the current state of the system and

f is a function of the state variables and time. Thus, we can proceed to feed the

equations (3.50) to (3.39) in the form A(x,θ,t)ẋ = p(x,θ,t) +Q(x,θ,t)x, which is solved by

the ODE45 solver in MATLAB. The algorithm is presented in Algorithm 1.

Let

i11 = [1], i61 = [1 1 1 0 0 0]T , i66 = 6× 6 identity matrix

z11 = [0], z16 = 1× 6 zero matrix, z61 = 6× 1 zero matrix, z66 = 6× 6 zero matrix

x = [σ6X1; ε6X1; θ;κ;α]

xinit = [σ6X1 = 0; ε6X1 = 0; θh;κ;αr], ε
p
6X1 = 0
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Algorithm 1 State space model

1: function ẋ =ODEsolver(t, xinit)

2: Calculate C̄G, C̄R, C̄α =
(∂ᾱ
∂θ̄

(θ̄ − θ̄h) + ᾱ
)

3: Calculate Φ̄ = τ̄ − 2µ̄Rε̄ve
4: if ||Φ̄|| 6 κ̄ then
5: a = 0
6: else||Φ̄|| > κ̄
7: a = ||Φ̄|| − κ̄
8: end if

9: ˙̄εve =
aΦ

η̄||Φ̄||
10: Solve ODE system:

A(t̄) B(t̄) z61 z61 z61
i66 −C̄G C̄αC̄Gi61 z61 z61
z16 z16 i11 z11 z11
z16 z16 −κ̂ i11 z11
z16 z16 −dα̂/dθ z11 i11




˙̄σ
˙̄ε
˙̄θ
˙̄κ
˙̄α

 =


f(t̄)

−2µ̄G ˙̄εve
g(t̄)
z11
z11



[P ]15×15[ẋ]15×1 = [r]15×1 (3.52)

11: end function
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3.6 Error Optimization: Identification of Activation Stress Coefficients

The hysteresis of the activation stress is key in controlling the response of the

SMP model. Details of the activation stress dependence on temperature, and its

functional form, can be found in the original proposition by Ghosh and Srinivasa[34].

In this work, we present an optimization method to determine the coefficients of

the activation stress function. The activation stress function remains the same as

proposed in the previous chapter 2:

Form of the Activation Stress Rate Function

κ̇ = f(θ, sign(θ̇), ε)θ̇ (3.53)

fcool = y1ev + (sinh(−y2(θ − θ1)))δ1 (3.54)

fheat = −y3ev − y4(1− (y5 tanh(mθ + n))2)δ2 (3.55)

where, where, ev is the von mises strain corresponding to the strain (ε− εve−α(θ−
θh)I). ev is the scalar strain value selected in 3D context, such that it is affected by

pure thermal strains or pure mechanical processes. Also, m = 2/(θmax − θ2), n =

1−mθmax. θ1 and θ2 are limiting values of θ until which there is no rise/fall in the

stress/strain during the cooling/heating cycle.

δ1 =

{
1, ∀ θ 6 θ1;

0, ∀ θ > θ1;
δ2 =

{
0, ∀ θ < θ2;

1, ∀ θ > θ2;

Optimization Parameters

For range 1 (Strain Control): y1, y2

For range 2 (Stress Control): y3, y4, y5

Defining Error Region

We use the parametric analysis to narrow down exactly which response regimes

are affected by the activation stress coefficients. This helps in reducing the error area

that needs to be optimized to a smaller pertinent region.

Let r1 = range of stress response that is affected by y1, y2 as observed from 3.8.2

and r2 = range of strain response that is affected by y3, y4, y5 as observed from 3.8.2
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Defining the Objective Function

For range 1 (Strain Control): f1 =
L2 norm(σmodel − σdata)

∣∣∣
r1

L2 norm(σdata)
∣∣∣
r1

For range 2 (Stress Control): f2 =
L2 norm(εmodel − εdata)

∣∣∣
r2

L2 norm(εdata)
∣∣∣
r2

Notice from the parametric analysis in Section 3.8.2, y1, y2 affect the strain response

in range 2 as well. This happens because of the stress rise in range 1 (which is

controlled by y1, y2) acts as the initial condition for range 2. However, we restrict

f1 to only the stress response in range 1. The code is split up so that the optimum

results of stress and strain in range 1 are passed over as the initial condition for range

2. The stress rise in range 1 due to y1, y2 affects the strain response in range 2, and

this shall be handled by the optimization of f2 alone. In other words, y3, y4, y5

will be determined to get better solutions in range 2, only after fixing the optimum

values of y1, y2 that give better solutions in range 1.

Optimization Algorithm

Since the inbuilt optimization functions fminsearch / fmincon of MATLAB are

used in this work, the primary concern of the optimization algorithm is that, unlike

the usual implementation of these functions, where the optimization parameters are

directly involved in the objective function, the optimization algorithm of the current

work consists of parameters that belong to a different implicit function

(
dκ

dθ

)
of

the model, and that the objective function only compares the output of the model

(stress/strain response) and an input data set (experimental data). The algorithm

has been generated to obtain an optimization routine that can be referred to in

Algorithm 2.

Defining the Parameter Space

The initial guesses and the definition of the parameter space is crucial for fmincon.

In this work we first determine the parameter space by using the fminsearch solver,

starting with a random initial guess as shown in Table 3.2. The function values for

each iteration step and the final results for the optimum values of the coefficients

are shown in Figures 3.1a,3.1b and 3.1c,3.1d. On obtaining the optimum coefficient

values from the fminsearch solver, we use these values to set up a parameter space
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(lower and upper bound) for the coefficients for the fmincon solver as you can see in

Table 3.3. We use the fmincon solver to get optimum values of y1, y2, y3, y4, y5.

The function values for each iteration step and the final results for the optimum

values of the coefficients are shown in Figures 3.2a,3.2b and 3.2c,3.2d.

Notice that fminsearch does give reduced objective function values, however, when

we take a look at the model output and the experimental data, we see that the trend

of the model output is physically incorrect. Since fminsearch is looking for values in

an unrestricted manner, with the aim of only reducing the objective function value, it

may lead to problems like these. In order to get physically realistic values, a suitable

parametric space has to be defined, so that the trends of the responses are kept intact

in the process of reducing the objective function value. On specifying a suitable

parametric space, fmincon gives physically realistic answers. For example, although

fminsearch returns y4 = −0.1601, we realize this is causing the wavy unrealistic shape

recovery response in the model. Therefore we set the parametric space for y4 to a

non-negative space, i.e lower bound lb = 0 and upper bound ub = 0.6. This dictates

to fmincon a better searching region that can return a smooth gradual response of

the shape recovery, which is physically realistic.

Note that the difference between the model and the data for range 2 has increased

from 9.91% in the last iteration of the fminsearch solver to 12.63% in the last iteration

of the fmincon solver. Decision on which values are finally chosen is left to the

designer, depending on not just the final value of the objective function but also on

which trend of the response and range of the response is critical for the application

in which the SMP will be used.
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Algorithm 2 Optimization for parameter identification in a thermomechanical cycle

1: Specifying initial values for the parameters y1, y2 to be optimized in range 1
2: function Optimization solver(minimize f1) . fminsearch/fmincon
3: Specify upper and lower bound of y1, y2 for fmincon solver
4: TolFun = 1e-6,Alg = int-point,MaxFunEvals = 3000,MaxIter = 120

5: function Model solver(Calculate f1 for each trial value of y1, y2)
6: Extract experimental time, stress, strain data for strain control range 1
7: Obtain material parameters and their non-dimensional values
8: Obtain control parameters (y1, y2 to evaluate activation stress)
9: Set initial condition xinit=[σ6X1 = 0; ε6X1 = 0; θh;κ = 0;αr; ε

p
6X1 = 0]

10: Pass data from Line 6 to 9 to state space model. Refer Algorithm 1
11: Use solutions of model to determine minimization function f1
12: Assign solution of ode solver to base workspace
13: end function
14: Assign optimized parameter values y1, y2 to base workspace
15: end function
16: Specifying initial values for the parameters y3, y4, y5 to be optimized in range 2
17: function optimization solver(minimize f2) . fminsearch/fmincon
18: Specify upper and lower bound of y3, y4, y5 for fmincon
19: TolFun = 1e-6, Alg = int-point,MaxFunEvals = 3000, MaxIter = 120

20: function model solver(Calculate f2 for each trial value of y3, y4, y5)
21: Extract experimental time, stress, strain data for stress control range 2
22: Obtain material parameters and their non-dimensional values
23: Obtain control parameters (y3, y4, y5 to evaluate the activation stress)
24: Initial condition is set as solution of last time step from strain controlled range 1 from

base workspace. Thus xinit=xstraincontrol(t = end)
25: Pass data from Line 21 to 24 to state space model. Refer Algorithm 1
26: Use solutions of model to determine minimization function f2
27: Assign solution of ode solver to base workspace
28: end function
29: Assign optimized parameter values y3, y4, y5 to base workspace
30: end function
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3.6.1 Results of “fminsearch” Solver

Table 3.2: Initial conditions and final optimum results of activation stress coefficients
from the “fminsearch” solver

fminsearch f1 value f2 value y1 y2 y3 y4 y5

initial 0.381496 0.6117 1.0000 10.0000 0.2038 0.4657 0.8374
optim 0.0689 0.0991 0.0482 27.8625 -0.3815 -0.1601 1.9749

Current Function Value: 0.068993
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Figure 3.1: “fminsearch” function values (top) and model versus data for optimum
values (bottom)
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3.6.2 Results of “fmincon” Solver

Table 3.3: Initial conditions, parameter space and final results of activation stress
coefficients from “fmincon” solver

fmincon f1 value f2 value y1 y2 y3 y4 y5

initial 0.4153 0.6192 1.000 10.000 -0.204 0.466 0.837
lb - - 0.001 10.000 -0.850 0.000 0.000

ub - - 2.500 30.000 0.350 0.600 2.000
optim 0.068 0.1263 0.076 23.357 -0.192 0.029 0.548

Current Function Value: 0.068997
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Figure 3.2: “fmincon” function values (top) and model versus data for optimum
values (bottom)
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3.7 Thermomechanical Cycle Results

3.7.1 Unconstrained Shape Recovery

We use the insights from the parametric analysis in Section 3.8 and the optimum

results obtained from the error minimization in Section 3.6 to validate the model for

uniaxial tensile loading on polyurethane, as shown in Figure 3.3. Similar validation

can be carried out for other cases using the insights from the parametric analysis for

the material parameters, and using the method of error minimization to obtain the

activation stress coefficients.
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Figure 3.3: 3D Model results versus data for the unconstrained shape recovery ther-
momechanical cycle on polyurethane
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The activation stress evolution and the corresponding flow potential is plotted

in Figure 3.4 to observe how the activation stress controls the evolution of the flow

potential. The difference between these two dictates the rate of inelastic strain as

can be seen from the figures. Notice how this difference gives the same inelastic

strain for both 1D and 3D model, because of the assignment of η3D =
2

3
η1D as

derived in Section 3.4. Observe the hysteresis of the activation stress and the flow

potential in the heating and cooling ranges, which gives the two different inelastic

strain evolutions.
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Figure 3.4: Evolution of inelastic strain in 3.4b by controlling the difference between
the activation stress and the inelastic flow potential in 3.4a for the 3D and 1D model

69



The three strains that are competing with each other in this model are the total

strain, the inelastic strain and the thermal strain. In the time graph shown in Figure

3.5, this comparison shows how the elastic strain evolves as εe = ε− εve − α(θ− θh),
for the strain control region (t = 0 to 72) and stress control region (t = 72 to 151).

Thus it becomes evident how σ = CGεe evolves in the strain control region i.e stress

increases when the material is cooled, and how the material shows spring back i.e

decrease in strain during unloading.
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Figure 3.5: All strains for unconstrained shape recovery thermomechanical cycle on
polyurethane
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3.7.2 Constrained Stress Recovery

Using Experimental Specified Parameters

This thermomechanical experiment, carried out by Tobushi et al., consists of six

processes enlisted below and shown in Figure 3.6.

• Strain loading to 2.4% and holding at constant strain at high temperature

(7200s)

• Cooling to below Tg at constant strain constraint (360s)

• Unloading to zero load at low temperature (7200s)

• Holding at no load until 1% strain rise is observed (600s)

• Heating to above Tg at constant strain constraint (360s)

• Unloading to zero load at high temperature (7200s)

We implement this constrained stress recovery cycle and observe the model re-

sponse in this section. As seen by the model results in Figure 3.7, the model is able

to depict the material response up to process 3. It is unable to capture two of the

six process responses:

(Process 4) Holding at no load until 1% strain rise is observed: model is unable

to show a strain spring back at no load, it shows spring back during unloading at

process 3 only.

(Process 5) Heating to above Tg at constant strain constraint: the stress response

initially shows a dip which is not captured by the model. It is possible that the

thermal effects are controlling the response at this stage, as well the recovery time

plays a significant role.
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recovery thermomechanical cycle on polyurethane
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3.8 Parametric Study of the SMP Model with respect to Material Pa-

rameters

Response Parameters

The response parameters that are chosen for the parametric study from the re-

sponse of SMP through a thermomechanical cycle are listed in Table 3.4. When

designing a SMP application, two or more of these response parameters (depend-

ing on the application) are the phenomenological details that are of interest to the

application designer. In this work, we attempt to connect this to the constitutive

parameters, because that will be of interest to the materials designer.

Table 3.4: Chosen response parameters in a thermomechanical cycle

Range 1 (Strain Control) Range 2 (Stress Control)

σb: Stress at the end of loading εcd: Spring back on unloading
σTg: Value of stress during cooling at Tg εTg: Value of strain during heating at Tg
σc: Maximum stress rise at end of cooling εea: Unrecoverable strain at the end of cycle

Material Parameters

Material properties that will be varied in order to observe the effect of their

change on the chosen response parameters: EG, ER, αG, αR, ηG, ηR. Apart from

this, coefficients of the activation stress function will be varied in order to observe

the effect of their change on the response parameters

• y1, y2: activation Stress coefficients in the cooling function

• y3, y4, y5: activation Stress coefficients in the heating function

Protocol for the Analysis

We will be focussing on the thermomechanical cycle for uniaxial loading on the

SMP sample that was carried out by Tobushi et al. [2]. The actual experimental

values of the material parameters for the shape memory polyurethane sample as
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Table 3.5: Experimental values of material parameters in the SMP model

ModulusE Thermal Expansion α Viscosity η

Glassy 907 MPa 11.6× 10−5 per K 116000 Mpas
Rubbery 27.6 MPa 11.6× 10−5 per K 2030 Mpas

described in their work are as listed in Table 3.5. For each of the material parame-

ters/activation stress coefficients, we vary the value of one of these properties, keeping

all the others constant at the actual experimental value provided. We conduct a two

step parametric analysis for each of these material properties and activation stress

coefficients:

1. Order of magnitude: We vary each material parameter/activation stress coeffi-

cient over a order of magnitude of 10−2 to 10+2 around the actual experimental

value, and make a note of the response parameters that get affected.

2. Around experimental value: We then vary the same material parameter/activation

stress coefficient within a range of −20% to +20% around the actual experi-

mental value, and observe the effect on the response parameters.

The tables containing the values of the parametric studies and the graphs generated

for the order of magnitude study are enlisted in Appendix A.Here we will only present

the graphs generated for the parametric study around the experimental value of the

parameter. Some comments have been made based on the observations and analysis

of these two studies for each of the parameter studies.

A note for the time factor used in the implementation: The time zones for the

experiment as specified by Tobushi are

• Strain loading to 2.4% at high temperature + Holding strain constant = 7200s

• Cooling to below Tg at constant strain constraint = 360s

• Unloading to zero load at low temperature = 7200s
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• Heating to above Tg under no load (stress free) configuration = 360s

Note that the experimental value for ηG = 116000Mpas. In the code run however,

we have set the time scale factor texp = 100s thus factoring the experiment time by

100 to reduce the code run time on the machine. Now, care has to be taken that

the viscosity value present in the model constitutive equations, ηG, is factored by

the same amount, or else the creep and relaxation behaviors will be exaggerated

and misrepresented. Therefore for all the runs, we use ηG =
116000(MPas)

texp(s)
and

texp = 100s. The whole experiment is now interpreted in a new time scale texp, so

the units of ηG should be interpreted as ηG = 1160(MPatexp).

3.8.1 Material Parameters
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Figure 3.8: Glassy modulus effect on the response for values around experimental
data range

Observations:

As the material becomes more glassy, the stress rise on cooling becomes higher and

the tendency to spring back on unloading at glassy state becomes lower. Changing

the glassy modulus by order of magnitues above or below, has shown that five of the

six model response parameters are affected by the glassy modulus (refer to Appendix

A, Table A.2), with pronounce effect on the stress rise on cooling σc and shape fixity

εcd (refer to Appendix A, Figure A.1). We look out for these response characteristics
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by changing the glassy modulus only by ±20% range around the actual experimental

value of glassy modulus, but these effects on σc and εcd are minimal as can be seen

in the Figure 3.8. Effects on the other parameters are negligible (refer Appendix A,

Table A.3).

Rubbery Modulus
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(c) Increasing values of ER in-
creases stress on loading σb

Figure 3.9: Rubbery modulus effect on the response for values around experimental
data range

Observations:

As seen from Figure 3.9c, when the material becomes more rubbery, stress rise on

loading σb at rubbery state is higher. This also results in a proportional rise in the

maximum stress developed in the material during cooling as seen in Figure 3.9b.

Yakacki et al. [22] proposed an increase in crosslinking, which is directly related to

a polymers rubbery modulus, will provide more restorative forces and may enable

accelerated viscoelastic recovery. In the current analysis, we can comment on the

restorative forces developed in the material only, and these results agree with ob-

servations made by Yakacki. Spring back at glassy state and recovery at the end of

the cycle is not affected severely. Since ER is the non-dimensionalizing parameter

in this model, as well as the parameter selected for determining the relaxation time,

this parameter has significant control over most parameters of the response (Refer to

Appendix A, Table A.4). Table A.5 and the Figure 3.9 shows that increasing values

of the rubbery modulus results in significant increase in the stress rise response on

loading, σb, significant increase in the maximum stress rise response after cooling, σc
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and increase in the shape fixity εcd.

Glassy Thermal Expansion

Observations:

Refer to Figure 3.10. As expected, the effect of glassy thermal expansion is evident at

lower temperatures. Glassy thermal expansion coefficient shows a pronounced effect

on the stress rise during cooling and spring back on unloading. Increasing values of

the glassy thermal expansion results in increase of the trend of stress rise σTg and

significant increase in the maximum stress rise response on cooling, σc. This change

in σc affects the spring back during unloading. The model shows increasing spring

back tendencies during unloading at low temperatures, with increasing values of the

glassy thermal expansion. Effects on the other parameters is not significant.
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Figure 3.10: Glassy thermal expansion effect on the response for values around ex-
perimental data range

Rubbery Thermal Expansion

Observations:

Refer to Figure 3.11. Increasing values of the rubbery thermal expansion results

in slight decrease of the maximum stress rise response after cooling, σc and slight

decrease in the shape fixity εcd. Note that the rubbery thermal expansion affects

the same parameters as the glassy thermal expansion coefficient, but the effects are

opposite. Effects on the other parameters is not significant.
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Figure 3.11: Rubbery thermal expansion effect on the response for values around
experimental data range

Glassy Viscosity

Observations:

From Appendix A, Table A.10 it comes to light that the viscosity has significant con-

trol over the stress rise during loading and the shape fixity, which is typical of creep

and relaxation phenomena in a viscoelastic model. Thus the effect of changing the

glassy viscosity by an order of magnitude is significant on three response parameters.

It affects the trend of the strain recovery response during heating. Increasing values

of the viscosity results in the increase in the strain at the end of cycle εea. However,

these effects are not so pronounce when the viscosity is changed only by ±20%, as

seen in Appendix A, Table A.11 and the graphs in Figure 3.12.
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Figure 3.12: Viscosity effect on the response for values around experimental data
range
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3.8.2 Activation Stress Coefficients

Activation Stress Coefficient y1
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(c) No additional effect observed

Figure 3.13: Activation stress coefficient y1 effect on the response

Observations:

Refer to Figure 3.13. The activation stress coefficient y1 significantly affects the

shape recovery trend on heating. Increasing values of y1 effects the increase of the

maximum stress rise response after cooling, σc. This results smaller spring back

tendencies on unloading, and eventually in the decreasing trend of shape recovery

or, in the decrease in the values of εTg and in the increase in the strain recovery at

the end of the cycle. Effects on the other parameters is not significant.

Activation Stress Coefficient y2

Observations:

Refer to Figure 3.14. The effect of activation stress coefficient y2 is similar to y1, but

significantly higher. It primarily affects not just the value of shape recovery at the

end of the cycle, but more importantly the shape recovery trend on heating, even

though this coefficient shows up only in the cooling part of the cycle. This is because

increasing values of y2 effects the increase of the maximum stress rise response after

cooling, σc significantly. Since this acts as the initial condition for the unloading

and heating range, the response parameters in this second range get affected. This

eventually results in the decreasing trend of shape recovery or, in the increase in the
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(b) Increasing values of y2 in-
creases maximum stress rise σc
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(c) No additional effect observed

Figure 3.14: Activation stress coefficient y2 effect on the response

values of εTg and in the increase in the strain recovery at the end of the cycle εea.

Activation Stress Coefficient y3
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Figure 3.15: Activation stress coefficient y3 effect on the response

Observations:

Refer to Figure 3.15. The activation stress coefficient y3 significantly affects the

shape recovery trend on heating. Increasing values of y3 results in the increasing

trend of shape recovery or, in the decrease in the values of εTg and in the significant

decrease in the strain at the end of the cycle εea. It does not have any other effect

on the other parameters.
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Activation Stress Coefficient y4

Observations:

Refer to Figure 3.16. The activation stress coefficient y4 affects the shape recovery

trend on heating slightly. Increasing values of y4 results in the increasing trend of

shape recovery or, in the decrease in the values of εTg and in the decrease in the

strain recovery at the end of the cycle εea. It does not have any other effect on the

other parameters.
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Figure 3.16: Activation stress coefficient y4 effect on the response

Activation Stress Coefficient y5

Observations:

Refer to Figure 3.17. The activation stress coefficient y5 affects the shape recovery

trend on heating. Increasing values of y5 results very slightly in the decreasing trend

of shape recovery or, in the increase in the values of εTg and in the increase in the

strain recovery at the end of the cycle εea. It does not have any other effect on the

other parameters.
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Figure 3.17: Activation stress coefficient y5 effect on the response

3.9 Sensitivity Analysis

The Table 3.6 is derived from all the parametric analysis (around experimental

data range), and we enlist the effect of change in the response of the material with

respect to the material parameters. To calculate the sensitivity of each response

parameter, we first compute the logarithm of the response

ln param =
∆param

param
=

(paramvar+20% − paramvar−20%)

(paramexpvar)
.

For example for the sensitivity of the response parameter σb with respect to the

material parameter EG, we first compute the logarithm of σb as

ln σb =
∆σb
σb

=
(σ

EexpG +20%

b − σE
exp
G −20%

b )

σ
EexpG
b

,

and the logarithm of the material parameter EG as

ln EG =
∆EG
EG

=
(Eexp+20%

g − Eexp−20%
g )

Eexp
G

.

The sensitivity of each response parameter with respect to a particular material

parameter is determined by diving their corresponding logarithms. For example,

the sensitivity of σb with respect to EG is given by
ln σb
ln EG

. These values have been

computed and presented in Table 3.6. The maximum value in any column will give

an idea of which material variable has maximum control on that particular response

parameter. Thus the Table 3.6 shows how sensitive a particular response parameter is

to any of the material parameters. For example, the shape fixity response parameter
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εcd does not depend much on EG, and is sensitive only by a small fraction to αG, but

it is sensitive to y1 and y2.

Table 3.6: Sensitivity of a particular response property to each of the material pa-
rameters

Material Affected Response Property

Parameter σb σTg σc εcd εTg εea

EG 0.041116 0.03859 0.175751 -0.03648 0.001648 0.000534
ER 0.962056 0.962736 0.831967 0.033672 -0.00193 -0.00029
ηG 0.052342 0.040464 0.000888 -0.11262 0.386203 -0.06997
αG 0 0.099929 0.494241 1.90404 -0.13933 -0.00067
αR 0 0.077597 -0.20701 0.041836 -0.19562 0.000501
y1 0 0 0.308941 -4.76861 1.519462 -0.43661
y2 0 0 0.743927 -9.00851 4.403135 -1.76431
y3 0 0 0 2.61E-05 -0.78519 0.580071
y4 0 0 0 2.6E-05 -0.11714 0.13142
y5 0 0 0 5.5E-05 0.004765 -0.01262

The Table 3.6 is useful from a synthesis aspect, because one can deduce the

physical properties that need to be changed in order to observe a particular kind

of response. On the other hand, it is also useful to the designer, since it reports

how much a particular response parameter can be controlled by each of the material

parameters. From a designer’s point of view, it now becomes clear that

• ER controls the response parameters σb, σTg, σc in the strain control region

• σc can be controlled primarily by ER and y2, and partially by αG and y1

• It should be noted that σc value affects the strain responses in range 2 i.e stress

control regime of the thermomechanical cycle, since it is the initial condition

for this part of the cycle.

• Shape fixity εcd is affected primarily by y1, y2, because of their effect on σc,

but it can be controlled individually through αG

• εTg is affected primarily by y1, y2, because of their effect on σc, but it can be

controlled individually through y3
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• Shape recovery εea is affected primarily by y2, because of its effect on σc, but

it can be controlled individually through y3

Response Surface Map

We notice that the parameter y2 is the common influencing parameter for each

of these responses. The remaining three ”uncommon” parameters ER, y1 and y3

separately affect the three responses.

1. Although the parametric analysis suggests response properties being directly

proportional to the material properties, increasing or decreasing monotonically

(example Figure 3.18a), the response surface maps give a visual idea of the

dependence, which may be complicated (example Figure 3.18b,3.18c).

2. For a particular set of all the material parameters, and fixing y2 to a certain

value, we will obtain corresponding response values of σC , εcd and εea. Of these

response values, if two of the responses lie in an acceptable range, but the third

is not within acceptable range, then the corresponding uncommon parameter

of the response can be varied to get a desirable answer, without affecting the

other two responses.

3. Plotting the three response parameters against the common parameter y2, and

using the physically acceptable ranges for the responses, we can determine the

physically acceptable range for y2. This helps in recognizing whether the error

optimization code is giving a physically acceptable result.

st
re
ss

co
ol

y2 ER
20

30
40

50

15
20

25
30

35

1

1.5

2

2.5

(a)

sh
ap
e
fix
it
y

y2 y1
0.05

0.1

15
20

25
30

35

0.005

0.01

0.015

0.02

0.025

(b)

sh
ap
e
re
co
ve
ry

y3 y2
15

20
25

30
35

−0.2

−0.1

×10−3

0

10

20

(c)

Figure 3.18: Response surface maps
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3.10 Parametric Study of the SMP Model with respect to Control Pa-

rameters

The following parametric study involves varying certain loading conditions in the

thermomechanical cycle, which have been known to affect the response of SMPs in

the literature. We choose the following loading parameters of significance: maximum

strain applied, deformation temperature, cooling rate and heating rate.

3.10.1 Maximum Strain
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(c) Proportional rise in stress on
loading

Figure 3.19: Effect of maximum strain applied on the response for values around
experimental data range

Observations:

Refer to Figure 3.19. As we increase the applied maximum strain, it increases the

stress rise in the material proportionally during loading. The amount of stress rise

only during cooling remains the same, although the maximum stress rise at the end

of cooling increases proportionally. Shape fixity is not affected by the applied strain.

With increasing applied strain, the final strain at the end of the cycle increases, but

the shape recovery is decreases very gradually.

3.10.2 Deformation Temperature

Observations:

Refer to Figure 3.20. Heating the material to a higher temperature affects the stress

rise during cooling and therefore the shape fixity slightly, compared to its effect on
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Figure 3.20: Effect of deformation temperature on the response for values around
experimental data range

the shape recovery. As the deformation temperature is increased, the stress rise in the

material increases, as it is cooling over a larger ∆θ. This reflects in the shape fixity

behavior directly, and we see greater spring back with larger stress in the material.

On heating the material at the end of the cycle to greater temperatures, better shape

recovery is observed.

3.10.3 Heating Rate

Observations:

Refer to Figure 3.21. Varying the heating rate of the material affects the shape recov-

ery characteristics severely. Heating the material gradually as opposed to ramping

it suddenly gives more recovery of the strain at the end of the cycle.

3.10.4 Cooling Rate

Observations:

Refer to Figure 3.22. Varying the cooling rate of the material affects the trend rise in

the material and correspondingly the shape fixity slightly. Effects on other response

parameters are minimal.
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Figure 3.21: Effect of heating rate on the response for values around experimental
data range
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Figure 3.22: Effect of cooling rate on the response for values around experimental
data range
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3.11 Summary

The approach used in the development of the 1D model with the hysteresis of the

activation stress through a temperature cycle, as proposed initially by Ghosh and

Srinivasa [34], is extended in this chapter to a small strain 3D model. The details

of a systematic optimization method to compute the coefficients of the activation

stress function are presented. This gives significantly improved results when com-

pared to using an ad hoc estimation of the coefficients in the previous chapter for

the 1D model. Then this model is used to carry out an extensive parametric study

for all material parameters and some chosen loading conditions of the experiment.

The material parametric study gives an idea of how the trends of the response char-

acteristics get affected by the material parameters. The sensitivity analysis of the

material parameters has made it clear to the designer the quantitative control of

each material parameter on the chosen response parameters. The crucial material

parameters that governed the SMP response were the rubbery modulus and some

of the coefficients of the activation stress function while cooling and heating. This

also showed how the activation stress hysteresis function controls the response of

the SMP. The sensitivity analysis also showed that behavior of SMPs are complex,

where each response parameter is affected by two or more material parameters si-

multaneously. This was presented visually in the form of response surface maps, by

varying two most influencing material parameters simultaneously and observing its

effect on the response parameter. Finally, a parametric study for appropriate loading

conditions was carried out, and we see that the model response is concurrent with

the experimental results reported in the literature. Thus, the model is studied under

different loading and thermal conditions, in addition to providing a comprehensive

analysis of the material properties that characterize the SMP response.
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4. BEAM THEORY MODEL USING ELASTIC-PREDICTOR

PLASTIC-CORRECTOR

4.1 Introduction

Due to unique thermomechanical properties and the process-controllable behav-

ior, SMPs have found numerous macroscopic applications as discussed in Chapter 1

Section 1.3. In most of these applications the SMP sample is subjected to bending

load. The benefit of looking at bending experiments as opposed to uniaxial exper-

iments are not restricted to application areas alone, but characterization problems

themselves. For example, as Liu et al. [17] point out in their paper, in tension or

compression, thermal stresses arise from constrained thermal expansion or contrac-

tion, leading to difficulties in separating the various mechanisms during deformation.

Upon cooling, the applied stress can increase at a fixed strain, while in the flexural

deformation the thermal contraction is not as severely constrained. Other advan-

tages are that large displacements studies can be achieved in flexure at much more

modest strain levels. A drawback is that the stress and strain are nonuniform and

therefore more difficult to analyze. There have only been a handful of attempts at

implementing the SMP models in a finite element setup to study the response for dif-

ferent load configurations or sample geometries as discussed in Chapter 1 Section 1.4.

The typical approach with implementing complex non-linear 3D continuum models,

is that it is computationally expensive and/or masks parametric design and control

features that should be transparent and easily available to the designer as discussed

in detail in Chapter 1 Section 1.5.

This chapter will focus on the development of an Euler Bernoulli beam theory

for the small strain model developed in the previous Chapter 3. The boundary value

problem that the SMP model is subjected to is a three point bending experiment.

The first section begins with the statement of assumptions regarding the displace-

ment and strains for theory development. This is followed by the derivation of the

weak form from the principle of virtual work, in terms of the generalized displace-

ments, where the constitutive equations of the small strain SMP model are used for

the stress and plastic strain terms. Finally the Hermite cubic interpolation functions

are used and the set of resulting algebraic equations are written in matrix form to set

up the finite element model. The non-dimensional forms of the finite element model
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and the constitutive equations are presented which are used in the implementation.

The implementation consists of developing a time stepping algorithm for the elastic

predictor dissipative corrector loop, where the elastic displacements are computed

in the finite element numerical algorithm, and these are used to compute the elas-

tic and plastic strain in the dissipative corrector loop, followed by a displacement

convergence criteria within the time step. The key idea is that the elastic predictor

is based on the solution to a beam theory boundary value problem while the dissi-

pative corrector is entirely local (and hence can be parallelized) and is applied by

considering the beam as a two or three dimensional body[57, 58]. This enables a very

rapid solution of the problem yet maintaining fidelity of the distribution of inelastic

strains across the cross-section. Within the iterative dissipative corrector loop, Simo

et al. [58] have observed that only a few local sub-iterations are required to obtain

good results, and the additional computational cost involved in this technique is

more than offset by the drastic reduction in the required element data base. Thus

the finite element displacements have to be computed only for a 1D beam, while

the local iterative loop will be solved for a 2D cross-section of the beam. In this

work, the algorithm is tested and studied for a three point bending experiment for

three different material cases: elastic, plastic and thermoplastic beam. Time step

convergence and mesh density convergence is carried out for the viscoplastic FEM

code. Finally, we implement this model for a SMP undergoing three-point bending

thermomechanical cycle and study its behavior. We will study both strain recovery

and stress recovery cases for the thermomechanical cycle.

4.2 Development of Finite Element Model for SMP

4.2.1 Thermomechanical Three-point Flexural Cycle

A typical three-point flexure thermomechanical cycle for SMPs can be described

as follows. Refer to Figure 4.1a and 4.1b for the processes. Process 1 involves

deforming the SMP material at a high temperature above Tg. Process 2 is a shape

fixing procedure where the SMP is cooled while maintaining the deformed shape.

The stress needed to maintain the shape gradually reduces as the material is cooled.

Process 3 is the unloading process, where the constraint load is unloaded to a certain

prescribed level(or fully unloaded as shown in the figure) and the temporary shape

is mostly retained at low temperature, after some amount of spring back. Finally,
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Process 1: Deform

Process 2: Cool

Process 3: Unload

Process 4: Heat

a

b

c

d

e

Permanent shape: Rubbery above Tg

Temporary shape: Glassy below Tg

SMP beam at T > Tg

(a) The configuration of the beam during the processes
taking place in a three point flexural thermomechanical
cycle

ε

σ

T
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1

2

3

4
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b

c

d

e

(b) Typical stress strain temperature re-
sponse for a SMP sample undergoing a ther-
momechanical cycle.

Figure 4.1: Thermomechanical flexural cycle: The curve 1 indicates the high tem-
perature deformation. Curve 2 is the shape fixing process at constant strain, under
cooling. Curve 3 is the relaxation of the stress at constant low temperature. Curve
4 is the strain recovery process under no load condition through heating.
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process 4 includes the SMP beam being subject to a prescribed constant constraint

load and heated beyond Tg.

4.2.2 Displacement Field and Strains

u

w

x

z

−z dwdx

−dw
dx

A

B

a

b

(a) Beam displacement along the (x,z) coordinate system

θ

ρ

z

dx

dx’

dθ

(b) Beam element

Figure 4.2: Kinematics of deformation of the Euler-Bernoulli beam theory

Following the general outline of the procedure presented by Reddy, 2004 [59],

we employ the assumptions of Euler - Bernoulli beam theory (shown in Figure 4.2),

where the bending of beams with small strains and rotations can be derived as below.

u1 = −zdw
dx
, u2 = 0, u3 = w(x) (4.1)

where (u1, u2, u3) are the total displacements of a material point occupying the loca-

tion (x, y, z) in the undeformed body [usually denoted with capital letters: (X, Y, Z)],

and u and w denote the axial and transverse displacements of a point on the x-axis,

which is taken along the geometric centroid of the cross section of the beam. Note

that since we are solving the problem of a three point bending load, an additional

assumption has been made: transverse loads only cause transverse displacement and

curvature of the section, i.e., u = 0. Hence the displacement field u1 = −zdw
dx

.
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Using the Green-Lagrange strain tensor components, we can write

Eij = εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

∂um
∂xi

∂um
∂xj

(4.2)

where sum on repeated subscripts is implied. In explicit form

ε11 = εxx =
∂u1

∂x1

+
1

2

[(∂u1

∂x1

)2

+
(∂u3

∂x1

)2]
(4.3)

= −z∂
2w

∂x2
+

1

2

(∂w
∂x

)2

=
1

2

(∂w
∂x

)2

− z∂
2w

∂x2

In view of the small strain assumption, the first term in the square brackets is

neglected, i.e.,
∂u1

∂x1

= O(2) and hence
(∂u1

∂x1

)2
= O(22) ≈ 0

)
. The second term,

∂u3

∂x1

, denotes the rotation of a line perpendicular to the beam axis. Even when the

strains are small, because of the slenderness, beams can undergo moderate to large

rotations. Hence we retain the square of the rotation
∂u3

∂x1

in the strain component

ε11. Thus we begin with the following expression for strain:

εxx = −z∂
2w

∂x2
(4.4)

4.2.3 Constitutive Equations of the SMP Model

Now consider the shape memory polymer constitutive equations that were devel-

oped in Chapter 3. We assume that the SMP is made up of a permanent “backbone”

network that is responsible for shape recovery and a temporary or transient network

that is responsible for the shape setting phenomena. We begin the experiment at

a temperature θ > θg. This will be considered as the reference configuration of the

body, and all strain measurements will be made relative to this reference configu-

ration. Let the SMP undergo a displacement u(x, t). The strains in the networks

are ε for the permanent network and εt for the temporary network, It is convenient

to introduce the inelastic strain εve = ε − εt and use it as a primary variable. As

described in Chapter 3, the shape memory effect is governed by the strain and tem-

perature dependent activation of network breaking and reformation. This effect is

modeled as:

94



[σ] =
(
CG

)[
ε− α(θ − θh)I

]
− 2µG[εve] (4.5)

[ε̇ve] =

 0, if ||τ − 2µRεve|| ≤ κ;
1

ηG

(
||τ − 2µRεve|| − κ

) [τ − 2µRεve]

||τ − 2µRεve||
, if ||τ − 2µRεve|| > κ;

(4.6)

where, the deviatoric stress is given as τ = 2µG
[
ε−εve−α(θ−θh)I

]
and the isotropic

glassy stiffness that is assumed is given as CG =
(
kG −

2µG

3

)
I⊗ I + 2µGI. Also,

κ is the network activation threshold, and the hysteresis of the activation stress is

key in controlling the response of the SMP model. Thus the thermodynamic driving

force τ − 2µRεve competes with the network activation threshold κ, resulting in the

evolution of the inelastic strain εve. Apart from these, kG is the glassy bulk modulus,

kR is the rubbery bulk modulus, µG is the glassy shear modulus, µR is the rubbery

shear modulus, α is the thermal expansion coefficient, and ηG is the glassy viscosity.

The activation stress of the material κ is sensitive to temperature, and the ma-

terial yields differently depending the current value of the temperature, the amount

of strain the material is subjected to, and on whether the temperature of the mate-

rial dropped or increased from the previous time-step. Thus there is a hysteresis of

the activation stress from the cooling to the heating cycle, which gives the different

trends of the stress-rise during cooling and the strain-recovery during heating. These

considerations suggest that the rate of activation stress has the following functional

form

κ̇ = f(θ̄, sign( ˙̄θ), ε̄) ˙̄θ

fcool = y1(ev + sinh(−y2(θ − θ1)))δ1

fheat = (−y3ev − y4(1− (y5 tanh(mθ + n))2))δ2

where, ev is the von mises strain corresponding to the strain (ee − α(θ− θh)I). ev is

the scalar strain value selected in 3D context, such that it is affected by pure thermal

strains or pure mechanical processes. Also, m = 2/(θmax− θ2), n = 1−mθmax. Here

θ1 and θ2 are limiting values of θ until which there is no rise/fall in the stress/strain
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during the cooling/heating cycle.

δ1 =

{
1, ∀ θ 6 θ1;

0, ∀ θ > θ1;
δ2 =

{
0, ∀ θ < θ2;

1, ∀ θ > θ2;

Since we are primarily interested in the moment Mxx generated in the beam, let

us compute only the axial stresses from the constitutive equation 4.5.

σ11 = (kG +
4

3
µG)εxx − 2µGε

ve
xx − 3kGα(θ − θh)

= (kG +
4

3
µG)
[
− z∂

2w

∂x2

]
− 2µGε

ve
xx − 3kGα(θ − θh) (4.7)

4.2.4 Weak Form

w1 = ∆1 w2 = ∆3

θ1 = ∆2 θ2 = ∆4

1 2

Figure 4.3: The Euler-Bernoulli finite element with primary degrees of freedom

The weak form is derived from the principle of virtual displacements which states

that if a body is in equilibrium, the total virtual work done by actual internal as well

as external forces in moving through their respective virtual displacements is zero.

The analytical form of the principle over a typical element Ωe = (xa, xb) shown in

Figure 4.3, is as follows

δW e = δW e
I + δW e

E = 0 (4.8)

where δW e
I is the virtual strain energy stored in the element due to actual stresses

σij in moving through the virtual strains δεij, and δW e
E is the work done by external

applied loads in moving through their respective virtual displacements.

The internal and external virtual work expressions for a Euler Bernoulli beam
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element are

δW e
I =

∫
Ve

δεijσijdV (4.9)

=

∫ xb

xa

∫
Ae

(
− z∂

2δw

∂x2

)
σ11dAdx (4.10)

=

∫ xb

xa

(
− ∂2δw

∂x2
Mxx

)
dx (4.11)

δW e
E = −

[∫ xb

xa

qδwdx+
4∑
i=1

Qe
iδ∆

e
i

]
(4.12)

where Ve and Ae are the element volume and cross sectional area, respectively, q(x)

is the distributed transverse loads measured per unit length, Qe
i are the generalized

nodal forces, and δ∆e
i are the virtual generalized nodal displacements of the element.

The virtual work statement in Eq 4.8 becomes

0 =

∫ xb

xa

(
− ∂2δw

∂x2
Mxx

)
dx−

∫ xb

xa

qδwdx−
4∑
i=1

Qe
iδ∆

e
i (4.13)

The virtual statement Eq 4.13 is equivalent to the following weak form:

0 =

∫ xb

xa

(
− ∂2δw

∂x2
Mxx − qδw

)
dx−Qe

1δ∆
e
1 −Qe

2δ∆
e
2 −Qe

3δ∆
e
3 −Qe

4δ∆
e
4 (4.14)

Integration by parts of the expressions in Eq. 4.14 to relieve δw of any differen-

tiation, results in

0 = −
∫ xb

xa

(
∂2Mxx

∂x2
+ q

)
δwdx−

[
Mxx

dδw

dx

]xb
xa

+

[
dMxx

dx
δw

]xb
xa

−Qe
1δ∆

e
1 −Qe

2δ∆
e
2 −Qe

3δ∆
e
3 −Qe

4δ∆
e
4 (4.15)

The governing equations of equilibrium, i.e the Euler Lagrange equation is

δw : − d2Mxx

dx2
= q(x) (4.16)
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Consider the balance of forces and momentums around any point of the beam:

d2M

dx2
+ q(x) = 0 (4.17)

where M is the bending moment and V is the shear force

M(x) =

∫
A

zσxx dx, V (x) =
dM

dx

The above equations are the same as Eq 4.16. The weak form of Eq 4.16 is

0 =

∫ xb

xa

(
− ∂2v

∂x2
Mxx − qv

)
dx−

[
Mxx

dv

dx

]xb
xa

+

[
dMxx

dx
v

]xb
xa

(4.18)

where v is the weight function.

We evaluate the momentum in a SMP beam of height 2c and width b, with

moment of inertia I =
2bc3

3
using the form of stress from Eq. 4.7:

Mxx =

∫
A

zσ11(x, z)dA (4.19)

= b

∫ c

−c
zσ11(x, z)dz

= b(kG +
4

3
µG)

∫ c

−c

[
− z2∂

2w

∂x2

]
dz − 2bµG

∫ c

−c
zεve11dz − 3bkGα

∫ c

−c
z(θ − θh)dz

= −2bc3

3
(kG +

4

3
µG)
[∂2w

∂x2

]
− 2bµG

∫ c

−c
zεve11dz − 3bkGα

∫ c

−c
z(θ − θh)dz

= −I
{

(kG +
4

3
µG)
[∂2w

∂x2

]
+

3µG

c3

∫ c

−c
zεve11dz +

9kGα

2c3

∫ c

−c
z(θ − θh)dz

}
= −I(kG +

4

3
µG)
[∂2w

∂x2

]
−M ve

xx −MT
xx

where the moment generated due to inelastic strain M ve
xx and the moment generated

due to thermal differences MT
xx are as follows

M ve
xx = 2bµG

∫ c

−c
zεve11dz (4.20)

MT
xx = 3bkGα

∫ c

−c
z(θ − θh)dz (4.21)
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Using the above result, we now apply the balance equations in Eq. (4.17)

I(kG +
4

3
µG)
[∂4w

∂x4

]
+
d2M ve

xx

dx2
+
d2MT

xx

dx2
− q(x) = 0 (4.22)

The virtual work statements Eq 4.14 can be expressed in terms of the generalized

displacement (w) with the help of the form momentum in Eq 4.22.

0 =

∫ xb

xa

(
I(kG +

4

3
µG)

d2δw

dx2

d2w

dx2
+ (M ve

xx +MT
xx)

d2δw

dx2
− qδw

)
dx

−Q1δw(xa)−Q2δθ(xb)−Q3δw(xa)−Q4δθ(xb) (4.23)

where (Q1, Q3) denote shear forces and (Q2, Q4) are the bending moments at nodes

1 and 2.

4.2.5 Finite Element Formulation

Since we are concerned with the transverse displacement and its derivative, we

will choose the Hermite cubic interpolation functions for approximation. Therefore,

the transverse deflection w(x) is approximated as

w(x) =
4∑
j=1

∆̄jφj(x) (4.24)

where φj are the Hermite cubic interpolation functions. Also (θx = −dw/dx),

∆̄1 = w(xa), ∆̄2 = θx(xa), ∆̄3 = w(xb), ∆̄4 = θx(xb) (4.25)

and we replace the weight function v = δw with

δw(x) = φi(x) (4.26)

Substituting all the relationships from Eq 4.24 to 4.26 in the weak form obtained

in Eq 4.23, we obtain

0 =

∫ xe+1

xe

(
I(kG +

4

3
µG)

d2φi
dx2

d2φj
dx2

∆̄j + (M ve
xx +MT

xx)
d2φi
dx2
− qφi

)
dx

−Q1(xa)−Q2(xa)−Q3(xb)−Q4(xb) (4.27)
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Therefore this equation can be rewritten as

0 =
4∑
j=1

Kij∆̄j − Fi (4.28)

where

Kij =

∫ xe+1

xe

I(kG +
4

3
µG)

d2φi
dx2

d2φj
dx2

dx (4.29)

Fi =

∫ xe+1

xe

(−(M ve
i +MT

i )
d2φi
dx2

+ qφi)dx+Qi (4.30)

Now we write out the Hermite cubic functions that have to be substituted in the

above equations to get the explicit form of the above equations.

φ1 = 1− 3

(
x̄

h

)2

+ 2

(
x̄

h

)3

φ2 = −x̄
(

1− x̄

h

)2

φ3 = 3

(
x̄

h

)2

− 2

(
x̄

h

)3

φ4 = −x̄
[(

x̄

h

)2

−
(
x̄

h

)]
(4.31)

where h = xb − xa is the element length and x̄ is the local coordinate.

The first derivatives of φ with respect to x̄ are

dφ1

dx̄
= −6x̄

h2

(
1− x̄

h

)
(4.32)

dφ2

dx̄
= −

[
1 + 3

(
x̄

h

)2

− 4
x̄

h

]
dφ3

dx̄
=

6x̄

h2

(
1− x̄

h

)
(4.33)

dφ4

dx̄
= − x̄

h

(
3
x̄

h
− 2

)
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The second derivatives of φ with respect to x̄ are

d2φ1

dx̄2
= − 6

h2

(
1− 2

x̄

h

)
(4.34)

d2φ2

dx̄2
= −2

h

(
3
x̄

h
− 2

)
d2φ3

dx̄2
=

6

h2

(
1− 2

x̄

h

)
(4.35)

d2φ4

dx̄2
= −2

h

(
3
x̄

h
− 1

)
The coefficients given by Eq 4.29 and 4.30 can be calculated using the interpolations

functions and their derivatives from Eq 4.31 to 4.34.

K11 =

∫ h

0

I(kG +
4

3
µG)

d2φ1

dx2

d2φ1

dx2
dx

= I(kG +
4

3
µG)

∫ h

0

6

h2

(
1− 2

x̄

h

)
× 6

h2

(
1− 2

x̄

h

)
dx

= I(kG +
4

3
µG)

∫ h

0

36

h4

(
1− 4

x̄

h
+ 4

x̄2

h2

)
dx

= 36I(kG +
4

3
µG)

[
x̄

h4
− 4

x̄2

2h5
+ 4

x̄3

3h6

]h
0

= 36I(k̄G +
4

3
µ̄G)

(
1

h3
− 2

1

h3
+ 4

1

3h3

)
=

12I

h3
(kG +

4

3
µG) (4.36)

Similarly we calculate the remaining coefficients of Kij

[Ke] =
2(kG +

4

3
µG)I

h3


6 −3h −6 −3h

−3h 2h2 3h h2

−6 3h −6 3h

−3h h2 3h 2h2

 (4.37)

For the coefficients of the force matrix, consider q constant over an element, and

(M ve +MT ) varying :
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F1 =

∫ h

0

(−(M ve +MT )
d2φ1

dx2
+ qφ1)dx+Q1(0)

=

∫ h

0

(M ve +MT )
6

h2

(
1− 2

x̄

h

)
+ q

(
1− 3

(
x̄

h

)2

+ 2

(
x̄

h

)3)
dx+Q1(0)

=

[
(M ve +MT )

(
− 6x̄

h2
+

12x̄2

2h3

)]h
0

+ q

[
x̄− x̄3

h2
+

x̄4

2h3

]h
0

+Q1(0)

=
qh

2
+Q1(0) (4.38)

F2 =

∫ h

0

(−(M ve +MT )
d2φ2

dx2
+ qφ2)dx+Q2(0)

=

∫ h

0

(M ve +MT )
2

h

(
3
x̄

h
− 2

)
− qx̄

(
1− x̄

h

)2

dx+Q2(0)

=

[
(M ve +MT )

(
3x̄2

h2
− 4x̄

h

)]h
0

− q
[
x̄2

2
− 2x̄3

3h
+

x̄4

4h2

]h
0

+Q2(0)

= −(M ve
h +MT

h )− qh2

12
+Q2(0) (4.39)

F3 =

∫ h

0

(−(M ve +MT )
d2φ3

dx2
+ qφ3)dx+Q3(h)

=

∫ h

0

−(M ve +MT )
6

h2

(
1− 2

x̄

h

)
+ q

(
3

(
x̄

h

)2

− 2

(
x̄

h

)3)
dx+Q3(h)

=

[
− (M ve +MT )

(
6x̄

h2
− 6x̄2

h3

)]h
0

+ qe

[
x̄3

h2
+

x̄4

2h3

]h
0

+Q3(h)

=
qh

2
+Q3(h) (4.40)

F4 =

∫ h

0

(−(M ve +MT )
d2φ4

dx2
+ qφ4)dx+Q4(h)

=

∫ h

0

(M ve +MT )
2

h

(
3
x̄

h
− 1

)
− qx̄

{(
x̄

h

)2

−
(
x̄

h

)}
dx+Q4(h)
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=

[
(M ve +MT )

(
3x̄2

h2
− 2x̄

h

)]h
0

− qe
[
x̄4

4h2
− x̄3

3h

]h
0

+Q4(h)

= (M ve
h +MT

h ) +
qh2

12
+Q4(h) (4.41)

The resulting algebraic equations from Eq 4.37 to 4.41 are written in matrix form

Ke∆e = Fe

2(kG +
4

3
µG)I

h3


6 −3h −6 −3h

−3h 2h2 3h h2

−6 3h −6 3h

−3h h2 3h 2h2




∆1

∆2

∆3

∆4

 =
qh

12


6

−h
6

h

+


Q1(0)

−(M ve
h +MT

h ) +Q2(0)

Q3(h)

(M ve
h +MT

h ) +Q4(h)


(4.42)

For the current problem, we solve for a 3 point bending problem, i.e a simply

supported beam with a central load,, and assume q = 0,MT = 0, Qi = 0. The

problem reduces to

2(kG +
4

3
µG)I

h3


6 −3h −6 −3h

−3h 2h2 3h h2

−6 3h −6 3h

−3h h2 3h 2h2




∆1

∆2

∆3

∆4

 =


0

−(M ve
h +MT

h )

0

(M ve
h +MT

h )

 (4.43)
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Figure 4.4: Loading and boundary conditions along the beam for three point bending
experiment, and displacement and strain computations across the cross section of the
beam

For implementation purposes, we will focus on the simulation of the center line

of the beam. For this purpose, we start with a 1D beam for the elastic displacement
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solutions along the centreline of the beam, as shown in Figure 4.4 . The corresponding

strains, stresses and plastic strain solutions are computed across the cross section A-

A as shown in Figure 4.4, for node 7 along the length of the beam.

4.2.6 Non-dimensionalization of the Model Equations

Non-dimensionalizing Variables

The following ar the non-dimensionalization parameters chosen for this problem:

(1) The typical rubbery modulus ER.

(2) The length of the beam L.

(3) The glass transition temperature θg.

(4) The non-dimensionalization of the time t0, since this is connected with the kinetic

response. The SMP has two time scales, the glassy and the rubbery, and in this

work the rubbery relaxation time is chosen to make sure any fluid-like (larger time

scale) behavior is captured. Thus, we use the relaxation time t0 =
ηR
ER

as the non-

dimensionalization parameter.

The non-dimensional terms are written as (•̄) in Table 4.1. Notice that the strain ε is

computed from the results of the FEM displacement solutions as ε = CoordY
d2∆̄1,3

dx2
.

Since we set up the FEM matrices in their non-dimensional form, and obtain non-

dimensional displacement solutions ∆̄, the strains computed from these are already

normalized with respect to the displacements. So we will write the strain terms as ε̄.

Table 4.1: Dimensional quantities and corresponding non-dimensional quantities for
the beam theory model

Dim σ L t θ α ηG kG, µR,G

Nondim σ̄ =
σ

ER

L̄ =
L

L
t̄ =

t

t0
θ̄ =

θ

θg
ᾱ = αθg η̄G =

ηG
ERt0

•̄ =
•

ER

Non-dimensional Equations

Let H be the height and b be the width of the beam. The non-dimensional form

of it will be H̄ =
H

L
. Thus, the non-dimensional half-height will follow as c̄ =

H̄

2
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and non-dimensional width b̄ =
b

L
. The non-dimensional element size will be h̄ =

L̄

NumNodes− 1
. The non-dimensional displacement solutions will be substituted as

∆̄ =
∆

L
. We will non-dimensionalize the four equations in the FEM matrix equations

and the two constitutive equations. For the FEM matrix equations:

2(
kG
ER

+
4

3

µG
ER

)Ī

Lh̄3


6 −3h̄ −6 −3h̄

−3h̄ 2h̄2 3h̄ h̄2

−6 3h̄ −6 3h̄

−3h̄ h̄2 3h̄ 2h̄2




∆̄1

∆̄2

∆̄3

∆̄4

 =



0

−(M ve
h +MT

h )

ER
0

(M ve
h +MT

h )

ER


(4.44)

(M ve
h +MT

h )

ER
= (2b̄

µG
ER

∫ c̄

−c̄
zε̄ve11dz + 3b̄

kG
ER

αθg

∫ c̄

−c̄
z(
θ

θG
− θh
θG

)dz) (4.45)

(M ve
h +MT

h )

ER
= (2b̄

µG
ER

∫ c̄

−c̄
zε̄ve11dz + 3b̄

kG
ER

αθg

∫ c̄

−c̄
z(
θ

θG
− θh
θG

)dz) (4.46)

Thus, the non-dimensional form of the FEM equations are:

2(k̄G +
4

3
µ̄G)Ī

Lh̄3


6 −3h̄ −6 −3h̄

−3h̄ 2h̄2 3h̄ h̄2

−6 3h̄ −6 3h̄

−3h̄ h̄2 3h̄ 2h̄2




∆̄1

∆̄2

∆̄3

∆̄4

 =


0

−(M̄ ve
h + M̄T

h )

0

(M̄ ve
h + M̄T

h )

 (4.47)

(M̄ ve
h + M̄T

h ) = (2b̄µ̄G

∫ c̄

−c̄
zε̄ve11dz + 3b̄k̄Gᾱ

∫ c̄

−c̄
z(θ̄ − θ̄h)dz) (4.48)

(M̄ ve
h + M̄T

h ) = (2b̄µ̄G

∫ c̄

−c̄
zε̄ve11dz + 3b̄k̄Gᾱ

∫ c̄

−c̄
z(θ̄ − θ̄h)dz) (4.49)

For the stress constitutive equation:

σ11

ER
= (

kG
ER

+
4

3

µG
ER

)ε̄11 − 2
µG
ER

ε̄ve11 − 3
kG
ER

αθg(
θ

θG
− θh
θG

)

Thus, σ̄11 = (k̄G +
4

3
µ̄G)ε̄11 − 2µ̄Gε̄

ve
11 − 3k̄Gᾱ(θ̄ − θ̄h) (4.50)
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For the plastic evolution equation:

dε̄ve
d(t/t0)

=
1

ηG/(ERt0)

(
||τ/ER − 2(µR/ER)ε̄ve|| − κ/ER

) τ/ER − 2(µR/ER)ε̄ve
||τ/ER − 2(µR/ER)ε̄ve||

Thus,
dε̄ve
dt̄

=
1

η̄G

(
||τ̄ − 2µ̄Rε̄ve|| − κ̄

) τ̄ − 2µ̄Rε̄ve
||τ̄ − 2µ̄Rε̄ve||

(4.51)

Non-dimensional System Equations for the Beam Theory Model

1. FEM displacement and slope equations:

2(k̄G +
4

3
µ̄G)Ī

Lh̄3


6 −3h̄ −6 −3h̄

−3h̄ 2h̄2 3h̄ h̄2

−6 3h̄ −6 3h̄

−3h̄ h̄2 3h̄ 2h̄2




∆̄1

∆̄2

∆̄3

∆̄4

 =


0

−(M̄ve + M̄t)

0

(M̄ve + M̄t)


where M̄ve = 2b̄µ̄G

∫ c̄
−c̄ zε̄

ve
11dz

and, M̄t = 3b̄k̄Gᾱ
∫ c̄
−c̄ z(θ̄ − θ̄h)dz

2. Stress constitutive equation:

σ̄11 = (k̄G +
4

3
µ̄G)ε̄11 − 2µ̄Gε̄

ve
11 − 3k̄Gᾱ(θ̄ − θ̄h)

3. Plastic strain evolution equation:

˙̄εve =
1

η̄G

(
||τ̄ − 2µ̄Rε̄ve|| − κ̄

) τ̄ − 2µ̄Rε̄ve
||τ̄ − 2µ̄Rε̄ve||

4.3 Elastic Predictor - Dissipative Corrector Algorithm

The time stepping algorithm follows the elastic-predictor dissipative-corrector

iterative scheme. The key idea is that for the elastic predictor we utilize beam

theory whereas for the dissipative corrector, we solve the problem as though it were

a two dimensional continuum. The general idea of this scheme is shown in Figure

4.5, where n is the time loop increment and k is the iteration loop increment within

each time loop. The time stepping algorithm for the elastic-predictor dissipative-

corrector loop consists of computing the elastic displacements using the finite element

numerical algorithm, known as the elastic predictor. These are used to iteratively

compute the elastic and inelastic strain in the dissipative corrector loop, followed by
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a convergence criteria within the time step. The dissipative corrector is executed only

if the elastic trial state variables violate dissipative admissibility. After updating the

state variables, a displacement convergence criteria is used to keep the current time

step solution within a tolerance limit of the previous time step. If the results of the

current iteration converge then the iteration is terminated and next time increment

is applied. Refer to details of this algorithm in 3.

un+1, F n+1, κn+1, εnev

uk, εk, κn+1, εnev
εk+1
ev

uk+1, εk+1

n+2

convergence criterion not satisfied

k =
k+1

E
la
st
ic
P
re
d
ic
to
r

Dissipative
Corrector

Activation threshold condition
Inelastic admissibility check

convergence criterion satisfied
(•)n+1 = (•)k+1

Figure 4.5: For each time step, the elastic predictor loop computes a preliminary
estimate of displacement un+1, using loading condition F n+1 of current time step,
and inelastic strains εnve of previous time step. The iterative dissipative corrector then
computes consequent elastic strains εk based on the current iteration displacement
solution uk (= un+1 for the first iteration of each time step). Elastic strain εk and
the previous time step’s inelastic strain εnve is used to compute the updated inelastic
strain εk+1

ve . This is used to update the iteration displacement uk+1, and compared
with the previous iteration displacement uk to meet a convergence criterion. After
convergence is satisfied, the displacement, strain and inelastic strain for the current
time step are updated using the converged solution. Refer to the Algorithm 3 for
details.
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Algorithm 3 Elastic predictor - dissipative corrector loop

1: Input: Geometry, Material, Control parameters
2: Initialize Variables for n = 1
3: for n = 2 : ∆t : MaxTimeSteps do
4: Update Fn, θn, κn, Constraint matrix
5: εtrialven = εven−1 . Initial guess for current time step
6: function [∆n] =FEM driver(Fn, εtrialven ) . Predicted displacement
7: end function
8: εinit = f(∆n) . Predicted strain
9: set iteration count k = 2 . Reset corrector iteration count

10: while k < MaxIterationCount do . Corrector loop begins
11: function [εkve] =Inelasticity driver(εinit, εtrialven , θn, κn)
12: τ trialij = 2µ̄G(εinitij − εtrialve ij − ᾱn(θ̄n − θ̄h)Iij) . Trial deviatoric stress

13: Φtrialij = τ trialij − 2µ̄Rε
trial
ve ij . Trial flow potential

14: if Φtrialij ≤ κ̄n then . Activation threshold not reached

15: Set εve
k
ij = εtrialve ij

16: else . Activation threshold reached

17: εve
k
ij = εve

trial
ij +

∆t

η̄
(Φtrialij − κ̄n)

Φtrialij

||Φtrialij || . Update inelastic strain

18: end if

19: σkij =
(
k̄G +

4

3
µG

)
εinitij − 2µ̄Gε

k
ve ij − 3k̄Gᾱn(θ̄n − θ̄h)Iij . Update stress

20: end function
21: function [∆k] =FEM driver(Fn, εkve) . Corrected displacement
22: end function
23: εk = f(∆k); . Corrected strain
24: if L2 norm ||∆k −∆k−1||0 > TOL then . Tolerance check not satisfied
25: εinit = εk; . Initial guess for next iteration
26: k ← k + 1; . Go to next iteration (line 10)
27: else L2 norm ||∆k −∆k−1||0 ≤ TOL . Tolerance check satisfied
28: Set εven = εkve; . Update solution for current time step
29: Set ∆n = ∆k; . Update solution for current time step
30: Break loop; . Go to next time step (line 3)
31: end if
32: end while . Corrector loop ends
33: end for
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4.4 Analysis of the Implementation

4.4.1 Elastic, Plastic and Thermoplastic Material Cases

Table 4.2: Control parameters for the three cases: elastic, plastic and thermoplastic

Ideal Elastic FEM Elastic FEM Plastic FEM Thermoplastic

Force f(t) f(t) f(t) f(t)
θmax 1 1 1 1
θinit 1 1 1 0.04
θ(t) θinit θinit θinit 0.1θinitt
κ(t) NA 1000 0.02 0.01(4− θ(t))

In this section, we will implement the algorithm developed in Section 4.3, for

a three-point bending test and examine the material behavior for three cases of

activation stress and thermal loading conditions: elastic, plastic and thermoplastic

beam. The beam will be subjected to the same linear time incremental load in all

three cases and the initial temperature is kept constant at the maximum temperature

for elastic and plastic cases. Only the activation stress is changed for the elastic and

plastic cases, where for the plastic case it is a function of temperature. For the

thermoplastic case, the initial temperature is started at a lower temperature than

the maximum, thus creating a thermal difference. The activation stress is a function

of temperature similar to the plastic case. These loading conditions for the three

cases can be compared in the Table 4.2. The resulting displacements are tabulated

in Table 4.3, and the plastic strain across cross-section along length of beam for the

plastic and thermoplastic cases are plotted in the graphs of Figures 4.6.
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Table 4.3: Displacements along the beam nodes for the three cases: elastic, plastic
and thermoplastic at the final time step

Ideal Elastic FEM Elastic FEM Plastic FEM Thermoplastic

0.000000000 0.0000000000 0.000000000 0.000000000
−0.041862558 −0.0418625584 −0.043416971 −0.043559292
−0.074064526 −0.0740645263 −0.076669513 −0.076896843
−0.086945314 −0.0869453135 −0.089789395 −0.090044747
−0.074064526 −0.0740645263 −0.076341620 −0.076567984
−0.041862558 −0.0418625584 −0.043079984 −0.043220132
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(a) Plastic: Inelastic strains increase
with increasing load. Inelastic strains
evolve from the support points towards
the point of loading along the length of
beam. They are highest at the outer fi-
bres, and zero at the centreline of the
beam, as seen from values in the color-
bar shown alongside the figure
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(b) Thermoplastic: The inelastic strain
evolution in the beam show the same
trend as for the plastic case, except that
the inelastic strain is no longer zero at
the centreline. Inelastic strains have a
finite value at the centreline depending
on how the inelastic zone evolves with
temperature, as seen from values in the
colorbar shown alongside the figure

 

 

0 0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: Inelastic strains evolution in the beam for chosen time steps, for the
plastic and thermoplastic cases where the stresses developed in the beam overcome
the activation stress κ. Note the comments made for each case under the graphs.

110



4.4.2 Time Step Convergence

Since the SMP model is viscoplastic, we expect the time step ∆t to affect the

results significantly for the numerical implementation of the elastic plastic loop. ∆t

shows up directly in the plastic strain equation. Also the predictor corrector loop

proceeds with plastic strain solution of the previous time step as an initial guess for

the current time step. If the time steps are large, the plastic strain solution will

get affected, and consequently this as the initial guess will affect the displacement

solutions as well. Therefore, it is important to select a time step that gives consistent

solutions. This section studies the convergence of the displacement solutions for

various time steps.
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Figure 4.7: Displacement of beam for various time steps

The displacement solutions are studied for the same loading and thermal condi-

tions of a thermoelastic beam, for different values of non-dimensional time step sizes.

The convergence norm is selected as the L2 norm of the difference between the value

of the solution of the current time step size ∆tn to that of the previous time step

size ∆tn−1 as ||e∆tn||0 = ||un−un−1||0 =
( ∫ b

a
|un−un−1|2dx

)1/2
[60]. The error norm

reduces as the time step decreases, as can be seen in the displacement of the beam in

Figure 4.7. The displacement converges for smaller time steps. We will restrict the

desired solution convergence to an order of magnitude of 10−3 and select a suitable
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value of time step size for this convergence factor. Since the convergence tolerance

is met for solutions of time step size ∆t = 0.08 and smaller, we select the time step

size ∆t = 0.05 considering allowable computation cost.

4.4.3 Mesh Convergence

The finite element formulation involves differential approximations of the dis-

placements along the beam for the strains.Also, the moment generated due to plastic

strain for a single node along the cross section is determined from the plastic strain

distributions across the cross section. The mesh density of the beam will therefore af-

fect these results. In this section, a uniform nested-node convergence study is carried

out, i.e the mesh refinement for each iteration includes all the nodes of the previous

iteration. The convergence norm is selected as the L2 norm of the difference between

the value of the solution of the current mesh size M to that of the previous mesh size

M − 1 as ||eM ||0 = ||uM − uM−1||0 =
( ∫ b

a
|uM − uM−1|2dx

)1/2
[60]. This error norm

for the various mesh sizes has a converging trend as can be seen from Figure 4.8b.

We select a convergence criterion of 10−3 for the error norm. This convergence cri-

terion gives the optimum mesh density as 17 × 17 or finer refinements. Considering

allowable computation costs, we will select the mesh density as 65 × 65.

 

 

B
ea
m

D
is
p
la
ce
m
en
t

length of beam
0 0.5 1

50

100

150

200

250

−0.8

−0.6

−0.4

−0.2

0

(a) Beam displacement for various mesh refine-
ments, as shown in color bar

Mesh Size M

L
2
n
or
m

||u
M
−

u
M

−
1
|| 0

50 100 150 200 250

×10−3

1

2

3

4

(b) Convergence of load point beam displacement
for various mesh refinements, as shown in color
bar

Figure 4.8: Displacement of beam for various mesh refinements, as shown in color
bar
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4.5 SMP Beam Theory Model undergoing a Thermomechanical Cycle

4.5.1 Experimental Parameters for Thermomechanical Flexural Cycle

Uy

θ

F

Displacement
Loading

Cooling
Force
Unloading

Heating

Displacement Control Force Control

t

t

t

Figure 4.9: Control variables of the thermomechanical cycle: The thermomechanical
cycle has three control variables: displacement Uy, temperature θ and force F , that
vary with time t. The cycle can be split into displacement control and force control
regimes, with subdivisions of different thermal load conditions. The resulting four
ranges of the thermomechanical cycle are: (1) Displacement loading at high temper-
ature. (2) Holding displacement constant while cooling (3) Force unloading at low
temperature (4) Heating under no load condition
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Control Parameters: Mechanical

• Initial condition: [κ = 0, θmax, αR, εve = 0]

• Displacement Loading: Deform upto 30% from t = 0 to t = 3

• Constant Displacement: Hold displacement constant from time step 3 to 6

• Force Unloading: Unload from time step 6 to 9

• Constant Force: Hold at constant force from time step 9 to 12

Control Parameters: Thermal

• Constant high temperature 391K from t = 0 to t = 3

• Cooling from 391K to 293K, from time step 3 to 6

• Constant low temperature 293K from time step 6 to 9

• Heating from 293K to 391K, from time step 9 to 12

Material Parameters

• Gauge dimensions: Length = 15mm; Height = 1mm; Width = 3mm;

• Glass transition temperature Tg: 90 ◦C

• EG = 886 MPa at 26 ◦C

• ER = 8.51 MPa at 118 ◦C

• ηG = 116000 MPas, ηR = 2030 MPas, αG = 22.6× 10−5, αR = 18.6× 10−5

Table 4.4: Control parameters for the strain recovery thermodynamic cycle

Range 1 Range 2 Range 3 Range 4

Force(t) NA NA −g(t) constant
Displacement(t) d(t) constant NA NA

θ(t) θmax θ̂cool(t) θmin θ̂heat(t)
κ(t) κmax κ̂cool(t) κmin κ̂heat(t)
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The strain recovery thermomechanical cycle has three control variables (refer to

Table 4.4 and Figure 4.9): displacement Uy, temperature θ and force F , that vary

with time t. The cycle can be split into displacement control and force control

regimes, with subdivisions of different thermal load conditions. The resulting four

ranges of the thermomechanical cycle are: (1) Displacement loading at high temper-

ature. (2) Holding displacement constant while cooling (3) Force unloading at low

temperature (4) Heating under constant load condition.

The stress recovery thermomechanical cycle has three control variables (refer to Table

Table 4.5: Control parameters for the stress recovery thermodynamic cycle

Range 1 Range 2 Range 3 Range 4

Force(t) NA NA −g(t) NA
Displacement(t) d(t) constant NA constant

θ(t) θmax θ̂cool(t) θmin θ̂heat(t)
κ(t) κmax κ̂cool(t) κmin κ̂heat(t)

4.5): displacement Uy, temperature θ and force F , that vary with time t. The cycle

can be split into displacement control and force control regimes, with subdivisions of

different thermal load conditions. The resulting four ranges of the thermomechanical

cycle are: (1) Displacement loading at high temperature. (2) Holding displacement

constant while cooling (3) Force unloading at low temperature (4) Heating under

constant displacement condition.

Form of the activation stress rate function

Since we are using the activation stress rate as specified in the rate form development

in Chapter 3, for the beam theory, we will have to specify the activation stress for

each time step. The activation stress rate form specified in Eq 3.53 in Chapter 3.

Note that for the beam bending problem, the activation stress function coef-

ficients y1, y2, y3, y4, y5 will be different than those specified in Chapter 3 for the

uniaxial tensile extension problem. The evolution of activation stress during bend-

ing will be different than that during uniaxial extension, as the material undergoes

extension in normal directions, as well shear. Although the current theory does not

address these additional displacement directions, the activation stress value is ad-
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justed while implementing the thermomechanical cycle so as to observe similar trends

as experimental results in the work of Liu, Gall et al. [17] and Tobushi et al. [20].

For the time stepping algorithm in the beam theory implementation we have to

specify the form of temperature θn and activation stress κn for the nth time step.

κ̇ =

(
dκ

dθ

)
θ̇

Therefore,

(
κn − κn−1

∆t

)
=

(
dκ

dθ

)
n

(
θn − θn−1

∆t

)
(4.52)

κn = κn−1 +

(
dκ

dθ

)
n

(θn − θn−1) (4.53)

The temperature specification θn for the cooling and heating process in the thermo-

mechanical cycle.

θn = θinit + (tn − tinit)θ̇ (4.54)

where tinit is the starting time of the process in the thermomechanical cycle, θinit and

θ̇ are the initial temperature and cooling/heating rate depending on the process.

4.5.2 Thermomechanical Three-point Bending: Strain Recovery

In this section, the results for full unload strain recovery thermomechanical cycle

are presented in Figure 4.10 which shows the control variables of the thermomechan-

ical cycle from the code, Figure 4.11 which shows the displacement and reaction

forces of the load point of beam undergoing the thermomechanical cycle, Figure 4.12

which shows the configuration of the beam through the four ranges of the thermo-

mechanical cycle, and Figure 4.13 which shows the inelastic strain evolution in the

beam through the four ranges of the strain recovery thermomechanical cycle.
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Figure 4.10: Control variables of the thermomechanical cycle from the code: The
thermomechanical cycle has three control variables: displacement Uy, temperature
θ and force F , that vary with time t. In the displacement control regime, the force
F rises non-linearly, depending on the viscosity of the material, and then falls dur-
ing cooling. In the force control regime, the displacement Uy shows a spring back
behavior during unloading, and displacement recovery during heating.
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Figure 4.11: Displacement and reaction forces of the load point of beam undergoing
the thermomechanical cycle.
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Figure 4.12: Configuration of the beam through the four ranges of the thermome-
chanical cycle. The time progression is shown in the colorbar beside each figure. The
four figures correspond to four different ranges of the thermomechanical cycle:
Range 1 (top-left): Deforming at θh, force is increased with each time step and re-
sults in the deformed configuration of the beam.
Range 2 (top-right): Cooling to below θg at constant deformation.
Range 3 (bottom-left): Unloading at θl. Force is reduced to zero with each time step,
and the beam responds with some amount of spring back.
Range 4 (bottom-right): Heating to above θg at no load. The beam shows shape
recovery during heating and recovers as time (heating) progresses.
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Figure 4.13: Inelastic strain evolution in the beam through the four ranges of the
thermomechanical cycle. Note the comments for each range below the sub-figures
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Figure 4.14: Total strain, inelastic strain and thermal strain at center of the beam
through the four ranges of the thermomechanical cycle.
Range 1: (t = 0 to 3) Deformation at high temperature: The elastic and inelastic
strain rise with deformation at constant thermal strain.
Range 2: (t = 3 to 6) Cooling at constant deformation: Although inelastic strains
increase, they are countered with the thermal strain that is contracting. No elastic
strain exists as the material is held at constant displacement, giving almost constant
total strain.
Range 3: (t = 6 to 9) Unloading at low temperature: Inelastic strain is locked in at
a constant value, but total strain reduces due to elastic spring back.
Range 4: (t = 9 to 12) Heating at constant load: The inelastic strain is unlocked
and reduces with temperature, thermal strains increase with temperature, and their
competition results in the total strain recovery.
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Figure 4.15 shows the response of the center of the beam while undergoing ther-

momechanical strain recovery for three different unloading cases.
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Figure 4.15: Strain recovery for three different unloading cases: 1. Full unload, 2.
Half unload and 3. No unload

Figure 4.16 shows response of the center of the beam during cyclic thermome-

chanical loading.
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Figure 4.16: Results for three cycles of thermomechanical loading. Cycle 1: blue,
Cycle 2: green, Cycle 3: red

122



4.5.3 Thermomechanical Three-point Bending: Stress recovery
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Figure 4.17: Displacement and reaction forces at the center of the beam undergoing
the thermomechanical cycle

We simulate the thermomechanical stress recovery cycle for a three-point bending

experiment, where the control parameters for the four ranges are as presented in

Table 4.5. The response of the beam theory model can be seen in Figure 4.17 for

the load point along the length of the beam. In range 1, the force F rises non-

linearly with deformation, depending on the viscosity of the material, and then falls

during cooling in range 2. In range 3, the displacement Uy shows a spring back

behavior during unloading. The behavior in range 1, 2, and 3 is similar to that in

the strain recovery cycle. In the final range 4, the displacement is held constant, and
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Figure 4.18: Inelastic strain evolution in the beam through the four ranges of the
thermomechanical cycle. Note the comments for each range below the sub-figures
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Figure 4.19: Total strain, inelastic strain and thermal strain at the center of the
beam through the four ranges of the thermomechanical cycle
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the material shows stress recovery during heating. The response can be explained

by looking at the inelastic strain response for the four ranges of the thermechanical

cycle, as shown in Figure 4.18. The “locked in” inelastic strain behaves similar to that

observed in the strain recovery cycle. On reheating, the inelastic strain is unlocked,

and since the displacement is restricted, the competition between the elastic, inelastic

and thermal strains as can be seen in Figure 4.19 results in the rise of stress during

heating. This rise in stress during heating has been reported by Liu et al. [17] in

their stress recovery thermomechanical experiments, although the trend observed by

them is mostly similar to what we observe here, it involves a dip at the end of the

heating cycle.

4.6 Summary

In this chapter, the Euler Bernoulli beam theory for the shape memory polymer

model was developed and implemented in a finite element setup. The implementa-

tion constituted of an elastic-predictor plastic-corrector scheme, and was analysed

for elastic, plastic and thermoplastic cases. The behavior of the FEM model for these

cases complied with the validation for the ideal elastic case, as well as showed the

different kinds of evolution of plastic strain for the plastic and thermoplastic cases.

Uniformly nested mesh convergence studies showed that results converge for increas-

ing mesh densities, but the computation time magnifies over six times after a certain

limit of mesh density Nx = Ny = 65. Also, since this is a viscoplastic model, the size

of the time step affects the plastic and thermoplastic results significantly. The time

step convergence study, was therefore imperative, and showed that beyond a certain

small time step ∆t = 0.05 the convergence is stagnant. After testing the codes for

these cases, finally we implement the thermomechanical cycle for this shape memory

polymer model. This experiment has four different combinations of mechanical and

thermal loading conditions, and the model behavior is similar to experiments in the

literature for each of the control parameters. Since a number of important mate-

rial properties such as viscosities and coefficients of thermal expansion are missing

in the experimental data reported, we only limit the current study to a successful

qualitative validation. We also analyze the internal variables of the model such as

the plastic strain and the total strain during this cycle and provide an explanation

for this behavior.
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5. FINITE STRAIN MODEL USING QR DECOMPOSITION

5.1 Introduction

SMPs are capable of exhibiting large and complicated deformations. Until now

we have worked with the linearized strain assumption and observed the SMP behav-

ior only for small strains. However, SMP is primarily characterized by its non-linear

behavior at large strains. Many real-world applications of SMPs exploit this ability

of SMPs. Therefore it becomes important to develop a finite deformation model for

SMPs and study its non-linear behavior. This chapter will focus on the development

of a thermodynamically consistent finite deformation continuum model to simulate

the thermomechanical response of SMPs. The SMP is modeled as a isotropic ther-

moviscoelastic material where thermal changes govern the evolution of the activation

stress of the material, similar to a “thermal Bauschinger effect”. The response of

the SMP in a thermomechanical cycle is modelled as a combination of a rubbery

(viscoelastic) and a glassy (elastic) network in series. Using these assumptions, we

propose a specific form for the Helmholtz potential and the rate of dissipation. In

the approach presented here, the deformation gradient is multiplicatively decomposed

into an instantaneous elastic part and a viscoelastic part. For the development of

the finite strain model, we follow the general technique of upper triangular or QR

decomposition [61] for deriving the constitutive equations of the SMP model. This

technique involves the decomposition of a matrix into an orthogonal matrix Q and

a upper triangular matrix R. We use this technique for its simpler and faster im-

plementation benefits. The response of the model is studied for shear deformation

subject to glass transition and low temperatures. We compare these results with

shear experimental observations from the literature. We then explore the behaviour

of the model under shear deformation at different initial temperatures, and gain a

deeper insight of how the model works. This experiment is extended to cyclic shear

deformation, and the results are in general agreement with those found in the liter-

ature. We also study the effect of deformation rates on the model response. Finally,

we study the response of the model for a shear deformation thermomechanical cycle

and compare it with the experimental findings in the literature.
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5.2 Kinematics

Consider a body B which at time t occupies a configuration κt(B). The position of

any particle X in κt is given by x. The motion of the body, measure from some fixed

configuration κr, wherein the position vector is given by X, and the deformation

gradient are given by the following two equations respectively.

F

Xκr
(X, t)

Fe
G

κr κt

κve(t)

(a)
(b)

(c)

Figure 5.1: Schematic diagram to illustrate the current natural configuration of
the material. Figure (a) depicts the reference configuration κr of the body. The
motion Xκr(X, t) takes the material points to their respective positions in the current
configurations κt shown in (b). Simultaneously the material fibers are convected by
the deformation gradient F. The instantaneous relaxation process takes the material
fibers to their natural state κve(t) as indicated in (c). F−1

e affects only the line elements
and the resulting configuration is shown in dotted lines. Finally the tensor G maps
the reference line elements to those in κve(t).

x = Xκr(X, t) (5.1)

F :=
∂Xκr
∂X

(5.2)

We consider an evolving natural configuration κve(t) that reflects the evolving

microstructure due to network breaking and reformation as shown in Fig. (5.1). For

homogeneous deformations, the gradient of mapping from κr to κve(t) is denoted by

G. We shall define the gradient of the mapping Fe from κve(t) to κt, so that by chain
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rule

Fe = FG−1 (5.3)

This is also known as the multiplicative decomposition of the deformation gradient

into elastic and plastic components, introduced by Lee for finite deformations in 1969

[62]. This has been widely used for non-linear elasto-plastic analysis of polymers,

primarily to avoid computational difficulties.

On differentiation, we get two terms, the first representing the rate of change of

Fe when the microstructure is fixed i.e. due to non-dissipative processes, and the

second term is due to the changes in the underlying microstructure when the current

configuration of the material is frozen i.e. a plastic change.

Ḟe = LFe − FeLve (5.4)

where, L := ḞF−1, Lve := ĠG−1, and Ġ
−1

= −G−1ĠG−1.

We can now introduce the elastic squared stretch tensor and the plastic squared

stretch tensor

Be := FeF
t
e (5.5)

Bve := GGt (5.6)

In this development, we will use the following strain measures:

ee :=
1

2
lnBe, the logarithmic elastic squared right stretch tensor,

Bve := GGt, the plastic squared stretch tensor,

Dve :=
1

2
(Lve + LT

ve), the plastic flow rate.

Most of the kinematics of the small strain model and the finite strain model

remains the same. Refer to Table 5.1 for a comparison between their kinematic

variables and form of Helmholtz potential and dissipation function. In the small

strain model, we start with the state variables as the linearized strains where ε =
1

2
(∇u + ∇uT ) =

1

2
((F − I) + (F − I)T ). We are thus ignoring the higher order

deformation terms ∇u∇uT . In finite strain, the aim is to capture the non-linear

behaviour. Therefore we start with state variables as the deformation gradients

F,Fe,G directly, so that no higher order terms are lost.

The elastic strain measure used in this model is the Hencky strain measure or the

logarithmic elastic squared right stretch tensor ee :=
1

2
lnBe. Advantages of using

129



Table 5.1: Comparison of the small strain model and finite strain model kinematics
and constitutive approach

Variable Small Strain Model Finite Strain Model

Total strain ε F

Glassy Network strain εe Fe, Be := FeF
T
e

Rubbery Network strain εve G, Bve := GGT

Elastic strain εe = ε− εve Fe = FG−1

Inelastic flow rate ε̇ve Dve = (ĠG−1)symm
Glassy Helmholtz Potential ψG(εe, θ) ψG(Fe, θ)
Rubbery Helmholtz Potential ψR(εve) ψR(G)
Rate of Dissipation ξ(ε̇ve) ξ(Dve)

Reduced energy dissipation equation σ · ε̇− ρψ̇|θ = ξ(ε̇ve) T · L− ρψ̇|θ = ξ(Dve)

the Hencky strain measure include [63, 64](1) Symmetry for inverted deformations

(this is not exhibited by Lagrangian and Almansi strain), (2) Trace vanishes for iso-

choric deformations (3) Additivity for coaxial deformations (4) Additive separation

into volumetric and isochoric deformations. Logarithmic strain allows the additive

decoupling of dilation and distortion for infinitesimal engineering strain to be gen-

eralized to all strains, large or small as shown by Criscione et al. [65]. They have

also noted that the principal values of Lagrangian strain are biased toward extension

with the range (−1

2
,∞) whereas those of Almansi strain are biased toward contrac-

tion with the range (−∞, 1

2
). Logarithmic strain is unbiased, and the range of its

principal values is (−∞,∞). The disadvantage of the logarithmic strain measure

is computational, since it needs to be based on spectral decomposition, and require

computing the eigen values and eigen vectors. This is quite expensive in very large

finite element models [64].

We prescribe the elastic and inelastic components of strains as additive (ε =

εe + εve) in the small strain theory, whereas we use the multiplicative decomposition

of the deformation gradient into elastic and inelastic components (F = FeG) in the

finite strain model. Various theories have been proposed for finite elastoplastic kine-

matics, primarily divided into three groups: (1) Additive decomposition of rate of

deformation by Nemat-Nasser [66], (2) Additive decomposition of Lagrangian strain

by Green and Naghdi [67], and (3) Multiplicative decomposition of the deformation
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gradient by Lee [62]. Each theory has its own advantages and shortcomings, and

have been discussed extensively in the literature. Even though there is no consensus

with respect to the most favorable finite elastoplastic kinematics, in this work the

multiplicative decomposition of the deformation gradient is chosen as shown in Eq.

5.4 for its computational benefits in conjunction with the definition of the elastic

strain in terms of the logarithmic measures.

5.3 Constitutive Theory for Finite Deformation

The constitutive approach for the finite strain model is similar to that for the

small strain model presented in Chapter 3. The two key ingredients that are re-

quired for developing a finite deformation version of the theory are (1) a form for

the Helmholtz potential which involves both finite elastic and inelastic strains, and

(2) a rate of dissipation function which depends on the generalization of the plastic

strain rate. (3) The requirement that the rate of dissipation be maximized.

(1) Helmholtz Potential

Following the form for small deformation, we will assume that the Helmholtz po-

tential is composed of two parts: the glassy or elastic behavior of the permanent

networks ψ̂1(Fe) and the rubbery or transient behavior of the temporary networks

ψ̂2(G). The energy storage of the permanent network is modeled as an isotropic

elastic material similar to the small strain model. The energy storage of the tempo-

rary network can be modeled as an incompressible hyperelastic material, such as the

neo-Hookean model, that is often used to represent rubber-like materials.

ψ = ψ̂1(Fe, θ) + ψ̂2(G) (5.7)

ψ̂1(Fe, θ) =
1

2
CG(ee − α(θ − θh)I) · (ee − α(θ − θh)I) + f(θ) (5.8)

ψ̂2(G) =
1

2
µR(I ·Bve − 3) (5.9)

where the glassy stiffness matrices are given as follows,

CG = kGI⊗ I + 2µG(I − 1

3
I⊗ I) (5.10)

=
(
kG −

2µG

3

)
I⊗ I + 2µGI
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and

kG is the glassy bulk modulus, kR is the rubbery bulk modulus, µG is the glassy

shear modulus, µR is the rubbery shear modulus, α is the thermal expansion.

(2) The Rate of Dissipation Function

Similarly a rate of dissipation similar to the small strain model can be chosen as

ξ = ξ̂(Dve)

= ηGDve ·Dve + κ||Dve|| (5.11)

where ηG is the viscosity, and κ is the network activation threshold which depends

upon the temperature, stress and also the prior history of the process. It will be

shown presently that until the magnitude of the deviatoric stress exceeds this thresh-

old the shape change will be purely thermoelastic and recoverable upon unloading.

The rate of dissipation is given by the difference of the mechanical power supplied

and the rate of increase of the isothermal work function:

T · L− ρψ̇|θ=C = ξ(Dve)

T · L− ρ∂ψ
Fe

· Ḟe − ρ
∂ψ

∂G
· Ġ = ξ(Dve) (5.12)

Now L can be written in the following form:

L = ḞF−1

= ( ˙̄FeG)(FeG)−1

= ḞeF
−1
e + FeĠG−1F−1

e

= Le + FeLveF
−1
e (5.13)

where, Le = ḞeF
−1
e , Lve = ĠG−1.

Eq. 5.13 can be used in Eq. 5.12 as follows:

T · (Le + FeLveF
−1
e )− ρ ∂ψ

∂Fe

· LeFe − ρ
∂ψ

∂G
· LveG = ξ̂(Dve)(

T− ρ ∂ψ
∂Fe

FT
e

)
· Le +

(
FT
e TF−Te − ρ

∂ψ

∂G
GT

)
· Lve = ξ̂(Dve) (5.14)
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We set the stress using the Cauchy stress definition

T = ρ
∂ψ

∂Fe

FT
e (5.15)

Thus the term FT
e TF−Te in Eq 5.14 can be written as,

FT
e TF−Te = ρFT

e

∂ψ

∂Fe

(5.16)

With this definition of stress, Eq 5.14 now becomes

Ave · Lve = ξ̂(Dve) (5.17)

where

Ave = ρ

(
FT
e

∂ψ

∂Fe

− ∂ψ

∂G
GT

)
(5.18)

Following Zeigler[68] and Rajagopal and Srinivasa[69] we now introduce the “max-

imum rate of dissipation assumption” which states that the system will evolve such

that the actual value of Dve is that which maximizes ξ̂(Dve) subject to the constraint

in Eq 5.17. We first form the function h in Equation 5.19.

h = ξ + λ1(Ave · Lve − ξ) + λ2tr(Lve) (5.19)

We now differentiate h with Dve using the chosen form for ξ from Eq 5.11 and

then equate it to zero.

∂h

∂Dve

= 0

∂ξ

∂Dve

+ λ1

(
∂(Ave · Lve)

∂Dve

− ∂ξ

∂Dve

)
+ λ2

∂trLve

∂Dve

= 0

∂ξ

∂Dve

+ λ1

(
∂(Ave · Lve)

∂Dve

− ∂ξ

∂Dve

)
+ λ2

∂(Dve · I)

∂Dve

= 0

∂ξ

∂Dve

+ λ1

(
∂(Ave · Lve)

∂Dve

− ∂ξ

∂Dve

)
+ λ2I = 0 (5.20)
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In index notation
∂(Ave · Lve)

∂Dve

translates as:

[
∂(Ave · Lve)

∂Dve

]lm
=
∂(Aij

veL
ij
ve)

∂Dlm
ve

=
1

2
(Alm

ve + Aml
ve )

=
1

2
[Ave + AT

ve]
lm

= [Asym
ve ]lm (5.21)

Thus Eq 5.20 now becomes

∂ξ

∂Dve

=
λ1

λ1 − 1
Asym
ve +

λ2

λ1 − 1
I (5.22)

Using the definition of ξ from Eq 5.11, in index notation
∂ξ

∂Dve

will translate as

follows:

[
∂ξ

∂Dve

]lm
=

[
∂

∂Dve

(
ηGDve ·Dve + κ

√
Dve ·Dve

)]lm
=
∂(ηGDij

veD
ij
ve)

∂Dlm
ve

+ κ
∂(Dij

veD
ij
ve)

1/2

∂Dlm
ve

= 2ηGDlm
ve + κDlm

ve (Dij
veD

ij
ve)
−1/2

=

[
2ηGDve + κ

Dve

||Dve||

]lm
(5.23)

Thus Eq 5.22 now becomes(
2ηG +

κ

||Dve||

)
Dve =

λ1

λ1 − 1
Asym
ve +

λ2

λ1 − 1
I (5.24)

To compute the value of λ1, we now take a dot product of Eq 5.24 with Dve

2ηGDve ·Dve + κ
Dve ·Dve

||Dve||
=

λ1

λ1 − 1
Asym
ve ·Dve +

λ2

λ1 − 1
I ·Dve (5.25)

Going back to Eq 5.17, we compare the RHS which is a function of ξ = ξ̂(Dve), and
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the LHS which can be split as Lve = Dve + Wve. Thus only Dve will contribute to

ξ̂(Dve), and since Dve is a symmetric tensor, its dot product with the antisymmetric

part of Ave will reduce to zero. So finally Eq 5.17 will reduce to:

Asym
ve ·Dve = ξ̂(Dve) (5.26)

We can now proceed with the calculation of λ1 in Eq. 5.25 using the above result of

Asym
ve ·Dve = ξ̂(Dve) in the RHS and then substituting the definition of ξ̂(Dve) from

Eq 5.11 in the RHS

2ηGDve ·Dve + κ
Dve ·Dve

||Dve||
=

λ1

λ1 − 1
ξ +

λ2

λ1 − 1
I ·Dve

λ1

λ1 − 1
=

2ηG||Dve||2 + κ||Dve||
ηG||Dve||2 + κ||Dve||

(5.27)

This gives

λ1 = 2 +
κ

ηG||Dve||
(5.28)

To compute the value of λ2, we now take a dot product of Eq 5.24 with I

2ηGDve · I + κ
Dve · I
||Dve||

=
λ1

λ1 − 1
Asym
ve · I +

λ2

λ1 − 1
I · I

λ2 = −λ1

3
trAsym

ve (5.29)

Proceeding to substitute the value of λ1, λ2 in Eq 5.24

(
2ηG +

κ

||Dve||

)
Dve =

(
2ηG||Dve||2 + κ||Dve||
ηG||Dve||2 + κ||Dve||

)
Adev,sym
ve (5.30)

Taking norm on both sides and rearranging, we have

||Dve|| =
1

ηG

(
||Adev,sym

ve || − κ
)

(5.31)

This gives us the following conditions:

||Adev,sym
ve || ≤ κ =⇒ ||Dve|| set to zero (5.32)
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||Adev,sym
ve || > κ =⇒ ||Dve|| non− zero

For the condition when ||Dve|| is non-zero, substituting Eq 5.31 into the result of

Dve in Eq 5.30:(
2ηG +

κ

||Dve||

)
Dve =

(
2ηG||Dve||2 + κ||Dve||
ηG||Dve||2 + κ||Dve||

)
Adev,sym
ve (5.33)

Dve =
1

ηG

(
||Adev,sym

ve || − κ
) Adev,sym

ve

||Adev,sym
ve ||

(5.34)

From the cases of ||Dve|| from 5.32 we can write all the possible cases of Dve

Dve =


0, ∀ ||Adev,sym

ve || ≤ κ;

1

ηG

(
||Adev,sym

ve || − κ
) Adev,sym

ve

||Adev,sym
ve ||

, ∀ ||Adev,sym
ve || > κ;

(5.35)

5.4 QR Decomposition

Until now, we have been following the classical procedures based on the use of the

multiplicative decomposition. However, when dealing with materials whose instan-

taneous elastic response is isotropic, there is an essential degeneracy in the relaxed

configuration κp since isotropy demands that the constitutive response is invariant to

any rotation of the configuration κp. This is a well known issue that has been dealt

with in the plasticity literature (see e.g. Lee [62]). Two common ways of dealing

with this degeneracy is to require that (1) Fe = Ve or G = Up, thus eliminating

the redundancy. While theoretically sound, both these approaches have some severe

numerical complications: When carrying out calculations with either Ve or Up in a

finite deformation setting, it is necessary to constantly symmetrize certain tensors

(see Simo and Hughes [70] as well as Srinivasa and Srinivasan [51] for a detailed

discussion).

The reasons for this difficulty lie in the fact that the set of symmetric tensors,

while being closed under addition are not closed under multiplication. Recently,

Srinivasa [61] has shown the efficacy of using a different decomposition of the de-

formation gradient. Rather than using the Polar decomposition theorem , which

decomposes F into a rotation R and a symmetric tensor U, he proposed the use of
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the well known QR decomposition, which will decompose F into a rotation Q and

an upper triangular matrix R. Unlike the polar decomposition, which, in general

requires the use of eigenvalues and eigenvectors of C, the QR decomposition can

be directly and explicitly computed (see[61]). It may also be observed that the up-

per triangular matrix has exactly the same number of elements as the Cauchy green

stretch tensor C and contains the same information. Indeed they are related through

a Cholesky Factorization.

The set of upper triangular matrices have a number of advantages over the the

set of symmetric matrices obtained by polar decomposition. First, upper triangular

matrices are closed under both addition and multiplication, so that discretizing dif-

ferential equations that utilize the QR decomposition is simple. For example, if G

is upper triangular so is G−1 and Lve. On the other hand, if G is symmetric, Lve is

not. Further, the determinant and inverse of an Upper triangular matrix are trivial

to compute and hence make conditions such as incompressibility easy to enforce.

Based on this discussion, and in view of the isotropy of the elastic response, we

assume without loss of generality that G is upper triangular. We now write G in

QR decomposition form, where we decompose G into the product of a pure rotation

and an upper triangular matrix as below.

G = QG̃ (5.36)

where Q is a pure rotation and G̃ is the upper triangular form of G. Henceforth {̃·}
is the upper triangular form of {·}. Therefore,

Ġ = Q̇G̃ + Q ˙̃G (5.37)

Since Q is an orthogonal tensor so that Q̇ = ΩQ, where Ω is a skew symmetric

tensor, this gives us

Lve = ĠG−1

= ΩQG̃G̃
−1

QT + QL̃veQ
T (5.38)

Also G̃
−1

is triangular. This gives L̃ve = ˙̃GG̃
−1

as triangular.

We also have the definition Dve = QD̃veQ
T , and the relationship Dve =

1

2
(Lve +
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LT
ve), so we can use these two alongwith the result obtained above in Eq 5.38 to find

the relationship between D̃ve and L̃ve as follows

Dve =
1

2
(Lve + LT

ve) (5.39)

QD̃veQ
T =

1

2
(ΩQG̃G̃

−1
QT + Q ˙̃GG̃

−1
Q−1 + (ΩQG̃G̃

−1
QT + Q ˙̃GG̃

−1
Q−1)T )

(5.40)

D̃ve =
1

2
(QTΩQ−QTΩQ + ˙̃GG̃

−1
+ ( ˙̃GG̃

−1
)T ) (5.41)

D̃ve =
1

2
(L̃ve + L̃

T

ve) (5.42)

Since both Asym
ve and Dve are symmetric, we can now write it in upper triangular

form for the rate of dissipation relation in Eq 5.26

Ã
sym

ve · D̃ve = ξ(D̃ve) (5.43)

In upper triangular form we can write Eq 5.35 as

D̃ve =
1

ηG

(
||Ãdev,sym

ve || − κ
)

Ã
dev,sym

ve

||Ãdev,sym

ve ||
(5.44)

The symmetric part of Ave can be derived from the relationship in Eq 5.18

Ã
sym

ve =

(
FT
e

∂ψ

∂Fe

− ∂ψ

∂G
GT

)sym
(5.45)

For this we first derive the form of stress using Eq. 5.15, keeping in mind that

the elastic part of the response is isotropic, i.e Fe = Ve, where Ve is left stretch

tensor, and Be = V2
e:

T =
∂ψ

∂Fe

FT
e (5.46)

=
∂ψ

∂Be

∂Be

∂Ve

Ve (5.47)

= 2
∂ψ

∂Be

Be (5.48)
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Consider the differentiation of ψ with respect to lnBe :

∂ψ

∂lnBe

=
∂ψ

∂Be

∂Be

∂lnBe

(5.49)

To calculate
∂Be

∂lnBe

we define ln Be as below

H = ln Be (5.50)

f = eln Be = Be (5.51)

P = arbitrary tensor (5.52)

We now employ the Gâteaux derivative

df

dH
[P] =

deH

dH
[P] (5.53)

=
d

dα

(
eH+αP

)∣∣∣
α=0

(5.54)

=
d

dα

(
eHeαP

)∣∣∣
α=0

(5.55)

= eH
d

dα

(
eαP
)∣∣∣
α=0

(5.56)

Now consider the Taylor series expansion

eαP = Σ∞n=0

(αP)n

n!
(5.57)

eαP = I + αP +
(αP)2

2!
+

(αP)3

3!
+ ... (5.58)

deαP

dα
= P + 2

(αP)P

2!
+ ... (5.59)

deαP

dα

∣∣∣∣∣
α=0

= P (5.60)

This now makes Eq. (5.53)

df

dH
[P] = eHP (5.61)

Thus
∂Be

∂lnBe

[P] = BeP (5.62)
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Since P was chosen as an arbitrary tensor, we can now substitute the above result

back into Eq. 5.49, to get

∂ψ

∂lnBe

=
∂ψ

∂Be

∂Be

∂lnBe

(5.63)

=
∂ψ

∂Be

Be (5.64)

We now have a new form for the result for stress in Eq. 5.48 from the result

obtained in Eq. 5.64. We substitute this new form to get the result for stress as

below, referring to the form of ψ in Eq. 5.7

T = 2
∂ψ

∂lnBe

(5.65)

= CG(ee − α(θ − θh)I) (5.66)

We can substitute the result of Eq. 5.66 in Eq. 5.16 and arrive at,

FT
e TF−Te = FT

e

∂ψ

∂Fe

= FT
e CG(ee − α(θ − θh)I)F−Te (5.67)

Both T and FT
e TF−Te are symmetric for isotropic materials.

Proof of symmetry for FT
e TF−Te is derived below:

FT
e TF−Te = FT

e CG(
1

2
lnBe − α(θ − θh)I)F−Te

= FT
e

[(
kR −

2µR

3

)
I⊗ I + 2µRI

]
(
1

2
lnBe − α(θ − θh)I)F−Te

=
1

2

(
kR −

2µR

3

)
tr(lnBe)I + µRFT

e (lnBe)F
−T
e − 3kRα(θ − θh)I (5.68)

Once again we use the property of isotropic materials Fe = Ve. We know that Ve is

symmetric, therefore it should be sufficient to prove that the term FT
e (lnBe)F

−T
e in

Eq. 5.68 is symmetric as follows, using spectral decomposition [71]:

FT
e (lnBe)F

−T
e = FT

e (lnFeF
T
e )F−Te

= VT
e (lnVeV

T
e )V−Te

= Ve(2lnVe)V
−1
e
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= 2(λpqp ⊗ qp)ln(λrqr ⊗ qr)(λ
−1
m qm ⊗ qm)

= 2(λplnλrλ
−1
m )(qp ⊗ qp)(qr ⊗ qr)(qm ⊗ qm)

= 2lnλrqr ⊗ qr (5.69)

Thus, Eq. 5.69 is symmetric, which proves FT
e (lnBe)F

−T
e in Eq. 5.68 is symmet-

ric and consequently FT
e TF−Te is symmetric.

Also we compute
∂ψ

∂G
GT as below, referring to the form of ψ in Eq 5.7

∂ψ

∂G
GT =

1

2
µR
∂(I ·Bve − 3)

∂G
GT (5.70)

=
1

2
µR
∂(G ·G− 3)

∂G
GT (5.71)

= µRBve (5.72)

Now Bve is symmetric, as Bve = BT
ve = GGT .

We now have forms for both FT
e

∂ψ

∂Fe

in Eq. 5.67 and
∂ψ

∂G
GT in Eq 5.72 to find

the form of Ave as derived in Eq. 5.18

Ave =

(
FT
e

∂ψ

∂Fe

− ∂ψ

∂G
GT

)
=
(
FT
e CG(ee − α(θ − θh)I)F−Te − µRGGT

)
(5.73)

We are mainly concerned with the symmetric part of this quantity. Both terms

in Ave are symmetric as we observed in the comments below Eq 5.67 and 5.72. Thus

we can directly write Ave in its upper triangular form Ã
sym

ve .

Ã
sym

ve =
(
F̃
T

e C̃G(ẽe − α(θ − θh)Ĩ)F̃
−T
e − µRG̃G̃

T )
(5.74)

Then, to find D̃ve derived in Eq. 5.44, we can use the deviatoric part of the above

form of Ã
sym

ve to get the result

D̃ve =
1

ηG

(
||Ãdev,sym

ve || − κ
)

Ã
dev,sym

ve

||Ãdev,sym

ve ||
(5.75)
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Finite strain model for the SMP

1. State Variables: F,G, θ,T

2. Elastic Response:

T = CG(ee − α(θ − θh)I)

3. Flow Rule: D̃ve =
1

ηG

φÃ
dev,sym

ve

||Ãdev,sym

ve ||
4. Activation Conditions:

φ =

{
0, ∀ ||Ãdev,sym

ve || ≤ κ;

||Ãdev,sym

ve || − κ, ∀ ||Ãdev,sym

ve || > κ;
(5.76)

5.5 Non-dimensionalization of System Equations

We select the following non-dimensionalization parameters, similar to the small

strain model:

(1) The typical rubbery modulus ER, from experimental results.

(2) The maximum axial strain applied ε0 from experimental results.

(3) The glass transition temperature θg.

(4) The non-dimensionalization of the time, since this is connected with the kinetic

response.

The non-dimensional quantities using these variables are tabulated in Table 5.2.

In the current form, the constitutive equation and the kinetic equation have six

Table 5.2: Dimensional quantities and corresponding non-dimensional quantities for
the finite strain model

Dim T εe t θ α ηG kG,R, µR

Nondim T̄ =
T

ERε0
ε̄e =

εe
ε0

t̄ =
t

t0
θ̄ =

θ

θg
ᾱ =

αθg
ε0

η̄G =
ηG

ERt0
•̄ =

•
ER

dimensional parameters: kR, kG, α, ηG, µR, µG.
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Stress Equation:

T = CG(ee − α(θ − θh)I) (5.77)

=
((

kG −
2µG

3

)
I⊗ I + 2µGI

)
(ee − α(θ − θh)I) (5.78)

Non-Dimensional form of Stress Equation:

T̄ERε0 =
((
k̄GER −

2µ̄GER

3

)
I⊗ I + 2µ̄GERI

)
(ε̄eε0 − ᾱ

ε0
θg

(θ̄ − θ̄h)θgI)

T̄ =
((
k̄G −

2µ̄G
3

)
I⊗ I + 2µ̄GI

)
(ε̄e − ᾱ(θ̄ − θ̄h)I)

T̄ = C̄G(ε̄e − ᾱ(θ̄ − θ̄h)I) (5.79)

Flow Equation:

D̃ve =
1

ηG
(||Ãdev,sym

ve || − κ)
Ã
dev,sym

ve

||Ãdev,sym

ve ||
(5.80)

Non-Dimensional form of Flow Equation:

D̄ve
ε0
t0

=
1

η̄GERt0
(||Ādev,sym

ve ERε0|| − κ̄ERε0)
Ā
dev,sym
ve ERε0

||Ādev,sym
ve ERε0||

(5.81)

D̄ve =
1

η̄G
(||Ādev,sym

ve || − κ̄)
Ā
dev,sym
ve

||Ādev,sym
ve ||

(5.82)

5.6 Implementation of the Finite Strain Model

We solve the system of ODEs for the evolution of activation stress, temperature,
thermal expansion and G̃ in mass matrix form Pẋ = r + Qx, as described in detail
in Algorithm 4, where x = [κ, θ, α,G6×1

0 ]. We implement the algorithm in MATLAB

using the ode45 solver, where we calculate the current value of G̃(t) given the input

for the deformation F for all time steps and the initial condition for G̃(0). The ODE

system consists of these equations ˙̄κ = fκ
˙̄θ, ˙̄θ = g(t), ˙̄α =

∂α

∂θ
˙̄θ, ˙̃G = L̃veG̃. The
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ODE system in mass matrix form Pẋ = r + Qx looks as below



1 −
∂κ

∂θ
0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 −
∂α

∂θ
1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





˙̄κ
˙̄θ

˙̄α
˙̄G11
˙̄G22
˙̄G33
˙̄G12
˙̄G13
˙̄G23


=



0

g

0

0

0

0

0

0

0


+



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 Lve11 0 0 0 0 0

0 0 0 0 Lve23 0 Lve22 0 0

0 0 0 0 0 Lve33 0 0 0

0 0 0 0 Lve12 0 Lve11 0 0

0 0 0 0 0 Lve13 0 Lve11 Lve12

0 0 0 0 0 Lve23 0 0 Lve22





κ

θ

α

G11

G22

G33

G12

G13

G23


(5.83)

Note that for the stress control case (Algorithm 4, line 14), knowing the Cauchy

stress alone is not enough to specify the deformation uniquely. We need additional

assumptions about orientation. In this algorithm, we will assume wlog that Fe = Ve.

If orientation information is known this can be incorporated.

5.7 Results for Shear Deformation

5.7.1 Isothermal Shear Deformation at Different Temperatures

In this section, we analyze the shear deformation behavior of the SMP model

for different temperature cases, and study the normal stresses developed due to the

Poynting effect in detail.

The shear deformation is controlled via the input F = I + fe1 ⊗ e2

The initial conditions are set as {κ, θ, α, G0 = I}.
Reference temperature for this problem θmax > θg

Activation stress: κ constant , depending on temperature case

Thermal Load: Constant, for the following temperature θinit cases:

1. Greater than reference temperature: θinit > θmax

2. At reference temperature: θinit = θmax

3. At low temperature: θinit < θg

As shown in Figure 5.2b, for large deformations, the shear deformation develops

normal forces in the material. This is known as the Poynting effect. Like general

trends observed in elastic-plastic materials, the Poynting effect results in strain-

softening, as seen in Figure 5.2a. Even though the activation stress is kept constant

in these three cases, the different strain softening trends may be attributed to the

temperature at which the deformation is applied and the form of the flow potential
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Algorithm 4 SMP model implementation

1: Input by user:

• TimeData = [0:MaxTime], Initial Condition: x = [κ, θ, α,G6×1
0 ]

• Material Parameters: EG, ER, νG, νR, ε0, θh, θl, θg, η, t0

• Control Parameters: g(t), fκ, ∂α/∂θ

• For a strain control problem, input: F(t), or for a stress control problem, input: T(t)

2: Calculate Non dimensional Material Parameters: k̄R, k̄G, ᾱG, ᾱR, η̄G, µ̄R, µ̄G
3: function ẋ =ODEsolver(t, x)
4: Assign G6×1

n = G6×1
n−1 as initial approximation . G6×1 rearranged as upper triangular G3×3

5: Call relevant function, depending on strain control (line 6) or stress control (line 14) problem:
6: function Strain Control(input: Fn,Gn, output: Tn, Gn+1)
7: Fen = FnG−1

n

8: Be = FenFTen
9: lnBe = Σ3

i=1V
i
Belog(λiBe)(V

i
Be)

T . λiBe, V
i
Be: eigen values, vectors of Be

10: εe =
1

2
lnBen . lnBe

3×3 rearranged as lnBe6×1
n

11: T6×1
n = CG(εe − αn(θn − θh)I). . rearranged as upper triangular T3×3

n

12: Continue to line 21
13: end function
14: function Stress Control(input: Tn,Gn, output: Fn, Gn+1)
15: M6×1 = 2(CG

−1T6×1
n + αn(θn − θh)I) . Tn rearranged as vector T6×1

n

16: Be = eM . M6×1 rearranged as upper triangular M3×3

17: Fen = Ve =
√

Be . Matrix square root
18: Fn = FenGn

19: Continue to line 21
20: end function
21: Adev,sym

ven = dev(FTenTnF−T
en − µ̄RGnGT

n ) . Adev,sym
ven rearranged as devA6×1

ven

22: ||devAven || =
√
|devATvendevAven | . Calculating norm of dev Aven

23: if ||devAven || ≤ κn then . Activation threshold not reached
24: D6×1

ven = 0 . No update in Dve

25: else ||devAven || > κn . Activation threshold reached

26: D6×1
ven =

1

ηG

(
||devAven || − κn

) devAven
||devAven ||

. Update Dve

27: end if
28: . Calculate L̃ve(n)

L̃ve(n) =

D11
ven 2D41

ven 2D51
ven

0 D21
ven 2D61

ven
0 0 D31

ven


29: Pẋ = r + Qx . Solve ODE system in mass matrix form (ref Eq 5.83)
30: end function
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Ave (refer to equation 5.74) that competes with the activation stress. Therefore even

though the activation stress is constant, the evolution of the flow potential results in

strain softening behavior, as is expected in large deformation of polymers.
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(a) Shear stress at different temperatures.
Activation stress at low temperatures is high,
and thus yielding at different temperatures
occurs at different stress limits.
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(b) The trends of normal stress differences
at different temperatures are similar,but the
values increase with decreasing temperature.

Figure 5.2: Response for shear deformation at different temperatures

Now let us compare the isothermal shear deformation with the experimental data

available in the literature. We refer to the work by Khan et. al.[19], where the shear

strain is applied at glass transition and low temperatures for maximum applied shear

strain of 65% on a Veriflex sample. In order to compare with the trends of the results

with the experimental data, we will apply the shear deformation F = I+fe1⊗e2 that

is equivalent to 65% engineering strain. For this case, we define the corresponding

activation stress values are kept constant at 0.1 and 4 at glass transition temperature

and low temperature, respectively, to observe the relative behaviour. We set the ref-

erence temperature θmax = θg. The initial conditions are set as {κ, θ, α, G0 = I}.
As can be seen from the shear stress response in Figure 5.3a , there is a dramatic

change in the mechanical properties, when the material is subjected to the same

shear deformation, depending on the temperature of the experiment. At glass tran-

sition temperature the “effective” shear modulus (42.5GPa) is lower than that at low
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temperature (68GPa) as can be seen in Figure 5.3a. The trends of these results are

similar to those observed by Khan et. al [19], where they carry out shear experiments

at low temperature and glass transition temperature on the Veriflex sample. They

also observe that the “effective” shear modulus of the sample at low temperature

(60GPa) is almost four times that at glass transition temperature. During the low

temperature experiment, Khan et. al observed material failure after yielding around

shear strain of about 10%. Although the model does show yielding around the same

shear strain, the calculated shear stresses are higher because of the assumed material

properties, and the material continues the response trend beyond the yield regime.
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(a) Shear stress for θ < θg and θ = θg. The
lines represent model results, while the circle
represent data.
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(b) Normal stress difference for θ < θg and
θ = θg. Note the different trends in the
Poynting effect, depending on the tempera-
ture of deformation.

Figure 5.3: Results of the response for shear deformation at low and glass transition
temperature, with respective activation stresses

5.7.2 Rate Dependent Strain Softening Behavior

Isothermal shear deformation is carried out for three different shear rates at low

temperature i.e glassy state of the polymer and at high temperature i.e rubbery

state of the polymer in Figure 5.4. With increasing strain rates, higher stress re-

sponse levels are observed. Strain softening is observed in all three cases of strain

rates, however, with increasing strain rates, the stress accumulated is higher before

softening occurs. At low temperatures, the stress rise before softening is almost same
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for all three shear rates (Figure 5.4a), whereas at high temperatures, the stress rise

before softening, increases with increasing strain rates (Figure 5.4b).
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(a) Low temperature glassy case: Shear
stress response for three different shear rates.
Shear stress rise before softening is almost
same for all three shear rates.
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(b) High temperature rubbery case: Shear
stress response for three different shear rates.
Shear stress rises with increasing shear rate.

Figure 5.4: Rate dependent strain softening behavior for low and high temperatures

5.7.3 Cyclic Isothermal Shear Deformation

Isothermal cyclic shear deformation is carried out for rubbery and glassy cases.

The shear stress response for each cycle in both cases is plotted in the Figures

5.5a,5.5b. From the characteristics of the shear stress response we observe that the

shear stress versus shear strain response is repeatable after multiple cycles, and this

behaviour is in agreement with the experimental observation made by McKnight

et. al [72] wherein cyclic shear experiments have been carried out on a composite

thermoplastic shape memory polymer (MHI Diaplex).Also, The ratio of the maxi-

mum stress rise on loading in the first cycle, to the stress rise after multiple cycles

increases with temperature. In the rubbery phase (high temperature), the stress

rise after multiple cycles is almost equal to that in the first cycle. In the glassy

phase (low temperature), the stress rise after multiple cycles is lower than that in

the first cycle. From the characteristics of the normal stress difference, we observe

that the behaviour has a different trends after multiple cycles for low temperatures,

148



but converges rapidly for high temperature cases.
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(a) Low temperature glassy case: Shear stress
on loading after multiple cycles is less than the
maximum shear stress attained in the first cycle
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(b) High temperature rubbery case: Shear
stress on loading after multiple cycles is almost
equal to the maximum shear stress attained in
the first cycle

Figure 5.5: Results of the response for cyclic shear deformation at low and high
temperature

5.7.4 Thermomechanical Shear Cycle: Stress Recovery

The experiment that we shall be considering in this work is a stress recovery

thermomechanical cycle on a SMP from the work carried out on a Veriflex sample

by Khan et al. [19]. The glass transition of the material is θg = 70◦C. The processes

involved are as listed below:

1. Initial conditions: The material is considered at a stress free state at a tem-

perature above the glass transition temperature θmax = θg + 5.

2. Process A: High temperature deformation: The temperature is held fixed at

θmax and the shear deformation is increased steadily at a constant prescribed

rate to give the temporary shape to the material, where the maximum shear

deformation is approximately 60% in about 50 seconds.

3. Process B: Cooling and fixing the temporary shape: The shear strain is fixed

for about 100 seconds while the temperature is lowered to θmin = θg − 25.
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4. Process C: Relaxing the stress: The temperature is fixed at θmin and the shear

stress is gradually relaxed to zero in 3 seconds.

5. Process D: Recovering the original shape: Now the body is heated back to

θmax = θg + 5 in 500 seconds under constrained shear deformation to observe

the stress recovery characteristics.

In order to implement this cycle, the model is evaluated in a strain controlled regime

followed by a stress controlled regime. Both these regimes have different thermal

loads which affect the evolution of the activation threshold. Depending on whether

the SMP is being heated or cooled, the activation stress evolves in a hysteretic manner

which is key in controlling the response of the SMP model. Since the thermomechan-

ical cycle involved heating and cooling cycles, the rate of activation stress will evolve

depending on specifics of the thermal processes, details of which can be found in the

paper by Ghosh and Srinivasa [34, 73], and is summarized here for convenience.

Rate Form for the Activation Stress

The activation stress of the material is sensitive to temperature, and the material

yields differently depending the current value of the temperature, the amount of

strain the material is subjected to, and on whether the temperature of the material

dropped or increased from the previous time-step. Thus there is a hysteresis of

the activation stress from the cooling to the heating cycle, which gives the different

trends of the stress-rise during cooling and the strain-recovery during heating. These

considerations suggest that the rate of activation stress has the following functional

form

κ̇ = f(θ̄, sign( ˙̄θ), ε̄) ˙̄θ

fcool = y1(ev + sinh(−y2(θ − θ1)))δ1

fheat = (−y3ev − y4(1− (y5 tanh(mθ + n))2))δ2

where, ev is the von mises strain corresponding to the strain (ee − α(θ− θh)I). ev is

the scalar strain value selected in 3D context, such that it is affected by pure thermal

strains or pure mechanical processes. Also, m = 2/(θmax− θ2), n = 1−mθmax. Here

θ1 and θ2 are limiting values of θ until which there is no rise/fall in the stress/strain

during the cooling/heating cycle.

δ1 =

{
1, ∀ θ 6 θ1;

0, ∀ θ > θ1;
δ2 =

{
0, ∀ θ < θ2;

1, ∀ θ > θ2;
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Results of Stress Recovery

The results of stress recovery are shown in Figure 5.6 and 5.7.
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Figure 5.6: Results of the response for shear deformation thermomechanical cycle
for stress recovery: Note that the stress rise during loading and stress fall during
cooling is non-linear as expected from the experimental data. During unloading
at low temperatures, material shows slight spring back, agreeing with experimental
results. The stress recovery during heating remains near zero values for a while, as
claimed by experimental data, after which it rises speedily. The experimental data
for the last part of the recovery shows a decreasing trend, while the model shows
almost steady or very gradual increase in stress.
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Figure 5.7: Comparison of the model response with the data for shear deformation
thermomechanical cycle for stress recovery. The model is evaluated for the identified
parameters in the experiment in Figure 5.3
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• The behavior of the model during process A, shear deformation at high tem-

perature and process B, cooling at constant deformation, are similar to that

reported by Khan et al. [74]

– The stress rises non-linearly during process A

– The stress reduces during process B

– During process C, i.e. unloading at low temperature, the material springs

back slightly

• In process D, heating at constant deformation, we notice that the stress of the

material falls below zero and remains at zero for a while before finally rising

again, to show a stress recovery response. The experimental data reported by

Khan et al. [19] for this region, notes that:

While the test does start at room temperature, some of the initial

data, which only depicts a steady near zero force and steadily in-

creasing temperature, has been omitted

We propose that this part of the response is important as the SMP model

and experiment both suggest that the stress is less than zero in this region

for a while, before it starts rising again. The flow potential of the material

is gradually rising with temperature until it reaches a value that can compete

with the activation stress, after which the stress of the material starts rising.

• As observed by Khan et al. [19] in the recovery stress and temperature of the

SMP during heating, the rise in the stress begins at about 56◦C, corresponding

to about 0.96 non-dimensional temperature value here.

– Around 56◦C, the activation stress in the SMP model reaches a value that

can now start competing with the stress developed, and results in the

stress recovery response.

– Though the stress recovery beyond θg, as reported by Khan et al. shows

a relaxation trend, where the stress gradually diminishes towards the end

of the heating process, the SMP model shows near steady values of stress

until the end of the cycle.
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5.7.5 Thermomechanical Shear Cycle: Shape Recovery

In Figure 5.8, the model is subjected to a shear thermomechanical cycle for the

shape recovery case. The experimental and material parameters are kept the same

as Section 5.7.4, except during the heating cycle, the stress is maintained at zero to

study the shape recovery characteristics.
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Figure 5.8: Response of the model for shear deformation thermomechanical cycle for
shape recovery.

5.8 Concluding Remarks

In this chapter, the details of the development of a Helmholtz potential based

3D finite deformation constitutive model for the SMP were presented, using the QR

decomposition technique. The model was set up in the form of ordinary differential

equations and implemented in a suitable algorithm using an ode solver in MATLAB.
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The response of the model was studied for shear deformation and the characteris-

tics of the isothermal shear response were compared with experimental studies of

Khan et al. [19] for high temperature and room temperature conditions. The model

response was reasonable compared to these experimental findings. The isothermal

shear deformation studies were then studied in detail for different initial tempera-

ture conditions as compared to the reference temperature of the model. The shear

behaviour of the model showed similar trends at different initial temperatures. How-

ever the Poynting effect exhibited by the normal stresses at these initial conditions

were radically different, and gave an insight into how the model works. We extrap-

olated this behaviour for cyclic shear deformation, and although the experimental

data in the literature is minimum for these cases, we have made comments on related

cyclic shear data for SMP composites by Mc Knight et al. [72]. We also study the

model for different deformation rates in rubbery and glassy phase, and notice that

the amount of stress rise before strain softening is different for these two cases, but

the strain softening beahviour occurs at higher stress values with increasing shear

rates. Finally we have implemented a shear deformation thermodynamic cycle for

the SMP model and studied its response for the various combinations of mechanical

and thermal loadings within this cycle. For the stress recovery case, the model is able

to show typical data behaviour as reported by Khan et al. [19] for loading, cooling

and unloading processes. However the stress recovery response for the model shows

steady increase in stress till the end of the cycle, unlike the data which reports a

stress relaxation kind of behavior.
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6. DESIGN OF MULTI-STATE AND SMART-BIAS COMPONENTS USING

SMA AND SMP COMPOSITES∗

6.1 Introduction

The classical engineering approach towards building devices is to look at the

macroscopic properties of the material to build components with desired functional-

ity by employing a macroscopic assembly process. With the advent of advanced ma-

terials, whose functionalities arise from their microstructural properties, researchers

began investigating how the microstructure of the material itself can be used to gen-

erate the required functionality [76]. With space and logistic limitations, replacing

multi-component systems with adaptable materials that can achieve the same mul-

tiple functionalities, is now an attractive alternative [77]. With the introduction of

active materials, multifunctional composites etc, researchers are now focussing on

how the combined microstructural changes of such materials are able to perform

multiple functions, such as integration of functions like actuation, sensing and con-

trol into a single structure using one or more material constituent[76].

Smart materials are a subgroup of such active materials, that can (1) recognize

the stimulus in its surrounding environment as a signal and respond reversibly to

it, and (2) be able to judge the magnitude of the signal and react with an optimal

response by either changing its physical or mechanical properties [6, 7]. In Mo-

moda’s [77] review of modern technologies, she suggests that a combination of these

kind of materials could integrate multiple functions within a single material system,

thus reducing the overall system weight/volume, and providing an improved system

performance upon demand. Such combinations can be classified as multifunctional

smart material systems (MSMS), where they consist of two or more different smart

material phases in the form of a hybrid system, in which every phase performs a dif-

ferent but necessary function. Multifunctional designs are significantly different from

discrete uni-functional subsystem designs, with design methods that blend their per-

formances in innovative ways [78]. Shape memory alloys (SMAs) and shape memory

polymers (SMPs) are examples of smart materials that are gaining industrial and

∗Reprinted with permission from P. Ghosh, A. Rao and A. R. Srinivasa, “Design of multi-state
and smart-bias components using shape memory alloy and shape memory polymer composites”,
Materials and Design, accepted [75], Copyright [2012] by Elsevier Limited
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academic popularity in terms of property investigation and product development [4].

A combination of SMA and SMP could result in a MSMS whose combined response

will be different from the individual responses of SMA and SMP, as presented in this

chapter.

A general idea of the properties of these two materials that will form the multi-

functional system can be seen in Table 6.1. The advantages of SMPs over SMAs are

evident in its lower cost, lower density, easier processing, biodegrability, lower defor-

mation loads and larger attainable strains. SMAs rule over SMPs in their recoverable

force ranges, recoverable speeds, precision control and heat conductivity.

Table 6.1: Comparison of the properties of NiTi shape memory alloys (SMAs) and
shape memory polymers (SMPs) [4]

Material/ Property NiTi SMA SMP

Density (g/cm3) 6-8 0.9-1.1
Typical Transformation Range (oC) -50 to 100 -10 to 150
Observed Phase Transformation A�M, R-phase Glass Transition
Low Temperature Modulus Range (GPa) 25 to 30 0.5 to 1
High Temperature Modulus Range (GPa) 75 to 80 0.005 to 0.01
Recovery Speed (s) <1 1-120
Recovery Stress (MPa) 200-400 1-3
Recovery Strain <8 % 500 %
Shaping Difficult Easy
Cost in $/lb Expensive (∼250) Cheap (<10)
Heat Conductivity Moderate Low
Biocompatilbity - biodegradable

In order to overcome the major drawback of SMPs i.e. their low strength and

stiffness properties for practical applications, solutions have been proposed through

the introduction of shape memory composites [79]. For example, Cornerstone Re-

search Group [10] and Composite Technology Development Inc.[80] have developed

fiber reinforced composites that show enhancement of rigidity and recovery force

properties.

In this chapter, we discuss a method for developing SMA-SMP “smart bias sys-

tems”, that allow for the material to have different tunable characteristics in different
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temperature ranges. For example it is possible to design a system with three different

configurations for three different temperature ranges, as discussed later in Section

6.3. Such a multifunctional system that involves the combination of SMA and SMP

not only improves these properties but also results in a MSMS with a new set of re-

sponse characteristics that would be quite different than the original two materials.

There have been only a handful of attempts by researchers in the pursuit of com-

bining SMA and SMPs to form a useful MSMS. Seward and Krulevitch [81] have

presented concepts for minimally invasive microsurgery tools by utilizing combina-

tions of SMA and SMP. The important aspect of their work was the use of bistable

and reversible configuration capabilities of these SMA-SMP combinations for solving

many catheter related issues in the field of microsurgery. Most of these composite

structures included either SMA embedded in SMP, SMA wrapped around SMP, or

SMA patterned on the surface of SMP. One of the primary ideas involved the use of

variable controllable modulus of these combinations by different techniques such as

stiffness scaling, combining deformation modes, or using reinforcements away from

neutral axis. However, all the development in this work was focused on small scale

actuation, with applications directed towards the medical industry.

Further works in the area of combining SMA and SMP’s involved study of re-

sponse characteristics of such systems. Sterzl et al. [82] presented a SMA thin film

substrate actuator in combination with a polymer in order to achieve bistability

in the composite material. The TiNiHf-Mo-Polymer bistable composite involved a

polymer exhibiting a glass transition temperature between the hysteresis loop of the

shape memory composite. The fabrication of this composite was discussed with em-

phasis on the development of suitable polymer samples.

Recovery force studies of a SMA wire embedded in SMP were carried out by

Tobushi et al. [83], where they fabricated a belt using a single TiNi SMA wire em-

bedded in a SMP polyurethane sheet matrix. The bending actuation characteristics

of this belt were investigated in thermomechanical tests. As discussed in Table 6.1,

the fact that the stiffness values of SMA and SMP show opposing trends at high and

low temperatures provided the motivation for this work.

A two way bending property of SMA and superelastic alloy tapes sandwiched

between SMP layers was discussed by Tobushi et al [84], and their recovery forces in

the two shapes were investigated. The use of martensitic and austenitic SMA were

chosen such that the recovery force of one was high at high temperature, and the
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other was high at low temperature, so that either of the alloys would dominate the

shape characteristics depending on whether the temperature was high or low.

In this chapter, thermally responsive Shape memory alloys (SMA) and Shape

Memory Polymers (SMP) are combined to form a MSMS. The transformation tem-

peratures martensitic start (Ms), martensitic finish (Mf ), austenitic start (As) and

austenitic finish (Af ) of SMA and the glass transition (Tg) for the SMP play a crit-

ical role in designing such a MSMS. Multi-state smart bias systems with varying

stiffnesses can be obtained by varying the Tg of SMP between the transformation

temperatures Mf and Af of SMA. Guidelines to form such MSMS have been es-

tablished by estimating the volume fractions of the individual constituents. Various

ideas for “smart-bias” tools/devices have been proposed, such that they can oper-

ate under three different temperature regimes, with one material constituent being

passive and the other active at a given temperature.

6.2 Smart tools: Development Details

6.2.1 MSMS Fabrication: General Considerations

Figure 6.1 refers to general considerations in designing a MSMS involving two

or more smart materials. The individual constituents of the MSMS are chosen such

that a few of their properties overlap depending on the application. Few examples of

these properties that can be considered are response times, moduli ranges, conduc-

tivity ranges, transformation ranges etc of the individual constituents. The selected

material constituents can be interfaced in different arrangements, such as micro or a

macro level reinforcement, material layering, functionally grading or laminate kind

of arrangements, mechanism arrangements (where one component actuates another),

or structural elements like truss, frames etc, (where each material constituent could

be actuated separately, to obtain a new system level response). Any of these ar-

rangements could lead to a final MSMS, whose response could be (1) a superposition

of individual component responses, or (2) competition between the individual mate-

rial constituent responses or (3) structural features of one constituent, and actuation

features of another combined to form a smart structural system. Care is taken in

exploiting the actuation properties of these smart materials, and not allowing any

material to be completely passive i.e posing only as a structural element in the sys-

tem. In passive cases, the smart components may be replaced by better structural
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Constituent Material Behaviour

Overlapping range of properties

• Response time of materials

• Transformation Temperature range

• Modulus difference of constituents

• Conductivity differences of constituents etc.

Constituent Materials

Interfacing Options

• Micro or Macro Level Reinforcements (Particle,
Fiber, Whiskers etc )

• Layering, Laminate

• Mechanisms

• Structural elements like Trusses, Frames etc

Feature Outcome

• Superposition of individual constituent responses

• Response due to competition of material properties upon
external stimului

• Combination and switching between of the structural fea-
tures of one and actuation features of another

Figure 6.1: Fabrication methodology for a multifunctional smart material system

substitutes. The designs that are dealt with here however, exploit the structural

properties of the smart material at one phase and the actuation properties of the

same material at another phase. Details of combining SMA and SMP to form a

MSMS are discussed in further sections.

6.2.2 Tuning the Glass Transition Temperature of SMP

In this work, the one-way shape memory effects in SMA and SMPs are consid-

ered, and thus both these materials work under the influence of two external agents:

an applied deformation and a thermal signal. The transformation temperatures or

stiffnesses of either SMA or SMP can be tuned depending on the application. The
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Figure 6.2: SMA vs SMP modulus comparison on a temperature scale with particular
emphasis of critical transformation temperatures of SMA and SMP

transformation temperatures of concern for SMA are:

• Mf : Martensitic finish temperature

• Ms: Martensitic start temperature

• As: Austenitic start temperature

• Af : Austenitic finish temperature

Below Mf , the SMA is in martensitic phase and can be easily deformed with

minimal force, and above Af it transforms to a austenitic phase which is harder to

deform. The transformation temperature of concern for SMP is the glass transition

temperature Tg. Below its Tg, the polymer chains are frozen and thus SMP behaves

like an elastic solid and above its Tg there is onset of long range molecular motion

and SMP is soft and easily deformable in this state. Figure 6.2 shows the modulus

variation of SMA and SMP against a temperature scale. As seen in the figure, the

Tg can be programmed between Mf and Af transformation temperatures to observe

different system stiffnesses. As also observed in the figure, the modulus variation of

SMP above and below its Tg varies over two orders of magnitude. The modulus of

SMA in either its martensitic or austentic phase is two orders of magnitude greater
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than that of SMP. Such a large modulus difference would indicate that the SMA

volume fraction in the composite must be low. A larger volume fraction of SMA in a

SMA-SMP composite would result in SMA dominating the composite response over

the entire temperature range and thus debonding itself from the SMP matrix when

cycled repeatedly. The issues of debonding can be reduced in some arrangements

by reducing surface contact between the different material components, or matching

the stiffness differences between the constituent materials as discussed further in

Section6.2.3.3.

6.2.3 Fabrication Details

We now discuss the fabrication details of a SMA-SMP based MSMS, and the

organization of this section is as follows. The processing details of Tg tunable SMP

are discussed in Subsection 6.2.3.1. SMA is used either in wire form or in the form

of extension springs as discussed in Subsection 6.2.3.2. In Subsection 6.2.3.3 we set

guidelines for selecting the volume fractions of SMA and SMP to avoid debonding

issues. In Subsection 6.2.3.4 we will discuss the composite fabrication details based

on the guidelines established.

6.2.3.1 SMP sample preparation

Tunable glass transition SMP samples were manufactured to attain control over

the transition temperature of one of the constituents of the MSMS. Following Xie

and Rousseau’s approach [85], a brief description of Tg tunable SMP sample prepa-

ration is presented here. The conversion of a regular epoxy system into a Tg tunable

SMP is achieved by introducing neopentyl glycol diglycidyl ether - NGDE (from TCI

America) in the epoxy base diglycidyl ether of bisphenol A epoxy monomer - EPON

826 (from Hexion Specialty Chemicals, Inc.) and the curing agent poly(propylene

glycol)bis(2-aminopropyl) ether - Jeffamine D230 (from Huntsman Corporation) [85].

The principle behind controlling the glass transition temperature lies in the fact that

NGDE has an epoxy equivalent weight of 108 which is lower than EPON 178. On re-

placing the rigid aromatic epoxide EPON with the flexible aliphatic epoxide NGDE,

the chain flexibility of the mixture increases, resulting in a reduction and therefore

control of the transition temperature [85]. A fine variation of the ratios of these

components allows the production of SMPs with a range of glass transition tempera-

tures. The volume ratios of chemicals used in making repeatable samples of varying

glass transition temperatures are enlisted in Table 6.2. Notice how the Tg reduces
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as the ratio of NGDE with respect to EPON increases. Silicone molds are used for

the fabrication of the SMA-SMP composite as they allow easy demolding of the pre-

pared samples. The procedure observed in the manufacture of the SMP samples is

as follows [85]. The compositions for tuning the glass transition temperature of the

shape memory polymers were referred to from Table 1 in Xie et al. [85]. Multiple

samples (at least eight samples) were made for each of the four cases as reported

in Table 2 in this work. The photograph in Figure 6.3 shows one sample for each

of these cases. The composition of sample 3 in Table 6.2 were used for the device

examples discussed in Section 6.3.

1. EPON 826 is melted at 70◦C for 15 minutes

2. Mixed vigorously for 10 seconds with Jeffamine D230 and NGDE

3. Mixture is poured into a silicone mold immediately

4. Thermally cured at 100◦C for 1.5 hours

5. Postcured at 130◦C for 1 hour

6. Demolded and ready for testing

Table 6.2: Chemical volume ratios for preparing samples with different glass transi-
tion temperatures

Sample EPON (ml) Jeffamine (ml) NGDE (ml) θg
oC

1 10.68 2.43 1.04 60-80
2 7.12 2.43 2.08 40-60
3 3.56 2.43 3.12 20-40
4 0 2.43 4.16 0-10
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Figure 6.3: Samples prepared with volume ratios and glass transition temperatures
corresponding to those enlisted in Table 6.2

6.2.3.2 SMA wires and SMA extension springs

NiTi SMA wires (Alloy type: SM495) of 0.5mm diameter were obtained from

Nitinol Devices and Components (NDC). The wires were in straight annealed con-

dition as received from the supplier. The wires were cut in specific lengths as per

requirement and used as reinforcements during SMA-SMP composite fabrication.

SMA extension springs were shape set as follows. SMA wires were wound around

a hexagonal bolt with the ends of the wires securely held with C-clamps as seen in

Figure 6.4. The entire assembly was heat treated at 500◦C with 30 minutes soak-

ing time in a resistance oven. After the heat treatment, the assembly was quickly

quenched in water to shape set the SMA wire in the form of a extension spring.

Figure 6.4: Fixture to shape set SMA springs

6.2.3.3 SMA-SMP Composite Design Guidelines

As noticed from Table 6.1, the moduli difference between SMA and SMP at

low and high temperature ranges are large. The ratio of volume fractions of these

two components should be such that the large stiffness differences do not lead to

debonding, as explained in this section.
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Let,

n = number of reinforcements of SMA in the desired composite

L = Length of the resulting composite (length of the silicone mold used)

W = Width of the resulting composite (width of the silicone mold used)

H = Desired height of the composite (varied based on application/requirement)

VSMA,VSMP,VC = Volumes of the SMA, SMP and the composite respectively.

Hence,

VSMA = n×
(πd2

4

)
× L (6.1)

VSMP = L×W ×H (6.2)

VC = VSMA + VSMP (6.3)

In order to get a rough estimate of the volume fractions, the stiffness(k) of the

SMA reinforcement and the SMP matrix are considered individually. For a SMA-

SMP composite, ideally the stiff configurations of SMA at a higher temperatures

(T > Af ) and the stiff (glassy) configurations of SMP at a lower temperatures

(T < Tg) are preferred. As discussed in Section 6.2.2, the Tg of SMP is programmed

such that Mf < Tg < As. In such a case, there will be two stable stiff configurations

with two distinct stiffnesses kSMA and kSMP , over the operational temperature range.

Individually these stiffness would compare as below:

T < TG =⇒ kSMA < kSMP (6.4)

TG < T < As =⇒ kSMA < kSMP (6.5)

Af < T =⇒ kSMA > kSMP (6.6)

In a composite setup however, certain considerations have to be made for the in-

dividual component stiffnesses to be comparable. Since the configurations of concern

correspond to temperatures in Eq 6.4 and 6.6, notice that there is a stiffness switch-

ing between these two temperature ranges, i.e stiffness of SMA switches from being

lower than SMP to being higher than SMP. Ideally the stiffness inbetween these two

ranges i.e Eq 6.5 should be equal for a smooth switching to take place from the low

to high temperature without excessive mismatch between constituent stiffnesses that

may cause debonding. The design requirement is thus that the stiffness relations of
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SMA wires and SMP matrix in Eq 6.5 be adjusted so that

TG < T < As =⇒ kSMA ≈ kSMP (6.7)

In the temperature range TG < T < As, SMA is martensitic and SMP is rubbery. In

this work, SMA wires are embedded in a SMP matrix and hence, the axial stiffness

calculations would proceed as

TG < T < As =⇒ kaxial
SMA ≈ kaxial

SMP

During the heating cycle, (using martensitic moduli for SMA)

EM
SMA × nM × ASMA

LSMA

=
Erub
SMP × ASMP

LSMP

(6.8)

During the cooling cycle, (using austenitic moduli for SMA)

EA
SMA × nA × ASMA

LSMA

=
Erub
SMP × ASMP

LSMP

(6.9)

The bending stiffness calculations would proceed as

TG < T < As =⇒ kbend
SMA ≈ kbend

SMP

During the heating cycle,

EM
SMA × nM × ISMA

L3
SMA

=
Erub
SMP × ISMP

L3
SMP

(6.10)

During the cooling cycle,

EA
SMA × nA × ISMA

L3
SMA

=
Erub
SMP × ISMP

L3
SMP

(6.11)

LSMA will depend on reinforcement orientation, in this work it is LSMA = LSMP =

Length of the mold. Also ASMA is fixed with the use of SMA wires of known diameter.

HSMP is fixed by application requirement / mold dimensions.

Depending on the type of loading, either of the above stiffness considerations can

be made, and the number of SMA reinforcements ‘nM ’ or ‘nA’ can be determined in
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terms of SMA and SMP moduli and SMP matrix dimensions. In addition, the lower

of two estimations among ‘nM ’ or ‘nA’ is assigned as the number of reinforcements

for SMA ‘n’. Typically from the values of EA
SMA and EM

SMA, it should follow that nA

would be lower of the two values and considered for the design. Hence the variables

here are height for SMP i.e ‘HSMP ’, and the number of reinforcements ‘n’ for SMA.

Once this estimate is made, the volume fractions of the two components can be

determined resulting in the condition VfSMA << VfSMP. The volume fractions of

SMA and SMP can now be obtained using the following equations.

VfSMA =
VSMA

VC

(6.12)

VfSMP =
VSMP

VC

(6.13)

6.2.3.4 SMA + SMP System fabrication details

SMA wires reinforced

in the silicone mold

SMP solution poured

into the silicone mold

SMA reinforced SMP composite

Curing of SMP

D
em
ol
di
ng
of
cu
re
d
sa
m
pl
e

Figure 6.5: SMA and SMP composite sample preparation

The two design guidelines for a SMA - SMP based MSMS are (1) the system

design criterion that the transformation temperatures of SMA and SMP are designed
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such that Mf < Tg < As, and (2) the number of SMA reinforcements are determined

by the criterion kmartSMA = krubSMP to prevent debonding.

SMA wires are reinforced in the silicone molds, and their position from the neutral

axis are established based on the application desired, and their quantity corresponds

to guideline (2). The SMP chemical solution of required volume (depending on

application) is prepared, with selected ratios of chemicals to form the desired Tg,

corresponding to guideline (1). This is poured into the mold that has been reinforced

with SMA wires. This entire setup is then cured in an oven at 100◦C for 1.5 hours

and post-cured at 130◦C for 1 hour more and immediately demolded. A brief view

of these steps can be seen in Figure 6.5.

6.3 SMA and SMP based Multi-state and Smart-bias Components

We now discuss a few SMA-SMP based MSMS in cognizance with the design

guidelines set in the earlier section.

6.3.1 Three-state Configurations

Mf < Tg < As

System design

SMP

SMA

Intermediate frozen shape B at T <
Mf

First shape recovery to
Intermediate shape C at Tg < T < As

D
eform

at
T
>
A
f

C
o
ol

to
T
<
M

f

H
ea
t
to
T
>
T
g

H
ea
t
to
T
>
A
f

Permanant Shape A

to original shape A

Second shape recovery

C

B

Figure 6.6: Three-state configurations obtained with SMA and SMP
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Figure 6.7: Thermally activated two - stage alarm system

Consider a system of SMP matrix with SMA reinforcement as shown in Fig-

ure 6.6, where the Tg of SMP lies between the Ms and As of SMA. During composite

fabrication, the permanent shape of the system is set as “A” i.e the composite will

always return to this shape when the temperature is greater than Af . If the structure

is now deformed at a temperature greater than Af to a temporary shape “B” and

then cooled below Tg, then the system freezes in this shape. If this frozen structure

is heated to Tg < T < Af , another intermediate shape “C” is attained, which is a

result of the stiffness competition between SMA and SMP. This kind of a system

can thus demonstrate bistable configurations “B” and “C”, and together with “A”

it forms a three-state system. On proper selection of volume fractions of SMA, the

modulus levels of SMA and SMP can compete resulting in a system that has three

different moduli at three different temperature ranges Mf < Tg < Af .

Such a system level modulus change over a temperature range can be used to

design a thermally activated two - stage alarm system as shown in Figure 6.7. In

such a setup, where only the modulus changes are exploited, it makes the system

a completely thermally stimulated one, where external pressure is applied by the
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switch as long as the modulus is Emart
SMA + Erub

SMP . This way the system can switch

between states “B” and “C” reversibly by thermal stimulus, while the external pres-

sure is provided by the switch. Whenever the system is stiffer than Emart
SMA + Erub

SMP ,

it can depress the switch. Thus the alarm is depressed at two temperature zones

corresponding to its two stiffer configurations. This kind of an alarm system can be

used to monitor a lower and an upper temperature limit by using one actuator alone.

6.3.2 Three-state Configurations with a Discontinuous SMP matrix and

SMA Reinforcement

System design

SMP

SMA

B

Deform and cool

Intermediate frozen shape B

Anticlastic at T < Mf

First shape recovery (SMP recovery) to

intermediate shape C at Tg < T < As

to original shape A at T > Af

Second shape recovery (SMA recovery)

Heat

Heat

Permanant Shape A

C

Mf < Tg < As

Figure 6.8: Discontinuous SMP and SMA composite showing two stage shape recov-
ery

Using the same idea of tuning the Tg of the SMP to lie between the Ms and Af

of the SMA, consider another MSMS consisting of a discontinuous SMP matrix with

SMA wire reinforcement as shown in Figure 6.8 and in the photograph in Figure 6.9.

The permanent shape is as shown in “A”. The composite is now bent along two

axis (similar to anticlastic curvature) and frozen in this shape at a temperature

below Mf as shown in configuration “B”. Now when the temperature is raised to

Tg < T < As, the SMP recovers back to its original shape, however the SMA is
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Permanant Shape A

Intermediate frozen shape B
Anticlastic at T < Mf

First shape recovery to

intermediate shape C at Tg < T < As

to original shape A at T > Af

Second shape recovery

Mf < Tg < As

System design

C

SMP
SMA

B

Figure 6.9: Photographs of the actual sample showing the behavior described in
Figure 6.8

still in its martensitic structure and remains bent, as shown in configuration “C”.

Next, when the temperature is raised above the Af of SMA, the system returns back

to its original shape “A”. This kind of a system can also demonstrate three-state

configurations. This would fully exploit the SMP behavior in one temperature range

and the SMA behavior in another temperature range, with one material constituent

being passive and the other active at a given temperature. Such kind of a system

can be used to make morphing structures, for example thermally activated locking

mechanisms.

6.3.3 SMA Spring inside SMP Tube: Automatic Thermal Cycling Mech-

anism

On observing the deformation load required by SMP, the recovery stress generated

by SMA, and the transition ranges of both, one interesting possibility comes to

the fore that motivates the current idea. A system of SMA and SMP could be

designed such that the recovery force generated by SMA during the end of one

thermal cycle could be used to deform the SMP for the next cycle, thus forming a

chain of automatic activations that is entirely thermally generated without the aid

of mechanical deformation. This kind of a system can be used to make a thermally
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Configuration A

Mf < Tg < AsSystem design

Configuration B

Permanent shape of SMP

Temporary shape of SMA

Tg < T < As

Permanent shape of SMA

Temporary shape of SMP

Af < T
SMP

SMA martensitic
SMA austenitic

Cool Heat

Figure 6.10: Smart valve

activated smart valve as shown in Figure 6.10. Shape set SMA extension springs

are stretched and attached across the diameter of the SMP tube. At a temperature

Tg < T < As, the system is in configuration “A” where the SMP is in rubbery

state and the SMA in its martensitic state. When heated above Af , the system

attains configuration “B” as the SMA contracts to its permanent shape in austenitic

state while the SMP is in its rubbery state. The overpowering recovery force of

SMA holds the structure in “B” as long as the temperature is greater than Af . The

system relaxes back to “A” when the temperature drops to Tg < T < As. Thus,

no external mechanical load is needed to observe the deformations, since the system

can cycle between shape “A” and “B” with only a thermal signal, that alternates

between Tg < T < As and T > Af respectively. The shape “A” can be frozen by

lowering the temperature further below T < Tg. Such a system can be used as a

thermally activated smart valve, which has the permanent shape “A” at low working

temperatures, and on exceeding a particular temperature, acts like a valve with
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shape “B”. Multiple SMA springs can be connected across the SMP tube diameter

which can be independently activated to obtain thermally activated differential valve

openings.

6.3.4 Shape-set SMA Reinforcement in SMP Matrix: Automatic Ther-

mal Cycling Mechanism

Configuration A

Mf < Tg < AsSystem design

Configuration B

Permanent shape of SMA

Temporary shape of SMP

Tg < T < As

Permanent shape of SMP

Temporary shape of SMA

Af < T

Cool Heat
SMP

SMA

Figure 6.11: Smart tent

Configurations that can exhibit the automatic thermal cycling are not limited to

mechanisms alone, but can also be performed by composite structures, as discussed

in this section. In Figure 6.11, configuration “A” shows a shape set SMA wire in the

form of a curve. This is embedded inside a flat SMP matrix as shown in configuration

“B”, which can be as thin as membranes depending on the application desired. To

fabricate such a system, SMA wires are shapeset in the form of a curve. These

curved SMA wires are then straightened in its martensitic state and reinforced in

the molds under external constraints. In this configuration, the chemical solution

of SMP is poured into the mold as described in Section 6.2.3.4 to complete the

composite fabrication process. After demolding, the system is allowed to cool down

in its constrained configuration. This state is shown as configuration “B” in Figure

6.11 at a temperature Tg < T < As. When heated above Af , the system attains
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configuration “A” as the SMA attains its shape set curved shape in austenitic state

while the SMP is in its rubbery state. The overpowering recovery force of SMA

holds the structure in “A” as long as the temperature is greater than Af . The

system relaxes back to “B” when the temperature drops to Tg < T < As with no

external mechanical loading. The system can cycle between shape “A” and “B” with

only a thermal signal, that alternates between T > Af and Tg < T < As respectively.

The shape “B” can be frozen by lowering the temperature further below T < Tg.

Such a system may be used as thermally activated tents or umbrellas, which has

a temporary shape “B” at lower temperatures, and takes on a new shape “A” at

the higher working temperatures. Multiple SMA wires can be embedded inside the

SMP matrix in different orientations to take on curved shape or dome shapes in

configuration “A”.

6.4 Conclusions

This chpater discusses how thermally responsive Shape memory alloys (SMA) and

Shape Memory Polymers (SMP) can be combined to form a Multifunctional Smart

Material system (MSMS). The considerations in combining SMA and SMP to form a

MSMS led to the following design guidelines (1) the transformation temperatures of

SMP is programmed such that Mf < Tg < As, and (2) the number of SMA reinforce-

ments are determined by the comparing the stiffnesses kausteniteSMA = krubberySMP . Guidelines

for the volume fractions of the individual constituents of such MSMS’s were estab-

lished to overcome issues like debonding due to large stiffness differences between

the material constituents. Using these guidelines, various SMA-SMP based MSMS’s

were proposed, such that they can operate through three temperature regimes, with

one material constituent being passive and the other active at a given tempera-

ture. Multi-state smart bias components such as the three-state configurations (with

continuous and discontinuous SMP matrix with SMA reinforcements) showed three

different moduli at three different temperature ranges T < Mf , Mf < T < Af and

T > Af . Such a system level modulus change over a temperature range can be used

to design thermally activated alarm systems or morphing structures like thermally

activated locking mechanisms. Shape setting of SMA in a different configuration,

such that SMA is active at high temperatures and SMP is active at low tempera-

tures can result in structures that exhibit automatic thermal cycling. Such systems

can find applications as smart valves or smart tents or smart umbrellas. A SMA-SMP
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based MSMS thus shows a system level response with new set of response character-

istics quite different from individual constituents SMA or SMP when subjected to

the same external stimuli.
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7. CONCLUSIONS

7.1 Conclusions on the 1D and Small Strain 3D Model

A thermodynamically consistent 1D model and a corresponding small strain 3D

model was developed simulate the gross response of a SMP undergoing a thermome-

chanical cycle.

1. Polymers undergo uncoiling of the polymeric chains during deformation and

formation of temporary nodes because of the electrostatic attraction between

the individual chains during thermal changes. A continuum model is formu-

lated to account for these phenomena through the specification of appropriate

evolution functions of the Helmholtz potential and rate of dissipation.

2. The activation stress of the material controls the gross features of the response

of the model, and suggests that the material yields differently depending on not

just the current value of the temperature but also on whether the temperature

of the material dropped or increased from the previous time-step somewhat

similar to the Bauschinger effect in plasticity, except that here the controlling

parameter is the rate of temperature change rather than rate of plastic strain.

3. Quantification of the effect of thermal expansion was carried out and the model

was incorporated with temperature dependent thermal expansion. Its implica-

tions were compared with the observations made by Gunes et al. [23].

4. The limited number of model parameters makes it possible to relate these pa-

rameters to response characteristics of the model. An extensive parametric

study of the material parameters and their sensitive analysis showed that be-

havior of SMPs are complex, where each response parameter is affected by two

or more material parameters simultaneously. The most influential parameters

of the SMPs were rubbery modulus ER and some of the coefficients of the

activation stress function y1, y2, and y3.

5. A similar parametric study was carried out for various loading conditions, and

the results agreed with the data available in the literature.
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6. A systematic parameter identification of the activation stress coefficients was

carried out by performing optimization of the error between the model and the

data.

7. These parameters were used for the prediction of the SMP response under

different loading conditions for the experimental data obtained for uniaxial

loading conditions on two different SMP samples: polyurethane and Veriflex

[2, 3].

7.2 Conclusions on the Beam Theory Model

A beam theory model was developed using the continuum model described above,

and a simple numerical implementation in the form of the operator-split approach was

used to simulate a SMP beam undergoing a three-point bending thermomechanical

cycle.

1. The model is developed for small strains based on the Euler Bernoulli beam

theory. The finite element model is of the form [Ke][∆e] = [Fe], where Ke is

linear, developed from the constitutive equation of the model and the Hermite

cubic interpolation functions, and Fe contains the moment generated due to

inelastic and thermal strains across the cross section of the beam.

2. The numerical solution is implemented by using an operator split technique

that utilizes an elastic predictor and dissipative corrector. The key idea is that

the elastic predictor is based on the solution to a beam theory boundary value

problem while the dissipative corrector is entirely local (and hence can be par-

allelized) and is applied by considering the beam as a two or three dimensional

body. This enables a very rapid solution of the problem yet maintaining fidelity

of the distribution of inelastic strains across the cross-section.

3. The algorithm developed is implemented for a three-point bending test and

examine the material behavior for three cases of activation stress and thermal

loading conditions: elastic, plastic and thermoplastic beam. The FEM solver is

validated against the ideal elastic solution. The plastic beam exhibits inelastic

strains that are highest at the outer fibres, and zero at the centreline of the

beam. The thermoplastic beam exhibits inelastic strains that are highest at
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the outer fibres like the plastic case, but have a finite value at the centreline

depending on how the inelastic zone evolves with temperature.

4. The algorithm is studied for time convergence and mesh convergence. The

error norm used is the L2 norm of the displacement solution for current and

previous iteration. The convergence criterion for both cases is selected as 10−3.

The time step size selected is ∆t = 0.05, and the mesh density selected is 65

× 65 for allowable computation costs.

5. The beam theory model is implemented for a three-point bend thermomechani-

cal cycle for both strain recovery and stress recovery cases. The beam response

shows similar characteristics as observed in experiments, because of the evolu-

tion of the inelastic strains that is controlled by the activation stress function.

Various cases are studied for the thermomechanical cycle, including different

unloading cases and cyclic deformation cases.

7.3 Conclusions on the Finite Strain Model

A thermodynamically consistent finite strain 3D model was developed to simulate

the gross responses of the SMP undergoing a thermomechanical shear cycle.

1. A specific form for the Helmholtz potential and the rate of dissipation is chosen

from insights gained from the small strain model. The deformation gradient is

multiplicatively decomposed into an instantaneous elastic part and a viscoelas-

tic part.

2. The elastic deformation is assumed as pure stretch and the viscoelastic part of

the deformation is upper triangular (based on replacing the polar decomposi-

tion with the well known QR decomposition of a matrix). This allows great

simplification in the numerical methods that are used for the simulation.

3. The model which is in a state evolution form, is implemented for homoge-

neous deformations in an ODE solver in MATLAB, and solved for a simple

shear problem. For large deformations, the shear deformation develops normal

forces in the material, known as the Poynting effect. Like general trends ob-

served in elastic-plastic materials, the Poynting effect results in strain-softening
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in the SMP model. The strain softening behavior observed is different depend-

ing on the temperature of the experiment. The isothermal shear deformation

response of the model is compared with shear data in the literature [19] for

glass transition temperature of Veriflex and room temperature.

4. Isothermal cyclic shear deformation is carried out for three temperature cases

(θ > θmax, θ = θmax, θ < θmax), and it is observed that the behavior for different

temperature cases has a similar trend after multiple cycles.

5. The finite strain SMP model is implemented for a thermomechanical shear

cycle for the stress recovery case. Note that the stress rise during loading

and stress fall during cooling is non-linear as expected from the experimental

data. During unloading at low temperatures, material shows slight spring back,

agreeing with experimental results. The stress recovery during heating remains

near zero values for a while, as claimed by experimental data, after which it

rises speedily. The experimental data for the last part of the recovery shows a

decreasing trend, while the model shows almost steady or very gradual increase

in stress.

7.4 Recommendations for Future Work

The following research topics need attention:

1. Small Strain Model: The extensive parametric study and sensitivity analysis

in Chapter 3 can be used to develop detailed “response charts” for designers.

An initial example has been shown in [75].

2. Beam Theory Model: For many applications, a von Kármán approximation

may be more suitable in view of the large rotations. The beam formulation

presented in Chapter 4 can be extended to the von Kármán beam [59]. Since

this will now involve coupling between the axial and transverse displacements,

a two-dimensional displacement update will be necessary for the FEM solver

in the elastic predictor-dissipative corrector loop.

3. Finite Strain Model: The model developed in Chapter 5 can be explored for

different modes of deformation and can be extended to an anisotropic model.

The model can also be extended to a compressible version, by making suitable
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adjustments in the Helmholtz potential, removing the incompressibility con-

straint and differentiating the density during the differentiation of Helmholtz

potential. This is expected to show better recovery characteristics.

4. Experimental Work: Comprehensive data for bending and shear experiments is

important for characterizing SMPs and validating the models developed in this

work. Complete reporting of material properties, experimental specifications

and representation of data versus time would serve as a dependable repository

of bending and shear response of SMPs, especially since experimental data in

these modes of deformation is limited and crucial for building better models.

A few details for carrying out bending and shear experiments on SMPs are

presented here for future explorations. The proposed bending experiments can

be carried out on INSTRON 5567 (Courtesy: Dr. Terry Creasy Laboratory).

(a) INSTRON setup

The INSTRON 5567 is attached to INSTRON SFL Heatwave environ-

mental chamber (Model: 3119-506 Heatwave 240) for maintaining precise

air temperature throughout the length of the experiment. The Panel Con-

troller for the environmental chamber is 2100P (modified 2132 promount

hybrid). 2716 Series Mechanical Wedge-Action Grips are used to hold the

attachments for the experimental setups. Fig. (7.1) shows the experi-

mental set-up along with the mechanical grips and specimen mounting.

A similar test for a four point flexure setup can be carried out. Force and

tensile extension will be the parameters measured online with the help

of in built 5kN capacity load cell and the crosshead displacement respec-

tively. These parameters will be monitored and recorded as a function of

time using INSTRON’s customized Bluehill 2.9 software.

(b) Temperature data

The Vernier Surface temperature sensor can be mounted on the sample

and the Logger Lite software can be used to obtain the temperature versus

time data. The data acquisition sample frequency for the Logger Lite soft-

ware is set to 2 samples/ second. Alternatively, the temperature versus

time data can be obtained through a data acquisition system consisting of

a K-type thermocouple connected a DRF-TCK-115VAC-0/150C-0/10 sig-

nal conditioner from Omega, which is connected to myDAQ from National
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Instruments, and the temperature versus time data is obtained through

LabView.

(c) Experimental settings

The procedure for the experiments will be for different loading conditions

in a thermomechanical cycle, as explained in Chapter 2 Section 2.2. The

INSTRON settings for shape recovery and stress recovery thermomechan-

ical cycles has been recorded in Table 7.1.

(d) Material Specifications

The material to be used for the experiments can be either Veriflex from

Cornerstone Research Group, Inc. [10] or in-house generated samples.

The sample geometry is 126mm gauge length, 13 mm width and 3.5mm

thickness for bending and 24mmX24mm in area and 3 mm thick for shear

tests. The glass transition temperature of the Veriflex is 80 − 90◦C. For

in-house generated samples, the work of Xie and Rousseau [85] has been re-

ferred to, on the tuning of glass transition temperatures of epoxy polymers.

The details of this have been presented in Chapter 6 Section 6.2.36.2.3.1.

It is highly recommended that precise solution measures and a vacuum

chamber/oven be used to synthesize samples, to exhibit repeatable re-

sponse data.
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Fixture

Grip

(a) Shear

Load Pin

Support
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Downward
Moving Grip

Fixed Grip

Pins

(b) Three point flexure
Figure 7.1: Experimental setup for shear and three-point flexure tests. (a) Shear:
The upward moving grips will shear the symmetrically mounted glued specimens on
the fixed lower grip. (b) Three point bending: The downward moving grip will apply
a central load on the midpoint of the sample which rests on the fixed support pins
of the lower grip.
Courtesy: INSTRON 5567 with support fixtures, Dr. Terry Creasy Laboratory.
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Table 7.1: Details for INSTRON settings during a thermomechanical cycle

Experimental Process INSTRON Settings Thermal Chamber

To start the temperature
data acquisition

Control Extension HOLD: Dura-
tion: 4 s

OP.L = 20, OP.H=100, chamber
closed, constant temperature T >
Tg + 20◦C

Range 1: High temp
Strain:

Control Extension:- ABS RAMP:
End Point = 10mm, Rate =
5mm/min

Chamber closed, constant temper-
ature T > Tg + 20◦C

Range 2: Constant
strain Cooling

Control Extension:- HOLD: Dura-
tion: 4 minutes

Chamber removed, cool down to
room temp T < Tg + 20◦C

Range 3: Low Temp Un-
loading

Control Load:- ABS RAMP:
End Point = 0 kN, Rate =
0.005kN/min

Chamber removed, maintain T <
Tg + 20◦C

Range 4: Zero Load
Heating (Shape recov-
ery)

Control Load:- HOLD: Duration:
5 minutes

Chamber closed, heat to T > Tg +
20◦C

Range 4: Constant
Strain Heating(Stress
recovery)

Control Extension:- HOLD: Dura-
tion: 5 minutes

Chamber closed, heat to T > Tg +
20◦C
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APPENDIX A

DETAILS OF PARAMETRIC STUDY OF THE SMALL STRAIN 3D MODEL

Parametric Study

The two parametric studies that were carried out were

1. Change in the order of magnitude of the parameter

2. Change in ±20% range of the actual value of the parameter

Thus in the tables that follow, the values of the parameters for the two studies were

changed as below, using the parameter EG as an example. We also present the

graphs generated from the parametric study for the change in the order of

magnitude of the parameter. The graphs generated for the change in ±20% range

of the actual value of the parameter alongwith comments are presented in Chapter

3, Section 3.8 itself.

Table A.1: Parameter value changing details for (1) Order of magnitude and (2)
±20% range around actual value

EG variation EG variation
Order of magnitude Around exp value

EG1 = EexpG × 0.01 EG1 = EexpG + 20%EexpG

EG2 = EexpG × 0.1 EG1 = EexpG + 10%EexpG

EG3 = EexpG EG1 = EexpG

EG4 = EexpG × 10 EG1 = EexpG − 10%EexpG

EG5 = EexpG × 100 EG1 = EexpG − 20%EexpG
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Glassy Modulus

Table A.2: Glassy modulus parametric analysis: order of magnitude

Value σb/σ
EGexp

b σTg/σ
EGexp

Tg σc/σ
EGexp
c εcd/ε

EGexp

cd εTg/ε
EGexp

Tg εea/ε
EGexp
ea

9 0.240815 0.246844 0.106355 10.63484 0.286057 0.877864
90 0.777587 0.783019 0.393035 3.9304 1.012478 0.998612
900 1 1 1 1 1 1
9000 1.029384 1.028489 1.167614 0.017599 0.982405 0.99979
90000 1.03241 1.031427 1.165904 -0.02256 0.981383 0.999928

Table A.3: Glassy modulus parametric analysis: around experimental data

values σb/σ
EGexp

b σTg/σ
EGexp

Tg σc/σ
EGexp
c εcd/ε

EGexp

cd εTg/ε
EGexp

Tg εea/ε
EGexp
ea

1088.4 1.006278 1.006218 1.027716 0.993836 1.00051 1.000014
997.7 1.003386 1.003379 1.015508 0.996689 1.000218 1.00002
907 1 1 1 1 1 1
816.3 0.995831 0.995902 0.980876 1.002876 0.999961 0.999923
725.6 0.989832 0.990782 0.957416 1.00843 0.999851 0.999801
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Figure A.1: Glassy modulus effect on the response for order of magnitude
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Rubbery Modulus

Table A.4: Rubbery modulus parametric analysis: order of magnitude

ER values
σb

σ
ERexp

b

σTg

σ
ERexp

Tg

σc

σ
ERexp
c

εcd

ε
ERexp

cd

εTg

ε
ERexp

Tg

εea

ε
ERexp
ea

0.3 0.010346 0.010339 0.011963 -0.00678 0.952378 1.000184
3 0.103147 0.103069 0.11971 0.050085 0.955289 0.999904
30 1 1 1 1 1 1
300 7.660966 7.705169 3.913746 3.913957 1.088667 0.995061
3000 22.91683 23.37581 10.27342 10.2741 0.296004 0.827217

Table A.5: Rubbery modulus parametric analysis: around experimental data

ER values σb/σ
ERexp

b σTg/σ
ERexp

Tg σc/σ
ERexp
c εcd/ε

ERexp

cd εTg/ε
ERexp

Tg εea/ε
ERexp
ea

40.32 1.190917 1.191108 1.158859 1.007337 0.999474 0.99997
36.96 1.095864 1.095912 1.081012 1.003577 0.999821 0.99997
33.6 1 1 1 1 1 1
30.24 0.903409 0.903369 0.91521 0.997463 0.999987 1.000074
26.88 0.806095 0.806014 0.826072 0.993868 1.000245 1.000086
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Glassy Thermal expansion

Table A.6: Glassy thermal expansion parametric analysis: order of magnitude

α2 values σb/σ
α2exp

b σTg/σ
α2exp

Tg σc/σ
α2exp
c εcd/ε

α2exp

cd εTg/ε
α2exp

Tg εea/ε
α2exp
ea

11.6× 10−7 1 0.926236 -0.14601 -0.14601 1.069844 1.02099
11.6× 10−6 1 0.932943 -0.02927 -0.02926 1.06417 1.018832
11.6× 10−5 1 1 1 1 1 1
11.6× 10−4 1 1.670572 1.935856 8.331518 0.306347 0.990029
11.6× 10−3 1 8.376358 10.16373 203.5305 -5.79981 0.801709

Table A.7: Glassy thermal expansion: around experimental data

α2 values σb/σ
α2exp

b σTg/σ
α2exp

Tg σc/σ
α2exp
c εcd/ε

α2exp

cd εTg/ε
α2exp

Tg εea/ε
α2exp
ea

0.000223 1 1.019987 1.064888 1.391531 0.971705 0.999828
0.000205 1 1.009992 1.039897 1.193722 0.986074 0.999883
0.000186 1 1 1 1 1 1
1.67E-04 1 0.990008 0.943235 0.810372 1.014003 1.000048
1.49E-04 1 0.980015 0.867192 0.629915 1.027439 1.000097
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Figure A.3: Glassy thermal expansion effect on the response for order of magnitude
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Rubbery Thermal expansion

Table A.8: Rubbery thermal expansion parametric analysis: order of magnitude

α1 values σb/σ
α1exp

b σTg/σ
α1exp

Tg σc/σ
α1exp
c εcd/ε

α1exp

cd εTg/ε
α1exp

Tg εea/ε
α1exp
ea

11.6× 10−7 1 0.999564 1.000272 0.999561 1.001138 0.99992
11.6× 10−6 1 0.999604 1.000282 0.999575 1.001249 0.999945
11.6× 10−5 1 1 1 1 1 1
11.6× 10−4 1 1.004038 0.998967 1.004506 0.993824 1.00006
11.6× 10−3 1 1.044416 0.888226 0.895844 0.926763 1.003033

Table A.9: Rubbery thermal expansion: around experimental data

α1 values σb/σ
α1exp

b σTg/σ
α1exp

Tg σc/σ
α1exp
c εcd/ε

α1exp

cd εTg/ε
α1exp

Tg εea/ε
α1exp
ea

0.000271 1 1.015518 0.94745 1.01099 0.960688 1.000126
0.000249 1 1.00776 0.976559 1.004597 0.980537 1.000029
0.000226 1 1 1 1 1 1
2.03E-04 1 0.99227 1.0182 0.989034 1.020925 0.999636
1.81E-04 1 0.984479 1.030254 0.994256 1.038938 0.999925
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Figure A.4: Rubbery thermal expansion effect on the response for order of magnitude
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Glassy Viscosity

Table A.10: Glassy viscosity parametric analysis: order of magnitude

ηG values σb/σ
ηexp

b σTg/σ
ηexp

Tg σc/σ
ηexp
c εcd/ε

ηexp

cd εTg/ε
ηexp

Tg εea/ε
ηexp
ea

10 0.966325 0.982884 0.999941 0.999935 0.374742 1.016044
100 0.969371 0.98444 0.999951 0.99995 0.402046 1.016072
1000 1 1 1 1 1 1
10000 1.306329 1.155593 1.004376 1.004377 2.097543 0.295721
100000 4.369457 2.364394 1.26744 0.7721 2.345417 -0.07864

Table A.11: Glassy viscosity parametric analysis: around experimental data

η values σb/σ
ηexp

b σTg/σ
ηexp

Tg σc/σ
ηexp
c εcd/ε

ηexp

cd εTg/ε
ηexp

Tg εea/ε
ηexp
ea

1392 1.010459 1.0081 1.000236 0.977371 1.074958 0.98193
1276 1.005208 1.004046 1.000084 0.989398 1.038103 0.992052
1160 1 1 1 1 1 1
1044 0.994761 0.995958 0.999949 1.011021 0.960809 1.005985
928 0.989522 0.991914 0.999881 1.022419 0.920477 1.009918
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Figure A.5: Viscosity effect on the response for order of magnitude
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Activation Stress Coefficient y1

Table A.12: Activation stress coefficient y1: order of magnitude

y1 values σb/σ
y1
b σTg/σ

y1
Tg σc/σ

y1
c εcd/ε

y1
cd εTg/ε

y1
Tg εea/ε

y1
ea

0.01 1 1 0.42697 13.38316 -0.12346 1.159888
0.1 1 1 0.489361 11.14937 -0.05357 1.149433
1 1 1 1 1 1 1
10 1 1 1.268637 1.268492 1.563742 -0.09575
100 1 1 1.302292 1.302293 1.559123 -0.09233

Table A.13: Activation stress coefficient y1: around experimental data

y1 values σb/σ
y1
b σTg/σ

y1
Tg σc/σ

y1
c εcd/ε

y1
cd εTg/ε

y1
Tg εea/ε

y1
ea

0.0912 1 1 1.055431 0.575498 1.318312 0.896491
0.0836 1 1 1.02904 0.561037 1.152223 0.956198
0.076 1 1 1 1 1 1
0.0684 1 1 0.967883 1.74087 0.855397 1.035748
0.0608 1 1 0.931854 2.482942 0.710527 1.071136
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Figure A.6: Activation stress coefficient y1 effect on the response
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Activation Stress Coefficient y2

Table A.14: Activation stress coefficient y2: order of magnitude

y2 values σb/σ
y2
b σTg/σ

y2
Tg σc/σ

y2
c εcd/ε

y2
cd εTg/ε

y2
Tg εea/ε

y2
ea

0.08 1 1 0.426184 13.41338 -0.12424 1.160032
0.8 1 1 0.481209 11.44879 -0.06414 1.151089
8 1 1 1 1 1 1
80 1 1 1.270674 1.270693 1.563426 -0.09552
800 1 1 1.303304 1.303241 1.559025 -0.09225

Table A.15: Activation stress coefficient y2: around experimental data

y2 values σb/σ
y2
b σTg/σ

y2
Tg σc/σ

y2
c εcd/ε

y2
cd εTg/ε

y2
Tg εea/ε

y2
ea

28.0284 1 1 1.130292 0.616317 2.133493 0.43441
25.6927 1 1 1.070386 0.583618 1.540442 0.808339
23.357 1 1 1 1 1 1
21.0213 1 1 0.916063 2.83838 0.641314 1.087
18.6856 1 1 0.832721 4.219723 0.372239 1.140133
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Figure A.7: Activation stress coefficient y2 effect on the response
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Activation Stress Coefficient y3

Table A.16: Activation stress coefficient y3: order of magnitude

y3 values σb/σ
y3
b σTg/σ

y3
Tg σc/σ

y3
c εcd/ε

y3
cd εTg/ε

y3
Tg εea/ε

y3
ea

0.004 1 1 1 0.999762 1.600194 -0.01496
0.04 1 1 1 1.000001 1.600156 0.170456
0.4 1 1 1 1 1 1
4 1 1 1 0.999995 0.21114 1.104591
40 1 1 1 1.000002 0.163326 1.110904

Table A.17: Activation stress coefficient y3: around experimental data

y3 values σb/σ
y3
b σTg/σ

y3
Tg σc/σ

y3
c εcd/ε

y3
cd εTg/ε

y3
Tg εea/ε

y3
ea

-0.2304 1 1 1 1.000026 0.846905 1.09506
-0.2112 1 1 1 1.00001 0.922481 1.057792
-0.192 1 1 1 1 1 1
-0.1728 1 1 1 0.999994 1.079482 0.934571
-0.1536 1 1 1 1.000016 1.160979 0.863032
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Figure A.8: Activation stress coefficient y3 effect on the response
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Activation Stress Coefficient y4

Table A.18: Activation stress coefficient y4: order of magnitude

y4 values σb/σ
y4
b σTg/σ

y4
Tg σc/σ

y4
c εcd/ε

y4
cd εTg/ε

y4
Tg εea/ε

y4
ea

0.004 1 1 1 0.999997 1.615708 0.876959
0.04 1 1 1 0.999974 1.557122 0.905182
0.4 1 1 1 1 1 1
4 1 1 1 0.999998 0.373765 1.067759
40 1 1 1 0.999995 0.214832 1.084917

Table A.19: Activation stress coefficient y4: around experimental data

y4 values σb/σ
y4
b σTg/σ

y4
Tg σc/σ

y4
c εcd/ε

y4
cd εTg/ε

y4
Tg εea/ε

y4
ea

0.0348 1 1 1 1.00009 0.97669 1.026261
0.0319 1 1 1 1.000041 0.988339 1.013133
0.029 1 1 1 1 1 1
0.0261 1 1 1 1.000083 1.011823 0.986837
0.0232 1 1 1 1.00008 1.023544 0.973693
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Figure A.9: Activation stress coefficient y4 effect on the response
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Activation Stress Coefficient y5

Table A.20: Activation stress coefficient y5: order of magnitude

y5 values σb/σ
y5
b σTg/σ

y5
Tg σc/σ

y5
c εcd/ε

y5
cd εTg/ε

y5
Tg εea/ε

y5
ea

0.012 1 1 1 0.99998 0.721825 1.040805
0.12 1 1 1 1.000002 0.724138 1.040395
1.2 1 1 1 1 1 1
12 1 1 1 1.000004 1.485002 -0.12408
120 1 1 1 1.000004 1.485002 -0.12408

Table A.21: Activation stress coefficient y5: around experimental data

y5 values σb/σ
y5
b σTg/σ

y5
Tg σc/σ

y5
c εcd/ε

y5
cd εTg/ε

y5
Tg εea/ε

y5
ea

0.6576 1 1 1 1.000095 1.001176 0.9972
0.6028 1 1 1 1.000083 1.000634 0.99865
0.548 1 1 1 1 1 1
0.4932 1 1 1 1.000049 0.999621 1.001185
0.4384 1 1 1 1.000073 0.99927 1.002247
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Figure A.10: Activation stress coefficient y5 effect on the response
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