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ABSTRACT 

 

Modeling the Power Distribution Network of a Virtual City and Studying the Impact of 

Fire on the Electrical Infrastructure. (December 2009) 

Arijit Bagchi, B.E., Birla Institute of Technology, MESRA, India 

Co-Chairs of Advisory Committee: Dr. Chanan Singh 

 Dr. Alexander Sprintson 

 

The smooth and reliable operation of key infrastructure components like water 

distribution systems, electric power systems, and telecommunications is essential for a 

nation‟s economic growth and overall security. Tragic events such as the Northridge 

earthquake and Hurricane Katrina have shown us how the occurrence of a disaster can 

cripple one or more such critical infrastructure components and cause widespread 

damage and destruction. Technological advancements made over the last few decades 

have resulted in these infrastructure components becoming highly complicated and inter-

dependent on each other. The development of tools which can aid in understanding this 

complex interaction amongst the infrastructure components is thus of paramount 

importance for being able to manage critical resources and carry out post-emergency 

recovery missions. 

The research work conducted as a part of this thesis aims at studying the effects 

of fire (a calamitous event) on the electrical distribution network of a city. The study has 

been carried out on a test bed comprising of a virtual city named Micropolis which was 

modeled using a Geographic Information System (GIS) based software package. This 
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report describes the designing of a separate electrical test bed using Simulink, based on 

the GIS layout of the power distribution network of Micropolis. It also proposes a 

method of quantifying the damage caused by fire to the electrical network by means of a 

parameter called the Load Loss Damage Index (LLDI). Finally, it presents an innovative 

graph theoretic approach for determining how to route power across faulted sections of 

the electrical network using a given set of Normally Open switches. The power is routed 

along a path of minimum impedance.  

The proposed methodologies are then tested by running numerous simulations on 

the Micropolis test bed, corresponding to different fire spread scenarios. The LLDI 

values generated from these simulation runs are then analyzed in order to determine the 

most damaging scenarios and to identify infrastructure components of the city which are 

most crucial in containing the damage caused by fire to the electrical network. The 

conclusions thereby drawn can give useful insights to emergency response personnel 

when they deal with real-life disasters. 
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CHAPTER I 

INTRODUCTION 

 

The U.S.A. PATRIOT Act of 2001 [1] defines the term “Critical Infrastructure” 

as “systems and assets, whether physical or virtual, so vital to the United States that the 

incapacity or destruction of such systems and assets would have a debilitating impact on 

security, national economic security, national public health or safety or any combination 

of those matters.” The Critical Infrastructure Protection (CIP) Program [2], as set forth 

through the Presidential Decision Directive (PDD - 63) of May 1998, identifies the 

following sectors as key to the smooth functioning of any modern day society: 

telecommunications, energy, water systems and emergency services, transportation and 

banking and finance. With the advent of cutting-edge technologies leading to ever 

increasing levels of automation in our daily lives, these infrastructure components have 

not only become increasingly complicated but also heavily inter-dependent on each 

other. The development of models ([3] – [6]) which can simulate this complex 

interaction amongst the infrastructure components is thus an important area of research, 

as they might be helpful for civic authorities and emergency response personnel when 

they deal with an actual disaster. 

The research work conducted as a part of this thesis proposes a methodology to 

study and quantify the damage caused by fire to the electrical distribution network of a 

___________ 
 
This thesis follows the style of IEEE Transactions on Power Delivery. 
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city. The fire is assumed to be initiated either by natural means, e.g. a lightning stroke or 

a wildfire; or deliberately, e.g. a terrorist attack. This study has been carried out on a test 

bed comprising of a virtual city named Micropolis, which was laid out using a 

Geographic Information System (GIS) based software package by researchers at the 

Department of Civil Engineering and the Department of Electrical and Computer 

Engineering here at Texas A&M University. The remainder of this report has been 

structured in the following fashion. 

 Chapter II gives an overview of the layout of the virtual city of Micropolis [7] 

along with its civil and electrical ([8] – [9]) infrastructure components. 

Chapter III briefly describes the Model of Urban Fire Spread (MUFS) [10], 

which is a software package used to simulate an urban fire along with its subsequent 

suppression.  

Chapter IV describes the modeling of a separate electrical test bed using 

Simulink, based on the GIS layout of the power distribution network of Micropolis. It 

discusses the methodology used for determining the distribution transformer ratings 

([11] – [12]), lists the standard formulae used for calculating the line parameters 

(impedance and capacitance values per unit length) ([13] – [16]) and describes the 

operation of the protection system components (relays, isolators and breakers) ([17] – 

[18]) of the distribution network of Micropolis. 

Chapter V proposes a methodology for studying the effects of fire on the 

electrical distribution network of a city. It lists the relevant assumptions, definitions and 

algorithms [8] pertaining to the development and the implementation of the proposed 
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methodology. The damage caused by fire to the electrical infrastructure is then 

quantified by means of the Load Loss Damage Index (LLDI) [8], also presented in this 

chapter. 

Chapter VI describes the various conclusions drawn from running numerous 

simulations on the Micropolis test bed corresponding to different fire spread scenarios, 

and comparing the LLDI values thereby generated. 

Chapter VII proposes a graph theoretic approach for determining how to route 

power across faulted sections of the distribution network using a given set of Normally 

Open (NO) switches. The power routing is done through a path of minimum impedance 

so as to reduce the voltage drop at the farthest end. 

Chapter VIII incorporates the power routing methodology proposed in Chapter 

VII into the simulations run as a part of Chapter VI, and presents the important 

conclusions drawn from the comparison and analysis of the generated LLDI values.  

Chapter IX summarizes this research work by presenting the general conclusions. 
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CHAPTER II 

LAYOUT OF VIRTUAL CITY MICROPOLIS 

 

The September 11, 2001 terrorist attacks on the World Trade Center prompted 

the United States government to start treating all information related to a city‟s 

infrastructure layout as classified. While on one hand this prevents the misuse of such 

information by malicious elements, it also makes it difficult for researchers to test their 

developed models with real life data. The designing of a virtual city with all the key 

infrastructure components embedded in it is thus an important part of any research work 

conducted in this area. 

The virtual city of Micropolis, as represented by the layout of Fig. 2.1, was 

designed for the purpose of it being used as a test bed for carrying out studies on the 

effects of disasters on the interdependent infrastructure components of a city. Micropolis 

was developed using GIS (ArcMap) and hydraulic modeling (EPANet) based software, 

as described in [7]. The electrical distribution network of the city was then modeled and 

its corresponding components added to the GIS layout of [7], as described in [8]. 

Micropolis, a city of around 5000 residents, covers an area of approximately 2 square 

miles. To make the design as realistic as possible, a developmental timeline of 130 years 

was taken into consideration [7]. While this timeline is manifested by the choice of pipe 

material, pipe diameter etc. for the civil infrastructure model, it does not have a 

significant impact on the electrical modeling as most electrical components are either 

upgraded or replaced after every 30-40 years [9]. 
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Fig. 2.1. Layout of the electrical infrastructure components for the city of Micropolis. 

 
 
 

It is assumed that Micropolis does not have a power generation facility of its 

own, but it obtains its power from a sub-transmission line (138 KV rating) running 

through the heart of the city, as shown in Fig. 2.1. The city has just one substation, 

where the sub-transmission level voltage of 138 KV is stepped down to the distribution 

level voltage of 13.8 KV [8]. Two three-phase feeder lines (each of 13.8 KV rating) 

emanate from the substation, and by repeated branching off into smaller three-phase sub-

branches and finally into single-phase laterals, they deliver the power from the 

substation across the entire city. Overhead conductors are represented by the solid lines 

of Fig. 2.1; while underground cables are shown using dotted lines. The overhead 

conductors are supported on wooden poles, which are represented by the yellow dots in 

Fig. 2.1. Distribution transformers rated 100 KVA or above are pad-mounted, while 
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others are mounted on the poles unless they are fed by underground cables (in which 

case they are always pad-mounted) ([8] – [9]). All pad-mounted distribution 

transformers are assumed to be enclosed in iron casings. 

For simplicity sake, the customer end supply voltages and the amount of load 

consumed by users across Micropolis have been categorized into few distinct profiles, as 

shown in Table 2.1 [8]. Finally, important information about loading of individual 

feeders and of the total system is as shown in Table 2.2 ([8] – [9]). 

 
 

TABLE 2.1 
VOLTAGE AND LOAD PROFILES FOR CONSUMERS ACROSS MICROPOLIS 

 

Voltage Profiles 

Customer Type Voltage Ratings 

Residential (Feeders 1 & 2) 120 V, 1-Φ 

City Churches and Schools 208 V, 3-Φ 

Industrial (Feeder 1) 208 V, 3-Φ or 3.3 KV, 3-Φ 

Central Business District (Feeder 2) 208 V, 3-Φ 

Load Profiles 

Customer Type Load Consumed 

Residential (Feeder 1) 5 KVA 

Residential (Feeder 2) 7 KVA 

City Churches 250 KVA 

City Schools 300 KVA 

Industrial (Feeder 1) 30/75/150/225 KVA 

Central Business District (Feeder 2) 30/45/150/250 KVA 

 

 
 

TABLE 2.2 
SYSTEM AND INDIVIDUAL FEEDER LOADING INFORMATION 

 

 Residential Commercial/Industrial Total 

Feeder 1 6840 KVA 3180 KVA 10020 KVA 

Feeder 2 1183 KVA 3922.5 KVA 5105.5 KVA 

System 8023 KVA 7102.5 KVA 15125.5 KVA 
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CHAPTER III 

MODEL OF URBAN FIRE SPREAD (MUFS) 

 

The Model of Urban Fire Spread (MUFS), as described and tested in [10], is a 

numerical tool used to simulate an urban fire starting from one or more user-defined 

points of ignition. The model calculates the extent of the fire spread area, taking into 

consideration the fire suppression efforts made by the community‟s emergency response 

personnel. To determine the efficiency of fire suppression, MUFS also takes into 

account the simultaneous (i.e., along with the spread of fire) damage or destruction of 

one or more supporting infrastructures for fire response (e.g., water distribution system, 

telecommunication networks, etc.) [10]. The following sections briefly describe the 

various inputs and outputs pertaining to a given fire spread simulation run using MUFS. 

3.1. MUFS Simulation Input Parameters 

The MUFS code requires the following user-defined inputs in order to run a 

given fire spread simulation. 

3.1.1. Supporting Infrastructure Damage Profile (SIDP) 

For the purpose of this thesis, ten different damage profiles corresponding to one 

or more supporting infrastructures for fire response have been considered, as shown in 

Table 3.1 [8]. 

3.1.2. Urban Fire Ignition Points (UFIP) 

The extent of fire spread damage will not only depend on the particular SIDP 

selected, but also on the specific point(s) of ignition of fire chosen for a given simulation 
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[10]. For the purpose of this thesis, four different fire ignition point profiles have been 

considered, as shown in Table 3.2 [8]. 

3.1.3. Wind Direction 

As the rate of spread of fire will be the highest along the direction of flow of 

wind, varying the wind direction for a given SIDP and UFIP combination will give rise 

to a quite different fire spread scenario [10]. For the purpose of this research, four 

cardinal wind directions have been considered: East, West, North and South [8]. 

 
 

TABLE 3.1 
SUPPORTING INFRASTRUCTURE DAMAGE PROFILE (SIDP) 

 

Damage 

Profile 
Remarks 

A01 All three high-service pumps of Micropolis permanently taken out of service. 

A03 One out of the three high-service pumps of Micropolis permanently taken out of service. 

B03 All three high-service pumps of Micropolis temporarily taken out of service after two hours since start of 
simulation, for a duration of two hours. 

D01 Elevated storage tank of Micropolis unavailable for the entire duration of the simulation. 

D02 Elevated storage tank of Micropolis becomes unavailable after an hour since start of simulation, and 
remains so till simulation ends. 

AD1 Combination of profiles A01 and D02. 

E02 Water main breach near the Central Business District. 

F01 Water contamination (and subsequent isolation) at south-east side of town. 

F04 Water contamination (and subsequent isolation) in highest-density residential area towards north-east side 
of town. 

UND No supporting infrastructures damaged. This profile has been deliberately included in order to compare its 
effects vis-à-vis those of the others. 

 

 
 

TABLE 3.2 
URBAN FIRE IGNITION POINTS (UFIP) 

 

Ignition 

Point 

Acronym 

Remarks 

GOV Government Buildings (Community Center, City Hall, Post Office and Rail Museum), represented by 
buildings marked „G‟ in Fig. 2.1. 

SCH City Schools, represented by buildings marked „S‟ in Fig. 2.1. 

CHU City Churches, represented by buildings marked „C‟ in Fig. 2.1. 

ECO Ecological targets (Printing Press and Timber Mill), represented by buildings marked „E‟ in Fig. 2.1. 
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By considering different combinations of such SIDPs, UFIP profiles and wind 

directions; a variety of „fire spread scenarios‟ can therefore be generated. 

3.2. MUFS Simulation Outputs 

Once all relevant user-defined inputs have been provided to MUFS, it is ready to 

run the concerned fire spread simulation. A constant wind speed of 10 mph is assumed 

for all simulation runs. A particular simulation run corresponds to 12 hours of physical 

fire spread. Starting from a user-defined point of ignition, the model calculates the 

incremental distance advanced by the fire every five minutes. It is assumed that the fire 

spreads along the direction of each of the four „fire spread vectors‟, the orientations of 

which are determined with respect to the dominant wind direction as: „downwind‟ (along 

the flow of wind), „upwind‟ (opposite to wind flow), „sidewind right‟ (90° to the right of 

„downwind‟) and „sidewind left‟ (opposite to „sidewind right‟) [10]. The „fire polygon‟ 

thus created by joining the tips of the fire spread vectors for a given time step is 

therefore a quadrilateral, and it represents the area covered by the fire until that time. 

The MUFS program thus essentially outputs the fire polygon vertex coordinates after 

every five minutes until the end of simulation (corresponding to 12 hours of physical fire 

spread). 
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CHAPTER IV 

DESIGNING OF ELECTRICAL TEST BED USING SIMULINK 

 

This chapter describes the designing of an electrical test bed, which has been 

modeled using Simulink (MATLAB) based on the GIS layout of the electrical 

distribution network of Micropolis [8]. Fig. 4.1 presents a snapshot of the layout of the 

electrical infrastructure components as modeled in the test bed. The following sections 

explain the different stages in the design phase in a step-by-step fashion. 

4.1. Determination of Distribution Transformer Constants 

Fig. 4.2A shows the equivalent circuit of a transformer, with all secondary 

parameters (impedance, current, voltage) referred to the primary. The turns ratio of the 

transformer is denoted by „a‟. Since the magnetizing current Io is only a small fraction of 

the full load primary current, I2
‟
 in Fig. 4.2A is practically equal to I1 [11]. Therefore, the 

equivalent circuit of Fig. 4.2A can be further approximated into the circuit of Fig. 4.2B. 

Transformer constants are usually calculated by performing open circuit and 

short circuit tests on a given machine. Since such test data is not easily available for all 

the different transformer configurations used across the electrical network of Micropolis, 

we use the „%Z‟ and „X/R‟ values available in standard tables [12] for our calculations. 

4.1.1. Determination of Magnetizing Branch Constants 

Assuming the base voltage „Vb‟ and the base power „Sb‟ for the circuit of Fig. 

4.2B to be equal to the nominal voltage of winding 1 „V1‟ and the nominal power rating 

of the transformer „S1‟ respectively, the base current „Ib‟ and the base impedance „Zb‟ are 
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Fig. 4.1. Snapshot of the electrical test bed representing the distribution network of Micropolis. 
 
 
 

calculated as: 

 Ib = Sb/Vb = S1/V1 = I1, and Zb = Vb
2
/Sb (4.1) 

Now, assuming that the magnetizing current Io = 0.5% of the full load primary 

(winding 1) current I1, the magnitude of the magnetizing branch impedance „ZM‟
a
 for the 

circuit of Fig. 4.2B is calculated as: 

 |ZM| = V1/Io = Vb/(0.005*I1) = Vb/(0.005*Ib) = 200*Zb (4.2) 

Finally, expressing |ZM| in per unit yields: 

 |ZM|p.u = (200*Zb)/Zb = 200 p.u. (4.3) 

Assuming that the resistance and the reactance components of the magnetizing 

branch have equal magnitudes, we get, after some calculations, Ro = Xo = 200√2 p.u. 

___________ 
 
a Expressions in bold represent phasors. 
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Fig. 4.2A. Equivalent circuit of a transformer. 

 

Fig. 4.2B. Approximate equivalent circuit of the transformer. 
 
 
 

4.1.2. Determination of Primary and Secondary Winding Leakage Impedances 

Using the „%Z‟ and the „X/R‟ values available in standard tables [12], the 

primary and secondary winding leakage impedances are calculated in the following 

fashion. Assuming the „%Z‟ value for a given transformer is equal to „z‟ p.u and its 

„X/R‟ ratio is equal to „b‟, the per unit resistance and reactance values are calculated as: 

 z/100 = √(Rp.u
2
 + Xp.u

2
) = √(Rp.u

2
 + b

2
*Rp.u

2
) = Rp.u √(1 + b

2
) (4.4) 

 Rp.u = z/(100* 1 + b2), and Xp.u  = b*Rp.u (4.5) 

The per unit resistance and reactance values calculated using equations (4.4) and 

(4.5) represent the total resistance (R1 + R2
‟
) and reactance (X1 + X2

‟
) terms respectively, 
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as shown in Fig. 4.2B. It is however generally assumed that the primary and the 

secondary (as referred to the primary) winding leakage impedances have equal 

contributions to the total leakage impedance associated with the circuit of Fig. 4.2B [11]. 

The primary and secondary (as referred to the primary) winding leakage impedances are 

therefore calculated by dividing the results obtained from equation (4.5) by two. Since 

the resistance and reactance values calculated are already expressed in per unit, the 

secondary winding leakage impedance (as referred to the primary) still remains the same 

on being referred back to the secondary side. 

4.2. Determination of Conductor Sizing Based on Ampacity 

Since the load consumed by users across Micropolis have been categorized into 

few distinct profiles as shown in Table 2.1, the total load demand associated with a given 

line „i‟ in the system can be calculated by adding up the individual loads associated with 

each downstream customer. Denoting the load demand associated with the line „i‟ as 

„KVAi‟ and assuming 5% losses associated with the flow of power, the total power 

carried by the line is then given as (KVAi/0.95). The r.m.s value of the line current is 

then calculated in the following fashion. 

4.2.1. Single Phase Calculations 

 S = V.I
*
, V = Vrms.e

j.θv
, and I = Irms.e

j.θi
 (4.6) 

 |S| = |V.I
*
| = |V|.|I

*
| = Vrms.Irms (4.7) 

In equations (4.6) and (4.7), the terms „S‟, „V‟ and „I‟ represent the phasors of 

the complex single phase power, the line-to-neutral voltage and the line current 

respectively. Since the distribution feeders of Micropolis are rated at 13.8 KV, the 
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corresponding single phase line-to-neutral voltage (r.m.s value) can be found to be equal 

to 13.8/√3, or, 8 KV (assuming balanced three phase configuration of the system). The 

r.m.s value of the line current can thus be calculated by substituting the terms |S| and 

Vrms in equation (4.7) by (KVAi/0.95) and 8 KV respectively. 

4.2.2. Three Phase Calculations 

 S = Van.Ian
*
 + Vbn.Ibn

*
 + Vcn.Icn

*
 (4.8) 

 Van = Vrms.e
j.0

, Vbn = Vrms.e
j.(2∏/3)

, and Vcn = Vrms.e
-j.(2∏/3)

 (4.9) 

 Ian = Irms.e
-j.Φ

, Ibn = Irms.e
j.(2∏/3 - Φ)

, and Icn = Irms.e
-j.(2∏/3 + Φ)

 (4.10) 

In equations (4.8) – (4.10), the term „S‟ denotes the phasor of the total three 

phase complex power; „Van‟, „Vbn‟ and „Vcn‟ denote the phasors of the three line-to-

neutral voltages; and „Ian‟, „Ibn‟ and „Icn‟ denote the phasors of the three line currents. 

„Vrms‟ and „Irms‟ represent the r.m.s values of the line-to-neutral voltage and the line 

current respectively, and „Φ‟ signifies the phase difference between the voltage and the 

current phasors. Using equations (4.8) – (4.10) and assuming balanced three phase 

configuration of the system, the total three phase complex power is then given as: 

 S = 3*Vrms*Irms*e
j.Φ

 = √3*Vrms,L-L*Irms*e
j.Φ

 (4.11) 

  |S| = √3*Vrms,L-L*Irms (4.12) 

In equation (4.11), the term „Vrms,L-L‟ represents the r.m.s value of the three phase 

line-to-line voltage. Since the distribution feeders of Micropolis are rated at 13.8 KV, the 

r.m.s value of the line current can thus be calculated by substituting the terms |S| and 

Vrms,L-L in equation (4.12) by (KVAi/0.95) and 13.8 KV respectively.  
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Once the r.m.s values of the line currents are calculated using equations (4.7) or 

(4.12), they are compared with the different conductor ampacity ratings available in 

manufacturer specification sheets ([19] – [20]). While All Aluminum Conductor (AAC) 

is used for the construction of the overhead lines, the underground lines are laid using 

Aluminum Conductor TRXLPE Insulation Concentric Neutral cables. An appropriate 

ampacity rating greater than the magnitude of the line current calculated is chosen, and 

the corresponding conductor size is then assigned to the concerned line. Table 4.1 shows 

the various conductor sizings used in the modeling of the electrical test bed for 

Micropolis ([19] – [20]). 

 
 

TABLE 4.1 
MICROPOLIS ELECTRICAL TEST BED CONDUCTOR SIZINGS 

 

Overhead Lines 

Conductor Size Ampacity (Amps) 

6 AWGb 110 A 

2 AWG 195 A 

3/0 AWG 350 A 

4/0 AWG 410 A 

266.8 kcmilc 475 A 

397.5 kcmil 615 A 

Underground Cables 

Conductor Size Ampacity (Amps) 

2 AWG 130 A 
 

b
AWG = American Wire Gage, 

c
1

 
kcmil = 1000 circular mills = 0.5067 mm

2
. 

 
 
 

4.3. Determination of Line Parameters 

Once the conductor sizings for the different overhead lines and underground 

cables of the electrical distribution network of Micropolis are decided, the next step is to 

calculate the impedance and capacitance values associated with each such line or cable. 

The following subsections explain the different formulae used for this purpose. 
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4.3.1. Underground Cables, Three Phase 

The three phase underground cables present in the electrical distribution network 

of Micropolis consist of seven strands of 2 AWG thick Al conductors, a 175 mils thick 

TRXLPE insulation layer,  a “one-third” concentric neutral comprising of six strands of 

14 AWG thick Cu wires and a LLDPE encapsulating jacket. The cable burial 

configuration is as shown in Fig. 4.3. The positive (Z1) and zero (Z0) sequence 

impedances for three phase concentric neutral underground cables are calculated using 

the following formulae [13]. 

 Z1 = Zaa – Zab – ((Zax – Zab)
2
/(Zxx – Zab)) (4.13) 

 Z0 = Zaa + (2*Zab) – ((Zax + 2*Zab)
2
/(Zxx + 2*Zab)) (4.14) 

 Zaa = RΦ + Re + j*k1*log10(De/GMRΦ) (4.15) 

 Zab = Re + j*k1*log10(De/GMDΦ) (4.16) 

 Zxx = RN + Re + j*k1*log10(De/GMRN) (4.17) 

 Zax = Re + j*k1*log10(De/DN2) (4.18) 

In equations (4.13) – (4.18), „Zaa‟ represents the self impedance of each phase 

conductor, „Zab‟ represents the mutual impedance between two conductors, „Zax‟ 

represents the mutual impedance between a phase conductor and its concentric neutral, 

and „Zxx‟ denotes the self impedance of each concentric neutral. „RΦ‟ is the resistance of 

each phase conductor expressed in ohms/1000 feet (data available in standard tables, 

[13]), „RN‟ is the resistance of the neutral (resistance of a „one-third‟ neutral is thrice that 

of the phase conductor [13]) expressed in ohms/1000 feet, „k1‟ is equal to 0.0529 

ohms/1000 feet, „GMRΦ‟ is the geometric mean radius of the phase conductor expressed 
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Fig. 4.3. Underground cable burial configuration. 
 
 

 

in inches (data available in standard tables, [13]), „GMDΦ‟ is equal to  dAB ∗ dBC ∗ dCA
3

 

(inches, see Fig. 4.3.), „Re‟ is the resistance of the earth return path and is equal to 

0.01807 ohms/1000 feet, „De‟ is the equivalent depth of the earth return current and is 

equal to 25920 ρ/60 inches, „ρ‟ is the earth resistivity and is equal to 100 Ω-m, 

„GMRN‟ is the geometric mean radius of the concentric neutral and is equal to 

 0.7788 ∗ n ∗ DN2
(n−1)

∗ rn

n

 inches, „n‟ is the number of neutral wire strands, „rn‟ is the 

radius of each neutral strand in inches, and „DN2‟ is the distance from the center of the 

phase conductor to the center of the neutral strand (inches, see Fig. 4.3.). The sequence 

impedance components are thus calculated by substituting the relevant terms of 

equations (4.13) – (4.18) by their corresponding values as obtained from standard tables 

([13], [20]) and from Fig. 4.3. Thus, we get: 

 Z1 = 1.1072 + j*0.33794 Ω/km, and Z0 = 2.08044 + j*1.48226 Ω/km (4.19) 
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The capacitance from phase to ground for a concentric neutral underground cable 

is given by [15]: 

 CΦ-g = (2*∏*εo*εr)/(loge(DN2/rc) – ((1/n)*loge(n*rn/DN2))) (4.20) 

In equation (4.20), the terms „DN2‟, „rn‟ and „n‟ are as described under equations 

(4.13) – (4.18), „εo‟ is the permittivity of free space (8.854 nF/km), „εr‟ is the relative 

permittivity for the TRXLPE insulation layer (εr = 2.3), and „rc‟ is the radius of the phase 

conductor (inches). Substituting all the relevant terms in equation (4.20) by their 

corresponding values, the phase-to-ground capacitance for the concentric neutral cable 

under consideration is found to be equal to 97.9 nF/km. Assuming that there is no mutual 

capacitance between the phases due to the presence of the insulation layers [15], the 

phase admittance matrix for the cable configuration of Fig. 4.3. is diagonal with all the 

leading diagonal terms being equal to j*ω*97.9 nΩ-1
/km. Performing a sequence 

admittance transformation [15] on the phase admittance matrix yields a diagonal 

sequence admittance matrix which is exactly the same as the phase admittance matrix. 

The sequence capacitance terms are therefore found to be equal to the phase-to-ground 

value calculated using equation (4.20). Thus, C1 = C0 = 97.9 nF/km. 

4.3.2. Underground Cables, Single Phase 

The single phase underground cables used in the electrical distribution network 

of Micropolis consist of seven strands of 2 AWG thick Al conductors, a 175 mils thick 

TRXLPE insulation layer,  a “full” concentric neutral comprising of ten strands of 14 

AWG thick Cu wires and a LLDPE encapsulating jacket. The impedance of single phase 

concentric neutral underground cables can be calculated using equations (4.13) – (4.18) 
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after substituting the term „Zab‟ by 0. The phase-to-ground capacitance can then be 

calculated using equation (4.20). The impedance and capacitance values thus calculated 

are given as: 

 Z = 1.5075 + j*0.6055 Ω/km, C = 106.9 nF/km (4.21) 

4.3.3. Overhead Lines, Three Phase, Single Circuit 

It is assumed that all three phase, single circuit overhead lines present in the 

electrical distribution network of Micropolis have the same conductor configuration as 

that shown in Fig. 4.4. The primitive impedance matrix „Zprim‟ for this configuration is 

calculated as [16]: 

 

Fig. 4.4. Three phase, single circuit overhead line conductor configuration. 
 
 
 

 

Zprim =  

zaa zab zac zan

zba zbb zbc zbn

zca zcb zcc zcn

zna znb znc znn

  (4.22) 

 



20 
 

 zii = ri + 0.0953 + j*0.12134*loge((1/GMRi) + 7.934) Ω/mi (4.23) 

 zij = 0.0953 + j*0.12134*loge((1/GMD) + 7.934) Ω/mi (4.24) 

While equation (4.23) is used to calculate the diagonal elements of matrix Zprim, 

equation (4.24) is used to compute the off-diagonal terms. In equation (4.23), „ri‟ is the 

conductor resistance in ohms/mile and „GMRi‟ is the conductor geometric mean radius 

in feet (data available in standard tables, [13]). Assuming that all conductors are ideally 

transposed, the term „GMD‟ in equation (4.24) is equal to  dAB ∗ dBC ∗ dCA
3

 for all off-

diagonal terms of matrix Zprim involving any two phase conductors, and is equal 

to  dAn ∗ dBn ∗ dCn
3

 for all off-diagonal terms involving a phase conductor and the 

neutral (see Fig. 4.4). The [4X4] primitive impedance matrix is then reduced to a [3X3] 

phase impedance matrix „Zabc‟ using Kron reduction [16], as shown below: 

 

Zabc =  
Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

  (4.25) 

 Zij = zij – (zin*znj)/znn (4.26) 

The elements of matrix Zabc can be computed using equation (4.26), where the 

terms to the right hand side of the equation refer to those of the matrix Zprim. Once Zabc 

has been calculated, a sequence impedance transformation is then performed on it in 

order to obtain the [3X3] sequence impedance matrix „Z012‟ as shown below [16]: 

 Z012 = [A
-1

]*Zabc*A (4.27) 

 
   A =  

1 1 1
1 a2 a
1 a a2

  (4.28) 
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In equation (4.28), the operator „a‟ represents the complex quantity e
j*(2*∏/3)

. The 

calculated sequence impedance matrix has the following diagonal structure, where „Z0‟ 

represents the zero sequence impedance of the concerned overhead line and „Z1‟ the 

positive sequence impedance. 

 

Z012 =  
Z0 0 0
0 Z1 0
0 0 Z2

  (4.29) 

For calculating the sequence capacitance values for three phase overhead lines, 

the first step is to form the [4X4] potential coefficient matrix „Ppot‟ as shown below [14]: 

 

        Ppot =  

paa pab pac pan

pba pbb pbc pbn

pca pcb pcc pcn

pna pnb pnc pnn

  (4.30) 

 pii = (1/(2*∏*εo))*loge(2*hi/ri) km/nF (4.31) 

 pij = (1/(2*∏*εo))*loge(Dij/dij) km/nF (4.32) 

While equation (4.31) is used to calculate the diagonal elements of matrix Ppot, 

equation (4.32) is used to compute the off-diagonal terms. In equation (4.31), „hi‟ 

represents the average height above ground (feet) of conductor „i‟ (see Fig. 4.4); while 

„ri‟ is the conductor radius in feet (data available in standard tables, [13]). In equation 

(4.32), „Dij‟ is the distance in feet between the conductor „i‟ and the image below earth 

surface of the conductor „j‟, and „dij‟ is the distance in feet between the conductors „i‟ 

and „j‟ (see Fig. 4.4). „εo‟ is the permittivity of free space and is equal to 8.854 nF/km. 

The [4X4] potential coefficient matrix is then reduced to a [3X3] matrix „Pred‟ using the 

Kron reduction formula as given in equation (4.26). The capacitance matrix „Cred‟ is then 
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obtained by inverting matrix Pred. Thus, Cred = [Pred]
-1

 (nF/km). Finally, the sequence 

capacitance values are computed by performing a sequence admittance transformation 

on the matrix Cred, using the same procedure as was outlined through equations (4.27) – 

(4.28). Thus,  

 C012 = [A
-1

]*Cred*A (4.33) 

Table 4.2 shows the calculated sequence impedance and capacitance values 

associated with the different three phase overhead lines present in the electrical 

distribution network of Micropolis. 

 
 

TABLE 4.2 
SEQUENCE IMPEDANCE AND CAPACITANCE VALUES FOR THREE PHASE SINGLE CIRCUIT 

OVERHEAD LINES 

 

Conductor Size 
Z1 

(Ω/km) 

Z0 

(Ω/km) 

C1 

(nF/km) 

C0 

(nF/km) 

6 AWG 2.6411 + j*0.5102 3.0341 + j*1.803 8.6643 4.6495 

2 AWG 1.0433 + j*0.4762 1.5173 + j*1.4968 9.3391 4.9021 

3/0 AWG 0.4134 + j*0.4411 0.7597 + j*1.1775 10.131 5.1929 

4/0 AWG 0.3281 + j*0.432 0.6285 + j*1.1261 10.354 5.2741 

266.8 kcmil 0.2602 + j*4235 0.5171 + j*1.0858 10.5836 5.3569 

397.5 kcmil 0.1752 + j*0.4044 0.3702 + j*1.0259 11.0303 5.5173 

 
 

 

4.3.4. Overhead Lines, Single Phase 

It is assumed that all single phase overhead lines of the electrical distribution 

network of Micropolis have the same conductor configuration as that shown in Fig. 4.5. 

The value of the conductor resistance (Ω/km) is obtained from standard tables as given 

in [19]. The inductance per conductor and the capacitance across the conductors of Fig. 

4.5 are calculated as ([21] – [22]): 

 LΦ = 0.2*loge(GMD/GMR) mH/km, and CΦ-n = 1/(36*loge(D/r)) μF/km (4.34) 
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Fig. 4.5. Single phase overhead line conductor configuration. 
 
 
 

In equation (4.34), „GMR‟ is the conductor‟s geometric mean radius expressed in 

feet, „r‟ is the physical radius of the conductor expressed in feet (data available in 

standard tables, [13]), and „D‟ is the distance of separation (feet) between the 

conductors. Assuming that both the phase and the neutral conductors have the same 

cross-section area and number of strands, the term „GMD‟ in equation (4.34) is 

approximately equal to the distance of separation between the two conductors [13]. 

Table 4.3 shows the calculated resistance, inductance and capacitance values associated 

with the different single phase overhead lines present in the electrical distribution 

network of Micropolis. 

 
 

TABLE 4.3 
RESISTANCE, INDUCTANCE AND CAPACITANCE VALUES FOR SINGLE PHASE OVERHEAD LINES 

 

Conductor Size 
R 

(Ω/km) 

L 

(mH/km) 

C 

(nF/km) 

6 AWG 2.6411 1.2876 4.5362 

2 AWG 1.0433 1.1972 4.9062 
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4.3.5. Overhead Lines, Three Phase, Double Circuit 
 

The distribution feeders of Micropolis run in a double circuit configuration for 

some distance after emanating from the substation, before branching off into their 

respective service areas. The concerned configuration is as shown in Fig. 4.6. The 

calculation of the sequence impedance and capacitance values for this configuration 

follows the same steps as were explained in Section 4.3.3 [15].  

 

Fig. 4.6. Three phase, double circuit overhead line conductor configuration. 
 
 

 

As can be observed from Fig. 4.6, the primitive impedance matrix „Zprim‟ for this 

situation would be of the order [7X7]. The primitive impedance matrix is then reduced to 

a [6X6] phase impedance matrix „Zabc,12‟ using the Kron reduction formula as given in 

equation (4.26). The matrix Zabc,12 has the following structure: 
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Zabc,12 = 

 
 
 
 
 
 
 
 
Z1a,1a Z1a,1b Z1a,1c | Z1a,2a Z1a,2b Z1a,2c

Z1b,1a Z1b,1b Z1b,1c | Z1b ,2a Z1b,2b Z1b,2c

Z1c,1a Z1c,1b Z1c,1c | Z1c,2a Z1c,2b Z1c,2c

− − − + − − −
Z2a,1a Z2a,1b Z2a,1c | Z2a,2a Z2a,2b Z2a,2c

Z2b,1a Z2b,1b Z2b,1c | Z2b,2a Z2b ,2b Z2b ,2c

Z2c,1a Z2c,1b Z2c,1c | Z2c,2a Z2c,2b Z2c,2c  
 
 
 
 
 
 
 

 (4.35) 

The matrix Zabc,12 is then partitioned as shown in equation (4.35) in order to yield 

four [3X3] matrices. While the phase impedance matrix corresponding to line 1in Fig. 

4.6 is obtained by the partitioning of the first three rows and columns, the phase 

impedance matrix for line 2 is obtained by the partitioning of the last three rows and 

columns. The other two partitioned matrices represent the mutual coupling between the 

two lines. The sequence impedance components corresponding to a given line is then 

obtained by performing a sequence impedance transformation, as given in equations 

(4.27) – (4.28), on the partitioned phase impedance matrix corresponding to that line. 

Similarly, for calculating the sequence capacitance values for the configuration 

of Fig. 4.6, we first form the [7X7] potential coefficient matrix „Ppot‟ as outlined in 

Section 4.3.3. The matrix Ppot is then reduced to a [6X6] matrix „Pred,12‟ using the Kron 

reduction formula as given in equation (4.26). The capacitance matrix „Cred,12‟ is 

thereafter obtained by inverting the matrix Pred,12. Thus, Cred,12 = [Pred,12]
-1

 (nF/km). The 

[6X6] capacitance matrix Cred,12 is then partitioned as explained above in order to yield 

four [3X3] matrices. The sequence capacitance values associated with each line of Fig. 

4.6 are then obtained by performing a sequence admittance transformation on the [3X3] 

capacitance matrix corresponding to the concerned line. 
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The different sequence impedance and capacitance values thus calculated for the 

three phase, double circuit overhead lines present in the electrical distribution network of 

Micropolis are as shown in Table 4.4. 

 
 

TABLE 4.4 
SEQUENCE IMPEDANCE AND CAPACITANCE VALUES FOR THREE PHASE DOUBLE CIRCUIT 

OVERHEAD LINES 

 

 Conductor Size 
Z1 

(Ω/km) 

Z0 

(Ω/km) 

C1 

(nF/km) 

C0 

(nF/km) 

Line 1 397.5 kcmil 0.1752 + j*0.3948 0.3532 + j*1.1693 11.7681 7.5193 

Line 2 266.8 kcmil 0.2602 + j*4138 0.4475 + j*1.1187 11.2772 7.8502 

 
 
 

4.3.6. Overhead Lines, Two Phase 
 

It is assumed that all two phase overhead lines of the electrical distribution 

network of Micropolis have the same conductor configuration as that shown in Fig. 4.7. 

As can be observed from the figure, the primitive impedance matrix for this situation 

would be of the order [3X3] as shown below [15]: 

 
Zprim =  

zaa zac zan

zca zcc zcn

zna znc znn

  (4.36) 

The primitive impedance matrix of equation (4.36) is then reduced to a [2X2] 

phase impedance matrix „Zac‟ using the Kron reduction formula as given in equation 

(4.26). The [3X3] „phase frame‟ matrix „Zabc‟ is then constructed from Zac by filling in 

„0‟s for the missing phase as shown [15]: 

 
Zabc =  

Zaa 0 Zac

0 0 0
Zca 0 Zcc

  (4.37) 
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Fig. 4.7. Two phase overhead line conductor configuration. 

 
 
 

The sequence impedance components are then calculated by performing a 

sequence impedance transformation on Zabc, as explained using equations (4.27) – 

(4.28).  

The sequence capacitance terms are calculated by first forming the [3X3] 

potential coefficient matrix „Ppot‟ corresponding to the configuration of Fig. 4.7. The 

matrix Ppot is then reduced to a [2X2] matrix „Pred,ac‟ using the Kron reduction formula as 

given in equation (4.26). The capacitance matrix „Cred,ac‟ is thereafter obtained by 

inverting the matrix Pred,ac. Thus, Cred,ac = [Pred,ac]
-1

 (nF/km). The [3X3] „phase frame‟ 

matrix „Cred,abc‟ is then constructed from Cred,ac by filling in „0‟s for the missing phase as 

shown: 

 
Cred,abc =  

Caa 0 Cac

0 0 0
Cca 0 Ccc

  (4.38) 

The sequence capacitance terms are then obtained by performing a sequence 

admittance transformation on Cred,abc, as explained using equation (4.33). The sequence 
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impedance and capacitance values thus calculated for the configuration of Fig. 4.7 are 

given as: 

 Z1 = 1.8021 + j*0.4941 Ω/km, and Z0 = 1.9263 + j*0.9011 Ω/km (4.39) 

 C1 = 5.0289 nF/km, and C0 = 3.7739 nF/km (4.40) 

4.4. Formulation of Protection Scheme for Electrical Test Bed 

The layout of the electrical distribution network of Micropolis is as shown in Fig. 

4.8. Defining a „Line‟ as a switchable section of the network formed by one or more 

isolating elements at its ends, one may observe from Fig. 4.8 how a faulted Line can be 

isolated by opening its corresponding terminating isolators. Since Micropolis is a small 

city covering an area of approximately 2 square miles, it is assumed that all isolators 

present in the distribution system are manually operated. The utility personnel thus 

typically rely on customer calls in order to locate a particular fault, before isolating it 

physically and carry out repair and restoration services. 

The substation breakers of the distribution network, however, are assumed to be 

operated through over-current relays. In the event that a short circuit fault occurs at some 

point in the distribution system, the relay trips the breaker open. After a sufficient delay 

during which the maintenance personnel are assumed to have located and isolated the 

concerned fault, the breaker is closed in order to restore service to the remaining parts of 

the network. This logic is implemented in the test bed using the relay module of Fig. 4.9 

([17] – [18]). As can be observed from the figure, the instantaneous values of the phase 

currents are first converted to their corresponding r.m.s values before being compared to 
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Fig. 4.8. Layout of the power distribution network for the city of Micropolis. 

 
 

 
Fig. 4.9. Snapshot of the three phase over-current relay module. 
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prefixed bounds in the „comparison module‟. While the upper bound corresponds to 1.5 

times the r.m.s value of the nominal phase current under normal operating conditions of 

the system, the lower bound is equal to a current level of 0.5 A (any small positive value 

will do). Thus, under normal operating conditions, the r.m.s values of the phase currents 

satisfy these boundary conditions and hence the output of the corresponding „AND‟ 

blocks are all „1‟. The „OR‟ blocks at the end of the „delay module‟ thus all output „1‟ 

such that the breaker trip signal is „1‟ as well (corresponding to breaker being closed). 

Assuming that a phase A-to-ground short circuit fault now occurs at some point 

in the distribution system, the r.m.s value of the phase A fault current exceeds the upper 

bound, and hence the output of the corresponding „AND‟ block becomes „0‟. The 

„On/Off Delay‟ block operates in the following fashion. It normally outputs a „0‟ signal, 

but when its input changes from „0‟ to „1‟; its output becomes „1‟ after a specified time 

delay as long as its input is still „1‟. Thus, under normal operating conditions of the 

system, when the „AND‟ blocks at the end of the comparison module all output „1‟, the 

inputs to the on/off delay blocks through the „NOT‟ gates are all „0‟. When the above 

mentioned fault occurs, the „AND‟ block corresponding to phase A outputs a „0‟, so that 

the corresponding delay block sees a „1‟ at its input. At this time, since the outputs of the 

„AND‟ and the delay block for phase A are both „0‟, the corresponding „OR‟ block 

outputs a „0‟ as well, so that the relay trips the breaker open.  

Once the breaker opens, the system current falls to 0, and hence the r.m.s. values 

of all the phase currents now drop below their corresponding lower bounds. The outputs 

of the „AND‟ blocks at the end of the comparison module are therefore all held at „0‟. As 
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a result, the on/off delay blocks still see a „1‟ at their inputs after the specified delay 

period (which corresponds to the time the utility personnel take in manually clearing the 

concerned fault) is over, and hence they output a „1‟ at this time. This is turn causes the 

outputs of the corresponding „OR‟ blocks to become „1‟, and hence the breaker trip 

signal is „1‟ as well. The breaker is thus closed again in order to restore service to the 

healthy parts of the electrical network. 

4.5. Assigning of System Loads 

For simplicity sake, the various users across Micropolis have been categorized 

into different profiles (e.g. residential, commercial, industrial etc.), and it is assumed that 

the customers belonging to each such profile have a fixed load demand (KVA) all 

through the year. The different load profiles are as shown in Table 2.1. It is further 

assumed that the local electric utility maintains a constant power factor of 0.95 for all 

load points across the city. Thus, all buildings connected to a given distribution 

transformer are modeled in the test bed as a single load point with a fixed KW and 

KVAR demand associated with it. 

4.6. Source of Power Supply 

Though it was mentioned in Chapter II that Micropolis does not have a power 

generation facility of its own owing to its small size, a three phase voltage source rated 

at 138 KV (the rating of the sub-transmission line) has been added to the test bed as a 

source of power for the entire distribution network. 
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4.7. Conclusion 

Though it was originally planned to use this test bed for running the fire spread 

simulations on the electrical distribution network of Micropolis, the excessive time 

required to complete any given simulation run was a major deterrent to this approach. 

The fire spread studies were therefore carried out using an alternative methodology as 

proposed in the subsequent chapters. This test bed, however, might still prove to be 

helpful for researchers who wish to carry out any form of electrical analysis (e.g. short 

circuit analysis, power flow studies, etc.) of the distribution system, as a part of studying 

the effects of disasters on the interconnected infrastructure components of a city. 
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CHAPTER V 

METHODOLOGY USED FOR ELECTRICAL SIMULATION RUNS 

 

As mentioned in Chapter IV, since the original plan of using the Simulink based 

test bed for carrying out the fire spread studies on the electrical distribution network of 

Micropolis was abandoned, an alternative approach was devised as described in this and 

the subsequent chapters. Though the proposed methodologies and algorithms have been 

explained using the example of Micropolis, they are quite general in scope and can be 

easily implemented on any given distribution network. 

This chapter describes how we can use the fire polygon vertex coordinates output 

by the MUFS code for studying and quantifying the damage caused by a given fire 

spread scenario to the electrical network. The following sections discuss all relevant 

assumptions, definitions and algorithms pertaining to the formulation and the 

implementation of the proposed methodology [8]. 

5.1. Assumptions 

1) We are dealing with a radial distribution system. 

2) Though there are three Normally Open switches located across the electrical 

distribution network of Micropolis (as shown in Fig. 4.8), they are assumed to be non-

functional for the time being. 

3) The Micropolis electrical distribution system is assumed to be connected to an 

infinite bus, so that events like a sudden loss of system load does not cause any system 

stability issues. 
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4) Since fire spreads along the ground, its effect on the electrical system can be 

accounted for by considering the status of only two types of electrical components: poles 

and pad-mounted transformers. 

5) Any pole or pad-mounted transformer which is found to be partially or fully 

enclosed inside the fire polygon area for a given time step is considered to be faulted. 

6) Repair and restoration of electrical components is not being considered during 

fire spread. 

7) Since the fire spread duration of 12 hours is only a small fraction of the Mean 

Up Time of an electrical component, it is assumed that all faults occurring during the 

course of a given simulation are a result of the fire only. 

5.2. Definitions of Important Terms 

1) Line: A „Line‟ is a switchable section of the electrical network formed by one 

or more isolating element(s) at its ends. The location of the isolators and the 

nomenclature of the Lines (as shown in Fig. 4.8) are purely a matter of system design. 

For any given Line, its „upstream‟ end is the one through which power flows into it; the 

other end being the „downstream‟ end. 

2) Isolator Bank: An „Isolator Bank‟ (or just a „Bank‟) is a point in the 

distribution network where a three-phase section of the feeder branches off into two or 

more three-phase sub-branches. The intersection point of Lines 1, 9 and 7 in Fig. 4.8 is 

an example of a Bank. 

3) Upstream vs. Downstream: A component „X‟ is said to be „upstream‟ with 

respect to a component „Y‟ if X is electrically closer to the substation than Y. In other 
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words, if we trace a path joining the substation to X and Y such that we move along the 

flow of power, we shall come across X first and then Y. 

5.3. General Treatment of Faulted Components 

Under assumptions 4 and 5 (see Section 5.1), if a pole or a pad-mounted 

transformer is found to be enclosed inside the fire polygon area for a given simulation 

time step, the concerned component is then isolated from the rest of the network using 

the following methodology [8]. 

5.3.1. Faulted Pole 

If a pole belonging to any Line is found to be faulted, the concerned Line is 

isolated irrespective of the type of the fault (short or open circuit). This is done taking 

into consideration the fact that even though the fault might just be a local open circuit, 

the fire will eventually cause the wooden poles to crumble down along with the 

overhead conductors mounted on them. The isolation of the Line thus ensures that there 

are no live wire ends present on the ground during the time when people are being 

evacuated from the fire spread area. If, however, the affected pole represents a Bank, it is 

isolated by opening the „upstream‟ end isolator of the Line which is immediately 

upstream with respect to the Bank. For example, assuming that the Bank represented by 

the intersection point of Lines 7, 8 and 10 in Fig. 4.8 gets faulted, it is isolated by 

opening the isolator of Line 7 represented by the filled black square with a white cross 

marked across it. 
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5.3.2. Faulted Pad-Mounted Transformer 

On the lines of the approach proposed in subsection 5.3.1, if a pad-mounted 

transformer belonging to any Line is found to be faulted, the concerned Line is isolated 

as well. Since pad-mounted transformers are enclosed in iron casings, there is an 

enormous build-up of gas and soot particles inside the casing once the fire engulfs it. 

Leaving a high voltage live wire end in the casing can cause the gas to get ionized and 

may even result in some dangerous blasts. 

5.4. Load Loss Damage Index (LLDI) 

Distribution system reliability indices like SAIDI, SAIFI, and CAIDI [23] are 

generally used by electric utilities for planning and operational purposes. A closer look 

at the indices, however, reveals that these are all average values calculated using data 

collected from the observation of the system over a pre-defined period of time (usually 

annually). As mentioned earlier, since the focus of this research is only on the window of 

time during which the fire spreads, these indices are not really suitable for this study. 

An alternative, the Load Loss Damage Index (LLDI), is therefore being proposed 

and defined as [8]: 

 LLDI =  KVAi ∗ (T − t ∗ i)
T/t
i=1  KVAh (5.1) 

In equation (5.1), „KVAi‟ represents the total load (in KVA) lost in simulation 

time step „i‟ due to the isolation of faulted Lines and/or Banks. The terms „t‟ and „T‟ 

respectively represent the total duration (in hours) of the physical fire spread which one 

time step and one complete run of the MUFS simulation corresponds to. As mentioned 

in Chapter III, the relevant values of „t‟ and „T‟ are equal to 1/12 hours (5 minutes) and 
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12 hours respectively. The expression within the parenthesis of equation (5.1) therefore 

represents the time (in hours) left till the end of simulation, with respect to the current 

time step. The LLDI value (in KVAh) thus calculated can therefore be used to measure 

the extent of the damage caused to the electrical network for a given fire spread scenario. 

5.5. Electrical Simulation Algorithm 

Keeping in mind the assumptions and the general methods of treatment of faulted 

components as proposed in the earlier sections, the electrical simulations are run using 

the following algorithm [8]. 

1) Read the fire polygon coordinates for a given time step from the MUFS output 

files. 

2) Determine which all poles and/or transformers are fully or partially enclosed 

inside the fire spread area for the given time step. Note that the fire polygon and the 

individual pole and transformer coordinates all conform to the GIS layout of Micropolis 

in ArcMap (see Chapter II). 

3) Determine all Lines and/or Banks that are affected by the faulted poles and/or 

transformers as found in step (2). 

4) Scan all Line/Bank numbers as found in step (3) to determine which of those 

are downstream with respect to the others. Eliminate all such downstream Line/Bank 

numbers from the list of (3) as they will anyways be getting isolated by the isolation of 

their concerned upstream components. 

5) Isolate each of the upstream Lines/Banks as identified in step (4). For each 

such isolated upstream component, scan all Lines/Banks which are located downstream 
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with respect to it. If any of such downstream Lines/Banks is found to be live till now, it 

will also get „effectively isolated‟ as a result of the isolation of the concerned upstream 

component. 

6) For each Line/Bank getting physically or effectively isolated in the current 

time step, calculate the total load (KVA) lost as a result of such outages. 

7) Are all upstream Lines/Banks as found in step (4) isolated? If yes, go to (8). If 

not, go to (5). 

8) Calculate the current time step‟s contribution to the LLDI using equation 

(5.1). 

9) Check if the MUFS simulation has been completed (entire 12 hours of 

simulation data has been generated) OR if both the substation breakers of Micropolis 

have been opened (in which case, the city has been blacked out). If either of the 

conditions is satisfied, end simulation and print results. Else, increase iteration count and 

go to step (1). 

The above mentioned algorithm is then used to implement the methodology 

proposed in this chapter for studying and quantifying the damage caused by fire to the 

electrical network. The following chapter discusses all relevant results obtained from 

running numerous simulations on the Micropolis distribution system, corresponding to 

different fire spread scenarios. 
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CHAPTER VI 

ANALYSIS OF ELECTRICAL SIMULATION RUNS 

 

This chapter presents the results [8] obtained from running numerous simulations 

on the electrical distribution network of Micropolis, corresponding to different fire 

spread scenarios. A close look at Tables 3.1 and 3.2 indicates that with the different 

numbers of supporting infrastructure damage profiles, urban fire ignition point profiles 

and wind directions considered for the purpose of this research, a total of 10*4*4 = 160 

different fire spread scenarios can be generated. The various conclusions drawn from 

these simulation runs have been arranged in the following two categories. 

6.1. Most Damaging SIDP 

Ten different simulations corresponding to the various supporting infrastructure 

damage profiles were run for a given UFIP and wind direction combination. The LLDI 

values calculated for all such simulation runs were then compared to determine the worst 

infrastructure damage profile. The results of all relevant simulation runs are as shown in 

Figs. 6.1(a) – (d). The following conclusions can be drawn from these figures [8]. 

1) Damage Profile AD1, which simulates the simultaneous destruction of all 

three high-service pumps and the elevated storage tank, is by far the most damaging 

profile across all different wind direction and UFIP combinations. This is natural as the 

water pressure at the fire hydrants is seriously affected due to the unavailability of both 

the storage tank and the high-service pumps. The fire thus spreads rapidly and this leads  
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(a)  

(b) 

(c) 
 

Fig. 6.1. Results of electrical simulations run using MUFS data. 
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(d) 
 

Fig. 6.1. continued. 
 
 
 

to the outage of more Lines/Banks in the earlier stages of the simulation, thereby 

yielding a high LLDI value. 

2) The next most damaging profiles can be mostly found to be those of A01 and 

D01. While A01 is a subset of AD1, the interesting thing to note about D01 is that its 

LLDI value is mostly higher than that of D02. The reason for this is that while in the 

case of D01 the storage tank is unavailable for the entire duration of simulation, it is 

assumed to be available during the first hour of fire spread in the case of D02. The fire is 

thus better contained towards the beginning of the simulation for D02, leading to less 

electrical outages and hence a lower LLDI value. 

3) As expected, the LLDI value for the UND profile is usually the least, as it 

does not simulate the damage of any supporting infrastructure for fire response. Thus, 

the fire fighters have better resources to contain the fire, leading to less electrical 

outages. 
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4) Damage Profiles A03 and B03, which are really a subset of profile A01, can 

be found to be having significantly lower LLDI values than that of A01. 

5) Though the LLDI values for profiles E02, F01 or F04 are generally found to 

be on the lower side, they have a greater degree of variation with respect to the different 

wind direction and UFIP combinations. This is probably because these profiles do not 

have any significant impact on the fire suppression efforts. 

Note that the LLDI values corresponding to three out of the above mentioned 160 

different fire spread scenarios are missing from the Figs. 6.1(a) – (d). This is either 

because MUFS generated some run-time errors while simulating such scenarios, or 

because the data required for such simulation runs was unavailable. Also, the LLDI 

value for damage profile UND (GOV, East) is found to be exceptionally high. The LLDI 

value, however, just reflects the typical pattern of the fire polygon coordinates as output 

by the MUFS code for that simulation. These four cases account for just 2.5% of the 

total simulations run, and can therefore be safely ignored. 

6.2. Most Damaging UFIP 

Table 6.1 shows the average LLDI values calculated over all combinations of 

SIDPs and wind directions for a given UFIP profile. As can be seen, the two most 

damaging ignition point profiles turn out to be those comprising of the city‟s government 

buildings and the ecological targets respectively [8]. 

Referring to Fig. 2.1, where the government buildings had been represented by a 

„G‟ marked on them, one may note their proximity to the city‟s central business district, 

the industrial area and the two feeders coming out of the city‟s substation. Thus, a fire 
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starting from these buildings causes a heavy loss of load in the early stages of the 

simulations, thereby yielding high LLDI values. 

 
 

TABLE 6.1 
MOST DAMAGING UFIP 

 

Ignition Point Acronym Average LLDI value (MVAh) 

GOV 160.811 

ECO 76.845 

CHU 70.889 

SCH 55.909 

 
 
 

The city‟s ecological targets, on the other hand, comprise of buildings containing 

highly inflammable materials. It is therefore quite obvious that a fire starting from them 

will be spreading very fast and will be difficult to contain, thereby leading to more 

electrical outages and a higher average LLDI value. 

The results presented in this chapter are based on the principal assumption that 

the Normally Open (NO) switches present in the electrical distribution network of 

Micropolis are unavailable. Thus, routing of power during emergencies is not possible 

under this configuration. Electric power utilities, however, typically have numerous NO 

switches located at strategic points across the distribution network for reliability 

purposes. The following chapter proposes a methodology for routing power across 

faulted sections of the electrical network at times of emergencies. The proposed 

methodology is then implemented by means of an algorithm. 
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CHAPTER VII 

GRAPH THEORY APPLICATIONS FOR ROUTING OF POWER 

DURING EMERGENCIES 

 

Assuming that some parts of the electrical distribution network of a city have 

been faulted and subsequently isolated due to fire, this chapter presents a graph theoretic 

approach [24] for routing power across the isolated sections using a given set of NO 

switches. The routing is so done that the power flows along a path of minimum 

impedance. The following sections illustrate the proposed approach along with its 

associated algorithms using the example of Micropolis. 

7.1. Assumptions 

Since the methodology proposed in this chapter is basically an extension of the 

one presented in Chapter V, all assumptions listed in Section 5.1 hold for this approach 

as well, except for the second one. Figure 7.1 shows the layout of the electrical 

distribution network of Micropolis along with the three NO switches located at strategic 

points across it. It is assumed that all three of them are of the Triple Pole Single Throw 

(3PST) type [25]. 

7.2. General Treatment of Faulted Components 

Under assumptions 4 and 5 of Section 5.1, if an electrical component (a pole or a 

pad-mounted transformer or a NO switch) is found to be enclosed inside the fire polygon 

area for a given simulation time step, it is then isolated from the rest of the network 

using the following methodology. Though the approaches described in this section are 
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very similar to those presented in Section 5.3, there are however some differences which 

are highlighted through the following subsections [24]. 

 

 
Fig. 7.1. Layout of the electrical distribution network of Micropolis. 

 
 
 

7.2.1. Faulted Pole 

If a pole belonging to any Line (see definition in Section 5.2) is found to be 

faulted, the concerned Line is isolated irrespective of the type of the fault (short or open 

circuit). This is done taking into consideration the fact that even though the fault might 

just be a local open circuit, the fire will eventually cause the wooden poles to crumble 

down along with the overhead conductors mounted on them. The isolation of the Line 

thus ensures that there are no live wire ends present on the ground during the time when 
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people are being evacuated from the fire spread area. If, however, the affected pole 

represents a Bank, it is isolated by opening the terminating isolators of the Lines incident 

at the Bank; such that the isolators themselves are not located at the Bank. If any of such 

terminating isolators happens to be a NO switch, it also has to be permanently opened in 

order to isolate the faulted Bank. For example, assuming that the Bank represented by 

the intersection point of Lines 7, 8 and 10 in Fig. 7.1 gets faulted, it is isolated by 

permanently opening the NO switch 1 and by opening the isolators of Lines 7 and 10 

represented by the filled black squares with a white cross marked across them. 

7.2.2. Faulted Pad-Mounted Transformer 

On the lines of the approach proposed in subsection 7.2.1, if a pad-mounted 

transformer belonging to any Line is found to be faulted, we again isolate the concerned 

Line. Since pad-mounted transformers are enclosed in iron casings, there is an enormous 

build-up of gas and soot particles inside the casing once the fire engulfs it. Leaving a 

high voltage live wire end in the casing can cause the gas to get ionized and may even 

result in some dangerous blasts. 

7.2.3. Faulted NO Switch 

The NO switches located across the electrical network of Micropolis are assumed 

to be either pole or pad mounted, depending on whether they span across two overhead 

lines or two underground cables. Now, during the course of the electrical simulations, if 

it is determined that a pole or a pad containing a given NO switch is under fire, it can be 

isolated by opening the terminating isolators of the Lines across which the switch is 

physically present; such that the isolators themselves are not located at the site of the 
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switch. For example, assuming that the pole on which NO switch 2 is mounted (see Fig. 

7.1) gets faulted, it is isolated by opening the isolators of Lines 9 and 12 represented by 

the filled black squares with a white circle marked on them. 

7.3. Overall Electrical Simulation Algorithm 

This section presents an extension of the algorithm of Section 5.5, by 

incorporating in it the concept of power routing during emergencies. The following 

algorithm [24] calls a subroutine, which in turn implements a graph theoretic approach 

(see Section 7.4) for routing power across faulted sections of the electrical network using 

a given set of NO switches. 

1) Read the fire polygon vertex coordinates for a given time step from the MUFS 

output files. 

2) Determine which poles and/or transformers are fully or partially enclosed 

inside the fire spread area for the given time step. Note that the fire polygon and the 

individual pole and transformer coordinates all conform to the GIS layout of Micropolis 

in ArcMap (see Chapter II). 

3) Determine all Lines, Banks and/or NO switches that are affected by the faulted 

poles and/or transformers as found in step (2).  

4) Scan all Line numbers as found in step (3) to determine which of those are 

downstream with respect to any other Line or a Bank or a NO switch as also found to be 

faulted in (3). Eliminate all such downstream Line numbers from the list of (3) as they 

will anyways be getting isolated by the isolation of their concerned upstream 

components. 
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5) Isolate each of the upstream Lines/Banks/NO switches as identified in step (4). 

For each such isolated upstream component, scan all Lines which are located 

downstream with respect to it. If any of such downstream Lines is found to be live till 

now, it will also get „effectively isolated‟ as a result of the isolation of the concerned 

upstream component. 

6) Are all upstream Lines/Banks/NO switches as found in step (4) isolated? If 

yes, go to step (7). If not, repeat step (5).  

7) Call the graph theoretic subroutine explained in the next section with an 

argument containing the IDs of all Lines and NO switches which are getting physically 

or effectively isolated in the current time step. 

8) The graph theoretic subroutine returns back an argument containing a list of 

the IDs of NO switches that need to be closed for routing power to the affected parts of 

the system, and a list of the IDs of isolators that need to be opened for preventing bi-

directional power flows at the network nodes (see subsection 7.4.6). Perform all such 

actions (closing of switches and opening of isolators) and proceed to step (9). 

9) For all Lines, Banks and/or NO switches getting physically or effectively 

isolated in the current time step, add up the total load (KVA) lost as a result of such 

outages. Calculate the current time step‟s contribution to the LLDI using equation (5.1). 

10) Check if the MUFS simulation has been completed (entire 12 hours of 

simulation data has been generated) OR if both the substation breakers of Micropolis 

have been opened (in which case, the city has been blacked out). If either of the 
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conditions is satisfied, end simulation and print results. Else, increase iteration count and 

go to step (1). 

7.4. Formulation of Graph Theoretic Approach for Power Routing 

This section proposes a graph theoretic approach [24] for routing power across 

faulted sections of the electrical distribution network of a city using a given set of NO 

switches. This approach forms part of the overall algorithm presented in Section 7.3. The 

proposed methodology is explained through the following subsections using the example 

of Micropolis. 

7.4.1. Drawing the Equivalent Graph 

The first step in implementing the graph theoretic approach, however, would be 

to represent the electrical distribution network of a city such as Micropolis by an 

equivalent graph. In doing so, all single phase laterals which branch off from any given 

line in the distribution network are ignored while constructing the equivalent graph. This 

is because in the event that a „parent‟ line (e.g. Line 11 in Fig. 7.1) from which a 

concerned lateral (e.g. Line 30 in Fig. 7.1) branches out gets faulted and isolated, the 

lateral gets effectively isolated as well. This also makes the resultant graph look less 

bulky. Similarly, any three-phase tapping (e.g. Line 6 in Fig. 7.1) which branches out of 

a line in the electrical network and which gets terminated by itself, i.e. it neither 

branches off into any more sub-branches nor ends in a NO switch, is ignored as well.  

The equivalent graph representing the distribution network of Micropolis, as 

shown in Fig. 7.2, is constructed by „stitching together‟ two tree structures, with each 

tree representing the network associated with a given feeder. Each edge of a tree thus 
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represents a particular Line in the electrical network of Fig. 7.1. The topmost node in a 

given tree is termed as a „source node‟, and it represents the source of power for the 

corresponding distribution feeder. Nodes 1 and 13 in Fig. 7.2 are thus the source nodes 

for our case. The trees are then stitched together using „links‟ belonging to either of the 

following two categories: 

7.4.1.1. Link, Type I 

The edges of the individual trees, which correspond to lines across which a NO 

switch is physically present in the electrical network, are joined using a Type I link. The 

Type I links are represented by the red lines of Fig. 7.2. 

7.4.1.2. Link, Type II 

All source nodes of the equivalent graph are connected to a single hypothetical 

„super node‟ (Node 0) by means of Type II links, as represented by the magenta lines of 

Fig. 7.2. The purpose of incorporating the concept of the super node is explained in a 

later subsection. 

7.4.2. Assigning Weights 

The next step after the construction of the equivalent graph is to assign weights 

to its individual edges and links. Each edge is assigned a weight equal to the total 

impedance of its corresponding line in the electrical network. Referring to Chapter IV, 

where the different formulae used for the impedance (Ω/km) calculations of overhead 

conductors and underground cables were explained, the total impedance (Ω) of a given 

line is calculated by multiplying its impedance (Ω/km) with its corresponding length in 

the distribution system. For a two or a three phase line, the weight assigned to its 
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corresponding edge in the equivalent graph is equal to its total positive sequence 

impedance value. 

 

Fig. 7.2. Equivalent graph representing the electrical distribution network of Micropolis. 
 
 
 

The Type I links are assigned weights in the following fashion. We consider the 

constituent trees of the equivalent graph one by one and calculate the length of the 

longest path in each of them. Since in a tree there is one and only one path between any 

pair of vertices [26], the length of the longest path can be calculated by adding up the 

weights of the edges as we move from the source node down to the bottommost node 

and by comparing the cumulative weights of the individual nodes. Denoting the 

maximum of the longest path lengths amongst all the constituent trees of the equivalent 
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graph by „Lmax‟, the weight assigned to each of the Type I links is equal to „k*Lmax‟, 

where „k‟ is a multiplier greater than one. This is done to ensure that in the event that we 

run a shortest path algorithm on the equivalent graph under normal operating conditions 

of the system (i.e. when all lines are healthy and all NO switches are open), the shortest 

path between any given edge and its corresponding source node is along its own tree 

structure itself and not through any Type I link. The value of „k‟ is chosen to be equal to 

ten for the purpose of this research. 

All Type II links are assigned „0‟ weights as they are hypothetical and as such do 

not physically exist in the electrical network. 

The weights thereby assigned to the edges and the links of the equivalent graph 

of Fig. 7.2 are as shown in Table 7.1. Note that these weights are all one-time 

assignments made at the start of a given fire spread simulation. 

7.4.3. Dijkstra’s Shortest Path Algorithm (Run I) 

The graph theoretic subroutine, which is used to implement the approach 

proposed in this section, reads the list of the faulted Line and NO switch IDs as sent by 

the overall electrical simulation algorithm of Section 7.3; and removes the corresponding 

edges and links from the equivalent graph. In the actual program, the removal of an edge 

or a link is simulated by replacing its previously assigned weight (as given in Table 7.1) 

by a very large number, say „N‟ [26]. For the purpose of this research, the value of „N‟ is 

chosen to be equal to the summation of the weights of all the edges and the links of the 

equivalent graph of Fig. 7.2. A preliminary run of the Dijkstra‟s shortest path algorithm 

is then performed in order to calculate the shortest path distance (Ω) between the super 
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node and every other node in the equivalent graph. The advantage of using the super 

node is that we can calculate its shortest path distance from all the other nodes in the 

graph by running Dijkstra‟s algorithm only once. Otherwise, we would have had to 

perform as many runs of the algorithm as there are source nodes in the graph, which in 

turn could be a computationally intensive process for a large distribution system. 

 
 

TABLE 7.1 
WEIGHTS ASSIGNED TO THE EDGES AND THE LINKS OF THE EQUIVALENT GRAPH 

 

Type ID 
Line/NO switch 

Number 

Weight 

(Ω) 

Edge 2 Line 1 0.1182 Ω 

Edge 3 Line 7 0.1212 Ω 

Edge 4 Line 9 0.1323 Ω 

Edge 5 Line 8 0.1212 Ω 

Edge 6 Line 36 0.4386 Ω 

Edge 7 Line 37 0.4386 Ω 

Edge 8 Line 10 0.1323 Ω 

Edge 9 Line 9 0.2389 Ω 

Edge 10 Line 11 0.2901 Ω 

Edge 11 Line 27 1.2847 Ω 

Edge 12 Line 12 0.1323 Ω 

Edge 14 Line 2 0.2593 Ω 

Edge 15 Line 2 0.0606 Ω 

Edge 16 Line 42 0.7092 Ω 

Edge 17 Line 44 0.5293 Ω 

Edge 18 Line 3 0.1474 Ω 

Edge 19 Line 43 0.7692 Ω 

Edge 20 Line 46 0.9161 Ω 

Edge 21 Line 4 0.9101 Ω 

Edge 22 Line 5 0.0737 Ω 

Link, Type I 23 NO Switch 1 16.564d Ω 

Link, Type I 24 NO Switch 2 16.564 Ω 

Link, Type I 25 NO Switch 3 16.564 Ω 

Link, Type II 1 Not Applicable 0 

Link, Type II 13 Not Applicable 0 

 
d
Lmax for the equivalent graph of Fig. 7.2 is equal to 1.6564 Ω. 

 
 
 

The Dijkstra‟s algorithm is run according to the following steps [26]: 

1) Assign a permanent label of „0‟ to the super node and temporary labels of 

„10
6
‟ to all the remaining nodes in the graph. 



54 
 

2) Set variable „ni‟, corresponding to a given node „i‟ in the graph, to 0 (ID of the 

super node). 

3) Scan through all the temporarily labeled nodes in the graph in order to 

determine which of them are connected to node „i‟ through an edge or a link. Any node 

„j‟ found so connected then gets a new temporary label equal to min(old label of „j‟, (old 

label of „i‟+dij)), where „dij‟ is the weight of the edge or the link connecting nodes „i‟ and 

„j‟.  

4) After all temporary labeled nodes have been scanned and new temporary 

labels assigned wherever applicable, the minimum of all the temporary labels is found 

and that becomes the permanent label for the corresponding node. In case of a tie, any 

one of the concerned nodes is selected and is permanently labeled. 

5) Assign the ID of the node which was just permanently labeled in step (4) to 

the variable „ni‟. 

6) Are all nodes in the equivalent graph permanently labeled? If yes, proceed to 

the next subsection. If not, go to step (3). 

The permanent label thereby assigned to a given node in the graph is actually the 

length of the shortest path joining that node to the super node. Since the calculated 

length is in ohms, it also represents the minimum impedance path connecting the two 

points. 

7.4.4. Determining Network Connectivity 

Assuming that at a particular time step during the course of a given fire spread 

simulation, Lines 10 and 12 become faulted; it can be observed from Fig. 7.1. that Lines 
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11 and 27 will be effectively isolated as well due to lack of connectivity with the rest of 

the network. This subsection explains how the graph theoretic subroutine finds out 

which additional lines (i.e. apart from the ones which the overall electrical simulation 

algorithm of Section 7.3 determines as being faulted) have lost power in the current time 

step due to lack of network connectivity. 

After the first run of the Dijkstra‟s shortest path algorithm is performed, we scan 

through each edge of the equivalent graph which corresponds to some healthy line in the 

electrical network. For each such edge, we compare the lengths (Ω) of the minimum 

impedance path associated with its two terminating nodes, and assign the node 

corresponding to the shorter of those two lengths as its „target node‟. The minimum 

impedance path length associated with a given line in the electrical network is thus equal 

to the length of the minimum impedance path connecting the super node to the target 

node of the edge corresponding to the concerned line. 

There might be some instances in the distribution system where one line may 

have multiple edges representing itself in the equivalent graph (e.g. Lines 2 and 9 in Fig. 

7.2). For such situations if we consider the constituent edges of the line one by one and 

assign target nodes to each of them, the same line will end up having more than one 

target node. This in turn implies that there will be more than one minimum impedance 

path associated with the same line and hence power can flow into the line from more 

than one point. Since a „Line‟ (as defined in Section 5.2) has isolating elements at its 

ends only, this kind of configuration might lead to a bi-directional flow of power to 

occur on the same line, which is unacceptable. In order to avoid such situations, we have 
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to therefore ensure that all the edges of the graph belonging to the same line are assigned 

just one target node. To do so, we consider as a whole the chain of edges corresponding 

to a given line, and compare the minimum impedance path lengths associated with the 

two nodes present at the extreme ends of the chain. For edges 4 and 9 belonging to Line 

9 in Fig. 7.2, the two extreme end nodes would therefore be those with the IDs 2 and 9. 

Thereafter, the node corresponding to the shorter of the two lengths is assigned as the 

target node for the entire chain of edges belonging to the same line. 

Denoting the length of the minimum impedance path associated with a given line 

„i‟ as „Lmin,i‟, we can draw the following conclusions regarding its connectivity status for 

the current time step. 

7.4.4.1. Lmin,i <= Lmax 

The satisfaction of this inequality implies that the concerned line is healthy and is 

receiving power as it would under normal operating conditions of the system. In other 

words, the minimum impedance path connecting the super node to the edge 

corresponding to the given line does not involve any Type I link. 

7.4.4.2. Lmax < Lmin,i < N 

The satisfaction of this inequality implies that the concerned line is healthy but it 

receives power through the closure of at least one NO switch. In other words, the 

minimum impedance path connecting the super node to the edge corresponding to the 

given line involves at least one Type I link. 

 

 



57 
 

7.4.4.3. Lmin,i >= N 

The satisfaction of this inequality implies that the concerned line has become 

effectively isolated due to lack of network connectivity. In other words, the edge 

corresponding to the given line cannot be connected to the super node without passing 

through at least one faulted edge or a faulted Type I link. 

The graph theoretic subroutine thus calculates the Lmin,i values associated with all 

healthy lines in the electrical network, and groups them into the three different 

categories as described above. While lines satisfying the first inequality continue to 

receive power as they would under normal operating conditions of the system, those 

satisfying the second inequality are assigned shortest impedance paths using the 

available NO switches of the electrical network. Finally, lines satisfying the third 

inequality are declared as being effectively isolated from the current time step onwards. 

7.4.5. Assigning Shortest Impedance Paths for Power Routing 

The graph theoretic subroutine keeps a record of the order in which the various 

nodes of the equivalent graph get permanently labeled while performing the first run of 

the Dijkstra‟s algorithm. This record is stored in a row matrix „A‟. For a given line 

satisfying the second inequality of subsection 7.4.4, let us assume that the target node of 

its corresponding edge in the equivalent graph is stored in column „i‟ of the „A‟ matrix. 

The minimum impedance path for the concerned line can then be constructed by 

working backwards from the „i
th

‟ column of the „A‟ matrix till we reach column „0‟; 

such that we go to that predecessor column whose corresponding node label differs from 

that of the current column by an amount equal to the weight of the connecting edge or 
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link [26]. One may however observe that the minimum impedance paths so traced using 

the „A‟ matrix as obtained from the primary run of the Dijkstra‟s algorithm may not 

always produce the most optimal results. This is owing to the fact that even though a 

closed NO switch is supposed to be represented in the equivalent graph by a Type I link 

of „0‟ weight, we had assigned artificially high weights of „k*Lmax‟ to all the Type I links 

for reasons explained in subsection 7.4.2. This argument can be further illustrated using 

the example of a sample network, as represented by the equivalent graph of Fig. 7.3.  

 

Fig. 7.3. Equivalent graph representing a part of a sample electrical network. 
 
 
 

Assuming that at a particular time step during the course of a given fire spread 

simulation, Lines 3 and 6 of Fig. 7.3 become faulted; one may observe that Line 7 can be 

connected to the rest of the network through either of the following two paths: „Lk1, L1 
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L2, Lk5, L4, Lk6, L8‟ or „Lk4, L9, L10, Lk7‟. Assuming that Lmax for the network of 

Fig. 7.3 is equal to 10Ω, the weights assigned to each of the Type I links would therefore 

be equal to 100Ω (refer to subsection 7.4.2). Under this situation, the primary run of the 

Dijkstra‟s algorithm would therefore designate the latter path as the minimum 

impedance path for routing power to Line 7. Since a closed NO switch, as is required for 

the routing of power, should be represented in the equivalent graph by a Type I link of 

„0‟ weight, one may however observe under this assumption that the former path 

actually has a lower impedance than the latter. The minimum impedance path for routing 

power to Line 7, as calculated from the first run of the Dijkstra‟s algorithm, does not 

therefore give us the most optimal solution in this case. 

To solve this issue, we freeze the permanent labels (as obtained from the first run 

of the Dijkstra‟s algorithm) of all nodes in the equivalent graph which are associated 

with edges satisfying the first inequality of subsection 7.4.4. This is done to ensure that 

we retain the configuration of those parts of the network which are receiving power as 

they would under normal operating conditions of the system. The weights of all healthy 

Type I links of the equivalent graph are then set to 0, and a second run of the Dijkstra‟s 

shortest path algorithm is performed. The minimum impedance paths associated with 

lines satisfying the second inequality of subsection 7.4.4 are then constructed using the 

„A‟ matrix as obtained from the second run of the Dijkstra‟s algorithm. Note that the 

graph theoretic subroutine resets the weights of all healthy Type I links back to their 

original values before proceeding to the next subsection. 
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One may further observe that even the approach described above may not always 

generate the absolute minimum impedance paths for power routing. To illustrate this, let 

us now assume that only Line 6 in Fig. 7.3 is faulted. Using the above mentioned 

approach, the minimum impedance path as calculated for routing power to Line 7 would 

now be along „Lk2, L3, Lk 6, L8‟, and not along „Lk1, L1 L2, Lk5, L4, Lk6, L8‟. This is 

in spite of the fact that the latter path has a lower impedance than the former. This 

anomaly can be resolved by observing that our main focus is to provide uninterrupted 

service to customers who are already receiving power without the need of any routing. 

The above mentioned approach can therefore be best regarded as a compromise between 

finding the absolute minimum impedance path for routing power to a concerned line and 

retaining the configuration of those parts of the electrical network which are receiving 

power as they would under normal operating conditions of the system. 

7.4.6. Resolving Bi-directional Power Flow Issues 

Referring again to Fig. 7.2, let us assume that at a particular simulation time step, 

Line 7 gets faulted by fire. Let us also assume that the target nodes for edges 5 and 8, as 

determined from the second run of the Dijkstra‟s shortest path algorithm, are nodes 5 

and 8 respectively. Under such circumstances, the minimum impedance path associated 

with Line 8 will be along „Lk13, E14, E15, E18, E22, Lk23‟, while that associated with 

Line 10 will be along „Lk1, E2, E4, Lk24, E12‟. It can thus be easily observed that there 

will be a bi-directional flow of power occurring at node 3. This section presents an 

algorithm to check for and correct bi-directional power flows occurring at different 

nodes across the equivalent graph. 
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1) Scan through each node of the graph except for the super node. 

2) For a given node, determine which all edges and Type I links are incident 

(in/out) at it, and store their corresponding IDs in a temporary matrix „X‟. In doing so, 

ignore any faulted edge, faulted Type I link or even any healthy Type I link where the 

corresponding NO switch has an „open‟ status for the current time step.  

3) For a given ID stored in matrix X, does that correspond to an edge? If yes, go 

to step (4). If not, go to step (5). 

4) Check if the target node corresponding to the edge being examined in step (3) 

is different from the node being examined in step (2). If yes, go to step (6). If not, store 

the ID of the concerned edge in another matrix „Y‟. Also, check the constituents of the 

minimum impedance path associated with this current edge and store in matrix „Y‟ the 

ID of the edge or link from which power flows into this edge. Proceed to step (6).  

5) For the Type I link being examined in step (3), the graph theoretic subroutine 

retrieves the ID of the edge from which power flows into this link. Check if this 

concerned edge is also incident at the same node as was being examined in step (2). If 

yes, store the concerned edge and Type I link IDs in matrix Y and go to step (6). If not, 

directly go to step (6). 

6) Are all the edge and link IDs as stored in matrix X in step (2) analyzed? If yes, 

go to step (7). If not, pick up the next available ID and go to step (3). 

7) For each ID stored in matrix X, check if it appears in matrix Y as well. If it 

does, go to step (8). If not, open the terminating isolator of the line corresponding to the 
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edge whose ID was not found in Y; such that the isolator is located at that point in the 

electrical network which corresponds to the node being examined in step (2). Go to (8). 

8) Have all IDs stored in matrix X been checked against those in matrix Y? If 

yes, go to step (9). If not, pick up the next available ID and repeat (7). 

9) Have all nodes of the graph except for the super node been scanned for the 

current time step? If yes, stop running subroutine and return back control to the overall 

electrical simulation algorithm of Section 7.3. If not, pick up the next available node and 

go to step (2). 

To better explain the above mentioned algorithm, let us consider a part of a 

sample distribution network, as represented by the graph of Fig. 7.4. Consider node 2 

and assume that the edges 1, 2, 3 and 4 and the Type I link 5 are all incident at it as 

shown in Fig. 7.4. Also assume that for a given simulation time step, the resultant power 

flow in the network is as shown by the arrows in Fig. 7.4. 

Fig. 7.4. Graph representing part of a sample distribution network. 
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Now, assuming that edge 2 receives its power from edge 1, one may conclude 

that the target node and the immediately upstream edge ID for edge 2 would be those of 

node 2 and edge 1 respectively. Since the graph theoretic subroutine assigns a unique 

minimum impedance path to a given target node, any edge which is incident at node 2 

and which gets its power through that node will have the same target node and 

immediately upstream edge ID combination as edge 2. Thus, following the steps 

mentioned in the algorithm above, matrices X and Y for the network of Fig. 7.4 would 

look like: X = [1;2;3;4;5] and Y = [1;2;3;5]. Note that since the target node for edge 4 is 

node 5 (and not node 2); it does not appear in matrix Y. Thus, the bi-directional power 

flow encountered at node 2 can be prevented by opening the terminating isolator of the 

line corresponding to edge 4; such that the isolator is located at that point in the 

electrical network which corresponds to node 2 (as shown by the cross marked on edge 4 

in Fig. 7.4). 

Thus the electrical algorithm of Section 7.3 calls a graph theoretic subroutine, 

which in turn implements the general approach presented in Section 7.4. The important 

results obtained from running different fire spread simulations on the electrical 

distribution network of Micropolis using the algorithm of Section 7.3 are presented in 

the next chapter. 
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CHAPTER VIII 

ANALYSIS OF SIMULATIONS RUN INCORPORATING POWER 

ROUTING 

 

Referring to the simulation results presented in Chapter VI, we again run the 160 

different simulations corresponding to the various fire spread scenarios, but using the 

algorithm of Section 7.3 instead of the one presented in Section 5.5. In other words, we 

run those simulations by incorporating the concept of power routing into the program 

logic. Figures 8.1(a) – (d) show the relevant results obtained from the different 

simulation runs [24]. 

As in Chapter VI, ten simulations corresponding to the different supporting 

infrastructure damage profiles were run for a given UFIP and wind direction 

combination. The LLDI value generated from each such simulation run was then 

compared to that calculated in Chapter VI for the same fire spread scenario. It can be 

observed from Figs. 8.1(a) – (d) that the LLDI values corresponding to the simulations 

where we have incorporated the concept of power routing are consistently lower than 

those obtained from the same simulations run in the absence of routing. This is because 

more customers can be served by routing power through the NO switches during 

emergencies, thereby leading to lesser load losses and lower LLDI values. An interesting 

exception to this pattern can be observed for damage profiles D01 and F01 (ECO, West), 

where the LLDI values generated with the incorporation of power routing into the 

simulation logic are more than those obtained in its absence. 
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(a) 

(b) 

(c) 
 

Fig. 8.1. Results of electrical simulations run incorporating power routing. 
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(d) 
 

Fig. 8.1. continued. 
 

 
 

This is because for both of those scenarios, a pole in the industrial area on which 

the NO switch 2 is mounted gets faulted mid-way through the simulations. Since the NO 

switch 2 spans across the Lines 9 and 12 (see Fig. 7.1), both the lines have to be isolated 

from the rest of the network in order to clear the above mentioned fault. But referring to 

the general methods of treatment of faulted components as presented in Section 5.3, a 

fault in the concerned pole in the industrial area could be cleared by isolating Line 9 

only in the absence of routing (see Fig. 4.8). Thus, the customers connected to Line 12 

could still be served and that resulted in a lesser loss of load and a lower LLDI value. 

One more analysis of the electrical simulation results was performed by 

calculating the average LLDI value generated across all combinations of SIDPs and 

wind directions for a given UFIP profile [24]. The calculated average was then 

compared to that computed in Section 6.2 for the same UFIP profile, in order to show 

the percent reduction obtained in the LLDI value after the incorporation of power 

routing into the simulation logic. Table 8.1 shows the relevant results. 
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TABLE 8.1 
AVERAGE LLDI VALUES CALCULATED FOR DIFFERENT UFIP PROFILES 

 

Ignition Point 

Acronym 

Average LLDI values 

(MVAh) 
Percent 

Reduction 
Without routing With routing 

GOV 160.811 156.131 2.9% 

ECO 76.845 67.453 12.22% 

CHU 70.889 57.277 19.2% 

SCH 55.909 52.827 5.51% 

 
 
 

One may observe from Table 8.1 that the percent reductions obtained for the 

UFIP profiles comprising of the city‟s government buildings and the schools are much 

lesser than those obtained for the „ECO‟ and „CHU‟ profiles. Looking at Fig. 2.1, where 

the government buildings have been represented by a „G‟ marked on them, one may note 

their proximity to the city‟s central business district, the industrial area and the two 

feeders coming out of the city‟s substation. A fire starting from these buildings thus 

causes a heavy loss of load towards the early stages of the simulations, so much so that 

the entire city is blacked out in a few hours of fire spread. The NO switches are thus 

rendered useless for the maximum part of the simulations, thereby not producing a 

significant reduction in the calculated average LLDI value.  

For the city schools, which are buildings with a „S‟ marked on them in Fig. 2.1, 

one may see that they are mostly located in a sparsely populated residential area towards 

the leftmost boundary of the city. A fire starting from these buildings thus takes a lot of 

time to cover enough ground so as to fault some important feeder line and require the 

closure of NO switches for routing of power. The percent reduction obtained in the 

average LLDI value calculated for this profile is therefore not anything significant either. 
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The city‟s ecological targets and its churches, on the other hand, can be found to 

be much more evenly distributed across the city (see Fig. 2.1). Thus, even if the fire 

takes down some important feeder line, its adverse effect can be offset by routing power 

using the healthy NO switches of the network; thereby producing higher percent 

reductions in the calculated average LLDI values. 
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CHAPTER IX 

CONCLUSIONS 

 

The research work presented in this thesis aims at studying the effects of fire on 

the electrical distribution network of a city. Starting with the modeling of the city‟s 

electrical infrastructure components, this thesis explains how one can use the outputs of 

the MUFS code for analyzing and quantifying the damage caused by fire to the electrical 

network. The proposed methodology is explained using the example of a virtual city 

named Micropolis.  

The thesis also proposes an efficient algorithm which incorporates graph 

theoretic concepts for routing power across faulted sections of the electrical network 

using a given set of Normally Open switches. The power is so routed that it flows along 

a path of minimum impedance. The proposed algorithm is again implemented using the 

example of Micropolis.   

  A set of two simulations are run on the distribution system of Micropolis 

corresponding to a given fire spread scenario – one incorporating the concept of power 

routing using the Normally Open switches of the electrical network and the other 

assuming the absence of routing. The LLDI values obtained from each such set are then 

compared to each other in order to understand the advantages of power routing during 

emergencies. The LLDI values generated from simulations run across all combinations 

of SIDPs, UFIP profiles and wind directions are also compared to each other in order to 
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determine which targets and infrastructure components of the city are of paramount 

importance in containing the damage caused by fire to the electrical network.  

One of the important contributions of this research work is the use of LLDI as a 

means of quantifying the damage caused by fire to the electrical network.  The electrical 

test bed described in Chapter IV can prove to be a useful resource for researchers who 

wish to perform similar studies on the effects of disasters on the interdependent 

infrastructure components of a city. Finally, the results obtained from the different 

simulation runs, as presented in Chapters VI and VIII, can give really useful insights to 

civic authorities and emergency response personnel when they deal with an actual 

disaster.    

Though the various methodologies and algorithms proposed throughout this 

thesis have been explained using the example of Micropolis, they are as such very 

general in scope, and with some minor modifications can be easily applied to bigger 

distribution systems and to different disaster scenarios. 

One of the major limitations of this research work is the fact that we have not 

carried out any electrical analysis (e.g. short circuit studies, power flows etc.) of the 

system while running the fire spread simulations. Though this would not have had any 

significant impact on the results owing to the small size of Micropolis and the 

assumption that the city‟s distribution network is connected to an infinite bus, the 

designing of a bigger city with transmission and distribution systems and inter-city tie 

lines in place would prove to be an excellent test bed to carry out a more detailed 

analysis on. 
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 Referring to the graph theoretic approach proposed in Chapter VII, one may note 

that we are ignoring the ampacity ratings of the different conductors while assigning the 

minimum impedance paths for routing power during emergencies. Since these 

restorations are being performed under emergency conditions, this seems to be a quite 

reasonable approach. However, one may construct an interesting optimization problem 

with the objective function being that representing the power losses occurring in the 

different conductors and the constraint equation representing the inequality that the 

conductor currents should not exceed their corresponding ampacity ratings.  

Finally, one may observe that while carrying out the simulations on the electrical 

network, the flow of information occurs from the MUFS code to the electrical program 

only. Since many of the civil and communication infrastructure components of a 

city(e.g. water pumps, cell towers etc.) depend on electric power supply for their smooth 

operation, the occurrence of a fault in an electrical line supplying power to any of such 

components would have an adverse effect on the overall fire spread scenario. The 

construction of a closed loop system comprising of the civil, electrical and 

communication infrastructure components, where each interacts with the other and with 

the MUFS code, would thus also be an excellent topic for future research.   
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