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ABSTRACT

Reduced Order Modeling for Transport Phenomena

Based on Proper Orthogonal Decomposition. (December 2003)

Tao Yuan, B.E., Tsinghua University

Chair of Advisory Committee: Dr. Paul G. A. Cizmas

In this thesis, a reduced order model (ROM) based on the proper orthogonal

decomposition (POD) for the transport phenomena in °uidized beds has been de-

veloped. The reduced order model is tested flrst on a gas-only °ow. Two difierent

strategies and implementations are described for this case. Next, a ROM for a two-

dimensional gas-solids °uidized bed is presented. A ROM is developed for a range of

diameters of the solids particles. The reconstructed solution is calculated and com-

pared against the full order solution. The difierences between the ROM and the full

order solution are smaller than 3.2% if the diameters of the solids particles are in the

range of diameters used for POD database generation. Otherwise, the errors increase

up to 10% for the cases presented herein. The computational time of the ROM varied

between 25% and 33% of the computational time of the full order solution. The com-

putational speed-up depended on the complexity of the transport phenomena, ROM

methodology and reconstruction error. In this thesis, we also investigated the accu-

racy of the reduced order model based on the POD. When analyzing the accuracy, we

used two simple sets of governing partial difierential equations: a non-homogeneous

Burgers’ equation and a system of two coupled Burgers’ equations.
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NOMENCLATURE

dps ¡ Solid particle diameter

Fgs ¡ Coe–cient for the interphase force between gas and solid phases

g ¡ Gravity acceleration

M ¡ Number of snapshots

Mw ¡ Average molecular weight of gas

N ¡ Number of discrete spatial grid points

p ¡ Pressure

R ¡ Universal gas constant

Re ¡ Reynolds number

T ¡ Temperature

(u; v) ¡ Components of velocity vector

~v ¡ Velocity vector

(x; y) ¡ Cartesian coordinates

fi ¡ Time coe–cients

† ¡ Volume fraction, error measurement

„ ¡ Viscosity

‰ ¡ Density

„„¿ ¡ Viscous stress tensor

» ¡ Convection factor
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Subscripts

g ¡ Gas phase

s ¡ Solid phase

Superscripts

⁄ ¡ Tentative values

o ¡ Old values
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CHAPTER I

INTRODUCTION

A. Statement of the Problem

Reduced order modeling based on the proper orthogonal decomposition (POD) is a

conceptually novel and computationally e–cient technique for computing unsteady

transport phenomena. Compared to the full models which numerically solve the

governing partial difierential equations (PDEs) of the transport phenomena, POD-

based reduced order models (ROMs) contain a smaller number of ordinary difierential

equations (ODEs). Consequently, the order reduction is achieved by (1) reducing the

number of equations, and (2) replacing PDEs by ODEs. The focus of this research is

to develop POD-based ROMs for the transport phenomena in °uidized beds and to

investigate the accuracy of the POD-based ROMs.

B. Background

This section provides the background information of this study. The background

information includes a literature review of the reduced order modeling, an outline

of the POD technique, and a description of the gas-solid transport phenomena in

°uidized beds.

1. Reduced Order Modeling

The goal of reduced order modeling is to replace the large number of governing PDEs

by a smaller number of ODEs. Over the years, investigators have developed a number

The journal model is Journal of Propulsion and Power.
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of techniques for constructing ROMs. Most of the previous work is concentrated on

°uid-only °ow phenomena. A review of the status of the reduced order modeling can

be found in the article of Dowell et al.1

In structural dynamics, to solve the unsteady vibration problems, a conventional

method is to construct ROMs using the eigenmodes of the structure as basis func-

tions.2 The same technique developed for structural dynamic problems has been

applied to the transport phenomena. Florea et al.3 have developed a ROM based

on eigenmodes of an unsteady viscous °ow in a compressor cascade. Thomas et al.4

have constructed ROMs based on eigenmodes of °ows about an isolated airfoil and

an aeroelastic wing. Their studies are based on °ow simulations in frequency domain

using small perturbations. A static/dynamic correction technique has been imple-

mented in their studies in order to improve the accuracy of the eigenmodes based

ROMs. Romanowski et al.5 have also constructed ROMs for the Euler equations

based on °uid eigenmodes.

POD is an attractive alternative and/or complement to the use of eigenmodes

in terms of computational cost and convenience.1 POD is a procedure for extracting

an optimal basis from an ensemble of signals.6 POD is also called Karhunen-Lo¶eve

decomposition, singular value decomposition, principal components analysis, and sin-

gular systems analysis.

POD was flrst introduced to model coherent structures in turbulent °ows by

Lumley. Using the technique of POD, a series of snapshots obtained from experi-

mental measurements and/or computational simulations, each at a difierent instant

of time, are examined. These solution snapshots are used to form an eigenvalue prob-

lem that is solved to determine a set of optimal basis functions for representing the

°ow fleld. POD-based ROMs are generated by projecting the governing PDEs onto

a space spanned by a small number of POD basis functions. Thus the °ow fleld is



3

described by a small number of ODEs. Background information on POD and POD-

based reduced order modeling can be found in the review articles of Berkooz et al.6

and Sirovich.7

POD-based ROMs for various systems have been constructed, e.g., Burgers’

model of turbulence,8 Euler equations,9 and Navier-Stokes equations.10{14 POD-based

ROMs have been developed in the time domain for a number of °ows. Deane et al.10

have applied the POD-based ROMs to two two-dimensional °ow flelds: °ow in a pe-

riodically grooved channel and wake of an isolated circular cylinder. The short- and

long-term accuracy of the POD-based ROMs have been studied through simulation,

continuation and bifurcation analysis. Sahan et al.11 have studied the POD-based

ROMs applied to non-isothermal transitional grooved-channel °ow. In their study,

the POD-based ROMs have been derived for transitional °ow and heat transfer. Ma

et al.12 have studied the POD-based ROM for simulating three-dimensional cylinder

°ow. Cazemier et al.13 have investigated the POD-based ROMs for driven cavity

°ows. Rediniotis et al.14 have applied the POD-based ROM to synthetic jets which

are essential for °ow control applications. Studies in the above references are based

on low-speed °ows.

POD-based ROMs have also been investigated in high-speed °ows. For example,

Lucia et al.15 have shown that the POD-based ROM can accurately recreate a °ow

solution with strong shocks, given that the appropriate data is presented in the snap-

shots. POD has also been applied in the frequency domain. For example, Hall et al.16

have generated a POD-based ROM for a small-disturbance unsteady two-dimensional

inviscid °ow about an isolated airfoil.

The application of POD/ROM to °ow control, aeroelastic analysis, and iterative

design is currently an active fleld of research. Romanowski17 has applied the POD-

based ROMs to aeroelastic analysis. Ravindran18 has designed reduced order adaptive
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controllers for °uids. LeGresley et al.9 have investigated airfoil design optimization

using the POD-based ROMs.

2. Proper Orthogonal Decomposition

Suppose we have an ensemble of observations fu(x; ti)g. These observations are as-

sumed to form a linear inflnite-dimensional Hilbert space L2 on a spatial domain D.19

From that ensemble of observations, POD extracts time-independent orthonormal ba-

sis functions f`k(x)g and time-dependent orthonormal time coe–cients ffik(ti)g, such

that the reconstruction

u(x; ti) =
X

k

fik(ti)`k(x) (1.1)

is optimal in the sense that the average least-square truncation error

"m =

*°

°

°

°

°

u(x; ti)¡
m
X

j=1

fij(ti)`j(x)

°

°

°

°

°

2+

(1.2)

is a minimum for any given number m of basis functions over all possible sets of basis

functions.19 Herein jj ¢ jj denotes the L2-norm given by

jjf jj = (f; f)
1
2 ;

where (; ) denotes the Euclidean inner product. h ¢ i denotes an ensemble average

over a number of observations

h f i = 1

N

N
X

j=1

f(x; tj):

The optimum condition specifled by (1.2) is equivalent to flnding functions `

that maximize the normalized averaged projection of u onto `

max
`2L2(D)

hj(u; `)j2i
jj`jj2 ; (1.3)
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where j ¢ j denotes the modulus.19

The optimum condition specifled by equation (1.3) reduces to6

Z

D

hu(x)u⁄(x0)i`(x0)dx0 = ‚`(x); (1.4)

The POD basis is therefore composed of the eigenfunctions f`jg of the integral equa-

tion (1.4). The kernel function of the integral equation (1.4) is the averaged autocor-

relation function

hu(x)u⁄(x0)i · R(x; x0):

In practice, the state of a numerical model is only available at discrete spatial

grid points. Thus the observations in the ensemble are vectors instead of continuous

functions. The autocorrelation function in the discrete case is replaced by the tensor

product matrix19

R(x; x0) =
1

M

M
X

i=1

u(x; ti)u
T (x0; ti); (1.5)

where M is the number of observations contained in the ensemble.

The derivation of the integral equation (1.3) can be generalized to vector-valued

functions such as the three-dimensional velocity flelds u(x; t), where u = (u; v; w)

and x = (x; y; z). In this case, R(x; x0) is replaced by

R(x;x0) =
1

M

M
X

i=1

u(x; ti)u
T (x0; ti): (1.6)

The eigenfunctions `j(x) are also vector valued.

Ofi-Reference Condition

The POD basis functions are optimal at the reference condition. Herein the

reference condition, also called design condition, represents the condition at which

the basis functions are obtained. Take the °ow fleld as an example, the POD basis
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functions are optimal at a special set of °ow parameters (e.g., the Reynolds number

Re). When the °ow parameters are not at their reference values, the POD basis func-

tions obtained at the reference condition are no longer optimal. It is straightforward

to generate the new set of optimal basis functions at the new condition. It is not

computationally practical to provide the matrix R at each condition. There are two

situations in which the POD basis functions can be used at ofi-reference conditions.20

First, the POD basis functions can be used at ofi-reference conditions, if the basis

functions are su–ciently insensitive to the °ow parameters. For example, the work

of Sahan et al.11 showed that the POD-based ROM constructed for simulating non-

isothermal transitional grooved-channel °ow at reference Re = 430 could successfully

predict the °ow fleld at Reynolds numbers in the range of 430 • Re • 1050. One

approach to extend the range of ofi-reference conditions in which the POD-based

ROMs are valid is to generate databases by combining snapshots from difierent °ow

conditions (e.g., the work of Ma et al.12).

Second, if the basis functions possess a property of universal similarity, the POD

basis functions can be used at ofi-reference conditions. The work of Chambers et al.8

explored this possibility by using the Burgers’ model of turbulence. They showed that

the POD basis functions in the inhomogeneous spatial variables were similar over a

range of Reynolds numbers if they were scaled on outer variables. The work of Liu

et al.20 also provided experimental evidence of the basis functions similarity. Their

results indicated that the POD basis functions of three-dimensional wall turbulence

exhibit Reynolds number independence, when scaled properly on outer variables.

3. Transport Phenomena in Fluidized Beds

Fluidization is the phenomenon in which solid particles display °uid-like properties

due to the °ow of °uids.21 Figure 1 demonstrates the typical behavior of a °uidized



7

bed. The °uidized bed consists of a vessel containing solid particles and a bottom

(a) (b) (c)

Fig. 1. Typical behavior of a °uidized bed

plate through which gas is injected. At low gas °ow velocities as shown in Figure 1(a),

the gas percolates through the void spaces between the solid particles and the solid

remains a packed bed. When the gas velocity increases over a certain threshold, called

the minimum °uidization velocity, the solid particles display °uid-like properties as

show in Figure 1(b). This state is called °uidization. If the gas °ow velocity is

increased beyond the terminal velocity of the solid particles, the solid particles will

be swept out of the bed as shown in Figure 1(c).21

C. Outline of this Thesis

Chapter II describes the transport equations and boundary conditions used to model

the transport phenomena in °uidized beds. Chapter III presents the full numerical

model used to simulate the transport equations. Chapter IV describes the general

methodology used to construct POD-based ROMs. Chapter V presents the derivation

of the POD-based ROMs for approximating the transport equations in °uidized beds.

Chapter VI presents the analysis of the accuracy of the POD-based ROMs using two
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cases of Burgers’ equations. Chapter VII presents the results of POD-based ROMs

applied to two cases of transport phenomena in °uidized beds. The conclusions and

future work are presented in Chapter VIII. Appendix A describes the constitutive

models used to close the transport equations. Appendix B presents the algorithm

for calculating the convection factors in the full numerical model. Appendixes C-E

present samples of input flles for the POD-based ROMs.
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CHAPTER II

PHYSICAL MODEL

This chapter presents the physical model of the transport phenomena in °uidized

beds. This chapter begins with the governing equations used to model the transport

phenomena in °uidized beds. Next, the boundary conditions are described.

A. Governing Equations

Under isothermal conditions, the governing equations that model the gas-solid trans-

port phenomena in °uidized beds are the mass and momentum balance equations

given below:

† Gas mass balance

@†g‰g
@t

+5 ¢ (†g‰g~vg) = 0 (2.1)

† Solid mass balance

@†s‰s
@t

+5 ¢ (†s‰s~vs) = 0 (2.2)

† Gas momentum balance

@(†g‰g~vg)

@t
+5 ¢ (†g‰g~vg~vg) = ¡†g 5 pg +5 ¢ „„¿g + †g‰g~g + Fgs(~vs ¡ ~vg) (2.3)

† Solid momentum balance

@(†s‰s~vs)

@t
+5¢ (†s‰s~vs~vs) = ¡†s5pg¡5ps+5¢ „„¿s+ †s‰s~g¡Fgs(~vs¡~vg) (2.4)

where †, ‰, and ~v denote the volume fraction, density, and velocity vector. The

subscripts g and s denote the gas phase and solid phase, respectively. Expressions

for the gas-phase viscous stress „„¿g, gas-solid drag Fgs, granular stress „„¿s, and solid
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pressure ps are needed to close the governing equations. Constitutive models for

these variables can be found in Appendix A and are also given in Syamlal et al.22

and Syamlal.23 The gas phase is modeled as a gas obeying the ideal gas law

‰g =
pgM
RTg

(2.5)

or as an incompressible °uid with constant density. HereinM, R, and Tg denote the

average molecular mass of gas, the universal gas constant, and the gas temperature,

respectively.

B. Boundary Conditions

Figure 2 illustrates the geometry of a °uidized bed. The left and right boundaries

are no-slip walls. At the bottom (inlet) of the bed, gas is injected with steady or

unsteady, uniform or nonuniform velocities. At the top (outlet) of the bed, a constant

gas pressure is specifled.

solid
walls

velocity inlet

pressure outlet

Fig. 2. Geometry and boundary conditions of a °uidized bed
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CHAPTER III

FULL NUMERICAL MODEL

The full numerical model represents the traditional numerical model used to solve the

transport equations given by equations (2.1)-(2.4). In this study, the numerical al-

gorithm developed at the U.S. Department of Energy’s National Energy Technology

Laboratory (Syamlal et al.22) is used to solve the transport equations. The com-

puter code, written in FORTRAN 90, is MFIX (Multiphase Flow with Interphase

eXchanges). This chapter presents the discretization used in MFIX.

A. Discretization

MFIX uses a staggered grid arrangement as shown in Figure 3. Scalars are stored at

the cell centers. Components of velocity vectors are stored at the cell faces. Equations

for scalar variables are solved on the main grid. Equations for velocity components

are solved on the staggered grids. If the velocity components and pressure are solved

on the same grid, a checkboard pressure fleld could result. The staggered grid ar-

rangement is used for preventing such unphysical solutions.23 Using the staggered

grid arrangement, MFIX uses three grids, which will be discribed in the following

section, to solve a two-dimensional problem.

(i; j)

(i; j + 1)

(i+ 1; j)

v

u
p

Fig. 3. Grid arrangement in MFIX
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B. Discretized Governing Equations

This section describes the two-dimensional discretized governing equations in MFIX.

MFIX uses the control volume method to discretize the governing equations.

Mass balance

P EW

N

S

n

s

ew

Fig. 4. Control volume for mass balance

For convenience, let us write the mass balance equations (2.1) and (2.2) as

@†m‰m
@t

+5 ¢ (†m‰m~vm) = 0; (3.1)

where the subscript m indicates the phase (g or s). Figure 4 shows a control volume

for the mass balance equations. P is the center of the control volume. E, W , N , and

S represent the east, west, north, and south neighbor cells of the control volume. e,

w, n, and s represent the east, west, north, and south faces of the control volume.

Volume fraction †m and density ‰m are stored at the cell centers P , E, W , N ,

and S. In order to discretize the convection terms, volume fraction and density values

at the cell faces e, w, n, and s must be evaluated. MFIX uses a convection weighting

factor » to calculate the volume fraction and density at each face. For example,
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(†m‰m) at the east face is calculated as23

(†m‰m)e = (»m)e(†m‰m)E+(1¡(»m)e)(†m‰m)P = (»m)e(†m‰m)E+(„»m)e(†m‰m)P ; (3.2)

where (»m)e is the convection weighting factor for (†m‰m) at the east face and („»m)e =

1¡ (»m)e. The algorithm for calculating the convection weighting factor is presented

in Appendix B.

Using the convection weighting factor, the mass balance equations are discretized

as23

(am)P (†m‰m)P =
X

nb

(am)nb(†m‰m)nb + (bm)P ; (3.3)

where the subscript nb represents E, W , N , and S. Herein (am)P , (am)nb, and (bm)P

are deflned as

(am)E = ¡(»m)e(um)eAe; (3.3a)

(am)W = („»m)w(um)wAw; (3:3b)

(am)N = ¡(»m)n(vm)nAn; (3:3c)

(am)S = („»m)s(vm)sAs; (3:3d)

(am)P = ¢V
¢t

+ ((um)eAe ¡ (um)wAw + (vm)nAn ¡ (vm)sAs)

+
P

nb(am)nb; (3:3e)

(bm)P = (†m‰m)
o
P
¢V
¢t
; (3:3f)

where A, ¢V , and ¢t denote the face area, cell volume, and time step size, respec-

tively. The superscript o denotes old (previous) time step values.

Momentum balance

Figures 5(a) and 5(b) show the control volumes used to discretize the x-momentum

balance equation and y-momentum balance equation, respectively. In Figures 5(a)
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p EW

N

S

n

s

ew

NW NE

SW SE

(a) x-momentum balance

p EW

N

S

n

s

ew

NENW

SW SE

(b) y-momentum balance

Fig. 5. Control volume for momentum balance

and 5(b), p denotes the center of the control volume; e, w, n, and s represent the

east, west, north, and south neighbor cells of the control volume; E, W , N , and S

denote the east, west, north, and south faces of the control volume; NE, NW , SE,

and SW denote the four corners of the control volume.

In MFIX, the gas and solid x-momentum equations are discretized as23

(aum)p(um)p =
X

nb

(aum)nb(um)nb + (bum)p

¡Ap(†m)p ((pg)E ¡ (pg)W ) + (Fgs(ul ¡ um)p)¢V; (3.4)
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where m is used to indicate the phase (gas g or solid s). l denotes the phase other

than m. (aum)p, (a
u
m)nb, and (bum)p are deflned as

(aum)e = („m)EAE

¢x
¡ (»um)e(†m‰m)e(um)EAE; (3.4a)

(aum)w = („m)WAW

¢x
+ („»um)w(†m‰m)w(um)WAW ; (3:4b)

(aum)n = („m)NAN

¢y
¡ (»um)n(†m‰m)n(vm)NAN ; (3:4c)

(aum)s = („m)SAS

¢y
+ („»um)s(†m‰m)s(vm)SAS; (3:4d)

(aum)p =
P

nb(a
u
m)nb + (aum)

o
p; (3:4e)

(aum)
o
p =

(†m‰m)op¢V

¢t
; (3:4f)

(bum)p = (aum)
o
p(um)

o
p + Sum; (3:4g)

Sum = ((‚m)Etr(Dm)E ¡ (‚m)W tr(Dm)W )Ap

+(„m)E
(um)e¡(um)p

¢x
AE ¡ („m)W

(um)p¡(um)w
¢x

AW

+(„m)N
(vm)NE¡(vm)NW

¢x
AN ¡ („m)S

(vm)SE¡(vm)SW
¢x

AS: (3:4h)

Similarly, the y-momentum equations are discretized as23

(avm)p(vm)p =
X

nb

(avm)nb(vm)nb + (bvm)p

¡Ap(†m)p ((pg)N ¡ (pg)S) + (Fgs(vl ¡ vm)p)¢V; (3.5)
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where

(avm)e = („m)EAE

¢x
¡ (»vm)e(†m‰m)e(um)EAE; (3.5a)

(avm)w = („m)WAW

¢x
+ („»vm)w(†m‰m)w(um)WAW ; (3:5b)

(avm)n = („m)NAN

¢y
¡ (»vm)n(†m‰m)n(vm)NAN ; (3:5c)

(avm)s = („m)SAS

¢y
+ („»vm)s(†m‰m)s(vm)SAS; (3:5d)

(avm)p =
P

nb(a
v
m)nb + (avm)

o
p; (3:5e)

(avm)
o
p =

(†m‰m)op¢V

¢t
; (3:5f)

(bvm)p = (avm)
o
p(vm)

o
p + Svm ¡ (†m‰m)pg¢V; (3:5g)

Svm = ((‚m)N tr(Dm)N ¡ (‚m)Str(Dm)S)Ap

+(„m)E
(um)NE¡(um)SE

¢y
AE ¡ („m)W

(um)NW¡(um)SW
¢y

AW

+(„m)N
(vm)n¡(vm)p

¢y
AN ¡ („m)S

(vm)p¡(vm)s
¢y

AS: (3:5h)

Gas pressure correction

An important step in the algorithm of MFIX is the discretization of a gas pres-

sure correction equation. MFIX does not solve the gas mass balance equation. MFIX

solves the gas pressure correction equation instead. The gas pressure correction equa-

tion is derived from the discretized gas mass balance equation and the discretized mo-

mentum balance equations. The gas pressure correction is solved to determine the gas

pressure correction, p0g. The control volume for the gas pressure correction equation

is identical to the control volume used for discretizing the mass balance equations.

The gas pressure correction equation can be written in the standard form23

apP (p
0

g)P =
X

nb

apnb(p
0

g)nb + bpP ; (3.6)
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where

apE = ((†g‰g)E»
p
e + (†g‰g)P „»

p
e )dgeAe; (3.6a)

apW = ((†g‰g)P »
p
w + (†g‰g)W „»pw)dweAw; (3:6b)

apN = ((†g‰g)N»
p
n + (†g‰g)P „»

p
n)dgnAn; (3:6c)

apS = ((†g‰g)P »
p
s + (†g‰g)S „»

p
s )dgsAs; (3:6d)

apP =
P

nb a
p
nb; (3:6e)

bpP = ¡f
‡

(†g‰g)P¡(†g‰g)oP
¢t

·

¢V

+
¡

(†g‰g)E»
p
e + (†g‰g)P „»

p
e

¢

(u⁄g)eAe

¡
¡

(†g‰g)P »
p
w + (†g‰g)W „»pw

¢

(u⁄g)wAw

+
¡

(†g‰g)N»
p
n + (†g‰g)P „»

p
n

¢

(v⁄g)nAn

¡
¡

(†g‰g)P »
p
s + (†g‰g)S „»

p
s

¢

(v⁄g)sAsg: (3:6f)

Herein, the superscript ⁄ indicates tentative velocities (i.e., velocities before correc-

tion). The velocity corrections along the x-direction are given by23

(um)p = (u⁄m)p ¡ dmp((p
0

g)E ¡ (p0g)W ); (3.7)

where

dgp =
Ap

‡

(†g)p +
(†s)pFgs¢V

(aus )p+Fgs¢V

·

(aug )p+
Fgs¢V (aus )p
(aus )p+Fgs¢V

; (3.8)

dsp =
Ap

‡

(†s)p +
(†g)pFgs¢V

(aug )p+Fgs¢V

·

(aus )p+
Fgs¢V (aug )p

(aug )p+Fgs¢V

: (3.9)

Note that in Equations (3.7), (3.8), and (3.9), p is the control volume center shown

in Figure 5(a). Similarly, the velocity corrections along the y-direction are given by

(vm)p = (v⁄m)p ¡ dmp((p
0

g)N ¡ (p0g)S); (3.10)
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where p now is the control volume center shown in Figure 5(b).

Solid volume fraction correction

In order to successfully handle dense packing of solids, MFIX derives a solid

volume fraction correction equation by including the efiect of solid pressure in the

discretized solid mass balance equation.23 In the algorithm of MFIX, the solid volume

fraction correction equation is solved instead of the solid mass balance equation. The

solid volume fraction equation is written as23

a†P (†
0

s)P =
X

nb

a†nb(†
0

s)nb + b†P ; (3.11)

where

a†E = [(†m‰m)
⁄
eee(Ks)E ¡ »†e(‰s)E(u

⁄
s)e]Ae; (3.11a)

a†W =
£

(†m‰m)
⁄
wew(Ks)W + „»†w(‰s)W (u⁄s)w

⁄

Aw; (3:11b)

a†N = [(†m‰m)
⁄
nen(Ks)N ¡ »†n(‰s)N(v

⁄
s)n]An; (3:11c)

a†S =
£

(†m‰m)
⁄
ses(Ks)S + „»†s(‰s)S(v

⁄
s)s
⁄

As; (3:11d)

a†P = (‰s)P [„»
†
e(u

⁄
s)eAe ¡ „»†w(u

⁄
s)wAw

+„»†n(v
⁄
s)nAn ¡ „»†s(v

⁄
s)sAs]

+(Ks)P [(‰s†
⁄
s)eeeAe + (‰s†

⁄
s)wewAw

+(‰s†
⁄
s)nenAn + (‰s†

⁄
s)sesAs] + (‰s)P

¢V
¢t
; (3:11e)

b†P = ¡(‰s†⁄s)e(u⁄s)eAe + (‰s†
⁄
s)w(u

⁄
s)wAw

¡(‰s†⁄s)n(v⁄s)nAn + (‰s†
⁄
s)s(v

⁄
s)sAs

¡ [(†⁄s‰s)P ¡ (†s‰s)
o
P ]

¢V
¢t
: (3:11f)

Herein Ks =
@ps
@†s

.
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CHAPTER IV

METHODOLOGY FOR REDUCED ORDER MODELING BASED ON PROPER

ORTHOGONAL DECOMPOSITION

This chapter presents the general methodology for generating the POD-based ROMs.

The methodology for generating the POD-based ROMs consists of three steps: (1)

database generation; (2) modal decomposition; and (3) Galerkin projection. For

convenience, let us use the following governing PDE to illustrate these three steps:

@u

@t
= D(u); in ›£ (0; T ]; (4.1)

where u(x; t) is the state vector; › is the spatial domain; (0; T ] is the temporal

domain. Equation (4.1) can represent the Burgers’ equation, the Euler equations, the

Navier-Stokes equations, or the transport equations (2.1)-(2.4). Additionally, proper

boundary conditions and initial conditions must be specifled.

A. Database Generation

The database is an ensemble of data that represent solutions of the governing equation

(4.1). The database can be numerical solutions of (4.1), experimental measurements,

or combination of numerical and experimental data. In this study, the database

contains a number of snapshots, each at difierent momentum of time, obtained from

numerical simulations of the governing equation (4.1). MFIX was used to gene-

rate the database for the transport equations (2.1)-(2.4) which model the transport

phenomena in °uidized beds.
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B. Modal Decomposition

Let us assume that a number of snapshots u(x; ti), i 2 [1;M ] have been generated

during the database generation step. Herein M is the total number of snapshots. In

the modal decomposition step, POD is applied to the database to extract the basis

functions of u. First, u is decomposed into the mean „u(x) and the °uctuation u0(x; t),

i.e.,

u(x; t) = „u(x) + u0(x; t); (4.2)

where

„u(x) =
1

T

Z T

0

u(x; t)dt =
1

M

M
X

i=0

u(x; ti)

and

u0(x; ti) = u(x; ti)¡ „u(x); i 2 [1;M ]:

The tensor product matrix R is calculated as

R(x;x0) =
1

M

M
X

i=1

u0(x; ti)u
0T (x0; ti):

The basis functions `k are the eigenvectors of the matrix R(x;x0). Using the basis

functions, u(x; t) is reconstructed as

u(x; t) = „u(x) +
M
X

j=1

fij(t)`j(x) =
M
X

j=0

fij(t)`j(x); (4.3)

where the zeroth basis function `0(x) is the mean „u(x) and fi0(t) · 1.

Method of snapshots

A popular technique for flnding eigenvalues and eigenvectors of Equation (1.6) is

the method of snapshots proposed by Sirovich.7 The method of snapshots is e–cient

when the resolution of the spatial domain N is higher than the number of snapshots

M . The method of snapshots is based on the fact that the data vectors ui and the
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eigenvectors `k are spanning the same linear space.24 As a result, the eigenvectors

can be written as a linear combination of the data vectors

`k =
M
X

i=1

vki ui; k 2 [1;M ]: (4.4)

If (4.4) is introduced in the eigenvalue problem R(x;x0)`(x) = ‚`(x0) we obtain7

Cv = ‚v; (4.5)

where vk = (vk1 ; v
k
2 ; : : : ; v

k
M) is the kth eigenvector of (4.5); C is a symmetric M £M

matrix deflned by7

Cij =
1

M
(u0(x; ti); u

0(x; tj)) : (4.6)

Thus the eigenvectors of the N £N matrix R are calculated by computing the eigen-

vectors of theM£M matrix C. In this study, a code due to Paul Cizmas and Antonio

Palacios is used to perform POD using the method of snapshots.

C. Galerkin Projection

The eigenvalues are ordered such that ‚1 ‚ ‚2 ‚ ¢ ¢ ¢ ‚ ‚M ‚ 0. The basis functions

are also ordered according to their corresponding eigenvalues. If most of the energy

is contained in the flrst m (m < M) POD modes, such that
Pm

j=1 ‚j ’
PM

j=1 ‚j, it is

reasonable to approximate u0(x; t) using the flrst m POD modes:

u(x; t) ’ „u(x) +
m
X

j=1

fij(t)`j(x) =
m
X

j=0

fij(t)`j(x): (4.7)

Let us substitute the approximation of u(x; t) given by equation (4.7) into the

governing equation (4.1),

m
X

j=1

dfij(t)

dt
`j(x) = D(

m
X

j=0

fij(t)`j(x)): (4.8)
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When equation (4.8) is projected along the basis function, `k(x),

ˆ

`k;
m
X

j=1

dfij(t)

dt
`j(x)

!

=

ˆ

`k; D(
m
X

j=0

fij(t)`j(x))

!

; (4.9)

we obtain the ordinary difierential equations,

dfik
dt

= Fk(fi1; : : : ; fim); k 2 [1;m]; (4.10)

where the unknowns are the time coe–cients fik(t), k 2 [1;m]. When deriving equa-

tion (4.10) from equation (4.9), we have used the orthonormal property of the basis

functions,

(`k; `j) = –kj =

8

>

<

>

:

1 if k = j

0 if k 6= j
:

Order reduction has been achieved by (1) replacing the PDEs (4.1) by a system

of ODEs (4.10), and (2) reducing the number of equations from N to m. The ODEs

(4.10) can be integrated using appropriate ODE solvers, e.g., the fourth-order Runge-

Kutta method to predict the time history of fij, j 2 [1;m]. With the time coe–cients

obtained from the ODEs (4.10), u(x; t) can be reconstructed using the approximation

(4.7). We can also obtain the values of fij by directly projecting the database onto

the jth basis function,

fiPODj (tk) = (`j(x); u
0(x; tk)) ; j 2 [1;m]; k 2 [1;M ]: (4.11)

fiPOD can be used as reference to examine the accuracy of the POD-based ROM at

the reference condition.
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D. Summary

This chapter presented the general methodology for generating the POD-based ROMs.

The governing equation (4.1) was used to illustrate this methodology. The POD-based

ROM generated in this chapter consists of a system of ODEs.
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CHAPTER V

REDUCED ORDER MODELS BASED ON PROPER ORTHOGONAL

DECOMPOSITION FOR TRANSPORT PHENOMENA

This chapter describes the POD-based ROMs generated to approximate the transport

equations (2.1)-(2.4). Two catalogs of POD-based ROMs have been generated. The

flrst catalog includes two POD-based ROMs constructed for gas-only °ow phenomena.

The second catalog includes one POD-based ROM constructed for gas-solid transport

phenomena. These POD-based ROMs are derived from the discretized governing

equations described in Section III.B.

A. Reduced order models based on proper orthogonal decomposition for gas-only

°ow phenomena

For a two-dimensional gas-only °ow problem, MFIX solves the gas x-momentum

equation (3.4), the gas y-momentum equation (3.5), and the gas pressure correction

equation (3.6). For gas-only °ow problems, †g · 1, †s · 0, and Fgs · 0. The

dependent fleld variables are the gas pressure pg and the gas velocities ug and vg.

When describing the POD-based ROMs for gas-only °ows, the subscript g is dropped

for convenience. Table I lists the features of the two POD-based ROMs generated for

gas-only °ows.

1. ODExMFIX

ODExMFIX is a POD-based ROM generated to model gas-only °ows. ODExMFIX

is derived from the discretized momentum equations (3.4), (3.5) and the gas pressure

correction equation (3.6). The discretized momentum equations and the gas pressure
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Table I. Reduced order models for gas-only °ows

Model Governing Equations Unknowns of the ODEs

ODExMFIX x-momentum balance fiu, fiv, fip

y-momentum balance

pressure correction

ODEx3 x-momentum balance fiu, fiv, fi‰

y-momentum balance

mass balance

correction equation are rearranged as

aupup ¡
X

nb

aunbunb = bup ¡¢y(pE ¡ pW ); (5.1)

avpvp ¡
X

nb

avnbvnb = bvp ¡¢x(pN ¡ pS); (5.2)

apPp
0

P ¡
X

nb

apnbp
0

nb = bpP : (5.3)

In ODExMFIX, p, u, and v are approximated using the POD basis functions as

u(x; t) = „u(x) + u0(x; t) »= `u0(x) +
mu
X

i=1

fiui (t)`
u
i (x); (5.4)

v(x; t) = „v(x) + v0(x; t) »= `v0(x) +
mv
X

i=1

fivi (t)`
v
i (x); (5.5)

p(x; t) »= `p0(x) +
mp
X

i=1

fipi (t)`
p
i (x): (5.6)
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where mu, mv, and mp are the number of POD modes used to approximate u, v, and

p, respectively. The correction of the pressure, p0, is approximated as

p0(x; t) »=
mp
X

i=1

(fipi )
0(t)`pi (x): (5.7)

Substituting the approximations of u, v, and p0 given by (5.4), (5.5), and (5.7) into

equations (5.1), (5.2), and (5.3), respectively, yields

aup

mu
X

i=0

fiui `
u
i ¡

X

nb

aunb

mu
X

i=0

fiui `
u
i;nb = bup ¡¢y(pE ¡ pW ); (5.8)

avp

mv
X

i=0

fivi `
v
i ¡

X

nb

avnb

mv
X

i=0

fivi `
v
i;nb = bvp ¡¢x(pN ¡ pS); (5.9)

apP

mp
X

i=1

(fipi )
0`pi ¡

X

nb

apnb

mp
X

i=1

(fipi )
0`pi;nb = bpP : (5.10)

Projecting equations (5.8), (5.9), and (5.10) onto the basis functions `uk , `
v
k, and `pk,

respectively, generates three systems of linear equations:

~Aufiu = ~Bu; (5.11)

~Avfiv = ~Bv; (5.12)

~Apfip = ~Bp; (5.13)

where

~Au
ij =

ˆ

(aup`
u
j ¡

X

nb

aunb`
u
j;nb); `

u
i

!

;

~Bui =

ˆ

[bup ¡¢y(pE ¡ pW )¡ (aup`
u
0 ¡

X

nb

aunb`
u
0;nb)]; `

u
i

!

;

~Av
ij =

ˆ

(avp`
v
j ¡

X

nb

avnb`
v
j;nb); `

v
i

!

;
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~Bvi =

ˆ

[bvp ¡¢x(pN ¡ pS)¡ (avp`
v
0 ¡

X

nb

avnb`
v
0;nb)]; `

v
i

!

;

~Ap
ij =

ˆ

(app`
p
j ¡

X

nb

apnb`
p
j;nb); `

p
i

!

;

~Bpi =
¡

bpp; `
p
i

¢

:

Herein the dimensions of ~Au, ~Av and ~Ap are mu £ mu, mv £ mv, and mp £ mp,

respectively. The dimensions of ~Bu, ~Bv and ~Bp are mu £ 1, mv £ 1, and mp £ 1,

respectively. These matrices are calculated using the fleld variables from the previous

iteration. The systems of linear equations (5.11), (5.12), and (5.13) are solved using

the LU decomposition method.

ODExMFIX uses an iterative algorithm which is similar to the algorithm used

in MFIX. An outline of the solution algorithm in ODExMFIX is given below:

† Using the time coe–cients from the previous iteration, reconstruct the fleld

variables p, u and v. For compressible °ows, calculate the density ‰ using the

ideal gas law.

† Solve the system of linear equations (5.11) and obtain the tentative values of

fiui (t), i 2 [1;mu]. The values are called tentative values because they are

calculated based on the previous pressure fleld and they will be corrected based

on the pressure correction.

† Solve the system of linear equations (5.12) and obtain the tentative values of

fivi (t), i 2 [1;mv].

† Solve the system of linear equations (5.13) and obtain (fipi )
0(t), i 2 [1;mp].

† Correct the time coe–cients of p, u and v.

† Check the convergence. If converged, advance to the next time step.
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The input data for ODExMFIX are the basis functions of the velocities and the

pressure. The solutions of ODExMFIX are fiui , i 2 [1;mu], fivi , i 2 [1;mv], and fipi ,

i 2 [1;mp]. An example of the input flle of ODExMFIX is presented in Appendix C.

2. ODEx3

ODEx3 is a POD-based ROM generated to model compressible gas °ows. ODEx3 is

derived from the discretized gas mass equation (3.3) and the discretized gas momen-

tum equations (3.4) and (3.5). For gas-only °ows the dependent variables in MFIX

are the pressure p and the velocities u and v. The density fleld is calculated from

the pressure fleld using the ideal gas law (2.5). ‰ is approximated using the basis

functions `‰i , i 2 [1;m‰] as

‰ »= `‰0 +
m‰
X

i=1

fi‰i (t)`
‰
i : (5.14)

Consequently, the pressure p is approximated as

p »= RT

Mw

ˆ

`‰0 +
m‰
X

i=1

fi‰i (t)`
‰
i

!

: (5.15)

Using equations (3.3a)-(3.3f), the discretized gas mass equation (3.3) is rear-

ranged as

¢V ¢ ‰P ¡ ‰oP
¢t

= ¡(»e‰E + „»e‰P )ue¢y + (»w‰P + „»w‰W )uw¢y

¡(»n‰N + „»n‰P )vn¢x+ (»s‰P + „»s‰S)vs¢x; (5.16)

where ¢y = Ae = Aw and ¢x = An = As for two-dimensional °ows. Replacing

‰P¡‰
o
P

¢t
by @‰

@t
and substituting the approximations given by (5.4), (5.5), and (5.14)
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into equation (5.16), one obtains

¢V
m‰
X

i=1

_fi‰i`
‰
i = ¡

m‰
X

i=0

mu
X

j=0

(»e`
‰
i;E + „»e`

‰
i )`

u
j ¢ fi‰ifiuj +

+
m‰
X

i=0

mu
X

j=0

(»w`
‰
i +

„»w`
‰
i;W )`uj;w ¢ fi‰ifiuj ¡

¡
m‰
X

i=0

mv
X

j=0

(»n`
‰
i;N + „»n`

‰
i )`

v
j ¢ fi‰ifivj +

+
m‰
X

i=0

mv
X

j=0

(»s`
‰
i +

„»s`
‰
i;S)`

v
j;s ¢ fi‰ifivj : (5.17)

Projecting equation (5.17) onto the basis functions `‰k, k 2 [1;m‰], generates m‰

ODEs with the form of

•A‰
kk _fi

‰
k =

m‰
X

i=0

mu
X

j=0

•F‰
kijfi

‰
ifi

u
j +

m‰
X

i=0

mv
X

j=0

•G‰kijfi
‰
ifi

v
j ; (5.18)

where

•A‰
ij = –ij ¢¢V;

•F‰
kij = ¡

¡

(»e`
‰
i;E + „»e`

‰
i )`

u
j ; `

‰
k

¢

+
¡

(»w`
‰
i +

„»w`
‰
i;W )`uj;w; `

‰
k

¢

;

•G‰kij = ¡
¡

(»n`
‰
i;N + „»n`

‰
i )`

v
j ; `

‰
k

¢

+
¡

(»s`
‰
i +

„»s`
‰
i;S)`

v
j;s; `

‰
k

¢

:

For compressible gas °ows, the discretized momentum equations are

aupup =
X

nb

aunbunb + bup ¡¢y(pE ¡ pW ); (5.19)

avpvp =
X

nb

avnbvnb + bvp ¡¢x(pN ¡ pS): (5.20)

Substituting equations (3.4e)-(3.4g) into equation (5.19) and substituting equations (3.5e)-

(3.5g) into equation (5.20) yields

ˆ

X

nb

aunb +
‰op¢V

¢t

!

up =
X

nb

aunbunb +
‰op¢V

¢t
uop + Su ¡¢y(pE ¡ pW ); (5.21)



30

ˆ

X

nb

avnb +
‰op¢V

¢t

!

vp =
X

nb

avnbvnb+
‰op¢V

¢t
vop¡ ‰pg¢V +Sv¡¢x(pN ¡ pS): (5.22)

Equations (5.21) and (5.22) are rearranged as

‰op¢V
up ¡ uop

¢t
=
X

nb

aunb(unb ¡ up) + Su ¡¢y(pE ¡ pW ); (5.23)

‰op¢V
vp ¡ vop
¢t

=
X

nb

avnb(vnb ¡ vp)¡ ‰pg¢V + Sv ¡¢x(pN ¡ pS): (5.24)

Replacing
up¡u

o
p

¢t
and

vp¡v
o
p

¢t
by @up

@t
and @vp

@t
, respectively, yields

‰op¢V
@up
@t

=
X

nb

aunb(unb ¡ up) + Su ¡¢y(pE ¡ pW ); (5.25)

‰op¢V
@vp
@t

=
X

nb

avnb(vnb ¡ vp)¡ ‰pg¢V + Sv ¡¢x(pN ¡ pS): (5.26)

Substituting the approximations of u, v, ‰ and p given by equations (5.4), (5.5),

(5.14), and (5.15) and the deflnitions of aunb and avnb given by equations (3.4a)-(3.4d)
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and equations (3.5a)-(3.5d) into equations (5.25) and (5.26), yields

‰op¢V ¢
mu
X

i=1

_fiui `
u
i = ¡

m‰
X

i=0

mu
X

j=0

mu
X

k=0

»uE`
‰
i;e`

u
k;E(`

u
j;e ¡ `uj )¢yfi

‰
ifi

u
jfi

u
k

+
m‰
X

i=0

mu
X

j=0

mu
X

k=0

„»uW`
‰
i;w`

u
k;W (`uj;w ¡ `uj )¢yfi

‰
ifi

u
jfi

u
k

¡
m‰
X

i=0

mu
X

j=0

mv
X

k=0

»uN`
‰
i;n`

v
k;N(`

u
j;n ¡ `uj )¢xfi

‰
ifi

u
jfi

v
k

+
m‰
X

i=0

mu
X

j=0

mv
X

k=0

„»uS`
‰
i;s`

v
k;S(`

u
j;s ¡ `uj )¢xfi

‰
ifi

u
jfi

v
k

+
mu
X

i=0

„E¢y

¢x
(`ui;e ¡ `ui )fi

u
i +

mu
X

i=0

„W¢y

¢x
(`ui;w ¡ `ui )fi

u
i

+
mu
X

i=0

„N¢x

¢y
(`ui;n ¡ `ui )fi

u
i +

mu
X

i=0

„S¢x

¢y
(`ui;s ¡ `ui )fi

u
i

+Su ¡¢y
RT

Mw

m‰
X

i=0

(`‰i;E ¡ `‰i;W )fi‰i ; (5.27)
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‰op¢V ¢
mv
X

i=1

_fivi `
v
i = ¡

m‰
X

i=0

mu
X

j=0

mv
X

k=0

»vE`
‰
i;e`

u
j;E(`

v
k;e ¡ `vk)¢yfi

‰
ifi

u
jfi

v
k

+
m‰
X

i=0

mu
X

j=0

mv
X

k=0

„»vW`
‰
i;w`

u
j;W (`vk;w ¡ `vk)¢yfi

‰
ifi

u
jfi

v
k

¡
m‰
X

i=0

mv
X

j=0

mv
X

k=0

»vN`
‰
i;n`

v
j;N(`

v
k;n ¡ `vk)¢xfi

p
ifi

v
jfi

v
k

+
m‰
X

i=0

mv
X

j=0

mv
X

k=0

„»vS`
‰
i;s`

v
j;S(`

v
k;s ¡ `vk)¢xfi

‰
ifi

v
jfi

v
k

+
mv
X

i=0

„E¢y

¢x
(`vi;e ¡ `vi )fi

v
i +

mv
X

i=0

„W¢y

¢x
(`vi;w ¡ `vi )fi

v
i

+
mv
X

i=0

„N¢x

¢y
(`vi;n ¡ `vi )fi

v
i +

mv
X

i=0

„S¢x

¢y
(`vi;s ¡ `vi )fi

v
i

+Sv ¡ g¢V
m‰
X

i=0

`‰ifi
‰
i ¡¢x

RT

Mw

m‰
X

i=0

(`‰i;N ¡ `‰i;S)fi
‰
i : (5.28)

Project (5.27) onto the basis function `ul , l 2 [1;mu] and obtain mu ODEs

•Au
ll _fi

u
l =

m‰
X

i=0

mu
X

j=0

mu
X

k=0

•Fu
lijkfi

‰
ifi

u
jfi

u
k +

m‰
X

i=0

mu
X

j=0

mv
X

k=0

•Gulijkfi‰ifiujfivk +

+
mu
X

i=0

•Hu
lifi

u
i +

m‰
X

i=0

•Pu
lifi

‰
i +

•Sul ; (5.29)

where

•Au
ij = –ij ¢

¡

‰op`
u
j¢V; `

u
i

¢

;

•Fu
lijk =

¡

[¡»uE`‰i;e`uk;E(`uj;e ¡ `uj )¢y +
„»uW`

‰
i;w`

u
k;W (`uj;w ¡ `uj )¢y]; `

u
l

¢

;

•Gulijk =
¡

[¡»uN`‰i;n`vk;N(`uj;n ¡ `uj )¢x+ „»uS`
‰
i;s`

v
k;S(`

u
j;s ¡ `uj )¢x]; `

u
l

¢

;

•Hu
li =

µ

„E¢y

¢x
(`ui;e ¡ `ui ); `

u
l

¶

+

µ

„W¢y

¢x
(`ui;w ¡ `ui ); `

u
l

¶

+

µ

„N¢x

¢y
(`ui;n ¡ `ui ); `

u
l

¶

+

µ

„S¢x

¢y
(`ui;s ¡ `ui ); `

u
l

¶

;
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•Pu
li = ¡

RT

Mw

¢y
¡

(`‰i;E ¡ `‰i;W ); `ul
¢

;

•Sul = (Su; `ul ) :

Project (5.28) onto the basis function `vl , l 2 [1;mv] and obtain mv ODEs

•Av
ll _fi

v
l =

m‰
X

i=0

mu
X

j=0

mv
X

k=0

•Fv
lijkfi

‰
ifi

u
jfi

v
k +

m‰
X

i=0

mv
X

j=0

mv
X

k=0

•Gvlijkfi‰ifivjfivk +

+
mv
X

i=0

•Hv
lifi

v
i +

m‰
X

i=0

•Pv
lifi

‰
i +

m‰
X

i=0

•Mv
lifi

‰
i +

•Svl ; (5.30)

where

•Av
ij = –ij ¢

¡

‰op`
v
j¢V; `

v
i

¢

;

•Fv
lijk =

¡

[¡»vE`‰i;e`uj;E(`vk;e ¡ `vk)¢y +
„»vW`

‰
i;w`

u
j;W (`vk;w ¡ `vk)¢y]; `

u
l

¢

;

•Gulijk =
¡

[¡»vN`‰i;n`vj;N(`vk;n ¡ `vk)¢x+ „»vS`
‰
i;s`

v
j;S(`

v
k;s ¡ `vk)¢x]; `

v
l

¢

;

•Hu
li =

µ

„E¢y

¢x
(`vi;e ¡ `vi ); `

v
l

¶

+

µ

„W¢y

¢x
(`vi;w ¡ `vi ); `

v
l

¶

+

µ

„N¢x

¢y
(`vi;n ¡ `vi ); `

v
l

¶

+

µ

„S¢x

¢y
(`vi;s ¡ `vi ); `

v
l

¶

;

•Pv
li = ¡

RT

Mw

¢x
¡

(`‰i;N ¡ `‰i;S); `
v
l

¢

;

•Mv
li = ¡g¢V (`‰i ; `

v
l ) ;

•Svl = (Sv; `vl ) :

ODEx3 consists of m‰ ODEs (5.18), mu ODEs (5.29), and mv ODEs (5.30). The

input data of ODEx3 are the basis functions of ‰, u, and v. The solutions of ODEx3

are fi‰i , i 2 [1;m‰], fiui , i 2 [1;mu], and fivi , i 2 [1;mv]. An example of the input flle

of ODEx3 is presented in Appendix D.
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B. Reduced order model based on proper orthogonal decomposition for gas-solid

transport phenomena

For two-dimensional gas-solid transport phenomena, MFIX solves the discretized x-

momentum equations of the gas-phase and the solid-phase (3.4), the discretized y-

momentum equations of the gas-phase and the solid-phase (3.5), the gas pressure

correction equation (3.6), and the solid volume fraction correction equation (3.11).

The dependent fleld variables in MFIX are the gas pressure pg, the void fraction †g,

and the velocity components of the gas-phase and the solid-phase, ug, vg, us, and vs.

Let us assume that the database containing a number of snapshots of pg, †g, ug,

us, vg, and vs has been generated and the POD basis functions `
pg
i , `

ug
i , `

vg
i , `usi , and

`vsi have been extracted from this database. Herein the POD basis functions of †g are

not computed, because in MFIX, an intermediate variable, the solid volume fraction

†s is introduced and the solid volume fraction correction equation (3.11) is used to

solve the corrections of †s. †g is computed from †s as

†g = 1¡ †s: (5.31)

In this thesis, the POD-based ROM generated to model the gas-solid transport phe-

nomena is called ODExS. In ODExS, the solid volume fraction †s is also introduced

as an intermediate variable. ODExS uses the same solid volume fraction correction

equation as used in MFIX. Thus we call ODExS a hybrid model, because the order

of the solid volume fraction correction equation has not been reduced in ODExS.

Another reason for keeping the solid volume fraction correction equation in

ODExS is that void fraction †g should belong to [0; 1]. If †g was approximated using

the POD basis functions of `†g , at some grid points, the reconstructed void fraction

values were larger than 1 because of the approximation using POD basis functions.



35

Using the approach presented for constructing ODExMFIX, the discretized x-

momentum equations, the discretized y-momentum equations, and the discretized gas

pressure correction equation are projected onto the basis functions `um , `vm , and `pg ,

respectively. Five systems of linear algebraic equations are obtained:

~Aumfium = ~Bum ; (5.32)

~Avmfivm = ~Bvm ; (5.33)

~Apgfipg = ~Bpg ; (5.34)

where m denotes the phase g or s. The deflnitions of ~A and ~B were presented in

Section A.1.

The input data of ODExS consist of `
pg
i , `

ug
i , `

vg
i , `usi , `vsi , and the initial fleld

of †g. The solutions of ODExS include fi
pg
i , fi

ug
i , fi

vg
i , fiusi , fivsi , and †g. An outline of

the solution algorithm in ODExS is described below:

† Using the time coe–cients from the previous iteration, reconstruct the fleld vari-

ables pg, ug, vg, us, and vs. Calculate physical properties ‰g and ‰s. Calculate

transport properties „g, „s, and Fgs.

† Solve the systems of linear algebraic equations (5.32) and obtain the tentative

values of fi
ug
i (t), i 2 [1;mug ] and fiusi (t), i 2 [1;mus ].

† Solve the systems of linear algebraic equations (5.33) and obtain the tentative

values of fi
vg
i (t), i 2 [1;mvg ] and fivsi (t), i 2 [1;mvs ].

† Solve the system of linear equations (5.34) and obtain (fi
pg
i )0(t), i 2 [1;mp].

† Correct fi
ug
i , fiusi , fi

vg
i , fivsi , and fi

pg
i .
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† Solve the solid volume fraction correction equation (3.11) and obtain (†s)
0. Cor-

rect †s, fi
us
i , and fivsi .

† Calculate the void fraction using equation (5.31).

† Check the convergence. If converged, advance to the next time step.

An example of the input flle for ODExS is presented in Appendix E.

C. Summary

This chapter described the POD-based ROMs generated for the transport phenomena

in °uidized beds. Two models for gas-only °ows and one model for gas-solid transport

phenomena have been presented.
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CHAPTER VI

ACCURACY OF REDUCED ORDER MODELS BASED ON PROPER

ORTHOGONAL DECOMPOSITION

The proper orthogonal decomposition extracts a set of orthonormal basis functions

from a given ensemble of observations. The errors contained in these observations

inevitably afiect the accuracy of the POD-based ROMs. In this chapter, the accu-

racy of the POD-based ROMs is analyzed. In order to measure the accuracy, it is

better to use some governing equations whose analytical solutions are known. Thus,

in this chapter, the accuracy analysis is based on two simple sets of PDEs: a non-

homogeneous Burgers’ equation and a system of two coupled Burgers’ equations.

While the Burgers’ equation is a signiflcantly simplifled model of the transport equa-

tions, it is suitable for investigating the properties of the POD-based ROMs applied

to the transport phenomena.

A. Non-homogeneous Burgers’ Equation

Consider the non-homogeneous Burgers’ equation

@u(x; t)

@t
+ u(x; t) ¢ @u(x; t)

@x
= f(x; t); (6.1)

where u(x; t) is the dependent variable and

f(x; t) = 0:5 sin(…x) sin(t)¡ 0:2 sin(2…x) sin(2t) + 0:1 sin(5…x) sin(5t) +

+ (x¡ 0:5 sin(…x) cos(t) + 0:1 sin(2…x) cos(2t)¡ 0:02 sin(5…x) cos(5t)) ⁄

⁄ (1¡ 0:5… cos(…x) cos(t) + 0:2… cos(2…x) cos(2t)¡ 0:1… cos(5…x) cos(5t)):
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Equation (6.1) satisfles the following boundary conditions

u(0; t) = 0;

u(1; t) = 1

and the initial condition

u(x; 0) = x¡ 0:5 sin(…x) + 0:1 sin(2…x)¡ 0:02 sin(5…x):

The non-homogeneous term f(x; t) has been chosen such that the analytical solution

of equation (6.1) is

uanalytic(x; t) = x¡ 0:5 sin(…x) cos(t) + 0:1 sin(2…x) cos(2t)¡ 0:02 sin(5…x) cos(5t):

(6.2)

1. Database Generation

To generate a database for equation (6.1), we need to obtain a solution of equation

(6.1). In general, an analytical solution may not be available for equation (6.1). For

this reason, a numerical solution must be obtained.

To generate a numerical solution for equation (6.1), let us discretize the spatial

domain [0; 1] using a mesh with 100 cells of constant length ¢x. If the spatial deriva-

tive @u
@x

is approximated using a centered, second-order discretization, at each node i

in the spatial domain, the PDE (6.1) can be converted into a pseudo-ODE

dui
dt

= ¡ui
ui+1 ¡ ui¡1

2¢x
+ f(xi; t); i 2 [1; N ]; (6.3)

where N = 99. By using this approach, the numerical solution of the PDE has been

replaced by the numerical solution of a set of N flrst-order ODEs. Consequently, the

order of that system is N .
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The LSODI package due to Jefirey F. Painter and Alan C. Hindmarsh is used to

solve the system of ODEs (6.3). The system of ODEs (6.3) is integrated from t = 0s

to t = 50s. Snapshots are stored every ¢t = 0:1s. Thus there are M = 501 snapshots

in the numerical solution of PDE (6.1).

In order to analyze how the numerical errors contained in the databases in°uence

the accuracy of the POD-based ROMs, the system of ODEs (6.3) has been solved

at four difierent accuracy levels. In the LSODI package, the accuracy is controlled

by specifying the relative tolerance parameter rtol and/or the absolute tolerance

parameter atol. The convergence criteria in the LSODI package is

v

u

u

t

1

N

N
X

i=1

µ

u(j)(xi; tk)¡ u(j¡1)(xi; tk)

rtol ¢ ju(j)(xi; tk)j+ atol

¶2

< 1; (6.4)

where u(j)(xi; tk) and u
(j¡1)(xi; tk) denote u(xi; tk) at current iteration j and previous

iteration j¡1, respectively. Herein the absolute tolerance parameter atol was zero for

pure relative error control and the four rtol values corresponding to the four accuracy

levels were 0:01%, 0:3%, 5%, and 50%, respectively.

Because equation (6.4) and rtol are not straightforward for measuring the nu-

merical errors contained in the databases, let us deflne an error † as

† =
jLHS¡ RHSj
p

LHS2 +RHS2
; (6.5)

where LHS and RHS are the left-hand-side and right-hand-side of equation (6.3).

The errors corresponding to above four relative tolerance levels were 0:78%, 4:80%,

17:3% and 30:5%, respectively. The errors † were averaged in space and time, and

the spatial and temporal average error is „†. Herein, the time interval was 50s. Let

us use DB
(„†)
N to denote the database corresponding to the error of „†. u

(„†)
N;PDE(x; ti)

represents the ith snapshot in DB
(„†)
N .
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Additionally, because the analytical solution of the PDE (6.1) is known, a database

called DBA has been generated. The subscript A indicates that the snapshots in DBA

are calculated from the analytical solution (6.2). The kth component of the ith snap-

shot in DBA is

uA(xk; ti) = uanalytical(xk; ti) = uanalytical(k¢x; i¢t);

where i 2 [1;M ] and k 2 [1; N ].

2. Modal Decomposition

We decompose the dependent variable u(x; t) into the mean „u(x) and the °uctuation

u0(x; t):

u(x; ti) = „u(x) + u0(x; ti); i 2 [1;M ]:

POD is applied to the °uctuation u0(x; ti) to extract the basis functions.

There are two options for computing the basis functions. The flrst option is to

use the method described in Section I.B.2 to directly extract the eigenfunctions of

the tensor product matrix R. R is a N £N matrix given by

Rij =
1

M

M
X

k=1

u0(xi; tk)u
0T (xj; tk); i; j 2 [1; N ]:

Another option for computing the POD basis functions is to use the method of snap-

shots presented in Section IV.B. The kernel matrix C is computed as

Cij =
1

M

N
X

k=1

u0(xk; ti)u
0T (xk; tj); i; j 2 [1;M ];

and C is a M £M matrix. In general, N À M , the method of snapshots is more

computational e–cient. Since in this case, N = 99 andM = 501, it is computationally

more e–cient to use the flrst option to compute the basis functions. Herein, we still
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used the method of snapshots. The PODDEC package due to Paul Cizmas and

Antonio Palacios has been applied.

Let us denote the ith basis functions obtained from DBA and DB
(„†)
N by `iA

and `
(„†)
iN
, respectively. Note that the PODDEC package also produces a set of time

coe–cients fi(t) by directly projecting the snapshots onto the basis functions. We use

fiiA;POD
and fi

(„†)
iN;POD

to denote such time coe–cients obtained from DBA and DB
(„†)
N ,

respectively.

3. Galerkin Projection

Using the basis functions, the dependent variable u(x; t) is approximated using the

flrst m basis functions:

u(x; t) = „u(x) + u0(x; t) »= „u(x) +
m
X

i=1

fii(t)`i(x) =
m
X

i=0

fii(t)`i(x); (6.6)

where `0(x) = „u(x) and fi0(t) · 1. The total number of basis functions M is equal

to the number of snapshots, i.e., M = 501. Substituting the approximation of u(x; t)

given by (6.6) into the Burgers’ equation (6.1), yields:

m
X

i=1

dfii(t)

dt
`i(x) +

m
X

i=0

m
X

j=0

fii(t)fij(t)`i(x)
d`j(x)

dx
= f(x; t); (6.7)

where
d`j(x)

dx
is calculated using the centered, second-order discretization. Projecting

equation (6.7) onto the basis functions `k(x),

m
X

i=1

dfii
dt

(`i; `k) = ¡
m
X

i=0

m
X

j=0

fiifij

µ

`i
d`j
dx

; `k

¶

+ (f; `k) ; k 2 [1;m]; (6.8)

generates a system of flrst-order ODEs

dfik
dt

= ¡
m
X

i=0

m
X

j=0

fiifij

µ

`i
d`j
dx

; `k

¶

+ (f; `k) ; k 2 [1;m]: (6.9)
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The unknowns of the ODEs (6.9) are the time coe–cients fii(t), i 2 [1;m]. Order

reduction is achieved if m¿ N . Herein the LSODI package is also used to solve the

reduced order system of ODEs (6.9). After solving the time coe–cients fi(t) from the

ODEs (6.9), u(x; t) is reconstructed using the approximation given by (6.6).

Let us use fiiA;ROM
and fi

(„†)
iN;ROM

to denote the solutions of ODEs (6.9) using `iA

and `
(„†)
iN
, respectively. The reconstructed u are represented by uA;ROM and u

(„†)
N;ROM .

4. Accuracy Analysis

Because the analytical solution of the Burgers’ equation (6.1) is given by (6.2), the

analytical expressions of the basis functions and their corresponding time coe–cients

can be derived. These analytical expressions are used as references for the accuracy

analyzing.

Here the analytical expressions of the basis functions and time coe–cients are

derived in the discretized spatial domain. The spatial domain was discretized into

N + 1 uniform cells with ¢x = 1
N+1

. The analytical expression of the zeroth basis

function is found as

`0analytical(x) = „uanalytical(x) = lim
T!1

Z T

0

uanalytical(x; t) = x: (6.10)

Consequently,

u0analytical(x; t) = ¡0:5 sin(…x) cos(t) + 0:1 sin(2…x) cos(2t)¡ 0:02 sin(5…x) cos(5t):

(6.11)

Note that
N
X

n=1

sin(i…n¢x) sin(j…n¢x) =

8

>

<

>

:

0 if i 6= j

1
2¢x

if i = j
; (6.12)

thus f§
p
2¢x sin(i…x)g forms an orthonormal basis in the discretized spatial domain.
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Herein, we chose the f¡
p
2¢x sin(i…x)g to form the basis in order to compare to the

numerical basis functions obtained from the PODDEC package. The expression (6.11)

implies that u0analytical consists of three modes. The analytical expressions of these

basis functions and their corresponding time coe–cients are listed below:

`0analytical(x) = x, fi0analytical(t) = 1,

`1analytical(x) = ¡
p
2¢x sin(…x); fi1analytical(t) = 0:5 cos(t)=

p
2¢x;

`2analytical(x) = ¡
p
2¢x sin(2…x); fi2analytical(t) = ¡0:1 cos(2t)=

p
2¢x;

`3analytical(x) = ¡
p
2¢x sin(5…x); fi3analytical(t) = 0:02 cos(5t)=

p
2¢x:

(6.13)

a. Accuracy of basis functions

Using PODDEC, flve sets of basis functions have been computed from DBA and

DB
(„†)
N . Including the analytical basis functions given by (6.13), six sets of basis

functions are compared in this section. Table II lists these six set of basis functions

and their corresponding databases. In order to measure how well the basis functions

Table II. Six sets of basis functions and corresponding databases

Basis Function Database

`ianalytical

`iA DBA

`
(0:78)
iN

DB
(0:78)
N

`
(4:80)
iN

DB
(4:80)
N

`
(17:3)
iN

DB
(17:3)
N

`
(30:5)
iN

DB
(30:5)
N
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agree with the analytical basis functions, we deflne an error of the basis function as

„†`i =
1
N

PN

k=1

fl

fl`i(xk)¡ `ianalytical(xk)
fl

fl

°

°`ianalytical
°

°

2

£ 100%; (6.14)

where N is the number of components of the basis vectors, which is 99 for the current

case. „†`i is normalized using the L2-norm of `ianalytical .

† Accuracy of `iA

Table III lists the errors „†`i of `iA with respect to `ianalytical . These errors are

Table III. Errors of `iA , i 2 [0; 3]

Basis Functions `0A `1A `2A `3A

Error 0.0178% 0.0118% 0.0137% 0.0094%

generated by the approximations made while solving the eigenvalue problem using

the PODDEC package. Table III shows that `iA agrees with the analytical basis

functions very well. One can conclude that the errors due to the PODDEC package

are negligible.

† Accuracy of `(„†)iN

Figure 6 shows the flrst four basis functions of `
(„†)
iN

compared against the ana-

lytical basis functions `ianalytical . There is an excellent agreement between `ianalytical

and `
(0:78)
iN

corresponding to „† = 0:78%. `
(4:80)
0N

, `
(4:80)
1N

, and `
(4:80)
2N

corresponding to

„† = 4:80% agree well with the analytical basis functions. Small difierences are noticed

between `
(4:80)
3N

and `3analytical . When the numerical error „† increases to 17:3%, `
(17:3)
0N

,

`
(17:3)
1N

and `
(17:3)
2N

have slight oscillations around the analytical values and `
(17:3)
3N

has

obvious difierences compared against `3analytical . For † = 30:5%, large difierences were
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Fig. 6. `ianalytical and `
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iN

for the Burgers’ equation



46

observed between `
(30:5)
iN

and `ianalytical . From the above comparisons, we can conclude

that: (1)the accuracy of `
(„†)
iN

decrease as the numerical error „† increases; and (2) basis

functions that correspond to smaller eigenvalues are more sensitive to the numerical

errors of the databases.

Table IV presents the errors of `
(„†)
iN

with respect to `ianalytical . The errors listed

in Table IV consist of the following two components: (1) numerical errors introduced

by the eigenvalue problem solver of the PODDEC package, and (2) numerical errors

due to the database DB
(„†)
N . In order to analyze the contribution of the errors of the

database DB
(„†)
N , let us compute the errors of `

(„†)
iN

with respect to `iA . Table V lists

these errors. Table V proves that the accuracy of `
(„†)
iN

decreases as „† increases.

Table IV. Errors of `
(„†)
iN

with respect to `ianalytical , i 2 [0; 3]

„† `0N `1N `2N `3N

0.78% 0.0180% 0.0125% 0.0147% 0.0217%

4.80% 0.0158% 0.0174% 0.0242% 0.2234%

17.3% 0.0741% 0.1376% 0.1818% 1.8900%

30.5% 5.0377% 3.2211% 10.3701% 11.1122%

† Cumulative energy

The efiect of the numerical errors of the databases on the basis functions can also

be observed from the cumulative energy spectrum. Table VI shows the cumulative

energy captured by difierent number of modes used to approximate u0(x; t). Note

that „† = 0:00% represents the database of DBA. For the analytical basis functions,
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Table V. Errors of `
(„†)
iN

with respect to `iA , i 2 [0; 3]

„† `0N `1N `2N `3N

0.78% 0.0003% 0.0009% 0.0019% 0.0210%

4.80% 0.0046% 0.0113% 0.0262% 0.2225%

17.3% 0.0752% 0.1325% 0.1711% 1.8903%

30.5% 4.9980% 3.2204% 10.3672% 11.1066%

Table VI. Cumulative energy for the Burgers’ equation

„† 1 mode 2 modes 3 modes 4 modes

Analytical 96.003% 99.846% 100.00% N/A

0.00% 96.005% 99.846% 100.00% 100.00%

0.78% 96.000% 99.845% 99.999% 99.999%

4.80% 95.975% 99.840% 99.997% 99.998%

17.3% 95.639% 99.626% 99.765% 99.855%

30.5% 49.860% 94.681% 97.025% 97.841%

the total energy E is deflned as

Eanalytical =

Z T

0

Z 1

0

(u0analytical)
2dxdt

and the relative energy captured by the kth mode is deflned as

Ekanalytical =
1

Eanalytical

Z T

0

Z 1

0

(fikanalytical`kanalytical)
2dxdt:
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In this analysis, the time interval is T = 50 seconds. For `iN and `iA , the total energy

E is deflned as the sum of all the eigenvalues21

E =
M
X

k=1

‚k

and the relative energy captured by the kth mode is deflned as

Ek =
‚k
E
:

It can be seen from Table VI that as the error „† increases, the cumulative energy

decreases for the same number of modes. For the analytical solution, `4analytical does

not exist because u0analytical(x; t) consists of only three modes. When „† > 0, the energy

captured by the fourth mode is not zero due to the numerical errors of the databases.

b. Accuracy of time coe–cients

Because
P3

k=1Ekanalytical = 100%, the number of equations is reduced from 99 to 3

by setting m = 3 in ODEs (6.9). The number of equations, however, can be reduced

further to 2 by neglecting the third mode. The third mode can be neglected because

it captures a relatively small portion of the total energy. As shown in Table VI, the

third mode only covers about 0:15% of the total energy when „† < 30:5%. Even for an

error of 30:5%, the energy of the third mode is 2:3% of the total energy and it could

be acceptable to neglect it. In this section, results for both m = 3 and m = 2 are

analyzed. For convenience, ROM(3) and ROM(2) are used to denote the ROM with

m = 3 and m = 2, respectively.

To measure the accuracy of the time coe–cients obtained from the ROMs, the
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error of the time coe–cients is deflned as

„†fii =
1
M

PM

k=1

fl

flfii(tk)¡ fiianalytical(tk)
fl

fl

q

PM

k=1 fiianalytical(tk)
2

£ 100%: (6.15)

Note this error is deflned with respect to the analytical time coe–cients. In the

following comparisons, some errors were calculated with respect to time coe–cients

other than the analytical time coe–cients.

† Accuracy of fiianalytical;ROM

If the ROM (6.9) is generated using the analytical basis functions `ianalytical , the

time coe–cients obtained from solving (6.9) are denoted by fiianalytical;ROM
. Tables VII

Table VII. Errors of fiianalytical;ROM(3)

Time coe–cients fi1analytical;ROM(3)
fi2analytical;ROM(3)

fi3analytical;ROM(3)

Error 0.0006% 0.0037% 0.0179%

Table VIII. Errors of fiianalytical;ROM(2)

Time coe–cients fi1analytical;ROM(2)
fi2analytical;ROM(2)

Error 0.0174% 0.1753%

and VIII present the errors „†fii of fiianalytical;ROM
with respect to fiianalytical for ROM(3)

and ROM(2), respectively. In Table VII, the errors are generated by solving the

ODEs (6.9). As seen from Table VII, the errors caused by solving the ODEs (6.9) are

negligible. In Table VIII, the errors are generated by two sources: solving the ODEs

(6.9) and neglecting the third mode. The errors caused by neglecting the third mode

are also negligible.
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† Accuracy of fiiA;ROM

If the ROM is generated using the basis functions of `iA , the time coe–cients

obtained from the ODEs (6.9) are called fiiA;ROM
. Tables IX and X present the

errors „†fii of fiiA;ROM
with respect to fiianalytical . Compared to the errors in Tables VII

Table IX. Errors of fiiA;ROM(3)
with respect to fiianalytical

Time coe–cients fi1A;ROM(3)
fi2A;ROM(3)

fi3A;ROM(3)

Error 0.0202% 0.0277% 0.0201%

Table X. Errors of fiiA;ROM(2)
with respect to fiianalytical

Time coe–cients fi1A;ROM(2)
fi2A;ROM(2)

Error 0.0224% 0.1775%

and VIII, the errors in Tables IX and X increased. The error increase is caused by the

errors contained in the basis functions `iA . The errors in `iA are due to the numerical

errors introduced by the eigenvalue problem solver of the PODDEC package.

† Accuracy of fi(„†)
iN;ROM

If the ROM is generated using the basis functions of `
(„†)
iN
, the time coe–cients

obtained from the ODEs (6.9) are called fi
(„†)
iN;ROM

. Figures 7, 8 and 9 show the results

of fi
(„†)
iN;ROM

compared against the analytical time coe–cients.

As shown in Figure 7, when the error „† is as small as 0:78%, the time coe–cients

obtained from ROM(3) agree very well with the analytical time coe–cients. ROM(2)

shows slight errors in fi
(0:78)
2N;ROM

(t). Similar results are obtained for the case with an
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error „† of 4.8%. This proves that the ROMs provide a high accuracy approximation

for the Burgers’ equation with a dramatical reduction of order if a set of well-resolved

basis functions is used. Figure 8 shows the results corresponding to „† = 17:3%.

Difierences between the analytical time coe–cients and time coe–cients from ROMs

are noticed, especially for the third time coe–cient. The results corresponding to

„† = 30:5% are shown in Figure 9. At this error level, the time coe–cients obtained

from ROMs show large errors compared against the analytical time coe–cients.

Table XI presents the errors „†fii of fi
„†
iN;ROM

with respect to fiianalytical . In Table XI,

the errors of fi„†
iN;ROM(3)

consists of three components: (1) numerical errors due to the

database DB„†
N ; (2) errors due to the eigenvalue problem solver of the PODDEC

package; and (3) errors due to the ODE solver. The errors of fi„†
iN;ROM(2)

have an

additional error source due to neglecting of the third mode. In order to analyze how

the errors of the databases afiect the accuracy, we calculated the errors of fi„†
iN;ROM

with respect to fiiA;ROM
. Table XII presents these errors. Table XII shows that

Table XI. Errors of fi„†
iN;ROM

with respect to fiianalytical , i 2 [0; 3]

„† fi„†
1N;ROM(3)

fi„†
2N;ROM(3)

fi„†
3N;ROM(3)

fi„†
1N;ROM(2)

fi„†
2N;ROM(2)

0.78% 0.0206% 0.0288% 0.0234% 0.0226% 0.1778%

4.80% 0.0181% 0.0473% 0.1478% 0.0221% 0.1797%

17.3% 0.0288% 0.2490% 1.6055% 0.0549% 0.3267%

30.5% 1.3119% 12.059% 18.270% 1.1303% 12.407%

the accuracy of fi„†
iN;ROM

decreases as „† increases. As „† increases, the accuracy of the

time coe–cients corresponding to smaller eigenvalues decrease faster than the time

coe–cients corresponding to larger eigenvalues.
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Table XII. Errors of fi„†
iN;ROM

with respect to fiiA;ROM
, i 2 [0; 3]

„† fi„†
1N;ROM(3)

fi„†
2N;ROM(3)

fi„†
3N;ROM(3)

fi„†
1N;ROM(2)

fi„†
2N;ROM(2)

0.78% 0.0004% 0.0030% 0.0178% 0.0005% 0.0039%

4.80% 0.0037% 0.0231% 0.1536% 0.0025% 0.0228%

17.3% 0.0221% 0.2331% 1.6042% 0.0367% 0.2963%

30.5% 1.3005% 12.036% 18.260% 1.1234% 12.370%

c. Accuracy of reconstructed solution u

Using the time coe–cients obtained by solving the ODEs (6.9), the dependent variable

u(x; t) is reconstructed using the approximation given by (6.6). In this section, the

errors are calculated and compared for u(x; t) at x = 0:5. Similar to (6.14) and

(6.15), the error of the reconstructed u(0; 5; t) with respect to the analytical solution

uanalytical(0; 5; t) is deflned as

„†u =
1
M

PM

k=1 ju(0:5; tk)¡ uanalytical(0:5; tk)j
kuanalytical(0:5; t)k2

£ 100%: (6.16)

† Accuracy of reconstructed solution uanalytical;ROM (0:5; t)

The solution uanalytical;ROM (0:5; t) is reconstructed using fiianalytical;ROM
and `ianalytical .

Table XIII presents the errors „†u of uanalytical;ROM (0:5; t) with respect to uanalytical(0:5; t).

The error of uanalytical;ROM(3)(0:5; t) is caused by solving the ODEs (6.9) and is only

0:0005%. This proves that the reconstructed solution uanalytical;ROM(3) provides a very

accurate approximation for the Burgers’ equation if the analytical basis functions are

used in the ROM(3). If the third mode is neglected, the error of uanalytical;ROM(2)(0:5; t)

is 0:0865% and still negligible. The contribution of the third mode to u(x; t) is negli-

gible compared to the flrst mode and the second mode because the third mode only
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captures 0.15% of the total energy (see Table VI).

Table XIII. Errors of uanalytical;ROM (0:5; t) with respect to uanalytical(0:5; t)

uanalytical;ROM (0:5; t) uanalytical;ROM(3)(0:5; t) uanalytical;ROM(2)(0:5; t)

Error „†u 0.0005% 0.0865%

† Accuracy of reconstructed solution uA;ROM (0:5; t)

The solution uA;ROM (0:5; t) is reconstructed using fiiA;ROM
and `iA . Table XIV

presents the errors „†u of uA;ROM (0:5; t) with respect to uanalytical(0:5; t). Compared

to errors in Table XIII, the errors of Table XIV have one additional error source:

the errors of eigenvalue problem solver of the PODDEC package. By comparing the

values of Table XIII and Table XIV, one concludes that the errors introduced by the

PODDEC package have almost no in°uence on the reconstructed solution u(0; 5; t).

Table XIV. Errors of uA;ROM (0:5; t) with respect to uanalytical(0:5; t)

uA;ROM (0:5; t) uA;ROM(3)(0:5; t) uA;ROM(2)(0:5; t)

Error „†u 0.0005% 0.0865%

† Accuracy of reconstructed solution u
(„†)
N;ROM (0:5; t)

The solution u
(„†)
N;ROM (0:5; t) is reconstructed using fi

(„†)
iN;ROM

and `
(„†)
iN
. Table XV

presents the errors „†u of u
(„†)
N;ROM (0:5; t) with respect to uanalytical(0:5; t). Table XV

shows that the errors of u
(„†)
N;ROM (0:5; t) increase as „† increases. These errors, how-

ever, are all smaller than 1%. Figure 10 shows u
(„†)
N;ROM (0:5; t) compared against
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Table XV. Errors „†u of u
(„†)
N;ROM (0:5; t) with respect to uanalytical(0:5; t)

„† u
(„†)
N;ROM(3)(0:5; t) u

(„†)
N;ROM(2)(0:5; t)

0.78% 0.0004% 0.0866%

4.80% 0.0058% 0.0867%

17.3% 0.0565% 0.0885%

30.5% 0.1210% 0.4108%

uanalytical(0:5; t) and u
(„†)
N;PDE(0:5; t) at „† = 0:78%, 17:3% and 30:5%, respectively. As

seen in Figure 10, u
(„†)
N;ROM(3)(0:5; t) and u

(„†)
N;ROM(2)(0:5; t) agrees with the analytical

solution very well when „† = 0:78% and 17:3%. When „† = 30:5%, small difierences

between u
(30:5)
N;ROM (0:5; t) and uanalytical(0:5; t) are observed. Compared to the accuracy

of the basis functions and the time coe–cients, the accuracy of the reconstructed

solution u is less sensitive to the numerical errors of the databases. This result is not

surprising since the basis functions errors are compensated by the time coe–cients fi.

B. \Double" Burgers’ Equations

Let us consider a case which consists of two non-homogeneous Burgers’ equations.

The Burgers’ equations for the dependent variables u(x; t) and v(x; t) are given by

@u

@t
+ v

@u

@x
= f(x; t); (6.17)

@v

@t
+ u

@v

@x
= g(x; t): (6.18)
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Fig. 10. Reconstructed u
(„†)
iN;ROM

(0:5; t) compared against analytical and numerical

solutions of the Burgers’ equation (6.1)
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The right side term f(x; t) and g(x; t) are deflned as

f(x; t) = x sin(t) + 0:5 sin(…x) cos2(t)¡ 0:02 sin(3…x) cos(3t) cos(t); (6.19)

g(x; t) = 0:5 sin(…x) sin(t)¡ 0:06 sin(3…x) sin(3t) + (1¡ x cos(t)) ¢

¢ (¡0:5… cos(…x) cos(t) + 0:06… cos(3…x) cos(3t)): (6.20)

Thus the analytical solutions of equations (6.17) and (6.18) are

uanalytical(x; t) = 1¡ x cos(t); (6.21)

vanalytical(x; t) = ¡0:5 sin(…x) cos(t) + 0:02 sin(3…x) cos(3t): (6.22)

1. Database Generation

To obtain a numerical solution of the PDEs (6.17) and (6.18), let us discretize the

spatial domain [0,1] using a mesh with 100 uniform cells and approximate the spatial

derivative @u
@x

and @v
@x

using the centered, second-order discretization. Thus at each

node i in the spatial domain, the PDEs (6.17) and (6.18) are converted into the

pseudo-ODEs

dui
dt

= ¡vi
ui+1 ¡ ui¡1

2¢x
+ f(xi; t); i 2 [1; N ] (6.23)

and

dvi
dt

= ¡ui
vi+1 ¡ vi¡1

2¢x
+ g(xi; t); i 2 [1; N ]; (6.24)

where N = 99. The numerical solution of the PDEs (6.17) and (6.18) has been

replaced by the numerical solution of a set of 2£N flrst-order ODEs. Consequently,

the order of that system is 2 £ N . The ODEs (6.23) and (6.24) are integrated from

t = 0s to t = 50s using the LSODI package. Snapshots are stored every 0:1s. Thus

there are 501 snapshots for u and 501 snapshots for v in the database.

For the \double" Burgers’ equations, two relative tolerance levels were used:
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rtol = 1 £ 10¡3 and rtol = 1 £ 10¡4. For a relative tolerance parameter larger than

rtol = 1 £ 10¡3, the LSODI package diverged before t = 50s. Similar to the error

† deflned by equation (6.5), two errors †u and †v are deflned for equation (6.23) and

(6.24), respectively:

†u =
jLHSu ¡ RHSuj
p

LHS2u +RHS2u
;

†v =
jLHSv ¡ RHSvj
p

LHS2v +RHS2v
;

where LHSu and RHSu are the left-hand-side and right-hand-side of equation (6.23);

LHSv and RHSv are the left-hand-side and right-hand-side of equation (6.24). Ta-

ble XVI presents the average error „†u for equation (6.23) and „†v for equation (6.24).

For convenience, let us use DB
(„†u;„†v)
N to denote the the database corresponding to the

Table XVI. „†u and „†v

rtol „†u „†v

1£ 10¡4 0.03% 0.7%

1£ 10¡3 0.1% 1.5%

errors of „†u and „†v. Additionally, using the analytical solutions (6.21) and (6.22), the

database DBA is generated. The snapshots in DBA are calculated as

uA(x; tk) = uanalytical(x; tk) = uanalytical(x; k¢t); k 2 [1;M ];

vA(x; tk) = vanalytical(x; tk) = vanalytical(x; k¢t); k 2 [1;M ];

where M = 501 and ¢t = 0:1s.
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2. Model Decomposition

Three databasesDBA, DB
(0:03;0:7)
N andDB

(0:1;1:5)
N have been generated. Each database

consists of M snapshots u(x; ti), i 2 [1;M ] and M snapshots v(x; ti), i 2 [1;M ]. We

decompose u(x; ti) and v(x; ti) into the means and the °uctuations:

u(x; ti) = „u(x) + u0(x; ti); i 2 [1;M ];

v(x; ti) = „v(x) + v0(x; ti); i 2 [1;M ]:

The method of snapshots was applied to u0(x; ti) and v0(x; ti) to extract the basis

functions of `u and `v, respectively. The kernel matrices are computed as

Cu
ij =

1

M

N
X

k=1

u0(xk; ti)u
0T (xk; tj); i; j 2 [1;M ]

and

Cv
ij =

1

M

N
X

k=1

v0(xk; ti)v
0T (xk; tj); i; j 2 [1;M ]:

3. Galerkin Projection

Using the basis functions `ui and `vi , the dependent variables u(x; t) and v(x; t) are

approximated as

u(x; t) »= „u(x) +
mu
X

i=1

fiui (t)`
u
i (x) =

mu
X

i=0

fiui (t)`
u
i (x); (6.25)

v(x; t) »= „v(x) +
mv
X

i=1

fivi (t)`
v
i (x) =

mv
X

i=0

fivi (t)`
v
i (x); (6.26)

where mu and mv are the number of POD modes used to approximate u0(x; t) and

v0(x; t), respectively.

Substituting the approximations of u and v given by (6.25) and (6.26) into the
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PDEs (6.23) and (6.24), yields

mu
X

i=1

dfiui
dt

`ui = ¡
mu
X

i=0

mv
X

j=0

fiui fi
v
j`

v
j

d`ui
dx

+ f; (6.27)

mv
X

i=1

dfivi
dt

`vi = ¡
mv
X

i=0

mu
X

j=0

fiujfi
v
i `

u
j

d`vi
dx

+ g; (6.28)

where d`

dx
is computed using the centered, second-order discretization. Now, let us

project equation (6.27) onto the basis function `uk and equation (6.28) onto `vk. We

obtain the ODEs

dfiuk
dt

= ¡
mu
X

i=0

mv
X

j=0

fiui fi
v
j

µ

`vj
d`ui
dx

; `uk

¶

+ (f; `uk) ; k 2 [1;mu]; (6.29)

dfivk
dt

= ¡
mu
X

j=0

mv
X

i=0

fiujfi
v
i

µ

`uj
d`vi
dx

; `vk

¶

+ (g; `vk) ; k 2 [1;mv]: (6.30)

Thus, the POD-based ROM consists of mu flrst-order ODEs given by (6.29) and mv

flrst-order ODEs given by (6.30). Consequently, the order of the POD-based ROM is

mu +mv. The LSODI package is used to solve the POD-based ROM.

4. Accuracy Analysis

Because the analytical solutions of the PDEs (6.17) and (6.18) are given by (6.21) and

(6.22), the analytical expressions of the basis functions and the time coe–cients were

derived using the approach described in Section A.4. The analytical basis functions

and time coe–cients for u(x; t) are

`u0analytical(x) = 1, fiu0analytical(t) = 1,

`u1analytical(x) = ¡
p
3¢xx; fiu1analytical(t) = cos(t)=

p
3¢x;

(6.31)
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and for v(x; t) they are

`v0exact(x) = 0, fiv0exact(t) = 1,

`v1analytical(x) = ¡
p
2¢x sin(…x); fiv1analytical(t) = 0:5 cos(t)=

p
2¢x;

`v2analytical(x) = ¡
p
2¢x sin(3…x); fiv2analytical(t) = ¡0:02 cos(3t)=

p
2¢x:

(6.32)

These analytical basis functions and time coe–cients are used as references for the

following accuracy analyses.

a. Accuracy of basis functions

Table XVII presents the errors †`i of `iA with respect to `ianalytical . Herein the error

†`i is deflned by equation (6.14). The errors of `iA are generated by the PODDEC

package and are negligible.

Table XVII. Errors of `uiA and `viA

Basis Functions `u1A `v1A `v2A

Error 0.0639% 0.0021% 0.0022%

Table XVIII presents the errors †`i of `
(„†u;„†v)
iN

with respect to `ianalytical . Figure 11

Table XVIII. Errors of `
u;(„†u;„†v)
iA

and `
v;(„†u;„†v)
iA

„†u „†v `
u;(„†u;„†v)
1N

`
v;(„†u;„†v)
1N

`
v;(„†u;„†v)
2N

0.03% 0.7% 0.0639% 0.0051% 0.1976%

0.1% 1.5% 0.0681% 0.0338% 1.1576%

shows the basis functions `
(„†u;„†v)
iN

compared against the analytical basis functions. The
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errors of `
(„†u;„†v)
iN

are generated by the PODDEC package and the numerical errors of

the databases. As shown in Table XVIII and Figure 11, the accuracy of the basis

functions decreases as the numerical errors of the databases increase. Basis functions

which correspond to smaller eigenvalues are more sensitive to the numerical errors

of the databases. Herein the second basis function of v is the most sensitive to the

numerical errors of the databases.

b. Accuracy of time coe–cients

The analytical solutions (6.21) and (6.22) imply that u(x; t) and v(x; t) consist of two

modes and three modes, respectively. Herein the zeroth modes are counted. Thus

when generating the POD-based ROMs, we choose mu = 1 and mv = 2. The number

of equations is reduced from 2£N to mu +mv.

Four sets of basis functions are used to generate the POD-based ROMs. These

four sets of basis functions are `ianalytical , `iA , `
(0:03;0:7)
iN

and `
(0:1;1:5)
iN

. The time coef-

flcients obtained from the POD-based ROM using these four sets of basis functions

are denoted by fiianalytical;ROM
, fiiA;ROM

, fi
(0:03;0:7)
iN;ROM

and fi
(0:1;1:5)
iN;ROM

, respectively. Table XIX

presents the errors of the time coe–cients obtained from the POD-based ROM with

respect to the analytical time coe–cients. Herein the error of the time coe–cients is

deflned by equations (6.15). As shown in Table XIX, the errors of the time coe–cients

obtained from the POD-based ROM increase when the errors of the basis functions

increases. Figure 12 shows the time coe–cients of fi
(0:1;1:5)
iN;ROM

and fi
(0:03;0:7)
iN;ROM

compared

against aianalytical . At the error level of „†u = 0:03% and „†v = 0:7%, fi
u;(0:03;0:7)
1N;ROM

and

fi
v;(0:03;0:7)
1N;ROM

agree very well with fiu1analytical and fiv1analytical , respectively. Small difier-

ences between fi
v;(0:03;0:7)
2N;ROM

and fiv2analytical are noticed. When the errors increase to

„†u = 0:1% and „†v = 1:5%, only fi
u;(0:1;1:5)
1N;ROM

agrees very well with fiu1analytical . There are

small difierences between fi
v;(0:1;1:5)
1N;ROM

and fiv1analytical . Large difierences between fi
v;(0:1;1:5)
2N;ROM



65

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

Analytical
Errors=(0.03%; 0.7%)
Errors=(0.1%; 1.5%)

0 0.2 0.4 0.6 0.8 1
-0.2

-0.15

-0.1

-0.05

0

Analytical
Errors=(0.03%; 0.7%)
Errors=(0.1%; 1.5%)

0 0.2 0.4 0.6 0.8 1
-0.2

-0.15

-0.1

-0.05

0

Analytical
Errors=(0.03%; 0.7%)
Errors=(0.1%; 1.5%)

x

x

x

`
v 2

`
v 1

`
u 1

Fig. 11. Basis functions for the double Burgers’ equations
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Table XIX. Errors of time coe–cients obtained from the POD-based ROM for \dou-
ble" Burgers’ equations

Basis functions used in the ROM fiu1ROM
fiv1ROM

fiv2ROM

`ianalytical 0.0028% 0.0043% 0.2258%

`iA 0.0337% 0.0228% 0.2125%

`
(0:03;0:7)
iN

0.0344% 0.0412% 0.6746%

`
(0:1;1:5)
iN

0.0928% 0.2185% 4.6546%

and fiv2analytical are observed. Thus the time coe–cients which correspond to smaller

eigenvalues are more sensitive to the errors of the basis functions.

c. Accuracy of reconstructed dependent variables

Let us reconstruct u
(„†u;„†v)
N;ROM (0:5; t) and v

(„†u;„†v)
N;ROM (0:5; t) using fi

(„†u;„†v)
iN;ROM

and `
(„†u;„†v)
iN

. Ta-

ble XX lists the errors of u
(„†u;„†v)
N;ROM (0:5; t) and v

(„†u;„†v)
N;ROM (0:5; t) with respect to the an-

alytical solutions. Herein the error is deflned by equation (6.16). Figure 13 shows

Table XX. Errors of reconstructed u
(„†u;„†v)
N;ROM (0:5; t) and v

(„†u;„†v)
N;ROM (0:5; t)

„†u „†v u
(„†u;„†v)
N;ROM (0:5; t) v

(„†u;„†v)
N;ROM (0:5; t)

0.03% 0.7% 0.0052% 0.0445%

0.1% 1.5% 0.0279% 0.2626%

u
(„†u;„†v)
N;ROM (0:5; t) and v

(„†u;„†v)
N;ROM (0:5; t) compared against the analytical and numerical so-

lutions of the PDEs (6.17) and (6.18). At both error levels, u
(„†u;„†v)
N;ROM (0:5; t) agree very

well with the analytical solutions. v
(0:03;0:7)
N;ROM (0:5; t) agree very well with the analytical

solutions. Small difierences are noticed between v
(0:1;1:5)
N;ROM (0:5; t) and vanalytical(0:5; t).



68

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Analytical PDE solution
Numerical PDE solution
Reconstruced solution from ROM

0 10 20 30 40 50
-1

-0.5

0

0.5

1

Analytical PDE solution
Numerical PDE solution
Reconstructed solution from ROM

Time [s] Time [s]

u
(0
:5
;t

)

v
(0
:5
;t

)

(a) „†u = 0:03% and „†v = 0:7%

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Analytical PDE solution
Numerical PDE solution
Reconstructed solution from ROM

0 10 20 30 40 50
-1

-0.5

0

0.5

1
Analytical PDE solution
Numerical PDE solution
Reconstructed solution from ROM

Time [s] Time [s]

u
(0
:5
;t

)

v
(0
:5
;t

)

(b) „†u = 0:1% and „†v = 1:5%

Fig. 13. u
(„†u;„†v)
N;ROM (0:5; t) and v

(„†u;„†v)
N;ROM (0:5; t) compared against analytical and numerical

solutions of the PDEs



69

C. Summary

In this chapter, the POD-based ROMs have been constructed for two cases based

on the Burgers’ equation. The flrst case was an non-homogeneous Burgers’ equation

and the second case consists of two coupled non-homogeneous Burgers’ equations. For

both cases, the accuracy of the basis functions, the time coe–cients obtained from the

POD-based ROMs and the reconstructed dependent variables were analyzed. For the

POD basis functions, the errors consist of two components: the errors caused by the

PODDEC package (i.e., the eigenvalue solver) and the errors of the databases. The

errors caused by the PODDEC package are negligible. As the errors of the databases

increase, the errors of the basis functions increase. The basis functions corresponding

to smaller eigenvalues are more sensitive to the errors of the databases. For the time

coe–cients, the errors consist of four components: the errors of PODDEC package,

the errors of the database, the errors of solving the POD-based ROMs, the errors of

neglecting the POD modes corresponding to smaller eigenvalues. The errors caused

by the ROMs solver, the PODDEC package and neglecting the POD modes corre-

sponding to smaller eigenvalues are negligible. As the errors of the databases increase,

the errors of the time coe–cients increases. The time coe–cients which correspond

to smaller eigenvalues are more sensitive to the errors of the basis functions. For

the reconstructed dependent variables, the errors are caused by all the sources that

cause the errors of the basis functions and the time coe–cients. Compared to the

basis functions and the time coe–cients, the errors of the reconstructed dependent

variables are less sensitive to the errors of the databases.
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CHAPTER VII

RESULTS

This chapter presents the results of the POD-based ROMs applied to the transport

phenomena in °uidized beds. Two cases are used to investigate the performance of

these POD-based ROMs. The flrst case is a compressible gas-only °ow problem. The

second case consists of a gas phase and a solid phase.

A. Case I: compressible gas-only °ow

The °ow in case I is a compressible gas-only °ow. The geometry and boundary

conditions of case I are shown in Figure 14(a). Figure 14(b) shows the uniform

computational grid used in case I. The parameters of case I are listed in Table XXI.
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(a) Geometry and

boundary conditions
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(b) Computational grid

Fig. 14. Case I: geometry, boundary conditions, and computational grid
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Note that MFIX uses CGS units and dimensional variables.

Table XXI. Parameters of case I

Parameter Description Value

xlength Length of the domain in x-direction 25:4cm

ylength Length of the domain in y-direction 76:5cm

imax Number of cells in x-direction 50

jmax Number of cells in y-direction 76

v1, v2 Gas in°ow velocities 12:6cm=s, 1:0cm=s

ps Static pressure at outlet 1:01£ 106g=(cm ¢ s2)

T0 Gas temperature 297K

„0 Gas viscosity 1:8£ 10¡4g=(cm ¢ s)

tstart Start time 0s

tstop Stop time 13s

The °ow in case I was simulated from t = 0s to t = 13s using MFIX. Snapshots

were stored every 0:05s. Thus 260 snapshots were stored in the database generated

by MFIX. POD basis functions of u, v, and p were calculated using the PODDEC

package. Figures 15, 16, and 17 show the flrst six basis functions of u, v, and p,

respectively. Figure 18 shows the cumulative energy retained by difierent number of

POD modes.

Results of POD-based ROMs at the reference condition

Let us apply ODExMFIX to the °ow in case I at the reference condition. Fig-

ures 19, 20, and 21 show the flrst four time coe–cients of u, v, and p obtained from

ODExMFIX using difierent number of POD modes. In these flgures, the reference
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Fig. 15. Case I: flrst six basis functions of u
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Fig. 16. Case I: flrst six basis functions of v

`p0 `p1 `p2 `p3 `p4 `p5

Fig. 17. Case I: flrst six basis functions of p
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Fig. 19. Case I: the flrst four time coe–cients of v

time coe–cients were obtained by directly projecting the snapshots generated by

MFIX onto the POD basis functions. ODExMFIX(2+19+11) denotes the model of

ODExMFIX with mp = 2, mu = 19, and mv = 11.

As shown in Figures 19 and 20, increasing the number of POD modes used by

ODExMFIX signiflcantly improved the accuracy of the time coe–cients of u and v

predicted by ODExMFIX. The time coe–cients of u and v predicted by ODExM-

FIX(15+30+20) agreed very well with the reference time coe–cients. By using these
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77

number of POD modes, about 99.99% of the total energy was retained by the POD

modes used in ODExMFIX.

Figure 21 demonstrates that the time coe–cients of p are more di–cult to be

captured by ODExMFIX. At the beginning period (t 2 [0s; 3s]), ODExMFIX pro-

duced large oscillations in fip. When t > 3s, the time coe–cients obtained from

ODExMFIX(15+30+20) agreed well with the reference time coe–cients.

One possible reason that caused the large wiggles in fip predicted by ODExM-

FIX is that the number of snapshots in the database is not enough. To prove that

reason, we stored the snapshots every 0:01s instead of every 0:05s. Thus the number

of snapshots increased from 260 to 1195. Figure 22 shows fip1 predicted by ODExM-

FIX(15+30+20) using these two sets of snapshots. Figure 22 shows that increasing

the number of snapshots in the database did not improve the prediction of fip1 using

ODExMFIX.

The average magnitude of `p0 is 1010043.89 and the average magnitude of `p1

is 0.0143. The average magnitude of `p1 is 0.0000014% of the average magnitude of

`p0. Thus most of the spatial characteristics of the pressure fleld are captured by `p0.

Because of the large magnitude difierence between `p0 and `p1, ODExMFIX could not

provide predictions of `pi which agreed very well with the reference time coe–cients

of p.

Figures 23, 24, and 25 show the reconstructed °ow flelds compared against the

results of MFIX at t = 1:25s, t = 7:00s, and t = 13:00s. As shown in Figures 23

and 24, the accuracy of the reconstructed u and v using time coe–cients obtained from

ODExMFIX increased as the number of POD modes used in ODExMFIX increased.

For p, since almost all the spatial characteristics of the pressure fleld are captured by

`p0, all the reconstructed pressure flelds are close to `p0.

The computational cost for simulating the °ow in case I using MFIX was 13187
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Fig. 23. Case I: comparison of u between MFIX and ODExMFIX
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seconds of CPU time. The computational cost of ODExMFIX(15+30+20) was 3352

seconds of CPU time. The computational cost of ODExMFIX(15+30+20) was 25.4%

of the cost of MFIX. Computational cost reduction has been achieved by using

ODExMFIX.

ODEx3 has also been applied to case I. ODEx3, however, failed to produce a

converged result. In ODEx3, the unknowns are fi‰, fiu, and fiv. The magnitudes of

fi‰1, fi
u
1 and fiv1 are of the order of 10¡10, 10, and 100, respectively. Compared to u

and v, the time coe–cients of ‰ are too small to be properly captured.

Results of POD-based ROMs at the ofi-reference conditions

Now, let us apply ODExMFIX at some ofi-reference conditions of case I. Herein

we changed the gas viscosity „0 and used several difierent values of „0. ODExMFIX

was generated using the POD basis functions obtained at „0 = 1:8£10¡4g=(cm¢s). In

order to measure the accuracy of ODExMFIX applied at the ofi-reference conditions,

let us deflne an error "var as

"var =

q

PN

i=1(var
MFIX
i ¡ varROMi )2

PN

i=1 jvarMFIX
i j

; (7.1)

where var represents the fleld variables p, u, or v. N is the total number of spatial

grid points.

Table XXII lists the errors of "p, "u, and "v at eight difierent values of „0 including

the reference value. In Table XXII, all the errors were calculated at t = 13s. As seen

from Table XXII, the errors of pressure, "p, for all the eight conditions are very small,

because the speed of the gas °ow in case I is very low and the pressure variations are

very small. Figure 26 shows the errors of "u and "v at difierent values of „0. As seen

from Figure 26, at each condition, "v is always smaller than "u because the °ow in

case I mainly concentrates in y¡direction and it is easier for ODExMFIX to capture
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Table XXII. Case I: errors of ODExMFIX at difierent values of „0

„0 [g=(cm ¢ s)] "p [%] "u [%] "v [%]

0:8£ 10¡4 3:60£ 10¡8 1.907 0.449

1:0£ 10¡4 3:72£ 10¡8 0.965 0.258

1:1£ 10¡4 3:82£ 10¡8 1.05 0.263

1:3£ 10¡4 2:04£ 10¡8 0.721 0.163

1:5£ 10¡4 5:99£ 10¡9 0.307 0.075

1:6£ 10¡4 7:71£ 10¡9 0.253 0.062

1:8£ 10¡4 1:10£ 10¡8 0.201 0.055

2:0£ 10¡4 8:36£ 10¡9 0.220 0.072

2:2£ 10¡4 1:21£ 10¡8 0.232 0.090

2:4£ 10¡4 2:21£ 10¡8 0.230 0.107

2:6£ 10¡4 1:54£ 10¡8 0.285 0.132

2:8£ 10¡4 3:32£ 10¡8 0.320 0.148

3:0£ 10¡4 3:07£ 10¡8 0.376 0.166
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Fig. 26. Case I: "u and "v at difierent values of „0
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(a) „0 = 0:8 £
10¡4g=(cm ¢ g)

(b) „0 = 1:8 £
10¡4g=(cm ¢ g)

(c) „0 = 3:0 £
10¡4g=(cm ¢ g)

Fig. 27. Case I: fleld of ug at difierent conditions

the details of vg than the details of ug. At the reference „0, both "v and "u have the

minimum values. As „0 increased or decreased from the reference value, both "v and

"u increased. "v and "u increased more rapidly when „0 decreased from the reference

„0 than when „0 increased from the reference „0, because smaller „0 caused larger

Reynolds number and more complicated °ow flelds. Figures 27 and 28 compare the

°ow flelds at „0 = 0:8£10¡4g=(cm ¢g), 1:8£10¡4g=(cm ¢g), and 3:0£10¡4g=(cm ¢g).

B. Case II: gas-solid transport phenomena in a °uidized bed

Case II models the gas-solid transport phenomena in a °uidized bed. The geometry

and boundary conditions of case II are shown in Figure 29(a). Figure 29(b) illustrates
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(a) „0 = 0:8 £
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(b) „0 = 1:8 £
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(c) „0 = 3:0 £
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Fig. 28. Case I: fleld of vg at difierent conditions
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the uniform computational grid used in case II. Table XXIII lists the parameters of

xlength

v1
v2 v2
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hs0
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(b) Computational grid

Fig. 29. Case II: geometry, boundary conditions, and computational grid

case II. In Table XXIII, ‰so, Dp, hs0, and †⁄g denote the constant solid density, solid

particle diameter, initial packed bed height, and packed bed void fraction, respec-

tively.

MFIX simulated the transport phenomena in case II from t = 0s to t = 1s. From

t = 0s to t = 0:2s, v1 = v2 = 1cm=s. At t = 0:2s, v2 was increased to 120:0cm=s.

From t = 0:2s to t = 1:0s, snapshots were stored every 0:0025s, thus 320 snapshots

were stored in the database. POD was applied to the database to calculate the POD

basis functions. Figures 30-34 show the flrst six POD basis functions of pg, ug, vg, us,

and vs, respectively. Table XXIV lists the number of POD modes needed to retain

certain portions of the total energy.

Results of ODExS at the reference condition
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Table XXIII. Parameters of case II

Parameter Value

xlength 25:4cm

ylength 76:5cm

imax 50

jmax 78

v1 120:0cm=s

v2 1:0cm=s

pgs 1:01£ 106g=(cm ¢ s2)

Tg0 297K

„g0 1:8£ 10¡4g=(cm ¢ s)

tstart 0:2s

tstop 1s

¢t 1£ 10¡4s

‰so 1:0g=cm3

Dp 0:05cm

hs0 14:7cm

†⁄g 0:4
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Fig. 32. Case II: flrst six basis functions of vg
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`us0 `us1 `us2 `us3 `us4 `us5

Fig. 33. Case II: flrst six basis functions of us

`vs0 `vs1 `vs2 `vs3 `vs4 `vs5

Fig. 34. Case II: flrst six basis functions of vs

Table XXIV. Case II: POD energy vs number of modes for pg, ug, vg, us, and vs

POD Number of modes

energy pg ug vg us vs

99% 2 4 3 4 2

99.9% 3 7 5 6 3

99.99% 4 11 7 7 5
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Let us examine the results of ODExS applied to case II at the reference condition.

Herein, we chose mpg = 4, mug = 11, mvg = 7, mus = 7, and mvs = 5 such that

99.99% of the total energy was retained by the POD modes used in ODExS. The

computational cost of using MFIX to simulate the transport phenomena in case II was

23008 seconds of CPU time. The computational cost of using ODExS to simulate the

transport phenomena in case II was 7595 seconds of CPU time. The cost of ODExS

was 33.01% of the cost of MFIX.

Figures 35 and 36 show the flrst four time coe–cients of ug and vg obtained from

ODExS compared against the directly projecting results. Figures 37 and 38 show the

flrst four time coe–cients of us and vs obtained from ODExS compared against the

directly projecting results. Figures 39-44 show the fleld variables obtained from

ODExS compared against the results of MFIX at t = 1s. Table XXV lists the errors

"var of the fleld variables obtained from ODExS compared against the results of MFIX

at t = 1s. The error "var was deflned by Equation (7.1) and herein var represents †g,

pg, ug, us, or vs. As seen from Figures 39-44 and Table XXV, the results of ODExS

agree very well with the results of MFIX at the reference condition.

Table XXV. Case II: errors of the results of ODExS at reference condition

Variable Error, "var [%]

†g 0.0000356

pg 0.000000578

ug 0.01035

vg 0.01026

us 0.505

vs 0.765
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Fig. 35. Case II: flrst four time coe–cients of ug obtained from ODExS
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Fig. 36. Case II: flrst four time coe–cients of vg obtained from ODExS
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Fig. 37. Case II: flrst four time coe–cients of us obtained from ODExS
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Fig. 38. Case II: flrst four time coe–cients of vs obtained from ODExS
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(a) MFIX (b) ODExS

Fig. 39. CaseII: ²g at t = 1s

(a) MFIX (b) ODExS

Fig. 40. CaseII: pg at t = 1s


