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ABSTRACT 
 

Understanding Fractional Equivalence and the Differentiated 

Effects on Operations with Fractions. (December 2004) 

Emilie A. Naiser, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Robert M. Capraro 

 

This study compared two representations for teaching 

fraction equivalence. It traced the implications of both 

representations on the student’s comprehension of fractions 

as well as their ability to perform operations with 

fractions.  

The participants in the study included 65 sixth grade 

students in three extant classrooms. Two classes were 

instructed using the textbook representation while the 

third class received instruction using a representation 

presented by Van de Walle and recommended by the National 

Council for Teaching Mathematics. Data were collected from 

pre-tests, post-tests, student work samples, field notes 

and a semi-structured interview.  

Qualitative analyses were used to analyze the data. 

Items were coded for procedural and conceptual 

understanding and categorized into levels of proficiency. 
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Additionally, items involving operations with fractions 

were coded for error patterns. Conclusions were drawn about 

how the different representations affected student 

comprehension and faculty with fractions. 



v 

DEDICATION 

 

 I dedicate this work to my students who constantly 

challenge me, inspire me and teach me.  

 



vi 

ACKNOWLEDGEMENTS 

 
In the past few years, my support system has grown to 

include not only my wonderful mom, beautiful sister and 

close friends, but also my professors, my co-workers, and 

my students. I appreciate the guidance and encouragement 

from all of these people. The term family has taken on a 

much broader meaning, and I am thankful for all of you who 

have become a special part of my life. Your support has 

made this work possible. 

I would especially like to acknowledge Dr. Robert 

Capraro, Dr. Mary Margaret Capraro, Dr. Gerald Kulm, Dr. 

Donald Allen, and Adam Harbaugh for their dedication and 

wisdom in helping me reach my goals. 

 
 
 

 

 

 

 



vii 

TABLE OF CONTENTS  

 
Page 

 
ABSTRACT................................................ iii 

DEDICATION................................................ v 

ACKNOWLEDGEMENTS......................................... vi 

TABLE OF CONTENTS....................................... vii 

LIST OF FIGURES.......................................... ix 

LIST OF TABLES............................................ x 

INTRODUCTION ............................................. 1 

Statement of Problem............................ 1 
Rationale....................................... 2 
Teaching Methods................................ 3 
Definitions..................................... 5 
Overview........................................ 6 

LITERATURE REVIEW ........................................ 7 

Teaching Fractions.............................. 7 
Error Patterns with Fractions................... 8 
The Learning Framework......................... 10 
Representations................................ 12 
Curriculum..................................... 13 
Textbooks...................................... 14 
National Council of Teaching of Mathematics.... 17 

METHODOLOGY ............................................. 19 

Participants................................... 19 
Classroom Lesson Descriptions.................. 19 
Instrumentation................................ 21 
Data Analyses.................................. 24 
Credibility and Dependability.................. 29 

 

 



viii 

Page 

RESULTS ................................................. 31 

Student Comprehension of Fraction Equivalence.. 31 
Operations with Fractions...................... 44 

CONCLUSIONS ............................................. 57 

Comprehension of Fractions..................... 57 
Error Patterns in Operating with Fractions..... 68 

REFERENCES............................................... 77 

APPENDIX A............................................... 83 

APPENDIX B............................................... 84 

APPENDIX C............................................... 85 

APPENDIX D............................................... 87 

APPENDIX E............................................... 88 

APPENDIX F............................................... 89 

APPENDIX G............................................... 90 

APPENDIX H............................................... 91 

VITA..................................................... 93 

 



ix 

LIST OF FIGURES 

FIGURE                                                 Page 

1  Procedural Pre-test Results......................33 

2  Procedural Post-test Results.....................34 

3  Error Pattern from Group B.......................39 

4  Conceptual Pre-test Results......................40 

5  Conceptual Post-test Results.....................40 

6  Student Representation from Group A..............41 

7  Student Representation from Group B..............42 

8  Example of Error Pattern – Cross Addition........48 

9  Error Pattern when Multiplying Fractions.........49 

 

    

                                                                       



x 

LIST OF TABLES 

 
 
TABLE          Page 
 

1  Criteria for Levels of Procedural and Conceptual        
   Comprehension....................................26 
 
2  Coding Analysis of Pre-test from Group A.........28 
 
3  Comparative Results of Operations with Fractions.45 

 
 
 
 
 
 
 
 
 



1 

INTRODUCTION 

 

STATEMENT OF THE PROBLEM 

Evaluations should be made of the various methods used 

for teaching fractional equivalency to identify the 

implications the methods have on the students’ facility 

with fractions. What students already know about finding 

equivalent fractions can have positive and negative 

implications for students’ comprehension of fraction 

concepts. Therefore, it is important to understand the 

possible effects on future learning. By identifying these 

implications, it is possible to make informed decisions 

about which strategy to use when teaching fractional 

equivalency. Furthermore, it is important to understand the 

consequences for each strategy when building upon this 

prior knowledge as students move to operations with 

fractions. Understanding the students’ misconceptions of  

_______________ 

This thesis follows the format of the Journal for Research 
in Mathematics Education. 
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fractions as well as where the misconceptions stem, can  

help teachers prevent students from developing erroneous 

patterns. 

 

RATIONALE 

Thompson and Saldanha (2003) state that analyses of 

what students learn includes “tracing the implications that 

various understandings have for related future learning” 

(p. 95). They further their point by offering the following 

about textbook designers: 

Designers always intend some understanding, 

whether or not they make it available for public 

scrutiny. We contend that mathematics education 

profits from efforts to both publicize and 

scrutinize those intentions. Such efforts 

increase the likelihood that the meanings we 

intend students to develop actually have the 

potential of being consistent with, and 

supportive of, the meanings, understandings, and 

ideas we hope they develop from them. (p. 95) 
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TEACHING METHODS 

In addition to a solid understanding of mathematics, 

teachers must also understand how children most 

successfully learn the subject (Ball, 1993). Teachers are 

faced with the responsibility of choosing how they will 

present material to their students. Often teachers seek 

recommendations from a methods textbook, teacher journal, 

or research article. However, regarding fractional 

equivalency these resources are not in agreement. Methods 

textbooks offer differing methodologies both within and 

among them. Furthermore, these textbook methodologies are 

often in conflict with the National Council of Teaching of 

Mathematics’ (NCTM) recommendation as detailed in Van de 

Walle’s (2001) book, Elementary and Middle School 

Mathematics: Teaching Developmentally. The sixth grade 

textbook used in this study, Middle Grades Math Thematics, 

demonstrates a method of dividing the fraction by a 

fraction equivalent to one whole (Billstein & Williamson, 

1999). The second method offered by Van de Walle (2001) is 

to factor the numerator and denominator. Then, find and 

eliminate the common factor. “The search for a common 

factor keeps the process of writing an equivalent fraction 
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to one rule: Top and bottom numbers of a fraction can be 

multiplied by the same nonzero number” (p. 225). If there 

are varied methods to teaching fraction equivalency, then 

each method must possess some positive as well as negative 

aspects. Knowing these aspects can be useful to teachers 

who are deciding how to teach fraction equivalency.  

The Texas Essential Knowledge and Skills (TEKS) is the 

state-mandated curriculum guidelines which establish what 

every student, from elementary school through high school, 

should know and be able to do. According to the TEKS, sixth 

grade students should be able to find equivalent forms of 

rational numbers including fractions, decimals, and 

percents. Students also are required to perform operations 

with fractions including addition and subtraction. It is 

important that the students’ previous knowledge of 

fractions, including fraction equivalency, continues to 

help them as they learn about adding, subtracting, 

multiplying and dividing fractions.  

In addition to the implications that occur when 

students perform operational procedures with fractions, is 

the students’ comprehension of fraction equivalency itself. 

The varied methods of teaching fraction equivalency can 
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influence how the students represent and conceptualize 

fraction equivalency.  

The following questions will be answered in this 

study: 

1.   What are the implications of student 

comprehension of fractions resulting from 

learning fraction equivalency using two different 

methods?  

2. What error patterns and misconceptions do sixth 

grade students have when operating with 

fractions?  And, are these errors implied from 

the methodology used to learn fraction 

equivalency?  

 

DEFINITIONS 

The following definitions are listed here in order to 

specify their meaning with regards to this study.  

1. Overgeneralization: Jumping to a conclusion based 

on inadequate data (Ashlock, 2002)  

2. Misconceptions: Incorrect features of student 

knowledge that is repeatable and explicit 

(Leinhardt, Zaslavsky, & Stein, 1990). 
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3. Error Patterns: “…systematic procedures that 

students learn but which most often do not 

provide the correct answer” (Ashlock, 2002, p. 9) 

 

OVERVIEW 

This study took place in a sixth grade classroom. The 

teacher taught a different method of finding equivalent 

fractions to two sections of sixth grade students. One of 

the methods was a textbook recommended method while the 

other followed NCTM’s recommendations. Lessons on fraction 

equivalence were taught for approximately one week. This is 

considered the intervention. Throughout the course of the 

semester, as students encountered instruction in fractions 

they received the intervention strategies presented in the 

initial lesson. Students were assessed throughout the 

semester to monitor their comprehension of fraction 

equivalency and operational skills. 
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LITERATURE REVIEW* 

 

TEACHING FRACTIONS 

The National Council of Teachers of Mathematics (NCTM) 

(2000), states that students in middle school should 

acquire a deep understanding of fractions and be able to 

use them competently in problem solving. However, it seems 

that just as students are struggling with fractions, so too 

are teachers feeling the frustration with teaching 

fractions effectively.  

The National Assessment of Educational Progress 

reports show that fractions are “exceedingly difficult for 

children to master” (NAEP, 2001, p. 5). Additionally, 

students are frequently unable to remember prior 

experiences about fractions covered in lower grade levels 

(Groff, 1996). In an effort to increase the effectiveness 

teaching fractions, teachers iteratively review and modify 

the structure of their lessons on fraction concepts. 

_______________ 

*Part of this chapter is reprinted by permission of authors 
Emilie Naiser, Wendy Wright, and Robert M. Capraro and the 
Association of Childhood Education International, 17904 
Georgia Avenue, Suite 215, Olney, MD 20832 Copyright © 2004 
by the Association. 



8 

students know and need to learn and then challenging and of 

“Effective Mathematics teaching requires understanding what 

supporting them to learn it well” (National Council of 

Teachers of Mathematics, 2000, p.16). 

 

ERROR PATTERNS WITH FRACTIONS 

Tirosh (2000) states that teachers should be familiar 

with the different types of cognitive processes (some of 

which are erroneous) that students use in learning 

fractions. If the teachers are aware of common errors, they 

can reflect on the design of their lesson to find ways to 

prevent these erroneous patterns from occurring.  

Tirosh (2000) studied the comprehension of students’ 

division of fractions. She categorized the mistakes made by 

children into three sections: (1) algorithmically based 

mistakes, (2) intuitively based mistakes, and (3) mistakes 

based on formal knowledge. 

An algorithm is "a finite, step-by-step procedure for 

accomplishing a task that we wish to complete" (Usiskin 

1998, p. 7). Algorithmically based mistakes are caused by 

incorrect rules, or “bugs” in the computation process. 

Kelly, Gersten and Carnine (1990) also conclude that a 



9 

numerous amount of student errors involving fractions 

result from confusing algorithms or inappropriate 

application of algorithms. 

Intuitively based mistakes stem from intuitions 

already held about the subject. For example, a student 

learning about whole numbers may believe that when 

subtracting numbers you always subtract from the larger 

numbers. However, this is not the case in subtracting with 

integers. The student may intuitively believe that 

subtracting from a smaller number cannot be done. Tirosh 

(2000) asserts that students overgeneralize properties of 

operations with natural numbers to fractions. Williams and 

Ryan (2002) included overgeneralization on their list of 

common error patterns made by students. “Children may try 

to apply ideas they have about whole numbers to rational 

numbers and run into trouble” (National Research Council, 

2001, p. 416).  

Other mistakes can be made based on formal knowledge. 

This includes computational errors due to limited 

conceptions of fractions and insufficient familiarity with 

the properties of the operations (e.g., division is 

commutative and therefore 
2
4
 = 2 and 

4
2
 = 2).  
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Another misunderstanding with fraction computation is 

that students do not think of the magnitude represented by 

each fraction. When given the problem to estimate 
13
12

 

divided by 
8
7
, only one third of U.S. 13- and 17-year-olds 

correctly estimated the answer. Both fractions can clearly 

be rounded to one whole resulting in an estimated sum of 

two. 28% of the 13-year-olds answered 19, and 27% answered 

21 (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981).   

 

THE LEARNING FRAMEWORK 

The National Research Council (2001) chose the term 

mathematical proficiency “to capture what we think it means 

for anyone to learn mathematics successfully” (p. 116). 

They continued on to describe mathematical proficiency as 

having five strands: conceptual understanding, procedural 

fluency, strategic competence, adaptive reasoning, and 

productive disposition. These strands are presented as 

interwoven and interdependent. Ashlock (2002) emphasizes 

the necessity of the first two strands specifically. “Both 

[conceptual understanding and procedural fluency] are 

necessary, but procedural learning must be based on 
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concepts already learned; procedural learning should be 

tied to conceptual learning and to real life applications” 

(p. 8). 

The NRC (2001) describes conceptual understanding as 

“comprehension of mathematical concepts, operations, and 

relations” (p. 116). Other attributes of conceptual 

knowledge include students learning more than just facts 

and rules which are less likely to be retained. Instead, 

with conceptual knowledge the student can explain the 

mathematical idea, its importance, and can apply it to new 

situations.  

Procedural fluency is the “skill in carrying out 

procedures flexibly, accurately, efficiently, and 

appropriately” (National Research Council, 2001, p. 116). 

It is important for students to know basic skills and 

computations and be able to carry them out efficiently and 

accurately. Often, conceptualization and procedural fluency 

are compared against each other, when in fact they are 

needed to support each other.  

Understanding makes learning skills easier, less 

susceptible to common errors, and less prone to 

forgetting. By the same token, a certain level of 

skill is required to learn many mathematical 
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concepts with understanding, and using procedures 

can help strengthen and develop that 

understanding. (National Research Council, 2001, 

p. 122) 

 

REPRESENTATIONS 

Representations are important in recording, analyzing, 

and communicating mathematical data, problems, and ideas 

(Preston, 2003) and serve as an important means to which 

students develop a conceptual understanding of mathematical 

ideas (Ball & Osborne, 1998; Hiebert & Wearne, 1986). 

Coulombe and Berenson (2001) call representations the 

language of mathematics. Friedlander and Tabach (2001) 

further assert that representations are “vehicles for 

learning and communication”. In addition, they appeal to 

different styles of student learning. NCTM includes 

representations as one of the Standards stating that 

students should be able to use representations to model and 

interpret mathematics and to solve problems (National 

Council of Teaching of Mathematics, 2000). Additionally, 

the NRC (2001) describes what they consider to be an 

important indicator for conceptual learning as the student 
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“…being able to represent mathematical situations in 

different ways and knowing how different representation can 

be useful for different purposes” (p. 119). Representations 

are a powerful tool. It is important to use multiple 

representations to enhance student understanding. Also, it 

is beneficial to encourage students to create multiple ways 

of representing their mathematical ideas. 

 

CURRICULUM 

In the sixth grade, teachers must build on the 

student’s prior knowledge of fractions while staying 

cognizant of what the students need to know to be 

successful in the future. According to the Texas Essential 

Knowledge and Skills (TEKS), as early as Kindergarten the 

students should be able to share a whole by dividing it 

into equal parts. In the first grade students should be 

able to describe the fractional part, such as three out of 

the four crayons are red. By fifth grade, the students are 

introduced to generating equivalent fractions and finding 

common denominators. The sixth grade TEKS include 

generating equivalent forms of numbers including fractions, 

decimals, and percents. In addition, the students should be 
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able to add and subtract fractions. In order to prepare the 

students for seventh grade, the students are also 

introduced to multiplying fractions. In the seventh grade 

the students learn to use fractions in problem solving 

situations requiring multiplication and division of 

fractions. 

The alignment of the curriculum is intended to build 

upon the students’ knowledge at each grade level. This can 

be a very effective way to promote student understanding. 

However, on the same note, if students carry misconceptions 

with them, it can largely impede their future learning 

because the topics build off each other so closely. 

 

TEXTBOOKS 

Teachers often use the textbook as the primary 

resource to plan mathematics instruction (Weiss, Banilower, 

McMahon, & Smith, 2001). Bush, Kulm and Surati (2000) add 

that “selecting textbooks is one of the most important 

decisions teachers make” (p. 34). Textbooks assist teachers 

in organizing and delivering instruction as well as serve 

as a source of problems for students to engage in and apply 

their knowledge. Reys, Chavez and Reys (2004) assign 
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textbooks with three roles: (1) determines the sequence 

that the teacher will present the material, (2) suggests 

the content to be taught, and (3) provides ideas and 

activities for engaging students’ in the lesson.   

In Texas, all schools follow a state mandated 

curriculum. The TEKS were developed by the Texas Education 

Agency to ensure that students receive instruction at the 

appropriate grade level. However, the state does not 

mandate a specific textbook for school use. School 

districts are responsible for adopting a textbook for their 

school. Schools usually adopt a new textbook every 5-7 

years due to physical deterioration and modifications on 

the content.  

Teachers have to decide daily what to teach, how to 

teach it and what activities to use. Often the primary 

resource for planning daily mathematics instruction is the 

textbook (Weiss, Banilower, McMahon, & Smith, 2001). 

“Educators place a great deal of trust in textbooks, so it 

is important that teachers and administrators regularly 

examine the content focus of district-adopted textbooks and 

the instructional strategies implicit within textbook 

lessons” (Reys, Chavez, & Reys, 2003, p. 63). 
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The textbook method analyzed in this study is from 

Middle Grades Math Thematics. The textbook offers a method 

for simplifying fractions, in Module 2, that includes 

dividing the numerator and denominator by a common factor 

(see Appendix A). The author, Jim Williamson (personal 

communication, March 9, 2004), explains the reasoning 

behind presenting this representation compared to the one 

presented by Van de Walle:  

The reason we did not use it [Van de Walle’s 

representation] is because it assumes that 

students know how to multiply fractions and that 

they understand multiplicative identities. These 

concepts are not covered until Module 4. We were 

also influenced by the traditional approach of 

teaching equivalent fractions before teaching 

operations. The rationale for the traditional 

approach is that equivalent fractions are closely 

related to the meaning of fractions and they are 

needed to do addition and subtraction. Also, 

students are traditionally, though needlessly, 

taught to express the results of computations in 

lowest terms.  

 



17 

NATIONAL COUNCIL OF TEACHING OF MATHEMATICS 

NCTM has developed ten Standards to describe a set of 

goals for mathematics instruction. The first five standards 

are focused in the areas of number and operations, algebra, 

geometry, measurement, and data analysis and probability. 

The next five describe standards for mathematical processes 

of problem solving, reasoning and proof, connections, 

communication, and representation. Through the Standards, 

NCTM describes the tools the students will need to be 

successful in the twenty-first century (National Council of 

Teaching of Mathematics, 2000).  

In James Hiebert’s article (2003), he concludes that 

the Standards are consistent with the best and most recent 

evidence on teaching and learning mathematics. These 

Standards are the backbone of Van de Walle’s book, 

Elementary and Middle School Mathematics: Teaching 

Developmentally. The book serves as a resource for teachers 

and is based on the NCTM’s Standards. Van de Walle offers 

alternative teaching strategies and activities that 

challenge traditional approaches. The method in the book 

for simplifying fractions is based on the same underlying 

structure as the textbook method. However, the 
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representation is different. In this representation, the 

numerator and denominator are factored. Then, the common 

factors are eliminated (see Appendix A). 
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METHODOLOGY 
 

The qualitative methods used in this study were 

designed to collect and analyze data from sixth grade 

students. The following sections give information about who 

participated in the study, how the data were collected, and 

how the data were analyzed. 

 

PARTICIPANTS 

The participants in the study included 65 sixth grade 

students in three intat classrooms. The students all 

attended the same middle school in a mid-southern state. 

They comprised three different classes taught by the same 

mathematics teacher. A student assent form and parent 

consent form approved by the Institutional Review Board at 

Texas A&M University was obtained for each participant. 

 

CLASSROOM LESSON DESCRIPTIONS 

 Lessons on fraction equivalence were taught for 

approximately one week. This is considered the 

intervention. While the intervention occurred as a snapshot 

in time, each instance students encountered instruction in 
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fractions they received the intervention strategies 

presented at the onset. Therefore, for continuity within 

the groups across time, lessons were modified to ensure 

that the intervention was consistent and constrained to the 

appropriate group throughout fraction instruction. Of the 

three classes, two of the classes received instruction 

using the textbook representation. The textbook 

representation divides the fraction by a fraction 

equivalent to one. These two classes comprise the control 

group, Group A. The third class, Group B, received 

instruction using the representation presented by Van de 

Walle (2001). In this representation, the fraction is 

factored and the common factors are eliminated (See 

Appendix A). The fraction equivalence lesson began with 

students representing fractions using pictures. Students 

identified fractions that were equivalent. Next, the 

students practiced finding equivalent fractions using 

either the representations shown by the textbook or by Van 

de Walle depending on group membership. As the semester 

progressed, the students solved problems using equivalent 

fractions. For example, John has 
10
6
of a candy bar. Mary 

has the same size bar, but hers is divided into five 
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pieces. John and Mary have the same amount of candy. Out of 

five candy pieces, how many does Mary have? Throughout the 

following lessons, including adding and subtracting 

fractions, students were building upon this prior knowledge 

of fraction equivalency given the treatment. 

 

INSTRUMENTATION 

Data were collected in the form of a pretest, 

posttest, semi-structured interviews, student work samples, 

and researcher field notes. The data were collected over a 

period of several months in order to monitor how the 

differing representations affected student learning of 

fractions. Throughout the semester the teacher remained 

consistent in presenting the methodology originally used in 

the fraction equivalence lesson. To ensure fidelity to the 

respective methods two persons familiar with the study, 

conducted observations and periodically lessons were 

videotaped for review by the researcher. 

 

Fractional Equivalence Pre/Post Tests 

The pre-test was administered one day prior to the 

fraction equivalence unit (the intervention). It consisted 
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of items on fraction equivalency and items on operations 

with fractions. The post-test was administered one day 

after the fraction equivalence unit. The post-test examined 

similar tasks within the same conditions excepting 

different numbers (see Appendix B). 

 

Observations 

Structured observations of the students were made 

after the conclusion of the unit. The interviews were 

conducted one-on-one between a student and a clinical 

assistant to assess the student’s conceptual understanding 

of fraction equivalence using a semi-structured interview 

script. The interviewer used written notes and audio tape 

to record the interactions. The interviewer generally 

followed a script (see Appendix C) that was the basis for 

the semi-structured interviews. The interviewer deviated 

veered from the script for specific cases which promised 

additional useful information about fractional equivalence. 

The purpose for the additional questions was to probe for 

more information from the student or to follow up on a 

topic initiated by the student that might be beneficial to 
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the study. The interviews consisted of a prompt and follow- 

up questions. 

 

Work Samples  

A purposeful sample of student work was collected 

during the course of the study. Samples included items from 

daily class work, quizzes, formal assessments, and 

student’s self assessments. The work samples included 

numerical answers as well as open-ended responses with 

explanations of how the students derived their answers. 

 

Field Notes  

Additionally, field notes were taken by the researcher 

to record classroom observations and classroom discourse 

that was pertinent to the study. The notes were recorded 

immediately and filed into a journal kept by the researcher 

with notes describing the context of the observation. These 

notes were indexed to student work samples. 
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DATA ANALYSES 

Qualitative techniques were used to analyze the data. 

Initial coding of the data was conducted (similar to Miles 

& Huberman, 1994) in order to “find conditions among the 

participants, as a method of pointing out regularities in 

the setting” (Anfara, Brown, & Mangione, 2002, p. 32). Data 

were coded by “certain words, phrases, patterns of 

behavior, and subject’s ways of thinking, and events [that] 

repeat and stand out” (Bogdan & Biklen, 1982, p. 166). 

Glaser and Strauss’s (1967) constant comparison analysis 

was used to sort the data into categories. A code-mapping 

system was implemented to identify key aspects of the 

research questions. A data reduction strategy similar to 

Anfara et al. (2002) was used to provide insights based on 

the meta-categories evident from the data categorization. 

The various sources of data were used to triangulate the 

findings (see the subsection entitled CREDIBILITY AND 

DEPENDABILITY). 

The first research question focuses on the students’ 

comprehension of fractions. From the data collected, the 

items that focused on procedural or conceptual 

understanding of fractions were isolated. First the student 
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responses were coded for the procedure that they used. The 

categories of the procedures were emergent from the data. 

These categories are listed in the code map in Appendix D. 

The categories for the procedures show the different 

processes (correct and incorrect) that students used to 

find equivalent fractions. The categories were then ranked 

as a high, medium, or low level procedure based upon their 

accuracy (see Table 1). Codes F, P, H, M, J, and I all 

represent procedures that are correct. Therefore, they were  

considered a high level. Codes K, N, L, and Q were 

considered medium level. Code K produces the correct answer 

despite an error in the process. Code N produces one part 

of the answer but is missing another part completely. Code 

L and Q show some understanding of the process but contain 

minor errors. Codes G, and 0 are low level. G and 0 

represent either incorrect answers or a blank response. 

Next, the data were coded for conceptual comprehension 

of fraction equivalency. Following most procedural 

questions, students were asked to explain their answer 

using words or pictures. These explanations were coded to 

categorize the students’ conceptual understanding. Again, 

the categories emerged from the data and are listed in 
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Appendix E. These codes were also divided into categories 

for high, medium and low level of conceptual understanding 

(see Table 1).  

 

Table 1 
Criteria for Levels of Procedural and Conceptual 
Comprehension 

 
Procedural Levels 

High Uses correct process and produces correct 
answer 

Medium Process contains minor errors or is missing 
steps, may produce correct or incorrect answer 

Low Incorrect process, incorrect answer or no 
response 

 
Conceptual Levels 

High Represents both fractions and makes a 
connection between the equivalent parts of the 
fractions 

Medium Represents both fractions but does not show a 
connection between the equivalent parts; or 
represents both fractions but does not use an 
equivalent whole unit 

Low Representation contains major errors or blank 
response 

 

 

A response was coded as high if the student was able 

to represent both fractions accurately and show a 

connection between the equivalent parts. Code IV was 

considered a high level. Codes I, II, and III were 
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considered medium levels. Code I represented responses 

where the student simply described the algorithmic function 

of the procedure using words. Code II showed a 

representation of both fractions but no connection was made 

between the equivalent parts of the fraction. Code III was 

a representation of both fractions but the unit wholes were 

not equivalent. Codes V and 0 were considered low level 

because they consisted of either incorrect responses with 

major errors or blank responses.  

The results from the pre-test and post-test were 

analyzed from both groups. The codes for each response were 

organized into a table to show the frequency of each 

category as well as the correlation of the procedural code 

with the conceptual code (see Table 2). The results were 

then translated from categories of strategies to the 

respective level of comprehension. Additional data from 

other examples of student work and interviews were analyzed 

in the same format to further investigate and validate the 

initial analysis. 

To specifically address the second research question, 

student work on computations with basic operations of 

fractions was analyzed and coded for error patterns. Error 

patterns as described by Ashlock (2002) are “systematic  
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Table 2 
Coding Analysis of Pre-test form Group A (Textbook) 
H = High Level, M = Medium Level, L = Low Level 
 

 

 

 

 

 

 

 

 

 

 

 

  Conceptual Understanding  

(see Appendix G) 
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procedures that students learn but which most often do not 

provide the correct answer” (p. 9). To find error patterns 

student work was analyzed. Additionally, follow up 

questions were used to clarify student cognition. The codes 

used for the error patterns are displayed in Appendix F. 

These codes emerged from the data. Once again, the error 

patterns used in the pre-tests and post-tests were compared 

for each group.  

Next, student self-assessments were utilized to 

examine if the error patterns were implied from the 

specific lesson on fraction equivalence being studied.  

Ashlock (2002) identifies self-assessment as one of 

the most important aspects of the assessment process as 

well as a critical tool for diagnosing error patterns. 

Examples of self-assessment questions are provided in 

Appendix G. 

 

CREDIBILITY AND DEPENDABILITY 

 Creswell (2003) describes achieving credibility and 

dependability through triangulation. Triangulation is 

achieved by using “different data sources of information by 

examining evidence from the sources and using it to build a 

coherent justification for themes” (p. 196). The data 
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sources used in this study were interviews, samples of 

student work (tests and daily work), and field notes. 

During data analysis, a table was created to list the 

findings of the study and the related sources of data 

collection in order to verify that the findings emerged 

from multiple sources, thus constituting dependability. To 

validate the research design, Appendix H presents a matrix 

of how the data sources relate to the research questions. 

This matrix not only connects the data sources to the 

research questions, but it additionally highlights the 

triangulation of data from different sources to answer the 

questions. 
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RESULTS 

 

This section will begin with a report of the results 

for the procedural and conceptual comprehension of 

equivalent fractions. These results are intended to address 

the first research question: What are the implications of 

student comprehension of fractions resulting from learning 

fraction equivalency using two different methods? Following 

these results, the error patterns from operating with 

fractions will be reported in order to address the second 

research question: What error patterns and misconceptions 

do sixth grade students have when operating with fractions? 

And, are these errors implied from the methodology used to 

learn fraction equivalency? 

 

STUDENT COMPREHENSION OF FRACTION EQUIVALENCE 

Procedural Comprehension 

The data analysis began with a comparison of the Pre-

test and Post-test results from Group A (textbook’s 

representation) and Group B (Van de Walle’s 

representation). The data was first coded based on the 
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procedure used by the student (see Appendix D). Then, based 

on these codes the data were categorized as a low, medium 

or high level of procedural comprehension (see Table 1). To 

obtain a high level of comprehension the answer had to be 

correct, thereby showing proficiency procedurally. The 

medium level meant that the student had minor errors or 

missing steps that led to a correct or incorrect answer. 

The low level contained major errors and an incorrect 

answer. Since data categorized in the medium or low levels 

meant an incorrect answer, these levels were considered not 

proficient procedurally.   

On the pre-test, 32% of Group A showed procedural 

proficiency (high level of comprehension). Sixty-eight 

percent of the students in Group A were not procedurally 

proficient (medium or low levels). Group B’s pre-test 

results were significantly lower. None of the students in 

Group B showed procedural proficiency. All of the students 

in Group B showed a lack of procedural proficiency. More 

specifically, 19% obtained a medium level and 81% obtained 

a low level (see Figure 1). The post-test results showed 

significant improvements by Group B compared to Group A. In 

Group A, only 16% of the students moved from non-proficient 

to proficient; in Group B, 48% of the students moved from 
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non-proficient to proficient. The results of the post-test 

for Groups A and B are compared in Figure 2.  

 

Procedural Pre-test
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Figure 1. Procedural Pre-test Results 
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Figure 2. Procedural Post-test Results 



34 

While Group B showed impressive gains procedurally, 

the results from the post-test indicated that the majority 

of the students were not using the Van de Walle 

representation. Twenty-one percent of Group B used the 

method presented in the textbook even though they did not 

receive direct or indirect instruction using this method. 

None of the students in Group B generated equivalent 

fractions using the Van de Walle method of finding and 

eliminating a common factor. About 10% of the students in 

Group B did multiply by a fraction equivalent to one to 

generate an equivalent fraction.  

During student interviews, a student from Group B 

commented, “you divide the numerator and the denominator to 

get a smaller fraction; well, the numbers get smaller but 

the fractions stay the same.” Other students from Group B 

made similar comments. This helps explain why students in 

Group B reverted to dividing rather than Van de Walle’s 

representation, which multiplies, when students wanted to 

simplify a fraction and obtain a numerator and denominator 

that were smaller numbers. Intuitively, the students 

thought of division. After evaluating more student work 

collected, the students in Group B used the Van de Walle 

method frequently; however, most students reverted to the 
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textbook representation which was not part of any of the 

lessons taught during the course of the study.  

By analyzing field notes taken during the fraction 

lessons, it was evident from the discourse between the 

teacher and students that the students were noticing 

patterns. They would verbalize these patterns to the 

teacher often to explain their procedure or justify their 

answer. For example, when students were simplifying 
12

, 

the teacher showed 

6

24
23

×
×

 = 
4
. Students would recognize that 

this was the same as “halving the numerator and 

denominator”, which is essentially dividing by 

3

  

2
2
. When 

simplifying, 
12
9
= 

43
33

×
×

, students noticed the same answer 

could be obtained by dividing 
12
9
 by 

 

3
3
. In student work 

collected during the study, students struggled with finding 

a common factor. For example, with 
18
12

, the students would 

recognize that 12 = 3x4 and 18 =2x9, but they would become 

confused about what to do next because there was not a 

common factor to eliminate. The students were more 

comfortable recognizing a common divisor; such as 12 and 18 
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are both divisible by 2 (
18
12

÷
2
2
= 

9
6
). However, they were not 

able to translate that into a multiplication problem of 

18
12

= 
2
2

×
×

9
6

= 
9
6
.  

Most of the students in Group A, divided the numerator 

and denominator by a fraction equivalent to one to generate 

equivalent fractions. Additionally, students were able to 

multiply the numerator and denominator by a fraction 

equivalent to one whole to also obtain equivalent 

fractions. During interviews with Group A, one student was 

hesitant about multiplying to obtain an equivalent 

fraction. The student commented, “When you multiply the 

fraction gets bigger.” After studying the interview prompt 

(see Appendix C), two students said, “Mrs. Cline and Mrs. 

Shark were right because they both divided to obtain an 

equivalent fraction while Ms. Nixon was wrong because her 

class multiplied.” In fact, Ms. Nixon and Mrs. Shark were 

correct. Mrs. Cline was incorrect because she divided by a 

fraction not equivalent to one whole. Students in Group B 

were more comfortable multiplying to generate equivalent 

fractions. Unlike Group A, students in Group B recognized 

that as long as you multiplied by an equivalent of one, the 
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fractions will be equal. Group B responses also differed 

from Group A’s, because the students used the Van de Walle 

method to prove that Mrs. Shark’s and Ms. Nixon’s classes 

used the correct procedure. 

 

Procedural Errors 

Both of the representations led to procedural errors 

noted in the tests and student work throughout the study. 

When dividing or multiplying the fraction by a fraction 

equivalent to one whole, some of the students obtained the 

correct answer but failed to write the procedure correctly. 

For example, 
15
5
  5 = ÷

3
1
 or 

7
2
 × 2 = 

14
4
. This error 

pattern was more prevalent in Group A. In fact, during the 

pre-test and post-test, only Group A reported this 

procedural error. 

Another error pattern emerged from the students 

exclusively in Group B. The students would factor the 

numerator and denominator, but added one whole instead of 

multiplying by the one whole. Figure 3 shows a sample of 

student work from Group B. The student is simplifying 
15
5
. 
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Although the student recognized 
3
3
 as one whole, the 

student added the one instead of multiplying.  

 

Conceptual Comprehension 

After the data were coded and analyzed on a procedural 

level, it was analyzed again based on conceptual 

understanding. It was recoded and analyzed based on the 

level of understanding for the concept. The data were  

 

Figure 3. Error Pattern from Group B  

 

 

categorized as a low, medium or high level of conceptual 

understanding (see Table 1). Conceptually, results from 

Group A and B’s pre-tests were very similar. In Group A, 

94% of the students performed at a low conceptual level 



39 

compared to Group B’s 90%. In Group A, 6% of the students 

performed at a high conceptual level compared to Group B’s 

5% (see Figure 4). On the post-test, 60% more of the 

students in Group A performed at a medium level. 4% 

performed at the high level. Comparatively, Group B showed 

less progress. Only 24% more students performed at a medium 

level. Additionally, none of the students in Group B 

performed at a high level of conceptual comprehension (see 

Figure 5).   
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Figure 4. Conceptual Pre-test Results 
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Conceptual Post-test
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Figure 5. Conceptual Post-test Results 

 

 

Once again, additional data collected during the study 

including student work, classroom observations, and 

interviews offered further insight to the conceptual 

understanding of fraction equivalence. During the 

interview, students were asked to draw a picture or a 

diagram to prove why the three parts of the interview 

problem were correct or incorrect. The student responses 

were coded using the same codes for the conceptual 

comprehension during the pre-test and post-test. 60% of the 

students performed at a medium level while 40% performed at 

a high level. In Group B, none of the students performed at 
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a high conceptual level. 67% performed at medium and 17% at 

low. These results are consistent with the results from the 

pre-test and post-test.  

In Group A, one of the students drew a picture to 

explain how the fractions were equivalent and was also able 

to identify in the pictures where the division of the one 

whole was occurring. This student was able to link the 

procedural process to a conceptual understanding. Another 

student drew the representation shown in Figure 6 to show 

that 
15
12

 equals 
30
24

.  

 

 

Figure 6. Student Representation from Group A 
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Figure 7. Student Representation from Group B 

 

None of the students in Group B were able to correctly 

draw a picture to represent equivalent fractions. Most of 

them were able to recognize equivalent fractions 

represented in a diagram given to them by the interviewer. 

Some students in Group B attempted to draw pictures but the 

whole unit was not drawn equally in the two pictures. 

Figure 7 shows an example of student work from Group B. The 

student is trying to show that 
15
12

 equals 
5
4
. 

During interviews, more students in Group B recognized 

that 
3
3
 was equal to one whole and therefore could not be 

equal to 
15
12

 which is less than a whole. Students from 

Group A justified their answers by repeating that you must 
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“divide the top and bottom by the same number”, referring 

to the numerator and the denominator as the top and bottom. 

Group B students answered similarly saying “whatever you do 

to the top you do to the bottom.” However, only Group A 

students were able to prove why this was true. One student 

from Group B recognized that Mrs. Cline’s class (dividing 

the numerator and denominator by different numbers) used 

the wrong procedure but did not know why.  

The post-tests and other student work collected 

throughout the study showed consisted results with 

interview data about student conceptual knowledge of 

fraction equivalence. Students from Group A were able to 

represent equivalent fractions with a pictorial model. No 

students from Group B showed a correct picture or diagram. 

The majority of students from both groups described the 

algorithmic function of the procedure using words. Some 

students from Group A responded by drawing a representation 

of both fractions but made no connection between the 

representations. Also, Group A students drew the 

representation of both fractions, but did not make the unit 

whole the same size as shown earlier. Except for one 

instance, all students in Group B described the algorithmic 

function using words, gave an incorrect response with no 
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identifiable characteristics or left the response blank. 

Consistently throughout the data, students in Group B 

showed lower levels of conceptual understanding. 

 

OPERATIONS WITH FRACTIONS  

Manifested Error Patterns 

The analysis for the second research question began by 

coding the pre-test and post-test for error patterns with 

operations with fractions. Both tests contained items 

requiring students to add, subtract, multiply and divide 

fractions. The error patterns emerged from the data and are 

listed in Appendix F. Error Patterns 6, 13, 14, and 15 did 

not emerge from the pre-test or post-test. These errors 

were found in additional student work that was collected. 

Table 3 compares the percentage of correct responses for 

both groups on the pre-test and post-test. It is important 

to note that some of the error patterns did result in 

correct answers. 
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TABLE 3 
Comparative Results of Operations with Fractions. 
Percentage of Correct Responses 
 
Group A (textbook) 
 Addition Subtraction Multiplication Division
Pre-test 3% 3% 37.5% 0% 
Post-test 15% 21% 37% 37% 
n = 40 
 
Group B 
 Addition Subtraction Multiplication Division
Pre-test 0% 0% 44% 0% 
Post-test 7% 13% 31.5% 31.5% 
n = 25 

 

The most frequent error pattern was students 

performing the operation straight across the fractions 

without finding a common denominator. For example, for 

addition the student would add the numerators and then add 

the denominators. For example, 
3
2
 + 

4
3
 = 

7
5
. This was only 

an error pattern for addition and subtraction of fractions. 

It is a correct method for multiplication of fractions and 

consequently the correct responses for multiplication were 

high as a result of the usage of this pattern. For 

division, it is also a correct method although it is not 

the traditional way students are taught to divide. On the 

pre-test item, if the students divided the numerators and 
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then divided the denominators, the quotient was not a whole 

number. Some students divided across the fraction and then 

rounded off to the nearest whole number. For the post-test, 

because of the different numbers used it was possible for 

students to divide across the fraction and obtain the 

correct answer. This resulted in a correct response and is 

one reason why the percentage of correct answers on the 

division problems increased on the post-test. This pattern 

is connected to both interventions. For Group A, students 

were dividing the numerators and dividing the denominators 

across the fractions. While providing the correct answer 

for division problems, it is not the traditional way taught 

to students and does not always involve obtaining a 

numerator or denominator that is a whole number. In Group 

B, students were multiplying the numerators and multiplying 

the denominators. This is mathematically correct and the 

traditional way of teaching students to multiply fractions. 

On the pre-test for Group A, the pattern of operating 

across the fractions constituted 45% of the error patterns. 

It was most common when students added, subtracted, and 

multiplied. On the pre-test for Group B, this pattern 

constituted almost 60% of the errors. Again, it was most 

common for addition, subtraction, and multiplication. On 
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the post-test for Group A and Group B, the pattern was 

recorded 40% and 39% of the time, respectively. This 

indicated a decline for this pattern in both groups.  

Another identified error pattern used for multiplying 

fractions was cross multiplication. Cross multiplication 

was an emergent error pattern from both groups. This error 

included students multiplying the numerator of one fraction 

by the denominator of the other fraction. One of the cross 

products was recorded as the numerator and the other 

product was recorded as the denominator. Usually, students 

recorded the larger number as the denominator. Prior to the 

pre-test students had not cross multiplied in this sixth 

grade mathematics class, however, they had used this 

technique previously in fifth grade. Following the pre-

test, students in both groups did use cross multiplication 

to compare fractions. No connection between cross 

multiplication and the two methods for finding equivalent 

fractions was found through student self assessments and 

other data collected. 

Similar to cross multiplication, other error patterns 

included cross addition, cross subtraction, and cross 

division. These error patterns occurred in both groups. For 

example, cross addition meant that a student added the 
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numerator of one fraction to the denominator of the other 

fractions and recorded the sums as the numerator and 

denominator for their answer. Usually, they recorded the 

larger number as the denominator. Examples of this error 

pattern are shown in Figure 8.   

 

  

 

Figure 8. Example of Error Pattern – Cross Addition 

 

 

No evidence was found that this error pattern was 

linked to the methods used for finding equivalent 

fractions. A decline in this pattern was noted over the 

period of time throughout the data collected. The following 

paragraphs reveal other error patterns that emerged 

throughout the course of the study due to new material 

covered in the class. It seems that the students replaced 

this error pattern with either a correct answer due to new 
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knowledge learned or a different error pattern due to a new 

misconception that formed along the course of the study.  

Another pattern noted involved finding a common 

denominator for the fractions. This pattern was a correct 

strategy for adding and subtracting. However, it proved to 

be erroneous for multiplication and division problems 

because after finding the common denominator the students 

carried over the common denominator into their answer (see 

Figure 9).  

 

 

Figure 9. Error Patter when Multiplying Fractions 

 

 

This pattern was recorded more often in the post-test 

compared to the pre-test for all four operations. Between 
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the pre-test and the post-test, students learned about 

adding and subtracting fractions. This explains the 

increased frequency of the pattern. It also explains why 

student percentages of correct responses in addition and 

subtraction rose between the pre-test and post-test. 

Consequently, it is a possible reason for student 

percentages of correct responses declining for 

multiplication. 

The additional patterns coded were not as frequent and 

not as obviously connected to a specific method used during 

teaching the fraction unit. For example, one of the error 

patterns included adding instead of subtracting. This was 

most likely a careless error made due to misreading the 

problem and was not consistent enough to investigate 

further. Some of the patterns were due to misconceptions 

that students had previously about fractions. The state 

curriculum identifies adding and subtraction fractions as a 

sixth grade learning goal and multiplying and dividing 

fractions as a seventh grade learning goal. Until sixth 

grade, students have had very little to no experience in 

operating with fractions. One such misconception about 

fractions was noted in field notes during a one-on-one 

interaction between a student and the teacher. The student 
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inquired about dividing fractions and when the topic would 

be studied. The teacher curiously asked the student what he 

knew about dividing fractions. The student replied 

confidently, “Dividing fractions is easy. You just switch 

the numbers and multiply.” Looking for more information the 

teacher gave the student a few division problems to try. 

The first problem stated, 
3
2

4
1

÷ . The student answered, 
8
3
. 

The following problem was 
9
2

8
1

÷ , for which the student 

answered 
16
9
. The student solved three more division 

problems and consistently used the error pattern. This 

student’s misconception about division was that you 

“switched” some of the numbers. The student failed to 

“switch” the correct fraction. The error pattern displayed 

was that the student inverted the dividend instead of the 

divisor before multiplying the fractions. While this 

misconception stems from another experience outside of the 

intervention being studied, it does give insight to some of 

the other error patterns that emerged from the student data 

where students make mistakes using an algorithm that has 

little meaning to them. For example, cross multiplication 
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is an algorithm that students do not fully comprehend and 

are unable to apply appropriately.  

In addition to the pre-tests and post-tests, 

additional student work was analyzed. As noted earlier, 

from the student work additional error patterns emerged 

that were not present on the pre-test or post-test. 

However, the frequency of the error patterns remained 

consistent with the findings from the analysis of the pre-

tests and post-tests. Performing the operation straight 

across the fraction remained the most frequent error 

pattern. This error pattern shows a very intuitive way to 

operate with numbers. Almost all of the students’ previous 

experience with operating with numbers has involved 

students solving problems with whole numbers by starting at 

the left and working to the right. The students are not 

viewing the fractions individually as numbers that are less 

than a whole, but rather they are separating the numerators 

from the denominators to make it look like a more familiar 

problem. By separating the numerators and the denominators, 

the student has two problems to solve that look like common 

mathematics problems that they have encountered previously. 
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Linking Error Pattern with Instructional Intervention 

The second part of the research question seeks to 

connect the error pattern with the method of teaching 

equivalent fractions. Some brief statements were mentioned 

about this in the previous paragraphs, but this section 

will continue to bring more detail about the subject. 

Several strategies were used to link the error pattern to 

the particular methods of study.  

Self-assessments by the students gave insight to what 

prior knowledge the student was using to solve the problem 

(see Appendix G). Specifically for operating with 

fractions, two questions were asked: (1) What mathematics 

did you use to solve these problems? (2) If you had to 

teach your little brother or sister how to add fractions, 

what would you tell them?  

For adding fractions, sample responses from questions 

one included the following: finding a common denominator, 

adding, how to find a common factor, how to simplify your 

answer, how to cross multiply, and how to multiply to get a 

common denominator. This self-assessment is helpful because 

by analyzing student work, you can not only see the error 

pattern, but you can also gain insight to what previous 
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knowledge the student is using. For example, a common error 

pattern for subtracting fractions was to subtract the 

denominator of one fraction and the numerator of the other 

fraction. This seemed to resemble cross multiplication. 

When asked what mathematics the student used to solve the 

problem in the self-assessment, the student listed cross 

multiplication. Thus, providing direct evidence of where 

the misconception was rooted. Pertinent to this study was 

whether or not the error patterns were connected to the 

methods of teaching equivalent fractions. Therefore, the 

student work and self-assessments were analyzed to find 

clues that would help make these specific connections. From 

the student responses several connections were inferred.  

First, when dividing fractions a student from Group A 

responded to the question about what mathematics he/she 

used to solve the problem. “I divided the numerator by the 

numerator and the denominator by the denominator.” By 

reflecting on past experiences that this student has had in 

mathematics lesson, the method of finding equivalent 

fractions used with Group A directly relates to this 

statement. Consequently, a greater percentage of students 

in Group A used this strategy and correctly answered the 

division problems. 
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Additionally, another difference was noted throughout 

samples of student work from daily assignments. Group A 

showed a better ability to apply their knowledge of 

equivalent fractions in diverse settings. Here is a 

description of a specific instance that was recorded in the 

observation notes. This took place midway through the 

course of the study. The students had already received 

instruction on finding equivalent fractions as well as 

adding and subtracting fractions. As a review, during a 

group assignment students were given a problem that 

incorporated adding two fractions. When adding the 

fractions 
12
4
 +

3
2
, the student calculated, 

12
4
  ÷

4
4
 =

3
1
. With 

3 as the common denominator, the student added  

3
1
 + 

3
2
 to obtain the correct answer. Students in Group A 

showed the ability throughout student work samples to find 

common denominators by either multiplying or dividing by a 

fraction equivalent to one whole. However, in Group B no 

evidence was found in any of the work samples of students 

dividing to find a common denominator. This showed that 

with regards to finding common denominators to solve 
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addition and subtraction problems the students in Group A 

had a higher level of procedural fluency.  

Additionally, pre-test and post-test comparisons offer 

further evidence. For Group A, the percent of correct 

responses for the multiplication problems decreased by 0.5% 

while Group B’s percentages dropped by 12.5%. Students in 

The main difference between Group A and Group B was that 

for finding equivalent fractions Group B’s was solely based 

on multiplication of fractions. From the self-assessment, 

no direct connection was evident between the multiplication 

of fractions during the method of study and the 

multiplication of fractions in a basic operational problem. 

The post-test results further support that conclusion by 

showing that although the students had more experience with 

multiplying fractions, they were not able to make the 

connections and be as successful with operations with 

fractions involving multiplication. 
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CONCLUSIONS 

 

COMPREHENSION OF FRACTIONS 

From the results, several conclusions can be drawn to 

help answer the research questions. Here is an overview of 

what led to these conclusions. The first question was “What 

are the implications for student comprehension of fractions 

resulting from learning fraction equivalency using two 

different methods?” To answer this question, the data were 

analyzed for two different components: procedural 

comprehension and conceptual comprehension. Using a 

specific set of criteria, the data were categorized into 

levels of comprehension (low, medium and high) to describe 

the proficiency of the student’s work. The high level was 

deemed proficient while the medium and low levels were 

considered non-proficient. Data were collected from pre-

tests, post-tests, field notes, student work samples, and 

semi-structured interviews. 
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Procedural Comprehension 

The students who used the textbook representation, 

Group A, showed a higher procedural proficiency. Group B 

received instruction using Van de Walle’s representation 

and reported a higher procedural proficiency. However, even 

though they did not receive instruction using the textbook 

representation, the overwhelming majority of the students 

in Group B used the textbook representation to solve the 

problems. “During experiences with a concept or a process a 

student focuses on whatever the experiences appear to have 

in common, and connects that information to information 

already known” (Ashlock, 2002, p. 14). The students in 

Group B made connections from the Van de Walle 

representation to previous experiences and constructed 

their own representation for finding equivalent fractions, 

which was in fact, the textbook representation. To simplify 

a fraction, students in Group B more readily equated 

obtaining smaller numbers in the fraction with division as 

implied from the interview results. From previous knowledge 

with division, they understood that dividing obtained a 

smaller number. This shows that the textbook representation 

had a stronger connection to past experiences, thereby 
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promoting proficiency when using the representation to 

generate equivalent fractions. As teachers, building on 

prior knowledge is an important tool to use in the 

classroom with all mathematical topics. In this case, 

making these connections and finding a representation that 

was sensible to the students promoted better procedural 

proficiency.  

Additionally, students in Group A equated division 

with obtaining a smaller number. Often in early grades, 

teachers can reinforce rules that are applicable in their 

grade level, but may not be true all the time. In this 

case, students believed that division was the way to get 

smaller numbers. They also confused smaller numbers in the 

fraction with a smaller value. When operating with whole 

numbers, this is true. However, with rational numbers this 

is not always the case. Smaller numbers in a fraction can 

often mean an equivalent if not greater value than a 

fraction that contains larger numbers. Instruction that 

emphasizes the role of dividing by a fraction equivalent to 

one whole can help alleviate the misconception that 

division results in a smaller value. By reinforcing the 

identity property of one and emphasizing or even rewriting 

the fraction as one whole, students can challenge this 
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misconception. In Group A, the intervention included the 

division of a fraction equivalent to one whole; however, 

while students knew that they should divide the numerator 

and denominator by the same number, they did not always 

understand why. As teachers use the textbook representation 

of dividing by a fraction equivalent to one whole, it is 

important to not separate the numbers as dividing 

numerators and dividing denominators. Instead, emphasis 

should be placed on the fraction equivalent to one whole 

and the properties of dividing by one. 

Teachers must be sensitive to their mathematical 

language and explanations so as not to impede the learning 

of the students in later grade levels. For example, in 

elementary school teachers often present the number line 

starting at 0 as the smallest number. Students are taught 

that you cannot subtract 5 - 9. Later, when a student is 

introduced to negative numbers, the students are plagued 

with the rule that you must subtract a smaller number from 

a larger number. These small inconsistencies in our 

teaching can lead to challenges for students in higher 

grade levels when the teacher is introducing integers and 

rational numbers. It could be helpful to introduce a 

broader version of the number line at an earlier grade 
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level. While students are building their basic addition and 

subtraction skills using concrete examples and 

representations such as the number line, it may be helpful 

to expose them to more integers and rational numbers. 

Procedural fluency refers to knowledge of procedures 

as well as how to use them appropriately and flexibly 

(National Research Council, 2001). Group A (using the 

textbook representation (see Appendix A) showed greater 

flexibility in applying the procedure. For example, when 

operating with fractions, students in Group A used 

multiplication and division to find a common denominator 

and generate equivalent fractions. This flexibility 

actually shows a higher level of understanding, because not 

only can the student use the procedure, but they can also 

apply it to new and different situations flexibly. Teachers 

should provide students with the opportunity to use 

procedures in a variety of contexts. Otherwise, the student 

may be left with a rigid understanding of only specific 

times and ways that the procedure can be used. An effective 

way to promote this learning is to contextualize the 

problem and expose students to real world applications of 

the procedure (Perlmutter, Bloom, Rose, & Rogers, 1997). 
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Conceptual Comprehension 

The strong procedural fluency exhibited by the 

students who used the textbook representation supports the 

findings of this section. Procedural skills and conceptual 

understanding are interwoven (National Research Council, 

2001). It should come as no surprise that the textbook 

representation which yielded high procedural comprehension 

would also indicate a higher conceptual level of 

comprehension. Conceptual understanding helps students 

avoid procedural errors as well as modify and adapt the 

procedures to new situations (National Research Council, 

2001). “Understanding the concepts and reasoning involved 

in an algorithm does lead to a more secure mastery of that 

procedure” (Ashlock, 2002, p. 8).  

Data analyzed for conceptual understanding included 

pictures and diagrams drawn by the students to explain 

their procedure and prove their results. During semi-

structured interviews Group A was able to draw 

representations of equivalent fractions and link the 

representations to the procedure. No students from Group B 

were able to do this. These student representations help 

teachers understand the “students’ ways of interpreting and 
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thinking about mathematics” (National Council of Teaching 

Mathematics, 2000, p. 68). From the student representations 

collected during the interviews, it was shown that Group A 

had a better conceptual comprehension than Group B. 

It is important to note that some manipulatives or 

drawings lend themselves to one particular method of 

representation (Watanabe, 2002). When representing 

equivalent fractions, field notes from the lessons show 

that the teacher modeled fractions predominantly by using 

shapes cut into fractional pieces. For example, to 

represent equivalent fractions the class would draw a 

rectangle to represent one whole. Then, the rectangle was 

divided and shaded accordingly to represent the fraction. 

Next, a congruent rectangle was drawn to represent the same 

size whole. This time the rectangle was divided into twice 

as many pieces as the first. It was then shaded so that the 

shaded pieces were equivalent to the shaded pieces in the 

original rectangle. Quite simply, the pieces of the 

original rectangle were divided by 2 in order to form the 

second rectangle. Thus, the representation with shapes 

reflects the textbook representation most closely. The Van 

de Walle method, however, does not lend itself as easily to 

a representation. This may have contributed to the 
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students’ inability to conceptualize and represent the 

method pictorially.  

The lack of conceptualization shown by the 

representations might further support the need to make 

connections to previous learning. Typically, in elementary 

grades fractions are represented using shapes and shading a 

part of a whole. Students become familiar with the part to 

whole representation and can easily extend the 

representation to show equivalent fractions as represented 

by the textbook method.  

Reflecting on the students results on the 

conceptualization of equivalent fractions based on the 

student representations, two implications can be drawn. 

First, making connections is a powerful tool for student 

learning. Second, it is possible the students were not 

exposed to enough of a variety of representations to be 

able to represent the Van de Walle method adequately. 

Presenting various modes of representation can increase 

student understanding. Additionally, students have the 

opportunity to find a representation that make the most 

sense to them. Better yet, students should be encouraged to 

create their own representations (National Research 

Council, 2001). 
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Comprehension of Fractions Equivalent to One Whole 

Students from Group B (using Van de Walle 

representation) showed a better understanding of the 

fractions equal to one whole. In the interviews, students 

from Group B identified the fraction 3/3 as equivalent to 

one whole; therefore, students reasoned that it could not 

be equivalent to 12/15. None of the students from Group A 

used this justification. Furthermore, procedural errors 

emergent in Group A’s work confirmed the lack of 

understanding of fractions equivalent to one whole. The 

most common error from students in Group A was writing the 

divisor as a whole number rather than a fraction equivalent 

to one. For example, 
15
5
 ÷ 5 = 

3
1
 or 

7
2
 × 2 =

14
4
. Tirosh 

(2000) classifies this mistake as an intuitively based 

mistake and states the following: “The primitive, partitive 

model of division imposes three constraints on the 

operation of division. . .” p. 7. The first of these three 

“constraints” being that the divisor must be a whole 

number. This procedural error indicates a gap in the 

conceptual understanding of this process as well as a 

faulty reliance on a previous experience with division. 

This again emphasizes the importance of teachers in early 
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grade levels to be aware of the misunderstandings that they 

may be reinforcing when teaching basic skills such as 

division.  

On the other hand, the representation used by Van de 

Walle emphasizes the function of a fraction equivalent to 

one whole. In this representation the common factors are 

eliminated and rewritten as one. Consequently, students are 

repeatedly linking the fraction equivalent to one with the 

whole number one. Being aware of the strengths and 

weaknesses of each representation can guide teachers when 

planning their instruction. In this case, a teacher 

choosing to use the textbook method should find ways to 

reinforce the concept of a fraction equivalent to one 

whole. One idea could be for the students to check their 

answer by rewriting the divisor (the fraction equivalent to 

one whole) as the whole number one, somewhat similar to 

what happens in the Van de Walle representation. This would 

help students identify the divisor as a fraction equal to 

one whole which would hopefully eliminate the procedural 

error of writing the divisor as a whole number. It would 

also emphasize the identity property of one that this 

procedure is based on. Any number divided by one results in 

a number of the same value despite the fact that the 
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numbers in the second fraction may be smaller than the 

numbers in the original fraction.  

Another weakness was noticed from the textbook 

representation used by Group A. In field notes and 

interviews, students from Group A often used the phrase 

“whatever you do to the top, you do to the bottom” to 

explain the procedure for finding equivalent fractions. 

This shows a separation of the numerators and denominators 

as two different problems. The National Research Council 

(NRC) (2001) confirms that interpreting rational numbers as 

numbers, although basic, is often overlooked. Students are 

accustomed to thinking of rational numbers as parts of a 

whole which can lead to an “inadequate foundation for 

building proficiency” (NRC, 2001, p. 235). The NRC 

continues to point out that even the symbolic nature of a 

fraction contributes to the misunderstanding of rational 

numbers. A fraction looks like a whole number over another 

whole number and leads students to think of them as two 

different numbers. Students in Group A seem to be 

separating the division of the numerators from the division 

of the denominators, thus, creating two separate division 

problems with whole numbers. This deemphasizes and nearly 

eliminates the function of the textbook representation 
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which is to divide a fraction by another fraction 

equivalent to one whole. Identifying fractions on a number 

line may be a useful tool to help students see how the 

rational numbers fit into the whole number system which is 

more familiar to them. It could also strengthen their 

number sense skills so that the students could make better 

estimations and predications about the reasonableness of 

their answers. 

 

ERROR PATTERNS IN OPERATING WITH FRACTIONS 

The second research question was “What error patterns 

and misconceptions do sixth grade students have when 

operating with fractions? And, are these errors implied 

from the methodology used to learn fraction equivalency?” 

Ashlock (2002) states “errors are a positive thing in the 

process of learning. . . an opportunity to reflect and 

learn” (p. 9). To begin the process of reflection and 

learning, data were collected from items that involved 

operation with fractions: adding, subtracting, multiplying, 

and dividing. The data were coded for error patterns. Then, 

using self-assessments the error patterns were linked to 
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the two representations used for teaching fraction 

equivalency. 

 

Operating Across the Fraction 

The most common error pattern for operations with 

fractions was for students to perform the operation 

horizontally across the fractions. For example, when adding 

fractions, students would add the numerators and then add 

the denominators. Once again the separation of the 

numerators and the denominators creates two separate 

addition problems of whole numbers.  

Group A exhibited these same misconceptions about 

rational numbers when finding equivalent fractions using 

the textbook representation as discussed in the previous 

section. Consequently, Group A had a higher percentage of 

this error pattern when dividing fractions showing a link 

between the intervention and their ability to divide 

fractions. Although the correct answer can be obtained by 

dividing the numerator and then dividing the denominator, 

it is not the traditional way of teaching division of 

fractions. Students from Group A obtained the correct 

answer by operating across the fraction until division 
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problems did not produce a whole number quotient. “Children 

may try to apply ideas they have about whole numbers to 

rational number and run into trouble” (National Research 

Council, 2001, p. 416). Students then began to adjust their 

method by rounding off the answer or using some other 

modification. However, Van de Walle’s representation used 

by Group B multiplies across the fraction which is 

mathematically correct and will not need to be relearned in 

the future. The textbook representation proved to have more 

negative implications on student’s ability to perform 

operations with fractions. As discussed in the previous 

section, by giving students a better understanding of 

rational numbers and correcting the students’ tendency to 

separate the numerators from the denominators, this error 

pattern may be avoided. This misconception about rational 

numbers is proving to be not only a problem when finding 

equivalent fractions but also when operating with 

fractions. 

 

Overgeneralizing 

As noted earlier, overgeneralizing is described by 

Ashlock (2002) as jumping to a conclusion based on 
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inadequate data. Tirosh (2000) adds that students 

overgeneralize properties of operations with natural 

numbers to fractions. Overgeneralizing contributed to the 

error patterns on operations with fractions. The most 

prevalent error pattern when multiplying with fractions was 

cross multiplication. This error pattern was found in both 

Group A and Group B. Students had previously learned cross 

multiplication in order to compare and order fractions. The 

students modified this method in order to add, subtract, 

and divide fractions. Instead of multiplying across the 

numerator and denominator, they would add or subtract or 

divide. Then, in almost all the cases, the larger number 

was recorded as the denominator.  

These observations can lead to several conclusions. 

First addressed will be the students tendency to use the 

larger number as the denominator. Students usually learn a 

fraction as a part of a whole. When confronted with an 

improper fraction it does not fit their preconceived 

interpretation of fractions. It is hard to understand how 

5/4 could be “5 parts out of 4.” Therefore, students adjust 

the numbers to what is more familiar to them which is the 

larger number as the denominator. Thompson and Saldanha 

(2003) assert the following: “We see a strong possibility 
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that nonintroductory lessons about fractions are largely 

meaningless to many students participating in them” p. 95. 

From this quote, it should be noted that teachers should 

make the fraction lessons more meaningful to students 

because it is building a foundation for future experiences 

with fractions. It is possible that the “part of a whole” 

interpretation of fractions was emphasized in instruction 

without a variety of meaningful representations and 

applications that extended into at least an informal 

knowledge of improper fractions or mixed numbers. 

Secondly, it highlights the fact that students relied 

on a basic procedural understanding of cross multiplication 

and a weak conceptual understanding of the algorithm. The 

students are applying the procedure in the wrong situation. 

Cross multiplication should only be taught to students if 

they can conceptualize why they are using it. It can become 

a shortcut to learning that is taught by repeated drills 

and memorization rather than focusing on a solid 

understanding of comparing fractions. When teaching 

students to compare fractions, the lesson should begin with 

students estimating the order using benchmark fractions. 

The students should be able to represent the fractions with 

a diagram or picture to prove their answers. Additionally, 
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the students can use a common denominator to order and 

compare fractions. For the sake of time, many teachers jump 

to the cross multiplication of fractions and leave students 

without a conceptual understanding of the topic and thereby 

leading to erroneous patterns when applying the algorithm. 

In the long run, cross multiplication is ironically a 

shortcut that leads to long term negative implications and 

the need for review and re-teaching episodes. Cross 

multiplication is only one example of many algorithms that 

are over generalized by students. Similar patterns of 

overgeneralizations can be avoided by emphasizing 

procedural and conceptual comprehension. 

 

Emergent Error Patterns 

Several error patterns emerged from the data that were 

not prevalent on the pre-test items, such as, finding a 

common denominator. Over the course of this study the 

students were given instruction on adding and subtracting 

fractions. Included in this instruction was how to find a 

common denominator. On the post-test this became an error 

pattern used when multiplying and dividing fractions. 

Carpenter et al. (1976) stated that “students making this 
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error have learned the process of finding common 

denominators, but they do not understand when it needs to 

be applied” p. 139. On the post-test students correctly 

used finding a common denominator to add and subtract 

fractions and then tried to also apply it to multiplying 

and dividing fractions. Although, the correct answer could 

be derived this way, students were not applying it 

correctly. The most common error was to carry the common 

denominator into the answer. While correct when adding and 

subtracting, it is erroneous in a multiplication or 

division problem.  

Another error pattern observed on student work 

triangulated by field notes was confusion about the 

division algorithm. The students inverted the dividend 

instead of the divisor, thereby, showing lack of conceptual 

knowledge to support the procedure resulting in errors. 

Tirosh (2000) categorizes this error as an algorithmically 

based mistake and describes it as resulting from the rote 

memorization of the algorithm. “When an algorithm is viewed 

as a meaningless series of steps, students may forget some 

of these steps or change them in ways that lead to errors” 

p. 7. An algorithm as a “meaningless series of steps” has 

proven to be a common thread to error patterns. Division 
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has been a controversial topic based on when it should be 

taught and how it should be taught. The algorithm is based 

on algebraic reasoning that students in middle school may 

not be familiar with. In this case, teachers must come up 

with more creative and meaningful ways to help students 

conceptualize the division of fractions. In a study on pre-

service teachers and their understanding of the division of 

fractions, it was shown that many of the pre-service 

teachers did not properly understand why the algorithm for 

division of fractions worked (Tirosh, 2000). Teachers must 

challenge their own knowledge and the ways that they were 

taught to learn mathematics years ago when rules and rote 

memorization were more prevalent. With the better 

understanding of how children learn, teachers must strive 

to deemphasize these meaningless rules and promote a solid 

conceptual and procedural understanding. In the case of 

division, instruction should begin with a concrete 

representation and slowly progress to the abstract. After 

using a concrete model of dividing fractions students will 

be able to slowly move to a more symbolic representation. 

Hopefully, this will lead to less errors in dividing 

fractions and eliminate the reliance on a meaningless 

algorithm. It may be possible for students to derive the 
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invert and multiply algorithm on their own making it more 

meaningful to them or it may lead to students choosing a 

different method altogether such as finding a common 

denominator. Either way it will be rooted in a solid 

understanding of the division of fractions that is 

meaningful to the student. It is also important to embed 

this understanding into contexts that relate to the 

students and show examples of real applications of the 

knowledge in various situations, creating an even stronger 

understanding of the concept. 
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APPENDIX A 
 
 

Fraction Equivalence Representations 
 
Math Thematics (1999)  

 
7

21
÷
÷

7
7
=

1
3

 

 
 
NCTM Recommendation as presented by Van de Walle (2001) 
 
7

21
=

1
3
×
×

7
7
=

1
3
×  1 =  

1
3

 

 
 
 
 
 



84 

APPENDIX B 
 
 

Post-test 
 
Section I 

1. Write two fractions equivalent to 
15

. 5

 
2.  Use a picture or words to explain your answer. 
 

3. Write two fractions equivalent to 
12

. 
9

 
4.  Use a picture or words to explain your answer. 
 
 
Section II 

5.  Add 
6
2  + 

10
4
. 

 
 

6.  Subtract 
10

  – 6
8
4
. 

 
 

7.  Multiply  
8
6  X 

6
2
. 

 
 

8.  Divide 
8
6
÷ 

4
2
. 

 
 

9.  Add 
5
3

25
15

+ . 

 
 

10. Divide 
4

12
÷

3
6
. 
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APPENDIX C 
 
 

Interview 
 

The sixth graders are finding equivalent fractions for12
15

. 

In Mrs. Cline’s class, the students divided the numerator by 4  
and the denominator by 5. 

 
12
15

÷
÷

4
5
=

3
3

 

 
In Mrs. Shark’s class, the students divided the numerator and the denominator by 3. 

 
12
15

÷
÷

3
3
=

4
5

 

 
In Ms. Nixon’s class, the students multiplied the numerator and denominator by 2. 

 
12
15

×
×

2
2
=

24
30

 

 
1. Which class or classes answered the question correctly? Incorrectly?  

 
a. If they say Mrs. Cline is wrong Ask: Why is Mrs. Cline’s wrong? 
 
b. If the student says because you have to perform the same operation to the 
numerator and the denominator (“what you do to the top, you do to the bottom”) then 
ASK: Why is it important to do the same thing to the numerator and 
denominator? 
 
c. If they say Mrs. Cline is right Ask: Can you show me proof that it is right 
(picture, representation)?  
First, give them a blank sheet of paper. If they cannot get started successfully, then 
give them diagram to help. If they are still struggling, offer fraction strips. 
 
d. If they say Ms. Nixon is wrong Ask: Why is Ms. Nixon’s wrong? 
 
e. If they say Mrs. Shark is wrong Ask: Why is Mrs. Shark wrong? 
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2. When you divide the numerator and denominator by the same number, what 
happens to the fraction (gets smaller, larger, stays the same)? 

 
a. If the students respond smaller then Ask: Do the numbers get smaller or does 
the fraction gets smaller? If the student answers the fraction gets smaller then move 
to R1 
 
b. If the students respond the number gets smaller but the fraction stays the same (or 
equivalent statement) then Ask: How can you prove that? 
 
c. If the students respond the fraction gets smaller then Ask: Why do you think the 
fraction gets smaller? Can you draw me an example? 

 
3. When you multiply the numerator and denominator by the same number, what 

happens to the fraction? 
 

a. If the student responds that it gets bigger, Ask: Do the numbers get bigger or 
does the fraction get bigger? 
  
b. If the student says the fraction gets bigger then move to R2 
 
c. If the student responds the numbers get bigger but the fraction stays the same (or 
equivalent statement) then Ask: How can you prove that? 
 
d. If the students respond the fraction gets bigger then Ask: Why do you think the 
fractions gets bigger? Can you draw me an example? 
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APPENDIX D 
 
 

Code Map for Procedural Comprehension of Fraction 
Equivalence 

 
F Numerator and denominator are divided by the same 

factor 
 

G Answer is wrong – no identified error pattern 
 

H Simplified the fraction and/or doubled the numerator 
and denominator, showed no work 
 

I Only simplified the fraction, no work shown 
 

J Cross multiplied 
 

K Divided or multiplied by a whole number not equal to 
one, but obtained correct answer (ex. 1/5 multiplied by 
3 = 3/15; 6/9 divided by 3 = 2/3) 
 

L Divided or multiplied the numerator and denominator by 
different numbers 
 

M Multiplied by number equivalent to one in order to 
obtain answers, no work shown 
 

N One correct answer, one incorrect answer 
 

P Factored the numerator and denominator, then eliminated 
the common factor 
 

Q Factored the numerator and denominator, but added one 
whole instead of multiplying by one whole (ex. 3/15 = 
1x3/5x3 = 1 1/5) 
 

0 No answer 
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APPENDIX E 
 
 

Code Map for Conceptual Comprehension of Fraction 
Equivalence 
 
I Described algorithmic function of procedure using 

words 
 

II Drew a representation of both fractions but made no 
connections between the representations 
 

III Drew a representation of both fractions, but did not 
make the unit whole the same size 
 

IV Drew a representation of both fractions and showed 
that the same amount is shaded in both representations 
 

V Incorrect response with no identifiable 
characteristics 
 

0 No answer 
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APPENDIX F 

 
 

Code Map for Error Patterns on Operations with Fractions 
2. (a) What error patterns and misconceptions do sixth 
grade students have when operating with fractions? 

Teaching Method 
 
A – Textbook 
B – Van de Walle 
 

Error Pattern 
 
0     no answer 
1     Cross multiply  
2     Perform operation straight across fraction  
4     operate across and round off to nearest whole        
      number  
5     found a common denominator  
6     cross subtract 
7     multiplied numerators/added denominators  
8     no discernable pattern 
9     ½ (on division problem)  
10    correct answer 
11    adding instead of subtracting  
12    add numerators and multiply denominators 
13    cross divide 
14    subtract instead of divide 
15    add numerators and divide denominators 

Instrument 
 
T1     Pre-test 
T2     Post-test 
S      Student work 
I      Interview 
J      Self-assessment 
F      Field Notes 

Operation 
 
A      Add 
Sb     Subtract 
D      Division 
M      Multiplication 
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APPENDIX G 

 
Example of Student Self Assessment Questions 

 
1. What does someone need to know to be able to do this 
assignment? 
 
2. What mathematics did you use to solve these problems? 
 
3. Did you use any drawings or manipulatives to help you 
solve the problems? If so, can you describe how you used 
them? 
 
4. How do you know your answer is correct? 
 
 
Note: Questions adapted from Ashlock (2002) 
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APPENDIX H 
 
 

Research Questions in Relation to Data Sources 
Research question Data source 
1. What are the implications 

of student comprehension of 

fractions resulting from 

learning fraction 

equivalency using two 

different methods? 

I1,I2,I3,T1,T3,S,J,F 

2. (a) What error patterns 

and misconceptions do sixth 

grade students have when 

operating with fractions?   

I2,I3,T2,T3,S,J,F 
 

2. (b) And, are these errors 

implied from the methodology 

used to learn fraction 

equivalency? 

T3,S,J,F 
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I = Interview (number indicates the specific question on 

the interview) 

T = Pretest/Posttest (number indicates specific section of 

test; T3 specifies open-ended questions on test) 

S = Samples of student work (classwork, quizzes, etc.) 

J = Self-assessment/student open ended questions 

F = Field notes (including follow up questions from student 

work)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



93 

 VITA 

 

Emilie A. Naiser 

Current Address    Permanent Address 
3902 E. 29th St. Apt. E-8   P.O. Box 126 
Bryan, TX 77802    East Bernard, TX 77435 
           

EDUCATION 
Master of Science, Curriculum and Instruction, 
(Mathematics Emphasis); December 2004  
Texas A&M University, College Station, TX 
Thesis: Understanding Fractional Equivalence and the 
Differentiated Effects on Operations with Fractions 
Advisor:  Dr. Robert M. Capraro 

 
Bachelor of Science, Interdisciplinary Studies; 
December 2002 
Texas A&M University, College Station, TX 
Teaching Certificate in Mathematics/Science  
4th-8th grades 

RELATED EXPERIENCE 
 2003-2005 Jane Long Middle School, Bryan ISD 
 6th Grade Mathematics and Science Teacher 
 Obtained Gifted Talented Certification 
 
 Graduate Teaching/Research Assistant  
 Texas A&M University 

PUBLICATIONS/PRESENTATIONS 
Naiser, E. A., Wright, W. E., & Capraro, R. M. (2004). 
Teaching fractions: Strategies used for teaching 
fractions to middle grades students. Journal of 
Research in Childhood Education, 18(1), 193-198. 
 
2004 Conference on the Teaching of Mathematics 6-12 
Presentation on Teaching Fractions: Strategies Used for 
Teaching Fractions to Middle Grade Students 
Sam Houston State University; Huntsville, TX 


	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	STATEMENT OF THE PROBLEM
	RATIONALE
	TEACHING METHODS
	DEFINITIONS
	OVERVIEW


	LITERATURE REVIEW*
	
	TEACHING FRACTIONS
	ERROR PATTERNS WITH FRACTIONS
	THE LEARNING FRAMEWORK
	REPRESENTATIONS
	CURRICULUM
	TEXTBOOKS
	NATIONAL COUNCIL OF TEACHING OF MATHEMATICS


	METHODOLOGY
	
	
	Fractional Equivalence Pre/Post Tests
	Observations
	Work Samples
	Field Notes

	DATA ANALYSES


	The first research question focuses on the studen
	Table 1
	Conceptual Understanding
	(see Appendix G)
	Procedural Comprehension (see Appendix F)
	I
	II
	III
	IV
	V
	0
	M
	M
	M
	H
	L
	L
	F
	H
	5
	2
	0
	0
	0
	0
	G
	L
	2
	3
	0
	0
	4
	0
	H
	H
	1
	1
	2
	0
	1
	0
	I
	H
	2
	1
	0
	1
	0
	0
	J
	H
	1
	0
	0
	2
	0
	0
	K
	M
	6
	0
	0
	0
	0
	0
	L
	M
	1
	0
	0
	0
	0
	0
	M
	H
	1
	0
	0
	0
	5
	0
	N
	M
	0
	0
	0
	0
	0
	0
	P
	H
	0
	0
	0
	0
	0
	0
	Q
	M
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	8

	RESULTS
	
	STUDENT COMPREHENSION OF FRACTION EQUIVALENCE
	Procedural Comprehension
	Procedural Errors
	Conceptual Comprehension

	OPERATIONS WITH FRACTIONS
	Manifested Error Patterns



	TABLE 3
	
	
	Linking Error Pattern with Instructional Intervention



	CONCLUSIONS
	
	COMPREHENSION OF FRACTIONS
	Procedural Comprehension
	Conceptual Comprehension
	Comprehension of Fractions Equivalent to One Whole

	ERROR PATTERNS IN OPERATING WITH FRACTIONS
	Operating Across the Fraction
	Overgeneralizing
	Emergent Error Patterns



	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	APPENDIX G
	APPENDIX H
	VITA
	EDUCATION
	RELATED EXPERIENCE
	PUBLICATIONS/PRESENTATIONS


