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The screening of an external electric field near a metal surface has been determined for the semi-infinite

free-electron model with the use of a self-consistent linear-response theory. The resulting self-consistent

potential has been used to calculate tunneling (i.e., field-emission) currents.

I. INTRODUCTION

One of the best-known properties of a conductor
is that the free charge can distribute itself near
the surface so as to shield the interior from an ex-
ternal electric field. In classical electrostatics,
the charge induced by the electric field is located
exactly at the surface, and the electric field drops
abruptly to zero inside the metal. Quantum ef-
fects give a finite penetration depth for the exter-
nal field and a finite thickness for the charge dis-
tribution near the surface. This penetration of the
applied field is of interest in regard to, e. g. ,
gravitationally induced electric fields' and field
emission. ~5

A key consideration in calculations of the
screened field is self -consistency. Non-self -con-
sistent potential barriers have long been used in
field-emission calculations, beginning with the
triangular barrier used by Fowler and Nordheim
in 1928. Later an image term was added, ' and
other barrier shapes have since been used. Re-
cently Theophilou and Modinos studied field pene-
tration and field emission in a "semi-self-consis-
tent" model. Their procedure was to assume a
parametrized form for the one-electron potential
and then determine the parameters in such a way
as to satisfy continuity and charge neutrality re-
quirements, and to agree with the correct work
function for tungsten. Although this procedure
has advantages in calculating tunneling currents
(see Sec. IV), a treatment which is not fully self-
consistent can lead to unphysical results. We
mention, for example, the failure of the "field
penetration" xo 'o go to zero as the applied electric
field goes to zero (see Fig. 9 of Ref. 3). More
generally, the induced charge density, the induced
potential, and the screening of the electric field
will contain contributions which are due to the in-
consistency of the original potential (for zero
electric field) as well as the presence of the field.
We therefore consider it worthwhile to carry out
a truly self-consistent calculation of the screening
of an electric field, the distribution of excess
charge, and the tunneling of electrons at a metal
surf ace.

For the semi-infinite free-electron model the
single-electron self-consistency problem with zero
external field can be put in the form

(la)

no(z)=(1/s~) f "(kzr —k ))))&'0'(z)mdk,

vo(z) = v,', '(z)+ v,', '(z) .

(Ib)

(1c)

We will adopt the semi-infinite free-electron
model, in which the ions in the metal are replaced
by a uniform positive background which abruptly
terminates at the surface. ' For this model, the
quantum-mechanical screening of an external elec-
tric field can be calculated nearly self-consistently
with a modified version of the linear-response
theory developed by Schiff. ' Schiff's method re-
quires the self-consistently determined wave func-
tions in the absence of an applied field; these
wave functions can be obtained from the work of
Lang and Kohn. ' The present authors, "ne-
glecting exchange and correlation contributions,
have solved Schiff's linear-response equations
self- consistently, starting from the zero-field
results of Lang and Kohn. In the present paper,
exchange and correlation are taken into account,
in the approximation due to Wigner, ' for r, = 2
and r, = 5. The linear-response solution yields
the screened external field and the potential bar-
rier through which an electron must tunnel to pro-
duce an emission current.

In Sec. II we describe the method in more de-
tail and give the results for the screened electric
field. In Sec. III we discuss the equivalent prob-
lem of the distribution of excess charge near the
surface and give our results (which are in agree-
ment with those obtained by Lang and Kohn~~ using
a different method). In Sec. IV, we apply the re-
sults of Sec. II in determining field-emission cur-
rents due to the tunneling of electrons out of the
metal when an electric field is applied. A brief
summary of our results is given in Sec. V.

II. SCREENING OF AN EXTERNAL ELECTRIC FIELD

A. Theory
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v(z) = vo(z)+ 5v(z),

t}'k(z) gk (z)+ 5)k(Z),

n(z) =no(z)+ 6n(z),

(2 )

(2b)

(2c)

where 5v(z) = 5v„(z)+ 5v„(z), 6$~(z), and 6n(z) are,
respectively, the changes in the effective potential,
an electronic wave function, and the electronic
density due to application of the electric field.
These altered quantities must satisfy Eqs. (1) with
their appropriate boundary conditions, as did vp,
gP', and no. The boundary condition on v(z) ex-
ternal to the metal is now dvo(z)/dz 2EO as z
where Ep is the applied field.

Solving the self-consistency equations (1) to first
order in the external field gives'

d2
5v„(z)= —6w5n(z),dz2 (3a)

6n (z) = (2/w2) f„F(z,z') 5v(z')dz', (3b)

F(z, z') = " (kw - k') 8~"'(z) F~"'(z)4"(z')'
k

p (3c)
Here pp'(z) is the solution of Eq. (la) that is ir-
regular at + ~ and approaches cos(kz+ a~) as
z -—~. It is essential that the |t~~ '(z} be self-
consistent solutions of Eqs. (1); otherwise, Eq.
(3b) is invalid.

If changes due to exchange and correlation are
neglected, 5v(z)- 5v„(z) in Eq. (3b), and the equa-
tion iterated once by Schiff' results:

d 5v
F(z, z') 6v„(z')dz'.

4 mQQ

The present authors, attempting to solve Eq. (4)
by the iterative method with F(z, z') determined by

(4)

[We use atomic units so that I'=e=m= 1. Note
that a factor of 2 is absorbed in vo(z). ] Here z is
the coordinate normal to the surface, k = k„k~
is the Fermi momentum, no(z) is the electronic
number density, vo(z) is the effective potential
which goes to zero inside the metal and to a con-
stant value outside, and v~+' (z) is the electrostatic
part of vo(z). gp' is the electronic wave function,
which goes to zero as z-+ ~ and to sin(kz+ a~} as
z -—~. We have adopted the usual assumption
that exchange and correlation effects can be ap-
proximately taken into account with the use of a
local potential v,', '(z). We follow Ref. 10 in adopt-
ing the expression of Wigner' for this potential.

Equations (1) are the equations which Lang and
Kohn have solved self-consistently with no ex-
ternal field. The presence of an applied field per-
turbs the effective potential, thereby altering the
electronic wave functions and changing the elec-
tronic number density. We define the altered quan-
tities v(z), g~(z), and n(z) by

1 dv, (n) d 5v (z)
8m dn „o dz

(5)

where the subscript no indicates that the quantity
in brackets is to be evaluated with n(z) =no(z).
Equations (3a), (3b), and (5) can be used to obtain,
after integration by parts,

E(z)= X f dz'Ã(z, z')E(z'), (6a)

X= —16/w, (6b)

(6c)

K(z, z')= f dz, f dzzF(z» zz). (6d)

The kernel X (z, z'} is not symmetrical in z and z'.
[Contrary to an assertion by Schiff, ' K(z, z') is
also not symmetrical. ] E{z)is the electric field
as a function of z: as z +~, E(z) Eo, as z
E(z) 0.

B. Numerical Results

In order to obtain a numerical solution for the
electric field, we approximate the integral Eq.
(6a) by the set of N algebraic equations

N

E(z,)=XZ X(z, , z, )E(z~), i=2, . .. , N (7a)
f=i

E(zw) =Eo

in the N unknowns E{z,), with the points z& evenly
spaced over a finite range and z„taken to be the
point farthest outside the surface. Here 5t (z„z~)
is the kernel X(z, , z~) multiplied by appropriate
weighting factors to approximate (6a) by (7a) ac-
cording to Simpson's rule. The values

z, = —10w/4k+, z„=w/kz, N= 71 for r, = 5

z, = —3w/kz, z w= 2w/kz, N = 101 for r, = 2

were found to yield a solution for E(z) which was
accurate to within a few percent.

To solve Eqs. (7) we first must evaluate the ker-

the self-consistent results of Lang and Kohn, ' ob-
tained after one iteration results comparable to
those of Schiff inside the metal. However, outside
the metal the normalized field E/Eo did not approach
unity. Furthermore, when more than one iteration
was attempted it was found that the iterative method
failed to converge; therefore, Eq. (4) must be
solved by other means (see Sec. IIB}.

The portion of 5v(z} due to exchange and cor-
relation omitted in Eq. (4) can be included ap-
proximately by expanding about the ground-state
electronic density

dvxc(n(z ))
dn(z)
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nel X(z, , zz). K(z, z') can be evaluated directly
using Eq. (6d), but the second term involving

[dv„,(n)/dn]& must be treated carefully since the
expansion (5) fails at low densities. However, at
these low densities the electrostatic term is large,
so that little is lost by neglecting 5U„(z) for suf-
ficiently small no,. we have taken 5u„(z)= 0 for
na(z) & 0. 002no(- ~).

Results both with and without exchange and cor-
relation are shomn in Fig. 1 for x, = 5. The effect
of exchange and correlation is to decrease the ef-
fectiveness of the screening, in, the sense that the
magnitude of E(z) is generally increased for a
fixed value of s. The explanation for this result
(also obtained in Ref. 3) is obvious: According
to Eqs. (2. 8c) and (2. 15a) of Ref. 10, the exchange
and correlation potential tends to draw electrons
into regions where the electronic density is large,
so 5n(z) will be increased in those regions where
it is already large and the amplitude of the Friedel
oscillations in 5n(g) will be increased. The posi-
tions of the Friedel oscillations will, of course,
be almost unaffected.

In Figs. 1-4 the long tick marks are at distances
~d, —,'d, etc. , beneath the surface, where
d= (4mj3) ~, is the distance between two layers
of ions in a hypothetical monovalent metal with a
simple cubic structure and a (100) surface orienta-
tion. These marks thus provide a rough guide as
to the location of the center of each layer of ions.
The ion positions in a real metal will, of course,
depend on the crystal structure and surface orienta-
tion. Figures 1 and 2 demonstrate that (i) the elec-
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FIG. 2. Ratio of electric field E(z) to external field
Eo for x~=2. The long tick marks were determined as in
I'ig. 1. Exchange and correlation are included.

tric field is much smaller in amplitude at the center
of the first layer of ions than it is outside the met-
al and (ii) the electric field can be "overscreened"
at this point —i.e. , E is opposite in sign to its val-
ue outside the metal, so a test charge at this point
would tend to move in the opposite direction com-
pared to a test charge outside the metal. These
results may be relevant to the problem of gravi-
tationally induced electric fields.

III. DISTRIBUTION OP EXCESS CHARGE

In classical electrostatics, if excess free charge
is placed in a conductor, it mill distribute itself
exactly at the surface of the conductor. Quantum
effects mill lead to a distribution which has a finite
thickness. The problem of the distribution of ex-
cess charge is equivalent to the screening prob-
lem of Sec. II: An external electric field Eo will
induce a surface charge density o =Ez/4g on one
surface of a thick metal slab and a charge density
—o' on the other. Similarly, an excess charge
density & on each surface of a thick slab will pro-
duce an electric field Eo= 4m' far from the slab on
either side. For the semi-infinite fx ee- electron
model, we have in either case an excess surface
charge density o= —e f"„5n(g)dg and an external
electric field EO=E(+ ~)= 4go. Gauss's law,

dE(g)
V E(z)= „=-4ge5n(z), (8)

-IO -5 0
D I STANCE (a.u. )

FIG. 1. Ratio of electric field Efg} to external field
So for ~~=5. Solid line is without exchange and correla-
tion; dashed line is with exchange and correlation. The
long tick marks correspond to ion layers in a hypothetical
monovalent metal with a simple cubic structure and a
(100) surface orientation.

can be used to determine the excess electronic
density 5n(z) from the screened field E(z)

The distribution of excess charge obtained in
this manner is shown in Figs. 3 and 4 for ~,= 5
and 2, respectively. Results for ~, = 5 are shown
with exchange and correlation both neglected and
included within the approximation of Eq. (5). The
results with exchange and correlation are in ex-
cellent agreement with those obtained by Lang and
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FIG. 3. Ratio of excess charge density —ebn(e) to
surface charge density 0 for rE= 5. Solid line is without

exchange and correlation; dashed line is with exchange
~~~ correlation. %he long tick marks were determined as
in Fig 1~

Kohn~ in their calculation of the work function.
Qae interesting feature of the chax ge distribution
is the shift of the peak in 5n(s) from inside the
surface of the metal to outside as the r, value is
changed from 5 to 2.

%e mention that all of the net excess charge lies
outside of so, the point at which E is first screened
to zero in Figs. 1 and 2. This follows from inte-
grating Gauss's law [Eg. (8)] and using E(zo) = 0,
E(+ ~) = 4zo' to get

f [-e5n(z)]ds =a= f [ e5n(z-)]ds. (9)

ithin the context of linear-response theory, the
point s, is independent of E,.

tial even at rather strong fields.
A possibly more serious question concerns the

zero-field potential. As is mell known, tunneling
probabilities involve the barrier height through an

exponential factor. In the present case, the bar-
rier height is given by the work function, so small
errors in the mork function mill produce large er-
rors in the tunneling probabilities and emission
currents. Although the semi-infinite free-electron
model yields moderately accurate values for the
work functions of simple metals, the values are
not exact, of course, and so our results will not

be quantitatively correct if me carry out a calcula-
tion for a material with a given ~, value. It may be
xnore appropriate to regard our calculations of
emission currents as being for self-consistent mod-
els with the specified work functions (8. 89 and

2. 78 eV, respectively) instead of metals with r,
values of 2 and 5. %Ye mention that, although the
method of Ref. 3 suffers from a lack of self-con-
sistency, it has two advantages ovex our self-
consistent method in regard to the calculation of
tunneling probabilities: The work function can be
adjusted to the proper value for a given metal, and

nonlinear effects are taken into account.
The potential barrier through which an electron

tunnels can be determined from the results of
Section II for the self-consistently screened elec-
tric field: E we let V(z) be the effective one-elec-
tron potential energy, then

V(z)= z va(z)+ —,
' bu„(z)+ z5o„(z),

=~.(z)+ g~..( 0(z)+5 (z))-e,(no(z))]

+ f „E(s')dz', (10b)

Vfe nom turn to the problem of field emission, in
which the electrons tunnel out of the metal surface
in the presence of an external field. Since strong
fields must be used in order to obtain a measur-
able emission current, the applicability of linear-
response theory must first be considered. A mea-
sure of the size of nonlinear effects is provided by
the size of the induced electronic density 5n(z).
Vfe find that for the strongest field that we mill
consider, 10 V/cm, and at the peak in the induced
density for r, = 2 [i.e. , the largest value of 5n(z)
in Fig. 4], the ratio 5n(z)/no(- ~) is 1.8% and the
ratio 5n(z)/no(z) is less than 7%. Furthermore,
for fields up to 10 V/cm the predicted nonlinear
effects in Fig. 9 of Ref. 3 are smaller than effects
due to the inconsistency of the zero-field potential.
%e therefore feel that linear-response theory mill

give a reasonable correction to the effective poten-

-6 -¹ -2 0
D I STANCE (au. )

FIG. 4. Ratio of excess charge density -ebs(z) to
surface charge density c for wE= 2. The long tick marks
were determined as in Fig. 1. Exchange and correlation
are included.
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where the quantities on the right-hand side are de-
fined in Sec. IL {Recall that a factor of 2was ab-
sorbed in vo, v„, and v„, and that (d/dz) [~5v„(z)]
=E(z). ) Since E(z) was determined in Sec. II and

5n(z) in Sec. III, we have the information required
to determine V(z) according to Eq. (10b). 5 In

Fig. 5, we show graphs of V(z) for three electric
field strengths —namely, E = 0, 2&& 10', and 10z V/cm.
In addition, we show the potential obtained from
assuming a triangular barrier with an image cor-
rection, ' having the same height as our potential.
Notice that this potential barrier is not as wide
as our potential and therefore leads to larger
emission. currents.

With the one-electron potential determined, we

now can calculate tunneling currents using the
method described by Duke. ' Far from the surface,
the potential decreases linearly; as is well known,

the solutions to the Schrodinger equation in such a
potential are the Airy functions Ai(z) and Bi(z). We

are interested in a solution which has the form of
an outgoing wave, so the proper linear combina-
tion is q [Bi(z)+iAi(z)], where ~'is a constant. We
calculated this solution and its derivative at a point
far outside the surface and then used these as ini-
tial values in a Runge-Kutta integration of the
Schrodinger equation into the metal. Deep inside
the metal, the resulting solution and its derivative
were matched to an incident plus a reflected plane
wave, e' ~'+Be '"+, to determine R and V'. If we
let E,= K k,/2m (i. e. , E, is the kinetic energy
associated with motion normal to the surface),

o 4
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FIG. 6. Dependence of emission current on tempera-
ture for a fixed field strength ED=2 x 10 V/cm and for
both r~=2 and 5. The temperature range is 0-3000'K.

j r(E,) be the probability current outside the metal
(which can be determined after the wave function
is determined as described above), jo(E,) be the
probability current of the incident wave e"~, and

D(E,) =j r(E,)/j 0(E,), then the emission current can
be calculated as a function of the temperature T
using the result

, 5
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FIG. 5. Dependence of potential upon field strength
for r~= 2. The dashed line is the triangular barrier plus
image term for a metal with the work function of a semi-
infinite free-electron model with r, =2. E~ is the Fermi
energy. The unlabeled solid line corresponds to $0=0.
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FIG. 7. Dependence of emission current on tempera-
ture for fields of 5X 107 V/cm at r3=5 and 10 V/cm at
r~= 2. The temperature range is 0-3000 'K.
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J(T)=e Jz D(E,)N(E„T)dE„

N(E„T)= 4zm(hzT/h ) I n[1+e~& z~' zr], (12)

where k~ is the Boltzmann constant, m is the elec-
tronic mass, and E~ is the Fermi energy.

In Fig. 6 we show the dependence of the emission
current J (T) on temperature for two choices of the
electronic density (i. e. , r,) and for temperatures
between 0 and 3000 'K, at a field strength of
2x10~ V/cm. In Fig. 7 we show Z(T) vs T for
stronger fields, i.e. , 5x 10 V/cm for r, = 5 and
108 V/cm for r, = 2. These currents appear to be
in general agreement with, e. g. , those of Dolan
and Dyke obtained with the triangular barrier plus
an image term.

V. SUMMARY

The purpose of this paper was to consider three
problems within the context of the self-consistent,
semi-infinite free-electron model: First, we
determined the screening of an external electric
field near a metal surface using a linear-response
theory; the results for the screened field E(z)

and the induced charge 5n(z) are shown in Figs.
1-4. Second, we considered the equivalent prob-
lem of excess charge in a metal; the distribution
of the excess charge 5n(z) and the electric field
E@)associated with this excess charge are again
given in Figs. 1-4. We found that exchange and

correlation effects (in a local-density approxima-
tion) decrease the effectiveness of the screening,
in that the Friedel oscillations in the electric field
are enhanced. We also found that the electric field
may sometimes be overscreened at the center of
the first layer of ions, so that a positive test charge
at this point would be attracted by a positive sheet
of charge outside the metal. Finally, we calculated
field-emission currents which are produced when

electrons tunnel quantum mechanically out of the
metal in the presence of a strong negative electric
field. To our knowledge, these are the first cal-
culations of tunneling currents for a truly self-
consistent potential; the results are somewhat
smaller than would be obtained from the triangular
barrier plus an image term, since we find that
this potential is somewhat less broad than our self-
consistent potential.
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