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We study theoretically the manifestation of the spin Hall effect in a two-dimensional electronic system with
Rashba spin-orbit coupling via dc-transport measurements in realistic mesoscopic H-shape structures. The
Landauer-Buttiker formalism is used to model samples with mobilities and Rashba coupling strengths of
current experiments and to demonstrate the appearance of a measurable Rashba-coupling dependent voltage.
This type of measurement requires only metal contacts, i.e., no magnetic elements are present. We also confirm
the robustness of the intrinsic spin Hall effect against disorder in the mesoscopic metallic regime in agreement
with results of exact diagonalization studies in the bulk.
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INTRODUCTION

The ability to manipulate electronically spins and to gen-
erate spin currents in semiconductors is thesine qua nonfor
the full development of semiconductor based spintronics.1

The control of spin and spin-currents without applying exter-
nal magnetic fields can be achieved through the spin-orbit
(SO) coupling, which acts as an effective momentum-
dependent Zeeman field. Within this context, the recently
proposed intrinsic spin Hall effect(SHE) in p-doped semi-
conductors by Murakamiet al.2 and in a two-dimensional
electron system(2DES) by Sinovaet al.3 offers possibilities
for spin current manipulation and generation in high mobility
paramagnetic semiconductor systems. The intrinsic spin Hall
effect represents a spin-current response generated perpen-
dicular to the driving electric field. The spins are tilted out of
the plane due to the torque imparted by the SO coupling-
induced effective Zeeman field. In the Rashba SO-coupled
2DESs the bulk intrinsic spin Hall conductivity was found to
have a value ofe/8p in the clean limit for the case of both
spin-split subbands being occupied and decreases linearly
with the electron density for single spin-split subband
occupation.3

The SHE has generated a tremendous interest in the re-
search community.4–15 Similarly to the long-standing debate
on the origin of the anomalous Hall effect(AHE),16 the ro-
bustness of the bulk intrinsic SHE against disorder and how
it is related to the scattering mediated extrinsic spin Hall
effect,17–19 has been the focus of an intense theoretical
debate.4,8–13While it was understood originally3 that, unlike
the quantum Hall effect, the universal value of the intrinsic
SHE in the Rashba SO-coupled 2DESs will be reduced
whenever the disorder broadening is larger or similar to the
SO-coupling splitting, as was verified within a standard
Born-approximation treatment,4 taking into account the lad-
der vertex corrections through various methods suggests that
the bulk spin Hall conductivity vanishes in the weak disorder
dc limit.9,11 However, these results have been challenged by
other analytical calculations which also consider ladder ver-
tex corrections.12 Other recent studies,13 using arguments

that echo the long-standing debate between skew and side-
jump scattering in the AHE, have argued that the intrinsic
SHE vanishes in all regimes.

Given the ferraginous collection of analytical results, un-
biased numerical calculations are needed to shed light on this
controversy. An exact diagonalization treatment of disorder10

has shown that the bulk intrinsic SHE is robust against weak
disorder. In addition, several numerical studies utilizing the
Landauer-Buttiker(LB) formalism in a tight-binding model
representation of the Rashba SO-coupling Hamiltonian in the
presence of disorder show similar conclusions in the limit
that corresponds to the continuum effective mass model(see
below).14,15,20

In this paper we address a key question that has yet to be
addressed directly: How to measure the intrinsic spin Hall
effect through transport measurements? All previous numeri-
cal studies have focused on the controversy regarding the
robustness of the effect against disorder and how disorder,
Rashba coupling strength, etc., change the continuum effec-
tive mass model value ofe/8p. Recently, a new theoretical
question has arisen—whether the dissipationless currents or
spin background currents can lead to spin accumulation or to
a steady signal which can manifest such an effect.6,7 This
question can be addressed unambiguously in the mesoscopic
regime where the effect of the leads and disorder can be
taken into account through the explicit treatment of voltage
and current probes within the LB formalism.14,15,20Here we
consider an H-shape structure shown in Fig. 1 to demonstrate
the appearance of the spin Hall effect through dc-transport
measurements without any magnetic elements. A current is
driven from lead 2 to 1 in the lower leg shown in Fig. 1(a)
and the rest of the contacts are voltage probes, i.e., leads with
total zero current. Then, for typical current utilized in experi-
ments and typical parameters we find a voltage difference
DV34;V3−V4 dependent on the Rashba coupling and
coupled to the spin Hall conductance defined at, e.g., probe
6. The variation of this voltage, relative to the residual volt-
age obtained at zero Rashba coupling, is of the ordermV for
the maximum system sizes that we can models,0.1 mmd. In
the mesoscopic regime, several of the controversies that have
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arisen from the study of the bulk spin-transport coefficients
can be addressed. Within this regime the only assumption
made in describing the transport through the sample via the
current and voltage probes, other than the applicability of the
tight-binding approximation for the SO-coupled electronic
structure, is that such contacts are perfectly metallic, i.e., an
exact analytical expression is known for their Green’s func-
tions.

Several numerical studies have addressed the robustness
of the intrinsic spin Hall effect within the mesoscopic regime
utilizing the LB formalism.14,15,20Perhaps the most compen-
dious of these tight-binding model numerical studies are
Refs. 14 and 15, where the expected symmetry of the Hall
conductance with respect toEF and the metal-insulator tran-
sition as a function of SO coupling and disorder strength21

were shown.

MODEL HAMILTONIAN AND LB TREATMENT OF THE
SPIN HALL EFFECT

The experimental detection of the SHE through electrical
means is conceptually challenging. Given the controversy
surrounding the nature of the spin currents generated by elec-
tric fields, a measurement of the voltage between two metal-
lic contacts7 appears to be the most promising dc-transport
approach to unambiguously determine the presence of the
SHE signal. We focus our attention on the proposed H-shape
device shown in Fig. 1 and demonstrate that within the me-
soscopic metallic regime the intrinsic SHE is exhibited
through the change in a voltage difference between two con-
tacts as the Rashba interaction is varied.

The continuum effective mass model described by the
2DES Hamiltonian with the Rashba SO interactions is given

by Ĥ=sp̂2/2m* d+lsŝxpy−ŝypxd+Hdis, where the second
term is the Rashba SO coupling22,23due to the asymmetry of
the confining potential andHdis is the disorder potential. To
model the complex geometry of our disordered conductor
within the LB formalism we use the tight-binding(or finite
differences) approximation.20 Within this approximation the
continuum effective mass envelope function Hamiltonian be-
comes

H = o
j ,s

e jcj ,s
† cj ,s − t o

j ,dW,s

c
j+dW,s

†
cj ,s + tSOFo

j

− iscj ,↑
† cj+ay,↓

+ cj ,↓
† cj+ay,↑d + o

j

scj ,↑
† cj+ax,↓ − cj ,↓

† cj+ax,↑d + H.c.G , s1d

where t="2/2m* a0
2 and tSO=l /2a0, a0 is the mesh lattice

spacing, anddW = ±a0x̂, ±a0ŷ. The first term represents a
quenched disorder potential and disorder is introduced by
randomly selecting the on-site energye j in the range
f−W/2 ,W/2g. Within the leads the SO coupling is zero and
therefore each lead should be considered as having two in-
dependent spin channels. These leads constitute reservoirs of
electrons at chemical potentialm1, . . . ,mN where N is the
number of leads which we consider to be either four(leads
1–4 in Fig. 1) or six (leads 1–6 in Fig. 1).

In the low temperature limitkBT!EF and for low
bias voltage, the particle current going through a particular
channel is given within the LB formalism by20

Ip,s=se/hdoqs8Tp,s;q,s8fVp−Vqg, wherep labels the lead and
Tp,s;q,s8 is the transmission coefficient at the Fermi energy
EF between thesp,sd channel and thesq,s8d channel.
This transmission coefficient is obtained byTp,s;q,s8
=TrfGp,sGRGq,s8G

Ag where Gp,s is given by Gp,ssi , jd
= ifSp,s

R si , jd−Sp,s
A si , jdg. The retarded and advance Green’s

function of the sampleGR/A with the leads taken into account
through the self energySp,s

R/Asi , jd has a form GR/Asi , jd
=fEdi,j −Hi,j −op,sSp,s

R/Asi , jdg−1. Here the position representa-
tion of the matricesGp,s, GR, Hi,j, andSR are in the subspace
of the sample. Since the SO-coupled Hamiltonian preserves
time reversal symmetry, the transmission coefficients obey
the relationTp,s;q,s8=Tq,−s8;p,−s.24 Within the above formal-
ism the spin current through each channel is given by
Ip,s
s =se/4pdoqs8Tp,s;q,s8fVp−Vqg and the spin Hall conduc-

tance is defined as

GSH=
sI6↑

s − I6↓
s d

V1 − V2
, s2d

as indicated in Fig. 1. All the voltages are obtained by
imposing the boundary conditionsI i,↑+ I i↓=0 for i =3–6,
I1,↑+ I1↓=1, andI2,↑+ I2↓=−1. The arbitrary zero of voltage
is fixed by settingV2=0. These are later translated to a
realistic voltages by setting the current to a typical value of
10 nA.

RESULTS AND DISCUSSION

In order to address the key issue of how the spin Hall
effect can manifest itself through a dc-transport measurement
without ferromagnetic contacts we choose realistic param-
eters for our calculations that model currently available
systems.25 We consider an effective mass ofm* =0.05me and
a disorder strength ofW=0.09 meV corresponding to the
mobility of 250 000 cm2/V s, which is typical for a semicon-
ductor such as(In,Ga)As. We take the Rashba parameterl
in the range from 0 to 80 meV nm that are easily obtained
in experiments,26,27and we choose the electron concentration
of approximately n2D=1012 cm−2. The Fermi energy is

FIG. 1. (Color online) (a) Mesoscopic H-bar probe with metallic
leads.(b) The continuum model is converted into a tight-binding
model and the effects of the leads are treated through a self-energy.
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obtained from the chosen electron concentration assuming
an infinite 2DES. This gives a small difference of a
few percent when considering our finite tight-binding model
but the leads themselves are the ones providing the reservoir
of electrons and therefore such fluctuations are small as
verified by numerical calculations(not shown). Parameters
considered here correspond totso<0–0.2t, EF /W,500 in
other theoretical studies with small variations due to mesh
scaling as physical system size and effective mass is kept
constant.14,15

In Fig. 2 we show the spin Hall conductanceGSH as
a function of the Rashba parameter for the H-shape structure
when current flows through the bottom leg as shown in
Fig. 1. Here we consider the system with six leads and with
leg lengthsL varying from 90 to 140 nm. The total size
of the system isL in the x direction andL /2 in the y
direction. The horizontal connection bar isL /6 by L /6.
The width of the legs isL /6 with the attached leads of
the same width. These ratios were chosen for typical fabri-
cated samples(of larger system size) but any shape is
feasible to do and a search for an optimal geometry is
underway.28 This particular H-shape structure allows for
minimalization of the residual voltage drop due to charge
flow. GSH is calculated accordingly to Eq.(2). The calcula-
tions are conducted for a few different meshesN1=L /a0
to check the convergence of results fora0→0. The magni-
tude of GSH is around 0.2–0.6 ine/8p units for Rashba
coupling 70–80 meV nm andL=90–140 nm. We also
note that within these parameters we are well within the
metallic regime15,21 and both spin-split subbands are occu-
pied.

The spin Hall conductance cannot be measured by the
paramagnetic leads and ferromagnetic leads can introduce
spurious effects coming from the impedance mismatch
preventing ballistic contacts.24,29,30 However, we expect
that the spin current which flows between leads 5 and 6
can generate a secondary effect, the induction of a voltage

difference in the top leg between leads 3 and 4. This is in
the same spirit as the initially proposed setup by Hirsch18

but in a far simpler configuration without the need of
considering a bridged conductor nor any unknown scattering
mechanisms other than the effects of disorder which is
actually small in this case.14,15 We illustrate this in Fig. 3
where we show the nonzero voltage differenceDV34sld
−DV34sl=0d as a function of Rashba coupling for different
size systems, different meshes, and with and without the
additional leads 5 and 6. We find the increase ofDV34 with
the increase of Rashba coupling. The induced voltage varia-
tion is of the order of fewmV for l=60–80 meV nm and
can be easily measured. We also note that the inclusion or
omission of leads 5 and 6, which in reality cannot measure
directly the spin Hall conductance, do not influence the
voltage difference. They do, however, influence the total
residual voltage backgroundDV34sl=0d. The convergence
of the results as a function of mesh size is illustrated in
Fig. 3. The inset to Fig. 3 shows the magnitude of the rela-
tive changes of voltage between leads 1 and 2, as well
as 3 and 4 as a function ofl. The changes for leads 3 and 4
are almost two orders of magnitude larger than ones for
terminals 1 and 2 for largel. This excludes the possibility
that V34 is generated by a change in the longitudinal charge
conductivity due to the variation ofl.31 We also note that
for mobilities typical for experimental samples the results
do not depend on the disorder strength if we, say, double
it. Hence, we emphasize two important facts:(i) the induced
voltage is likely originating from an intrinsic spin Hall effect,
(ii ) it is not related to the constant in-plane polarization
induced by a current in a 2DES with Rashba coupling(the
Levitov effect32), since thenV34 would be proportional to the
mobility.

FIG. 2. (Color online) Spin Hall conductance defined at lead 6
(shown in Fig. 1) vs spin-orbit coupling strength for different size
systems form0=0.05me, m=250 000 cm2/V s, and flowing current
of 10 nA in the bottom leg. HereL is divided in 42 points. Only a
few disorder realizations are needed for convergence in samples
with these mobilities.

FIG. 3. (Color online) The voltage difference between leads 3
and 4 as a function of Rashba couplingl for H probe for different
size systems and meshes form0=0.05me, m=250 000 cm2/V s, and
flowing current of 10 nA in the bottom leg. The filled and open
symbols correspond to H probe with 4 and 6 leads, respectively. In
the inset the magnitude of the relative voltage changes between
1 and 2, and 3 and 4 leads are plotted as a function ofl for
L=120 nm.
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SUMMARY

We have calculated, as a function of the Rashba SO-
coupling strengthl, the voltage dropDV34 that occurs in an
H-shape sample in a response to a driving dc current between
leads 1 and 2. The voltage difference follows qualitatively
the changes of the calculated SHE conductance,GSH, with l.
Moreover,DV34 increases with the increase of the Rashba
coupling for the constant disorder strengthW indicating that
the observed voltage signal is connected with the intrinsic
SHE. Our work provides another confirmation of the robust-

ness of the intrinsic SHE against weak disorder and shows
the feasibility of detecting SHE signals through dc-transport
measurements in structures with realistic experimental pa-
rameters.
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