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One-phonon thermal-diffuse-scattering intensities have been calculated for the (111),(100), and (110)
surfaces of Xe. The calculations are based on the (pseudo-) kinematical approximation, which is presumably

very good for this material. The finite penetration of the electrons into the crystal is approximately taken

into account with a transmission factor. As we have pointed out previously, it is important to include the

penetration since the assumption of scattering from the surface layer only (made in treatments by other

authors) leads to results which are qualitatively incorrect. The present calculations are for extensive regions

of reciprocal space including several reciprocal lattice rods. The results are presented in the form of both

contour curves and intensity profiles. Several interesting features are apparent, including (i) anisotropies

about the reciprocal lattice rods, (ii) differences in intensity distributions around different rods which are
caused by interference effects (and which therefore provide a measure of the attenuation of the electron

beam), and {iii) the presence of an "extra spot" in the results for the {100)surface. It is possible that these

qualitative features can be observed in low-energy electron diffraction experiments on other monatomic fcc
materials.

I. INTRODUCTION

Recently, Ignatiev, Hhodin, and co-workers
have succeeded in performing low-energy elec-
tron-diffraction (LEED) measurements on Xe
films. ' These measurements provide an excel-
lent opportunity for comparisons between theory
and experiment, because (a) the interaction be-
tween Xe atoms can be approximated by the simple
Lennard- Jones potential and (b) it appears that
low-energy electron scattering from Xe, unlike
that from most other materials, can be treated
successfully with the simple kinematical approxi-
mation. '~ In view of these recent experiments,
we have considered it worthwhile to perform ex-
tensive calculations of the one-phonon kinemati-
cal thermal diffuse scattering (TDS) from Xe.
Our calculations are for the (111), (100), and (110)
surfaces, with the (111)orientation being of the
greatest immediate interest because it occurs in
the films studied in Refs. 1 and 2.

A second motivation for the present work is the
possibility that, within the kinematical approxi-
mation, the qualitative results may be applicable
to other monatomic fcc materials.

II. GENERAL FORMULATION

As is well known, the Bragg peaks associated
with scattering from the bulk of a crystal undergo
a decrease in intensity as the temperature is in-
creased. The intensity which is lost from the
Bragg peaks goes into TDS. Whereas the Bragg
scattering is concentrated only at reciprocal lat-
tice points, the TDS is distributed throughout all
of reciprocal space. In the case of scattering

from a surface, the Bragg scattering is concen-
trated at "reciprocal lattice rods" associated with
the two-dimensional reciprocal lattice points for
the surface, and the TDS is again distributed
throughout reciprocal space.

In the present work, we will treat the TDS with-
in the framework of the (pseudo-) kinematical ap-
proximation; i. e. , we will adopt the picture that
an electron undergoes only one scattering process
within the solid, and we will include the effect of
attenuation of the electron beam through a trans-
mission factor. There is evidence that this ap-
proximation provides a good description of low-
energy electron diffraction from Xe for beam en-
ergies above 40 eV. ' It is also worth mention-
ing that a calculation by Moon3 for the TDS from
Cu, which included dynamical (multiple scatter-
ing) effects, gave approximately the same values
for the intensities as a kinematical calculation.

In our calculations we will consider only the
one-phonon contribution to the thermal diffuse
scattering, as described below. At high tempera-
tures multiphonon processes become increasingly
important. For Xe and other sufficiently heavy
materials, however, the one-phonori scattering
should dominate at low enough temperatures. We
will also make the quasiharmonic approximation,
which is known to be valid for Xe (as well as Ar
and Kr) at sufficiently low temperatures. ~

For convenience, our calculations are performed
for a slab-shaped crystal nine layers in thickness.
The results for such a model should approximate
the results for a semi-infinite crystal except for
a small region near each reciprocal lattice rod
(see Sec. III). The last important approximation
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involved in our calculations is the assumption of
a Lennard-Jones 12-6 potential to describe the
interaction between Xe atoms. This potential
yields rather accurate results for a number of
bulk properties of the noble-gas solids. 4

As usual, ' we take the z direction to be perpen-
dicular to the surface, and we adopt periodic
boundary conditions in the x-y plane. We restrict
the discussion to monatomic crystals for whicL
we can specify each particle by a two-dimensional
lattice point 1= (/„/3) and an index /s which speci-
fies a layer parallel to the surface. We will use
the convention of writing the planar part of a vec-
tor with bars; e.g. , r= (x, y, z)=r+zz, where g

is the unit vector normal to the surface. The in-
stantaneous position of an atom within the crystal
is given by

r (I, /, ) = r()(1, /, ) + u(1, /, ), (2. 1)

where ro(1, /3) is the mean position of the atom and

u(1, /, ) is the time-dependent displacement.
Within the kinematical and quasiharmonic ap-

proximations, the one-phonon thermal-diffuse-
sca.ttering intensity /, (Q) is given by

I (Q) I ~f ~

««Q & (/ ) (P) & ( «v, )-&)«)-)N( ))())

1f1 f l3f l3

x exp (i Q [r0(1, / ) —r (1', /', )])

x([Q u(1, /3)] [Q u(l', /s)] ), (2. 2)

where Io is the incident intensity, fo is the atomic
scattering factor, o, (/~) is the transmission factor
for the plane labeled by /3, Q is the difference be-
tween the wave vectors of the scattered and in-
cident waves, and the angular brackets indicate a
thermal average. The quantity e "3' is the
square root of the Debye-Wailer factor, i.e. ,

M(1, /3) = —,
' ([Q u(l, /~)]2) .

For crystal surfaces having the symmetries of
those that we will consider, one can show that
(u u()) = 0 if o, O /( (o, = x, y, z) so that

M(1, /, ) =M(/, ) =-,' Z q'. (u.'(/, )) . (2. 4)

The mean-square amplitudes (u~(/3)) have been pre-
viously calculated~ from the equation

(/3; kp) j 8'())),(k)
(u„'(/, )) = ~ Z '(@ coth

(2. 5)
where N is the number of values of the wave vec-
tor k occurring in the summation, M is the atomic
mass, p distinguishes the vibrational frequencies
(d~(k) for a given k, $ (/„kp) is an eigenvector
which specifies the direction of vibration for a
given vibrational mode, kB is the Boltzmann con-
stant, and 7." is the temperature. In the summa-

If one substitutes Eq. (2. 6) into Eq. (2. 2) and uses
the result for the ensemble average of the normal
coordinates'

()4(kp)A" (k'p')) = b, (k —P)5(,q«2 coth K(u~(R)

2()))) B
(2. V)

[with h(k -k') = 1 if (k —k') is a planar reciprocal
lattice vector G and b, (E-F)= 0 otherwise], then
the scattering intensity can be expressed in terms
of the normal mode frequencies and eigenvectors:

I (Q) I
~
f

~

2 Q (/ )&(/ )8-N(ls)&-N((3)
l3~ l$

x exp(i()) gz, (/, ) -z, (/', )])2 [Q.$ (/„' gp)*]

x[Q «()'„@)] «oth '
) . (2. 8)

())p B

Once the frequencies and eigenvectors have been
determined as in Ref. 5, it is in principle straight-
forward to calculate the TDS intensity for a given
value of Q. ~ In the remainder of this paper we
discuss such calculations for the noble-gas solids.
Two preliminary reports of these calculations have
been given previously. ' ~

III. PROCEDURE OF CALCULATIONS

We assume a Lennard-Jones potential of inter-
action between the noble-gas atoms,

())(&) = &[(o/&)"- (o/&)'], (3.I)

with the potential parameters g and o having the
values given by Horton. '2 We define the dimen-
sionless temperature

r* = (/, /@) (Mo'/c)"'r

and the dimensionless frequency

(M&2/s ))/2

so that Eq. (2. 8) becomes

gN 2 1/2

&«(Q)=&«IJ'«I 3,« ~,)
)"(Q)

(3.2)

(3.3)

(3.4)

where av 2 is the nearest-neighbor distance and
the dimensionless quantity P(Q) is given by

/«)«(Q) 2 Q (/ ) (/I) -)«)() 3) -M() 3)

l 3y l~3

tion of Eq. (2. 5) and in the following, the phonon
wave vector k is to be restricted to the first (two-
dimensional) Brillouin zone associated with the
surface.

Equation (2. 2) can be cast into a more usable
form by writing u(1, /3) in terms of the normal co-
ordinates~ A(kP):

u(1, /, ) = (7/M)-"'P A(kP)$(/„kP) e '""o"~ '3' . (2. 6)
k, P
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x exp{i@,[zo(l3) —zo(ll3)]]g [Q $(&3;+)~]

x[Q ((l's, gP)],
~

cosh( ~) . (3. 5)
+p LK

In the present calculations the eigensystem was
determined for nine-layer slabs having (111), (110),
and (100) surface orientations. The static relax-
ation of the planes near the surface and the re-
sulting change in force constants were taken into
account. 5 The transmission factor o. (E,) was
taken to decrease geometrically with increasing
distance into the crystal from the surface, with
the ratio o. (l~ —1)/o. (l3) =0. 5 unless otherwise
stated. The top five layers (l3= 1, . . . , 5, with

I,= 5 at the surface) were included in the calcula-
tion of P from Eq. (3.5). It is important to note
that the transmission factor o, (EB) is a phenomeno-
logical parameter incorporated. in a kinematical
description of the scattering to account for at-
tenuation as the beam penetrates the crystal.
Since n(I~) is a function of the electron energy and
the angle of incidence, our choice of o. (I,) will be
valid only for particular scattering conditions.
However, we have carried out test calculations
for other choices of o. (l, ) (see below), and we find
that the main results are not strongly sensitive
to the value of the ratio o. (l~ —1)/o. (ls).

In order to directly relate I~ to an observed
scattering intensity, it is necessary to eliminate
effects due to the factor ) foi 2, since fo depends
on the scattering angle. This is accomplished by
holding the magnitude of the scattering vector,
(g(, fixed while the planar vector g is varied.
In an actual scattering experiment this procedure
corresponds to tilting and rotating the crystal
while keeping the rest of the apparatus, and thus
the scattering angle, fixed. '3 The results for P'
are, therefore, presented as a function of Q in a
two-dimensional reciprocal space appropriate
for the given surface and for constant (Q). The
results cover extensive regions of reciprocal
space including a number of reciprocal lattice
rods.

It should be noted here, as discussed in an ear-
lier paper, ' that the slab-model calculation does
not give physically realistic results for the scat-
tering intensity at very small values of [g —6 [—
that is, for points very near the reciprocal lattice
rods. The reason for this failing of the slab mod-
el is that the finite thickness of the slab results
in a finite sum over the index p in Eq. (2. 8). In
the slab model with N3 planes, there are 3N3
modes in this summation, whereas in a semi-in-
finite crystal there are an infinite number of
modes. For all values of Q except those very
near the reciprocal lattice rods, the frequencies
of the modes are rather evenly spaced and the

In this section we present the results for the
thermal diffuse scattering from the (111), (100),
and (110) surfaces of xenon using the method out-
lined above. In all cases the temperature T is
23. 3 'K (T*= 10.0) and for each surface the mag-
nitude of the scattering vector [Q[ = (@~+@2~+@2)'I~
is fixed at a particular value. The intensity P is

G2
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8 8

0 0 0
"G2
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G,

(100)

G)

{110) G,

FIG. 1. Surface unit cells and Brillouin zones for the
(100), (110), and {111)surfaces of a monatomic fcc crys-
tal. The stacking is ABAB . . . for the (100) and (110)
surfaces and ABCABC. . . for the (111) surface.

finite slab model gives an accurate sampling of
the modes in a semi-infinite crystal. However,
in the immediate vicinity of the reciprocal lattice
rods 6, there are three modes whose frequencies
u&(g) go to zero as (Q —G) goes to zero and which
consequently dominate the summation over P in
Eg. (2. 8); since the sample modes are no longer
evenly spaced, the results for the semi-infinite
crystal and the crystal of finite thickness will be
considerably different. For example, in the high-
temperature limit one can easily show that I,(Q)
goes as ) Q - 6 )

' as ] Q —6 j - 0 in the model of
a slab with finite thickness. How'ever, Wallis and
Maradudin' and Huber' have shown that for a
semi-infinite crystal, in the continuum approxi-
mation and the high-temperature limit, I,(Q) goes
as ( g —6 )

' as ) g —6 [ - 0, and McKinney, Jones,
and Webb'3 have experimentally verified this re-
sult. The method we have described, then, is not
valid for calculating the scattering intensity for a
semi-infinite crystal in the immediate vicinity of
a reciprocal lattice rod. However, a conservative
estimate based on earlier high-temperature results
for the slab model' indicates that the model is in-
valid in regions around reciprocal lattice rods
having areas of only a few percent of the first
Brillouin zone. We consequently regard the finite
slab model as quite useful for studies of the scat-
tering intensity in large regions of reciprocal
space.

IV. RESULTS AND DISCUSSION
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given as a function of g= (Q„,Q„) in the surface
reciprocal lattice space appropriate to each sur-
face. In Fig. 1 we show the orientation of the
two-dimensional unit cell and Brillouin zone for
each surface. The positions of the atoms of each
layer and the stacking order are also indicated.
The primitive-surface reciprocal lattice vectors

G, and G~ are shown and are used in defining the
reciprocal lattice rods (nzn) corresponding to
G= mGg+nGp.

In Figs. 2-4 results are shown for the (ill)
surface with [Q) = Br'/a corresponding to a
(666) reflection —that is, for the sixth diffraction
maximum along the (00) rod arising from theresid-

FIG. 2. Curves of equal intensity for (111}surface of Xe, at a temperature of 23.3 'K and for IQ I =67IW3/g, where
cv/2 is the nearest-neighbor distance. The value of I along the curve labeled n is given by logiof =(0.02&79) x(n-l)
+1.31000. Curves for which n &30, e. g. , near the (00} rod, are not shown. The curves were determined by interpola-
tion between points on an 80' 80 grid in each of the rectangular areas centered on a reciprocal lattice rod.
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conclusion from these results is that the main
features of the TDS can be understood in terms
of the familiar Ewald diagram. Namely, there
are large peaks in the intensity when the scatter-
ing vector crosses a reciprocal lattice rod, and
the relative strengths of these peaks depends on
the distance along the rod to a Laue maximum.
Moreover, small peaks (extra spots) can arise
in the TDS intensity away from the rods when the
scattering vector passes through a region satis-
fying the residual third Laue equation (i.e. , as
determined by Q,). However, the quantitative

importance of these effects will, of course, be
determined by the attenuation of the electron beam
with distance into the crystal. The extreme case
of scattering from the surface layer only was dis-
cussed above and illustrated in Figs. 3, 6, and 9.
In this case there is no interference between
layers and we thus find similar behavior near all
the rods. In order to further demonstrate the
effects of interference, we show in Fig. 11 graphs
of P vs ~Q) for the (100) surfac for three addi-
tional values of the ratio o.(la —1)/a(l, )—namely,
0. 6, 0.4, and 0.2. These values are representa-

FIG. 5. Curves of equal intensity for (100) surface of Xe, at a temperature of 23. 3 'K and for (Q I =12m/g. The value
of I along the curve labeled s is given by log&OI =(0.08241) x(s —l) +l. 06000.
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FIG. 6. Monolayer scattering from Xe (100) to be
compared with the region around the (00) rod of Fig. 5.

( I ( I I

0 8.0 Q g )6.0 24.0

PIG. 7. I vs@= l Ql =(Q„+Q~) 2forvaluesofglying
between the (00) and (05) rods for Xe (100) at T= 23. 3 K and

) Q [ =12m/a. Note the "extra spot" justbeyond the (04}rod.

tive of the attenuation for energies relevant to
LEED. ' lt can be seen that the extra spot is more
prominent for a ratio of 0. 6 and less prominent

at 0.4 than it is in the results of Fig. V for a ratio
of 0.5, and that it is absent in the results for 0. 2.
These results demonstrate that the extra spot is

l
FIG. 8. Curves of equal intensity for (110) surface of Xe, at a. temperature of 23. 3 'K and for I Q l =12m'/a. The

value of I* along the curve labeled n is given by log&ol*=(0. 05525) & (n -1)+o. 0977o
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FIG. 9. Monolayer scattering
from Xe (110) to be compared with
the region around the (00) rod of
Fig. 8.

due to interplanar interference; i.e. , as the at-
. tenuation increases and the effective interference
between planes consequently decreases, the extra
spot is diminished. The relative heights of the
peaks at the rods shown in Fig. 11 also behave
with attenuation in the way discussed above, the
peaks becoming more equal as the attenuation is
increased. It is worthwhile to note, however, that
the relat'
the

ive heights are not strongly sens t' t
e value of the ratio tt(ls —1)/o. (l,), and the range

-O. 6 probably corresponds to a rather wide
range in beam energy. '

In conclusion, these calculations illustrate the
important qualitative properties of the TDS in the
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framework of the pseudokinematical theory. It
is clear that there are strong interplanar inter-
ference effects that modify the scattering along
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FIG. 10. I*vs Q for values of Q lying between the

=12 m v2/g.
00) and (2 0) points for Xe (110) at T = 23.3 'Ka = . 'Kand tel

04 & i I I

0 8,0 QO 16.0 24,0
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FIG. 11. I* vs I Q ' for the same conditions as in
Fig. 7 but for three values of the ratio n(l3-1)/nQ3):
0.2 (rapid attenuation), 0.4, 0. 6 tin Fig 7 l — )
ng ~=0n(3) 0.5]. The graphs for 0.4 and 0. 6 are shifted up-
wards as indicated at the right-hand side of the figure
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the rods. As discussed above, these interference
features provide a measure of the attenuation of
the electron beam with distance into the crystal.
The combined effects of interference and the vi-
brational properties of the atoms gives rise to
considerable detail in the predicted intensity pat-
terns. It would be of interest to see how these

predictions compare with experiments on xenon
and other monatomic fcc materials.
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Reorientation and Motion of the Self-Trapped Hole tn KMgF, ~
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The thermal motion of the self-trapped hole in KMgF3 has been investigated by observing the decay of
[Fz ]-center aligment as a function of time and temperature. Electron-paramagnetic-resonance [EPR] and
polarized-optical-absorption techniques were used. The results show that reorientation through an angle of
7l/2 takes place in the range 90-100 K with an activation energy of 0.260 eV. Reorientation through an
angle of n/3 takes place, but at a temperature about 10 K higher, and with an activation energy of 0.29
eV. Annealing of the self-trapped holes occurs between 100 and 110 K. The kinetics are not simple first or
second order, but are what would be expected if the self-trapped holes could either annihilate with their

complementary electrons or be retrapped at other trapping sites. Consideration of all possible ways in which
holes can migrate or reorient suggests that the annealing occurs via a linear motion along [110] rows of F
ions and does not involve any reorientation of the IF, ] centers.

I. INTRODUCTION

Self-trapped holes have been observed in numer-
ous halide crystals. ' They are of particular in-
terest since they exhibit many characteristics nor-
mally associated with ionic defects or impurities
(e. g. , paramagnetic resonance and optical absorp-
tion) yet do not involve any missing or excess ions
in the lattice. They have been studied in greatest
detail in alkali-halide crystals, for which the de-
tails of the optical and EPR spectra as well as the

details of hole motion are well understood. At low
temperatures, if an electron is ionized from one
of the halide ions and is trapped elsewhere, the
resulting halide atom shares the hole with a neigh-
boring ion, forming an [Xs) molecular ion, the in-
terionic spacing of which is significantly smaller
than the nearest-neighbor spacing of the halide
ions in the perfect lattice. 2 It is this relaxation
that permits the self-trapping of the hole. As the
temperature is raised, the self-trapped hole moves
by hopping. In materials having the NaCl struc-


