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Superconducting transition temperature in heterogeneous ferromagnet-superconductor systems
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We study the superconducting phase transition in two systems: ferromagnet-superconductor bilayer~FSB!
and a thin superconducting film with a periodic array of magnetic dots~SFMD! upon it. We show that this
transition is of the first order in FSB and of the second order in SFMD. The shift of the transition temperature
DTc due to the presence of a ferromagnetic layer may be positive or negative in the FSB and is always negative
in the SFMD. The dependence ofDTc on geometrical factors and external magnetic field is found. Theory is
extended to multilayers.
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I. INTRODUCTION

Heterogeneous ferromagnetic-superconducting~FM-SC!
systems have attracted much attention recently1–14 If the
proximity effect is suppressed by the oxide layer between
FM and SC components, they interact via magnetic fie
Any inhomogeneous magnetization produces magnetic fi
penetrating into the superconductor and inducing super
rents. The supercurrents in turn generate magnetic field
ing on the magnetization. Systems in which both, FM a
SC parts are thin films represent a special interest for
experiment and can be analyzed theoretically. In these
tems, spontaneous vortices appear due to the mag
interaction.15 Erdin et al.16 have developed a method to ca
culate the arrangement of the magnetization in the FM fi
and supercurrents including vortices in the SC film in t
London’s approximation. The London’s approximation
justified for these mesoscopic systems because characte
length scales for magnetic field~the effective penetration
depth and the period of textures! are much larger than th
coherence lengthj of the superconductor. This method w
applied recently17 to study topological textures in th
ferromagnet-superconductor bilayer~FSB!. It was shown
that the homogeneous state of the FSB with the magne
tion perpendicular to the layer is unstable with respect to
formation of vortices. The ground state of the FSB represe
a periodic array of stripe domains in which the direction
the magnetization in the FM film and the vorticity of vortice
in the SC film alternate together.

In this paper we study the SC transition in heterogene
FM-SC systems including the FSB, multilayers, and sup
conducting film with a periodic array of magnetic do
~SFMD!. For this purpose we extend the theory of sponta
ous SC-FM structures developed in the work17 to the case of
multilayers. We demonstrate that in the FSB the transit
proceeds discontinuously~the first-order phase transition! as
a result of competition between the stripe domain structur
a FM layer at suppressed superconductivity and the c
bined vortex-domain structure in the FSB. Spontane
vortex-domain structures in the FSB tend to increase
transition temperature, whereas the effect of the FM s
interaction decreases it. The final shift of transition tempe
ture DTc depends on several parameters characterizing
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SC and FM films and varies typically between20.03Tc and
0.03Tc .

In the SFMD the superconductivity appears continuou
~the second-order phase transition!. The shift of the transition
temperature is always negative in this system.

Though the influence of the textures on the transition te
perature is akin to the influence of the homogeneous m
netic field, there are important differences between these
phenomena: first, the average magnetic field may be zero
magnetic textures; second, the reciprocal action of the m
netic field generated by vortices onto magnetization is s
stantial.

The plan of this paper is as follows. In the followin
section we consider the change of the transition tempera
due to spontaneous stripe structures in the FSB. In Sec
we analyze how this stripe structure and the transition te
perature change in the presence of an external magnetic fi
In Sec. IV we study the shift of the transition temperature
the SFMD. Sec. V is devoted to theory of spontaneous t
tures in a multilayer FM-SC structure and to the shift of t
transition temperature in it. Our conclusions are given in S
VI.

II. TRANSITION TEMPERATURE IN THE SPONTANEOUS
STRIPE STRUCTURE OF FSB

As it was shown in Ref. 17, the homogeneous state of
FSB with the magnetization perpendicular to the layer
unstable with respect to the formation of a stripe dom
structure, in which both the direction of the magnetization
the FM film and the circulation of the vortices in the SC fil
alternate together. Let the stripe width beLs . The magneti-
zation can be written asm5ms(x) ẑ, where the coordinatex
is along the direction perpendicular to the domain wallsẑ
denotes the unit vector perpendicular to the layers, ands(x)
is a periodic step function with period 2Ls :

s~x!5H 11 0,x,Ls

21 Ls,x,2Ls .

The energy of the stripe structure per unit areaU and the
equilibrium stripe widthLs were calculated in Ref. 17. Her
we correct a calculational mistake of that work:18,19
©2004 The American Physical Society30-1
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U5
216m̃2

le f f
expS 2 ẽdw

4m̃2
1C21D , ~1!

Ls5
le f f

4
expS ẽdw

4m̃2
2C11D . ~2!

The notations in Eqs.~1! and ~2! are as follows:le f f
5l2/ds is the effective penetration depth of the SC fil
whose thickness is denotedds , l is the London penetration
depth,ẽdw is the renormalized linear tension of the doma
wall, ev5(f0

2/16p2le f f)ln(lef f /j) is the single vortex en-
ergy in the absence of the FM film;m is the magnetization
per unit area of the FM film,m̃5m2ev /f0 is the renormal-
ized magnetization~due to the screening effect of vortices!,
andC'0.577 21 is the Euler constant. To find the transiti
temperature, we combine the energy given by Eq.~1! with
the Ginzburg-Landau free energy. The total free energy
unit area reads

F5U1FGL5
216m̃2

le f f
expS 2 ẽdw

4m̃2
1C21D

1nsdsFa~T2Tc!1
b

2
nsG . ~3!

Herea andb are the Ginzburg-Landau parameters. We ha
omitted the gradient term in the Ginzburg-Landau equat
since the gradient of the phase is included in the energy~1!,
whereas the gradient of the SC electron density can be
glected everywhere beyond the vortex cores. Recalling
l25msc

2/4pnse
2 and plugging it into Eq.~3!, we find the

free energy as function ofns , T2Tc , andm. Note that

m̃5m1
f0e2dsns

4pmsc
2

ln
4pe2dsnsj

msc
2

. ~4!

We expect thatns is small near the transition pointTc and,
therefore, retain only the linear inns part in the first term in
Eq. ~3!. This term can be included in the Ginzburg-Land
free energy and resulting in a shift of the Ginzburg-Land
transition temperature:

F5nsdsFa~T2Tr !1
b

2
nsG , ~5!

where

Tr5Tc1
64pm2e2

amsc
2

expS 2 ẽdw

4m2
1C21D . ~6!

Minimizing the total free energy overns , we find the equi-
librium value ofns ~for T,Tr): ns52(a/b)(T2Tr). Sub-
stituting it back to Eq.~5!, we find the equilibrium free en
ergy

F52
a2~T2Tr !

2

2b
ds . ~7!
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The SC phase is stable if its free energy~7! is less than the
free energy of a single FM film with the stripe domain stru
ture, which has the following form:20,21 F f m524m2/L f ,
whereL f is the stripe width of the single FM film. Near th
SC transition point the temperature dependence of the va
tion of this magnetic energy is negligible. Hence, whenT
increases, the SC film transforms into a normal state at s
temperatureTc* below Tr . This is the first-order phase tran
sition. At transition point both energies equal to each oth

a2~Tc* 2Tr !
2

2b
ds5

4m2

L f
. ~8!

Thus, the shift of the transition temperature is determined
a following equation:

Tc* 2Tc5
64pm2e2

amsc
2

expS 2 ẽdw

4m2
1C21D 2A 8bm2

a2dsL f

.

~9!

Two terms in Eq.~9! play opposite roles. The first one is du
to the appearance of spontaneous vortices which lowers
free energy of the system and tends to increase the trans
temperature. The second term is the contribution of
purely magnetic energy, which tends to decrease the tra
tion temperature. The values of parameters entering Eq.~9!
can be estimated as follows. The dimensionless Ginzb
Landau parameter isa57.04Tc /eF , whereeF is the Fermi
energy. A typical value ofa is about 1023 for low-
temperature superconductors. The second Ginzburg-Lan
parameter isb5aTc /ne , wherene is the electron density
For estimates we takeTc;3 K, ne;1023 cm3. The magne-
tization per unit aream is the product of the magnetizatio
per unit volumeM and the thickness of the FM filmdm . We
accept a typical value ofM;102 Oe anddm;102 Å. Then
m51024 Gs/cm2. In an ultrathin thin magnetic film the ob
served values ofL f vary in the range 1 to 100mm.22,23 If
L f;1 mm, ds5dm5102 Å, and exp(2ẽdw/4m21C21)
'1023, we obtainDTc /Tc;20.03. ForL f5100 mm, ds

553102 Å, and exp(2ẽdw/4m21C21)'1022, we find
that DTc /Tc;0.02.

III. SPONTANEOUS STRIPE STRUCTURE IN AN
EXTERNAL MAGNETIC FIELD

In this section we study the spontaneous stripe system
the FM-SC bilayer in the presence of an external perpend
lar magnetic fieldB ~along theẑ direction!. Since the exter-
nal magnetic field tends to align the magnetization paralle
itself, we anticipate that the widthL1 of stripes with the
magnetization parallel to the external magnetic field
creases, whereas the widthL2 of the stripes with the antipar
allel magnetization decreases. Let us define a step func
with the periodL5L11L2 as follows:

s~x!5H 11 ~0,x,L1!

21 ~L1,x,L !.

The Fourier-transform ofs(x) is
0-2
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SUPERCONDUCTING TRANSITION TEMPERATURE IN . . . PHYSICAL REVIEW B69, 104530 ~2004!
sG5H 2i ~12eiGL1!/~LG! ~GÞ0!

~L12L2!/L ~G50!.
~10!

Here G52pr /L and r 50, 61, 62, •••. For the sake of
brevity, we denotet5L12L2. At large distance from the
bilayer the magnetic field asymptotically becomes equa
the external magnetic field. The total magnetic flux is t
same in any cross section of the space. Thus, the ave
magnetic field through the SC layer is

f0

L E
0

L

n~x!dx5Bext , ~11!

wheren(x) is the density of vortices. The general express
for the free energy of a periodic stripe system of magnet
tion and vortices is given by Eq.~10! of the work.17 Employ-
ing this equation and the Fourier expansion for the step fu
tion s(x) @see Eq. ~10!# and denotingnG the Fourier
transform of the vortex densityn(x), we obtain:

Uv5(
G

ẽvsGn2G1
1

2 (
GÞ0

VGnGn2G , ~12!

whereẽv5e02mf0 is the renormalized energy of a vorte
VG5f0

2/(2puGu) is the Fourier transform of the vortex in
teraction energy. An infinitely large termVG50nG50

2 has
been omitted since it corresponds to the energy of the ex
nal magnetic field. From Eq.~12! we readily find that the
constraint condition implies

nG505
Bext

f0
. ~13!

This equation confirms thatVG50nG50
2 is the energy of the

uniform external field. Minimization of the total vortex en
ergy Uv over the vortex densitynG results in equation:

ẽvsG1VGnG50 ~GÞ0!. ~14!

Plugging the solutionsnG from Eqs.~13! and ~14! into Eq.
~12! and adding the energy of domain walls, we arrive at
following expression for the total energy per unit area:

Ũ5
28m̃2

L FC1 ln
L

le f f
1

1

2
lnS 212 cos

pt

L D G
2

m̃Bextt

L
1

2edw

L
. ~15!

Minimizing the total energyU over L and t, we find the
equilibrium values ofL and t:

L5
2Ls

A12S LsBext

2pm̃
D 2 , ~16!

t5
2L

p
arctan

LBext

4pm̃
, ~17!
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whereLs is given by Eq.~2!. The results of Eqs.~16! and
~17! are similar to those for a purely FM stripe structure in
single FM film.24 The critical external fieldBext

c at which the
domain structure vanishes is

Bext
c 52pm̃/Ls . ~18!

It varies in the range of 1–10 Oe.
In the end of this section, we consider how the SC tra

sition temperature of the bilayer changes in the presenc
external magnetic field. Since at a fieldBext

c ;1 –10 Oe the
stripe structure vanishes, the SC transition proceeds in
homogeneous state of FM film excluding very small vicin
of Tc . Therefore, it is determined by the same nucleat
process as in the case of a single SC film. The nucleatio
a thin film for the field perpendicular to it was considered
Tinkham.25 Though the geometry is different from the bu
geometry considered by Abrikosov,26 his solution can be ap
plied directly. The order parameter coincides with the La
dau wave function for the first Landau level. In the case
the bilayer the energy of the nucleus reads

U5E F 1

2mUS \

i
“2

2e

c
A0DcU2

1aucu2Gd2x1DU.

~19!

HereA0 is the vector potential produced by the critical fie
Hc2. The nucleus energy~19! differs from that in the absenc
of magnetic film by the valueDU52m*Bz

(n)d2x, where
Bz

(n) is the magnetic field generated by the nucleus at the
film. We will prove that this additional term is equal to zer
Indeed, the magnetic field generated by the nucleus read

B(n)S x…5
1

cE ,
1

ux2x8u
3 jn~x8!d3x8, ~20!

wherex8 is a point inside SC film whose thickness will b
put zero in the end,x denotes a point in the FM film. We
assume that the current flows in thex-y plane. Since it has
zero divergence, it can be represented asjn5 z̃
3“8 f (x8,y8), where f (x8,y8) is a function localized in a
finite part of the SC film. The flux of the induced field is

E Bz
(n)d2x5

1

cE S ẑ3“

1

ux2x8u
D @ ẑ3“8 f ~x8!#d2xd3x8.

~21!

A simple transformation turns this integral into a followin
form:

E Bz
(n)d2x5

1

cE f ~x8!¹2
1

ux2x8u
d2xd3x8. ~22!

This integral is equal to zero ifx andx8 belong to different
films. Thus, the interaction between the SC nucleus and
homogeneously magnetized film is zero independently on
wave function of the localized nucleus. Therefore, the tr
sition temperature is the same as that in the absence o
FM film.
0-3
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Let the external magnetic fieldBext equal to the value, a
which the stripe structure in a single FM film vanishesBc
52pm/L f .24 In the interval of magnetic fieldBc,B,Hc2
the shift of the transition temperature is the same as in
absence of the FM layerDTc /Tc5B/Hc2. The typical value
of Bc is ;1 –10 Oe. On the other hand, the second criti
field for the SC film at T5Tc* can be estimated a
Hc2(Tc* )5Hc2(T50)uTc2Tc* u/Tc;100 Oe. Hence Bc

,Hc2(Tc* ). It confirms our assumption that the FM film
remains homogeneous at the SC transition. From the for
las Tc* 5Tc(12Bext /Hc2) and Bc52pm/L f we find the
shift of the transition temperature due toBc is uDTcu/Tc
5Bc /Hc2(0);1023–1022. For largeL f the sensitivity of
the shift of the transition temperature to the magnetic fi
can be rather strong.

IV. TRANSITION TEMPERATURE IN A SC FILM
WITH A SQUARE ARRAY OF FM DOTS

Recently Erdin considered theoretically the vorte
antivortex textures in SFMD.27 For the case that only on
vortex and one antivortex appear per a magnetic dot, he
dicted a symmetry violation in the lowest energy state in
range of parameters. For simplicity we choose another ra
of parameters in which no symmetry violation proceeds:
vortex centers are located precisely under the centers o
magnetic dots, whereas the antivortex centers are located
tween them in the centers of elementary cells. Let us ass
each dot to be a circular thin disk with a radiusR and a
constant magnetizationm per unit area with a direction per
pendicular to the plane~along thez axis!. Let a denote the
dot lattice constant. The total energy per unit area of
system is27

U5uvv1umv1umm. ~23!

The three terms in the right-hand side of the above equa
have the following forms:

uvv5
f0

2

4pa4 (
G

uFGu2

G~112le f fG!
, ~24!

umv52
f0

a2 (
G

mzGF2G

112le f fG
, ~25!

umm522ple f f(
G

G2umzGu2

112le f fG
. ~26!

whereG5(2p/a)(r ,s) (r , s are integers! are the reciproca
lattice vectors;FG5( inie

iG•r i is the structure factor of the
vortex lattice;ni andr i indicate the vorticity and the positio
of the i th vortex in the elementary cell, respectively. In t
purely magnetic termumm it is necessary to perform a regu
larization since only the difference between energies of
SC and normal-state matters:
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umm→ũmm5umm~le f f!2umm~le f f5`!. ~27!

The last term in the right-hand side of Eq.~27! is the dipolar
energy of the FM dots above the SC transition~Fig. 1!. At
temperature below the SC transition the magnetic field g
erated by the dots penetrates into the SC film and cre
vortices and antivortices if the magnetization and the size
the dots are large enough.16 Keeping in mind thatle f f@a
near the new transition temperatureTc* , we can rewrite the
total energy Eq.~23! as follows:

u5
f0

2e2dsns

2pmsc
2a2

ln
a

j
2

f0
2e4ds

2ns
2

4p2ms
2c4a

I 02
f0

2e2dsns

4p2msc
2a2

3 S I 11
4p2mR

f0
I 2D1

2p2m2e2dsnsR
2

msc
2a2

I 3 , ~28!

where (8 means that the termr 5s50 is omitted.I 1 , I 2,
and I 3 are defined as series:

I 05 (
n,s52`

1` 8 1

~n21s2!3/2
,

I 15 (
n,s52`

1` 8 ~21!n1~21!s

n21s2
,

I 25 (
n,s52`

1` 8 J1S 2pR

a
An21s2D @12~21!n1s#

n21s2
,

I 35 (
n,s52`

1` 8 J1
2S 2pR

a
An21s2D

n21s2
. ~29!

We combine this energy with the Ginzburg-Landau free
ergy for the SC film as it was done in Sec. II:

FIG. 1. Schematics representation of FM dots with spontane
vortices and antivortices. The circles drawn by solid line repres
FM dots. The dash half circles with clockwise and counterclo
wise arrows indicate vortices and antivortices, respectively.
0-4
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F5
f0

2e2dsns

2pmsc
2a2

ln
a

j
2

f0
2e4ds

2ns
2

4p2ms
2c4a

I 02
f0

2e2dsns

4p2a2msc
2

3S I 11
4p2mR

f0
I 2D1

2p2m2e2dsnsR
2

msc
2a2

I 3

1Fa~T2Tc!1
b

2
nsGnsds . ~30!

The condition of minimum overns from the free energy, Eq
~30!, reads:

f0
2e2ds

2pmsc
2a2

ln
a

j
2

f0
2e4ds

2ns

2p2ms
2c4a

I 02
f0

2e2ds

4p2a2msc
2

3S I 11
4p2mR

f0
I 2D1

2p2m2e2dsR
2

msc
2a2

I 3

1a~T2Tc!ds1bnsds50. ~31!

At a new critical temperatureTc* the density of SC carriers
must be zero. Pluggingns(Tc* )50 into Eq. ~31!, we obtain
the shift of the critical temperature:

DTc5
\2

4amsa
2 S 4p2mR

f0
I 21I 122p ln

a

j
2

8p4m2R2

f0
2

I 3D .

~32!

Figure 2 shows the relation betweenDTc and R for j
50.21a. To ensure spontaneous occurrence of the vort
the inequalityumv1uvv,0 must be satisfied. It is equivalen
to the following relation:

4p2mR

f0
I 21I 122p ln

a

j
,0. ~33!

The London’s approximation is valid ifj!a. This condition
is violated in a close vicinity of the transition temperatu
For a;3 mm andj(T50)50.1 mm this vicinity is of the

FIG. 2. DTc vs R for j50.21a, respectively, forr 510.0, 12,5,
and 15.0, herer 54p2ma/f0 . DTc is in the unit \2/4amsa

2,
which is about 0.02 K fora5103 anda53 mm.
10453
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order of 0.001Tc and further we neglect it. Figure 2 show
that the shift of transition temperature is a rather complica
function of the dots radiusR and the ratior 54p2ma/f0.
For each valuer, there exists a threshold radiusR0, at which
the vortices first appear. The shift of the transition tempe
ture grows by absolute value withR increasing, reaches
maximum atR/a'0.4 and then decreases. It remains ne
tive at anyR in the interval betweenR0 anda/2. At a fixed
R.R0 the absolute value ofDTc increases with the ratior
and is negative.

V. FM TEXTURES IN THE MULTILAYERS

We consider a FM-SC multilayer system consisting ofN
bilayers with a distanced between two neighboring ones. Le
us start with the limitNd@Rs , whereRs is the lateral linear
size of a layer. If the magnetic films are magnetized perp
dicularly to layers, the average induction inside t
multilayer isB54pm/d and its direction is perpendicular t
the layers. The situation is the same as in a layered su
conductor placed into an external magnetic field.28 There-
fore, pancake vortices in each SC layer may appear. Toge
they form the Abrikosov linear vortices if a conditio
mf0 /d.ea is satisfied, which guarantees that the vortex li
is energy favorable. Hereea5e0lnl/j is the vortex line en-
ergy per unit length,29 ande05f0

2/(4pl)2. There is no need
to consider the Josephson coupling effect in this case s
the phase difference between SC layers is zero if the vo
lines are perpendicular to the layers. On the other hand,
Josephson vortices appear along the layers if the magne
tion m is parallel to the layers and satisfy a conditio
mf0 /d.eJ , where eJ5ge0lnl/d is the Josephson vorte
line energy andg is the anisotropy parameter for the layer
superconductor.28 These ideas were applied by M. Houz
et al.30 to explain properties of the magnetic superconduc
RuSr2GdCu2O8. We will focus on a FM-SC multilayer in the
opposite limitNd!L!Rs , whereL5l2/d is the effective
penetration depth for layered superconductors. In suc
multilayer one should expect spontaneous vortices and a
vortices combined with the domains in the FM films for th
same reason as in the case of a single FM-SC bilayer.17

We first analyze a multilayer superconductor without a
FM texture. Pancake vortices in a finite stack of layers w
discussed by Mintset al.31 We reproduce here some of the
results and derive new ones, substantial for our purpose
applying a modified approach proposed by Efetov32 ~see also
Ref. 33! ~they considered a layered superconductor with
finite number of layers!. To simplify the calculation, we as
sume that layers are infinitely thin and located at the pla
zn5nd (n is an integer!. The vector potentialAv due to the
pancake vortices at SC layers satisfies a following equat

2DAv~r,z!1
1

L (
n

d~z2zn!Av~r,z!

5
f0

2pL (
n

d~z2zn!(
np

dnp
“

(2)wn~r2rnp
!.

~34!
0-5
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The vector potential in Eq.~34! is induced by pancake vor
tices with the vorticitydnp561 placed at the positionrnp ,
wherep enumerates vortices in thenth plane. The Coulomb
gauge“•Av50 is used. In addition,Avz50 because the
direction of“ (2)wn is along the layers. It is useful to intro
duce an auxiliary potentialÃv(r,z)5(nd(z2zn)Av(r,z)
confined to the layers, the ‘‘London vector’’33 fn(r)
5(n,pdnp (f0/2p) “ (2)wn(r2rnp), and the corresponding
auxiliary vector f̃n(r,z)5(nfn(r)d(z2zn). In terms of
these variables Eq.~34! can be rewritten as follows:

2DAv~r,z!1
1

L
Ãv~r,z!5

1

L
f̃n~r,z!. ~35!

Equation~35! can be solved by the Fourier transformatio
An intermediate result following directly from Eq.~35! reads

Av~q,k!5(
n

e2 ikzn
fn~q!2Avn~q!

L~q21k2!
, ~36!

whereAv(q,k) is the Fourier transform of the vector pote
tial Av(r,z), Avn(q) is the plane Fourier-transform of th
vector-potentialAv(r,zn) taken at thenth SC plane, and
fn(q) is the Fourier-transform of the London vectorfn(r).
Performing the inverse Fourier transform with respect to
variable k in both sides of Eq.~36!, we find a system of
equations forAvn(q) at a fixed value ofq for eachm:

(
n

S 1

2Lq
e2qum2nud1dmnDAvn~q!

5
1

2Lq (
n

fn~q!e2qum2nud. ~37!

We apply Eq.~37! to study the simplest case: two SC laye
Let only one pancake vortex be placed in the center of
layerz50 atr150. The other layer is located atz5d with-
out vortices on it. The solution of Eq.~37! for this situation
reads

Av1~q!5
112Lq2e22qd

114Lq14L2q22e22qd
f1~q…,

Av2~q!5
2Lqe22qd

114Lq14L2q22e22qd
f1~q!. ~38!

Heref1(q)5 if0 /qŵ and ŵ5 ẑ3q̂. In the limit qd!1 the
above solution becomes simple:

Av1~q!5Av2~q!5
1

212Lq
f1~q!. ~39!

The current density in each layer is given by

J1~q!5
c

4pL
@f1~q…ÀAv1„q…‡,

J2~q!52
c

4pL
Av2~q!. ~40!
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The asymptotic formulas for the current density in the co
dinate representation are shown in the Table I. The fo
acting between two pancake vortices isF52f0 /cẑ3J,
whereJ is the current produced by one of them at the cen
of another one. Table I demonstrates that the interaction
ergy between two pancakes with the same vorticity at
same layer is logarithmic and repulsive at large distanceR
@L and at small distanced!R!L, but with different co-
efficients in front of the logarithm. A peculiarity of the two
layer structure is that the interaction energy of two panc
vortices with the same vorticity located in different laye
and separated by the lateral distanceR@L, is logarithmic
but attractive. It has the same absolute value as the repu
of two pancake vortices in the same layer. It can be in
preted as the attraction of two ‘‘half-vortices’’ in the tw
plane, one carrying the flux1f0/2, the other carrying the
flux 2f0/2. This interaction dramatically differs from th
interaction of two vortices in different layers for an infinit
number of layers. In the latter case the interaction in differ
layers is weaker than the interaction in the same layer b
small prefactord/l. It can be shown that the logarithmi
attraction of two pancakes in different layers with distan
R@L persists at any number of layersN providedNd!L.

In the two-layer system the asymptotic for the comp
nents of the magnetic field produced by a pancake vo
located in the planez50 at its origin directly follow from
Eq. ~38!. In the ranger@L they are

Bz~r,z!5
f0

8pL F 1

Ar21z2
2

1

Ar21~z2d!2G
1

f0

8p F uzu

~z21r2!3/2
1

uz2du

@~z2d!21r2#3/2G ,

Br~r,z!5
f0

8pLr
sgn~z!S 12

uzu

Ar21z2D 2
f0

8pLr
sgn~z2d!

3S 12
uz2du

Ar21~z2d!2D
1

f0

8p F z

~r21z2!3/2
1

z2d

@r21~z2d!2#3/2G .

In another regiond!r!L we find

TABLE I. The asymptotic form of the current density in eac
layer.

r@L d!r!L

J1(r) f0c

16p2Lr
ŵ

f0c

8p2Lr
ŵ

J2(r)
2

f0c

16p2Lr
ŵ 2

f0c

4L2
ŵ

0-6



n

e

ky
k

s

di

er-

ny
ber-

en-

r-
ear
es

es

t for

e
ers

s

-

ult

SUPERCONDUCTING TRANSITION TEMPERATURE IN . . . PHYSICAL REVIEW B69, 104530 ~2004!
Bz~r,z!5
f0

4pLAr21z2
,

Br~r,z!5
f0

4pLr
sgn~z!S 12

uzu

Ar21z2D .

Due to the strong screening effect exerted by one layer o
another, the magnetic field decays more quickly in thez di-
rection than in plane~the r direction!. The total magnetic
flux through the planez50 and z5d are F(z50)5Bz(q
50,z50)5(L1d/2L1d)f0'f0/2, and F(z5d)5Bz(q
50,z5d)5(L/2L1d)f0'f0/2, respectively. The two
fluxes are not exactly equal, and the net fluxf0d/(2L1d)
escapes through the remote side surface.

The self-energy of a single pancake vortex reads

Esv5
1

8pLE d2q

~2p!2
@ uf1~q!u22f1~2q!•Av1~q!#

5
1

8pLE d2q

~2p!2 Ff0
2

q2
2

f0
2

2q2~11Lq!
G

5
f0

2

32p2L
ln

RsL

j2
, ~41!

whereRs is the lateral linear size of the layers as mention
before. We see thatEsv diverges logarithmically whenRs
goes to infinity. Thus, it is energy unfavorable to produce
single pancake vortex in a layer below the Berezins
Kosterlitz-Touless transition. The energy of a pair of panca
vortices located one opposite the other at different plane

Elv5
2

8pLE d2q

~2p!2
$uf1~q!u22f1~2q!

3@Av1~q!1Av2~q!#%

5
1

4pLE d2q

~2p!2 Ff0
2

q2
2

f0
2

q2~11Lq!
G

5
f0

2

8p2L
ln

L

j
. ~42!

The interaction energy of two such pairs separated by a
tanceR@d is

Vll ~R!5
2

8pLE d2q

~2p!2
$ufW 1~q!~11e2 iq•R!u22f1

3~2q!•@Av1~q!1Av2~q!u11e2 iq•Ru2#%22Elv

5
f0

2

4p2E J0~qR!

11Lq
dq5

f0
2

8pL FH0S R

L D2N0S R

L D G .
~43!

In the last step we have used the formula:34
10453
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E
0

` 1

x1z
J0~cx!dx5

p

2
@H0~cz!2N0~cz!#, ~44!

whereH0(x) is the zeroth Struve function andN0(x) is the
zeroth Neumann function. The asymptotic form of the int
action energy~43! is as follows:

Vll ~R!55
f0

2

4p2L
ln

L

R
~d!R!L!

f0
2

4p2R
~R@L!.

~45!

Equation~37! can be solved by the same method for a
number of layers, though calculations become more cum
some. However, in the regionR@Nd Eq. ~37! can be solved
quite easily. The vector potential of a pancake vortex, id
tical at all layers read

Av1~q!5•••5AvN~q!5
if0ẑ3q̂

q~N12Lq!
. ~46!

Equation~46! allows to calculate the magnetic field, the cu
rent, and the interaction energy. Specifically, the single lin
self-energy and the interaction energy of two linear vortic
for an N multilayer superconductor are

Elv5
Nf0

2

16p2L
ln

L

j
, ~47!

Vll ~R!55
Nf0

2

8p2L
ln

L

R
~Nd!R!L!

f0
2

4p2R
~R@L!.

~48!

We see that the energy of a single linear vortex in aN-layers
SC system is proportional to the number of the layerN. The
interaction energy between two linear vortices isN times
stronger than the corresponding form for two Pearl’s vortic
at a short distance if we replaceL by le f f , but at a long
distance, the interaction energy has the same form as tha
the Pearl vortices.

Next, we discuss FM textures in a multilayer system. W
assume that the SC and FM layers form very thin bilay
separated by a finite distanced. The London-Pearl equation
for the vector potentialAm induced by the magnetic layer
and screened by the SC layers is

2DAm~r,z!1
1

L (
n

d~z2zn!Am~r,z!

54p(
n

“3@md~z2zn!#. ~49!

Comparing it with Eq.~34!, we find that they become iden
tical if we replaceif0ẑ3q̂/q by i4pmqL ẑ3q after Fourier
transform. Therefore, it is straightforward to obtain the res
0-7
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for the magnetic vector potential from the vector poten
induced by vortices. The Fourier transform of the vector p
tential at each layer produced by an FM texture, identica
each plane, reads

Am1~q!5•••5AmN~q!5
i4pLmqẑ3q

N12Lq
. ~50!

Equations~46! and ~50! allow to calculate the interaction
energy of FM textures and vortex-ferromagnet interact
energy for a given magnetic texture.

Let us consider the spontaneous stripe vortex-dom
structure in aN-layer FM-SC, assuming as before that bo
the stripe widthLs8 and the distances between vortices a
much larger thanL. As we mentioned before, the interactio
energy between two linear vortices has the same form as
single layer, but the energy of a linear vortex is proportio
to N. The vortex-ferromagnet interaction energy is also p
portional to N. That means that the condition required f
spontaneous formation of vortices and antivortices rema
the same as for the bilayer

mf0.ev
l , ~51!

whereev
l 5f0

2/16p2L lnL/j. A consideration similar to tha
of Secs. II and III leads to following results. The equilibriu
domain width for aN layer is

Ls85
L

4
expS ẽdw

4Nm̃l
2

2C11D , ~52!

wherem̃l5m2ev
l /f0. The factor 1/N in the exponent~52!

significantly reduces the domain width. The total width
parallel and antiparallel domains in an external magn
field ~the period of the domain structure! is

L8~Bext!5
2Ls8

A12S Ls8Bext

2Npm̃l

D 2
. ~53!

The difference of the widths of parallel and antiparallel d
mains in an external magnetic field reads

t85
2L8

p
arctan

L8Bext

4Npm̃l

. ~54!

The critical field, at which the stripe structure vanishes f
lows from Eq.~53!:

Bext
c8 5

2Npm̃l

Ls8
. ~55!

Note that it increases with the number of layersN. The shift
of the transition temperatureDTc8 in the multilayer case is

Tc* 2Tc5
64Npm2e2

amsc
2

expS 2 ẽdw

4Nm2
1C21D 2NA8bm2

a2dLf8
.

~56!
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HereL f8 is the stripe width for theN-layer consisting only of
FM films, i.e. without any SC film. This length is propo
tional to a modified exponent:L f8}exp(2edw/4Nm2), which
can be obtained similarly to Eq.~53!. Thus, the second term
in Eq. ~56! is proportional toN exp(2edw/8Nm2), whereas
the first term is proportional toNexp(2edw/4Nm2). Even if
the second term in Eq.~56! dominates at smallN andDTc is
negative, it can change sign at largerN provided a following
inequality is true: (29/2pme2Adl/msc

2Ab)exp(C21/2),1,
wherel is the width of the domain wall of FM films.

For the case of a few SC films with square array of F
columnar dots, the shift of the SC transition temperature
be readily obtained from the observation that the distancR
between two vortices satisfies an inequalityR!L near the
transition temperature. Then Eq.~47! implies that the vortex
line energy in aN multilayer system is proportional toN. We
see that each term in the Ginzburg-Landau free energ
proportional toN. Therefore, the shift of the transition tem
perature is the same as that for a single SC film with FM d
@Eq. ~32!#.

VI. CONCLUSIONS

We have studied the characteristics of the SC transi
and the shift of the transition temperature in heterogene
FM-SC systems by using the Ginzburg-Landau equati
The competition between combined vortex-domain struct
in the FSB and domain structure in the FM film with th
suppressed superconductivity leads to the first-order ph
transition. The shift of transition temperature can be posit
or negative, depending on parameters of materials u
Typical values of the relative shiftDTc /Tc range from
20.03 to 0.02. It has been demonstrated that the stripe st
ture must vanish at a very small external magnetic fi
about 1–10 Oersted. Simultaneously the transition temp
ture may change by the valueDTc /Tc;20.03–0.02.

In the multilayers case, the critical magnetic field at whi
the stripe disappears increases with the number of layerN.
The shift of the transition temperature can change sign fr
negative to positive withN increasing. The reduction of th
transition temperature in the SFMD may be of the same
der of magnitude as in the stripe structure at reasonable
ues of parameters. In the FM-SC multilayer, this magnitu
is the same as that in a single isolated FM-SC bilayer.

The stripes are expected to appear in the multila
samples whose total thickness is much smaller than t
lateral size. No stripes will exist in the opposite limitin
case. This implies that there must exist a critical value
ratio of the thickness to the transverse size, at which
stripe structure disappear. The accepted approximation d
not allow to calculate this ratio and the corresponding criti
behavior.
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10453
.

.

.

,

instead of ẽv5e02
3
2 mf0 found in Ref. 17!. This leads to a

change of the domain widthL and energyU @Eqs.~18! and~19!
in Ref. 17#. The corrected values are given by Eqs.~1! and~2! of
this paper.

19P. G. de Gennes,Superconductivity of Metals and Alloy
~Addison-Wesley, New York, 1989!.

20Y. Yafet and E.M. Gyorgy, Phys. Rev. B38, 9145~1988!.
21B. Kaplan and G.A. Gehring, J. Magn. Magn. Mater.37, 111

~1993!.
22R. Allenspach and A. Bischof, Phys. Rev. Lett.69, 3385~1992!;

R. Allenspach, J. Magn. Magn. Mater.129, 160 ~1994!.
23O. Portmann, A. Vaterlaus, and D. Pescia, Nature~London! 422,

701 ~2003!.
24A. Kashuba and V.L. Pokrovsky, Phys. Rev. Lett.70, 3155

~1993!; A. Abanov, V. Kalatsky, V.L. Pokrovsky, and W.M
Saslow, Phys. Rev. B51, 1023~1995!.

25M. Tinkham, Introduction to Superconductivity, 2nd ed.
~McGraw-Hill, New York, 1996!.
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