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Spin transitions in time-dependent regular and random magnetic fields
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We study the transition between Zeeman levels of an arbitrary spin placed into a regular time-dependent
magnetic field and a random field with the Gaussian distribution. One component of the regular field changes
its sign at some moment of time, whereas another component does not change substantially. The noise is
assumed to be fast. In this assumption we find analytically the ensemble average of the spin density matrix and
its fluctuations.
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[. INTRODUCTION whereas Landau and Zener considered only the two-level
crossing equivalent t8=1/2. An extension of the LZ theory
Nanomagnets Reand Mn, attracted much attention in to the case of higher spins was proposed by Hiokle
the last decade. It was shown experimentally that they realproved that the transition probabilities depend onlySemd
ized a single molecule quantum hysterés&ome features of the dimensionless LZ parameter
the hysteresis have been predicted in many theoretical i
works?~*In particular, it is commonly accepted that plateaus y= \/g,uBB)Z(/4h B, (D)
on the hysteresis loop are due to the Landau-Z&h&n . . ,
transitions® at avoided crossing of Zeeman-split spin IeveIsWhereg is the Lande factorug is the Bohr’s magneton, and
in the crystal field of molecular environment. This point of B; is the time derivative(sweeping rate of the magnetic
view is strong]y Supported by the experimenta| observétionfield taken at the diabatic level CrOSSing, i.e., at the moment
of theoretically predictétioscillations of the transition ma- WhenB,(t) turns into zero. The transition probabilities dis-
trix elements vs. magnetic field applied in the hard directionplay very interesting oscillations versus the parametend
However, it was indicated earlfethat the hyperfine interac- difference of projectionsn andm’ of the orbital moment in
tion with the numerous nuclei in the molecule is comparathe initial and final states. These oscillations, which were not
tively large and can remarkably complicate a simple LZ pic-analyzed in the work? originate from the quantum interfer-
ture of transition. The reason why it did not happen at aence of different Feynman paths leading framto m’,
specific experimental setlp was recently explained Which does not exist in the genuine LZ probléhiThus, the
theoretically’ It is indicated in the same work that at a cubic nanomagnets are simple, but nontrivial physical ob-
smaller rate of the field sweeping the violation of the simplejects. The quantum tunneling in these objects is worthwhile
LZ formula seem to be unavoidable. The nuclear spins proto study. As shown for other nanomagnets, the interaction
vide not only a random static field which changes |oca||yWith nuclear spins is essential for the dynamics. Though the
Zeeman splitting and create a nonorthogonality. Their fluchuclear relaxation times are sufficiently long in microscopic
tuations at a little higher temperature become fast and can tgeale(typically milliseconds, the characteristic time of the
considered as a random time-dependent magnetic field acting processr,,~ B, /B, may be even longer. Then the field
on the spin. Another source of the noise is the interactiorof nuclear spins can be considered as a fast Gaussian noise.
with phonons;? which produces random, time-dependent an-in the opposite case this field should be considered as a qua-

isotropy. sistatic random field. Such a case was studied theoretically
Recently several nanomagnets with cubic or almost cubiby Prokof’ev and Stamp.
symmetry were synthesized. One of themgMimy (Ref. 11 The purpose of our article is to study the influence of the

has spin 51/Qthis value can be comparatively easy variedfast noise onto probabilities of transitions between the states
by simple  substitutions Another = nanomagnet of Zeeman multiplet for a free spi8 in the presence of a

[ (trifos) Re(CNY],[ CoCll4,*? which we will abbreviate as regular time-dependent field, the same as that in the LZ or
Re,Coy, has a smaller spiB=6. So far no effects of anisot- Hioe problem. A special case of this problem B 1/2,

ropy were found in magnetic measurements even at temperasen the regular fielB, is zero and transitions are com-
ture about 1 K. It shows that the cubic anisotropy is weak, apletely determined by nondiagonal elements of the random
expected. Thus, the cubic nanomagnets may be the best rield, solved earlier by Kayanumtawho found average val-
alization of a large free spin. Being placed into a varyingues of the transition probabilities. In our previous wnke
magnetic fieldB,(t) along thez axis and a small constant have solved the same problem for regular and random fields
field By in the x direction, such a spin performs quantum acting together. In this work we extend our results for higher
transitions between the states of the Zeeman multiplet. Thepins, find the average nondiagonal matrix elements of the
essential difference between this situation and the standaidknsity matrix, and calculate the fluctuations of all these val-
Landau-Zener(LZ) problen?® is that atB,(t)=0 all 25  ues, which are determined to be strong. These calculations
+1 states of the Zeeman multiplet cross simultaneouslybecame possible due to high symmetry of the problem. A
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proper group-theoretical treatment allows us to deal with (S+m)!(S—m)!
standard objects, which we call Bloch tensors. They are &S,m)— 25 aStM(—p*)S™MS,S)
generalization of the well-known Bloch vector for spin 1/2 '
problem. \/Z—S(ZS— 1)!
The plan of the article is as follows: In Sec. Il we remind ((S—m— OISt
the Hioe solution and analyze in some details the oscillations ' '
of the transition probabilities. In Sec. Il we formulate equa- J25(25-1)!
tions for the density matrix and reduce them to equations for (S+m=1)1(5=m)! a
the Bloch tensors, which we define in the same section. In ' '
Sec. IV we consider the fast noise acting on a two-level
system. Though this problem was considered in our previous X (—b* )S‘mb) [S,S—1).... (5)
article1® it is important to give a simple analysis of the time

scales and to calculate the average transition matrix and flugs general matrix element of the rotation operatofUg/m’)
Section V is dedicated to the solution of the same problemg|iowing way!”18

for general spin. In Sec. VI, returning to two-level system
(spin 1/2, we discuss the limit of a strong regular fieg,
so that the regular transition proceeds adiabatically. The (m|Ugm’)=

aS+ m( _ b* )Sfmf la*

S+m-1

(S+m")I(S—m")!

1/2
} m’+mbm’—m

. . . . . +m)!(S—m)!
noise remains fast in the scalgz, but its relaxation fre- (S+mt(S—m)
quency may be much larger th@y. Section VIl contains % Pgi;f”'m,+m(2|a|2—l), (6)
our conclusions.

where P2P(x) are the Jacobi polynomials. The ma-
Il. SPIN SLANDAU-ZENER PROBLEM trix elements possess the following symmetry pro-
perties: (—m|Ug—m’)=(—1)"*Mlimugm’)* and
[(m[Ug[m")[=[(m"|Ugm)|=|(=m|Ug—m")|.  Equation
(6) displays oscillations of the matrix element when the ar-
gument 2a|?—1 varies from—1 to +1. These oscillations
He(t)= —Sht) 2 ae associated with the oscillatory behavior of the Jacobi
' polynomial. For the number of nod&{m,m’,S) of the ma-
whereb(t)=gugB(t). The key observatidi*is that this trix element (m{Ugm’) a simple equation is valid:
Hamiltonian is an operator of time-dependent infinitesimalN(m,m’,S) = S—max(m|,[m’). The central matrix element
rotation. Therefore the corresponding evolution matrixwith m=m’=0 for integerS and |m|=|m’|=1/2 for half-
Us(t,to)=TeX|c[—iﬁOH5(t’)dt’] is an operator of rotation integers has a maximal number of nodes equalStand S
belonging to the group SO(3) acting in its irreducible repre- 1L/2',[ respectl_velg/r.] bl ideri | .
sentation labeled by an integer or half-integerSince the et us specify the problem considering only a narrow vi

composition law is the same for any irreducible representa(—:Inlty of the diabatic levels crossing point, which we accept

tion, the resulting evolution operator represents the same rJQr.tZO' Itis p_qssmle if the interval of timer z, during
tation for any spin. The group theory allows us to constructWhICh the transitions presumably proceed IS, mu"ch less than
this matrix for an arbitrary spin if it is known for spin 1/2 the characteristic time of the field variatiog=|B,/B,|. The
(see Ref. 17, Chap. VIl The multispinor technique is most characteristic time of transition can be identified a5
appropriate for this purpose. The sfstate can be repre- =|B,/B,|. Thus, the requirement of short transition time can
sented as a direct symmetrized product 8fspin 1/2 states: pe rewritten aB,<(B,)%|B,|. If this requirement is satis-

fied, one can approximate with high accuracy the magnetic

_ [(Stmi(S—m)! o field by a linear function of timé3,(t) =Bt.
|S,m)= (|++ ...+ ce) :
(25)! Landau and Zenéf have solved such a problem for spin

1/2. In particular Zener has determined matrix elemenis

in terms of the Weber functioB _; 2(€' ™\ wt) for an arbi-
where each ket contair+ m spins up(+) andS—m spins  trary moment of time. For simplicity we will focus on the
down (=) and all permutations of up and down are per-values of these parameters for the transition ftem- to
formed. Let the SU(2) matrix rotating spin 1/2 states be t=c. According to the Landau-Zener solution

2
_ a b 4 V2mexp — 7y + il
u —b* * ( ) 2 4
a a=exp—my?), b=— i )
—i
with the constrain{a|?+|b|?=1 imposed. The transforma- Y 7

tion for the state(3) of the spinS can be obtained as the When vy varies from 0 too, the moduluga| changes from 1
direct product of transformationd): to 0 and the argument of the Jacobi polynomial in Eg).

The Hamiltonian of a free spi with the maximal pro-
jection Sin an external time-dependent magnetic figi¢t)
reads

Fl YL, 3

104414-2



SPIN TRANSITIONS IN TIME-DEPENDENT REGULAR . .. PHYSICAL REVIEW B9, 104414 (2004

varies from 1 to—1. Using expressiori6), one finds the The physical reason of these oscillations is the interference
solution for an arbitrary spisin terms of coefficientesand  between different Feynman paths leading fronto m’. For

b, or equivalently, in terms of the Landau-Zener parameteillustration we show here corresponding matrices for spins 1,
v. Thus, the transition amplitudes oscillate as functioryof 3/2, and 2:

a? —J2ab  —b?
U,=| V2ab* 2la]>-1 2a*b |, (8
_b*2 —\/Ea*b* a*Z
a’ J3a%b J3ab? b3
y —J3a%* (3la*-2)a  (3lal*~1)b 3a*b? o
271 3ab*?2  —(3lal>~1)b* (3]a]2-2)a* 3a*2b |’ ©
_b*3 \/§a~kb*2 _\/ga*Zb* a*3

We present only a quarter of the transition matrix #+2. The rest can be found by using above described symmetry
properties.

a* J4a3h J6a2b? J4ap? b*
(4lal?-3)a? 6(2|al?—1)ab (4|a]?>—1)b?

(10
6la|*—6lal?+1

U2:

I1l. DENSITY MATRIX AND BLOCH TENSORS : .
g=—-bXg, gik=—¢&imbi9mk— &ximbiYim

When the random magnetic field acts onto the spin, the (13

system must be described by the density maitiBy defi- All th ; . h : .
nition it is a (25+1)X (2S+1) Hermitian matrix with the ngralts %Sfem%?i%?]t.lons are independent and have obvious inte

trace equal to 1. It satisfies the standard equation of motior:
» g?=const, gi=const, gi,=const, ... . (14
dp ~
i——=[H,p]. 11 . . o .
dt [H.p] ) Thus, the density matrix of a spif in an external time-
N o dependent magnetic field ha$ 2onserving values. It is con-
Any Hermitian matrix with the trace equal to 1 can be rep-venient to represent the Bloch tensors by their complex com-
resented as a sum: ponent with definite projection to theaxis. We will denote
such components of a tensor of the raslas gs,. The

. 1 1 2 corresponding tensor operators composed from the symme-
P=5571! 79 St50ik| SSHSS—30uS(S+1) trized products of & components of the spiS operators are
denotedTim. They can be constructed from the senior op-
N 1 erator of this representatioig =2 %2S% with S.=S,
(29! Yigip . igs *iS, by recurrent commutations with the operagr:
X(S,S, - . - S, tall permutations-all traces (12 1
o . Tom=" [S. Tomel (19
If the Hamiltonian is the generator of the rotati(®), each J(s+m+1)(s—m)

term in Eq.(12) corresponds to an irreducible representation

and evolves independently. We will call symmetric tensorsThe operatorgim are polynomials of the standard spin op-
Jik» 9iki - - -9ii, .. i,q the Bloch tensors in analogy with the eratorsS.. andS,. They are operator analogs of spherical
Bloch vectorg well known from Bloch theory of the nuclear harmonics. _Several lowest such operators are presented in
spin motion. Any trace of such a tensor must be equal tdhe Appendix. We show below relations between the Carte-
zero. The Hamiltoniari2) generates following equations of Sian components of the tensgr,  ; and its components
motion for the Bloch tensors: Osm for several values oé:
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The spectral width of noise is4/. The noise produces tran-

1
gl,ilzﬁ(gxiigy)a 91,09z, (16)  sitions during the interval of time,..= 1/(b,7,,), after which
the current LZ frequency becomes larger than the noise spec-
tral width. We will call this interval the accumulation time
and assume that it is much larger than other characteristic
time intervalsr,, and 77 .
We first solve an auxiliary problem in whidn,=0 and

1 .
92,12:%(9“_ Oyy* 2|gxy)v

1 transitions are mediated by noise only. Such a problem for a
U2+1==(0x,*10y,), 920=9z2, (17)  special shape of correlato(g,,= J%exf — (t—t')/7,]; the re-
’ \/E ' maining components of the correlation tensor are zeras
solved earlier by Kayanumaand studied numerically by
1 Nishino et alZ® In our work'® we have generalized and sim-
O3+3= \/—(gxxx—?"gxxy 30xyy*iGyyy)s - - (18 plified the Kayanuma solution. Here we reproduce our

solutiont® in a modified form convenient for extension to
The general rule for writing the,=m component via its higher spins. We also obtain new results calculating the fluc-
Cartesian counterparts is the same as for the produdtation of the density matrix, or equivalently the Bloch vec-
(m!/2m!)(x=iy)™z5~™. The Hamiltonian(2) in terms of  tor. Equations for the component of the Bloch vector in this
components with definite projections rea@f®ote thatb.  case are
=b,*iby; S.=S*iS)) .
. 9.=(iN2)(7:9-~n-9.),
=—b,S,—=(b,S_+b_S,). 19 .
S>30 . 9 g.=Fi(bt+7)9.+(i/V2)7.9,. (25

Equations(13) in terms of the components with definite Solving equation fog.. , we find
z-projections read

- ibt? [t
. . | — _ - — ’ ’
Osm= —iMmb,gs m+ 5\/(S+ m)(s—m+1)b,gsm-1 9-(1)=g.( m)eXp< N ! f_ 7t dt ) (26)
i 2412
+ V(s m)(sFM+1)b-ge et (20) +("f)J exr{llb (t2 t'?)
and the conservation laws are
t
s IiJ,riz(t”)dt” 7(1)g,(t")dt’. (27)
> |gsml?=const. (21) ‘
mees Let us first consider the case of complete initial decoherence:
g+ (—*)=0. Then, plugging equation27) into the first
IV. FAST NOISE IN TWO-LEVEL SYSTEM equation(25), we find a separate equation fgy:

In this section we consider only spin 1/2 or, equivalently, 242
a two-level system. We assume that the magnetic field can be . 1/2)f I{ |bz(t ) _ft , (t”)dt”}
, z

separated into regular and random parts: 2
b(t)=b,(t)+ n(t), (22) X4 (1)7-(t")g,(t")dt’ +c.c. (28)
Wherebr(t)zibzt+§<bx and 5(t) is the Gaussian noise de- Let us average Eq28) over the ensemble of the random
termined by its correlators: noise. For such averaging it is important that the noise cor-
relation timer, is much shorter than the tintg.. necessary
(i) (1)) =Fy(t—1"). (23)  for a substantial variation ofg,). This fact allows us to

represent the average
We assume that the correlatg®3) decay after a character-

istic time differencer,, and that this correlation time is much (7 () 7_(t)g,(t"))
less than the characteristic time of the LZ procgss How-

ever, the noise must be slow enough to avoid the direct trarapproximately as a product:

sitions between the levels when the interlevel distance ap-

proaches its saturation or characteristic valuéar from the (7 () (1) g(t"))=(n (1) p_(t"))g,(t")).
crossing point. Thus, the noise correlation timemust sat-
isfy the following inequalities: More accurately one should incorporate the fluctuations of
g,. In the leading approximation they are determined by the
o <<y, (24)  same equatiofi28) as follows:
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y=[Z{n(t)n(t"))dt’. An interesting feature of the
asymptotic formula(33) is its independence on the noise

t t ib,(t2—1t2)
89,= —(1/2)J dtlJ ' ex;{ - %
o *°° correlation timer,,. However, it should be kept in mind that

X[ 4 (ty) 7—(ty) — (9. (t) 7_(t2))] this asymptotic is valid only at time>t,..= (b,7,,) .
Returning to the solutiori27) for g.., we see that the
X<gz(t2)>dt2+ C.C. (29) term

We ignore 7, (this approximation will be justified by the o
next step. Let substitute this additional term into E(R8) (—w0)ex _ibgtt f‘ (t)dt

and perform averaging over the Gaussian random figld 9= T2 L '

According to the Wick’s rule, it is reduced to all possible

pairings. In our case the only possible pairing is omitted at substitution in the first equatié®25) and the en-
(n+ () 7_(t){n_(t") 5. (t1)). Such a pairing limits the semble averaging, vanishes if theomponent of the noise is
integration by the intervat— 7, <t,<t;<t’<t. Thus the statistically independent from others. Now let us perform a
contribution of the fluctuational term differs by an additional Similar procedure solving first the equation fgy and then
factor ~7,/ty.c<1 from the principal contribution from substituting the solution into the equations fpr . In the
(g9,). These arguments represent a shortened version of tf&me approximation equation for averages of these compo-
original arguments by Kayanurtfaand are akin to the nents of the Bloch vector reads

Abrikosov-Gor’kov theory of static disordered allo$fs.

Using the fact that the decay of the correlator
(. (t)n_(t")) limits effectively the integration over time
by an intervalt — r,<t’ <t, we can prove that the contribu- i ) ) )
tion of the noise component, in the exponent in Eq(28) The first term in Eq(27) after the averaging turns into zero

can be neglected. To estimate this contribution we assum@t any finitet. Indeed the Debye-Waller factor which appears
that 7, is statistically independent from other components.in this case is exp-3([[; 7At")dt']*)}=0. The asymptotics of
Then the averaging ovey, results in the Debye-Waller fac- (9=) att—+o is

tor exﬁ—%([ﬁ, n{t)dt'?)}. The argument of this exponent

. 1. .
<gr>:_§F(bzt)<gt>- (34)

i 2y 2 i i 0 7F (0
can be e;stl_mated a5y 7. Itis s[nzall provided the level of (gi(+oo))=ex;{ B —)(gt(—w», - .( )
noise(75) is much smaller thar, . The noise correlators 2 b,
are even functions of the time difference. Therefore, expand- (35

ing linearly the time argument of the exponent in the sam
equation[b,(t?—t'?)]/2~b,t(t—t'), one can transform the
integral-differential equationi28) into an ordinary differen-
tial equation for{g,):

eNote that the symbolg..(*+) denote the coefficients at
exp(Fibt%/2). Thus, the noise asymptotically tends to reduce
the average components of the Bloch vector, i.e., to establish
equipopulation of the levels and to destroy the coherence.

(9,)=—F(b,t)(g,), (30) However, during the time interval of the order bf, the
average Bloch vector can oscillate.
where F(Q) is the Fourier-transform of the functioR(7) For the considered problem it is possible to find exactly
=l 7) +fy(7): the fluctuations of the Bloch vector. Indeed, they are given
by a standard formula:
F(Q)ZJ,MF(T)COSQ 7dr. (31) <(5g)2>:<92>_<g>2. (36)

Due to the symmetry of the probleng? is a conserving
value. Therefore, its average coincides with itself and is de-
. termined by initial conditions. The average value of the vec-
F(bzt,)dt,}- (32 tor (g) was calculated above. Thus, we find an asymptotic
- value of the fluctuations:

Equation(30) has a simple solution:

<9z<t>>=<gz<—oo>>eXp[_ [

At t— +o the asymptotic value ofg,) is ) )
<(5g)2>|t=+oc:gz(_oo)[l_exq_ze)]'}_[gx(_oo)

(33) +g5(—)[1—exp(—6)]. (37)

o The values of average square fluctuation can be also written
Note that what matters for the LZ transition is the averag&qr any moment of time. The fluctuations are strong, i.e.
quadrauczflucguat.lon of nondiagonal noise at any momentyejr magnitudes are of the same order as the average values
F(0)=(ny+ ny), in contrast to a standard characteristic of 5f the Bloch vector components unlegsis very small. An
the white noise which would b&(0). Indeed, commonly important property of the noise is that in fluctuations it mixes
white noise correlator is introduced ag(t) 7(t'))=yd(t diagonal and nondiagonal elements of the density matrix,
—1t'). The only characteristic of the noise in this approach is.e., all three components of the Bloch vector.

F(0
(9o(+2))=(gz(—))exp( — 0), ‘9:77b( S

z
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Let us proceed to the solution of a more general probleniet us analyze first the case of complete decoherende at
retaining the nonzera component of the regular field, . =—o, i.e., g+(—)=0. Then Eqs(43)—(45) look much
Such a solution becomes possible due to the separation simpler:
times®. we can neglect the effect &, beyond the LZ time

interval 7, near the crossing point. On the other hand, we (g +%2))=exp — 0)(2]a]>*—1)g,(—=), (46)
can neglect the effect of the noise inside this and even much
larger interval of time, since its characteristic timetjg, (g4 (+2))=—exp —36/4) \/Eabgz(_oo)_ (47

> 1.7 . Thus, the problem is separated into three parts: in two

intervals (—,—t,) and (g, + %) we can use the solution of Equation(46) shows that, in the absence of initial coherence,
our auxiliary problem, i.e., to take in account only transitionsthe population difference can only decrease after the transi-
caused by the noise; in the intervat{,,t;) the Landau- tion. The noise only strengthens this tendency. However, the
Zener solution is valid. We need only to match them prop-nitial coherence, if it exists, can increase the difference of
erly. The time intervalt, must satisfy a strong inequality: Population to the value larger than initial. Equatio4?)

T 7<<tp<<tzcc- AS shown before, the average components demonstrates an inverse process: the coherence can appear
and O+ evolve Separate|y under the action of the noise_after the transition even if it was absent in the initial state. It

Therefore, at the moment of timet, these components are IS straightforward to derive the transition probability from
Eq. (46):
<gz(_t0)>:exq_0/2)91(_90)1 1
P1_,=5[1-exp(—0)(2]a’~1)]
(9=(—to))=exp(— 0/4)g..(—). (39

1
The action of the LZ transition matrix4) with the matrix = §[1+exq— 0)—2 exg—0—2my?)]. (49
elements(7) can be transferred onto the vecmpiby using

spin-1 matrix (8). Thus, the average components of theThijs formula was obtained in our previous wdfkAt zero

Bloch vector at=t, are as follows: noise intensity §=0) this result turns into the Landau-Zener
transition probability. At very big noised= ) the probabil-
(g,(te)) = \/Eab*<g+(—to)>+(2|a|2— 1)(g,(—to)) ity is equal to 1/2. The probability is the same for transitions
1—2 and 2-1. This symmetry does not look strange keep-
+12a*b(g-(—to)), (39 ing in mind that we considered the classical noise, which
produces the induced transitions. It vanishes as soon as the
(94 (to))=a%(g, (—tg))— ﬁab{gz(—t0)>—bz(g,(—to)>, quantum nature of the noise and spontaneous transitions are

(40) taken into account.
For completeness we present a formula for quadratic fluc-

(g_(t))= —b* 2<g+(—to)>— \/Ea* b* (g,(—to)) tuations at = in the case of complete initial decoherence:
+a*%(g_(—to)), (41) (F(+2))=(g(+=))?
wherea andb are given by Eqs(7). The transition from+t, =1g,( —oo)|2[1—e*29—4(e*2’772—e*4”72)
to +« is provided by the same diagonal transition matrix 302 20
(38), which was already used for the transition freme to X(e " —e ). (49)

~lo: The fluctuations vanish a#=0 and reach their maximum

(ga(+))=exp(— 0/2)g,(+1o), value equal tdg,(—)|? at 6=co.

(g=(+=))=exp(— 0/4)g.(+to) (42) V. FAST NOISE AT A MULTILEVEL CROSSING

We consider only the case of a Zeeman multiplet placed
into a varying magnetic field. It is described by E¢20).
. N Averaging them over the fast noise is performed by two
(9,(+2))= 2 exp( —30/4)[ab*g.(—)+a*bg_(—=)] steps, as was done in the preceding section. First we neglect
+exp(— 6)(2]al2—1)g,(— =), (43) the transitions produced by the regula_r_part of the magnetic
field and take in account only the transitions produced by the
B _ Y S random field. This approach is correct outside the time inter-
(9 (+o))=exp(— 0/2)[a’g (=) ~bg-(—=)] val 7,z near the avoided crossing poirt 0. Assuming for
—exp(—36/4) \/Eabgz(—oc), (44) simplificati_on complete_ initial decoheren(_:e, we fin_d for the
average diagonal matrix elements following equations:

Collecting together Eq€38)—(42), we find the final result:

(g-(+=))=exp(— 0/2)[ —b*?g. (=) +a*?g_(—=)] s(s+1)
<g§o<+oc>>=exr{—
—exp(—36/4)\2a* b* g,(—=). (45) : 2

0

(g3o(—=)).  (50)
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Note that these relations do not cont&explicitly, the time  Its asymptotic value at— +o does not contain the sine
evolution depends os only. In the course of derivation of Fourier transform:
Eq. (50) we ignored not only the fluctuations gﬁo, but also
all higher components except fgt . ; . Their contributions s _ 4 1 2 s
ot +o))=exg — 5[s(s+1)—m-]6 —®)).
to the main componerg$, have the same order of magni- (Gsm( ) pts(s+L) 16(gsm( =)
tude ~ 7, /t,.. as the contribution of fluctuations. (57
The generalization of Eq50) to the higher projections),  A¢ <— 1 m=1 this result coincides with Eq34)
i.e., to the coherence factors requires some care. The trun- Now we proceed to our main problem including both

cated system of Eqs20) for zero initial values of all com- o4 1ar and random transverse magnetic fields. We will em-

s
ponents of thes-tensor except 0§, reads ploy the separation of their action in the time proven in the
_ ) preceding section. To avoid lengthy formulas our consider-
gsm=—imb,tgs o +iNgm7+05 m_ 17+ Ns-m7-Goms 1), ation will be restricted to the case of complete initial deco-

(51  herence. Then the only nonzero components of the Bloch

tensors ar@io. Their evolution is described by three inde-
Qf,m—ﬁ _i(m_1)bztg§,m—1+i)\s,m7]—g§,m! (52) pendent factors, two of them originating from the noise and
the central factor being the generalized Landau-Zener-Hioe

- . . . matrix element:
g?,erl: —i(m+ 1)bztg§,m+1+|)\s,fm77+g§,ma (53

where\g ,=/(s—m)(s+m+1). To deal with slowly vary- (g3 +))= ex;{ _s(stl) 0} P2*0(2e’2”2— 1)gS,
ing average values, the fast oscillating exponent should be ’ 2 ’
eliminated. In order to do that we introduce slow variables (—o0) (59)

95 =95 mexf(ibt¥2)m]. Further we consider only slow o _ '
amplitudesg, ,, and omit the sign tilde. After elimination of WhereP¢™(x) is the Jacobi polynomial. The average values

the valuesg§m+1 and averaging, we find a following equa- of the Bloch tensors components with= O v_anish as are-
tion for gs S sult of averaging over the random phases in the initial state.
s,m-

To find the transition probabilitie®;_,;, it is necessary to
put all the diagonal elements of the density matrix except of

<9§,m>: - 5{[S(S+ 1)—m?]F(b,t)+ mG(bzt)}<g§m>, pj; equal to zero in the initial state:
(54) 25
z A - + 2 95— 2N (TSokk= 5 (59
whereF (Q) is defined by Eq(31) andG(Q) is defined as a 2S+1 &y O8O 07k k™ Ck

sine Fourier transform: . _ o
and find from these equations the initial valt@o(—m).

A * ) Then the transition probabilities are
G(Q)= f (D 0y(0) = my(1) n(0))sinQ rd7. P

(55) _ 5”1 n s s (+oo)(TS ) ex%_ S(S+ 1) 9)
Thus, the time dependence of the averagis,) is defined as i=1'T28+1 " &4 Iso s0/1J 2 :
(60)
1t A -
(g5 ()=exp —=| {[s(s+1)—m?]F(b,t") wheregS (+) are defined by Eq(58). In the following
, 2 s,0
w7 tables we demonstrate the results of calculations according to

this algorithm for the values &1, 3/2, and Jthe results for
+mé(bzt’)}dt'](g§m(—W)>. (56)  S=1/2 are given in the preceding section by E4g)],
|

A\ +1 0 -1
1 Silpale

3 21672

3 3 3 3

1 Bole g (61)

3 2 6 "
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i\ 312 1/2 -1/2 -3/2
1 9E; E, Ej

302 =1 =3
2t 2072 20
1 36, E, 36, 1 E, E, O9F,
T e e R W
2Y 20 2 720 2t20720" 20
_qp L 8E1 Ep 8B 1 Ei E; 9B
2°20 47720 2 20720 20
1 9E, E, E,
_3p Z_2tr, F2 Es
22072 20 (62
i 2 1 0 1 -2
1 2E, 2E, E; E,

2 .71 -3 T4
575 "7 "0 70

1 E, E, E; 2E, 1 E, E, 2E; 8E,

1 —4t_Z2_ B3 i ] o4
557 5 3 5 10 14 5 @ 35
1 2E, 3E, 1 E, 125, 1 2E, 18,
0 - _f£=2, 074 L2 s
57 35 577 35 577 T35
1 E, E, E, 25, 1 E, E, 2E, SE
., 1 B B Es 26 1 B E 25 BE
55 7'5 3 5 1014 5 ' 35
1 26, 2, E; E,
_9 7t f=2 =3, 4
5+ 5 + - +10+70. (63

Here we denotedE,=exg—3s(s+1)d], i.e., E;=e ’, E;  to be sufficiently fastr,<(b,) 2 The adiabatic Landau-
=e %, Ez=e %’ E4=e ' uUnfiled sites in the table zener transitions in coupled two-level systems have been
can be easily restored using the time reversal symmetrysroposed as a candidate for implementation of quantum
Pi_j=Pj_j=P_j__j. gates in quantum computirfg.lt is important to understand

In Fig. 1 we compare the formul®21) with the numerical  the influence of noise on suchogbit manipulations in order
solution of the Schdinger equation for the spi§=1 in the  to control the error propagation in quantum gate circuit. We
absence of regular transverse component of the magnetifo not specify the relationship betwedry and 7,,. This
field, which convincingly confirms our analytical results.  study is also motivated by experiments with nanomadrtéts

The quadratic fluctuations of the _valugg‘,m for fixed S iy which inequality Vb,r,<1 can be easily realized since
ands are calculated as it was done in the previous section:i,o sweeping rate of the applied magnetic field can be made
arbitrarily small. However, the noise may be not fast enough
—(gs )2, (64) to compete with the tunnelling amplitudg,. The nuclear
smie bath correlation time is in the range ef~1 ms, whereas
the measured values of the tunnelling amplitude for known
In the case of complete initial decoherence employing Eqnanomagnets range between #®and 103K, or equiva-
(58), we find lently 10 and 18 Hz. In a part of this intervab,r, has a
rather large value.
S We consider in this section only 2-level systems. A natural
< o _2 |9§m|2> approach to this problem is the transfer to the adiabatic set of
meTs t states, i.e., to the eigenstates of the instantaneous regular part
=[g§0(—w)]2{1—E§[P2’°(2e‘2“2—1)]2}. g;‘gg;ﬁ/elt—:lz)rglt;:|an(l9). Let denote this time-dependent

S

S
<5m§S |g§m|2> = > lgSnl?

m=-s

t=—ox

=+

(65
ay(t)

VI. NOISE AT ADIABATIC LEVEL CROSSING a(t)= ay()
2

In this section we consider a situation of adiabatically
changing levels, i.eh,< b>2<, but still the noise is supposed and
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! b b
P n;:(ai_ag)nx'}'zalaznz:f77x+:x”z;
0.8}
, , by b

o6l My= My M=t e (68)
In this form the Hamiltoniar{67) essentially coincides with

0.4% the Hamiltonian of the auxiliary problefzero regular trans-
verse field for the two-level systenisee Sec. V. The es-

0.2] sential difference is, first, that the effective regular external
field is not linear in time; instead it is equal #&4t); second,

7 the correlators of effective noisg’ now depend not only on

0.25 05 07 1 125 15 the time difference, but also on time itself due to the time-

) . ) . ) dependent transformatidi68):
FIG. 1. The final probability to find a spin-1 system in the state

with S,=—1, 0 or 1 when the initial state iS,=1 as a function of

the noise amplitude. The regular transverse field is set to zero. The () m(t"))= ;[bgttK 7D (1)
Hamiltonian is H=tS,+7,S, where (n,(t) 7.(t2)) e(t)e(t’)

=J%e M-l piscrete points correspond to results of numerical 2

simulations with averaging over 200 different noise realizations and 5 7,(1) (")) (69

N=125. Lines correspond to analytical predictions of E&f). ) )
+ bszt< (1) (' )> +bb,t’

—ao(t ’
b(t)=( (tz)( )), X{(1) ()] (70)
a
! Still the noise correlation time is small in comparison to the
where characteristic time of variation for the adiabatic enesgy).
Employing the same approximation as in Sec. IV, we arrive
ay(t)= 1 /s(t)+bx a,(t)= 1 ls(t)_bx at a similar equation of motion for average in the case of
! 2¢ ' 7 2¢ complete initial decoherence:
and o ’ ’
<gz(t)>:_F (t)<gz(t)>1 (71)
e(t)= \/b§+b>2( (b,=b,t). where
The unitary matrix of transformation to the adiabatic set 1
d , 2 : 2.3 2
reads F'(1)=Tyy(e(t) + ——{b22T (e (1) + 02T, 2(1))
(1)
) (al(t) az(t)) as(t)l —ia(t) (66) (72)
= = - oy,
—ay(t) ayt)) 2 S .
where o, (e=x,y,z) are Pauli matrices. In the new basis b b, t[ Fye(t)) + Fole(t)]} (73
the total Hamiltonian acquires the following form: In the last equation the carets symbolize Fourier transforms
_ 1 , of corresponding correlators. As before, we can find the av-
H=e(t) o, FUnoU " =s(t)oz+ 7’0 67) erage valuég,(t)) at arbitrary moment of time. Asymptoti-
The transformation of the random field components is cally att— -+ we find
, = D22 (e()) + 2Dy (e() + b2, Le(1) |
(gy(+x))y=exg — 5 dt{{(g,(—=)). (74
- e*(t)
|
The characteristic time after which the correlators in &4) =1, or equivalently to Eq(33) of the Sec. IV. In the opposite

become very small and decay rapidly is determined by thgaser,>b, * the values(t) exceedsr,* at any moment of
approximate equatioa(t) 7,~1. If 7,<b *; then this char- time t. Therefore, all correlators are small and the value of
acteristic time coincides with the accumulation timg.  exponent in Eq(74) is close to 1. It means that practically
=(b,r,) ! defined in Sec. IV, terms proportional b are  no transition proceeds due to the noise between adiabatic
negligibly small and we return to the resu#t3) with |a| states. Thus, Eq74) carries the most interesting information
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when rn~b;1. An interesting feature of the transition prob-
ability is that thez component of noise can produce a tran-
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Motivated by synthesis and magnetic measurements of

cubic nanomagnets, we developed a theory which allows us

to find the transition probabilities between the states of the APPENDIX

Zeeman multiplet in the presence of the regular time- Here we present several lowest operator spherical har-
dependent and random magnetic figibise. The solution  monicsTS,,. In contrast to scalar spherical harmonics, they

of this problem may be possible since the evolution matrixdepend on three parameters: two of them are integeand

for the quantum problem is a rotation matrix acting in a spinm), whereasS accepts integer and half-integer values. The

Srepresentation. The density matrix can be expanded into simplest nontrivial harmonics are vectors wik1. They

linear superposition of irreducible tensor operators. The coare

efficients at this operators related to one of the irreducible

representationBloch tensorsevolve independently on oth- S s

ers. Thus, the initial problem in the space of dimensionality T1=S;; Tl,il:ﬁsi : (A1)

(25+1)X(2S+1) is reduced to 3 separate problems in

the linear spaces of dimensionality from 1 8.2 Next we demonstrate second-order tensorial harmonics:

The second key observation is that, for the fast noise, the

transitions due to the noise and those due to the regular part s 1., s 1 _

of magnetic field are separated in time. This fact allows us to Tz,tzzﬁstv Tz,tlzi(st S;+5;5.);

solve the problems for regular field and for the noise in the

absence of the regular nondiagonal field separately and then 3 1

match them. An interesting conclusion of our theory is that, Tgo— \[E Sﬁ— §s(s+ 1)

in contrast to usual statistical calculations with the white

noise, in wh|ch.only .the Fourier component of the NOIS€The third rank harmonics read

correlation function with zero frequency matters, the transi-

tion probabilities in the Landau-Zener problem depend only 1 1

on the average square of the random field amplitude. We Tgigz_s'i; Tgﬂz —(

were able to find asymptotically exact analytical results for ’ 32 ’ V6

the probabilities. From them we concluded that, in the ab- (A3)

sence of initial coherence, the average values of the diagonal

components of the Bloch tensoiwith zero projection onto s \/§ 5 , 38(S+1)-1

the direction of sweeping fieJdlecrease monotonously with  13+1~ 12 S;5:+S5,5:5,+3:5;,— 5§ Y]

time due to the noise. It means that the population differ- (A4)

ences in average can only decrease after the transitions.

However, they can grow if there is a coherence in the initial . \F
T —]

2

. (A2)

$2S,+S.5,S.+S,82),

; 35(S+1)-1

state and nondiagonal components of the Bloch tensors are S- —Sz} (AB)

not zero. Due to high symmetry, the considered system has >

2S additional integrals of mof[ion: traces of the square O_fFor the fourth-rank harmonics we find

each Bloch tensor. Thus, the increase of the population dif-

ferences proceeds at the expense of the non-diagonal com- 1

ponents, i.e. coherence amplitudes and vice versa. Tf+4=—8‘i, (AB)
The same conservation laws enabled us to find exactly the A

fluctuations of the Bloch’s tensors, in particular the fluctua-

tions of the transition probabilities in the genuine Landau- s 1 5 ) 3

Zener problem. They are of the same order of magnitude that T4,:3ZZT,2(§:Sz+ SiS,S.+S8.5,S1+S,S%), (A7)

the average values.
The noise in our theory is considered as the classical ran-

dom field. To incorporate the quantum properties of noise is s _\/_? 202 2 2

an interesting and challenging problem. The second unsolved a2 12[8283 T5:5: 5,5+ 5,8:5,+5.5;S.
problem is to study the correlation of the Bloch tensors at _— 5

different moments of time. +S.S5,S.5,+8. 5~ «S1], (A8)
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Ti,+1=£2[$s++858+sz+ S,S.S+S.S]
_K(SzSt+SiSz)]i (A9)
TE,O=TES<S‘;— KSSHN), (A10)

PHYSICAL REVIEW B9, 104414 (2004

where we have introduced the notation

6S(S+1)-5 3S(S+1)[S(S+1)—2]
K= A= G :

7
(A11)
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