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Spin transitions in time-dependent regular and random magnetic fields
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2Landau Institute for Theoretical Physics, Chernogolovka, Moscow Distr, 142432, Russia
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We study the transition between Zeeman levels of an arbitrary spin placed into a regular time-dependent
magnetic field and a random field with the Gaussian distribution. One component of the regular field changes
its sign at some moment of time, whereas another component does not change substantially. The noise is
assumed to be fast. In this assumption we find analytically the ensemble average of the spin density matrix and
its fluctuations.
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I. INTRODUCTION

Nanomagnets Fe8 and Mn12 attracted much attention in
the last decade. It was shown experimentally that they r
ized a single molecule quantum hysteresis.1 Some features o
the hysteresis have been predicted in many theore
works.2–4 In particular, it is commonly accepted that platea
on the hysteresis loop are due to the Landau-Zener~LZ!
transitions5,6 at avoided crossing of Zeeman-split spin leve
in the crystal field of molecular environment. This point
view is strongly supported by the experimental observati7

of theoretically predicted8 oscillations of the transition ma
trix elements vs. magnetic field applied in the hard directi
However, it was indicated earlier4 that the hyperfine interac
tion with the numerous nuclei in the molecule is compa
tively large and can remarkably complicate a simple LZ p
ture of transition. The reason why it did not happen a
specific experimental setup7 was recently explained
theoretically.9 It is indicated in the same work that at
smaller rate of the field sweeping the violation of the sim
LZ formula seem to be unavoidable. The nuclear spins p
vide not only a random static field which changes loca
Zeeman splitting and create a nonorthogonality. Their fl
tuations at a little higher temperature become fast and ca
considered as a random time-dependent magnetic field a
on the spin. Another source of the noise is the interact
with phonons,10 which produces random, time-dependent a
isotropy.

Recently several nanomagnets with cubic or almost cu
symmetry were synthesized. One of them Mo6Mn9 ~Ref. 11!
has spin 51/2~this value can be comparatively easy vari
by simple substitutions!. Another nanomagne
@(trifos)Re(CN)3#4@CoCl#4,12 which we will abbreviate as
Re4Co4, has a smaller spinS56. So far no effects of anisot
ropy were found in magnetic measurements even at temp
ture about 1 K. It shows that the cubic anisotropy is weak
expected. Thus, the cubic nanomagnets may be the bes
alization of a large free spin. Being placed into a varyi
magnetic fieldBz(t) along thez axis and a small constan
field Bx in the x direction, such a spin performs quantu
transitions between the states of the Zeeman multiplet.
essential difference between this situation and the stan
Landau-Zener~LZ! problem5,6 is that at Bz(t)50 all 2S
11 states of the Zeeman multiplet cross simultaneou
0163-1829/2004/69~10!/104414~11!/$22.50 69 1044
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whereas Landau and Zener considered only the two-le
crossing equivalent toS51/2. An extension of the LZ theory
to the case of higher spins was proposed by Hioe.13 He
proved that the transition probabilities depend only onSand
the dimensionless LZ parameter

g5AgmBBx
2/4\Ḃz, ~1!

whereg is the Lande factor,mB is the Bohr’s magneton, and
Ḃz is the time derivative~sweeping rate! of the magnetic
field taken at the diabatic level crossing, i.e., at the mom
whenBz(t) turns into zero. The transition probabilities di
play very interesting oscillations versus the parameterg and
difference of projectionsm andm8 of the orbital moment in
the initial and final states. These oscillations, which were
analyzed in the work,13 originate from the quantum interfer
ence of different Feynman paths leading fromm to m8,
which does not exist in the genuine LZ problem.14 Thus, the
cubic nanomagnets are simple, but nontrivial physical
jects. The quantum tunneling in these objects is worthwh
to study. As shown for other nanomagnets, the interac
with nuclear spins is essential for the dynamics. Though
nuclear relaxation times are sufficiently long in microscop
scale~typically milliseconds!, the characteristic time of the
LZ processtLZ;Bx /Ḃz may be even longer. Then the fiel
of nuclear spins can be considered as a fast Gaussian n
In the opposite case this field should be considered as a
sistatic random field. Such a case was studied theoretic
by Prokof’ev and Stamp.4

The purpose of our article is to study the influence of t
fast noise onto probabilities of transitions between the sta
of Zeeman multiplet for a free spinS in the presence of a
regular time-dependent field, the same as that in the LZ
Hioe problem. A special case of this problem forS51/2,
when the regular fieldBx is zero and transitions are com
pletely determined by nondiagonal elements of the rand
field, solved earlier by Kayanuma,15 who found average val-
ues of the transition probabilities. In our previous work16 we
have solved the same problem for regular and random fi
acting together. In this work we extend our results for high
spins, find the average nondiagonal matrix elements of
density matrix, and calculate the fluctuations of all these v
ues, which are determined to be strong. These calculat
became possible due to high symmetry of the problem
©2004 The American Physical Society14-1
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proper group-theoretical treatment allows us to deal w
standard objects, which we call Bloch tensors. They ar
generalization of the well-known Bloch vector for spin 1
problem.

The plan of the article is as follows: In Sec. II we remin
the Hioe solution and analyze in some details the oscillati
of the transition probabilities. In Sec. III we formulate equ
tions for the density matrix and reduce them to equations
the Bloch tensors, which we define in the same section
Sec. IV we consider the fast noise acting on a two-le
system. Though this problem was considered in our previ
article,16 it is important to give a simple analysis of the tim
scales and to calculate the average transition matrix and
tuations, which will serve as a basis for the spin-S problem.
Section V is dedicated to the solution of the same prob
for general spin. In Sec. VI, returning to two-level syste
~spin 1/2!, we discuss the limit of a strong regular fieldBx ,
so that the regular transition proceeds adiabatically. T
noise remains fast in the scaletLZ , but its relaxation fre-
quency may be much larger thanBx . Section VII contains
our conclusions.

II. SPIN S LANDAU-ZENER PROBLEM

The Hamiltonian of a free spinS with the maximal pro-
jection S in an external time-dependent magnetic fieldB(t)
reads

HS~ t !52Sb~ t !, ~2!

whereb(t)5gmBB(t). The key observation13,14 is that this
Hamiltonian is an operator of time-dependent infinitesim
rotation. Therefore the corresponding evolution mat
US(t,t0)5T exp@2i*t0

t HS(t8)dt8# is an operator of rotation

belonging to the group SO(3) acting in its irreducible rep
sentation labeled by an integer or half-integerS. Since the
composition law is the same for any irreducible represen
tion, the resulting evolution operator represents the same
tation for any spin. The group theory allows us to constr
this matrix for an arbitrary spin if it is known for spin 1/
~see Ref. 17, Chap. VIII!. The multispinor technique is mos
appropriate for this purpose. The spinS state can be repre
sented as a direct symmetrized product of 2S spin 1/2 states:

uS,m&5A~S1m!! ~S2m!!

~2S!!
~ u11 . . . 122 . . . 2&

1u11 . . . 21 . . . 2&1 . . . ), ~3!

where each ket containsS1m spins up~1! andS2m spins
down (2) and all permutations of up and down are pe
formed. Let the SU(2) matrix rotating spin 1/2 states be

u5S a b

2b* a* D ~4!

with the constraintuau21ubu251 imposed. The transforma
tion for the state~3! of the spinS can be obtained as th
direct product of transformations~4!:
10441
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uS,m&→A~S1m!! ~S2m!!

~2S!!
aS1m~2b* !S2muS,S&

1S A2S~2S21!!

~S2m21!! ~S1m!!
aS1m~2b* !S2m21a*

1
A2S~2S21!!

~S1m21!! ~S2m!!
aS1m21

3~2b* !S2mbD uS,S21& . . . . ~5!

A general matrix element of the rotation operator^muUSum8&
for the spinS is expressed in terms ofa,b,a* ,b* in the
following way17,18:

^muUSum8&5F ~S1m8!! ~S2m8!!

~S1m!! ~S2m!! G1/2

am81mbm82m

3PS2m8
m82m,m81m

~2uau221!, ~6!

where Pn
a,b(x) are the Jacobi polynomials.19 The ma-

trix elements possess the following symmetry pr
perties: ^2muUSu2m8&5(21)umu1um8u^muUSum8&* and
u^muUSum8&u5u^m8uUSum&u5u^2muUSu2m8&u. Equation
~6! displays oscillations of the matrix element when the
gument 2uau221 varies from21 to 11. These oscillations
are associated with the oscillatory behavior of the Jac
polynomial. For the number of nodesN(m,m8,S) of the ma-
trix element ^muUSum8& a simple equation is valid
N(m,m8,S)5S2max(umu,um8u). The central matrix elemen
with m5m850 for integerS and umu5um8u51/2 for half-
integerS has a maximal number of nodes equal toS andS
21/2, respectively.

Let us specify the problem considering only a narrow
cinity of the diabatic levels crossing point, which we acce
for t50. It is possible if the interval of timetLZ , during
which the transitions presumably proceed is much less t
the characteristic time of the field variationt05uḂz /B̈zu. The
characteristic time of transition can be identified astLZ

5uBx /Ḃzu. Thus, the requirement of short transition time c
be rewritten asBx!(Ḃz)

2/uB̈zu. If this requirement is satis-
fied, one can approximate with high accuracy the magn
field by a linear function of timeBz(t)5Ḃzt.

Landau and Zener5,6 have solved such a problem for sp
1/2. In particular Zener has determined matrix elementsa,b

in terms of the Weber functionD2 ig2(eip/4Av̇t) for an arbi-
trary moment of time. For simplicity we will focus on th
values of these parameters for the transition fromt52` to
t5`. According to the Landau-Zener solution

a5exp~2pg2!, b52

A2p expS 2
pg2

2
1

ip

4 D
gG~2 ig2!

. ~7!

Wheng varies from 0 tò , the modulusuau changes from 1
to 0 and the argument of the Jacobi polynomial in Eq.~6!
4-2
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varies from 1 to21. Using expression~6!, one finds the
solution for an arbitrary spinS in terms of coefficientsa and
b, or equivalently, in terms of the Landau-Zener parame
g. Thus, the transition amplitudes oscillate as function ofg.
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The physical reason of these oscillations is the interfere
between different Feynman paths leading fromm to m8. For
illustration we show here corresponding matrices for spins
3/2, and 2:
etry
U15S a2 2A2ab 2b2

A2ab* 2uau221 A2a* b

2b* 2 2A2a* b* a* 2
D , ~8!

U3/25S a3 A3a2b A3ab2 b3

2A3a2b* ~3uau222!a ~3uau221!b A3a* b2

A3ab* 2 2~3uau221!b* ~3uau222!a* A3a* 2b

2b* 3 A3a* b* 2 2A3a* 2b* a* 3

D . ~9!

We present only a quarter of the transition matrix forS52. The rest can be found by using above described symm
properties.

U25S a4 A4a3b A6a2b2 A4ab3 b4

~4uau223!a2 A6~2uau221!ab ~4uau221!b2

6uau426uau211 D . ~10!
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III. DENSITY MATRIX AND BLOCH TENSORS

When the random magnetic field acts onto the spin,
system must be described by the density matrixr̂. By defi-
nition it is a (2S11)3(2S11) Hermitian matrix with the
trace equal to 1. It satisfies the standard equation of mot

i
dr̂

dt
5@H,r̂ #. ~11!

Any Hermitian matrix with the trace equal to 1 can be re
resented as a sum:

r̂5
1

2S11
I 1g•S1

1

2
gikS SiSk1SkSi2

2

3
d ikS~S11! D

1 . . .
1

~2S!!
gi 1i 2 . . . i 2S

3~Si 1
Si 2

. . . Si 2S
1all permutations-all traces!. ~12!

If the Hamiltonian is the generator of the rotation~2!, each
term in Eq.~12! corresponds to an irreducible representat
and evolves independently. We will call symmetric tens
gik , gikl . . . gi 1i 2 . . . i 2S

the Bloch tensors in analogy with th

Bloch vectorg well known from Bloch theory of the nuclea
spin motion. Any trace of such a tensor must be equa
zero. The Hamiltonian~2! generates following equations o
motion for the Bloch tensors:
e

n:

-

n
s

o

ġ52b3g, ġik52« i lmblgmk2«klmblgim , . . . .
~13!

All these equations are independent and have obvious i
grals of motion:

g25const, gik
2 5const, gikl

2 5const, . . . . ~14!

Thus, the density matrix of a spinS in an external time-
dependent magnetic field has 2S conserving values. It is con
venient to represent the Bloch tensors by their complex co
ponent with definite projection to thez axis. We will denote
such components of a tensor of the ranks as gs,m . The
corresponding tensor operators composed from the sym
trized products of 2s components of the spinSoperators are
denotedTs,m

S . They can be constructed from the senior o
erator of this representationTs,s

S 522s/2S1
s with S65Sx

6 iSy by recurrent commutations with the operatorS2 :

Ts,m
S 52

1

A~s1m11!~s2m!
@S2 ,Ts,m11

S #. ~15!

The operatorsTs,m
S are polynomials of the standard spin o

eratorsS6 and Sz . They are operator analogs of spheric
harmonics. Several lowest such operators are presente
the Appendix. We show below relations between the Ca
sian components of the tensorgi 1 . . . i s

and its components

gs,m for several values ofs:
4-3
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g1,615
1

A2
~gx6 igy!, g1,05gz , ~16!

g2,625
1

A6
~gxx2gyy62igxy!,

g2,615
1

A2
~gxz6 igyz!, g2,05gzz, ~17!

g3,635
1

A20
~gxxx63igxxy23gxyy7 igyyy!, . . . . ~18!

The general rule for writing thes,6m component via its
Cartesian counterparts is the same as for the pro
(m!/A2m!)(x6 iy)mzs2m. The Hamiltonian~2! in terms of
components with definite projections reads~note thatb6

5bx6 iby ; S65Sx6 iSy)

H52bzSz2
1

2
~b1S21b2S1!. ~19!

Equations~13! in terms of the components with definit
z-projections read

ġs,m52 imbzgs,m1
i

2
A~s1m!~s2m11!b1gs,m21

1
i

2
A~s2m!~s1m11!b2gs,m11 ~20!

and the conservation laws are

(
m52s

s

ugs,mu25const. ~21!

IV. FAST NOISE IN TWO-LEVEL SYSTEM

In this section we consider only spin 1/2 or, equivalen
a two-level system. We assume that the magnetic field ca
separated into regular and random parts:

b~ t !5br~ t !1h~ t !, ~22!

wherebr(t)5 ẑḃzt1 x̂bx andh(t) is the Gaussian noise de
termined by its correlators:

^h i~ t !hk~ t8!&5 f ik~ t2t8!. ~23!

We assume that the correlators~23! decay after a character
istic time differencetn and that this correlation time is muc
less than the characteristic time of the LZ processtLZ . How-
ever, the noise must be slow enough to avoid the direct t
sitions between the levels when the interlevel distance
proaches its saturation or characteristic valuev far from the
crossing point. Thus, the noise correlation timetn must sat-
isfy the following inequalities:

v21!tn!tLZ . ~24!
10441
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The spectral width of noise is 1/tn . The noise produces tran
sitions during the interval of timetacc51/(ḃztn), after which
the current LZ frequency becomes larger than the noise s
tral width. We will call this interval the accumulation tim
and assume that it is much larger than other character
time intervalstn andtLZ .

We first solve an auxiliary problem in whichbx50 and
transitions are mediated by noise only. Such a problem fo
special shape of correlators„f xx5J2exp@2(t2t8)/tn#; the re-
maining components of the correlation tensor are zero… was
solved earlier by Kayanuma15 and studied numerically by
Nishino et al.23 In our work16 we have generalized and sim
plified the Kayanuma solution. Here we reproduce o
solution16 in a modified form convenient for extension t
higher spins. We also obtain new results calculating the fl
tuation of the density matrix, or equivalently the Bloch ve
tor. Equations for the component of the Bloch vector in th
case are

ġz5~ i /A2!~h1g22h2g1!,

ġ657 i ~ ḃzt1hz!g61~ i /A2!h6gz . ~25!

Solving equation forg6 , we find

g6~ t !5g6~2`!expS 7
i ḃzt

2

2
7 i E

2`

t

hz~ t8!dt8D ~26!

1~ i /A2!E
2`

t

expF7
i ḃz~ t22t82!

2

7 i E
t8

t

hz~ t9!dt9Gh6~ t8!gz~ t8!dt8. ~27!

Let us first consider the case of complete initial decoheren
g6(2`)50. Then, plugging equation~27! into the first
equation~25!, we find a separate equation forgz :

ġz52~1/2!E
2`

t

expF2
i ḃz~ t22t82!

2
2 i E

t8

t

hz~ t9!dt9G
3h1~ t !h2~ t8!gz~ t8!dt81c.c. ~28!

Let us average Eq.~28! over the ensemble of the rando
noise. For such averaging it is important that the noise c
relation timetn is much shorter than the timetacc necessary
for a substantial variation of̂gz&. This fact allows us to
represent the average

^h1~ t !h2~ t8!gz~ t8!&

approximately as a product:

^h1~ t !h2~ t8!gz~ t8!&5^h1~ t !h2~ t8!&^gz~ t8!&.

More accurately one should incorporate the fluctuations
gz . In the leading approximation they are determined by
same equation~28! as follows:
4-4
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dgz52~1/2!E
2`

t

dt1E
2`

t1
expF2

i ḃz~ t1
22t2

2!

2
G

3@h1~ t1!h2~ t2!2^h1~ t1!h2~ t2!&#

3^gz~ t2!&dt21c.c. ~29!

We ignorehz ~this approximation will be justified by the
next step!. Let substitute this additional term into Eq.~28!
and perform averaging over the Gaussian random fieldh.
According to the Wick’s rule, it is reduced to all possib
pairings. In our case the only possible pairing
^h1(t)h2(t2)&^h2(t8)h1(t1)&. Such a pairing limits the
integration by the intervalt2tn,t2,t1,t8,t. Thus the
contribution of the fluctuational term differs by an addition
factor ;tn /tacc!1 from the principal contribution from
^gz&. These arguments represent a shortened version o
original arguments by Kayanuma15 and are akin to the
Abrikosov-Gor’kov theory of static disordered alloys.20

Using the fact that the decay of the correlat
^h1(t)h2(t8)& limits effectively the integration over time
by an intervalt2tn,t8,t, we can prove that the contribu
tion of the noise componenthz in the exponent in Eq.~28!
can be neglected. To estimate this contribution we ass
that hz is statistically independent from other componen
Then the averaging overhz results in the Debye-Waller fac
tor exp$21

2^@*t8
t hz(t9)dt9#2&%. The argument of this exponen

can be estimated as^hz
2&tn

2 . It is small provided the level of
noise^hz

2& is much smaller thantn
22 . The noise correlators

are even functions of the time difference. Therefore, expa
ing linearly the time argument of the exponent in the sa
equation@ ḃz(t

22t82)#/2'ḃzt(t2t8), one can transform the
integral-differential equation~28! into an ordinary differen-
tial equation for̂ gz&:

^ġz&52F̂~ ḃzt !^gz&, ~30!

where F̂(V) is the Fourier-transform of the functionF(t)
5 f xx(t)1 f yy(t):

F̂~V!5E
2`

`

F~t!cosV t dt. ~31!

Equation~30! has a simple solution:

^gz~ t !&5^gz~2`!&expF2E
2`

t

F̂~ ḃzt8!dt8G . ~32!

At t→1` the asymptotic value of̂gz& is

^gz~1`!&5^gz~2`!&exp~2u!, u5
pF~0!

ḃz

. ~33!

Note that what matters for the LZ transition is the avera
quadratic fluctuation of nondiagonal noise at any mom
F(0)5^hx

21hy
2&, in contrast to a standard characteristic

the white noise which would beF̂(0). Indeed, commonly
white noise correlator is introduced as^h(t)h(t8)&5gd(t
2t8). The only characteristic of the noise in this approach
10441
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g5*2`
` ^h(t)h(t8)&dt8. An interesting feature of the

asymptotic formula~33! is its independence on the nois
correlation timetn . However, it should be kept in mind tha
this asymptotic is valid only at timet@tacc5(ḃztn)21.

Returning to the solution~27! for g6 , we see that the
term

g6~2`!expS 7
i ḃzt

2

2
7 i E

2`

t

hz~ t8!dt8D ,

omitted at substitution in the first equation~25! and the en-
semble averaging, vanishes if thez component of the noise is
statistically independent from others. Now let us perform
similar procedure solving first the equation forgz and then
substituting the solution into the equations forg6 . In the
same approximation equation for averages of these com
nents of the Bloch vector reads

^ġ6&52
1

2
F̂~ ḃzt !^g6&. ~34!

The first term in Eq.~27! after the averaging turns into zer
at any finitet. Indeed the Debye-Waller factor which appea
in this case is exp$21

2^@*t
`hz(t9)dt9#2&%50. The asymptotics of

^g6& at t→1` is

^g6~1`!&5expS 2
u

2D ^g6~2`!&, u5
pF~0!

ḃz

.

~35!

Note that the symbolsg6(6`) denote the coefficients a
exp(7iḃzt

2/2). Thus, the noise asymptotically tends to redu
the average components of the Bloch vector, i.e., to estab
equipopulation of the levels and to destroy the coheren
However, during the time interval of the order oftacc the
average Bloch vector can oscillate.

For the considered problem it is possible to find exac
the fluctuations of the Bloch vector. Indeed, they are giv
by a standard formula:

^~dg!2&5^g2&2^g&2. ~36!

Due to the symmetry of the problem,g2 is a conserving
value. Therefore, its average coincides with itself and is
termined by initial conditions. The average value of the ve
tor ^g& was calculated above. Thus, we find an asympto
value of the fluctuations:

^~dg!2&u t51`5gz
2~2`!@12exp~22u!#1@gx

2~2`!

1gy
2~2`!#@12exp~2u!#. ~37!

The values of average square fluctuation can be also wr
for any moment of time. The fluctuations are strong, i.
their magnitudes are of the same order as the average va
of the Bloch vector components unlessu is very small. An
important property of the noise is that in fluctuations it mix
diagonal and nondiagonal elements of the density mat
i.e., all three components of the Bloch vector.
4-5
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Let us proceed to the solution of a more general prob
retaining the nonzerox component of the regular fieldbx .
Such a solution becomes possible due to the separatio
times16: we can neglect the effect ofbx beyond the LZ time
interval tLZ near the crossing point. On the other hand,
can neglect the effect of the noise inside this and even m
larger interval of time, since its characteristic time istacc
@tLZ . Thus, the problem is separated into three parts: in
intervals (2`,2t0) and (t0 ,1`) we can use the solution o
our auxiliary problem, i.e., to take in account only transitio
caused by the noise; in the interval (2t0 ,t0) the Landau-
Zener solution is valid. We need only to match them pro
erly. The time intervalt0 must satisfy a strong inequality
tLZ!t0!tacc . As shown before, the average componentsgz
and g6 evolve separately under the action of the noi
Therefore, at the moment of time2t0 these components ar

^gz~2t0!&5exp~2u/2!gz~2`!,

^g6~2t0!&5exp~2u/4!g6~2`!. ~38!

The action of the LZ transition matrix~4! with the matrix
elements~7! can be transferred onto the vectorg by using
spin-1 matrix ~8!. Thus, the average components of t
Bloch vector att5t0 are as follows:

^gz~ t0!&5A2ab* ^g1~2t0!&1~2uau221!^gz~2t0!&

1A2a* b^g2~2t0!&, ~39!

^g1~ t0!&5a2^g1~2t0!&2A2ab^gz~2t0!&2b2^g2~2t0!&,

~40!

^g2~ t0!&52b* 2^g1~2t0!&2A2a* b* ^gz~2t0!&

1a* 2^g2~2t0!&, ~41!

wherea andb are given by Eqs.~7!. The transition from1t0
to 1` is provided by the same diagonal transition mat
~38!, which was already used for the transition from2` to
2t0:

^gz~1`!&5exp~2u/2!gz~1t0!,

^g6~1`!&5exp~2u/4!g6~1t0!. ~42!

Collecting together Eqs.~38!–~42!, we find the final result:

^gz~1`!&5A2 exp~23u/4!@ab* g1~2`!1a* bg2~2`!#

1exp~2u!~2uau221!gz~2`!, ~43!

^g1~1`!&5exp~2u/2!@a2g1~2`!2b2g2~2`!#

2exp~23u/4!A2abgz~2`!, ~44!

^g2~1`!&5exp~2u/2!@2b* 2g1~2`!1a* 2g2~2`!#

2exp~23u/4!A2a* b* gz~2`!. ~45!
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Let us analyze first the case of complete decoherencet
52`, i.e., g6(2`)50. Then Eqs.~43!–~45! look much
simpler:

^gz~1`!&5exp~2u!~2uau221!gz~2`!, ~46!

^g1~1`!&52exp~23u/4!A2abgz~2`!. ~47!

Equation~46! shows that, in the absence of initial coheren
the population difference can only decrease after the tra
tion. The noise only strengthens this tendency. However,
initial coherence, if it exists, can increase the difference
population to the value larger than initial. Equation~47!
demonstrates an inverse process: the coherence can a
after the transition even if it was absent in the initial state
is straightforward to derive the transition probability fro
Eq. ~46!:

P1→25
1

2
@12exp~2u!~2uau221!#

5
1

2
@11exp~2u!22 exp~2u22pg2!#. ~48!

This formula was obtained in our previous work.16 At zero
noise intensity (u50) this result turns into the Landau-Zen
transition probability. At very big noise (u5`) the probabil-
ity is equal to 1/2. The probability is the same for transitio
1→2 and 2→1. This symmetry does not look strange kee
ing in mind that we considered the classical noise, wh
produces the induced transitions. It vanishes as soon as
quantum nature of the noise and spontaneous transitions
taken into account.

For completeness we present a formula for quadratic fl
tuations att5` in the case of complete initial decoherenc

^g2~1`!&2^g~1`!&2

5ugz~2`!u2@12e22u24~e22pg2
2e24pg2

!

3~e23u/22e22u!#. ~49!

The fluctuations vanish atu50 and reach their maximum
value equal tougz(2`)u2 at u5`.

V. FAST NOISE AT A MULTILEVEL CROSSING

We consider only the case of a Zeeman multiplet plac
into a varying magnetic field. It is described by Eqs.~20!.
Averaging them over the fast noise is performed by t
steps, as was done in the preceding section. First we ne
the transitions produced by the regular part of the magn
field and take in account only the transitions produced by
random field. This approach is correct outside the time in
val tLZ near the avoided crossing pointt50. Assuming for
simplification complete initial decoherence, we find for t
average diagonal matrix elements following equations:

^gs,0
S ~1`!&5expF2

s~s11!

2
uG^gs,0

S ~2`!&. ~50!
4-6
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Note that these relations do not containSexplicitly, the time
evolution depends ons only. In the course of derivation o
Eq. ~50! we ignored not only the fluctuations ofgs,0

S , but also
all higher components except forgs,61

S . Their contributions
to the main componentgs,0

S have the same order of magn
tude;tn /tacc as the contribution of fluctuations.

The generalization of Eq.~50! to the higher projectionsm,
i.e., to the coherence factors requires some care. The
cated system of Eqs.~20! for zero initial values of all com-
ponents of thes-tensor except ofgs,m

S , reads

ġs,m
S 52 imḃztgs,m

S 1 i ~ls,mh1gs,m21
S 1ls,2mh2gs,m11

S !,

~51!

ġs,m21
S 52 i ~m21!ḃztgs,m21

S 1 ils,mh2gs,m
S , ~52!

ġs,m11
S 52 i ~m11!ḃztgs,m11

S 1 ils,2mh1gs,m
S , ~53!

wherels,m5A(s2m)(s1m11). To deal with slowly vary-
ing average values, the fast oscillating exponent should
eliminated. In order to do that we introduce slow variab
g̃s,m

S 5gs,m
S exp@(iḃzt

2/2)m#. Further we consider only slow

amplitudesg̃s,m and omit the sign tilde. After elimination o
the valuesgs,m61

S and averaging, we find a following equa
tion for gs,m

S :

^ġs,m
S &52

1

2
$@s~s11!2m2#F̂~ ḃzt !1mĜ~ ḃzt !%^gs,m

S &,

~54!

whereF̂(V) is defined by Eq.~31! andĜ(V) is defined as a
sine Fourier transform:

Ĝ~V!5E
2`

`

^hx~t!hy~0!2hy~t!hx~0!&sinVt dt.

~55!

Thus, the time dependence of the average^gs,m
S & is defined as

^gs,m
S ~ t !&5expH 2

1

2E2`

t

$@s~s11!2m2#F̂~ ḃzt8!

1mĜ~ ḃzt8!%dt8J ^gs,m
S ~2`!&. ~56!
10441
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Its asymptotic value att→1` does not contain the sin
Fourier transform:

^gs,m
S ~1`!&5expF2

1

2
@s~s11!2m2#uG^gs,m

S ~2`!&.

~57!

At s51,m51 this result coincides with Eq.~34!.
Now we proceed to our main problem including bo

regular and random transverse magnetic fields. We will e
ploy the separation of their action in the time proven in t
preceding section. To avoid lengthy formulas our consid
ation will be restricted to the case of complete initial dec
herence. Then the only nonzero components of the Bl
tensors aregs,0

S . Their evolution is described by three inde
pendent factors, two of them originating from the noise a
the central factor being the generalized Landau-Zener-H
matrix element:

^gs,0
S ~1`!&5expF2

s~s11!

2
uGPs

0,0~2e22pg2
21!gs,0

S

~2`!, ~58!

wherePs
0,0(x) is the Jacobi polynomial. The average valu

of the Bloch tensors components withmÞ0 vanish as a re-
sult of averaging over the random phases in the initial st
To find the transition probabilitiesPj→ j 8 it is necessary to
put all the diagonal elements of the density matrix excep
r j j equal to zero in the initial state:

1

2S11
1(

s51

2S

gs,0
S ~2`!~Ts,0

S !k,k5d jk , ~59!

and find from these equations the initial valuesgs,0
S (2`).

Then the transition probabilities are

Pj→ j 85
d j j 8

2S11
1(

s51

2S

gs,0
S ~1`!~Ts,0

S ! j , j 8expS 2
s~s11!

2
u D ,

~60!

where gs,0
S (1`) are defined by Eq.~58!. In the following

tables we demonstrate the results of calculations accordin
this algorithm for the values ofS1, 3/2, and 2@the results for
S51/2 are given in the preceding section by Eq.~48!#,
j 8
\ j 11 0 21

11
1

3
1

1

2
E11

1

6
E2

0
1

3
2

1

3
E2

1

3
1

2

3
E2

21
1

3
2

1

2
E11

1

6
E2 ,, ~61!
4-7



j 8
\ j 3/2 1/2 21/2 23/2

3/2
1

4
1

9E1

20
1

E2

4
1

E3

20

1/2
1

4
1

3E1

20
2

E2

4
2

3E3

20

1

4
1

E1

20
1

E2

20
1

9E3

20

21/2
1

4
2

3E1

20
2

E2

4
1

3E3

20

1

4
2

E1

20
1

E2

20
2

9E3

20
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23/2
1

4
2

9E1

20
1

E2

4
2

E3

20
, ~62!

j 8
\ j 2 1 0 21 22

2
1

5
1

2E1

5
1

2E2

7
1

E3

10
1

E4

70

1
1

5
1

E1

5
2

E2

7
2

E3

5
2

2E4

35

1

5
1

E1

10
1

E2

14
1

2E3

5
1

8E4

35

0
1

5
2

2E2

7
1

3E4

35

1

5
1

E2

7
2

12E4

35

1

5
1

2E2

7
1

18E4

35

21
1

5
2

E1

5
2

E2

7
1

E3

5
2

2E4

35

1

5
2

E1

10
1

E2

14
2

2E3

5
1

8E4

35

22
1

5
1

2E1

5
1

2E2

7
1

E3

10
1

E4

70
. ~63!
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Here we denotedEs5exp@21
2s(s11)u#, i.e., E15e2u, E2

5e23u, E35e26u, E45e210u. Unfilled sites in the table
can be easily restored using the time reversal symme
Pj→ j 85Pj 8→ j5P2 j→2 j 8 .

In Fig. 1 we compare the formula~61! with the numerical
solution of the Scho¨dinger equation for the spinS51 in the
absence of regular transverse component of the magn
field, which convincingly confirms our analytical results.

The quadratic fluctuations of the valuesgs,m
S for fixed S

ands are calculated as it was done in the previous sectio

K d (
m52s

s

ugs,m
S u2L 5 (

m52s

s

ugs,m
S u2U

t52`

2^gs,m
S &2. ~64!

In the case of complete initial decoherence employing
~58!, we find

K d (
m52s

s

ugs,m
S u2L

t51`

5@gs,0
S ~2`!#2$12Es

2@Ps
0,0~2e22pg2

21!#2%.

~65!

VI. NOISE AT ADIABATIC LEVEL CROSSING

In this section we consider a situation of adiabatica
changing levels, i.e.,ḃz!bx

2 , but still the noise is suppose
10441
y:

tic

:

.

to be sufficiently fasttn!(ḃz)
21/2. The adiabatic Landau

Zener transitions in coupled two-level systems have b
proposed as a candidate for implementation of quan
gates in quantum computing.21 It is important to understand
the influence of noise on such aq-bit manipulations in order
to control the error propagation in quantum gate circuit. W
do not specify the relationship betweenbx and tn . This
study is also motivated by experiments with nanomagnets7,22

in which inequalityAḃztn!1 can be easily realized sinc
the sweeping rate of the applied magnetic field can be m
arbitrarily small. However, the noise may be not fast enou
to compete with the tunnelling amplitudebx . The nuclear
bath correlation time is in the range oftn;1 ms, whereas
the measured values of the tunnelling amplitude for kno
nanomagnets range between 10210 and 1023K, or equiva-
lently 10 and 108 Hz. In a part of this intervalbxtn has a
rather large value.

We consider in this section only 2-level systems. A natu
approach to this problem is the transfer to the adiabatic se
states, i.e., to the eigenstates of the instantaneous regula
of the Hamiltonian ~19!. Let denote this time-dependen
eigenvectors as

a~ t !5S a1~ t !

a2~ t !
D

and
4-8
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b~ t !5S 2a2~ t !

a1~ t !
D ,

where

a1~ t !5A«~ t !1bx

2«
, a2~ t !5A«~ t !2bx

2«

and

«~ t !5Abz
21bx

2 ~bz5ḃzt !.

The unitary matrix of transformation to the adiabatic s
reads

U~ t !5S a1~ t ! a2~ t !

2a2~ t ! a1~ t !
D 5a1~ t !I 2 ia2~ t !sy , ~66!

where sa (a5x,y,z) are Pauli matrices. In the new bas
the total Hamiltonian acquires the following form:

H5«~ t !sz1UhsU215«~ t !sz1h8s. ~67!

The transformation of the random field components is

FIG. 1. The final probability to find a spin-1 system in the sta
with Sz521, 0 or 1 when the initial state isSz51 as a function of
the noise amplitude. The regular transverse field is set to zero.
Hamiltonian is H5tSz1hxSx where ^hx(t1)hx(t2)&
5J2e2lut12t2u. Discrete points correspond to results of numeri
simulations with averaging over 200 different noise realizations
l5125. Lines correspond to analytical predictions of Eq.~61!.
th

10441
t

hx85~a1
22a2

2!hx12a1a2hz5
bz

«
hx1

bx

«
hz ;

hy85hy ; hz852
bx

«
hx1

bz

«
hz . ~68!

In this form the Hamiltonian~67! essentially coincides with
the Hamiltonian of the auxiliary problem~zero regular trans-
verse field! for the two-level system~see Sec. IV!. The es-
sential difference is, first, that the effective regular exter
field is not linear in time; instead it is equal to«(t); second,
the correlators of effective noiseh8 now depend not only on
the time difference, but also on time itself due to the tim
dependent transformation~68!:

^hx8~ t !hx8~ t8!&5
1

«~ t !«~ t8!
@ ḃz

2tt8^hx~ t !hx~ t8!&

1bx
2^hz~ t !hz~ t8!& ~69!

1ḃzbxt^hx~ t !hz~ t8!&1ḃzbxt8

3^hz~ t !hx~ t8!&]. ~70!

Still the noise correlation time is small in comparison to t
characteristic time of variation for the adiabatic energy«(t).
Employing the same approximation as in Sec. IV, we arr
at a similar equation of motion for average in the case
complete initial decoherence:

^ġz8~ t !&52F8~ t !^gz8~ t !&, ~71!

where

F8~ t !5 f̂ yy~«~ t !!1
1

«2~ t !
$ḃz

2t2 f̂ xx~«~ t !!1bx
2 f̂ zz~«~ t !!

~72!

1ḃzbxt@ f̂ xz~«~ t !!1 f̂ zx~«~ t !!#%. ~73!

In the last equation the carets symbolize Fourier transfo
of corresponding correlators. As before, we can find the
erage valuêgz(t)& at arbitrary moment of time. Asymptoti
cally at t→1` we find

he

l
d

^gz8~1`!&5expF2E
2`

` ḃz
2t2 f̂ xx~«~ t !!1«2~ t ! f̂ yy~«~ t !!1bx

2 f̂ zz~«~ t !!

«2~ t !
dtG ^gz8~2`!&. ~74!
of
y
atic
n

The characteristic time after which the correlators in Eq.~74!
become very small and decay rapidly is determined by
approximate equation«(t)tn'1. If tn!bx

21 ; then this char-
acteristic time coincides with the accumulation timetacc

5(ḃztn)21 defined in Sec. IV, terms proportional tobx are
negligibly small and we return to the result~43! with uau
e
51, or equivalently to Eq.~33! of the Sec. IV. In the opposite
casetn@bx

21 the value«(t) exceedstn
21 at any moment of

time t. Therefore, all correlators are small and the value
exponent in Eq.~74! is close to 1. It means that practicall
no transition proceeds due to the noise between adiab
states. Thus, Eq.~74! carries the most interesting informatio
4-9



-
n
e

th
e

tri
pin
to
co
ibl
-
lit

th
p
t

th
th
a
ite
ise
s
nl
W
fo
ab
on

h
er
io
tia

a
h
o
d
co

th
a
u
th

ra
e
lv
a

R
er
ni-
ty.
da-
of
at

har-
ey

he
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whentn;bx
21 . An interesting feature of the transition prob

ability is that thez component of noise can produce a tra
sition between adiabatic states. This happens because th
ter rotate with time. Note that thez component of noise is
irrelevant if tn!bx

21 .

VII. CONCLUSIONS

Motivated by synthesis and magnetic measurements
cubic nanomagnets, we developed a theory which allows
to find the transition probabilities between the states of
Zeeman multiplet in the presence of the regular tim
dependent and random magnetic field~noise!. The solution
of this problem may be possible since the evolution ma
for the quantum problem is a rotation matrix acting in a s
S representation. The density matrix can be expanded in
linear superposition of irreducible tensor operators. The
efficients at this operators related to one of the irreduc
representations~Bloch tensors! evolve independently on oth
ers. Thus, the initial problem in the space of dimensiona
(2S11)3(2S11) is reduced to 2S separate problems in
the linear spaces of dimensionality from 1 to 2S.

The second key observation is that, for the fast noise,
transitions due to the noise and those due to the regular
of magnetic field are separated in time. This fact allows us
solve the problems for regular field and for the noise in
absence of the regular nondiagonal field separately and
match them. An interesting conclusion of our theory is th
in contrast to usual statistical calculations with the wh
noise, in which only the Fourier component of the no
correlation function with zero frequency matters, the tran
tion probabilities in the Landau-Zener problem depend o
on the average square of the random field amplitude.
were able to find asymptotically exact analytical results
the probabilities. From them we concluded that, in the
sence of initial coherence, the average values of the diag
components of the Bloch tensors~with zero projection onto
the direction of sweeping field! decrease monotonously wit
time due to the noise. It means that the population diff
ences in average can only decrease after the transit
However, they can grow if there is a coherence in the ini
state and nondiagonal components of the Bloch tensors
not zero. Due to high symmetry, the considered system
2S additional integrals of motion: traces of the square
each Bloch tensor. Thus, the increase of the population
ferences proceeds at the expense of the non-diagonal
ponents, i.e. coherence amplitudes and vice versa.

The same conservation laws enabled us to find exactly
fluctuations of the Bloch’s tensors, in particular the fluctu
tions of the transition probabilities in the genuine Landa
Zener problem. They are of the same order of magnitude
the average values.

The noise in our theory is considered as the classical
dom field. To incorporate the quantum properties of nois
an interesting and challenging problem. The second unso
problem is to study the correlation of the Bloch tensors
different moments of time.
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APPENDIX

Here we present several lowest operator spherical
monicsTs,m

S . In contrast to scalar spherical harmonics, th
depend on three parameters: two of them are integers (s and
m), whereasS accepts integer and half-integer values. T
simplest nontrivial harmonics are vectors withs51. They
are

T1,0
S 5Sz ; T1,61

S 5
1

A2
S6 . ~A1!

Next we demonstrate second-order tensorial harmonics:

T2,62
S 5

1

2
S6

2 ; T2,61
S 5

1

2
~S6Sz1SzS6!;

T2,0
S 5A3

2FSz
22

1

3
S~S11!G . ~A2!

The third rank harmonics read

T3,63
S 5

1

23/2
S6

3 ; T3,62
S 5

1

A6
~S6

2 Sz1S6SzS61SzS6
2 !,

~A3!

T3,61
S 5A 5

12FSz
2S11SzS1Sz1S1Sz

22
3S~S11!21

5
S1G ,
~A4!

T3,0
S 5A5

2FSz
32

3S~S11!21

5
SzG . ~A5!

For the fourth-rank harmonics we find

T4,64
S 5

1

4
S6

4 , ~A6!

T4,63
S 5

1

25/2
~S6

3 Sz1S6
2 SzS61S6SzS6

2 1SzS6
3 !, ~A7!

T4,62
S 5

A7

12
@Sz

2S6
2 1SzS6SzS61SzS6

2 Sz1S6Sz
2S6

1S6SzS6Sz1S6
2 Sz

22kS6
2 #, ~A8!
4-10
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T4,61
S 5

A7

25/2
@Sz

3S61Sz
2S6Sz1SzS6Sz

21S6Sz
3

2k~SzS61S6Sz!#, ~A9!

T4,0
S 5

A35

4
~Sz

42kSz
21l!, ~A10!
i-
Ed

10441
where we have introduced the notation

k5
6S~S11!25

7
, l5

3S~S11!@S~S11!22#

35
.

~A11!
-

al

i,
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