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Steady-state and equilibrium vortex configurations, transitions, and evolution
in a mesoscopic superconducting cylinder
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A numerical scheme to study the mixed states in a mesoscopic type-II superconducting cylinder is described.
Steady-state configurations and transient behavior of the magnetic vortices for various values of the applied
magnetic fieldH are presented. Transitions between different multivortex states asH is changed is demon-
strated by contour plots and jumps in theB vsH plot. We evolve a uniformly superconducting initial state using
the simplest set of relaxation equations. The results reveal that the system passes through nearly metastable
intermediate configurations while seeking the final minimum-energy steady state consistent with the square
symmetry of the sample. An efficient scheme to determine the equilibrium vortex configuration in a mesos-
copic system at any given applied field, not limited to the symmetry of the system, is devised and demon-
strated.
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I. INTRODUCTION

The electromagnetic characteristics of type-II superc
ductors have been of great interest, particularly since
discovery of high-temperature superconductors. Furth
more, a recent surge in interest about nanotechnology
drawn the attention of researchers from various discipline
a detailed understanding of the characteristics of mesosc
superconducting samples. Several phenomenological t
ries have been developed during decades of supercond
research, with one popular choice being the Ginzbu
Landau theory.1,2 Its time-dependent extension is known
the time-dependent Ginzburg-Landau~TDGL! theory.3

In the Ginzburg-Landau theory, the electromagnetic s
of a superconductor can be determined by solving a sys
of partial differential equations. Abrikosov discovered tha
thek parameter, now known as the Ginzburg-Landau para
eter, is larger than 1/A2, then when a bulk superconductor
placed in a sufficiently large magnetic field, the magne
field penetrates the superconductor in the form of sin
quantized vortices. Around each vortex flows
supercurrent,4 confining a single quantum of magnetic flu
within it. Superconductors with this property are known
type-II.

Here we present the result of a numerical study about
magnetization process inside a superconducting square
inder, with submicron lateral dimension in an external ma
netic field. We have restricted the work to a square cr
section of a linear size equal to 4.65 timesl ~the magnetic
penetration depth!. Taking l at 500 Å, then the cross
sectional area is 0.054mm2.

Previous works on the magnetization of a mesoscopic
perconductor without pinning centers have been reported
Peeterset al.5–8 and others,9,10 who presented extensive ca
culations on the superconducting state in mesoscopic, typ
superconducting thin films. In most cases they found tra
tions between giant vortex states of different circulati
quantum numbersL, with some multivortex states occasio
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ally appearing as thermodynamically stable states,
mostly as metastable states. These predictions appear to
already received some level of experimental confirmati
although some discrepancies still exist.11 ~Reference 10
mainly compared the energy of a ‘‘3-2’’ vortex-antivorte
molecule state with that of a single off-centered vortex st
at L51, as both evolve to the equilibrium state of a sing
vortex at the center.! Misko et al.12 studied both type-I and
type-II mesoscopic triangular cylinders, and have shown t
a vortex-antivortex molecule appears only if the sample
type-I. They considered only one field value at whichL52
is favored, and did not consider vortex configurational tra
sitions as the field changes.13

Our aim is to simulate how vortices enter and settle
stable arrangements when a mesoscopic type-II super
ductor of a given symmetry is first cooled below the critic
temperature, and then an external magnetic field is app
This is often termed zero-field cooling~ZFC!. We find that
only vortex numbers and configurations consistent with
sample symmetry can appear in this case. It is known
global minimum-energy vortex configurations exist with r
duced symmetry, with corresponding final equilibrium sta
at general values of the applied field. To find these equi
rium states we developed an efficient numerical scheme

Our approach is to solve a set of simplified~and dis-
cretized! TDGL equations, in which the coupling to the ele
tric field is neglected, and the superconducting order par
eter and the magnetic field are assumed to relax with
same time scale. These assumptions are not physical, bu
acceptable here, since we are only interested in obtaining
final steady-state vortex configurations, and the symme
related qualitative behavior of the transient configuratio
and their evolution. For a more physical set of TDGL equ
tions see the work of Tinkham.3 For an example of the nu
merical solution of such a set of TDGL equations, see R
14. Our numerical method may be understood to be a re
ation procedure with a pseudotime.15,16 Since the equations
we have solved do not contain any thermal fluctuation ter
and the sample we considered has a perfect square symm
©2004 The American Physical Society21-1
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we find that when starting with the Meissner state and
field penetration, the final steady-state vortex configurati
we obtain all have perfect square symmetry, with vor
numbers also limited to only multiples of 4~the symmetry
number!. These configurations would correspond to physi
situations under zero-field cooling, if the physical sample
perfect symmetry, and the temperature is sufficiently low,
that thermal fluctuations are not able to overcome any ene
barrier for vortex entry, expulsion, or rearrangement. If t
sample surface has slight imperfection, or if the tempera
is not sufficiently low, then these configurations are, in m
cases, not in equilibrium at the given magnetic-field streng
Even the vortex number may not be correct; however, if
insert terms to simulate thermal fluctuation into the eq
tions, as in the method of simulated annealing,17,18 then the
simulation computer program will take a much longer tim
to run, and may become impractical even with a superco
puter. We have devised an efficient scheme to find the e
librium vortex configurations: We solve the same set of
laxation equations without any thermal fluctuation terms,
instead of starting the solution with the Meissner state as
initial state, we devise artificial initial states with a give
number of vortices in random positions. We present anal
expressions for such initial states in terms of a widely kno
approximate expression for a singly quantized vortex in
lindrical coordinates. Then, for vortex numbers not too d
ferent from the equilibrium number, the final steady sta
obtained by solving our relaxation equations will, in mo
cases, have the number of vortices close to those of the
tial states. By comparing the total Gibbs energies of th
steady states with different vortex numbers we can find
state with the lowest total Gibbs energy, which we identify
the equilibrium state with the equilibrium vortex numbe
Sometimes we obtain more than one configuration for
same vortex number~when the vortex number exceeds fou!,
then their Gibbs energies are also compared. We give
explicit demonstration of this scheme,19 which might be very
useful in view of the recent interest in nanoscience a
nanotechnology.20 We note that in a bulk sample vortices lik
to form a triangular lattice. Thus, when the sample does
conform with this symmetry, and if the sample is sufficien
small so that the boundary effect on the equilibrium vor
configurations is important, then the system is frustrated,
the equilibrium vortex configurations can be quite intrigui
and difficult to foresee.

II. THE SIMPLIFIED TIME-DEPENDENT
GINZBURG-LANDAU MODEL

In an external magnetic fieldH, the Gibbs free-energy
densityg of a superconducting state is given by:3

g5 f n1auCu21
b

2
uCu41

1

2ms
US 2ı\“2

es

c
ADCU2

1
uhu2

8p
2

h•H

4p
. ~1!

Here, f n is the free-energy density in the normal state
the absence of the magnetic field;C is the complex-valued
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order parameter, with the superscript * denoting comp
conjugation;A is the magnetic vector potential,h5“3A
denotes the induced magnetic field, andH represents the
applied magnetic field. The supercurrent density is expres
as Js5“3“3A5(es\/2ıms)(C*“C2C“C* )2(es

2/
msc)uCu2A. In the above,es is the ‘‘effective charge’’ of a
Cooper pair which is twice the charge of an electron, andms
its ‘‘effective mass’’ which can be selected arbitrarily, but th
conventional choice is twice the mass of an electron. Alsoc
is the speed of light, and\5h/2p whereh is Planck’s con-
stant.

Ginzburg-Landau theory postulates that the Gibbs free
ergy G of a superconducting sampleV is at a minimum in
the superconducting state. The celebrated Ginzburg-Lan
equations are obtained by minimizing this functional w
respect toC andA using the variational principle.

Since a constant term does not change the end resu
the variational technique, an algebraic manipulation is m
to subtractf n and addH•H/8p to theg above, giving:21

G~C,A!5E
V
S auCu21

b

2
uCu41

uh2Hu2

8p

1
1

2ms
US 2ı\“2

es

c
ADCU2DdV. ~2!

We introduce dimensionless variables as follows:

x85
x

l
,H85

H

A2Hc

, h85
h

A2Hc

,

j 85
2A2pl

cHc
j , A85

A

A2Hcl
, C85

C

C0
.

The characteristic scales are:uC0u5A2a/b, which is
the magnitude ofC that minimizes the free energy i
the absence of a field; the thermodynamic critical fie
strength Hc5(4puauuC0u2)1/2, which divides the normal
state and superconducting state regions in type-I su
conductor phase diagram; the London penetration de
l5(msc

2/4puC0u2es
2)1/2; the coherence length j

5(\2/2msuau)1/2; and, the Ginzburg-Landau parameterk
5l/j.

We obtain the dimensionless gauge-invariant free-ene
functional, omitting primes for convenience.

G~C,A!5E
V
S 2uCu21

1

2
uCu41u“3A2Hu2

1US“k 2ıADCU2DdV. ~3!

The simplified TDGL model we employ to find solution
of the static GL equations may be viewed as a gradient fl
of the energy functional. That is, the variation of (C,A) with
respect to time should be in the opposite direction of
gradient of the energy functional, (]C/]t)52(]G/]C* ),
(]A/]t)52 1

2 (]G/]A) with time t in units of the only
1-2
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relaxation time of the equations. The natural boundary c
ditions are:~1! the continuity of the parallel component o
the magnetic field across the boundary surface: (“3A)3n
5H3n, ~for two-dimensional problems only, see below!,
and ~2!, the vanishing gauge-invariant normal derivative
C: (“/k2ıA)C•n50,22 with n denoting the outward sur
face normal.

III. DISCRETIZATION AND CALCULATION PROCEDURE

For long square cylindrical samples, we need only
solve a two-dimensional~2D! problem. We take A
5@A(x,y),B(x,y),0# and H5(0,0,H), whereH5(“3A)z
5(]B/]x)2(]A/]y).

Defining the link variables as below, the gauge invarian
is preserved in discretizing the Gibbs free energy and
consequent simplified-TDGL equations. DefiningW(x,y)
5exp@ık*xA(§,y)d§#; V(x,y)5exp@ık*yB(x,h)dh#) and not-
ing that u]x(W* C)u5u(]x2ıkA)Cu, and u]y(V* C)u5u(]y
2ıkB)Cu, we have:

G~C,A!5E
V
S 2uCu21

1

2
uCu41u“3A2Hu2

1U1k ]x~W* C!U2

1U1k ]y~V* C!U2DdV. ~4!

We discretize the free-energy functional on a stagge
grid over V shown in Fig. 1.23,16 This gives us a second
order approximation inhx and hy to the continuous energ
functional, where thehx andhy are the spatial increments i
thex direction andy direction. The staggered grid also lea
to a satisfactory way of discretizing the natural bound
conditions.24 For a rectangular grid, the first component
the vector potential is constant in time on one pair of
edges of the boundary, and the second component is con
in time on the other pair.22

In this paper, we assume that the cylindrical superc
ductor has a square cross section and is subject to an ap
field along the central axis. The applied field is assumed
be constant in time. We further assume the order param
C varies in the cross-sectional plane of the square cylindr
sample, and the vector potentialA has only two nonzero
components (A,B), which also lie in this plane. We als
assume that the superconductor has no pinning sites. Th
steady-state conditions, the vortices settle at maximal

FIG. 1. The staggered grid arrangement for cell nod
P,E,W,N,S and facese,w,n,s.
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tances due to mutual repulsion. This requirement leads
triangular lattice of vortices in an infinitely large domain.3

In the staggered grid the lattice evaluation points forC,
A, and B are all different, withC evaluated at the node
center (i , j ), A evaluated at the east cell face (i 11/2,j ), and
B evaluated at the north cell face (i , j 11/2). According to
Refs. 23,16, this formulation keeps second-order accurac
the derivative evaluations as they appear in each of the
cretized equations.

The discrete equations are obtained by minimizing
discrete energy functionalGd with respect to the variation in
C andA as:

]CP

]t
5

hxhy

k2 S eıAwkhxCW22CP1e2ıAekhxCE

hx
2

1
eıBskhyCS22CP1e2ıBnkhyCN

hy
2 D 1hxhyN1~CP!,

~5!

]Ae

]t
52hxS BnE2Bn1Bs2BsE

hx
2

ANe22Ae1ASe

hy
D

1
hy

k
N2~Ae ,CP ,CE!, ~6!

]Bn

]t
52hyS Aw2Ae1ANe2ANw

hy
2

BnE22Bn1BnW

hx
D

1
hx

k
N3~Bn ,CP ,CN!, ~7!

with

N1~CP!5~12uCPu2!CP , ~8!

N2~Ae ,CP ,CE!5~FPQE2QPFE!cos~Aekhx!

2~FPFE1QPQE!sin~Aekhx!,

N3~Bn ,CP ,CN!5~FPQN2QPFN!cos~Bnkhy!

2~FPFN1QPQN!sin~Bnkhy!,

whereQ andF are the real and imaginary parts ofC, and
boundary conditions of the computational domainV ~with T,
B, L, and R denoting top, bottom, left, and right, respe
tively!:

CP5CSeıkhyBs on VT , ~9!

CP5CNe2ıkhyBn on VB , ~10!

CP5CEe2ıkhxAe on VL , ~11!

CP5CWeıkhxAw on VR , ~12!

Ae5ASe2S H2
BnE2Bn

hx
Dhy on VT , ~13!

s

1-3
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Ae5ANe1S H2
BnE2Bn

hx
Dhy on VB , ~14!

Bn5BnE2S H1
ANe2Ae

hy
Dhx on VL , ~15!

Bn5BnW1S H1
ANe2Ae

hy
Dhx on VR . ~16!

The finite difference equations are solved by the Eu
method withhx5hy50.15 andDt50.05, and takingk54.
In the numerical computations that follow, all details are ke
the same except for the strength of the applied magnetic
and/or the initial conditions.

Extensive grid independence checks were performed
ing this work, and typical results are described in Sec. VI
this paper.

IV. STEADY STATES UNDER ZERO-FIELD COOLING
IN A PERFECTLY SQUARE SAMPLE

AT LOW TEMPERATURES

We first solve the above set of equations assuming tha
initial state is the perfect Meissner state with no field pe
etration. As explained in the introduction, this corresponds
applying a magnetic field after zero-field cooling. Figure
shows plots ofuCu2 @the left figure in ~a!–~k!# and h5“

3A @the right figure in~a!–~k!# for the final steady state
reached for a sequence of increasingH values. In the left
figuresuCu2, which is interpreted physically as the density
Cooper pairs, runs from 0 to 1, with level 1 corresponding
the full superconducting state. Each isolated group of c
tours is called a ‘‘vortex,’’ representing the supercurrenJ
circling around the vortex core, withC50 at the vortex
core. In the 3D plots of Fig. 2~b!, it is clear that the vortices
reach close touCu250 at the core.

We note that the number of vortices increases in multip
of 4. This is a consequence of the fact that the vortices
symmetrically created at the midpoints of the sample edg
Perfect symmetry in the sample geometry dictates that e
side creates an equal number of vortices. For sample s
less thanl, it is to be expected that simultaneous penetrat
of four vortices is energetically unfavorable compared wit
single vortex penetration. However, a single vortex entry
still prohibited if symmetry is strictly preserved. The ma
netic field will simply penetrate the sample without entry
vortices in that case. When symmetry is not strictly p
served, and if the sample size is much smaller thanl, then
no vortex will enter the sample since the magnetic field
ready penetrates the sample. If the sample size is of the o
of l, then one vortex will enter and move to its center.
these calculations, symmetry is closely preserved, and in
case, vortices enter in multiples of 4 for a square cross
tion. For a hexagonal cross section, it should be a multiple
6. For a large circular cylinder, vortices of the usual ki
~with line singularities! cannot enter. Rather, ‘‘cylindrica
vortex sheets,’’ with phase-winding quantum numbern about
the axis, change fromn at radial coordinater2e to n11 at
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r1e, and must be created at the boundary and then m
radially inward. This is true only if symmetry is strictly pre
served. However, this can only happen in an actual samp
the sample strictly obeys the symmetry, and the tempera
is very close to absolute zero. Otherwise, vortices will en
one at a time via defect sites at the surface, or through t
mal fluctuations to destroy the symmetry. Then it will not
a multiple of 4 for a square cross section, or a multiple o
for a hexagonal cross section, and the relationship betw
sample size and number of vortices becomes a less sig
cant concern.

The symmetry here manifests itself in this geomet
dominated problem, and vortices arrange themselves in
square-symmetric configurations. The resultant steady st
are mostly not true equilibrium states, since the vortex
rangements do not reflect the intrinsic tendency of vortice
form a triangular lattice known to appear in bulk sample
The natural next step is to add a thermal fluctuation term
find the true equilibrium states which may or may not co
form with this symmetry. Such an approach would then
like simulated annealing.17,19 We believe it would not be
practical to perfect this approach since it will likely be diffi
cult to determine the appropriate rate of cooling and
starting temperature. In addition the run time of the compu
program might also be expected to be much longer than
have found here, so we have devised a different appro
which we believe is much more efficient at finding the eq
librium states. This is given in a later section. We shall s
that even the cases with a low number of vortices are not
true equilibrium. Also of interest is the fact that for variou
H, the vortex configuration requires much longer run tim
to get to a steady state. Geometry controls the settling t
more than the energy in these cases.

Our results are summarized in Table I, which lists t
range ofH for each resultant number of vortices, and t
corresponding induced magnetic fieldB5(1/uVu)*VhdV.
The Table shows that the final number of vortices does
change within various bands of the applied magnetic fieldH.
TheH ’s listed correspond to the threshold values~upper and
lower limits! for each band. They were found on a trial-an
error basis, and can be refined to any desired accuracy.
Table and Fig. 2 show that, belowH50.839, there is no
vortex. BetweenH50.84 and 1.144, the vortex numbern`

54, and so on.
The B vs H plot shown in Fig. 3, reveals thatB is much

lower thanH when the number of vortices is small, but as t
vortices increase, the curve approaches theB5H curve as-
ymptotically. The figure also shows an abrupt increase inB
between the regions of different number of vortices. For
ample, whenH changes from 1.144 to 1.145,B changes from
0.9779 to 1.0694. If the limitDH→0 is taken, we expect a
sudden configurational phase transition increasing the n
ber of vortices, as is apparent in Figs. 2~c! and 2~d!. Such
mini-first-order transitions are known5–9 to occur in a meso-
scopic superconductor asH is changed, but the details ar
quite different, because different parameter (k) regimes and
sample geometries~cylinder vs film! were studied.

Comparison of Fig. 2~g! with 2~h! reveals a phase trans
tion is also evident for then`512 case, where the vorte
1-4



STEADY-STATE AND EQUILIBRIUM VORTEX . . . PHYSICAL REVIEW B69, 094521 ~2004!
FIG. 2. Plots ofuCu2 and h5“3A for variousH @ uCu2 is shown on the left in~a!–~k!, andh on the right in~a!–~k!#. These final
steady-state solutions are obtained from a uniform superconducting state.
094521-5
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FIG. 2. ~Continued!.
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FIG. 2. ~Continued!.
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FIG. 2. ~Continued!.
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STEADY-STATE AND EQUILIBRIUM VORTEX . . . PHYSICAL REVIEW B69, 094521 ~2004!
configuration shows a sudden change in arrangement,
with the same number of vortices, for a slight increase of
applied field fromH51.454 toH51.455.

V. TIME SEQUENCE SHOWING VORTEX
ENTRY DYNAMICS

Figure 4 shows the transient development of Cooper
density forH51.145 and there are eight vortices. The p
fect symmetry in the sample geometry dominates the tr
sient process, but in the middle of the process the wh
configuration makes a rotation to rearrange itself into a n
configuration.~Note that time advances from 3000 to 17 5
between the 8th and 9th frames.! The final result is still a
square-symmetric configuration. We note that during the
tation process, the vortex configuration loses some mi
symmetries of the sample, but it still preserves the 90° ro
tion symmetry. These transient states need not posses
full symmetry of the sample. We think this is possible b
cause our numerical method has very weakly broken
sample symmetry. That is, the state just before the rotatio

TABLE I. The resultant number of vorticesn` and the induced
magnetic fieldB for the applied magnetic fieldH.

n` H B

0 0.839 0.6163
4 0.84 0.7331
4 1.144 0.9779
8 1.145 1.0694
8 1.429 1.3022

12 1.43 1.3790
12 1.732 1.6288
16 1.733 1.6986
16 2.058 1.9719

FIG. 3. The effect of applied magnetic fieldH on the induced
magnetic fieldB averaged over the sample.
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metastable only within the subspace of configurations p
serving the full symmetry of the sample. Thus, in a physi
situation, where the sample has perfect symmetry and
temperature is sufficiently low, this rotation may take a lo
time to take place. For samples with imperfect symmetry t
relaxation time may be shorter. Since this is a symme
induced qualitative property of the vortex-entry dynamics
a mesoscopic superconductor, we believe its general vali
is independent of the fact that we have obtained it by solv
a simplified set of TDGL equations which are not tru
physical.

VI. STEADY STATES WITH REDUCED SYMMETRY
AND THE EQUILIBRIUM STATE

The previous sections present solutions for a mesosc
type-II superconducting square cylinder with initially no vo
tex inside the system. The validity of such solutions requi
a perfectly square sample without any defect at the bound
and temperature sufficiently low so that thermal fluctuatio
are too weak to help the system find lower-energy confi
rations of reduced symmetry. This is an ideal condition, p
ducing only solutions consistent with the sample symme
Even during the transient, the system is bound to this sy
metry ~except in rare cases when the transient solutions
keep only fourfold rotation symmetry but not mirro
symmetries—See Fig. 4!. In principle, one can reproduc
this ideal system in a laboratory with special care.

In real situations, there likely exists some small defects
perturbations at the boundary, then vortices can enter
system asymmetrically to produce steady-state config
tions with reduced symmetry of lower total Gibbs ener
than any symmetric solution. A strong enough thermal flu
tuation could also change the vortex number and rearra
the vortices to such a configuration. Previous work has ta
into account these perturbations by adding a random fluc
tion term to the governing equation.25 This term breaks the
symmetry governing the equations by energizing the sys
to jump out of the local minima in energy and over the e
ergy barrier,3 but this increases the computing time great
~This method is essentially ‘‘simulated annealing.’’17,19!

As an alternative approach, we employ perturbed ini
conditions ~similar to Peeterset al.5,7! instead of the per-
fectly superconducting initial condition as used in Figs.
and 4. In addition, we introduce an idea to make the num
cal scheme much more efficient. We have used rando
perturbed initial conditions. This can lead to final stead
state solutions with reduced symmetry and lower energ
but we find this way is very inefficient for finding the equ
librium state at any givenH. We also tried to use a lower
symmetry configuration from such a calculation as the ini
condition for a newH value, but we found that the vorte
number can often be trapped in an uncontrollable none
librium value due to the existence of surface energy barr
against vortex entry or exit. This method of adopting an e
isting solution as the initial condition cannot be reliably us
to find the true equilibrium state in a given system and fie
~Peeterset al. changes the field in small steps to avoid th
difficulty,26 but such a procedure is tedious.!
1-9
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FIG. 4. Time sequence of vortex dynamics showing vortex entry forH51.145. Note that the initial state~at t50) is the uniform
superconducting state.
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STEADY-STATE AND EQUILIBRIUM VORTEX . . . PHYSICAL REVIEW B69, 094521 ~2004!
FIG. 5. The initial, random vortex configurations, and the corresponding steady-state vortex configurations they evolve to@The initial
vortex configurations is shown on the left in~a!–~o!, and the steady-state vortex configurations on the right in~a!–~o!#. Most of these final
steady-state solutions are metastable states with a given number of trapped vortices in a field-cooled situation. The one with the low
energy among them may be identified as the true equilibrium state at the chosen field value, see Fig. 6.
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FIG. 5. ~Continued!.
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FIG. 5. ~Continued!.
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FIG. 5. ~Continued!.
094521-14



STEADY-STATE AND EQUILIBRIUM VORTEX . . . PHYSICAL REVIEW B69, 094521 ~2004!
FIG. 5. ~Continued!.
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SANGBUM KIM, CHIA-REN HU, AND MALCOLM J. ANDREWS PHYSICAL REVIEW B69, 094521 ~2004!
To obtain the true equilibrium vortex configuration at a
given magnetic field without employing a simulated anne
ing method, we have devised a systematic approach to
erate initial states with given numbers of vortices at rand
distributions. We start with an analytic expression as follow
for one vortex at the origin in circular coordinates (r ,u), we
use the widely known approximate expression27–29

C~r ,u!5
reiu

Ar 21k22
. ~17!

By converting it to Cartesian coordinates, we can move
center of the vortex to any arbitrary position (x8,y8) by sim-
ply replacing (x,y) by (x2x8,y2y8). Denoting this expres-
sion asCx8,y8(x,y), an n-vortex expression can be simp
constructed as

C~x,y!5Cx1 ,y1
~x,y!Cx2 ,y2

~x,y!•••Cxn ,yn
~x,y!.

~18!

This expression obeys the important topological condit
that the phase ofC must increase by 2p when any one
vortex center is circumnavigated. The magnetic field ins
the sample does not obey any topological condition, so it
be simply set equal to zero for the initial condition. Th
positions of vortices can be generated using random num
generators, only if they are inside the sample. This is
straightforward idea, but it does not appear to have b
employed before. We illustrate below various initial cond
tions used to obtain steady-state vortex configurations of
given numbers of vorticesn` . Comparing the total Gibbs
free energy per unit areaḠ @obtained by integrating Eq.~4!
and normalized by the sample sizeNxhx3Nyhy] of solutions
with different n` , we can then determine the equilibriu
vortex number and configuration. For illustrative purpos
we consider the caseH50.840. Figure 5 shows the initia
conditions forC with 1–8 randomly placed~artificial! vor-
tices @the left figures in~a!–~o!#, and the steady-state vorte

FIG. 6. The steady-state total Gibbs free energy per unit areḠ
and the corresponding final number of vortices,n` .
09452
l-
n-

:

e

n

e
n

er
a
n

y

,

configurations they evolve to@the right figures in~a!–~o!#.
Indeed in Figs. 5~i!, 5~l!, 5~m!, 5~o!, the initial number of
vortices is not always the final number. This is because
energy of the initial state is high when vortices are initia
very close to each other, in which case there is enough
ergy to overcome the surface barrier to eject excess vorti
In particular, comparison of the initial and final states in F
5~h! reveals that one vortex was expelled during the evo
tion. This is because the surface barrier was weakened,
haps by one vortex in the initial state being close to the e
of the sample, and the total number of vortices being
high compared with the final equilibrium vortex number. T

corresponding total Gibbs free energiesḠ of these steady
states are plotted in Fig. 6 as a function of the final vor
numbern` . The minimum-energy configuration atn`55 is
seen to display the square symmetry of a five-vortex confi
ration with a vortex in the center. Grid independence che
were performed, and Fig. 7~a! shows this five-vortex case
using grids of 64364, and in Fig. 7~b! a uniformly super-
conducting initial condition withH51.733 corresponding to
Fig. 2~j!. Comparison of Fig. 5~e! (32332 grid! with Fig.
7~a! (64364 grid! reveals close agreement. Similarly com
parison of Fig. 2~j! and Fig. 7~b! shows close agreement.
more stringent grid independence test was to consider
resultant total Gibbs free energy for each grid, and given
Table II. Inspection of the table reveals convergence to l
than a 1% change when moving to different grids. The p

cent error was defined as: % error5uḠ643642Ḡ32332u
3100/uḠ32332u, and similarly for other cases. These grid i
dependence results support our use of 32332 grids for this
study. The large error of 14.1% for the uniform initial co
dition case in Table II was associated with a decrease f
16 vortices to 12 when the grid was coarsened from
332 to 16316. The reduction in resolution caused the vo
tex number to cross theH threshold and produced a 12 vo
tex configuration. Our exploration of finer grids ensured th
we determined an accurateH threshold, and not one depen
dent on the grid.

Although we have not yet applied this scheme to oth
field values ofH, the method we have devised to find th
equilibrium vortex configurations for a given size and sha
of the sample, and different values of the external magn
field should now be clear.

TABLE II. The steady-state total Gibbs free energyḠ and %

error in Ḡ for changing grid size for artificial vortex initial condi
tion (H50.84) and uniformly superconducting initial conditio
(H51.733).

Grid Artificial IC Uniform IC

Ḡ % error Ḡ % error

16316 20.3487 20.1814
32332 20.3513

0.71
20.2069

14.1

32332 20.3513 20.2069
64364 20.3519

0.17
20.2078

0.41
1-16
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FIG. 7. Examples of the steady-state vortex configurations for larger grid size (64364). ~a! Artificial vortex initial condition underH
50.84, ~b! uniformly superconducting initial condition underH51.733.
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VII. SUMMARY AND CONCLUSION

A numerical scheme to study the mixed states in a me
scopic type-II superconducting square cylinder in a long
dinal external magnetic fieldH has been developed. It i
based on solving a set of simplified time-depend
Ginzburg-Landau equations. We have first applied t
scheme to the case of field penetration into a zero-fie
cooled sample. Case studies for various values of the e
nal magnetic field were presented. Contour plots of the C
per pair density, and the induced magnetic field inside
sample, display the magnetic vortex solution first discove
by Abrikosov, but in a small sample the vortex arrangem
is not simply triangular. Giant vortices and antivortices a
not found in this study, unlike previous studies of type
mesoscopic thin films.~But at sufficiently high magnetic
field we still expect the system to favor a single giant vor
at the center as it goes into a surface superconducting s
but only if the sample is not too small.! Since we start the
solution with a uniformly superconducting initial condition
and the sample has perfect square symmetry, both the n
ber of vortices and their steady-state configurations are g
erned by the square sample geometry. Changes in the
figuration and the number of vortices occur asH is varied
through first-order configurational phase transitions, sim
to those found earlier, but different in detail. This phase tr
sition characteristic is confirmed by the contour plots, a
jumps in the values of the induced magnetic fieldB at certain
discreteH values. A time sequence shows that the syst
passes through intermediate configurations, and remain
some of them for a long time. Eventually the system set
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down to the steady-state configuration, which correspond
the lowest-Gibbs-energy configuration consistent with
symmetry constraints to the vortex number and configu
tion. True equilibrium states would appear in actual samp
when there are symmetry-breaking surface defects form
vortex-nucleation centers, or when thermal fluctuations
sufficiently strong to move the system out of metasta
states, but not too strong to melt the vortex lattice. We co
have determined these true equilibrium states by adding
ditional terms in the equations to simulate thermal fluctu
tions, but here we have devised a different approach wh
we believe is more efficient. We introduce a way to gener
analytic initial states of prescribed numbers of vortices,
allow their positions to be random. They evolve to stead
state vortex arrangements of all possible vortex numb
near the equilibrium number, from which we can compa
total Gibbs energy to determine the equilibrium vortex nu
ber and configuration. In this way, we avoid the problem
surface and bulk energy barriers, which can trap the sys
in nonequilibrium vortex numbers and configurations—
undesirable situation which usually happens if one choo
the initial state randomly without controlling the vorticit
quantum numberL.
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