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A numerical scheme to study the mixed states in a mesoscopic type-Il superconducting cylinder is described.
Steady-state configurations and transient behavior of the magnetic vortices for various values of the applied
magnetic fieldH are presented. Transitions between different multivortex staté$ iaschanged is demon-
strated by contour plots and jumps in BBe's H plot. We evolve a uniformly superconducting initial state using
the simplest set of relaxation equations. The results reveal that the system passes through nearly metastable
intermediate configurations while seeking the final minimum-energy steady state consistent with the square
symmetry of the sample. An efficient scheme to determine the equilibrium vortex configuration in a mesos-
copic system at any given applied field, not limited to the symmetry of the system, is devised and demon-
strated.
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[. INTRODUCTION ally appearing as thermodynamically stable states, but
mostly as metastable states. These predictions appear to have
The electromagnetic characteristics of type-ll superconalready received some level of experimental confirmation,
ductors have been of great interest, particularly since thélthough some discrepancies still exist(Reference 10
discovery of high-temperature superconductors. Furthermainly compared the energy of a “3-2” vortex-antivortex
more, a recent surge in interest about nanotechnology h4golecule state with that of a single off-centered vortex state
drawn the attention of researchers from various disciplines 8t L =1, as both evolve to the equilibrium state of a single
a detailed understanding of the characteristics of mesoscopkortex at the centerMisko et al.™* studied both type-I and
superconducting samples. Several phenomenological the®P€-Il mesoscopic triangular cylinders, and have shown that
fies have been developed during decades of superconduc@rVOrtex-antivortex molecule appears only if the sample is

research, with one popular choice being the GinzburglYPe!- They considered only one field value at whick 2

Landau theory:? Its time-dependent extension is known as 'S favored, and did not consider vortex configurational tran-
: ' . P sitions as the field changé¥.
the time-dependent Ginzburg-Land@DGL) theory” Our aim is to simulate how vortices enter and settle in
In the Ginzburg-Landau theory, the electromagnetic stat

f duct be determined b Vi i Stable arrangements when a mesoscopic type-ll supercon-
ot a superconductor can be determined by SOlVIng a SyStelf, oy of 5 given symmetry is first cooled below the critical
of partial differential equations. Abrikosov discovered that if

X temperature, and then an external magnetic field is applied.
the « parameter, now known as the Ginzburg-Landau paramrs is often termed zero-field coolin@FC). We find that
eter, is larger than 4/2, then when a bulk superconductor is only vortex numbers and configurations consistent with the
placed in a sufficiently large magnetic field, the magneticsample symmetry can appear in this case. It is known that
field penetrates the superconductor in the form of singlyglobal minimum-energy vortex configurations exist with re-
quantized vortices. Around each vortex flows aduced symmetry, with corresponding final equilibrium states
supercurrent, confining a single quantum of magnetic flux at general values of the applied field. To find these equilib-
within it. Superconductors with this property are known asrium states we developed an efficient numerical scheme.
type-II. Our approach is to solve a set of simplifieédnd dis-
Here we present the result of a numerical study about theretized TDGL equations, in which the coupling to the elec-
magnetization process inside a superconducting square cyric field is neglected, and the superconducting order param-
inder, with submicron lateral dimension in an external mag-eter and the magnetic field are assumed to relax with the
netic field. We have restricted the work to a square crossame time scale. These assumptions are not physical, but are
section of a linear size equal to 4.65 timesthe magnetic acceptable here, since we are only interested in obtaining the
penetration depdh Taking X at 500 A, then the cross- final steady-state vortex configurations, and the symmetry-
sectional area is 0.054m?. related qualitative behavior of the transient configurations
Previous works on the magnetization of a mesoscopic suand their evolution. For a more physical set of TDGL equa-
perconductor without pinning centers have been reported bgions see the work of TinkhamFor an example of the nu-
Peeterset al>~® and others;*® who presented extensive cal- merical solution of such a set of TDGL equations, see Ref.
culations on the superconducting state in mesoscopic, type-14. Our numerical method may be understood to be a relax-
superconducting thin films. In most cases they found transiation procedure with a pseudotinfet® Since the equations
tions between giant vortex states of different circulationwe have solved do not contain any thermal fluctuation terms,
quantum numberk, with some multivortex states occasion- and the sample we considered has a perfect square symmetry,
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we find that when starting with the Meissner state and nmrder parameter, with the superscript * denoting complex
field penetration, the final steady-state vortex configurationgonjugation;A is the magnetic vector potentigh=V XA

we obtain all have perfect square symmetry, with vortexdenotes the induced magnetic field, aHdrepresents the
numbers also limited to only multiples of @4he symmetry applied magnetic field. The supercurrent density is expressed
numbey. These configurations would correspond to physicalas  J;=V X VX A= (egi/2img) (V* V¥ — PV ¥*)—(e2/
situations under zero-field cooling, if the physical sample hasn,c)|¥|2A. In the aboveg, is the “effective charge” of a
perfect symmetry, and the temperature is sufficiently low, saCooper pair which is twice the charge of an electron, and
that thermal fluctuations are not able to overcome any energys “effective mass” which can be selected arbitrarily, but the
barrier for vortex entry, expulsion, or rearrangement. If theconventional choice is twice the mass of an electron. Adso,
sample surface has slight imperfection, or if the temperaturgs the speed of light, antl=h/27 whereh is Planck’s con-

is not sufficiently low, then these configurations are, in mosistant.

cases, not in equilibrium at the given magnetic-field strength.  Ginzburg-Landau theory postulates that the Gibbs free en-
Even the vortex number may not be correct; however, if weergy G of a superconducting sampf@ is at a minimum in
insert terms to simulate thermal fluctuation into the equathe superconducting state. The celebrated Ginzburg-Landau
tions, as in the method of simulated annealif, then the  equations are obtained by minimizing this functional with
simulation computer program will take a much longer timerespect to¥ andA using the variational principle.

to run, and may become impractical even with a supercom- Since a constant term does not change the end result of
puter. We have devised an efficient scheme to find the equinhe variational technique, an algebraic manipulation is made
librium vortex configurations: We solve the same set of re+o subtractf, and addH - H/8x to theg above, giving?*

laxation equations without any thermal fluctuation terms, but

instead of starting the solution with the Meissner state as the , B, 4 Ih— H|?
initial state, we devise artificial initial states with a given G(¥,A)= fQ | W S|V
number of vortices in random positions. We present analytic

expressions for such initial states in terms of a widely known

approximate expression for a singly quantized vortex in cy- + 2
lindrical coordinates. Then, for vortex numbers not too dif-

ferent from the equilibrium number, the final steady states \\e introduce dimensionless variables as follows:
obtained by solving our relaxation equations will, in most

2
)dQ. 2

€s
—1AV——A|¥
C

mg

cases, have the number of vortices close to those of the ini- X H h

tial states. By comparing the total Gibbs energies of these X'==—H=-——, h'=—-
steady states with different vortex numbers we can find the A \/EHC \/EHC
state with the lowest total Gibbs energy, which we identify as

the equilibrium state with the equilibrium vortex number. ., 2\/577)\_ , A ,
Sometimes we obtain more than one configuration for the = c—HCJ' - V2HN = T,

same vortex numbdkhen the vortex number exceeds fpur

then their Gibbs energies are also compared. We give afihe characteristic scales ar¢¥,|=+—a/B, which is
explicit demonstration of this schem&which might be very  the magnitude of¥ that minimizes the free energy in
useful in view of the recent interest in nanoscience andhe absence of a field; the thermodynamic critical field
nanotechnologs® We note that in a bulk sample vortices like strength H,= (47| a||¥,|2)Y2 which divides the normal

to form a triangular lattice. Thus, when the sample does nogtate and superconducting state regions in type-l super-
conform with this symmetry, and if the sample is sufficiently conductor phase diagram; the London penetration depth
small so that the boundary effect on the equilibrium vortexy = (myc?/47|¥,|%e?)Y% the coherence length ¢
configurations is important, then the system is frustrated, and:(ﬁ2/2ms|a|)1’2; and, the Ginzburg-Landau parameter

the equilibrium vortex configurations can be quite intriguing =) /¢,

and difficult to foresee. We obtain the dimensionless gauge-invariant free-energy
functional, omitting primes for convenience.
Il. THE SIMPLIFIED TIME-DEPENDENT

GINZBURG-LANDAU MODEL 1
G(\P,A)zf (—|\P|2+§|‘P|4+|V><A—H|2
In an external magnetic fielth, the Gibbs free-energy Q

densityg of a superconducting state is given by: 2

+ v

\Y
) ——1A dQ. 3
K

_ 2, Biga, L €s
g—fn+a|‘1’| +E|\I’| +m —IﬁV—EA V42
s The simplified TDGL model we employ to find solutions
[h|2 h-H of the static GL equations may be viewed as a gradient flow
-y (1) of the energy functional. That is, the variation & (A) with
respect to time should be in the opposite direction of the
Here, f,, is the free-energy density in the normal state ingradient of the energy functionalg¥/dt) = — (9G/o¥V*),

the absence of the magnetic fieM; is the complex-valued (9A/dt)=—3(dG/JA) with time t in units of the only
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tances due to mutual repulsion. This requirement leads to a
triangular lattice of vortices in an infinitely large domdin.
In the staggered grid the lattice evaluation pointsor
A, and B are all different, withW evaluated at the node
center (,j), A evaluated at the east cell fadeH1/2}j), and
B evaluated at the north cell facg, [+ 1/2). According to
Refs. 23,16, this formulation keeps second-order accuracy in
the derivative evaluations as they appear in each of the dis-
cretized equations.
The discrete equations are obtained by minimizing the
discrete energy function&, with respect to the variation in
FIG. 1. The staggered grid arrangement for cell nodes? andA as:
P,E,W,N,S and facese,w,n,s.

Ve hehy [ el — 2w 4 e hehap
relaxation time of the equations. The natural boundary con- g 2 h2

ditions are:(1) the continuity of the parallel component of X

the magnetic field across the boundary surfadx@)xn e By — 2 4 e 1By
=HXn, (for two-dimensional problems only, see below + >
and (2), the vanishing gauge-invariant normal derivative of hy
¥: (V/k—1A)¥-n=0,% with n denoting the outward sur- (5)
face normal.

+ hxhle(\I} P)y

&Ae BnE_ Bn+Bs_ BsE ANe_ 2Ae+ASe
IIl. DISCRETIZATION AND CALCULATION PROCEDURE 7 == hX hx - hy

For long square cylindrical samples, we need only to h
solve a two-dimensional(2D) problem. We take A +—yN2(Ae,\pr,\IfE), (6)
=[A(x,y),B(x,y),0] andH=(0,0H), whereH=(V XA), K
= (9Bl ax) — (0Al dy). B B _
Defining the link variables as below, the gauge invariance Bn_ _ y(AW Aet Ane™ Anw _ Bne=2Bnt B”W)
is preserved in discretizing the Gibbs free energy and the 9t hy hy

consequent simplified-TDGL equations. DefiniVg(x,y)

h
=exdIx/*A(s,y)ds]; V(x,y)=exdIx[YB(x,7)d»]) and not- +—XN3(Bn,‘I’p,\PN), @)
ing that |d,(W*W¥)|=|(dx—1kA)¥|, and|d,(V*¥)|=](d, K
—1kB)¥|, we have: with

G(w,A>=fQ(—|~v|2+%|«p|4+|v><A-H|2 Ny(Wp) = (1= [Wp[2) W, ®

) Nao(Ae, Vp, Ve)=(PpOp— OpPe)cogAgkhy)
)dﬂ. (4) —(PpDe+0p0¢)sin(Agkh,),

We discretize the free-energy functional on a staggered
grid over Q shown in Fig. 12>'® This gives us a second-
order approximation irh, andh, to the continuous energy —(PpPy+0OpOy)sINB,khy),
functional, where théx, andh, are the spatial increments in ) )
the x direction andy direction. The staggered grid also leads Where® and ® are the real and imaginary parts ¥, and
to a satisfactory way of discretizing the natural boundaryoundary conditions of the computational dom@iriwith T,
conditions?* For a rectangular grid, the first component of B: L, and R denoting top, bottom, left, and right, respec-
the vector potential is constant in time on one pair of thefively):
edges of the boundary, and the second component is constant

2

1 1
—_ — *
=g WHE)| =0 (VD)

N3(Bn, Ve, W)= (PpOnN—Opdy)cogB,khy)

— 1kh,B
in time on the other paff? Vp=WseV% on Or, ©)
In this paper, we assume that the cylindrical supercon- _ CikheB
ductor has a square cross section and is subject to an applied p=Wye "5 on Og, (19
field along the central axis. The applied field is assumed to _ ~ixh A
be constant in time. We further assume the order parameter Yp=Vee = oon )y, 1D
W varies in the cross-sectional plane of the square cylindrical Vo= W e i on g, (12)

sample, and the vector potential has only two nonzero
components 4,B), which also lie in this plane. We also
assume that the superconductor has no pinning sites. Then at A.=Ac.— ( H—

N . . . e Se
steady-state conditions, the vortices settle at maximal dis-

BnE_ Bn
h—x) hy on Qr, (13

094521-3



SANGBUM KIM, CHIA-REN HU, AND MALCOLM J. ANDREWS PHYSICAL REVIEW B 69, 094521 (2004

Bne— Bn, p+e, and must be created at the boundary and then move
H-— h—) hy on Qg, (14 radially inward. This is true only if symmetry is strictly pre-
) served. However, this can only happen in an actual sample if
the sample strictly obeys the symmetry, and the temperature

Ae: ANe+

Bn=Bpg—|H+ #) hy on Q, (15)  is very close to absolute zero. Otherwise, vortices will enter
y one at a time via defect sites at the surface, or through ther-

mal fluctuations to destroy the symmetry. Then it will not be

B =B..t|H+ Ane—Ae h. on O 16 2 multiple of 4 for a square cross section, or a multiple of 6
noenw hy X R for a hexagonal cross section, and the relationship between

sample size and number of vortices becomes a less signifi-
The finite difference equations are solved by the Eulercant concern.
method withh,=h,=0.15 andAt=0.05, and takingc=4. The symmetry here manifests itself in this geometry-
In the numerical computations that follow, all details are keptdominated problem, and vortices arrange themselves in the
the same except for the strength of the applied magnetic fieldquare-symmetric configurations. The resultant steady states
and/or the initial conditions. are mostly not true equilibrium states, since the vortex ar-
Extensive grid independence checks were performed durangements do not reflect the intrinsic tendency of vortices to
ing this work, and typical results are described in Sec. VI ofform a triangular lattice known to appear in bulk samples.

this paper. The natural next step is to add a thermal fluctuation term to
find the true equilibrium states which may or may not con-
IV. STEADY STATES UNDER ZERO-FIELD COOLING ﬁ’(rm ‘_"”thl this symmetry. Such an approach would then be
IN A PERFECTLY SQUARE SAMPLE ike simu ated annea_llng. We be_heve_ it _wo_uld not b_e_
AT LOW TEMPERATURES practical to perfect this approach since it will likely be diffi-

cult to determine the appropriate rate of cooling and the
We first solve the above set of equations assuming that thetarting temperature. In addition the run time of the computer
initial state is the perfect Meissner state with no field penprogram might also be expected to be much longer than we
etration. As explained in the introduction, this corresponds tdhave found here, so we have devised a different approach
applying a magnetic field after zero-field cooling. Figure 2which we believe is much more efficient at finding the equi-
shows plots of/W|? [the left figure in(a)—(k)] and h=V librium states. This is given in a later section. We shall see
X A [the right figure in(a)—(k)] for the final steady states that even the cases with a low number of vortices are not the
reached for a sequence of increasidgvalues. In the left true equilibrium. Also of interest is the fact that for various
figures|¥|?2, which is interpreted physically as the density of H, the vortex configuration requires much longer run times
Cooper pairs, runs from 0 to 1, with level 1 corresponding toto get to a steady state. Geometry controls the settling time
the full superconducting state. Each isolated group of conmore than the energy in these cases.
tours is called a “vortex,” representing the supercurrént Our results are summarized in Table I, which lists the
circling around the vortex core, witly =0 at the vortex range ofH for each resultant number of vortices, and the
core. In the 3D plots of Fig.(®), it is clear that the vortices corresponding induced magnetic fielk= (1/Q[) [ ohdQ.
reach close t¢¥|?=0 at the core. The Table shows that the final number of vortices does not
We note that the number of vortices increases in multipleshange within various bands of the applied magnetic fi&ld
of 4. This is a consequence of the fact that the vortices arédheH’s listed correspond to the threshold valyapper and
symmetrically created at the midpoints of the sample edgedower limits) for each band. They were found on a trial-and-
Perfect symmetry in the sample geometry dictates that eactrror basis, and can be refined to any desired accuracy. The
side creates an equal number of vortices. For sample siz8able and Fig. 2 show that, belott=0.839, there is no
less than\, it is to be expected that simultaneous penetratiorvortex. BetweerH =0.84 and 1.144, the vortex numbey
of four vortices is energetically unfavorable compared with a=4, and so on.
single vortex penetration. However, a single vortex entry is  The B vs H plot shown in Fig. 3, reveals th& is much
still prohibited if symmetry is strictly preserved. The mag- lower thanH when the number of vortices is small, but as the
netic field will simply penetrate the sample without entry of vortices increase, the curve approachesBleH curve as-
vortices in that case. When symmetry is not strictly pre-ymptotically. The figure also shows an abrupt increasB in
served, and if the sample size is much smaller thathen  between the regions of different number of vortices. For ex-
no vortex will enter the sample since the magnetic field al-ample, wherH changes from 1.144 to 1.14B changes from
ready penetrates the sample. If the sample size is of the ordér9779 to 1.0694. If the limiAH—O0 is taken, we expect a
of A, then one vortex will enter and move to its center. Insudden configurational phase transition increasing the num-
these calculations, symmetry is closely preserved, and in thiser of vortices, as is apparent in FiggcRand 2Zd). Such
case, vortices enter in multiples of 4 for a square cross seanini-first-order transitions are knowt? to occur in a meso-
tion. For a hexagonal cross section, it should be a multiple ofcopic superconductor d$ is changed, but the details are
6. For a large circular cylinder, vortices of the usual kind quite different, because different parametej (egimes and
(with line singularitie$ cannot enter. Rather, “cylindrical sample geometrie&ylinder vs film were studied.
vortex sheets,” with phase-winding quantum numbebout Comparison of Fig. @) with 2(h) reveals a phase transi-
the axis, change from at radial coordinatp—e ton+1 at  tion is also evident for ther,=12 case, where the vortex
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o

(a) H=0.839

(b) H = 0.840

FIG. 2. Plots of|¥|2 andh=V XA for variousH [|¥|? is shown on the left ifa)—(k), andh on the right in(a)—(k)]. These final
steady-state solutions are obtained from a uniform superconducting state.
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(c) H=1.144

(d) H=1.145

LB e ey AR

(e) H=1.429

FIG. 2. (Continued.
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(g) H=1.454

(f) H =1.430
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(h) H = 1.455

FIG. 2. (Continued.
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(i) H=1.732

() H=1.733

(k) H = 2.058

FIG. 2. (Continued.
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TABLE I. The resultant number of vortices. and the induced metastable only within the subspace of configurations pre-

magnetic fieldB for the applied magnetic field. serving the full symmetry of the sample. Thus, in a physical
situation, where the sample has perfect symmetry and the
Mo H B temperature is sufficiently low, this rotation may take a long
time to take place. For samples with imperfect symmetry this
0 0.839 0.6163 . . . g
4 0.84 0.7331 relaxation time may be shorter. Since this is a symmetry-
4 1 '144 0'9779 induced qualitative property of the vortex-entry dynamics in
8 1'145 1.0694 a mesoscopic superconductor, we believe its general validity
8 1'429 1'3022 is independent of the fact that we have obtained it by solving
' : a simplified set of TDGL equations which are not truly
12 1.43 1.3790 ;
physical.
12 1.732 1.6288
16 1.733 1.6986
16 2.058 1.9719 VI. STEADY STATES WITH REDUCED SYMMETRY

AND THE EQUILIBRIUM STATE

configuration shows a sudden change in arrangement, even The previous sections present solutions for a mesoscopic

with the same number of vortices, for a slight increase of thdyP€-l superconducting square cylinder with initially no vor-
applied field fromH =1.454 toH = 1.455. tex inside the system. The validity of such solutions requires

a perfectly square sample without any defect at the boundary,

and temperature sufficiently low so that thermal fluctuations

V. TIME SEQUENCE SHOWING VORTEX are too weak to help the system find lower-energy configu-
ENTRY DYNAMICS rations of reduced symmetry. This is an ideal condition, pro-

Figure 4 shows the transient development of Cooper paiflucing only solutions consistent with the sample symmetry.
density forH=1.145 and there are eight vortices. The per-Even during the transient, the system is bound to this sym-
fect symmetry in the sample geometry dominates the trarM€lry (XCept in rare cases when the transient solutions can
sient process, but in the middle of the process the whol&€€P Only fourfold rotation symmetry but not mirror
configuration makes a rotation to rearrange itself into a newyYMmetries—See Fig.)4In principle, one can reproduce
configuration.(Note that time advances from 3000 to 17 500 this ideal system in a laboratory with special care.
between the 8th and 9th framp&he final result is still a In real_5|tuat|0ns, there likely exists some small defects or
square-symmetric configuration. We note that during the roPerturbations at the boundary, then vortices can enter the
tation process, the vortex configuration loses some mirropyStem asymmetrically to produce steady-state configura-

symmetries of the sample, but it still preserves the 90° rotallons With reduced symmetry of lower total Gibbs energy

tion symmetry. These transient states need not possess tHi&N any symmetric solution. A strong enough thermal fluc-
full symmetry of the sample. We think this is possible pe-tuation pould also change. the \{ortex number and rearrange
cause our numerical method has very weakly broken th&he vortices to such a configuration. Previous work has taken

sample symmetry. That is, the state just before the rotation ig1t0 account these perturbations by adding a random fluctua-
tion term to the governing equatiéh.This term breaks the

P symmetry governing the equations by energizing the system
P to jump out of the local minima in energy and over the en-
Z ergy barrie but this increases the computing time greatly.
P (This method is essentially “simulated annealind:*9
~ As an alternative approach, we employ perturbed initial
P conditions (similar to Peeterst al>’) instead of the per-
7 fectly superconducting initial condition as used in Figs. 2
and 4. In addition, we introduce an idea to make the numeri-
B2 cal scheme much more efficient. We have used randomly
P /n =16 perturbed initial conditions. This can lead to final steady-
- state solutions with reduced symmetry and lower energies,
but we find this way is very inefficient for finding the equi-
p librium state at any giveid. We also tried to use a lower-
P symmetry configuration from such a calculation as the initial
.~ n_=8 condition for a newH value, but we found that the vortex
% number can often be trapped in an uncontrollable nonequi-
n_=4 librium value due to the existence of surface energy barriers
U e e e b e e N against vortex entry or exit. This method of adopting an ex-
1 1.5 H2 25 3 isting solution as the initial condition cannot be reliably used
to find the true equilibrium state in a given system and field.
FIG. 3. The effect of applied magnetic field on the induced (Peeterset al. changes the field in small steps to avoid this
magnetic fieldB averaged over the sample. difficulty,?® but such a procedure is tedious.

25

1.5

N
~ < 1 11T 1T 1T1T 1T rtTrrrrrrrrrrror1

094521-9



SANGBUM KIM, CHIA-REN HU, AND MALCOLM J. ANDREWS PHYSICAL REVIEW B 69, 094521 (2004

t=0 =100 t=500 t=1000

t=24000 t=30000 t=35000 t=39000

30 30,

25
20
>1s
10

3

2
2

1 . .

0 .

> 15 .x.
| ‘ . .
5

o0

X

%0

20 10 20 30

X

FIG. 4. Time sequence of vortex dynamics showing vortex entryHer1.145. Note that the initial stat@t t=0) is the uniform
superconducting state.
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(b)

FIG. 5. The initial, random vortex configurations, and the corresponding steady-state vortex configurations they ¢Vbledrtitial
vortex configurations is shown on the left(@—(0), and the steady-state vortex configurations on the rigl&)in(o)]. Most of these final
steady-state solutions are metastable states with a given number of trapped vortices in a field-cooled situation. The one with the lowest Gibbs
energy among them may be identified as the true equilibrium state at the chosen field value, see Fig. 6.

094521-11



SANGBUM KIM, CHIA-REN HU, AND MALCOLM J. ANDREWS PHYSICAL REVIEW B 69, 094521 (2004

(d)

(f)

FIG. 5. (Continued.
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(9)

(h)

(i)

FIG. 5. (Continued.
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FIG. 5. (Continued.
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FIG. 5. (Continued.
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-0.29 - TABLE II. The steady-state total Gibbs free enei@yand %
C: i error in G for changing grid size for artificial vortex initial condi-
03} tion (H=0.84) and uniformly superconducting initial condition
: (H=1.733).
031
[ Grid Artificial I1C Uniform IC
e - G % error G % error
7 0%r
4 - 16X 16 —0.3487 —0.1814
S a3 32x 32 —-0.3513 0.71 —0.2069 141
[ 32X 32 —0.3513 —0.2069
i . 0.41
034 64X 64 —0.3519 0.17 —0.2078
-0.35
N © configurations they evolve tfthe right figures in(a)—(0)].
_0‘361-. L é L é L '4'1' L é L .é. L ; L 'é Indeed in Figs. 8), 5(1), 5(m), 5(0), the initial number of
n vortices is not always the final number. This is because the

energy of the initial state is high when vortices are initially
FIG. 6. The steady-state total Gibbs free energy per unit@rea very close to each other, in which case there is enough en-
and the corresponding final number of vortices,. ergy to overcome the surface barrier to eject excess vortices.
In particular, comparison of the initial and final states in Fig.
To obtain the true equi”brium vortex Configuration at any 5(h) reveals that one vortex was expe"ed during the evolu-
given magnetic field without employing a simulated anneal+jon. This is because the surface barrier was weakened, per-
ing method, we have devised a systematic approach to geRaps by one vortex in the initial state being close to the edge
erate initial states with given numbers of vortices at randomy¢ 1he sample, and the total number of vortices being too

distributions. We start with an analytic expression as follows:high compared with the final equilibrium vortex number. The
for one vortex at the origin in circular coordinates ), we

use the widely known approximate expres&iof® corresponding total Gibbs free energigsof these steady

states are plotted in Fig. 6 as a function of the final vortex

rel? numbern,, . The minimum-energy configuration a,=5 is
W(r,0)= et a7 seen to display the square symmetry of a five-vortex configu-
re+« ration with a vortex in the center. Grid independence checks

By converting it to Cartesian coordinates, we can move thvere performed, and Fig.(& shows this five-vortex case
center of the vortex to any arbitrary positiox’(y') by sim-  using grids of 6464, and in Fig. %) a uniformly super-
ply replacing &,y) by (x—x’,y—y’). Denoting this expres- conducting initial condition wittH=1.733 corresponding to
sion asW,, ,/(x,y), ann-vortex expression can be simply Fig. 2j). Comparison of Fig. &) (32x32 grid with Fig.

constructed as 7(a) (64X 64 grid reveals close agreement. Similarly com-
parison of Fig. ) and Fig. Tb) shows close agreement. A
V(Xy) =Wy y (XYW y (Y)W y (XY). more stringent grid independence test was to consider the

(18)  resultant total Gibbs free energy for each grid, and given in

This expression obeys the important topological conditionTable II.OInspectlon of the tabl_e revea_ls convergence o less
that the phase off must increase by 2 when any one han & 1% change when moving to different grids. The per-
vortex center is circumnavigated. The magnetic field insidecent error was defined as: % erdiGegsxpa— Gaox3d

the sample does not obey any topological condition, so it carx 100{G3,. 35|, and similarly for other cases. These grid in-
be simply set equal to zero for the initial condition. The dependence results support our use ok 32 grids for this
positions of vortices can be generated using random numbefydy. The large error of 14.1% for the uniform initial con-
generators, only if they are inside the sample. This is &ition case in Table Il was associated with a decrease from
straightforward idea, but it does not appear to have beefg yortices to 12 when the grid was coarsened from 32
employed before. We illustrate below various initial condi- w32 15 16< 16. The reduction in resolution caused the vor-
tions used to obtain steady-state vortex configurations of anyay number to cross thie threshold and produced a 12 vor-
given numbers of vortices... Comparing the total Gibbs ey configuration. Our exploration of finer grids ensured that
free energy per unit are@ [obtained by integrating Eq4)  we determined an accurake threshold, and not one depen-
and normalized by the sample siXgh, < N h,] of solutions  dent on the grid.

with different n.., we can then determine the equilibrium  Although we have not yet applied this scheme to other
vortex number and configuration. For illustrative purposesfield values ofH, the method we have devised to find the
we consider the casd =0.840. Figure 5 shows the initial equilibrium vortex configurations for a given size and shape
conditions for¥ with 1-8 randomly placedartificial) vor-  of the sample, and different values of the external magnetic
tices[the left figures in(@)—(0)], and the steady-state vortex field should now be clear.
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(a) (b)

FIG. 7. Examples of the steady-state vortex configurations for larger grid siz€644 (a) Artificial vortex initial condition undeH
=0.84, (b) uniformly superconducting initial condition under=1.733.

VIl. SUMMARY AND CONCLUSION down to the steady-state configuration, which corresponds to

A numerical scheme to studv the mixed states in a mesot_he lowest-Gibbs-energy configuration consistent with the
scopic tvoe-1l superconductin ys uare cviinder in a lon itu_symmetry constraints to the vortex number and configura-

copic yp P haucting sq Y 9Wion. True equilibrium states would appear in actual samples
dinal external magnetic fieltH has been developed. It is

based on solving a set of simplified time-de endentWhen there are symmetry-breaking surface defects forming
Ginzbura-Landau ge Lations. We he:\ve first a IFed thisvortex—nucleation centers, or when thermal fluctuations are

9 q S S P — “sufficiently strong to move the system out of metastable
scheme to the case of field penetration into a zero-field=

) : states, but not too strong to melt the vortex lattice. We could
cooled sample. Case studies for various values of the exte,

nal magnetic field were presented. Contour plots of the CooE'aVe determined these true equilibrium states by adding ad-

er pair densitv. and the induced maanetic field inside th ditional terms in the equations to simulate thermal fluctua-
per p . Y, . gnetic ; ions, but here we have devised a different approach which
sample, display the magnetic vortex solution first discovere

by Abrikosov. but in a small samole the vortex arrangement’€ believe is more efficient. We introduce a way to generate
oy ) e . P'¢ arrang nalytic initial states of prescribed numbers of vortices, but
is not simply triangular. Giant vortices and antivortices are

not found in this study, unlike previous studies of type-| allow their positions to be random. They evolve to steady-

mesoscopic thin films(But at sufficiently high magnetic state vortex arrangements of all possible vortex numbers
P y g 9 near the equilibrium number, from which we can compare

field we stil expect the system to favor a single giant_ Vortextotal Gibbs energy to determine the equilibrium vortex num-
at the center as it goes into a surface superconducting statg

but only if the sample is not too smaliSince we start the ér and configuration. In this way, we avoid the problem of

solution with a uniformly superconducting initial condition surface and bulk energy barriers, which can trap the system

and the samole has ex‘ectps Lare s mrglet both the nL”jnn_ nonequilibrium vortex numbers and configurations—an

ber of vorticeps and thr?air steadq -state Stl:onfi lj%ltions are qundesirable situation which usually happens if one chooses
Yy 9 ; 9%%he initial state randomly without controlling the vorticity

erned by the square sample geometry. Changes in the con-

. . : ) . uantum numbet.

figuration and the number of vortices occur ldss varied

through flrst-order_conflgurgtlonal phase transitions, similar ACKNOWLEDGMENTS

to those found earlier, but different in detail. This phase tran-
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