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Short-time-evolved wave functions for solving quantum many-body problems
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The exact ground state of a strongly interacting quantum many-body system can be obtained by evolving a
trial state with finite overlap with the ground state to infinite imaginary time. In many cases, since the
convergence is exponential, the system converges essentially to the exact ground state in a relatively short time.
Thus a short-time evolved wave function can be an excellent approximation to the exact ground state. Such a
short-time-evolved wave function can be obtained by factorizing, or splitting, the evolution operator to high
order. However, for the imaginary time Schinger equation, which contains an irreversible diffusion kernel,
all coefficients, or time steps, must be positivlegative time steps would require evolving the diffusion
process backward in time, which is impossiblderetofore, only second-order factorization schemes can have
all positive coefficients, but without further iterations, these cannot be used to evolve the system long enough
to be close to the exact ground state. In this work, we use a newly discovered fourth-order positive factoriza-
tion scheme which requires knowing both the potential and its gradient. We show that the resulting fourth-order

wave function alone, without further iterations, gives an excellent description of strongly interacting quantum
systems such as liquitHe, comparable to the best variational results in the literature. This suggests that such
a fourth-order wave function can be used to study the ground state of diverse quantum many-body systems,
including Bose-Einstein condensates and Fermi systems.
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We consider a quantum systemivparticles with mass
described by the Hamiltonian

N N
H=T+V, T=-\2 V2, V=2 o(ry), (1)
i=1 1>]

whereT is the kinetic-energy operatdy,is a sum of pairwise
potentialsv (r;;), and\ =7%2/(2m).

In imaginary timer=it/A the many-body time-dependent
Schralinger equation can be written as

d
~ [ (m)=H[¥(7), @

with formal solution
|¥(7)=e""D®), [®)=|¥(0)). 3

In  coordinate  representation W(R,7)=(R|W¥(7))
=(R|e” ™| ®), whereR={r;---ry} denotes the set of all
particle coordinates. If the initial wave functig) is ex-
panded in the set of exact eigenfunctigds,} of the Hamil-
tonianH, then Eq.(3) has the more explicit form

+ o0

W(R,7)=€ "Fo| codo+ 2, coe "En Bl |, (4)
n#0

Assuming the nondegeneracy of the ground stéig—(Eg

PACS nunider67.55~s, 05.30.Fk, 21.65:f

good trial wave function and evolve it in imaginary time
long enough to damp out all but the exact ground-state wave
function.

Since the imaginary time evolution cannot be done ex-
actly, one usually develops a short-time propagator by de-
composinge” M=e~T"V) into exactly solvable parts, and
further iterates this short-time propagator to longer time.
This is essentially the approach of the diffusion Monte Carlo
(DMC) method!~2 The need for iterations introduces the
complication of branching, which is the hallmark of diffu-
sion and Green’s-function Monte Carlo methddBur idea is
to develop a short-time propagator via higher-order decom-
position that can be applied for a sufficiently long time to
project out an excellent approximation to the ground state
without iteration.

First- and second-order factorization schemes such as

e~ TTe— ™V 0(7_2)
e TV~ —(U2)7V o= T o= (112)7V 3 5
e e e +0O(7°)
are well known, but without iterations, they cannot be ap-
plied at a sufficiently large value of to get near to the
ground state. It is also well known that in the context of
symplectic integrators, the short-time-evolution operator can
be factorized to arbitrarily high-order in the fornt?

e (T+V)_ H e i TTe— biTV’ (6)
i

>0;n+0), the above wave function becomes proportionalwith coefficients{a; ,b;} determined by the required order of

to the exact ground-state wave function in the limit of infi-

accuracy. However, as first proved by ShErand later by

nite imaginary time. A basic strategy is then to start with aSuzuki* (using a more geometric argumgrtieyond second
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order, any factorization of fornf6) mustcontain some nega- The intermediate coordinat&sare also sometime referred to
tive coefficients in the sefa;,b;}. Goldman and Kapét as “shadow” positions. Each decomposition scheme then
later proved that any factorization of forf6) must contain  corresponds to a specific wave function for the ground state.
at least one negative coefficient fwoth operators. This For instance, the first-order scheme gives the linear wave
means that for decompositions of for®), one must evolve function

the system backward in time for some intermediate time

steps. This is of little consequence for classical dynamics or B CC(R=9)2 - AU(S)

real-time quantum dynamics, both of which are time revers- \I’(R'T)_f dSe e (), 1D

ible. For the imaginary time Schdnger equation, whose

kinetic-energy operator is the time-irreversible diffusion ker-where R— S)ZEEiN= 1(ri—s)?, and where we have used the
nel, this is detrimental. This is because 7T  fundamental result that the kinetic evolution operator is just

«e (' "N is the diffusion Green’s function. For posi- the diffusion Green’s function,

tive a;, this kernel can be simulated by Gaussian random

walks. If a; were ne_gative, the ke_r_ne_l would be unbound and <R|e‘TT|S)o<e‘C(R‘S)2

unnormalizable, with no probabilistic basédlonte Carlg '

simulations possible. This is just a mathematical restatement _ _

of the physical fact that diffusion is an irreversible processSimilarly, the second-order scheme gives the following qua-

Positive decomposition coefficients are therefore absolutelgiratic wave function:

essential for solving any evolution equation having an irre-

versible component, such as the imaginary time Sdihger (r CC(R-92 —(x

eouation. p ginary ge W(R,7)=¢ (/2)V(R)f dSe C(R-9%g=("2V(9 g ().
Since both classical and quantum dynamics are time re- (13

versible, there is a lack of impetus to search for higher-order ]

factorization schemes with only positive coefficients. While Finally, the fourth-order schema produces the following

higher-order factorizations of forif6), with negative coeffi- duartic many-body wave function:

cients, have been studied extensively in the literatlir&? it

was only recently that Suzui and Chi.rJr7 found some W(R T):ef(ﬂe)V(R)f dS e—C'(R-8)2g—(273)V(S")

fourth-order(but no higher-orderforward time step decom- '

position schemes. In order to bypass Sheng and Suzuki's

proof, one must introduce a higher-order commutator XJ dSe—c/(S’_S)ZG—(TIG)V(S)(D(S)' (14)

[V,[T,V]] in addition to operator§ andV used in Eq.(6).

In this work, we use the fourth-order factorization

schemé&®! referred to as schem&

1

now with C’'=1/(27\).
In all these wave functions, there is only a single param-

o T(T+V) — g~ (U6 g~ (V2T o~ (213 g~ (12)7T g~ (16)7V eter, the imaginary timer, that we can vary._AII_eIse are
fixed by the factorization scheme. If the factorization scheme
+0(), 7) can accurately reproduce the imaginary time evolution of the
wave function, the resulting energy must fall monotonically
with V given by from the initial energy toward the exact ground-state energy
with increasingr. To the extent that these wave functions are

~ 72 2 N not the exact imaginary time wave function, the energy will
V=V+ —[V,[T,V]]=V+ —2)\2 |ViV|2. (8)  eventually rise again. Thus for each wave function there is a
48 48 = optimal = where it will be “closest” to the exact ground
. . . state.
This scheme was also found by Koseldffbut his coeffi- To test the quality of the above wave functions we use

cient for the double commutator termirgorrectby a factor :
. ; . ... them to describe the ground state of a strongly correlated
of 3 too large. For a more detailed discussion of positive 2 . ) .
o . quantum system dfl “He atoms interacting via a two-body
factorization schemes and forward symplector integrators, _. . 90 v D
Aziz HFDHE2 potentiaf® At equilibrium, the system is in a
see Ref. 19, . . liquid state and has a density ptr®=0.365(=2.556 A)
To go from state vectors to coordinate wave functions, w ' ' )

insert complete sets of coordinate states; /HS|S)(S), She simplest description of the ground state is McMillan's

where S={s;-- -5} and write, for example, the operator Jastrow wave function

equation(3) in the form N 5

1/b
@(R)=ex;{—2 U(rij)} U(F)=§(F , (19
qf(R,T)=f dSGR,S,7)(S), 9) -
with b=1.20. We will use this wave function as our initial
where Green’s functio®G(R,S, 7) is given by wave function in all our simulations.
For all three wave functions, the expectation value of the
G(R,S,7)=(Rle”"™M|S). (100  Hamiltonian can be computed from

134510-2



SHORT-TIME-EVOLVED WAVE FUNCTIONS F®.. .. PHYSICAL REVIEW B 68, 134510(2003

-3.5 . . . —
j dRV¥ (R,7)HV (R, 7) 40 Qual_cli'::t?cr —— |
E= . (16) o Quartic(No gradient) —&—
N Quartic —@—
de|‘I’(R,T)|2 -45 | M |
M+MS
. 50 M+AS ]
The iterated wave functions simply require more integration oﬂ;{g
variables. For example, in the case of the linear and quadrati@c> 551 Exp - ]
wave function, the above can be expressed as " 50 '\ . f
6.5 |
E= f dRASASP(R,S ,SREL(RS ,Sr),  (17) 2ol ]
where p(R,S,,Sg) is the probability density function, 0 0.005 001 0.015 002 0025 0.03
EL(R,S.,Sg) is the local energy, an§,_  are the respective T(K")

left (L), right (R) auxiliary, or shadow, variables. For the o .
quartic wave function, the corresponding expressions for the FIG. 1. The ground-state energy per particle in kelvinfele at
probability density function and energy expectation value aréhe experimental equilibrium density ¢*=0.365) using the Aziz

similar, but with the addition of two more auxiliary shadow HFDHE2 potential as a function of the parameterMonte Carlo
VariabIeSSL results from using various short-time-evolved wave functions are as
R

. . indicated. All simulations have been done for=108 particles. M
theWSrgts)gtfirI]ifyM de;L%?tzllirgﬂngn;elg- agzglggllfg?rfeiz?;gg indicates a McMillan wav_e-functic_)n_energy.-MvIS, M+AS, M
b . . T, OJ+AS refers to various variational Monte CarfgMC) re-
configuration space, corresponding to two and four sets g ults in the literature. see text for details
shadow coordinates in the case of linear/quadratic and quar- ' ’
tic wave functions, respectively. In these computations, the In Fig. 1 we show the equilibrium energy per particle for
Metropolis steps are subdivided in two parts. First, one atliquid *He for various short-time-evolved wave functions as
tempts to move real particle coordinates at random insidéunction of the imaginary time parameter Other results
cubical boxes of side length. Second, analogous attempts from literature are also indicated for comparison:+MIS is
are made to move shadow coordinates inside cubical boxdbe energy obtained by a shadow wave function having a
of side lengthA,,. For instance, in the case of the quadraticPure repulsive McMillan (M) pseudopotenti&f of fifth
wave function, we first attempted to move all tRecoordi- ~ Power-law form for both particles and shadofisv +AS is
nates, then the shadow coordinaf&s} and{Sg}. The pa- the energy obtained by a shadow wave function with an at-
rametersA and Ay, were adjusted so that the acceptancetr""c'['ve shadovy-shadow pzaeudopptentlal Of. scaled Aziz
ratio for both particle and shadow moves was nearly 50%. HFDHEZ potenpa(AS) form. M+-£2},S the McMillan wave
In addition to the ground-state variational energy, we havésl;lgcc:gjvc vv\\/lg\r/]etr;ELecttg% (\j\?i:rzel;?Oonpﬁmioz\]ej;AtJSasrt?I)?/\r/Sptgrtziicle-
also computed the radial distribution functigir), and its : . :
Fourier transform, the structure fact®fk). These quantities particle pseudopotentiafOJ and scaled Aziz HFDHE2

herical d have b 4 for both hadow-shadow pseudopotentighS).2* GFMC is the
are spherical averages and have been computed for both tgeqn's-Function Monte Carlo calculations with Mcmillan

real particles and the shadow coordinates. The radial distrorm for importance and starting functidithe experimental
bution function is defined by value is taken from Roacht al2

N As expected, each of our factorized wave functions
1 reaches an energy minimum with increasing value.of he
g(r)= Np > (8(ri=rj=r]), (18)  flatness and depth of the energy minimum improve markedly
7 with the order of the wave function. The linear wave func-

where the angular brackets denote an average with respect§" has a shallow and narrow minimum & 0.002 and
|¥(R,7)|2 andp is the particle density. The structure factor Oy improves upon McMillan's result«=0) by ~0.3 K.
S(K) is obtained from the average (M)(p_ypx), Wherep, The minimum of the quadratic wave function is much better
=E]N:19Xp(—ik~ rj)! a procedure which is Only pOSSible on a at 7=0.006 with a value of~6.393 K. The quartic wave-

discrete set ok values allowed by the periodic boundary funqtlgn’s energy minimum extends further 0“?*.9:0'015.

conditions. gtta|n|ng—6.809 K, which is Iowgr than all existing varia-
All simulations presented in this work have been done'_[l'_ongII Monte CarlchEVMC) cal.culaporr]]s that(jyve are aware %f'

with N=108 atoms of*He in a cubic box with periodic o demonstrate the necessity of the gradient term, we have

boundary conditions. To enforce periodicity all correlationsaISO pIott_ed results ok_Jtamed from E) without the_grad|- .
smoothly go to zero at a cutoff distanag=L/2, equal to ent term in the potential. In the present case, gradient term is

half the side of the simulation box according to the replace-reSponS.IbIe forwSO%' of the improvement from that of the
ment quadratic wave function.

To give a quantitative comparison, we summarize various
ground-state equilibrium energies féHe in Table 1.
f(r)y—f(r)+f(2r.—r)—2f(r.). (29 In Fig. 2 we show the equilibrium pair distribution func-
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TABLE |. Energies of liquid*He at the experimental equilib-
rium density po®=0.365p=2.556 A) and at zero temperature.
VMC indicates a variational Monte Carlo calculation with the indi-
cated wave function. All simulations use the Aziz HFDHE2 poten-
tial and have been performed for systemd$\ef 108 particles. The
M+MS results are taken from Vitiellet al. (Ref. 23. The M
+AS and OJ-AS results are taken from MacFarlandl. (Ref. 24,
The GFMC results are taken from Kalesal. (Ref. 4). The experi-
mental data are taken from Roaehal. (Ref. 26. The energies are
given in kelvin per particle.

This work @
Exp

Method Trial function EnergyK)

VMC M +MS —6.061+0.025 . . . . . .

VMC M+AS ~6.509+ 0,034 % ] , s . . s

VMC OJ+AS —6.789:0.023 k(1/A)

VMC Linear —6.144+0.092

VMC Quadratic —6.393+0.021 FIG. 3. Static structure fact®(k) of liquid “He at equilibrium

VMC No Grad — 6.644* 0.026 density po°=0.365. The filled circles show our results f8¢k)

VMC Quartic —6.809+0.017 obtained from the formul&(k) = (1/N){p_py). The solid line de-
GEMC 7120-0.024 notes the expgrimental results reported by Svensson and co-workers
Experiment —7140 (Ref. 27 obtained at saturated vapor pressure by means of neutron

diffraction at temperaturd=1.0 K.

tion g(r) for “He as obtained from the quartic wave func- =0.365 as obtained from the quartic wave function. The ex-

tion. This g(r) is compared with the respectivg(r) ob-  perimentalS(k) shown in this figure is the result reported by
tained from the M-AS shadow wave function and the Svenssoret al?’ The overall agreement between our short-
experimental one of Svenssat al?’ obtained by neutron time-evolved structure factor with experiment is excellent
diffraction at saturated vapor pressure a=1.0 K. It is  except at smalk. This is not unexpected because our imagi-
knowrf* that the M+ AS curve differs from the experimental nary time is still rather short for the wave function to develop
one because it predicts a diminished nearest-neighbor maxihe necessary long-range correlation to produce the linear
mum and the entire curve is shifted by about 0.1 A to largeibehaviof® of S(k) observed in bulk‘He.
values ofr compared to the experimental results. The pair In this work, based on recent findings on forward time
distribution function that we obtained is in excellent agree-steps decomposition schemes, we have implemented a
ment with the experimental one. fourth-order short-time-evolved wave function for describing
In Fig. 3 we showS(k) at equilibrium densitypo®  the ground state of strongly interacting quantum systems.
Our approach is systematic, free of arbitrary parameters, and

1.5 ' ' ' ' This work '« can be applied to any general quantum many-body problem.
14 - -
15| In the case of liquid*He, we have produced ground-state
1oL energy and structure results better than any existing VMC
11+ calculations, but without the use of complicated branching
1 processes as in DMC or GFMC. Since the antisymmetric
0.9 - requirement on fermion wave functions can be more easily
> 8'3 | implemented on the variational level, our quartic wave func-
06 | tions may be of great utility in studying Fermi systems.
05 L Our second-order wave function is similar in structure to
04 | the class of shadow wave functiofisexcept that our wave
03 r function follows directly from the second-order factorization
0.2 r scheme without any particular adjustment of pseudopotential
0'(1) I , , ) ) , or scale functions. Our use of a positive factorization scheme
0 1 2 3 4 5 6 7 8 to produce a much improved fourth-order wave function

r(A) demonstrates that there is a systematic way of improving this
S _ o ~ class of wave functions by introducing more shadow coordi-
FIG. 2. The pair distribution function for liquidHe at the equi- nates. Currently, there is no known sixth-order forward fac-

librium  density po®=0.365 after a VMC simulations wittN torization schemes, and hence no sixth-order short-time-
=108 particles. The filled circles show tigér) of this work thatis gy olved wave function is possible.

compared with the respectiggr) obtained from the M- AS wave

function (dotted ling and the experimentay(r) as reported by This work was supported, in part, by the National Science
Svenssoret al. (Ref. 27 (solid line) obtained at saturated vapor Foundation, Grant Nos. PHY-0100839 and DMS-0310580 to
pressure at a temperatufe=1.0 K. one of the author$S.A.C).
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