
PHYSICAL REVIEW B, VOLUME 63, 144518
Fourth-order diffusion Monte Carlo algorithms for solving quantum many-body problems
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By decomposing the important sampled imaginary time Schro¨dinger evolution operator to fourth order with
positive coefficients, we derived a number of distinct fourth-order diffusion Monte Carlo algorithms. These
sophisticated algorithms require higher derivatives of the drift velocity and local energy and are more compli-
cated to program. However, they allowed very large time steps to be used, converged faster with lesser
correlations, and virtually eliminated the step size error. We demonstrated the effectiveness of these quartic
algorithms by solving for the ground-state energy and radial density distribution of bulk liquid helium.
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I. INTRODUCTION

The basic idea of the diffusion Monte Carlo~DMC! algo-
rithm is to solve for the ground state of the HamiltonianH by
evolving the imaginary time Schro¨dinger equation

2
]

]t
c~x,t !5Hc~x,t !5F2

1

2
¹21V~x!Gc~x,t ! ~1!

to large time.1–3 Here,x and ¹2 denote the coordinate an
the Laplacian of theN-particle system. In order for the algo
rithm to be practical, capable of handling rapidly varyin
potentials, it is essential to implement important sampling
suggested by Kaloset al.4 This means that instead of solvin
for c(x), one evolves the product wave functionr(x)
5f(x)c(x) according to2,3

2
]

]t
r~x,t !5f~x!Hf21~x!r~x,t !,

52 1
2 ¹2r~x,t !1¹ i@Gi~x!r~x,t !#

1EL~x!r~x,t !, ~2!

5@T1D1EL#r~x,t !5H̃r~x,t !, ~3!

where

EL~x!5f~x!21Hf~x! ~4!

is the local energy,

Gi~x!5f~x!21¹ if~x!52¹ iS~x! ~5!

is the drift velocity, and f(x)5exp@2S(x)# is the trial
ground-state wave function.

Equation~3! has the formal operator solution

r~ t !5e2t(T1D1EL)r~0!5@e2e(T1D1EL)#nr~0!. ~6!

Various DMC algorithms correspond to different approxim
tions of the short-time evolution operatore2e(T1D1EL). Ini-
tial implementations1–3 of the DMC algorithm correspond to
essentially approximating

e2e(T1D1EL)'e2
1
2 eELe2eTe2eDe2

1
2 eEL, ~7!

which is at most first order ine. By using various clever
tricks, this error can be reduced substantially in spec
0163-1829/2001/63~14!/144518~8!/$20.00 63 1445
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applications.5 However, it was recognized by Chin6 that in
order to have a general second-order DMC algorithm, o
must simulate the embedded Fokker-Planck evolution op
tor e2e(T1D), i.e., the Fokker-Planck equation

2
]

]t
r~x,t !52

1

2
¹2r~x,t !1¹ i@Gi~x!r~x,t !#5Lr~x,t !

~8!

correctly to second order. The reason for this is clear. In
limit when the trial function is the exact ground-state wa
functionf(x)→c0(x), the local energy is the exact ground
state energy, which is just a constant. The convergence o
DMC algorithm would then coincide with the convergen
of the Langevin algorithm for simulating the Fokker-Plan
equation. Thus in order to have a second-order DM
algorithm,6 one must have a second-order Langevin alg
rithm, for example, by approximating

e2eL5e2e(T1D)'e2
1
2 eTe2eDe2

1
2 eT. ~9!

This idea of operator factorization seemed promising
generating higher-order DMC algorithms. However, Suzu7

proved in 1991 that, beyond second order, it is impossible
factorize

exp@e~A1B!#5)
i 51

N

exp@aieA#exp@bieB# ~10!

without having some coefficientsai and bi being negative.
Since e2aieT is the diffusion kernel, a negativeai would
imply a diffusion process backward in time, which is impo
sible to simulate. Thus higher than second-order DMC al
rithms cannot be based on obvious factorizations of the fo
~10!.

In this work, we show how to derive a number of distin
quartic DMC algorithms by factorizing the operato
e2e(T1D1EL) to fourth order with positive coefficients. W
first review how each factorized operator can be simulate
Sec. II, followed by a derivation of a fourth-order DMC a
gorithm in Sec. III. The backbone of this algorithm is
fourth-order Langevin algorithm that is important in its ow
right. In Sec. IV we examine the working details of th
algorithm and check its quartic convergence on various s
tems including the practical case of liquid helium. In Sec.
we discuss alternative quartic algorithms by considering
©2001 The American Physical Society18-1
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HARALD A. FORBERT AND SIU A. CHIN PHYSICAL REVIEW B63 144518
unrestricted factorization ofe2e(T1D1EL). The convergences
of two alternative fourth-order algorithms are also tested
liquid helium. Our conclusions and suggestions for futu
work are contained in Sec. VI.

II. SIMULATING THE BASIC OPERATORS

The method of operator factorization depends on the
that each component factor can be simulated exactly or to
required order. The effect ofe2eT on r(x,t) is to evolve the
latter forward in time according to thediffusionequation

2
]

]t
r~x,t !52

1

2
¹2r~x,t !. ~11!

For a set of points$xi% distributed according tor(x,t), this
can be exactly simulated by updating each point accordin

xi85xi1Aej i , ~12!

where$j i% is a set of Gaussian distributed random numb
with zero mean and unit variance. The operatore2eD evolves
r(x,t) forward in time according to thecontinuityequation

2
]

]t
r~x,t !5] i@Gi~x!r~x,t !#, ~13!

whereGi(x)r(x,t)5Ji(x) is the particle current density with
drift velocity field Gi(x). This can also be exactly simulate
by setting

xi85xi~e!, ~14!

wherexi(e) is the exact trajectory determined by

dx

dt
5G~x!, ~15!

with the initial conditionxi(0)5xi . In practice, one can only
solve this trajectory equation to the required order of ac
racy. The operatore2eEL evolves r(x,t) forward in time
according to therate equation

2
]

]t
r~x,t !5EL~x!r~x,t !. ~16!

The exact solution

r~x,t1e!5e2eEL(x)r~x,t ! ~17!

can be simulated by updating theweight Wk associated with
the configurationxk by

Wk85e2e[EL(xk)2E]Wk . ~18!

A uniform constantE is usually added to keep the weigh
near unity.

There are various methods8–11 of keeping track of
weights, the original and simplest method8 is just to replicate
the configurationxi on the averagee2e[EL(xi )2E] times. We
use a method that is intermediate between that of Refs. 9
10. Our algorithm is, however, independent of any spec
method of weight tracking.

A first-order factorization of

e2e(T1D1EL)'e2eELe2eTe2eD1o~e2!, ~19!
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leads to the following first-order algorithm DMC1:

xi85xi~e!1j iAe, ~20!

wherexi(e) needs to be solved at least to first order@such as
xi(e)5xi1eGi(x)]. The final positionx8 is then weighted
by

W85e2e[EL(x8)2E] . ~21!

A second-order factorization of

e2e(T1D1EL)'e2
1
2 eELe2

1
2 eDe2eTe2

1
2 eDe2

1
2 eEL1o~e3!,

~22!

leads to the second-order DMC algorithm

yi5xi~e/2!1j iAe,

xi85yi~e/2!, ~23!

where the final positionx8 is weighted according to

W85e2
1
2 e@EL~x!1EL~x8!22E#. ~24!

The trajectoriesxi(e/2) andyi(e/2) must now be solved a
least to second order. Following Ref. 6 we will refer to th
as algorithm DMC2a. The alternative second-order factori
tion

e2e(T1D1EL)'e2
1
2 eELe2

1
2 eTe2eDe2

1
2 eTe2

1
2 eEL1o~e3!

~25!

leads to the algorithm

yi5xi1j iAe/2,

xi85yi~e!1j i8Ae/2, ~26!

wherej i andj i8 are independent unit Gaussian random nu
bers. The final positionx8 is again weighted according to Eq
~24!. This is algorithm DMC2b of Ref. 6. For more detai
on these second-order algorithms, we refer readers to R
for further discussions.

III. A FOURTH-ORDER ALGORITHM

For a fourth-order factorization of exp@e(A1B)# with
positive coefficients, Suzuki7 has shown that it is necessa
to retain as a factor the exponential of either double comm
tators @A,@B,A## or @B,@A,B##. Recently, Chin12 has de-
rived three such factorization schemes, two of which w
also found previously by Suzuki.13 To decompose
e2e(T1D1EL)5e2e(L1EL) to fourth order, one possibility is
to keep the Langevin operatorL intact. In this case, the
double commutator

@EL ,@L,EL##5@EL ,@T,EL##5~] iEL!~] iEL! ~27!

is the square of the gradient of the local energy, which i
manageable coordinate function. Since the Langevin op
tor is complicated to simulate, we must choose a fourth-or
factorization ofe2e(L1EL) that minimizes the appearance
L. We choose the following factorization as given by Re
12 and 13:
8-2
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e2e(L1EL)5e2
1
6 eELe2

1
2 eLe2

2
3 eẼLe2

1
2 eLe2

1
6 eEL1o~e5!,

~28!

with ẼL given by

ẼL5EL1 1
48 e2@EL ,@L,EL##5EL1 1

48 e2u¹ELu2. ~29!

Thus to the extent that the local energyEL(x) is a smooth
function, the double commutator correction will be neg
gible.

The weights in Eq.~28! have a simple structure. Ifx0 is
the initial configuration,x1/2 the Langevin evolved configu
ration time stepe/2 later, andx1 the Langevin evolved con
figuration a time stepe/2 later still, then we assign the fina
configurationx1 a weight of

W15e2e@
1
6 EL~x1!1

2
3 ẼL~x1/2!1

1
6 EL~x0!2E#. ~30!

The demanding part of this DMC algorithm is the sim
lation of the Fokker-Planck Eq.~8!. The resulting Langevin
algorithm is an important simulation algorithm with nume
ous applications in statistical and chemical physics.14 Since
we have recently given a detailed derivation of a fourth-or
Langevin algorithm,15 we will be brief here in summarizing
its essential features. To obtain a fourth-order Langevin
gorithm, we again seek to decomposee2eL5e2e(T1D) to
fourth order. In this case, we keep the double commuta
ra

14451
r

l-

r

@D,@T,D##, which is at most a second-order differential o
erator, and factorize the Fokker-Planck operator as12

e2eL5e2e(T1D)

5e2
1
2 ~12

1
) !eTe2

1
2 eDe2

1
) eT̃

3e2
1
2 eDe2

1
2 (12

1
) )eT1o~e5!, ~31!

1

A3
T̃5

1

A3
T1

e2

24
~22A3!@D,@T,D##

5
1

A3
T1

e2

24
~22A3!@] i] j f i , j1] iv i #, ~32!

where subscripts indicate partial differentiations, and

f i , j[2Si ,kSj ,k2Si , j ,kSk , ~33!

v i[2 1
2 ~2Si , j ,kSj ,k1Si , jSj ,k,k2Si , j ,k,kSj !. ~34!

By appropriate normal ordering, the double commutator te
can be regarded as a nonuniform Gaussian random w
However, in order to be able to sample the nonunifo
Gaussian in cases wheref i , j has negative eigenvalues, w
implement the normal ordering as follows so that the f
covariance matrix is always positive definite in the limit
small e:
expS e

A3
T̃D 5expS e

2A3
TDN H expF e3

24
~22A3!~] i] j f i , j1] iv i !G J expS e

2A3
TD ,

5NH expF e

2A3
S 2

1

2
] i] jd i , j D1

e3

24
~22A3!~] i] j f i , j1] iv i !G J expS e

2A3
TD , ~35!
om
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whereN denotes the normal ordering of all derivative ope
tors to the left. Factorization~31! can now be simulated as

wi5xi1j iAe

2 S 12
1

A3
D ,

yi5wi~e/2!1j i8A e

2A3
,

zi5yi2
e3

24
~22A3!v i~y!1A e

2A3

3Fd i , j1
1

2S 1

A3
2

1

2D e2f i , j~y!Gj j9 ,

xi85zi~e/2!1j i-Ae

2 S 12
1

A3
D , ~36!
-wherej i to j i- are four sets of independent Gaussian rand
numbers with zero mean and unit variance. Here, the
trajectory equationswi(e/2), zi(e/2) must be solved cor-
rectly to at least fourth order. Empirically one observes t
the more accurately one solves the trajectory equation,
smaller is the fourth-order error coefficient. However,
practice one must weigh improved convergence, which
lows larger time steps to be used, against greater comp
tional effort. In the present case, we solve the traject
equation by the standard fourth-order Runge-Kutta al
rithm.

Equation~28! is our basic fourth-order DMC algorithm
and will be referred to as DMC4. We will first explore it
workings in some detail before considering alternative al
rithms.

IV. APPLYING THE FOURTH-ORDER ALGORITHM

We begin by verifying that DMC4 is indeed quartic b
solving the dimensionless three-dimensional~3D! harmonic
oscillator in the form
8-3



ed

l
e
s
C

o
e

to
tio
le

ul
he
n
rti

te
ct
n

D

e
nd-
ian.
s a
m

y of
re
is
r-
no
the

stic
op-
dy

-

e
siz
le
ul
on
rro

t
e
de

en-

led
ults.
us

r re-
ubic
s a

HARALD A. FORBERT AND SIU A. CHIN PHYSICAL REVIEW B63 144518
H52 1
2 ¹21 1

2 r 2 ~37!

both analytically with the help ofMATHEMATICA and by di-
rect Monte Carlo simulation. The trial function used is

f~r !5exp~2 1
2 ar 2! ~38!

with a deliberate poor choice of the trial parametera51.8.
In Fig. 1 we plot the ground-state energy from the mix
expectation

E5
^fuHuc0&

^fuc0&
~39!

as a function of the step sizee used. The lines are analytica
functions fromMATHEMATICA and the plotting symbols ar
Monte Carlo simulation results. We have included one fir
order, two second-order, and one first-order rejection DM
algorithm for comparison. The detailed descriptions
DMC1, DMC2a, and DMC2b can be found in Ref. 6. Th
rejection algorithm uses a first-order Langevin algorithm
gether with a generalized Metropolis acceptance-rejec
step so that the square of the trial function is exactly samp
at all step sizes.2 For this case, we have no analytical res
and the plotted line is just a sixth-order polynomial fit. T
point of this exercise is not that we can solve the harmo
oscillator successfully, but that we have verified the qua
convergence of our fourth-order algorithmanalytically.
Moreover, we have verified numerically that our Mon
Carlo implementation exactly matches theoretical expe
tions; that even in Monte Carlo simulations, the quartic co
vergence is very distinct from quadratic convergence.

We next test DMC4 by solving the dimensionless 3
Morse potential with the Hamiltonian

FIG. 1. The convergence of the ground-state energy of a dim
sionless 3D harmonic oscillator as a function of the time step
e. The diamonds are first-order DMC1 simulation results. The fil
and open triangles are second-order DMC2a and DMC2b res
The asterisks indicate results of a linear algorithm with rejecti
The filled circles are DMC4 results. See text for details. The e
bars are smaller than the symbol size. The various lines are
corresponding exact analytical results except in the case of th
jection algorithm. For the latter case the line is just a sixth-or
polynomial fit to the simulation data.
14451
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H52 1
2 ¹21De@e22a(r 2r 0)22e2a(r 2r 0)#, ~40!

with De550, r 051 anda510. These values ensure that th
ground state is high up in the potential and that the grou
state wave function is not well approximated by a Gauss
Again for testing purposes, we shall simply regard this a
dimensionless problem. We use a trial function of the for

f~r !5exp~2ar2br23!, ~41!

with a515.29, b56.82, and variational energy211.1774.
This is to be compared with the exact ground-state energ
212.5. The convergence of various DMC algorithms a
compared in Fig. 2. The quartic convergence of DMC4
again verified. Its convergence is clearly distinct from lowe
order results and is nearly flat. In this case, we have
analytical results and all lines are just least-square fits to
data.

To demonstrate that DMC4 can be used to solve reali
physical problems, we use it to solve for ground-state pr
erties of bulk liquid helium described by the many-bo
Hamiltonian

H5(
i

2
\2

2m
¹ i

21(
i , j

V~r i j !, ~42!

where \2/m512.12 Å2 K with potential V determined by
Aziz et al.16 Instead of the usual McMillan trial function, we
use a trial function of the form

f~x!5)
i , j

exp$2 ln~2!exp@2~r i j 2c0!/d0#%. ~43!

With c052.8 and d050.48 Å, this trial function gives a
slightly better energy of 5.886~5! K/particle. Since the stan

n-
e

d
ts.
.
r
he
re-
r

FIG. 2. The convergence of the ground-state energy of a dim
sionless 3D Morse oscillator as a function of the time step sizee.
The diamonds are first-order DMC1 simulation results. The fil
and open triangles are second-order DMC2a and DMC2b res
The filled circles are the fourth-order results of DMC4. The vario
lines are least-square fits to the simulation data. The first-orde
sults are fitted with a parabola, the second-order results by a c
polynomial, and the fourth-order results by just a constant plu
fourth-order term ine.
8-4
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FOURTH-ORDER DIFFUSION MONTE CARLO . . . PHYSICAL REVIEW B63 144518
dard calculation details17 are well known, we will just de-
scribe the results as summarized in Fig. 3. Again, the c
vergence of our fourth-order algorithm is clearly quartic. T
extrapolated values are27.114(2) K for our fourth-order
algorithm and27.111(2) K for the second-order algorithm
DMC2a. Both are in agreement with Boronat’s a
Casulleras’s18 second-order DMC result of27.121(10) K.
For 128 particles with a population of 400, each data poin
DMC2a requiredT2511.1 h on a single processor of an O
gin 2000 machine programmed inC. We will use this time
T2 as a standard for comparing other algorithms running
same number of iterations. Algorithm DMC4, whose deta
will be further described below, requires 4.6T2 per data
point. Note that very large time steps can be used with a
rithm DMC4, roughly ten times as large as those of seco
order algorithm DMC2a.

In Fig. 4, we show the resulting radial density distributi
g(r ) from our fourth-order calculation ate50.008 25 K21

ande50.0165 K21. The distribution is virtually unchange
even at these large time steps and both are in excellent a
ment with the experimental distribution of Svenssonet al.19

In Fig. 5 we show DMC4’s thermalization toward th
exact ground state from the variational trial wave functio
Starting from the initial variational energy, we plot the pop
lation averaged energy as a function of iterated time for v
ous time step sizes. This plot shows that each iteration of
algorithm ate50.0165 K21 is indistinguishable from mul-
tiple iterations at smaller time steps having the same t
interval. Moreover, it demonstrates that the algorithm c
verges to the ground state inversely proportional to the s
size used, up toe50.0165 K21. That is, only five iterations
are needed ate50.0165 K21 to reach the exact ground sta
near t50.08 K21 and 20 iterations ate50.004 125 K21,
etc. Thus our fourth-order algorithm can project out t
ground state with ten times fewer updates than a seco
order algorithm.

FIG. 3. The time step convergence of the ground-state en
per particle for bulk liquid helium in a 128-particle simulation. Th
solid circles are the result of our fourth-order algorithm DMC4. T
open circles and asterisks are for algorithm DMC4a and DMC
respectively. For comparison, we also show as triangles sec
order results from algorithm DMC2a. The lines are least-square
to the data.
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More important than the thermalization time is the o
servable correlation time. In a Monte Carlo calculation, it
highly desirable to have uncorrelated configurations for
accurate estimate of the statistical errors. The correlation
efficient for an observableO is defined by

cO~Dt !5
^O~ t1Dt !O~ t !&2^O~ t !&2

^O~ t !O~ t !&2^O~ t !&2 . ~44!

In Fig. 6, we show the ground-state energy correlation fu
tion of liquid helium as computed by our fourth-order alg
rithm. The correlation time is roughlyDt'0.15 K21, at
which point the correlation coefficient dropped to zero. Th
plot shows that the correlation time depends only on the t

gy

,
d-
ts

FIG. 4. The radial density distribution of bulk liquid helium
The circles are DMC4 results ate50.008 25 K21 and the crosses
are DMC4 results ate50.0165 K21. The solid line is the experi-
mentally extractedg(r ) of Svenssonet al. ~Ref. 19! at 1 K.

FIG. 5. The relaxation of liquid helium’s ground-state ener
toward its exact value as simulated by DMC4 at three time s
sizes. The large circles are ate50.0165 K21 and the small circles
are ate50.004 125 K21. They are connected by straight-line se
ments to guide the eye. The dotted line corresponds to resultse
50.000 825 K21.
8-5



u

e
t

e
tly
th
to
if
ut
e
w

ze
t
a
e
.

-
t
h

ir-

m
uld
es

he

, to

d: 6

ent.
rs,
rs

ble
ns,

is
ct
in

the
on
at

y
ing

th

y.
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time separation. Thus if the algorithm remains accurate
large time steps, then fewer iterations are needed to prod
uncorrelated configurations.

In implementing the fourth-order Langevin algorithm, w
used the standard fourth-order Runge-Kutta algorithm
solve the trajectory Eq.~15!. When the step size is large, th
fourth-order error in the Runge-Kutta algorithm can grea
overshadow the intrinsic fourth-order step size error of
Langevin and that of the DMC algorithm, causing both
fail prematurely. To guard against this, we monitor the d
ference between the results of the fourth-order Runge K
and its embedded second-order algorithm. If the squar
this difference is larger than some tolerance, say 0.01,
recalculate the trajectory twice at half the time step si
Even at the largest step size used, only a few percen
trajectories need to be recalculated, incurring only a sm
additional overhead. This additional effort greatly extend
the flatness of the convergence curve as shown in Fig. 3

FIG. 6. The correlation coefficient function, Eq.~44!, for the
ground-state energy of liquid helium as computed by DMC4 at
three time step size ofe50.0165 K21 ~large circles!, e
50.004 125 K21 ~smaller circles! and e50.000 825 K21 ~dotted
line!. The connecting line segments are for guiding the eye onl
, i

l-
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V. ALTERNATIVE FOURTH-ORDER ALGORITHMS

Our DMC4 algorithm~28!, which preserves the Fokker
Planck operatorL intact, may not be the most efficien
fourth-order algorithm possible. Consider the limit in whic
the trial function approaches the exact ground statef(x)
→c0(x). In this ideal case the local energy becomes an
relevant constantEL(x)→E0, and the algorithm is just

e2e(L1EL)}e2
1
2 eLe2

1
2 eL, ~45!

which is the running of the fourth-order Langevin algorith
twice, at half the time step. It seems plausible that one sho
be able to derive a fourth-order DMC algorithm that reduc
to a single run of the fourth-order Langevin algorithm in t
same limit.

We are thus led to consider the general factorization
fourth order, of a three-operator exponentiale2e(T1D1EL).
There are now nine double commutators to be considere
are the generalizations of the two-operator case,

@T,@D,T##, @D,@T,D##, @D,@EL ,D##,

@EL ,@D,EL##, @EL ,@T,EL##, @T,@EL ,T##, ~46!

and three new ones are related by the Jacobi identity

@T,@D,EL##1@D,@EL ,T##1@EL ,@T,D##50. ~47!

Thus only two of the last three commutators are independ
Note also that for the present form of the operato
@EL ,@D,EL##50. We have examined all these commutato
in the case of liquid helium to determine which one is doa
and can be kept. To explore the many possible factorizatio
we have devised aMATHEMATICA program to combine the
exponential of operators symbolically. With the help of th
program, we have explored an extensive list of distin
fourth-order algorithms. Since there are many operators
each such factorization, it is too cumbersome to write out
explicit exponential form. Moreover, since the factorizati
will always be left-right symmetric, there is no need to repe
operators on the left side. In the following, we will onl
indicate the exponential operators symbolically beginn
with the central one and list only operators to theright. For
example, algorithm DMC4~28! will be denoted as

e

T1D1EL'
2

3
ẼL1

1

2
L1

1

6
EL ,

'
2

3
ẼL1

1

2 F1

2 S 12
1

A3
D T1

1

2
D1

1

A3
T̃1

1

2
D1

1

2 S 12
1

A3
D TG1

1

6
EL . ~48!
-
a-

cal
.

me
Each update of this algorithm requires the evaluation of
decreasing order of computational complexity, fourD ’s, two

T̃’s, one ẼL , oneEL , and fourT’s. ~The lastEL from the
last update can be used as the firstEL of the current update.!
SinceD is the most computationally intensive operator, fo
nlowed by T̃, ẼL , etc., we would like to minimize their ap
pearance in that order. Below, we will describe two altern
tive algorithms that are computationally more economi
than DMC4 in solving for the ground state of liquid helium

One possible fourth-order algorithm is to retain the sa
8-6
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double commutators@D,@T,D## and @EL ,@T,EL## as in
DMC4, but allowL5T1D to be broken up:

T1D1EL' 1
3 T̃1 1

6 D1 3
8 EL1 1

6 T1 1
3 D1 1

6 T1 1
8 ẼL .

~49!

Here,T̃ and Ẽ are given by

T̃5T1
e2

72
@D,@T,D##, ~50!

ẼL5EL1
e2

12
@EL ,@T,EL##. ~51!

This algorithm requires fourD ’s, but only oneT̃, one ẼL ,
two EL’s, and four T’s. We will denote this algorithm as
le
on

lu
ha

a
un
b

n
ct
id

th

id
er
la

h-
e
o
n

ie
o
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DMC4a. This algorithm is roughly 10% faster than DMC
and its quartic convergence is clearly demonstrated in Fig
However, its convergence range is only about half of DMC
The running time for this algorithm is 4.1T2.

To reduce the number ofD operators, one must pay th
price of retaining additional double commutators. We w
refer to the following algorithm with only twoD operators as
DMC4b:

T1D1EL'
1

A3
a0T̃1

1

2A3
EL1

1

2A3
~12a0!T1

1

2
D

1
1

4
c0T1

1

2
c0EL1

1

4
c0T, ~52!

wherea051/A11A3, c05121/A3, and
1

A3
a0T̃5

1

2A3
a0T1

e2

24F ~22A3!„@D,@T,D##1@D,@EL ,D##…1S c02
a0

A3
D @EL ,@T,EL##G1

1

2A3
a0T. ~53!
per-
if-
if-
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rac-
he
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ed
el-
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ing
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nd
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le,
ex-
C
us
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ble
died
the
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hen

rk,
hm
ay
ds,

the
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The additional commutator

@D,@EL ,D##52Gi¹ i@Gj¹ jEL~x!# ~54!

is a calculable function involving a higher derivative ofGi
and EL . In this algorithm, we have placed all the doub
commutators at the center so that they are evaluated
once per update. This is done by splitting (1/A3)a0T
→(1/2A3)a0T1 . . . (1/2A3)a0T in Eq. ~53!, meaning that
we first do half of the required Gaussian random walk, eva
ate all double commutators, then complete the remaining
of the Gaussian walk including the effect of@D,@T,D## as it
is done in the Langevin algorithm. The ubiquitous irration
coefficients are roots of quadratic equations that force
wanted double commutators to vanish. One can check
inspection that asf(x)→c0(x) and EL(x)→E0, Eq. ~52!
reduces to just the fourth-order Langevin algorithm~31!.

The results of this algorithm for liquid helium are show
in Fig. 3 as asterisks. The ground-state energy is corre
obtained, but because these higher derivatives are rap
varying functions, we have not been able to stabilize
population of weights beyonde'0.004. While this algo-
rithm may not work as well as DMC4 and DMC4a for liqu
helium, its economy of requiring only two trajectories p
update may be of utility in other applications. The calcu
tion time per data point shown is 3.2T2.

VI. CONCLUSIONS

In this work, we have derived a number of distinct fourt
order DMC algorithms by factorizing the imaginary tim
Schrödinger evolution operator to fourth order. This is a n
table advance in algorithm development, made possible o
by the recent progress in understanding positive coeffic
operator factorization. Our work illustrates a global view
ly

-
lf

l
-
y

ly
ly

e

-

-
ly
nt
f

algorithms as products of factorized operators. Such a
spective gives order and insight into the working of the d
fusion Monte Carlo algorithm. It would have been very d
ficult to derive such a high-order algorithm without such
conceptual structure. We have further demonstrated the p
ticality of these algorithms by using them to solve for t
ground state of liquid helium. The quartic convergences
DMC4 and DMC4a have been verified and both yield
ground-state energy and radial density distribution in exc
lent agreement with experiment. Despite the fact that th
algorithms are rather complicated to program requir
higher-order derivatives, they allow very large step sizes
be used, virtually eliminate the time step size error, a
greatly reduce statistical correlations between successive
dated configurations.

Since this is only the first demonstration of quartic alg
rithms, there is room for further improvements. For examp
we have shown how the factorization of a three-operator
ponential can lead to a number of distinct fourth-order DM
algorithms. A more systematic categorization of vario
fourth-order factorizations would help in obtaining the mo
efficient algorithm. Secondly, the retainment of some dou
commutators is necessary, however, it has not been stu
in detail where they should be placed so as to minimize
fourth-order error coefficient or computational effort. It
observed that the step size convergence curve is flatter w
the trajectory equation is solved more exactly. In this wo
we have only used the fourth-order Runge-Kutta algorit
in solving for the deterministic trajectory. Future study m
explore the effects of using alternative numerical metho
such as symplectic algorithms20 for solving the trajectory
equation.

Recently, there has been a breakthrough in applying
diffusion Monte Carlo method for solving strongly interac
8-7
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ing Fermi systems. Casulleras and Boronat21 have shown
that normal liquid3He can be solved to experimental acc
racy by a combination of a better backflowing trial functio
fixed-node approximation, and analytical nodal surface
provements. The implication here is that physical, stron
interacting Fermion problems can be solved without hav
an ideal ‘‘Fermion algorithm.’’ To the extent that this wor
can solve the fixed-node energy at larger time steps, it
contribute to the efficiency of solving physical Fermio
problems in general. Furthermore, Casulleras and Boro
m

ys

y

14451
,
-
y
g

ill

at

only improved the nodal surface to first order; our meth
suggests that improvements to fourth order are possible,
pending on the complexity of the trial wave function used
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