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Fourth-order diffusion Monte Carlo algorithms for solving quantum many-body problems
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By decomposing the important sampled imaginary time Stihger evolution operator to fourth order with
positive coefficients, we derived a number of distinct fourth-order diffusion Monte Carlo algorithms. These
sophisticated algorithms require higher derivatives of the drift velocity and local energy and are more compli-
cated to program. However, they allowed very large time steps to be used, converged faster with lesser
correlations, and virtually eliminated the step size error. We demonstrated the effectiveness of these quartic
algorithms by solving for the ground-state energy and radial density distribution of bulk liquid helium.
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[. INTRODUCTION applications’ However, it was recognized by CHithat in
order to have a general second-order DMC algorithm, one
The basic idea of the diffusion Monte CafldMC) algo-  must simulate the embedded Fokker-Planck evolution opera-
rithm is to solve for the ground state of the Hamiltontay ~ tor e  <(T*D) j.e., the Fokker-Planck equation

evolving the imaginary time Schdinger equation 5 1
P =- EVZP(Xat)+Vi[Gi(X)p(th)]= Lp(x,t)

yx) (1) @

to large time!~3 Here, x and V2 denote the coordinate and correctly to second order. The reason for this is clear. In the
the Lap|acian of theq-partide system. In order for the a|go- limit when the trial function is the exact ground—state wave
rithm to be practical, capable of handling rapidly varying function ¢(x)— #(x), the local energy is the exact ground-
potentials, it is essential to implement important sampling astate energy, which is just a constant. The convergence of the
suggested by Kalost al This means that instead of solving DMC algorithm would then coincide with the convergence
for #(x), one evolves the product wave functign(x) of the Langevin algorithm for simulating the Fokker-Planck
= ¢(x) ¥(x) according t8° equation. Thus in order to have a second-order DMC
algorithm® one must have a second-order Langevin algo-
rithm, for example, by approximating

9 B o1,
_E‘A(X,t)—Hw(x,t)— —5V2HV(x)

—p(x)= H(XHP H(X)p(x,1),

I e*eL:efe(TJr D)%ef%eTefeDef%eT. (9)
=32 V(X)) +Vi[Gi(X)p(x,1)]
This idea of operator factorization seemed promising for

+HE(X)p(x.D), 2) generating higher-order DMC algorithms. However, SuZzuki
~ proved in 1991 that, beyond second order, it is impossible to
=[T+D+E_]p(X,t)=Hp(x,1), ©) factorize
where N
EL(X): ¢(X)71H ¢(X) (4) eXF[E(A+ B)]:El ex;{aieA]eXp[bieB] (10)

is thelocal energy without having some coefficients andb; being negative.

. — 'ET . - - -
G.(X)= d(x) "LV d(x)= — V. S(x 5 Sincee™ &€ is the diffusion kernel, a negative; would

. . 3 ). ¢ ¢ 1S . (_) imply a diffusion process backward in time, which is impos-
is the drift velocity, and ¢(x)=exg—Sx)] is the trial  sible to simulate. Thus higher than second-order DMC algo-
ground-state wave function. rithms cannot be based on obvious factorizations of the form

Equation(3) has the formal operator solution (10).
B . In this work, we show how to derive a number of distinct
p(t)=e (TP E)p(0) =[e (TP EUp(0).  (6) quartic DMC algorithms by factorizing the operator

Various DMC algorithms correspond to different approxima-€~ <" "° %) to fourth order with positive coefficients. We

tions of the short-time evolution operater «T+P+EL)_|nj-  first review how each factorized operator can be simulated in
tial implementations® of the DMC algorithm correspond to  Sec. II, followed by a derivation of a fourth-order DMC al-
essentially approximating gorithm in Sec. lll. The backbone of this algorithm is a
fourth-order Langevin algorithm that is important in its own
e,é(ﬂmEL)%e,%eELefeTefepef%EEL 7) right. In Sec. IV we examine the working details of this

algorithm and check its quartic convergence on various sys-
which is at most first order ire. By using various clever tems including the practical case of liquid helium. In Sec. V
tricks, this error can be reduced substantially in specifiove discuss alternative quartic algorithms by considering the
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unrestricted factorization &~ <(T*P*EU_ The convergences leads to the following first-order algorithm DMC1:
of two alternative fourth-order algorithms are also tested on ,
liquid helium. Our conclusions and suggestions for future X =Xi(€)+¢ Ve, (20
work are contained in Sec. VI. wherex;(€) needs to be solved at least to first orflaich as
x;(€) =x;+ €G;(x)]. The final positionx’ is then weighted
II. SIMULATING THE BASIC OPERATORS by

The method of operator factorization depends on the fact W' = e €lEL(X)—E] (21)
that each component factor can be simulated exactly or to the o
required order. The effect & <7 on p(x,t) is to evolve the A second-order factorization of
latter forward in time according to théiffusionequation
J

_Ep

1 1 1 1
e E(T+D+EL)me_§5ELe_ §eDe—eTe— 2eDg—%€E 0(63),

(xt)=- %Vzp(x,t). (11 (22

leads to the second-order DMC algorithm
For a set of pointgx;} distributed according t@(x,t), this . .
can be exactly simulated by updating each point according to Yi=xi(el2) & Ve,

x| =X+ e&, (12 Xi =Yi(el2), (23

where{&} is a set of Gaussian distributed random numbergvhere the final positiox’ is weighted according to
with zero mean and unit variance. The operatof® evolves

1
. . . . . . — a5 €E E (x)—2E
p(x,t) forward in time according to theontinuity equation W' =g~ 2 AELOOTELOO 28] (24)

9 The trajectories«;(€/2) andy;(e/2) must now be solved at
— i PD=alGi(X)p(X. V)], (13)  least to second order. Following Ref. 6 we will refer to this
as algorithm DMC2a. The alternative second-order factoriza-
whereG;(x) p(x,t) =J;(x) is the particle current density with tion
drift velocity field G;(x). This can also be exactly simulated N N N N
by setting e c(T+D+E) g 2¢ELg=2¢Tg~Dg=2€Tg-2¢EL 4 o(&3)

, 25)
X =xi(e), (14 | (

. . ) leads to the algorithm
wherex;(€) is the exact trajectory determined by

N yi=xi+&el2,
4 =G, (15 X/ =yi(e)+ & el2, (26)

with the initial conditionx;(0)=X; . In practice, one can only whereé; and¢/ are independent unit Gaussian random num-

solve this trajectory equation to the required order of accupers. The final positior’ is again weighted according to Eq.

racy. The operatoe™ ““t evolves p(x,t) forward in time  (24). This is algorithm DMC2b of Ref. 6. For more details

according to theate equation on these second-order algorithms, we refer readers to Ref. 6

P for further discussions.

- EP(XJFEL(X)P(XJ)- (16)
I1l. A FOURTH-ORDER ALGORITHM

The exact solution L .
For a fourth-order factorization of ejg{A+B)] with

p(x,t+e)=e ELMp(x 1) (17)  positive coefficients, Suzukhas shown that it is necessary
to retain as a factor the exponential of either double commu-
tators[A,[B,A]] or [B,[A,B]]. Recently, Chif? has de-
rived three such factorization schemes, two of which were
W =g {lEL00-Elwy, | (18 also found previously by Suzuki. To decompose
_ _ _ e “(T*DFTE)=e~«(L*E) tg fourth order, one possibility is
A uniform constantE is usually added to keep the weights ;4 keep the Langevin operatdr intact. In this case, the

can be simulated by updating theight W, associated with
the configuratiorx, by

near unity. _ ) _ double commutator
There are various methdts! of keeping track of
weights, the original and simplest metfiasi just to replicate [EL[LELII=[EL[T.ELNI=(JED(GE)  (27)

the configuratior; on the average™ IFL0)~El times. We
use a method that is intermediate between that of Refs. 9 a
10. Our algorithm is, however, independent of any specifi
method of weight tracking.

A first-order factorization of

r{'a the square of the gradient of the local energy, which is a
manageable coordinate function. Since the Langevin opera-
Ctor is complicated to simulate, we must choose a fourth-order
factorization ofe” “(-*EL) that minimizes the appearance of
L. We choose the following factorization as given by Refs.
e «(THDFE )~ e BleTe D o(€?), (19 12 and 13:

144518-2



FOURTH-ORDER DIFFUSION MONTE CARLO.. .. PHYSICAL REVIEW B3 144518

e e(L+E ) — e %eELef % ELef % eELef % eLef % €EL 4 0( 65) :

(’28) erator, and factorize the Fokker-Planck operatdf as

L~ . —eL_ o—€(T+D)
with E, given by € €

lg- L 4 1o Lz
EL=E + 4 €[EL[LEJ]=E + 4 [VE|2 (29 =e 2(17W)Te 2P el

1 1 1
Thus to the extent that the local enerfy(x) is a smooth Xe 2Pe 27T 4 o(€), (31
function, the double commutator correction will be negli- )
gible. 3= 74 S 2- 3D.[TD]]
The weights in Eq(28) have a simple structure. ¥; is 3 3 24 e

the initial configurationx,,, the Langevin evolved configu- 5
ration time stepe/2 later, andx; the Langevin evolved con- _ iT+ 5_(2_ 3V adif: + o] (32)
figuration a time ste/2 later still, then we assign the final J3 24 BERLU R

configurationx, a weight of o . I
where subscripts indicate partial differentiations, and

fi i=2S Sk Si j kS« (33

0i= =2 (25 ) Skt S Sk SjkiS). (34

W;=e" FEL()+ %NEL(Xl/z)Jr%EL(Xo)*E], (30)

The demanding part of this DMC algorithm is the simu-
lation of the Fokker-Planck Ed8). The resulting Langevin

[D,[T,D]], which is at most a second-order differential op-

algorithm is an important simulation algorithm with numer- By appropriate normal ordering, the double commutator term
ous applications in statistical and chemical physfcSince  can be regarded as a nonuniform Gaussian random walk.
we have recently given a detailed derivation of a fourth-ordeHowever, in order to be able to sample the nonuniform

Langevin algorithm? we will be brief here in summarizing Gaussian in cases whefe; has negative eigenvalues, we

its essential features. To obtain a fourth-order Langevin alimplement the normal ordering as follows so that the full
gorithm, we again seek to decompose-=e <(T*P) to  covariance matrix is always positive definite in the limit of

fourth order. In this case, we keep the double commutatosmall e:

€ o _ € 63 \/—
ex ET =eX ﬁT Niex ﬂ(z_ 3)(&i&jfi’j+&ivi)

A € 1
= ex m —5(9,8]5,1

]ex;{%T) , (35

3
€
+54(2— V3)(3d;f; + djoi)

where\ denotes the normal ordering of all derivative opera-whereé; to &" are four sets of independent Gaussian random
tors to the left. FactorizatiofB1) can now be simulated as numbers with zero mean and unit variance. Here, the two

trajectory equationsw;(e/2), z;(e/2) must be solved cor-

6 1 rectly to at least fourth order. Empirically one observes that
Wi =X; + & —( 1- —) the more accurately one solves the trajectory equation, the
2 \/§ smaller is the fourth-order error coefficient. However, in
practice one must weigh improved convergence, which al-
€ lows larger time steps to be used, against greater computa-
Yi=wi(el2)+& \/ =, tional effort. In the present case, we solve the trajectory
2\3 .
equation by the standard fourth-order Runge-Kutta algo-
rithm.
€ € Equation(28) is our basic fourth-order DMC algorithm
zi=yi—55(2- BBuiy)+ Y 23 and will be referred to as DMC4. We will first explore its
workings in some detail before considering alternative algo-
1/ 1 1 rithms.
X| 6+ E(T_ E) €fi i(y) &,
3 IV. APPLYING THE FOURTH-ORDER ALGORITHM
We begin by verifying that DMC4 is indeed quartic by
€ 1 . . . . . ;
X' =z(el2)+ & _( 1— _> , (36)  solving the dimensionless three-dimensio(&D) harmonic
2 V3 oscillator in the form
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FIG. 1. The convergence of the ground-state energy of a dimen- FIG. 2. The convergence of the ground-state energy of a dimen-
sionless 3D harmonic oscillator as a function of the time step sizesionless 3D Morse oscillator as a function of the time step size
e. The diamonds are first-order DMC1 simulation results. The filledThe diamonds are first-order DMC1 simulation results. The filled
and open triangles are second-order DMC2a and DMC2b result&nd open triangles are second-order DMC2a and DMC2b results.
The asterisks indicate results of a linear algorithm with rejection.The filled circles are the fourth-order results of DMC4. The various
The filled circles are DMC4 results. See text for details. The erroflines are least-square fits to the simulation data. The first-order re-
bars are smaller than the symbol size. The various lines are thsults are fitted with a parabola, the second-order results by a cubic
corresponding exact analytical results except in the case of the rgolynomial, and the fourth-order results by just a constant plus a
jection algorithm. For the latter case the line is just a sixth-orderfourth-order term ine.
polynomial fit to the simulation data.

H=—3V2+D[e 2T —2e «("r] (40

H=—3V2+3r? (37) : _ _ _
with D,=50, ro=1 anda=10. These values ensure that the
both analytically with the help oftATHEMATICA and by di- ~ ground state is high up in the potential and that the ground-
rect Monte Carlo simulation. The trial function used is state wave function is not well approximated by a Gaussian.
Again for testing purposes, we shall simply regard this as a
o(r)=exp— 3 ar?) (38 dimensionless problem. We use a trial function of the form
With_a deliberate poor choice of the trial parametes 1.8._ B(r)=exp—ar—br3), (41)
In Fig. 1 we plot the ground-state energy from the mixed
expectation with a=15.29,b=6.82, and variational energy 11.1774.

This is to be compared with the exact ground-state energy of
—12.5. The convergence of various DMC algorithms are
compared in Fig. 2. The quartic convergence of DMC4 is
. . . i again verified. Its convergence is clearly distinct from lower-
as a function of the step sizeused. The lines are analytical ,/yer results and is nearly flat. In this case, we have no

functions fromMATHEMATICA and the plotting symbols are 5 vtical results and all lines are just least-square fits to the

Monte Carlo simulation results. We have included one ﬁrSt'data.

order, two second-order, and one first-order rejection DMC 14 gemonstrate that DMC4 can be used to solve realistic

algorithm for comparison. The detailed o!escriptions Ofphysical problems, we use it to solve for ground-state prop-
DMC1, DMC2a, and DMC2b can be found in Ref. 6. The gries of pulk liquid helium described by the many-body

rejection algorithm uses a first-order Langevin algorithm to-5 miitonian

gether with a generalized Metropolis acceptance-rejection

step so that the square of the trial function is exactly sampled £2

at all step size&.For this case, we have no analytical result H=2> - 2—V12+_2 V(rij), (42
and the plotted line is just a sixth-order polynomial fit. The ' m =

point of this exercise is not that we can solve the harmonigyhere #2/m=12.12 &K with potential V determined by

oscillator successfully, but that we have verified the quarticaziz et al1® Instead of the usual McMillan trial function, we
convergence of our fourth-order algorithranalytically.  yse a trial function of the form

Moreover, we have verified numerically that our Monte
Carlo implementation exactly matches theoretical expecta-
tions; that even in Monte Carlo simulations, the quartic con- ¢(X):£[ exp{—In(2)exd — (rjj—co)/do]}.  (43)
vergence is very distinct from quadratic convergence. .

We next test DMC4 by solving the dimensionless 3DWith c,=2.8 andd,=0.48 A, this trial function gives a
Morse potential with the Hamiltonian slightly better energy of 5.886) K/particle. Since the stan-

_ (¢[Hlio)

= oo

(39
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FIG. 4. The radial density distribution of bulk liquid helium.

FIG. 3. The time step convergence of the ground-state energ¥ ; 1
. L - ; . . . he circles are DMC4 results &=0.008 25 K - and the crosses
per particle for bulk liquid helium in a 128-particle simulation. The are DMC4 results at—0.0165 K1, The solid line is the experi-

solid circles are the result of our fourth-order algorithm DMC4. The

open circles and asterisks are for algorithm DMC4a and DMC4b,mentally extractedy(r) of Svenssoret al. (Ref. 19 at 1 K.
respectively. For comparison, we also show as triangles second-

order results from algorithm DMC2a. The lines are least-square fits More important than the thermalization time is the ob-
to the data. servable correlation time. In a Monte Carlo calculation, it is
highly desirable to have uncorrelated configurations for an

dar'd calculation detafts are w'eII known, we will .JUSt de- accurate estimate of the statistical errors. The correlation co-
scribe the results as summarized in Fig. 3. Again, the con:

. . . efficient for an observabl® is defined by
vergence of our fourth-order algorithm is clearly quartic. The
extrapolated values are 7.114(2) K for our fourth-order

algorithm and—7.111(2) K for the second-order algorithm (O(t+AHO()) —(O(1))?
DMC2a. Both are in agreement with Boronat's and Co(At)= OO — (002 (44)
Casulleras’® second-order DMC result of 7.121(10) K. (O(H)0O(1))—(O(V))

For 128 patrticles with a population of 400, each data point of
DMC2a requiredl,=11.1 h on a single processor of an Ori- In Fig. 6, we show the ground-state energy correlation func-
gin 2000 machine programmed @ We will use this time tion of liquid helium as computed by our fourth-order algo-
T, as a standard for comparing other algorithms running theithm. The correlation time is roughlAt~0.15 K1, at
same number of iterations. Algorithm DMC4, whose detailswhich point the correlation coefficient dropped to zero. This
will be further described below, requires 416 per data plot shows that the correlation time depends only on the total
point. Note that very large time steps can be used with algo-
rithm DMC4, roughly ten times as large as those of second- _gg
order algorithm DMC2a.

In Fig. 4, we show the resulting radial density distribution
g(r) from our fourth-order calculation at=0.00825 K *
and e=0.0165 K 1. The distribution is virtually unchanged
even at these large time steps and both are in excellent agre:
ment with the experimental distribution of Svenssral’® &

In Fig. 5 we show DMC4’s thermalization toward the o
exact ground state from the variational trial wave function.
Starting from the initial variational energy, we plot the popu-
lation averaged energy as a function of iterated time for vari-
ous time step sizes. This plot shows that each iteration of the
algorithm ate=0.0165 K ! is indistinguishable from mul-
tiple iterations at smaller time steps having the same time
interval. Moreover, it demonstrates that the algorithm con-
verges to the ground state inversely proportional to the step
size used, up te=0.0165 K'*. That is, only five iterations FIG. 5. The relaxation of liquid helium’s ground-state energy
are needed at=0.0165 K ' to reach the exact ground state toward its exact value as simulated by DMC4 at three time step
neart=0.08 K'* and 20 iterations at=0.004125 K,  sizes. The large circles are at0.0165 K and the small circles
etc. Thus our fourth-order algorithm can project out theare ate=0.004 125 K. They are connected by straight-line seg-
ground state with ten times fewer updates than a secondrents to guide the eye. The dotted line corresponds to resudts at
order algorithm. =0.000825 K1,

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
tK™"
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1.0 r T T T V. ALTERNATIVE FOURTH-ORDER ALGORITHMS

Our DMC4 algorithm(28), which preserves the Fokker-
Planck operator. intact, may not be the most efficient
fourth-order algorithm possible. Consider the limit in which
the trial function approaches the exact ground sta{e)
—o(X). In this ideal case the local energy becomes an ir-
relevant constank, (x) —Eg, and the algorithm is just

0.8 f

06 |

Cg

04

1 1
0.2 g (L+E)og2elgm2el (45)

which is the running of the fourth-order Langevin algorithm
twice, at half the time step. It seems plausible that one should
be able to derive a fourth-order DMC algorithm that reduces
02 0.05 o1 o015 oz to a single run of the fourth-order Langevin algorithm in the
ALK same limit.
We are thus led to consider the general factorization, to
FIG. 6. The correlation coefficient function, Ei4), for the ~ fourth order, of a three-operator exponenial<(™ P +EL.
ground-state energy of liquid helium as computed by DMC4 at theThere are now nine double commutators to be considered: 6
three time step size ofe=0.0165K ! (large circley, e are the generalizations of the two-operator case,
=0.004 125 K'* (smaller circles and e=0.000825 K'* (dotted
line). The connecting line segments are for guiding the eye only. [T.[D,T]], [D,[T,D]], [D,[E..,D]],

[ELl[D!EL]]’ [ELv[T!EL]]i [T![EL!T]]! (46)

time separation. Thus if the algorithm remains accurate a&nd three new ones are related by the Jacobi identity
Ij:ggr:g;eséef;égﬁlr"nagaovxzr iterations are needed to produce [T,[D,E ]]+[D,[E,,T]]+[E..,[T,D]]=0. (47

In implementing the fourth-order Langevin algorithm, we Thus only two of the last three commutators are independent.
used the standard fourth-order Runge-Kutta algorithm td\Ot€ also that for the present form of the operators,
solve the trajectory Eq15). When the step size is large, the .[EL ’[D’EL]]_.O' We hgve exammed' all thgse commutators
fourth-order error in the Runge-Kutta algorithm can greatlym the case of liquid helium to determine Wh_lch one |s_doa_1ble
overshadow the intrinsic fourth-order step size error of '[heand can be kept. To explore the many possible factorizations,

. . : we have devised &ATHEMATICA program to combine the
La_mgevm and that of the DMC.: algor_lthm, causing both .toexponential of operators symboalically. With the help of this
fail prematurely. To guard against this, we monitor the dif-

¢ bet h its of the fourth-order R Kutt rogram, we have explored an extensive list of distinct
erence between the results ot the fourth-order Runge Ku Oﬁ)urth-order algorithms. Since there are many operators in

and its embedded second-order algorithm. If the square Qfych sych factorization, it is too cumbersome to write out the
this difference is larger than some tolerance, say 0.01, Wgypjicit exponential form. Moreover, since the factorization
recalculate the trajectory twice at half the time step sizey, always be left-right symmetric, there is no need to repeat
Even at the largest step size used, only a few percent fperators on the left side. In the following, we will only
trajectories need to be recalculated, incurring only a smalindicate the exponential operators symbolically beginning
additional overhead. This additional effort greatly extendeduith the central one and list only operators to thight. For

the flatness of the convergence curve as shown in Fig. 3. example, algorithm DMC428) will be denoted as

0.0

2. 1 1

T+D+EL~§EL+EL+6EL!
SN el PR R, S R = 48
TR\t B TP TP e BT TR 48

Each update of this algorithm requires the evaluation of, inowed by T, E, , etc., we would like to minimize their ap-
decreasing order of computational complexity, fs, two  pearance in that order. Below, we will describe two alterna-
T's, oneE,, oneE,, and fourT’s. (The lastE, from the tive algorithms that are computationally more economical
last update can be used as the figstof the current update. than DMC4 in solving for the ground state of liquid helium.
SinceD is the most computationally intensive operator, fol-  One possible fourth-order algorithm is to retain the same
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double commutatorgD,[T,D]] and [E_,[T,E_ ]] as in DMC4a. This algorithm is roughly 10% faster than DMC4

DMC4, but allowL=T+D to be broken up: and its quartic convergence is clearly demonstrated in Fig. 3.
B B However, its convergence range is only about half of DMCA4.
T+D+E ~3T+ ¢D+3E +:T+3D+ ¢ T+3E,.. The running time for this algorithm is 4.L,.
(49 To reduce the number d operators, one must pay the
~ ~ ) price of retaining additional double commutators. We will
Here, T andE are given by refer to the following algorithm with only tw® operators as
2 DMC4b:
TR0 0 THDHE~ —agf+ ——E + (1 )T+1D
~-—a — —(1—a =
, L \/5 0 2\/§ L 2\/§ 0 2
~ €
EL:EL+1_2[EL1[T1EL]]- (51) 1 1 1
+ ZC0T+ ECOEL_’_ ZCOT, (52

This algorithm requires foub’s, but only oneT, oneE,,
two E,’s, and fourT’'s. We will denote this algorithm as whereay=1/\V1+ \/5 co=1-1/1/3, and

1 1 € dp

1
+——a,T. (59

2
A[(Z_\/5)([D,[T,D]]+[D,[EL,D]])+ )[ELI[T!EL]]

_a.o’:r:_a.oT"‘_ CO_
V3 o2y3 2 V3 2\3
|
The additional commutator algorithms as products of factorized operators. Such a per-
spective gives order and insight into the working of the dif-
[D.,[EL,DII==GiVi[G;VjEL(X)] (54 fusion Monte Carlo algorithm. It would have been very dif-

is a calculable function involving a higher derivative @f ficult to derive such a high-order algorithm without such a
and E, . In this algorithm, we have placed all the double conceptual structure. We have further demonstrated the prac-
commutators at the center so that they are evaluated onfcality of these algorithms by using them to solve for the
once per update. This is done by splitting (3Ja,T  9round state of liquid helium. The quartic convergences of
—(1/23)agT+ . .. (1/2/3)a,T in Eq. (53), meaning that DMC4 and DMC4a have been verified and both yielded
we first do half of the required Gaussian random walk, evaluground-state energy and radial density distribution in excel-
ate all double commutators, then complete the remaining halgnt agreement with experiment. Despite the fact that these
of the Gaussian walk including the effect[d,[T,D]] asit  algorithms are rather complicated to program requiring
is done in the Langevin algorithm. The ubiquitous irrationalhigher-order derivatives, they allow very large step sizes to
coefficients are roots of quadratic equations that force unbe used, virtually eliminate the time step size error, and
wanted double commutators to vanish. One can check bgreatly reduce statistical correlations between successive up-
inspection that asp(x)— io(x) and E, (x)—E,, Eq. (52  dated configurations.
reduces to just the fourth-order Langevin algoritf®i). Since this is only the first demonstration of quartic algo-
The results of this algorithm for liquid helium are shown rithms, there is room for further improvements. For example,
in Fig. 3 as asterisks. The ground-state energy is correctlyjeé have shown how the factorization of a three-operator ex-
obtained, but because these higher derivatives are rapidgonential can lead to a number of distinct fourth-order DMC
varying functions, we have not been able to stabilize thedlgorithms. A more systematic categorization of various
population of weights beyon@~0.004. While this algo- fourth-order factorizations would help in obtaining the most
rithm may not work as well as DMC4 and DMC4a for liquid €efficient algorithm. Secondly, the retainment of some double
helium, its economy of requiring only two trajectories per commutators is necessary, however, it has not been studied
update may be of utility in other applications. The calcula-in detail where they should be placed so as to minimize the
tion time per data point shown is 3. fourth-order error coefficient or computational effort. It is
observed that the step size convergence curve is flatter when
the trajectory equation is solved more exactly. In this work,
we have only used the fourth-order Runge-Kutta algorithm
In this work, we have derived a number of distinct fourth- in solving for the deterministic trajectory. Future study may
order DMC algorithms by factorizing the imaginary time explore the effects of using alternative numerical methods,
Schralinger evolution operator to fourth order. This is a no-such as symplectic algorithdfsfor solving the trajectory
table advance in algorithm development, made possible onlgquation.
by the recent progress in understanding positive coefficient Recently, there has been a breakthrough in applying the
operator factorization. Our work illustrates a global view of diffusion Monte Carlo method for solving strongly interact-
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ing Fermi systems. Casulleras and Boréhatave shown only improved the nodal surface to first order; our method
that normal liquid®He can be solved to experimental accu- suggests that improvements to fourth order are possible, de-
racy by a combination of a better backflowing trial function, pending on the complexity of the trial wave function used.
fixed-node approximation, and analytical nodal surface im-

provements. The implication here is that physical, strongly

interacting Fermion problems can be solved without having ACKNOWLEDGMENT
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