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Second-order susceptibility from a tight-binding Hamiltonian

T. Dumitrică, J. S. Graves, and R. E. Allen
Department of Physics, Texas A&M University, College Station, Texas 77843

~Received 15 June 1998!

Using a new formalism that modifies a tight-binding Hamiltonian to include interaction with a time-
dependent electromagnetic field, we have obtained an analytical expression for the second-order susceptibility.
This expression has been used to calculate the energy dependence ofx (2)(v) for GaAs. The results are in
agreement with previous calculations and with available experimental data.@S0163-1829~98!01848-7#
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I. INTRODUCTION

Nonlinear optical phenomena in semiconductors are
considerable interest for both applications and understan
of the fundamental physics. For this reason there have b
several previous theoretical studies of the second-order
linear susceptibilityx (2)(v).1–3 An additional motivation in-
volves experiments in which semiconductors are subjecte
intense subpicosecond laser pulses.4–6 Measurements of sec
ond harmonic generation~SHG! provide information about
the dynamics of the structural changes that take place in
material between pump and probe pulses.7,8 It would be very
useful to have a formalism that permits calculations of n
linear effects from a tight-binding Hamiltonian, since tigh
binding methods provide a versatile approach to many pr
lems involving real materials.9 For example, tight-binding
molecular dynamics has been used to simulate the cou
dynamics of electrons and ions in semiconductors that
subjected to ultrafast and ultraintense laser pulses.11 In this
context, and others, an efficient tight-binding technique
evaluating the SHG susceptibilityx (2)(v) would be very
useful.

Our calculation is based on the formalism introduced
Graf and Vogl,12 who first recognized that a time-depende
Peierls substitution can be used to couple electrons to
electromagnetic field without the need of any additional
rameters. In their approach, each element of the unpertu
tight-binding Hamiltonian is multiplied by a phase fact
containing the vector potential associated with an arbitra
intense and time-dependent electromagnetic field. They
ployed this idea in obtaining an analytical expression for
linear dielectric function in a tight-binding representatio
and performing a calculation for GaAs that yielded satisf
tory agreement with the experimental measurements. In
II of this paper we summarize the essential features of t
formalism. In Sec. III we then extend it to obtain an analy
cal expression for the second-order nonlinear susceptib
x (2)(v). This expression is then employed in Sec. IV, whe
results are given for the real and imaginary parts
x (2)(v) in the case of GaAs. These results are in good ag
ment with previous calculations and with the available e
perimental data.

II. TIGHT-BINDING HAMILTONIAN IN AN EXTERNAL
ELECTROMAGNETIC FIELD

Let us begin with a Bloch sum over the localize
Löwdin10 orbitals ua,L&:
PRB 580163-1829/98/58~23!/15340~4!/$15.00
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ua,k&5
1

AN
(
L

eik–RaLua,L&. ~1!

Here L labels the unit cell anda labels a specific atomic
orbital on a specific site. There areN unit cells labeled by
lattice vectorsRaL . The matrix elements of the tight-bindin
Hamiltonian are

^a8,kuHua,k&5(
L

eik–„Ra8L2Ra)

3ta8,a~Ra8,L2Ra!1eada8,a ~2!

whereRa5Ra,0 . Hereta8,a andea are the usual off-site and
on-site matrix elements. Each eigenstateun,k& is a superpo-
sition of Bloch sums ~1! with appropriate coefficients
Ca(nk):

unk&5(
a

Ca~nk!uak&, ~3!

wheren is the band index.
Whenk–p theory is adapted to the tight-binding form, a

effective momentum operatorP and a kinetic energy opera
tor T can be defined.12 In matrix form these operators are

pn,n8~k!5
m0

\
C†~nk!¹kH~k!C~n8k!, ~4!

Tn,n8~k!5
m0

\2
C†~nk!¹k¹kH~k!C~n8k!. ~5!

Here H(k) is the Hamiltonian matrix whose elements a
defined in Eq.~2!, andCa(nk) is the vector whose compo
nents are defined in Eq.~3!.

Interaction with an electromagnetic field requires an a
propriate modification of the Hamiltonian~2!. The most ef-
ficient approach in a tight-binding picture is to use t
Peierls substitution,13 which has long been a useful tool fo
time-independent fields and has been generalized to the t
dependent case.12 The familiar minimal coupling substitution
p→p2(e/c)A, wheree is the charge of the electron andA
is the vector potential, is equivalent to the replacement
15 340 ©1998 The American Physical Society



to
nd

on
r
he
-

he
ti

-

he

ur

to

th
sin
n

to

g
e

tric
p-

be

e
s

to

f

tor

i-

e
the

nd
di-
are

he

g

PRB 58 15 341BRIEF REPORTS
ta8,a~R82R!5ta8,a
0

~R82R!expF2
ie

\c
~R82R!•A~ t !G .

~6!
The tight-binding expression for the current-density opera
J can be written in terms of the effective momentum a
kinetic-energy matrices defined above:12

Jn8,n5
e

m0
pn8,n1

e2

m0c
Tn8,n~k!•A~ t !. ~7!

III. SECOND-ORDER SUSCEPTIBILITY
IN A TIGHT-BINDING REPRESENTATION

In an intense field, the macroscopic current density c
tains contributions to all orders in the electric field. In pa
ticular, the second-order contribution will be related to t
electric fieldsEb(v1) andEg(v2) via the second-order con
ductivity tensorsabg

(2) (v1 ,v2):

Ja
~2!~v1 ,v2!5sabg

~2! ~v1 ,v2!Eb~v1!Eg~v2!. ~8!

Here a, b, and g represent Cartesian coordinates. T
second-order susceptibility tensor is related to the conduc
ity tensor by

xabg
~2! ~v1 ,v2!5

i

2v
sabg

~2! ~v1 ,v2!. ~9!

For simplicity, we will limit the calculation to second
harmonic generation when the two frequenciesv1 ,v2 are
equal.

Standard response theory extended to second order in
interaction14 involves the thermodynamic average of t
current-density operator:

^Ja~ t !&5^Ja~ t !&01
i

c\E2`

t

dt1^@ J̃a~ t !,J̃b~ t1!#&0Ab~ t1!

1S i

c\ D 2E
2`

t

dt1

3E
2`

t1
dt2^†@ J̃a~ t !,J̃b~ t1!#,J̃g~ t2!‡&0

3Ab~ t1!Ag~ t2!. ~10!

Tildes are used to denote operators in the interaction pict
and ^ &0 indicates an equilibrium average.

If the completeness relation satisfied by the eigenvec
un,k& is inserted on the right-hand side of Eq.~10!, one ob-
tains a product of current-density matrices. The terms
are second-order in the electric field can be sorted out u
Eq. ~7!. We note that the current operators on the right-ha
side of Eq.~10! result from the interaction Hamiltonian14

H852
1

c
JaAa . ~11!

This expression is correct to only the first order in the vec
potentialA; however, the term that is neglected~involving
A2) does not give rise to electronic transitions in the lon
wavelength approximation, since it can be eliminat
r

-
-

v-

the

e,

rs

at
g

d

r

-
d

through a unitary transformation.15 Only the last term in Eq.
~10! gives a contribution that is second-order in the elec
field, since the subscript ‘‘0’’ indicates that the current o
erator ~7! is evaluated in the unperturbed system, withA
50. The second-order susceptibility tensor must
symmetric16 in the last two Cartesian coordinatesb and g,
so we permute the timest1 and t2 in Eq. ~10!. The resulting
expression is

xabg
~2! 5

i

2\2V
S e

m0
D 3

3 (
m,n,l ,k

pnm
a @pml

b pln
g #

v3~2v2vmn!
S f ln

v2v ln
1

f ml

v2vml
D

~12!

whereV is the crystal volume and@pnl
b pln

g # indicates a sym-
metrized form. Expression~12! is a general one, in the sens
that it is not simplified by any symmetry of the material. A
in the case of the linear dielectric tensor,12 the tight-binding
expression for the second-order susceptibility is similar
the classical one, but the matrix elementspnm are given by
Eq. ~4!. A general result ofk–p theory is that the average o
¹kH(k) for any Bloch state@with H(k) the k–p Hamil-
tonian# equals the average of the momentum opera
(\/ i )¹. The above result is, therefore, not unexpected.

Invoking time-reversal symmetry, and adding an infin
tesimal imaginary part to the frequency,v1 ih with h→0,
one can separate the real and imaginary parts ofx (2)(v):

Re@xabg
~2! #5

i

2\2V
S e

m0v D 3

(
m,n,l ,k

pnm
a @pml

b pln
g #

3F f ln

v2vml
S 1

v2v ln
2

1

2v2vmn
D

1
f ml

v2v ln
S 1

v2vml
2

1

2v2vmn
D G , ~13!

Im@xabg
~2! #5

ip

2\2V
S e

m0v D 3

(
m,n,l ,k

pnm
a @pml

b pln
g #

3F f ln

d~2v2vmn!2d~v2v ln!

v2vml

1 f ml

d~2vmn2vmn!2d~v2vml!

v2v ln
G . ~14!

The apparent divergence atv50 can be cured in the sam
way as in Ref. 17. For computational purposes, however,
above expressions are quite sufficient.

IV. CALCULATION OF x „2…
„v… FOR GaAs

A dielectric function is determined by the eigenvalues a
eigenvectors at many points in the Brillouin zone. In ad
tion, both the ground state and relevant excited states
important. For this reason we follow Ref. 18 in extending t
minimal sp3 orbital basis with an additional orbitals* ,
which models the manifold ofd states and other higher-lyin
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excited states that are omitted in a minimal basis. It has b
shown that the Voglsp3s* model provides a good descrip
tion of the bands in both direct and indirect-band semic
ductors, including GaAs and Si,18 and of the linear dielectric
function.11,12

Because of its noncentrosymmetric structure, it is app
priate to apply our formalism to GaAs. The analytic formu
for x (2)(v) involves virtual electron processes~with n the
valence-band state andm,l the conduction-band states! and
virtual hole processes~with n,m the valence-band states an
l the conduction-band state!. Aspnes19 showed that the latte
type of contribution can be neglected. We therefore inclu
only the virtual electron transitions. We also choose to eva
ate the imaginary part of Eq.~14!, and then use the Kramers
Kronig relation to obtain the real part:

Re@x~2!~v!#5
2

p
PE

0

` v8

v822v2
Im@x~2!~v8!#dv8.

~15!

The numerical calculation employs an adaptation of
method used to calculate the linear dielectric function. D
tails of this method have been published11 and will not be
repeated here. The results for the real and imaginary p
of xxyz

(2) ~the only independent component! are presented in
Fig. 1. Due to the nondissipative character of the seco
order susceptibility, the experimentally measured quantit
ux (2)(v)u, and the results for that quantity are shown in F
2. Our results compare well with those calculated using ot
methods.1–3 The major features in the structure of our calc
lated dispersion curves clearly resemble those obtained
first-principles calculation.3 There is also good agreeme
with experiment:20,21 In the data forux (2)(v)u, the first peak

FIG. 1. Real and imaginary parts ofx (2)(v).
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at 1.5 eV agrees with the present results, and the deep m
mum and the second peak at 2.3 eV appear to be o
slightly shifted.

The results presented in Figs. 1 and 2 are in arbitr
units. As in the case of the linear dielectric function,12 the
overall scale is too low by about a factor of 2, but the ene
dependence ofx (2) is correct, as noted above. Another che
is provided by a set of sum rules.22 Those that weight the
higher frequencies heavily~by some power ofv) are not
well satisfied by the present model, which is only valid f
excitations with energies up to a few eV. On the other ha
the sum rule

E
0

`

Re@x~2!~v!#dv50 ~16!

is a valid test. Our numerical results give

E
0

`

Re@x~2!~v!#dv50.35, ~17!

which is quite satisfactory for a function that varies over
range of about220 to 110 in Fig. 1.

V. CONCLUSION

We have obtained an expression for the SHG suscept
ity x (2)(v), which can be employed with a tight-bindin
Hamiltonian. This expression has been tested for GaAs,
the results agree with previous calculations and with exp
ment.
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FIG. 2. Magnitude ofx (2)(v).
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