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Second-order susceptibility from a tight-binding Hamiltonian
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Using a new formalism that modifies a tight-binding Hamiltonian to include interaction with a time-
dependent electromagnetic field, we have obtained an analytical expression for the second-order susceptibility.
This expression has been used to calculate the energy dependep@ o for GaAs. The results are in
agreement with previous calculations and with available experimental [&t463-182¢08)01848-1

I. INTRODUCTION 1
la, k)= —= >, e*Ra|q,L). (1)

Nonlinear optical phenomena in semiconductors are of INT

considerable interest for both applications and understanding

of the fundamental physics. For this reason there have bednere L labels the unit cell and labels a specific atomic

several previous theoretical studies of the second-order norbital on a specific site. There ah unit cells labeled by

linear susceptibilityy (). An additional motivation in- lattice vectorsR,, . The matrix elements of the tight-binding

volves experiments in which semiconductors are subjected tblamiltonian are

intense subpicosecond laser puldgsMeasurements of sec-

ond harmonic generatiofSHG) provide information about _

the dynamics of the structural changes that take place in the (a’,k|H|a,k>=E ek Ra'LRa)

material between pump and probe puls&# would be very L

useful to have a formalism that permits calculations of non-

linear effects from a tight-binding Hamiltonian, since tight-

binding methods provide a versatile approach to many prob- .

lems i?wolving regl materiaf$.For exet)ngple, tight—binginpg whereR, =R, ¢. Heret, , ande, are the usual off-site and
&-site matrix elements. Each elgensdatﬂQ is a superpo-

dynamics of electrons and ions in semiconductors that argtion ©of Bloch sums(1) with appropriate coefficients

subjected to ultrafast and ultraintense laser puisés.this ~ Ca(NK):

context, and others, an efficient ti%r)n—binding technique for

evaluating the SHG susceptibilit w) would be ver

Lot PRI ) g k)= C,(nk)|ak), ®

Our calculation is based on the formalism introduced by “
Graf and Vogl*? who first recognized that a time-dependentWheren is the band index
Peierls substitution can be used to couple electrons to an Whenk-p theory is adapted to the tight-binding form, an

electromagnetic field without the need of any additional paéquective momentum operatdt and a kinetic energy opera-

tight-binding Hamiltonian is multiplied by a phase factor ©OF T can be defined In matrix form these operators are
containing the vector potential associated with an arbitrarily

intense and time-dependent electromagnetic field. They em- Mo . ,

ployed this idea in obtaining an analytical expression for the P (k)= =2=C(nk)ViH(K)C(n'k), 4
linear dielectric function in a tight-binding representation,

and performing a calculation for GaAs that yielded satisfac-

tory agreement with the experimental measurements. In Sec. Mo . ,

Il of this paper we summarize the essential features of their Ton (k)= FC (NK) Vi ViH(K) C(n"k). (5)
formalism. In Sec. lll we then extend it to obtain an analyti-
cal expression for the second-order nonlinear sus:ceptibility_|ere H(k) is the Hamiltonian matrix whose elements are
x®(w). This expression is then employed in Sec. IV, wheregseod in Eq.2), andC,(nk) is the vector whose compo-

results are given for the real and imaginary parts Ofnents are defined in EG3).

X(w) n the case of GaAs._These resu_lts arein g(_)od agrée- |nteraction with an electromagnetic field requires an ap-
ment with previous calculations and with the available X propriate modification of the Hamiltoniaf2). The most ef-
perimental data. ficient approach in a tight-binding picture is to use the
Peierls substitutioh® which has long been a useful tool for
time-independent fields and has been generalized to the time-
dependent casé.The familiar minimal coupling substitution

Let us begin with a Bloch sum over the localized p—p—(e/c)A, wheree is the charge of the electron aAd
Lowdin®® orbitals|a,L): is the vector potential, is equivalent to the replacement

Xta’,a(Ra’,L_Ra)+ea5a’,a (2)

II. TIGHT-BINDING HAMILTONIAN IN AN EXTERNAL
ELECTROMAGNETIC FIELD
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0 ie through a unitary transformatidn.Only the last term in Eq.
taro(R"=R)=1,, (R'— R)EXF{ - %(R’— R)-A(t)|. (10) gives a contribution that is second-order in the electric
field, since the subscript “0” indicates that the current op-
(6) erator (7) is evaluated in the unperturbed system, with
The tlght-blndlng eXpreSSion for the CUrrent-denSity OperatOI’:()_ The second-order Suscept|b|||ty tensor must be
J can be written in terms of the effective momentum andsymmetrid® in the last two Cartesian coordinatgsand v,

kinetic-energy matrices defined aboVe: so we permute the times andt, in Eq. (10). The resulting
R o2 expression is
n',n mopn N mOC n',n 2 | e 3
Xabr™ 520\ mg
Ill. SECOND-ORDER SUSCEPTIBILITY
IN A TIGHT-BINDING REPRESENTATION Phnl pﬁlpm / fin fnl
In an intense field, the macroscopic current density con- m.nlk w3(2w—wmn)\w—w|n W= O

tains contributions to all orders in the electric field. In par- (12
ticular, the second-order contribution will be related to the
electric fieldsEz(w,) andE,(w,) via the second-order con- where() is the crystal volume angpﬁlp(n] indicates a sym-

ductivity tensoro'?) (w1, w,): metrized form. Expressiofl2) is a general one, in the sense
) ) that it is not simplified by any symmetry of the material. As
IP(w1,0,)= 0} (01,0)Eg(w1)E(w;).  (8) in the case of the linear dielectric tenddthe tight-binding

Here @, 8, and y represent Cartesian coordinates. The&Xpression for the second-order susceptibility is similar to

second-order susceptibility tensor is related to the conductivt-he classical one, but the matrix elemepﬁ“ are given by
ity tensor by Eq. (4). A general result ok-p theory is that the average of

ViH(k) for any Bloch statgwith H(k) the k-p Hamil-
i tonian] equals the average of the momentum operator
Xﬂfgy(wl,wz)= Zafgy(wl,wz). (9  (#/1)V. The above result is, therefore, not unexpected.
Invoking time-reversal symmetry, and adding an infini-
For simplicity, we will limit the calculation to second- tesimal imaginary part to the frequenay;+i»n with »—0,

harmonic generation when the two frequencies w, are  one can separate the real and imaginary partg8{w):

equal.

Standard response theory extended to second order in the @ i 3 @ B oy
interactiot* involves the thermodynamic average of the RE[XaﬁyF% Mo m; ’ Prml PmiPin]
current-density operator: o

- o fin / 1 1 )
| . _ —
(Ja(1))=(Ja(t))o+ Efﬁ dty([Ja(t),Ip(t) oAs(ty) 0= onl0=0n 20— o,
f 1 1
i |2 ytm | - ) . (13
+ a) J' dt; w_wln\w_wml 20— onn
% .0 3,013 mix1= | S o ot
><f_ocdt2<[[‘]a(t)1‘]ﬁ(t1)]!‘]y(t2)]>0 Xa,B‘y ZﬁZQ Mow /| min,lk nm EmiFin
X Ag(t)A,(t,). (10 X{ﬁ 820 = wmp) — dw— i)
n —
Tildes are used to denote operators in the interaction picture, @ @mi
and( ), indicates an equilibrium average. 8(2wmn— wmp) — (@ — @)
If the completeness relation satisfied by the eigenvectors +imi w—o, - (14

[n,k) is inserted on the right-hand side of E40), one ob-

tains a product of current-density matrices. The terms thafhe apparent divergence at=0 can be cured in the same
are second-order in the electric field can be sorted out usingay as in Ref. 17. For computational purposes, however, the
Eq. (7). We note that the current operators on the right-handbove expressions are quite sufficient.

side of Eq.(10) result from the interaction Hamiltonih

L IV. CALCULATION OF x®(w) FOR GaAs

H'== 2 JaAa (11) A dielectric function is determined by the eigenvalues and
eigenvectors at many points in the Brillouin zone. In addi-
This expression is correct to only the first order in the vectottion, both the ground state and relevant excited states are
potential A; however, the term that is neglectédvolving  important. For this reason we follow Ref. 18 in extending the
A?) does not give rise to electronic transitions in the long-minimal sp® orbital basis with an additional orbitas*,
wavelength approximation, since it can be eliminatedwhich models the manifold af states and other higher-lying
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FIG. 1. Real and imaginary parts gf? (o). FIG. 2. Magnitude ofy“(w).

. . . - . at 1.5 eV agrees with the present results, and the deep mini-
excited states that are omitted in a minimal basis. It has beeﬁ’]um and the second peak at 2.3 eV appear to be only
shown that the Vogsp®s* model provides a good descrip- slightly shifted '

tion of the bands in both direct and indirect-band semicon- '

ductors, including GaAs and &i,and of the linear dielectric units. As in the case of the linear dielectric functirthe

; 11,12
function: overall scale is too low by about a factor of 2, but the energy

Because of fts noncen_trosymmetric structure, i.t s approEiependence of?) is correct, as noted above. Another check
priate to apply our formalism to GaAs. The analytic formulais provided by a set of sum ruléé Those that weight the
for x®(w) involves virtual electron processéwith n the

valence-band state amd,| the conduction-band stateand higher frequencies heaviliby some power okw) are not

tual hol ith h | band d well satisfied by the present model, which is only valid for
virtual hole processewith n,m the valence-band states and o itations with energies up to a few eV. On the other hand,
| the conduction-band stateAspnes® showed that the latter the sum rule
type of contribution can be neglected. We therefore include

only the virtual electron transitions. We also choose to evalu- o @
ate the imaginary part of Eq14), and then use the Kramers- fo R x'*“(w)]dw=0 (16)
Kronig relation to obtain the real part:

The results presented in Figs. 1 and 2 are in arbitrary

is a valid test. Our numerical results give

1) !

2 0] -
Rd;X(Z)(w)]:;Pfo —wlz_wzlm[X(Z)(w/)]dw’. jo Re[)((z)(w)]dw=0.35, (17)

15
(49 which is quite satisfactory for a function that varies over a
The numerical calculation employs an adaptation of theange of about-20 to +10 in Fig. 1.

method used to calculate the linear dielectric function. De-
tails of this method have been publishkand will not be V. CONCLUSION
repeated here. The results for the real and imaginary parts
of x{), (the only independent compongrre presented in
Fig. 1. Due to the nondissipative character of the second
r;(jg(rjﬂ?caenp;?;]Igyr’e?jtg);gf:Lrgfgfgztige:;u;i%v?lﬁztggl_ he results agree with previous calculations and with experi-
2. Our results compare well with those calculated using otherrnent'
methods-~3 The major features in the structure of our calcu-
lated dispersion curves clearly resemble those obtained in a
first-principles calculatiod. There is also good agreement  This work was supported by the Robert A. Welch Foun-
with experimen£®?!In the data for y(?)(w)|, the first peak  dation.

We have obtained an expression for the SHG susceptibil-
ity x'?(w), which can be employed with a tight-binding
amiltonian. This expression has been tested for GaAs, and
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