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Time-dependent Ginzburg-Landau equations for mixedd- and s-wave superconductors
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A set of coupled time-dependent Ginzburg-Landau equatieB$L) for superconductors of mixedr and
s‘wave symmetry are derived microscopically from the Gor’kov equations by using the analytical continuation
technique. The scattering effects due to impurities with both nonmagnetic and magnetic interactions are
considered. We find that thd- and sswave components of the order parameter can have very different
relaxation times in the presence of nonmagnetic impurities. This result is contrary to a set of phenomenologi-
cally proposed TDGL equations and thus may lead to new physics in the dynamics of flux motion.
[S0163-182698)02946-4

[. INTRODUCTION equations have been derived subsequently assuming only the
dirty-limit condition (7, T.<1, wherer, is the total scatter-

There is growing experimental evidence to suggest thaing lifetime) and (1-T/T;)<1,'"? so the system need no
high-T, superconductors have a dominaki_,.-wave pair-  longer be gapless. However, this set of equations is so com-
ing symmetry' Based on symmetry considerations, Voldvik plex that it has not yet been extensively used.
argued that ars-wave component of the order parameter In this work, we shall derive microscopically a set of
should be generated near the core region of a vortex in aoupled TDGL equations for superconductors with miged
d-wave superconductor. This conclusion was later confirme@nd s-wave pairing symmetry based on the approach of
by a numerical calculatidrand by studying a set of micro- Gor’kov and Hiashberd® in the presence of impurities with
scopically derived two-component Ginzburg-Land@sl) both spin-flip and non-spin-flip interactions and assuming
equationg’. only weak gaplessness conditions for both wayes.,

In view of the enormous success of the GL theory formAge<<1, andrsAgg<<1.) The primary objective of this deri-
describing the equilibrium properties of superconductorsvation is to establish a reasonably reliable set of equations
nearT,, it is natural to generalize it to time-dependent situ-governing the dynamics of coupleti ands-wave order pa-
ations. This generalization has become particularly desirableéameters which are hopefully valid for describing the dy-
since a set of phenomenological time-dependent Ginzburgiamic properties of higi- superconductors.

Landau(TDGL) equations for coupled- andd-wave super- The outline of this paper is as follows: In Sec. I, the
conducting order parameters has been recently proposediDGL equations for the order parameters are derived. The
and used to investigate the dynamics of vortices in High- expressions for current and charge density are presented in
superconductors. One would very much like to know howSec. lll. Finally, discussions and summary are given in Sec.
valid is such an approach. V.

It is well known, however, that TDGL equations are not
as universal in form as the time-independent varigty, but can 1\ME-DEPENDENT GINZBURG-LANDAU EQUATIONS
be dependenft strongly on whether the system is gapful or FOR THE ORDER PARAMETERS
gapless, and in the later case, whether a strong or weak gap-
lessness condition is assumed. The simplest set of TDGL We begin with the Gor’kov equatiorts:
equations for conventionalwave superconductors was pro-
posed phenomenologically by Schnfidnd subsequently de-
rived microscopically by Gor’kov andlBshberd under the T aor h(x7)
assumption of a strong gaplessness conditi@n, 7.T.<1,
where 74 is the spin-flip lifetime andT, is the transition
temperaturg This set of equations has been used in the past
to study the vortex dynamics in conventional , ,
superconductor$Eliashberd has later derived a more com- =0(x=x")8(1=17")bap, (2.1a
plex set of TDGL equations for loW;, s-wave supercon-
ductors assuming only the weak gaplessness conditien d .
7A0<<1, where Ay(T) is the equilibrium value of the g_T_h (x7)
(s-wave order parameter in the absence of fig¢ld$ has
been used to study flux-flow resistivifyand the transport
entropy of vortices! Even more complex sets of TDGL

Gop(XT, X' 7") = U (X) G, g(XT,X" T")

+f dX"A (X7 X' T)FL (X" 7,X' ')

FIa(xm,X' 7') = U (X)Fl 5(x7,x' 7')

—f dx"AT(x7%F X" 7)Gp(X"7,X' 7')=0. (2.1b
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Here repeated spin indices mean summing over these indiluctuation, whereas thes-channel attractive interaction

ces. In these equations, might arise from phonon mediation.
[p+eA(x7) ]2 Introducing the Green functio®® of the normal metal,
-z - - which satisfies the equation
h(x7) om ep(X7)—u (2.2
. . . . . 17 ~ ~
is the single-electron- e) Hamiltonian withA(x7), ¢(X7), — ——h(x7) GgB(XT’X, 7)— Uay(X)G?,B(XT,X’ )
and u denoting the vector, scalar, and chemical potentials. JT
(We have assumell=c=1.) By assuming zero-range inter- = (X=X )S(7—7') 8,05, 2.9
actions between electrons and impurities, the impurity scat- b
tering potential can be written as Eqg. (2.1) may be converted to a set of coupled integral equa-
tions:
O.alB ~
Uap(0=2 |U1dustUa| S-—7| | 0X-R), (23 Gap(x7,X 7) =GO y(xr,X ')
wherel denotes the set of impurity sites; is made of the _f =0
Pauli spin matricesS; is the spin carried by an impurity at dxydxpd s G (X7 Xy 1)
R;. U; andU, are the non-spin-flip and spin-flip interaction KA (XeT1 Xy )E o (Xpry X' 71)
strengths, respectively. By definition, the order parameter in pA LT 22Ty X2 T, X T ),
real coordinate and imaginary time space is (2.10

Azﬁ(XT,X,T)ZV(X—X/)FZB(XTO+,X,T), (2.9 . ~0
" _ o i Faﬁ(xnx’r’)=f dx1dx2d 71 G, (X1 71,X7)

where —V(x—x") is the effective pairing interaction be-
tween electrons. Because of the spatial and temporal nonuni-
formity, the Green function G,g(x7,x'7") and
F1s(x7,x'7') are not the functions of coordinate and time (2.11
differences. When expressed in the imaginary frequencyisg note that the normal-state Green function can in turn be
space after the Fourier transform, they depend on two freyitten as an integral equation
guency variables. For the spatial coordinate dependence, as
treated in the static cadaye express these two functions in . 0 ., 0 L 0 o
terms of the center-of-mass coordin®e (x+x')/2 and the ~ Cap(X7.X' 7') =G p(x7,X" 7 HJ dX"d7"G,, (X7, X"7")
relative momentum after a Fourier transform with respect to

XAY (X 71, Xo71) G p(Xo7y X 7').

the relative coordinate=x—x’. Thus Eq.(2.4) can be re- eA(X"7") - Pxr Yo
; X| " —ep(X" )
written as
dk’ X G2 (x"7" X' 7"), (2.12
AR 0)=T> f SV(k=K)Fl 4R e,e~w), ! :
€ (2) with G° as the normal-state single-particle Green function in

(25  the absence of the electromagnetic field but including the
where k is the relative momentum.w=2inmT and €ffect due to impurity scatterings. To write down the above
e=i(2n’+ 1)« T with integersn andn’ —,V(k— k') is the integral equation, the squared term of the vector potential has

pairing interaction in the momentum spage(R.k: e, e') is been neglected and the Coulomb gauge is chosen.

the Fourier transform oF T(x7,x’ 7'). To relate to highF,
superconductors, we have assumed that the system under A. Analytical continuation
consideration is two dimensional. For the Spin—singlet pair- To incorporate the time dependence of physica| quanti-
ing, the order parameter is given in the spin spacd@s ties, we use the analytical continuation technique discussed
=A*g,5, where in Refs. 7,9 to transform imaginary frequencies into real fre-
guencies. The procedure is as followi:In Eg. (2.5, each
2.6 term of the summation over the im_aginary frequercgan
be regarded as the residue of an integral along the contour

0 1
gaﬁ_ -1 0 aﬁ'
) ) around the pointz=e€ so that we have the transformation
To obtain the TDGL equations for superconductors of a i , i i
mixed d- ands-wave symmetry, we make the following an- T> —14mi$.dztanhz/2T. Associated with this transfor-

satz for the pairing interaction and the order parameter:  mation, all involvede are replaced witlz. For example,

—k'=V.+ 02_t2v/pr2_112 )
(k=K =Vs+ VoK) (k=K. (27 IS 6% 0% e o)
A*(RK;w) =A% (Riw)+ A} (Riw)(ki—k), (2.8 )
z
where V4 and Vg are positive so that both thé- and s- = a0 CdZtanhZ—TGo(—Z)GO(Z—w’),
channel interactions are attractive. Tthehannel attractive
interaction could originate from the antiferromagnetic spin (2.13
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where the spatial and spin variables have been suppressed f6i0". Simultaneously the discrete summatidox . is re-
simplicity. (i) Deform the contour integral arourmnto the  placed by a continuous integral §3 *fdw’ and the Kro-

straight line integrals alongz=€e*i0", z=e+o’ necker deltanlﬁw,w, by the Dirac delta (Z)d(w—w').
+i0%, ..., whereee (—=,») is the real integral variable Finally, we get

and 0" is infinitesimal. So farw’, ... are still the imagi-

nary frequency B#iT and we taken=0 since we will per- 1 (= €

form the analytical continuation from the upper half-plane. 7 J de —tanhZ—TG0<A)(—e)GOW(e—w’)

As a consequence, each Green func@f(z) with the en-
ergy variable coincident with this line is decomposed into
G'®(e)—G°@®(¢), whereGORA are the retarded and ad- +tanhTG°<R( €)G'P(e—w')
vanced Green functions, respectively. The minus sign before

G°®W comes from changing the direction of integration. The o oR) € e—w'
other Green functions are mapped to the retarded or ad- +4_7-riJ’,xd€G (—e)| tanh— —tanh———
vanced Green function depending on their energy variable.
Then Eq.(2.13 becomes X G (e—w"). (2.15
1 © € . .
o OR), _ .\ _ (O(A), The first two terms consist of the only advanced and the only
f detanhZ_T{[G (—e) =G (~e)] retarded Green functiori&ollowing Ref. 7, we shall refer to
oA , oR) ) them as the normal pariThe remaining part has those terms
XG (e~ ") +G [~ (et w')] involving the product of retarded and advanced Green func-
O(R), _\ _ ~O(A) tions, in which a change from a retarded to an advanced
X[GT(e) =G () ]} (214 Green function occurs in only one plag®Ve shall refer to
(iii) Since allw’, . . ., lie in theupper half-plane, the Fourier them as the anomalous paytéfter obtaining the results in

transform of the expansion®.10 and(2.11) are analytical terms of real frequency, we can perform the inverse Fourier
in each of these variables. Therefore, we can implement thigansform to represent them in a real time.
analytical continuation by simply replacing all' with o' Using these rules, we can obtain the following expression:

TE Ff(e e— w)—7— ! fdetanhz—[FT(R)(e+w €)—FT™W(e,e— )= 7~ deJ de{[GT (e, €1)AT,

XG W(e—w' e—w)+ FT<R)(6,61)AwrF(A>(61—w’,e—w)]+[G+(R)(e,el)F(A)(el—w’,e—w)

_ €1 €—w'
+FTR(e,6,)G" N(e1— 0, e—w)][eA, -p/m—eq, ]} tanh= —tanh?}, (2.16

where,G~(RA and FTRA) are formally defined by

G (p.p—k;e,e—0)=G (p;e) + GO (p;€)A, (k)G (p—k';e— w0 )AL, (KGO (p—k' —K';e— o'~ ")+ - -,
(2.17)

and
F'(p,p—k;e,e—w)=—{G"(p;e)A¥, (k)G (p—K';e—w')+ -}, (2.19

in which the substitutionsae+i0+ for the retardedadvanceyl Green function should be made. He®?* (p;e)=[¢
=&l 1 and allw' are real. The function& " andF are obtained fronG~ andF' by changing the sign of in G°*. Note
thatG* andF are introduced only for simplicity of notation.

B. Normal part

The normal part oA* can be written as

en<0

dk’
A*NRk;w) = 2m? '{TE FIRRK jentw,e)+T Y FINRK 6y 60— )| (2.19
T =0

The evaluation of the normal part can be done by expanding the expressions in powers of the order parameter. We write for
FTRA andG(RA up to terms of the third and second orderAin respectively, so that

FIRMNXX €6, 6= ) =FIR(x, X' €,6— ) + FIIRD (X, X' 6,6 = 0) + F[RD (X, X' 6,6~ w), (2.20

where
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FIRE (XX e,6— w)= J dxydXaG R (x, X; — €)@ 1w () U 0AR (31,351 ") GOF N (g, X' €= w) @ 1A 02 (27X,

(2.21
FIRA (XX €,6— w)=f dXydX0XaG U™ (X1, X — €) A% (X1, X0; 0 )GIFA (X5, X5; €~ 0" ) — €9 ,1(X3) ]
X Gy N X e @)+ J Ay dxpxsGY X Xa i — (€= ') ][ — €@y (X3)]
X GURA (xg,%; — €) A% (Xg  Xp; 0") GIFM (X5, X' €~ ), (2.22
Fﬁ(,@é)(x,X’:e,e—wF—f dxldXZdXBdX4dX5dXGG2(5’A)(X1aX;_G)A;y(xlaXZ;w,)G%\R'A)(Xz,Xg,;E_w,)
X By g(Xg,Xa;0") G VX5 Xa — (€= 0 = 0")]A} (X X1 0" )G (X X' €= w).
(2.23

Here the summation over the imaginary frequemfywith  product of Green functions can be conveniently performed
the constraint;w' = w is implied. To write down the above based on the diagrammatic rdfe!® If there are two Green
expression forF R4 we have expande@® to the first ~functions connected by as-wave order parameter &

sion term out explicitly. As far as the dependenca3dfon might be called directly connected and we should attach a

the magnetic field is concerned, the quasiclassical phase a}st_artex renormalization factor:
proximation can be used to write it in the form
GO(x,x";e)ex —ieA, - (x—x')]. Accordingly, the gap e*il2r,

iw/T
function can also be written as a sum of three parts 7 RA(e)=[1—aRM(0)] 1= 2

T -+ ’
€xilts  (2ex2il7g)?
(2.27
ARN(RK; @)= Al (R K ) + AN 5(R.K; )
where

+AN N (R K 0). (2.24

1 d
- _ _ a™(0)= f P GORp, ~(e=iw)]
The remaining task involves the evaluation of the average 2aN(0) 7o) (277)2
over an ensemble of randomly distributed configurations. As
an approximationA* is regarded as very nearly independent O(R)
: . i X . " xXG"N(p,e), (2.28
of impurity configurations. We assume that impurities den-
sity n; are randomly distributed and their spins are arbitrarily
oriented so that there is no correlation among thétsing ~ and
the Born approximation, we can show that the impurity-
averaged zero-field normal-state Green function takes the

following form: a(A)(O):ZthO)r j (de)ZGO(A)(p,—e)
2 w

1 ) 1)
GO (XX €n)) = = f dke!kx )2 X GOA(p,e+iw). (2.29
(Gpl €n)) (2m) l6n771—§k(2 25

Here

where(- - -) denotes the average over the impurity configu-

ration, & =k%2m—u is the kinetic energy, andy;=1 1 , 1 )
+ (274 €y]) "1 with the scattering time-; given by T =2mniN(0)| [U,4] 4S(S+1)|U2| » (230

. (226 and the spin-flip scattering rate is defined ag 2=7,'
—7,1. If the two Green functions are connected byda

Here n; is the impurity density andN(0) is the density of wave order parameter ai-channel two-body interaction,

states at the Fermi surface per spin. The evaluation of ththey might be called not directly connected and we have

1
Ua|?+ ZS(S+1)[Uy?

1
—=2mn;N(0)
1
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no vertex correction. For the average of the product of moré\brikosov-Gorkov theory applied to thé-wave supercon-
than two Green functions, an impurity line can also appeatductivity.

across the box of a diagram. Because of their zero contribu- Now we give a derivation for the gap function from
tlr:)n bd|agrr?m?d with tr)nore |th§nd omra1 impurity line acrossTs >0FT(R)(€n+w €r). The contribution from
the box should not be included. This impurity averagin (R .

technique was used by Abrikosov and GorFl?bForyconveng gTE <oF "®(€n.€n—w) can be obtained by merely chang-
tional swave superconductors. Recent experimental meald aII expliciti to —i andw to —w, which gives the same
surements by Bernharcet al!’ on various types of result. In addition, one can easily see thg} aﬁ(R,k,w)
YBa,(Cuy, _,Zn,)30,_ s samples have shown that the depres-=0, since the contribution from the two terms given by Eq.
sion of T, by Zn doping can be fitted well with the (2.22 cancelled with each other. Therefore, we obtain

/

dk’ r
A* N(R) —ik’-r 0(R) -
ARNR(RK; ) Tenéo 277)2 V(k—k’ )fdre fde dr’ <G R+ 2,R+2, (€n+ @)
r' r . dk”
0(R) [ T i(R"=R)-TI Ik" 'A% ”
X0y, GO (R 5 R 2,en)>e f(277) A*(R,K"), (2.31)
and
! r’ r
AVER(R K w)= TEZO ik ff dR'dr’ dedrldder2<G°<R> +§,R+§,—en)
r r
O(R ' 0(R O(R 2
Xg)\,uG ( )(R _EaRl+ 2 v€n>gvaK(p )(R2+ 2 - Ri— 27 EI’])gKUG ( )( iaR_Eyfn)>
dk”dk,dk -
xf(z—;zA (RKDA (R KA, (R, kp)e K Fharitkara), (2.32
ar

Herell=—iVz—2eA, (R) and we have assumed the slow variation of the vector potential.
SinceGY =G5, is diagonal in the spin space, we can expra$g, ¥ =Af"Pg,; with

NRI(R ki 0) = A5 NR(R K 0) + AN P(R ki w), (233
where
! r
ARNR(R E>o V(k—k’ )fdre ik’ ff de dr’ <G°<R> +5 Rt 5~ (entw)
x GO(R) R/ — r_, R— L ka/ HA*(R k//) (2 34)
9)\# mpB 2' 2'6n (277)2 ot ' -
and
dk’ r’ r
ARIO=-5TS) ] RGP R g R g (et o)
=0 ) 2 2
X gy, GO R~ L R-Lie [(R’—R)'H]ZJ S AR (239
A 2 2'" (2m)? er .

Similarly, Afy N¥=AFNRg,,.
Using the diagrammatic rule mentioned above, we calcmzi{té'(R) which in general has four terms for the mixedand
d-wave superconductord,, NP =x1 A% NP it is easy to show that

dp
AREPRK0)=T X | s n VG (= pi (et ) G P(pien) A (Rw)
_VSN(O)I 2e’wp 1 1 ps i Ps
=2 ||" T ) TR T aa T g ) A (R, (2.363
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dp
ALYP(R K 0)=T X

o) 2 )277<R)VSG°(R>[—|0;—(en+w)]G°<R>(p;en)A §(Rw)(p5—p5)=0,  (2.36h
€= T

ALYP(R K 0) = TZ

e Va8 i~ (et )6V (pien) A3 (R, ) =0, (2:360
AAPRK0)=T S, zd:) V(K= ¢) (=P GO —p; — (e + @) 16 R(p; n) A% (R, ) (P~ P))
VeN(O) ([ 2e” 1) (1 i 1
YO 20 oo 2] e (5 s etz a0

where y is the Euler constantpq is the cutoff frequencyps=1/wT7s, p1=1277, ¢'(X) is the derivative of the
digamma functiony(x).

As for the results of ;NP =1 A} andaf NP =318 AF-NR  the second term in E¢2.27) can be dropped since
it gives a very small hlgher order correctlon due to the fact that the gap function usually has a temporal variation over a time

scale very long compared to the range of the Green function, thatrisg 1. Therefore, the details to evaluate them are the
same as the static caSet® Here we just give the results

Aty PRk w) = VS'\;(O)(%) Z[XZ,lﬂzA:(R;w'>+ %xl,zmi )AL (Rye")
W('(_l—':m(o)(”) D ATE=TI2)A% (Rio')+ xodTPAY (Riw")], (2.37
AFNP(R ki) = - %(T?l[tm—psm,o]A:(R;w'ms(re;w"m:(R;w'")
+xor %m} (R0 Ad(RiaMAL (Ri”) + 3 X85 (Ri )AL Ri ") A5 ]]

Vy(k2—k2)N(0)
—"MTV)Z[XZ A% (R )A4(R;0")A* (R; ™) +

1 ! n n
X217 5 X2,2} 1 (Rio")Ag(R; 0" A% (R;0")

3
7 X0Ad (Rio)Ag(Ri0MAF (Riw ]] (2.38

sensitive to the details of the spectrum. Following Ref. 7, we
wherev is the Fermi velocity, ang,, v is a function de- summarize here the diagrammatic rule for the evaluation of

fined as this part. In each diagram, the solidlectron lines forming
the upper part of the diagram correspond to the retarded
1 Green function G°®(p;e)=[e—&,+i/27,]" for those
Xmm’ = 2 7. (2.39 y '

lines with arrows to the right and 6°®(—p;—€)=[—¢

—& p—il2r]” ! for those with arrows to the left. The solid

lines in the lower part of the diagram correspond to the ad-

vanced Green functiot6°®(p;e)=[e—¢,—i/2r,]~ for
The anomalous part contains integrals of the products ofhose lines with arrows to the left and ®°™(—p;— )

the retarded and advanced Green functions, and is therefore[ —e—§_,+i/27,]" ! for those with arrows to the right.

n=0 (2n+1+py)M(2n+1+py)™

C. Anomalous part
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A A A
< % <
<
FIG. 1. Ladder-type diagram leading k6w,k). The momenta
. . . + + +

and frequencies for the soliglectron lines in the upper part ane D ® O
and e, and those for the solid lines in the lower part arek and T < Tex
€E—W.

FIG. 2. Impurity-averaged diagrams leading to the diffusion

The triangle and the thin wavy line represent the order paequation for*. The thick wavy lines correspond t¢w,k) shown
rameterA and the vertex interaction with the electromag- in Fig. 1. The thin wavy line corresponds to the vertex interaction
netic field, respectively. The dashed line corresponds to thwith the electromagnetic field. The triangle represents the order
impurity scattering. If the dashed line encompasses an evefframeter.
number ofA, a factor 1/2rm{N(0) should be assigned. If it
encompasses an odd number &f a factor 1/Zr7,N(0)
should be assigned.

As shown in Fig. 1, the staircase which is the summation
of the ladder diagrams, has a singular value. We denote itby ~ Q1(R;®)=Q®(R;w)+ Q" (R;»)+Q\”(R; )

The kernelQ, corresponds to the diagrams shown in Fig.
3 and is given by

| (»,k), which satisfies a ladder-type equation (2.42
with
(K= 5 N(O)
d
QP (Rjw)=— f P S[GP(p; )17 G" N (—p;—e)
X 1+f dpG°<R>(p;e)G°<A>(p—k;e—w)|(w,k)] (2m)

XG™(p;e)A, (RPAL(RP), (243

:21771N(O) 1+N©
dedoi2m QP(Riw) = — 5 f P coRpe)
xf f - . [(w,K) 2m7N(0) ) (247)2
(E_g‘l‘|/271)(€_&)+VF'k_|/2T1)
L X GOR(~p;—e)G*M(p;e)A,, (R,p)
~ 2a7,N(0 dp’ ) ,
77 N(0) Xf (ZW)ZGO(R)(F) ;€)GOR(—p';—e)
. (27i)d 612 K 24
XN | o=y, (@) (2:49 X GOA(p'; ) RE(R,p'), (2.44
Under the conditionor;<1 andvgkr;<1, we obtain QY (R;w)=— ! f dp’ [G'R(p’;e)]?
’ v 27mIN(0)) (277)2 '
l(w,k)= 1 , (2.41 XGO(A)(pr.e) dp [GO(R)(p.E)]Z
2m711N(0) (—lo+ Dk2)71 ! (21)2 '
where D=vZr,/2 is the difussion constant for the two- XGoR(—p;—e)A, (R,p)A*(R,p).
dimensional systems. In the real time and coordinate space,
| -1 is proportional to the operata/ gt—DV?2. It is impor- (2.45

tant to note that the denominator of E.41 can be very o ) .
small if wr, andvkr, are both small. This fact makes it Here fpr :'5|mpI|C|ty'of notation, the vortex renormalization
necessary to sum additionally diagrams containing arbitrarf@Ctor is included in the order parameter. For thevave
number of staircasedgw,k), separated by parts includiy ~ component, it is unrenormalized, i.d4=Aq; while for the

and A*. Under the assumptionA;<1 and 7;A;<1, we  swave componentA = 7R A, or A depends on whether
need only be concerned with those diagrams of the order ahe vertex connects only retarded and only advanced Green
A2, These diagrams together lead to the diffusion equatiofunctions or it connects a retarded and an advanced Green
for the vertex partd"* andI’~ as shown in Fig. 2. function.
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) M+M : ”*+M o \
1= 5 = +

@ (b) (©)
FIG. 3. Impurity-averaged diagrams for kerr@|. A andA* FIG. 5. Impurity-averaged diagrams leading to the anomalous
are both the vertex-renormalized order parameters in the upper pagart in the TDGL equation for order parametEF. are given by the
type of diagrams shown in Fig. 2.
In view of the specific form of theswave andd-wave
pairing states, we see that the contribution from sheave
andd-wave component is decoupled. Therefore, we obtain Q(3b>(R;w): dp

2777'2N(0)f (2m)2

R (p;e)

Qi(Ri@)=Q15(R;0) + Q1 4(R;w)
X GUR(—p;—e)G¥M(—p;—€)A,/(R,p)

i N(0) o
——T/TSAS(RJ» )AS (Riw)
dp’
« O(R) (7 - O(A) [ 7 -
- i N(0) A (Rew 1A% (R f(zw)ZG (p’;€)G°M(p’;e)
2(etiary toRi@)AIRw).

(2.46 XGYA(—p’;— e)A%(R,p'), (2.50

We can findQ, from Q; by merely replacing all explicit

_ ; dp
i'sby —i's ©)(R: ) — ~OR) (-
y Q3 (le) 27T72N(0)f (277_)2\j (pve)
OR)( _ e 0(A) (p ) A
’7T| TiN(O) XG ( p1 E)G (p76)Aw’(Rvp)
Q2(R;0)= ————Ay(R;0")A (R ) '
e—ilrg dp
Xf GY(—p";—e)G*M(p';e)
(2m)?
i 72N(0) o . B
+ 2(6_—”271)%('?,0) )AG (Rjw). (2.47 XGOA(—p’;—e)A*(R,p"). (2.52)
The diagram shown in Fig. 4 leads to The algebra gives
Q3(R;0)=QF(R;») + QY (R;») + Q¥ (R; w) 2mN(0) 73/ 75
(2.48 Qa(Riw)= ———F—Ay(R;01)AY (R;w))
e+ Ts
with
2wN(0) 72 AR @pA* (R @)
o AdRie)A§(Riwy).
Q' (Ri0)= [ 26" (pi 6~ i 2+ @r™]
(27) (2.52
X GO (p;e)GOM(—p;—e)
~ ~ From the results o), , 5 given by Eqs.(2.46), (2.47), and
XA, (R,p)AT(R,p), (249 (2,52, itis not difficult to prove the relation
B N e Qs(Riw)=—[Q;(Riw)+QuyR:w)].  (2.53
3 = + \\\ + /,,
@ ®) © -QN ¥ O
FIG. 4. Impurity-averaged diagrams for kerr@k. A is the
vertex-renormalized order parameter in the upper part&hdhe FIG. 6. Impurity-averaged diagrams leading to the anomalous

vertex-renormalized order parameter in the lower part. current density.
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In addition, the other three separate terms are as follows:

dp € E— Wy ~
oV (R)/ - OR)( _ e 0(A) [ - _ *
Si(Rw) f(zw)ZG (Pi)GT(—p;—€) G (pse)| tanhT —tanh—=—]4,, (R,p)AL, (R,p)
= L ostiz | TN ) 0adE (Riwg) + o O Ry wpd (R 2.5
= 57C0s 2T etiin s(Riw1) wrAS (R wp) 2etifzr) dRiw)wrAg(Riwy) |, (2.549
dp ~
N (R)( - 0(A) _ 0(A) *
S (R;w) J'(27T)2G (p;€)G™™M(— €)G"V(p;e) tanhz— tanh—)Awl(R,p)sz(R,p)
B 1 2 e | mmN(0) R A*(R: 77 N(0) A(R: A*(R: ”s
= 57C0s 2T e—ilr. Ag(Rjw1) wpA5 ( ’w2)+2(e——i/27'1) d(Rjw1) 0244 (Rywy) |, (2.59
and
dp € €e~o|
SN N (R)( - 0(A) (-
S(R;w) f(zr)z tanhz—_l_ tanhﬁ G"™V(p;e)G"M(p;e)ep,(R)
—Mcosh‘2 —iw)ep,(R). (2.56
T 2T 2T (WP :
Here we have approximated
tanh— — tanh—— ~ 2 25
anhy —tanh> 2TCOS 2T’ 257
whenw<<T.
From the results foR’s andS's, we obtain the diffusion equation fai*
P 1 3 2
——DVz)F —( + ~F+>— F‘}
(ﬁt 27 ZNO) 2, 5+2 QI |-Q;
1 H2 € ie d|Ag? ie Ag? . de
TATr O AT T @y .7 gér(2m)f ot
st A IAX A% aAS) (2"t [ 9Af *aAd>
E+r 2 S dt T at] oea(2ry -yt at T oat
—1 -1
Ts (27y) _
- A2+ —————— A2 (T +T7), 2.583
[62_{_7_5_2' S| 2[62+(27'1)_2]| dl ]( ) (
whereAg 4 and ¢ are functions oR andt. andI'* are funtions ofR, t, ande.
Similarly, the diffusion equation foF ~ is found to be
] 1 € ie J|Ag? ie 9| Ag|? de st IA¥ dAg
2 2 S D TP N *
(&t V)F AT 1C°Sh 2T[€+T ot +2[62+(2T1)_2] a2 2+ 1,2 AsTr ~As

(271 (A IAE dAg

— _A*
o[+ (2rm) 2]\ ¢ ot

1 -1
d at) l - |Ag%+ (2 |Ad|2](r++r)- (2.580

72 % 2+ (2m) 2

These two diffusion equations can be rewritten as
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(i—DW)(F* [)=-

icosT2(el2T)[ €  d|A|? € a|Ad|2]
at '

2Try | 4r,2 Mt [+ (2ry) 2

- - )__cosh*Z(e/ZT)I it &A;‘_A*% . (@)t (oA} *%)_Zieé?_(p
at 2Try 162_,_7_;2\ ° at ot 2[624—(27'1)72]\ 4 gt d gt at
27" (2r) "
_{62+—S7__2|AS|2+T|A |20 +T7). (2.59b
S

With the results of'*, the anomalous part represented in Fig. 5 is given by

47T|[ f
Jae

(=P~ e)G¥(p;e)G* M (p; A (RP)T, (R,€)

—p;—€)G"M(p;e)A% (RPITY (R,€)

-1

7:N(0) . e—iTg ™ . e+i7';l B
== VSAS(R,wl)Idf e+¢s‘2F“2(R’€)_ e+r;2F“’2(R’€)
N(O) =~ ~, = e—i(27) " +i(2r) ™t
_718 vd(kf(—kf/)A (R; wl)fdf Tll) >I* ( ,€)— eﬁ(zﬁrwz(ae) , (2.60

where® is a function ofR, w, andk.

D. TDGL equations for the order parameters

From Egs.(2.36), (2.37), and(2.38), and(2.60), by performing the inverse Fourier transform and comparing both sides of

the gap function foﬁ—independent terms and the terms proportionefdfte k2, we obtain the coupled TDGL equations for the
order-parameter components:

1 dAS(R,Y) . 1 1 s oy
_7ST+2<DS(RUA s(Rit)=2a A7 (R,t)+ T 2)(21HA (Rt)+4)(12(ﬂ —1II ) 3(R,1)
1 ’ * 2 b1 2A %
+(ﬁ) 2(x30~ PsXa0A% (RD[A(RD|“+2| x2.1— 5 X22 |A4(R,D[?AZ (R,1)
+X2,1A32(R,t)As(R.t)], (2.61
1 9A%(R,D) oo
ydT+2¢d(Rt)A q (R =agAj (Rt)+ [XoalIzA*(Rt)+X12(H —H{AS(R,1)]

LT3 0 A% (ROIAR I+ 2( 50 vy ALR.DZA% (R
+ s ZXO,3Ad( DAGRD[7+2| x21 7X2,2| (RDIPAF(RD)

+X2,1A§2(R-t)Ad(R't)] : (2.62



15030

Here y, 4 are two relaxation rates defined by

1 p
-1_ | = Us
Vs oY 2+2>‘ (2.63
and
1 1 p
-1_
Yo T 2T <2+2) (2.64
Two quantities® 4 are given by
D(R,1) iTlfd < TS_lF+(Rt )
L = 0 6 1 16
s 4 62+T;2
etirgt
- — T (Rt €|, (2.65
62+7'S
e—i(2 1) !
R,t ——f (Rt e
Dy(Rt)= (2 ? I ( )
».=+i(271)‘1r_(Rt ) (2.66
- t,e)l. .
€’+(27y) 2
Finally, the parameterag and a4 are given by
1 1 ps
as=— 5)—90 §+§}, (2.67

v
f(R1) =2ad AR+ agl Ag(R D+ —=

1
+ 7 x AT A(RDILAG (RO - T A(RDILAF (RO +c.clf +
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and

. Tedo 1 1 p;
ad——{ln T +lp(§)—l// z‘f'?

}. (2.68

T. and T4 are the critical temperatures of a clean super-
conductor, which are determined by

N(0)Vdn(2e”wp /7T e) =1, (2.69

and

[N(0)Vy/2]In(2e7wp /7T q0) =1, (2.70

with y the Euler constant andp, the cutoff frequency. In the
presence of impurity scatterings, two transition temperatures
are determined by the conditiong(T.) =0 and ay(T.q)
=0. It is very clear that the transition temperattig for the
s-wave order parameter can only be affected by the magnetic
impurity scattering while the transition temperature for the
d-wave order parameter is dominantly affected by the non-
magnetic scattering. The critical temperature of the super-
conductor is defined by.=maxXT.s, T.q}. We estimate that
as long as thel-channel interactiorvy is larger than about
three times thes-channel interactiorVg, the pured-wave
state is stable in the bulk systems without perturbations. The
phase diagram of such a system in the absence of external
fields and impurities has been previously studied in Ref. 18.
By introducing a formal free-energy density

2 1 * 2 1 * 2

1 2
ﬁ) { (X3,0— st4,0)|As(th)|4

3 2p; 4 2 2, 1 %2 2
+ gl Xo3™ 3 Xoa [AG(RDI*+(2x21— p1x2,2 | Ag(R,D[7]AL(R,1)] +§X2,J[Ad (RDHAS(R,Y)
+A§2(R,t)A3(R,t)]] (2.7
the TDGL equation$2.61) and(2.62 can be written in a compact way

1 9AY(R,t) o (ROA*(R 1) Sf(R,1) _—
— o 2P ROAIRY = (2.723

L 8GR 20 4(R,1A%(R _ KR 2.72
')’dT+ a(R,DAG( ’t)_Td' (2.720

Il. TIME-DEPENDENT CURRENT AND CHARGE DENSITY
A. Current density
The expression for current in “imaginary” frequency space is given as
e 2e?

J(X, 7)=— E(VX—VX/K(()‘G(XT;X’ O x— WA(X,ﬂ(&G(Xr;XrO*)), 3.1

where(G,5) =(Gup -G° ap) =(0G) 3,5 with G4 defined by Eq(2.10 and the factor 2 arises from the spin sum. Using the
similar technique for the gap function, we can divide the current into the normal and anomalous parts, that is,
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J(R)=INR)+IA(R,1). (3.2

The normal part is given by

INR)=

) E dr’dr’ dRHdrrr[e i((R"=R)-II* +(r'—r)- VrA (R r)][el(R" R)-II+(r"—r)- VrA* R r)]
mi

en=0
XGOR(R"=1"12R"—1"12;— €,) VAGR(R+1/12R"+1"12;€,) GXR(R"—1"12R" — 1" 12;€1) }+ 0
et i((R"—R)-II* +(r"—r)-V R’—R)-I+(r"— *
—| = dR’dr’dR"dr"[e R\ ~R-IF+ (' =) Vi p (R,p)][e/RmRAFIT=0- VA% SR
en<0
XGUAR"=1"2R" —1'12;— €,) VG M (R+T12R" +1'12;€,) GON(R"—1"12R" —1'12;€1)} 0. (3.3

The computation of this part is the same as the static'ed%and we give as a result

N eEFN(O) * * 1 * 1 *
Jo(R)=———515x2245 (Ri0) I* A(R; w1) + 7 X088 (Riw) IT* Ay(Ri w1) + 7 x1 A A (R @) I Ay(R; w1)
m(7T)% 2 4 4

A (Riw) T A((R;w1)] e~ [A(R; wZ)H;Ad(R; w) A (R; wz)H;‘ Ay(R;w1)]e 1 +c.C. (3.9

Hereg, , is the unit vector along the(y) direction.
The anomalous part is represented by the diagram shown in Fig. 6. The contribution from the first term is

AYR)= fd tanh— — tanh — de”
( mi/ 4 € hz_ 2T

XV [GOR(R+r/2X";€)GOM (X", R—r/2;€)], 0o

- (rzne|)4 Jde

X GY(py;e)

e
~eg,(X')+ aAw<x">-va}

€T ow , [ dPdpy OR)( 1 -
tanhz——tanhWde fWG (p1;€)

e H " H 1"
—egow(X")—F EA(»(XH) P2 Vr[elpl-(RJrr/fo )elpz-(X 7R+r/2)]ra0

- (ﬁ);lfdf

X G (p;e)p

tan tanh — fdx”fd—pGo(R)( [€)
hz_ 2T (21)2 P.€

e

=—a[—iwA,R)], 39

whereo=N(0)e? v,:Tl 2N(0)e?D is the normal-state conductivity. Here we have used the integral

f de—cosh 2 ¢ =2 3.6

Similarly, the contribution of the second term is given by
IAR)=~ (m|>4 If def dX'[~T 5 (R,&) ]V [GOP(R+r/2x";€)GOM (X", R—1/2;€)]; o
=— —Vf del'} (R,€)

= 4Ierde[F (R,e)+T,(R,é)]. 3.7
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By performing an inverse Fourier transform to E(&.4), (3.5, and(3.7), we obtain the current in real time

J(R,1)=J,(R,1)+J(R,1). (3.9
Here the normal-state current is given by
~ dA(R,1)
J(Rt)=—0| Vo(R,t)+ Famt (3.9
where
BRO= 12 [ del (R +T (Rt.e)] (3.10

can be considered as the effective electrochemical potential for quasiparticles. The supercurrent is given by

eE-N(0)(1 1 1
Js(R,t)= W 2X21A*(Rt)H*A (Rt)+4XoaAd(Rt)ﬂ*Ad(Rt 4X12[A* (ROITFA4(R,t)

AS(ROITEA(R DI —[AX(ROITEAL(R,D)+AL(ROITEA(R, D]y f +c.c.

~ N(0) SF(R.Y)

4 oA 313
B. Charge density
The charge density in the “imaginary” time space is defined by
p(X,7)=—2&(G(x7,x7")). (3.12
After the analytical continuation, we have
Pu(X)=—28T2 G (XX)=ph(R)+pl(R), (313

with

1
ph(R)=(—2e) mf detanhZin dxi[ — e, (x) IIGP P (X, X1 ; €+ ) G¥P(x,X; €) = GOM(X, X1 ;€) GOP (X1, X; €~ w)]

—(- 2e>T[E ®_(coRp etz 3 f dp [G°<A><p,en>]2}

=0 J (2m)? =0 J (27)?
1 1
=—e2N(0)qow(R)fdg[[Pﬁﬂ%f) + —Pﬁ+5(§)“
=—2N(0)e?¢(R), (3.14

and

. - _ €E— W o " Y.
Pu(R)= (m|)4 J de tanhz— tanhoT )fdx[ €@ o(X")+eAL(X") Pyl
X[GUR(R+r/2X";€)GM(X",R~1/2;€)];_q

€)G*M(p,e)

= mfd [T (R,e)+T,(R,e)]

=2e°N(0)¢,(R). (3.19
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After an inverse Fourier transform, we have the charge derparameter with four-lobe structure is induced near dhe

sity in real time space wave vortex core, and the overall structure of an individual
~ vortex is fourfold symmetric. Numerical simulatiGnyhere
p(R,1)=2e?N(0)[ ¢(R,t)— ¢(R,1)]. (3.16 the same relaxation ratey{= y4=y) was assumed for two

components, showed an intrinsic contribution to the Hall
angle caused by the lack of complete rotational symmetry in
d-wave superconductivity. In the casg> ,, we could have
vs<7y4 and thed-wave order parameter relaxes much faster
IV. DISCUSSIONS AND SUMMARY than thes-wave component. Under this condition we expect
Combined with the Maxwell equations, which couple that_ thes-wave component will not be able to follow the
and ¢ with J andp, Egs.(2.72, (3.9), (3.16), together with motion pf the d-wave vorFex and novel phenomenon may
Egs. (2.59 constitute a complete set of coupled time-@Ppear in the flux dynamics. Even wheql; and 7T are
dependent Ginzburg-Landau equations, which are our maiRoth small, the conditionyy=ys used in Ref. 5 would
results. Several features of the above results deserve speci§fiuire the assumption that the non-spin-flip interaction
attention: It is well known that depairing afwave super- U1=0, which as judged from the studies on conventional
conductors are due only to magnetic impurities. HoweverSWave superconductofsmay well be not justifiable.
nonmagnetic impurities can have direct depairing effects on In summary, we have derived the TDGL equations for
unconventionald-wave pairing state. Similarly, the relax- Superconductors with mixed-wave ands-wave symmetry
ation of theswave order parameter is influenced only by a@ssuming a weak gapless condition for both types of order
magnetic impurities. Therefore, the magnetic impurities afarameters. From .thIS derivation, the unknown qoefﬂuents
pair breakers are essential in the derivation of the correfor the TDGL equations postulated phenomenologically have
sponding TDGL equations for conventionas-wave been ascertained. This set of TDGL equations can be used as
superconductors.However, nonmagnetic impurities acting the starting point for the study of the vortex dynamics in
as depairing centers can directly affect the relaxation of théuperconductors with the mixeti ands-wave symmetry, or
d-wave order parameter. Interestingly, for a mixgédand €ven extended to study other transport coefficients. In par-
swave symmetry superconductor with a high concentratiorficular, the issue of how the dynamic properties of vortices
of magnetic and nonmagnetic impurities such thgf,<1  ar€ mflue_nced by the_admlxture of an inducedave com-
and 7.T.<1, we haveyglwrl, ,}/;l% 7. In this limit, ponent with the dominand-wave component of the order

the TDGL equations for the order parameters, H8s72a parameter as well as their different responses to the impurity

From Egs.(3.8), (3.16, and (2.59 follows the continuity
equationV - J+ dp/dt=0.

and(2.72b, become scatterings can be studied systematically. The TDGL equa-
tions for d-wave superconductors with on-siavave repul-
J .~ . Sf(R,1) sive interaction can be similarly obtained by using the Pade
—7g o T2ee(RDIAS(R)=—+—, (41  approximatiorf, and we find that the main conclusion of the
S present paper still remains unchanged. This result together
9 5 StH(R,1) with a detailed derivation will be presented elsewhere. Fi-
-7 E+2ie<p(R,t)}A§(R,t)= Td (4.2 nally, we remark that the present derivation has not included

the effects of electron-electrdactually hole-holg electron-
where the coefficientas, ay, andyxy , can also be simpli- phonon, and electron-"any magnetic excitation” scatterings,
fied, but are not explicitly given here. which might be more important in highz superconductors
These set of TDGL equations valid under the strong gapthan in conventional lowr, superconductors. Whereas such
lessness conditions are similar in form to that postulatednelastic scatterings are far from being easy to incorporate
phenomenologicalfexcept that the relaxation parameterswithin the present framework, we think that their dominant
obtained here arg, (=7;') andyy (=7;%) and the usual qualitative and perhaps semiquantitative effects can be taken
scalar potentialp is replaced by the electrochemical poten-into account phenomenologically by adding a termelto
tial p. Therefore, the phenomenological TDGL equations ardn€ diffusion op_erat_oﬁ/at—DVZ, where 7 stands for an
at most valid when the superconductor is very dirty with alsonelastic relaxation timéassuming that the weak gaplessness
a high concentration of magnetic impurities. If the superconconditions are still satisfigd Consistent with such an ap-
ductor is doped only with high density of nonmagnetic im- Proach one should regard and 75 as effective, including
purities (> 7;), the TDGL equation(2.72h for d-wave also some effects of the inelastic scatterings.
component is reduced to E.2), while the relaxation pa-
rameter involved in the equation ferwave component be-
comesy; '~7/4T,. In this case,ys<vyqy and the TDGL J.-X.Z. thanks L. Sheng for helpful discussions. This
equations for both components are quite asymmetric. Of pamwork was supported by Texas Center for Superconductivity
ticular interest, ifT << T<T.q, due to a mixed gradient cou- at the University of Houston and by the Robert A. Welch
pling of the s- and d-wave components, thewave order Foundation.
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