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Long-wavelength anomalous diffusion mode in the two-dimensionaXY dipole magnet
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In a two-dimensionaKY ferromagnet the dipole force induces a strong interaction between spin waves in
the long-wavelength limit. The major effect of this interaction is the transformation of a propagating spin wave
into a diffusion mode. We study the anomalous dynamics of such diffusion modes. We find that the
Janssen—De Dominics functional, which governs this dynamics, approaches the non-Gaussian fixed point. A
spin wave propagates by an anomalous anisotropic diffusion with the dispersion reladie Ay and
iarka*, where A, =47/27 andA,=47/36. The low-frequency response to the external magnetic field is
found.[S0163-18207)03329-9

[. INTRODUCTION be substantial not only in the critical region, but also for the
hydrodynamics of liquid crystdl§ and for the charge-
The notion of the ground state and independent elemerdensity-wave phason modes interacting with impuritfes.
tary excitations lies in the background of condensed-matteFhe excitation spectrum of these systems is reconstructed by
theory. The excitations, such as electrons, holes, phononsffects of strong interaction.
excitons, spin waves, etc. normally have a propagating, Here we present a solvable and experimentally feasible
wavelike nature. In a homogeneous medium they are charagituation where the strong interaction between spin waves
terized by their momentum or quasimomentpnand their Igads_to the replacement of the propagating spin wave by_a
energyw. Each kind of excitations has its specific dispersiond'ffus'o.n bl appearance of & new S.Oft mo_de n
relation or spectrumo=e(p). A wide scope of physical a certain range of momentum. T_h|s is the two—dlmenspnal
: - - (2D) XY ferromagnet with dipolar interaction between spins.
problems can be solved assuming the excitation to be ind

d deri heir i ) € The spin-diffusion mode appears naturally in the para-
pendent, or considering their interaction as a weaky gnetic phase and in the vicinity of the Curie pdinwve
perturbation: However, in recent years more and more pmb'consider, on the other hand, a low-temperature ordered

lems have occurred to go beyond the simple picture of nonphase where no diffusion is expected but rather a propagat-
interacting or weakly interacting excitations. In his pioneer-ing and weakly dissipating spin-wave mode.
ing work Migdaf has indicated that electron-phonon “|n 4 2D XY ferromagnet at low temperatures the dipolar
interaction is not weak in a narrow range of energy, leadingnteraction is relevant in the long-wavelength limit, even de-
to a strong renormalization of the Fermi velocity and even tospite the low density of spin waves. It was shown by one of
an instability of the Fermi surface. the author¥ that dipolar force induces an anomalous aniso-
Recently a growing number of physical systems revealedropic scaling of spin-spin correlations in the ordered phase.
excitations which bare spectrum, obtained from linearizedn this article we find an analogous dynamical scaling.
equations of motion, is strongly distorted by interaction with  This paper is organized as follows. In the next section we
vacuum and thermal fluctuations. A few recent examples aredefine the model and describe the spin-wave spectrum. In
the so-called marginal Fermi liquid, in which electrons inter-Sec. Il we discuss the dynamics of tK&' magnet with the
acts via transverse magnetic-field fluctuatidrand »=1/2  dipole interaction and formulate the perturbation expansion
state of the fractional quantum Hall effect in which initial for the model, using the Janssen-De Domitidgchnique.
electrons transform into quite different fermichs. Section 1V is devoted to the solution of the Dyson equation.
On the other hand, many years ago, the mode-mode intefrhere we find the self-induced dissipation of the spin waves.
action has been recognized as a necessary element of theSec. V the renormalization of the diffusion mode is con-
critical dynamics~’ Particles, heat and spin diffusion must sidered and the anomalous anisotropic exponents are found.
be considered as hydrodynamic modes in the longin Sec. VI the dynamical susceptibility is found. In conclu-
wavelength limit, as well as propagating waves, such asion we discuss prospects of the experimental observation of
sounds, spin waves, etc. Their interaction has been proven the anomalous modes. In Appendix A we use the Ward-
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Takahashi identities to prove that the vertex corrections ardard way'’ The short-range part renormalizes the single-ion
small. Details of the Dyson equation solution can be found irspin anisotropy and favors in-plane spin orientation. The
Appendixes B and C. A brief report on main results of thislong-range part of the magnetic dipole energy is conve-
article has been published earltér. niently expressed in terms of the Fourier transf@pof the
local magnetization fiel®(x),
Il. THE HAMILTONIAN AND THE SPIN-WAVE
SPECTRUM ) (SKI(S- k) @
. - P2% IN
Spin waves are fundamental excitations of the exchange
magnet with spontaneously broken continuous symmetryThus, the total magnetic Hamiltonian is
According to the so-called Adler principté,the interaction
between spin waves vanishes in the long-wavelength limit. H=HgxatHaip- ®)
At low temperatures the equilibrium density of spin waves isThe dipole forces are crucial in the long-wavelength limit.
relatively small, and a long-wavelength nonequilibrium spinynder the scaling transformation the short-range exchange
wave, excited by an external source, decays into other spifyteraction scales liké 92, whereas the dipole force scales
waves or scatters on an equilibrium spin wave slowly. Thusjike |2d-3 \whered=2,3 is the spatial dimension of a mag-
the dynamical properties of the exchange magnet are detefet andL is the scale. The dipole energy is characterized by
mined by the well-defined spin-wave mode. It also meangne dipole constang and the exchange energy is character-
that the imaginary part of the poles of the dynamical re-izeq py the exchange constahtNormally in ferromagnets
sponse function becomes. m.ugh smaller than their real part &9 1is much smaller thad (a is the lattice constant
the wavelength grows to infinity. . However, as the scaling transformation shows, beyond the
, The 2D exchange magnet with Fhe easy?plar.\e anisotropYharacteristic scaleg~ (J/g) in 2D andL4~ yJ/g in 3D the
is described by the following classical Hamiltonian: dipole interaction dominates the energy of a spin wave.
In the 2D XY ferromagnet, the dipole force stabilizes the
_gG:U“BJ' d?xSH, long-range ordet® According to the Landau-Peierls-
Hohenberg-Mermin-Wagner theorefsee, e.g., Ref. 29n
@) the absence of a long-range interaction the 2D magnet with
whereld is the exchange coupling constantjs the strength  broken continuous symmetry exhibits the algebraic decay of
of the easy-plane anisotrop £ 0) ® g is the dipole inter- the spin correlations instead of the long-range order, and the
action coupling constanti is the external magnetic field, infinite susceptibility at zero magnetic field. Thus, the dipole
g is gyromagnetic ratioug is the Bohr magneton and the force plays a special role in 2RY ferromagnet. In addition,
field S(x) represents the local spin of the magnet and can bge dipolar force is crucial for the spin statics and dynamics

) VSZ+)\ 2
5( ) Esz

HExA[S]zf d?x

normalized by a constraint in the ordered phase. In contrast to the 3D ferromagnet,
) where the spin waves are almost free, in 2D the interaction
S (x)=1. (2)  between spin waves induced by dipole force is dominant in

In what follows we consider very large distantes 1umso e long-wavelength limit.

the Ruderman-Kittel-Kasuga-Yosida type interactions being '€ Hamiltonian() has two different scales: the anisot-
nonsingular on such scales are includedin ropy scaleL,=J/\ and the dipole length.p=J/g. We

The magnetic dipolar energilg; is represented by the assume that the anisotropyis large compared to the dipolar
sum: energy La<Lp). We direct they axis along the net magne-

tization of the magnet and the axis perpendicular to the
(3.51.)_3(3.;)(51.;) plane. The unit vector fiel& can be represented by two
, () scalar fieldsp(x,t) and 7(x,t)

g
Hdip_ E><i§xj |Xi _Xj|3

where v is a unit vector pointing fronx; to Xj, S=9(x), S=(—V1-msing;1-mcospim), ©)
andg=2m(ggugSa 2)? for the square lattice; for other lat- where bothmr and ¢ are small due to the fact that the dipole
tices g=2m(gsugSc)?, whereo is the inverse area of a force stabilizes the long-range order.

plaguett of the lattice. The magnetic dipole energy can be With the precision to the fourth power @b and = the
separated into a short-range and a long-range part in the staHamiltonian(5) is

1
o= 2 [ [ | mbud s irmem

_ 43 2 _ 43 2
+g(kx(¢k,w ®k,o!6) T Ky[ 912k ) (Ki( Pk o ¢—k,—w/6)+ky[¢/2]7k,fw). @

||
Here ¢ , and =, are the Fourier transforms of the fields(x,t) and =(x,t) respectively. We expanded the in-plane

magnetization components egbsnd sinp up to the fourth power in small spin fluctuatioss We take the uniform magnetic
field H to be directed along thg axis andh=ggugSH. The Fourier-transformed quantities are defined by
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(x,t)= ff br,o€ Y, ®

j J J j d’k do
(2 77) 2
is used and ¢%/2] ,, denotes the Fourier transformation ¢f(x,t)/2.
The interaction between the spin waves is described by the nonquadratic part of the Hamilf@nian

where an abbreviated notation

Hint:f f f(K1.K2,K3) b, 0, Pk, 0, Phy 0, O(Ki T Kot K3) 81+ w2+ w3)
ki, kz kg wy,07,03

- | 0K K Ko Ka) B o Br o iy sy 0, DK+ Kt Kt k) 83 + g+ 03 w0g), (9)
kl kz k3 k4 wl w2 w3 w4

where the three-leg bare vertéfk, ,k,,k3) is

3

k2 @2
:fk<ak§¢k¢k+a 1|ky| dd- k+2W |k | d’k[ }_k

g k
f(ky,ka,ka)= 3 (10 62 [ 42
= 2
et [2][4] ) w9
and the four-leg vertex is defined as Kok

wherea=\J/g, w?= \/g/J% and we have taken into account

g 4 (Kiy+Kjy) 2= (kix+ kJX)2 that for smallk one can substituték| -k, [see Eq.(12)].
9(ky,Kz,k3,ke)= 24|>§]: N ki + K| Requiring that the Hamiltoniafil3) does not change under

(11)  scale transformationk,—Iky, ky—I gkx, P — | ?bd;k,

a—l%a, w—I2"w, we find the bare exponents®=3/2,
AJ=0,A)=—-9/4, AO 1/4 (where we have taken into ac-
Nevertheless, the interaction between spin waves asymptotj- rount that[¢2/ 2] has one%%nore integratiprNow, according
cally vanishes in the long-wavelength limit for a 3D o the standard procedutewe introduce the renormalized
magnet® No renormalization of the bare correlator field and chargesp?=Z,¢%, a=Z,ag, W_ZXVJM]-MVVR!
where u is the scale at which the dimensionlesg is ob-
T served. The second term in the Hamilton{@3) is nonana-
K(K)=(8Sx(k) 8S,(— k)>:<¢k¢—k>:m lytic at small momenta. It means that there can be no correc-
X (12) tions to this term in the regular perturbation expansion.
The symmetry group consists of simultaneous rotations of
appears in this limifwe seth=0). the coordinate system and spins. In Appendix A it is shown
In 2D the situation changes drastically: the interactionthat, due to this symmetry, there is no correction to the third
grows with the wavelength, resulting in strong renormaliza-term either. Hence, we can establish the relations between
tion of critical exponents. To show the difference we calcu-the renormalization coefficients:
late the upper marginal dimension of the Hamiltoni@

The verticeg10) and(11) decrease as the momentlngoes
to zero. Besides that, these vertices are singulak|at 0.

Let us consider an arbitrary diagram from the perturbation Z,'24=1, (14
expansion of some correlator. In order to add an internal line
to such a diagram, we need to add three bare correlitors Zi/zzwul"‘:l. (15

given by Eq.(12), two verticesf and one integration over L . .
dk,d(®- ”k (this particular method of regularization is cho- In the renormalization-grouRG) scheme the dimensionless

sen in order to preserve the rotation symmetry which will bechargew reaches a finite value at fixed point and determines
considered in the Appendix A in detpilFrom Eq.(12) we  all the critical exponent, similar to the standard procedure
see that for small momenta, ~ k32 andK~k; 2 Equation with the dimensionless four-leg vertex in the thegry The
(10) givesf~Kk, ~k3’2 Hence, requmng the one-line inser- reader can check this fact and find the fixed valuevoiih
tion be dlmen5|0nless we obtain-(32)+2.3/2+3/2 Sec. V. Here we skip the calculation to avoid repetition.
+(D—1)=0 orD=5/2. It means that the theory is renormal- Since wgr=const in the fixed point, one finds
izable inD<5/2. It turns out that in the static 2D case the Z,,~ (A/ux)Y* whereA is the scale at which the coupling
critical exponents can be found exactly. constant equalsw. Introducing the critical exponents
Following the work'? we rescale the field>— ¢?/\Jg  Z,~A?*¢, Z,~A"a, we find from Egs.(14) and (15) that
and rewrite the Hamiltoniaf7) in a slightly different form: A ,=—1/12 andA ,= — 1/6. Demanding that the first and the
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second terms in the Hamiltonid3) have the same dimen- s dominated by the dipolar interactioa(k)~ c+/poksiné,
sions, we findA,=4/3. Finally, from the Callan-Symanzik where ¢ is the angle between the direction of the spontane-
equatior’,’ the long-range limit of the two-point correlation ous magnetization and the wave vector. This range of mo-
function can be found: menta will be called dipolar shell[§ shel). The effect of the
0 83\ 1/ 43 presence of the dipolar force in the 20Y magnet is not
KOO =0+ 1y a1y, limited to the change of free spin-wave spectrum. As we
where f(x) is an arbitrary finite function. The dynamical have mentioned earlier, it leads to strong spin-wave interac-
properties of the magnet, however, are still to be found. tion and to a crucial transformation of the spin propagation.
In the conclusion of this section we draw the readers at- Without dipolar forces the dynamics of the 20¥ ferro-
tention to a type of critical behavior appearing in the consid-magnet is well described by noninteracting spin waves. The
ered model. It displays the scaling behavior everywhere behigh level of fluctuations leads to a strong temperature de-
low the transition point. It happened earlier, for example, inpendence of the dynamic spin correlators, which have alge-
the XY model with short-range interaction. The scaling isbraic character, just as static orfé$® The renormalized
caused by a fluctuating Goldstone mode. This situation i$wo-point spin-correlation function features the pole with the
characterized in the renormalization-group theory as a line ofemperature-dependent power exponent. The dipole force
fixed points. However, unlike the classicdlyY model, the suppresses such strong spin fluctuations, but not entirely.
XY model with dipolar interaction produces fixed critical ~ In addition, the dipolar interaction induces decay pro-
exponents, independent of the point of line. In this respectesses. As a result finite spin-wave lifetinh€k) or the
our theory reminds us more of the theory of critical points.width of the levelb(k)=T""(k) appears. In 3D at low tem-
The reason for this intermediate behavior is that the criticaperature and at small momentuyky, the widthb(k) is much
fluctuations on large distances are governed by the singulamaller thanw(k). In 2D, however, the interaction is essen-
dipolar interaction, and this singularity is not renormalizedtial and must be considered seriously.

by the thermal motion. To take into account the dissipation induced by thermal
fluctuations at a temperatufle we introduce a phenomeno-
ll. THE DYNAMICS OF XY MAGNET logical dissipation functiona*

In this section we introduce equations of motion for the ) .
magnetization, describe the path-integral formulation of the RW]:J dtd*>xd®x'R(x—x") ¢p(x)p(x).  (20)
problem and establish an approximate form of Dyson equa-
tion which governs the nonlinear dynamics in the low- Eliminating 7 from Egs.(17,18 and adding a proper dissi-
frequency range. pation term, one obtains the following equation &fx,t):

At T=0 the classical magnet with the Hamiltoni&®),

obeying the constrair(®), follows the Landau-Lifshitz equa- 1, 1, OHint oR
tions (see, e.g., Ref. 21 N P(xH)= I (k) ¢(w.k) t+5q§(x,t) +5¢(x t)
X, )
IS(x,t) oH + n(x,t) —h(x,1), (21)
Sh p _S(X’t)X5S(X,t)’ (16

whereh(x,t) is the external magnetic field, and the interac-
whereS is the absolute value of a spin localized on a mag-ion part of the Hamiltonian is determined by E§). We
netic ion. In terms of the canonically conjugated fietdsnd have introduced the random noisgx,t) in Eq. (21). The
¢, EQ. (16) can be rewritten in the Hamiltonian form: noise, in effect, generates dissipation. We note, that on scales
under consideration the anisotropy destroys spin conserva-

7Som(x,t) = ’ (17) tipn in the Xy plane first, and on even larger di_stances the
Sp(x,1) dipole-dipole interaction destroys the conservation of zhe
projection of the spinsee also Ref. 24 As usual, the ran-
H dom noise is assumed to obey the Gaussian statistics. Its
~hSABxH= Sm(x,1) ~AmD). (18 correlation function is determined by the fluctuation-

. o , _ dissipation theorer®
In the harmonic approximation equatiofis7,18 imply the

gi(;stpersion relation for the spin-wave md@lién a XY mag- (men—)=2TR(K). (22)
Here R(k) is the Fourier transform of the function

) " R(x—x"). The dissipation in the exchange ferromagnet van-
k +p0m , (19 ishes in the long-wavelength limi® R(k) = bk In 2D XY
dipole magnet the dissipation does not vanish in the long-
wherec=\J is the spin-wave velocity ango=g/J. The  wavelength limit.
out-of-plane anisotropy affects the dynamics in the long- We emphasize that the finite lifetiiéis determined self-
wavelength limitk<p, =/\/J considered in this article. consistently by the processes of the decay and scattering of
Thus,p, is the upper cutoff momentum in our theory. A spin spin waves. We neglect the spin-wave-electron and spin-
wave with k>pg has the phononlike isotropic spectrum wave-sound interactions. The first interaction is not weak,
e=ck. The rangepy<k<p, will be called acoustic shell but the Fermi velocity is much higher than the spin-wave
(A shel). At lower momentgp<<p, the spin-wave spectrum velocity and the spin-electron interaction is not effective for

2
e2(k)=\

K
2, 4 X|_~2
Jk +g|k|) c
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long wavelength. Even the sound velocity can be muchollowing the standard dynamic field thed®® upon aver-
larger than the spin-wave velocity, since the latter is proporaging over the noise distribution and introducing auxiliary

tional to _small\/X: _ ~ response fieldp(x,t), one can reduce the solution of the
Our aim then is to calculate the linear-response functiorstochastic differential equatioi21) to the calculation of the
G(x,t) to a weak external fielth(x,t) [see Eq.(21)] aver-  dynamical partition function:

aged over the thermal fluctuationg(x,t). We apply the
Janssen—De Dominicis functional methddo reformulate R R
stochastic equatiofi21) in terms of the path integral. The Z[j,j]=f D[ 1Dl p]
probability distribution for the noisey(x,t) is
1 ><exp( ., +jd2xfdt“+' ) 24)
W[n]%X;{—ﬁf dzxdzx’f dtn(x.t) g b, 9] [1o+i¢]] (
and its derivatives over the currejtandj. Here 7( ¢, ¢) is

XR™Y(x=x")p(x' 1) /. (23)  the Janssen—De Dominics functiofdDF):

H
T b, ¢]—f dx fdz ’f dtd(x, ) TRX—X") (X', ) — p(X',t) atd>(x t)o(x" —x)+ H(x )5(x’—x)
+R(X"—X)d d(X,1) |. (25
By differentiation of the JDF ovej andj one can obtain any correlation function.
From the quadratic part of the JDF one finds the bare propagator:

& 0 Gg (w,k) o6
| Go(@,k) Do(wk) ]’ (20

where we define the bare dynamical response and spin-spin correlation function as follows:

G k)= A 2
0((1), )_ Ez(k)_ith(k), ( 7)
2TAR(K)

Do(w,k)= (28)

[w?— €2(K)]°+ w\?R%*(k)
They obey the standard fluctuation-dissipation relatbp=2T/wIlmG,. The same relation is correct for the total dynamic
correlationD (w,k) and the total linear-response functiG{w,k):

2T
D=—ImG.

w

The anharmoniginteraction part of 7 is

H
2 ¢wk5¢ =2, bui 32 D F(Kka Ka) i, o, by g K H Kot ka) S+ @t 03)

@, wy,03 Kp K3

+4 2 ) ;k 9(K,K2,K3,Ka) i, 0, Py 05 P,y 0, O(K T KT K3+ Kg) S0+ wot w3+ wy) | (29
W2 ,w3,wy4 Kp,K3,Ky4
|
We define in a common way the self-energy operator R 0 G*(w,k)
2(w,k) by the relation = Glwk) D(wk) ) (32)
Gfl(w,p)zégl(w,p)—i(w,p), (30 andG(w,k) andD(w,k) are the complete response function

and correlator, respectively.
where The self-energy(w,k) satisfies the Dyson equation:
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G(®, p)

r P E(Q,q)=18>\3Tpr f2(p,d)D(w,p)G(w+Q,q—p).
(35

IV. SOLUTION OF DYSON EQUATION: SOFT MODES
D(Q+w, p+q) . . .
» > 9 In this section we solve Dyson equati@6) for the spe-

cial conditions formulated below. They include low-
temperature, low-frequendyvave vectoy and weak dipolar
interaction. We notify the real and the imaginary part of the
self-energy term asd=a?(w,p)—iwb(w,p). Thus, the
Green function(30) reads

G Y w,p)=w?—€*(p)—a%(w,p)+iwb(w,p), (36)

while the spin-spin correlation function is

b °

FIG. 1. (a,b The main contribution to the self-energy. The func- b(w,p)
tions G andD are given by Eq(31). The three-leg vertices ifa) D(w,p)=c72——2 5 55
and the four-leg vertex ifb) are from Eq.(29). (c) Two-loop cor- [0~ €(p)—a™(w,p)]"+ 0 0%(w,p)
rection to the self-energy. Momenta of internal lines are indicated(we have slightly changed the definitions Gf and D and
referred the factor/2TAS to the vertex

We employ the reduced temperature T/47J and the
ratio g/\JAN=po/\/J as small parameters. The latter
R means that thed shell is much larger than the shell. We
XG(w—Q,k—p), (32)  also use the notatioh=In(y/IN/g).

The main contribution to the self-energy is given by the

where A(p,k;w,Q) is the full vertex andAo(p.k;@,Q) IS one-joop diagrams shown in Figsal and Xb). Our theory
the bare vertex which can be readily found from the interacyg \/5jig only if the temperature is small:

tion part of action(29).
Further we consider a limiR(k)— +0. According to the tin(\JIN/g) =tL<1. (38

fluctuation-dissipation theorerfFDT), the matrix i(w,p)
must have a form:

(37

$(0.k)=g fﬂ fpém,p)Ao(p,k;w,mA(p,k;w,m

The functions b(w,p) and a(w,p) are even in both

arguments. The imaginary part of the self-energy is odd in
2T 1 w: Im3(Q,q)=-0b(Q,q). Hence, the equation for the
mlmi(a},p) XE*(w,p) dissipation function reads

Mop=| . (39 b(Q,q)=97\3TJJfz(p,q)D(w,p)D(erQ,q—p).
xE(w,p) 0 pJo a9

where the self-energy functidh(w,p) is associated with the The integrand in Eq(39) is positive. Thus, the main contri-
complete response functioB(w,p) by the same relation- bution tob(£2,q) comes from the region where poles of the
ship: two D functions coincide. The functioB (w,p) has poles at

w=~*¢€(p) in the A shell. Following the terminology of the
. 1 1 field theory, we call the surface®= €%(p) the mass shell.
G (w,p)=Gy (w,p)—XE(w,p). (34 The self-energy in thed shell is small as it is shown in
Appendix B and we neglect it. Because the dissipation
In Appendix A we show that the full verteA can be ap-  small, theD function can be represented as a sund éfinc-
proximated with a good accuracy by its bare val(e,p) in tions:
the low-frequency range. In this respect our theory is similar
to the Migdal theory of the interacting electron-phonon T
systen? In the Migdal theory the simplification is due to a D(w,p)%Z T(p)émwt)' (40
narrow scale of the energy shell in which the interaction -
proceeds. In our theory we assume that the frequency of spihere Aw.=w* e(p) (Ref. 26 measures the deviation
fluctuations is small instead. Under this condition the two-from the mass shell. After integrating out from Eq.(39)
loop corrections are small, and the diagram in Fidp) ton-  with the D functions from Eq.(40), we recover the Fermi
tributes to a negligible change of the spectr(#8).?° Such  golden rule for the probability of the spin-wave decay and
neglect of the two-loop diagramertex correctionwas a  scattering processes.
major assumption in the so-called mode-coupling metfibds.  Looking for the long-wavelength quasiexcitations, we
This approximation serves well in the theory of the 3D criti- need the self-energy at very small momenqt&py, which
cal dynamics with the dipole force being included. Later wewe denote as,. We anticipate the quasiexcitations to be
prove this assumption for 2D. Thus, the Dyson equation foisoft: (1 <<cq. Here we restrict the quasiexcitation wave vec-
our problem is as follows: tor g to be directed almost along the magnetization:

is
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|a./<q (arbitrarily directedq are considered in Appendix Gp,)
C). The essential contribution to the integral in E85)

comes from the internal momentumbeing in the A shell

and the internal frequenay = e(p). Performing the integra-

tion over w with the D function from Eq.(40), we find

c?pat J c’pidp Qsirk(2¢)dy a1
47w | €4p) Q—cqcosy+ib,’ “D D, -9) Dip,-q)

20:

whereb; is the dissipation functiob(w,p) of a spin wave
inside the A shell. Details of the derivation of E¢41) are
given in Appendix B. We neglect the real part of the self-

FIG. 2. The most “dangerous” two-loop diagram.

2A2 :
energy in the4 shell as it is justified in the same appendix. by ()= ¢ potl f — szd’coa'/;dpd"’ -
Note, that R&, vanishes in the static limif2=0. 2m pZsinf -+ pope? + S o( )/ c
If cg>b,, we make the integral ove¥ in Eq. (41) to find (46)
So(x) =c?pjtLcos yexp —2i ), (42 Note that the most dangerous region of integration is the

- 2~ < .
where y, defined by the equation cps()/cq, measures the reﬁlon ofdsmillpc,j_su_ch Fhat"‘} pr{po<1 ml Eq. r(146)‘. In
deviation from the mass shell. More generally, we introduce?tNer words, .t € |ss.|pat|'on otas ort-vyave ength spin wave,
a notationr for the ratioQ/cq (r =cosy if r<1). Then propagating in the directiogt, is determined by the scatter-
ing on the long-wavelength virtual spin wave, with the mo-
So(r)=c?paLtri(2r?—1—-2r\r?-1). (43)  mentum along the direction, which lies on a specific dis-
tance off the mass shells/cp=cos). The integration over
~_ ~2n2
Note thftz 2o(r)=—c’pot/4  when r—c  and p in Eq. (46) is confined towards the crossover region:
|2o(r)|<c®pgt/4 at anyr. The self-energ.o(r) is real for P~ Pe=poyiL
c .
r>1. . o To find the anisotropic dissipation of a spin-wave mode in
If q is so small thatcg<b,, Eq. (41) implies the  the 4 shell, we plugS (%) from Eq. (42 into Eq. (46).
g-independent dissipation constant: After a change of variablep(¢)— (p, ), given by formu-
dy Sirf(24) las p=pop?cosd and ¢=psinysindcos Y29 (—o<p<w
bo=c?pat j (44  and 0<d<m/2), the integration becomes trivial and gives

4w by(y)
In this calculation we have used the fact that the dissipation Sir2(24)sin( /2)
of a spin wave in thed shellb; depends only on the angle b,()=B,t¥cpy LTcos) , (47)

¢ between the direction of magnetization and the spin-wave
wave vectorp which we prove below.

Now we need to calculatb, (). An unusual feature of Where the direction of the spin wave is limited to the funda-
our theory is that the dissipation process in theshell is mental quadrant: @y<m/2, andB; =I'%(1/4)/4/2m~1.31.
mediated by an off-mass-shell virtual spin wave. Indeed, the Let us return to the range of very low momenta
dispersion relatiori19) does not allow for decay or merging P<<b;/c. Plugging Eq.(47) into Eq.(44), one finds
processes. Alternatively, as we will show, the dissipation of
a spin wave in thed shell, propagating along the direction bo= BoCPot 4L 5
specified with the angles (singy=q,/q), is mediated by an 0 P0mH0 ’
internal virtual spin wave in Eq(9), with a momentum of - i
p<p, and a frequency ob<cp, propagating along the di- whereBy~1.24. The condltlomgp/EM;4b1 defines the cross-
rection very close to thg axis 2<1 (where sip=p,/p), to  OVer wave vectorppy~B1pot™7/L™", between the self-
provide a finite attenuation of this state. The integration ovefnergies42) and(44). The dissipation function&i2, 44, and
 with one of theD functions in Eq(39), taken in the form 47) represent the self-consistent solution of the Dyson equa-
(40), leads to the following equation: tion (35, 39. , _ ,

Finally, we verify that the two-loop correctiofsee Fig.
A 2(0,9) 5 1(c)] is negligible. There exist several diagrams with differ-
by=-9c t87r32q2f d°pD[e(p+0q)—€(a).p]. (459  ent arrangements @& andD functions. On each of the two
short loops on the diagram Fig(c) there exists at least one
Since w=€(p+q)—€(q), we conclude thatw=cpcosP, D function but there may be two of them. We consider only
where® = y— ¢~y is the angle between the vect@rsand  the most “dangerous” diagram with each short loop having
p. According to fluctuation-dissipation  theorem: exactly oneD function (see Fig. 2 Note that the main con-
D(€p+q— €q:P) =1Vepq— €glMG(€p4q— €4.P).  INvOKing  tribution to the diagram Fig. 2 comes from regions of inter-
the definition of the angley for virtual spin wave, we find nal momentap, andp, are restricted to thel shell. Inside
that y=®=~y. Substituting f2(0,q)=(1/9)q’sir’(24),  the A shell the Green and thB functions have strong sin-
€2(p) = c?p?+ c?pypsirfe~c’p?+c?pope’ and taking into  gularities on the mass shell. As it was done in Appendix B,
account thats, from Eq. (42) depends only orny=, we  we integrate in both short loops the internal frequenaiges
write and w, and find that only the nonstatic term is nonzero:
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s 2 f d?p,d°p, QF2(p1.p2) f (P2, F(P2.P,) € Xp1—p2) “8
o (P €X(p2) (2 —cgeosp; —iby)(Q—cqcosp,—iby) [e(p1) — e(p2) — e(p1—p2)]’
[
where ¢, and ¢, is the direction of the momentp, and w=—ieX(p)t VLY Bycp,. (50)

p,. We assumed thab,~ ¢,. Since the three spin-wave pro-
cesses are not allowed by the conservation laws, the Green
function G(w;— w,,p1—pP,) is off the mass sheltthe corre-  The angular range of the diffusion mode increases with de-
sponding last denominator in E48) reads p;+p,)(¢;  creasingp and captures the entire circle g& potL.
— )2+ pcoS(y)>0 if p;,p,>py). Now we can count At the end of this section we would like to remind the
the momenta powers in E¢48) to verify that the integration reader that Eq(44) was obtained for the quasiexcitation di-
is convergent towards the dipolar momentipg) and, thus  rected along thg axis. It can be easily checked that in case
has no logarithm. A simple counting of temperatures showsf arbitrarily directedq one must write sif(2y+2¢) instead
that Eq.(48) ~t?/b;~t"2 Hence the two-loop dissipation of sin(2y) in Eq. (41), where sirb=a,/q. However, in this
function is by=bo(1+t"4L). Similar consideration shows case the integral becomes singular, so one must treat this
that the functiorb; (¢,q) —b;(#), which represents the two- equation more carefully. We will come back to this question
loop corrections foby, is small int¥4, and is also small in in Appendix C.
the ratiopy/q.

Having explicit expressions for the self-energy we can
analyze the dispersion relatian’= e(p) +(w,p) in the V. RENORMALIZATION OF THE DIFFUSION MODE
range of smalle and p. New results are expected for the
region p<p.= po\/t—L in which X, becomes comparable In this section we concern ourself with the renormaliza-
with €%(p). In a range of momentunppy<p<p. and tion of the diffusion mode. As we established in the previous
anglesy</potL/p, we find a new propagating soft mode Section, at wave vectorp<ppy the diffusive dynamics

with the dispersion: term dominates X— 0 limit) in the harmonic part of JDF
[Egs.(27) and (28)]. The interaction between “diffusons,”
w=cp(p®+popy?) Y4 poyiL. (490 given by the anharmonic part of the JOB2), effectively

The dissipation of the soft mode grows to the boundary of renormalizes™ the diffuson dispersion .at very small wave
the region and becomes of the order of its energy al€ClorSP<pa<ppy. We shall determine the anomalous
W~ JpotLIp of p~ppy . There is no soft mode beyond the diffusion onset wave vectqu, in the end of this section.
indicat%d range. The spin-wave mode persists=apqtL. In To simplify further calculations, we introduce a scale
a rangep<ppy and small angles a new diffusion mode transformation of the fields ¢, $—(3g/T?) ™9,

occurs with the dispersion: (Jg/T?) Y4, In these notations the JDE8,32 is
|
A6.31=3, b0 apdui ak2+k—§)¢ arty —w@m WY Bt
y =~ —w,—k FO w,k y a|ky| w,k 1—~0 w,k |ky| 2 ok &b w—Q,k—p |py| Q,p
¢2
_WZaE ¢w—ﬂ,k—p|py| 7 ) (51)
Q,p Q,p
wherel'y=JTI", a=J/g and

w=(T?g/J3)V4 (52

Note, that it is possible to get rid of the spatial anisotropy chardy rescaling thex coordinate only.

We have already seen from the statics consideratigee Sec. )l that the mean-field scaling dimensions a&é;:zo,
AR =3/2, AG=1/4, andAy=1/4 (we remind the reader that the dimension kgf is accepted to be)1 Similar simple
calculations give the dynamic mean-field exponen; =0, A%=2, andA%:9/4.

According to the standard renormalization-group procedure, we introduce renormalization con¢tarit$/.2¢R,

fﬁ:Z};Z&R, a=Z,ar, 1T y=2Z,r1T g andw=Z,Wg, where

w= Y4y, (53

First we note that the field$ and ¢ have the same renormalization coefficients. It inmediately follows from the fluctuation-
dissipation theorem. Indeed, according to this theorem
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D(x,t;y,t) ={ (X, 1) p(y,1)) = 2TImJ:G(x,t;y,0)dt= 2TImJ:<<}S(x,t)¢(y,O)>dt.

In the standard formulation of the renormalization theory only the chamgels)(and the fields ¢, fﬁ) acquire the renormal-
ization coefficients, not coordinate, time or temperature. Thus, we conglyee ;, .
Let us divide the Janssen—De Dominics functional into two parts:

J=Jg+AJ.

The first one is the “renormalized” functionafz

k2 iw - K| b3
el dr. dr1= 2 PR,k aRF Prox— | ARKS+ anlk, |)¢ka AR PRok ™ WR|1/4| y|y > .
~ PxPy </>R
—Wrl V4 PRo— O k—p Y e P WRaRI122 PRo— 0k~ p|py| (54)
Op |p | Q.p
The second ond 7 contains the counterterms:
5 T . , . ks
AT=2, brou,-k| ARE—(ZsZaZir = 1) brok— | BR(Z4Za= DKGH(ZyZa "= 1) 1 | brak
w,k R aR| y|
iw ~ ke[ 03 ~
312 42Xyl TR 3/2 /
_aRF_R(ZqSZaZl/F_ 1) rox—(ZwZ g™ 1)WRI14W 2 k—(ZWZ¢ —Dwgl
PxP ¢R
X2 Fro-nkopp | PRep (ZuZaZG= DWRAR 2 dro-ok-slPrl| 5 (55)
Qp Pyl p
|
A simple power counting shows that all corrections areEquations(56—59 have the following solution:
only logarithmically divergent in the dimension of 5(2ee
Sec. I). Hence, in what follows the regularization scheme 7.=7,=1— 9 I1/2 dky, (60)
with £ =1/2 is assumed. 6= 1287 K2
Evaluating the diagram shown in Fig(al up to second
order ink, (using the barés, andD, functiong, one finds 7 s dk,
the one-loop correction to the second term of the JDF: Zyr=1+ 71— Wil 132 (62)
y
18 aRv”vzllfzf%(,é—(zqsz —1)ag 27 dk
1287 “RR K a ' —— w32 f y

In order to cancel the divergency, we set . .
Next we introduce the Gell-Mann-Lowg function

2 7 1 18 18 =21 5 B=u(dwg/dum)|w » and the Callan-Simanzik anomalous di-
pZa=1= 155 Wel k—sf (50 mensionsy,= (u/ar)(dar/du), yr=ulr(91Mx/dx) and
= (ulZ4)(0Z4/dn). We denote byu the scale at which

The same procedure for the fourth term gives the coupling constant is equal t@z and denote by\ the

1~ dk, scale at which the coupling constant is equaltd=rom Eq.
ZoZyZyr=1 3TWRI f 132 (57) (62 and the definition o,,, one has
y
. ) . 1/4 A
In Appendix A we show that both the three-leg and four-leg Wow A 1 27 ~2p1 dk, 63
vertices do not have one-loop corrections. Hence R 128 K37
m By

Zy Zs/z: 1. (58)  And finally, we find theB function, which coincides with

One can easily see that the one-loop correction to the terrtr;]at found in the statics caSe
k§/|ky|¢ in Eq. (58) vanishes as wellsee Refs. 12,201t _ 1 27 7o

means that B(wg) = — + o5 (64)

Z,'2,=1. (59 The fixed point of the renormalization-group flow is
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~.2 64 the fixed-point solutiowg~ 1. Thus, the wave vectq, is
WR = %7 defined as the wave vector at whiahy~1:
After performing this procedure for anomalous dimensions
one gets Wo(Pom/Pa) V-1, (72
9 -~ We see that
- 2
Ya= " 1287 "R! 9
. Pa~T2T, (73
Yir=gz-Wa: (66)
that is very small. Even ift is not small,
9 _, Pa~ pDMwS~ po(ga/d). It is much smaller thamp,.
4= 1o VR (67)

Using the result forv~v§, it is straightforward to find VI. SUSCEPTIBILITIES

Ya* =— 16, yyp* =7/27, andp,* = 1/6. The scaling dimen- In this section we find the susceptibility to the magnetic
sionality of the frequency , can be found from comparison field directed along the average magnetiza@h (y axis),
of the second and third terms in the expansi@l): the so-called longitudinal susceptibility. We consider the

A,=2—yyr=47/27. magnetic field in the formH=Hy+ sH(x,t) whereH, is
The long-range limit qf the fu_nction@ andD is found independent ok andt. When an additional magnetic field
from the Callan-Symanzik equatidf: 8H is imposed, a new vertesh,, [ ¢$] ., _, emerges in
1 « ¢ the JDF(25) (we denoteh=ggugSH; sh=ggugSsH). It
G(t,x)= f( , ) (68) leads to a correctio®D(w,k) to the correlation function
( (X2+|y|8/3)65/72 |y|4/3 |y|47727 D(w,k):
D(t,x) T( X ﬁ—t ) (69
7X = 7 L
(x2+|y|8’3)1’4 |y|4/3 |y|472

5D (X=X = ty) = fﬂfkfwfqh(wa)Do(Q,k)[Go(Q

wheref(x,y) and T (x,y) are arbitrary functions.

In the static limit ¢=0) the exponents in the correlation +0,k+0)+Gg(Q—w,k-0)],
function (68)2 are exact, as was previously found by one of
the authors: whereDy(w,k) and Gy(w,k) are taken from Eqs27) and
_ (12 -2 (28).
D(r)=((r)$(0))~ (x"2y~*5). (70) By definition, the susceptibility is
For the Fourier components of the Green function &),
we find in the region of anomalous diffusion: S 1 5
o X(w,k.h)=m<5y>:—§m<¢(X,t)¢(X,t)>
G(w,k)=f1(k—4/3,kwr>- (77)
y _ OeusS O _ _
. . . . - 2 5h( k) D(Xl_XZ!tl_tZ)' (74)
The anomalous dispersion of the diffusion mode announced @,

in the abstract follows from the last equation. We see that the
static dipole contribution is not renormalized in dynamics, asHence,
it was suggested in Refs. 27,28. We also note that the ex-
change coupling acquires an anomalous dimension
A;=1/3, whereas the dynamic teraiI" acquires anomalous _
a dimension+2/27. Taking into account the anomalous di- x(0,0)= _gGMBSfQ jkDO(Q’k)GO(Q+w’k+q)'
mensiony, = 7/27, we conclude that the anomalous dimen- (75)
sion of w is y,=1/6. The interaction between the diffusons
in the scaling limit reduces the dissipation or, in other words
hardens the diffusion.

Now we can estimate the wave vectpp, an upper
boundary for anomalous diffusion. We assume that tempera-
ture is small Eq.(38). Initially, according to Eq.(52), the T'2(3/4) [ 33\ V42T PR
bare vertexw,=\Tg"4J%* and is also small. Under the X(w,h)=gG,uBS—T(—2) [hl"‘—( _f)
renormalization flow, the vertewg grows with the inverse 4m\m 9
wave vector as the power 1/4 E§3). The RG flow starts at
powm and approaches the fixed point at the root of the Gell-
Mann-Low functionB(wg)=0. Invoking Eq.(64), we find In the limiting casew=0, the susceptibility reads

1n the most interesting case, whgr= 0, all integrals can be
evaluated and the final answer is

(76)
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x=consh—%4 vanishes on large scale in this range of temperature. At such

high temperatures the observation of propagating soft modes

This result has been found earliér. described in Sec. Ill seems to be improbable, since all they
requiret<1, i.e. T<T.. However, the anomalous diffusion
VII. CONCLUSION can be observed even at-T., given a sufficiently large

In conclusion we discuss how new modes can be Obgcale of length £10 um). The best way to observe it is to

served in experiment. The new modes appear on a macréfil—pply a short and inhomogeneou; pulse.of m'agnetic. field,
scopic scale of the length of the order of magnitugent and follow when the secondary signal will arrive to fixed

guise the new modes. Therefore, we can expect that the ne _ : |
dynamics will be observed in films with very weak in-plane POS€ {0 use the same pulse technique to different films.
anisotropy. The best known candidates for this role are films A guick estimation of the time,,, needed for the second-
grown on hexagonal substrates. The hexagonal anisotropy &Y signal to reach the indicator at d|5ta”t§9”da|-y along
naturall_y weaker tr_\an the tetragonal one, .b.ec.ause they afeandy directions showst, ,~ (7:/J poa)(LX'y/a)Ax,y, where
proportional to a higher degree of the relativistic parametera is the lattice constant ank; , are the anomalous-diffusion
Besides, the hexagonal anisotropy totally vanishes at Iargg. . ’
: : : imensions  for
distances in a range of temperature from (Z{Q) until
Tekt, Where Tgir is the temperature of Berezinskii-
Kosterlitz-Thouless transitioff:>° The simplest idea is to use

the (111) face of fcc crystals, such as Ag, Au, Cu. An iron | han the time for th X anal . h
film on the (111) face of Ar has been grown by Bader and '0nger than the time for the primary signal propagation. The

co-workers® Recently the Ru film has been grown on the strong size and direction dependence of the propagation time

hexagonal graphite substréfeThus, 2D ferromagnets with can be used for detecting the anomalous diffusion.
exactXY symmetry are available.

An important question is whether the interaction of spins
with the conductivity electrons in metallic films leaves an ACKNOWLEDGMENTS
opportunity to observe the anomalous dissipation and soft
modes. It seems surprising, but no dissipation of spin waves The work of A.K. was suported in part by the Swiss Na-
by electrons occurs in the long-wave limit. Indeed, if a con-tional Fond under Oststaaten-Soforthilfemassnahmen Grant
ductivity electron emits or absorbs a spin wave, the elecNo. N7GUPJ038620. This work was also partly supported
tron’s spin projection changes sign. Thus, the electron tranby DOE Grant No. DE-FG03-96ER45598. Our thanks are
sits from majority to minority band or vice versa. Since we due to M.V. Volpert for her help in preparation of the manu-
are interested in very long spin waves, the electron momerscript.
tum almost does not change in such a reaction. It means that
the electron energy changes by the value of self-consistent
exchange field energy, much larger than the energy of a low- APPENDIX A: ONE-LOOP VERTICES CORRECTIONS
wave-vector spin wave. Thus, this process is forbidden by
the conservation laws. First we note that the JDF51) has the following non-

However, not only the film, but the substrate is also me-rjvial symmetry*?
tallic. The varying magnetization in the film creates the eddy
currents in the substrate which undergo Ohmic losses. The
dissipation due to this mechanism is easy to calculate and to b(k,0)— d(k,0)+&64K)8(w), (A1)
compare with the spin-wave energy. The result is

axesx and y, respectively. Thus,
ty~filga(Ly/a)**~10*5 s and t,~#/ga(L,/a)*"?"~1
s, where we have assumeg~L,~1 cm.

The retardation time for the secondary signal is much

Q) moua Bk.w)— d(k,w), (A2)
o(q)  c?h(qa)2Vd’

wherey(q) is the width of the spin-wave energy level due to Ko—k.—gaw A3
Ohmic lossesy is the substrate conductivity,g is the Bohr ki sawk, A3)
magneton and a is the lattice constant. For
q=po=10"%cm, a=3 A, p=1/0=156 uQ cm, and

\/J=1/20, we find the ratioy/w~10"8. This estimate Ky—Ky . (A4)
shows that the dissipation due to eddy currents is neglegibly
small.

. ) The partition function(24) must have the same symmetr
The next question is: what dynamic effects can be ob- b (249 y y

served and at what conditions? As we have noted earlier, ifz[j 'j]f:r?. By a stan(ialrd Iﬂoclfd“%%we fmwd tgeTin’Il(plri]ca-h_
the in-plane anisotropy is not especially sm#ks than 1 K tions of the symmetryA1-Ad), known as Ward-Takahashi

in energy scale the only opportunity is to use a sixfold identities to the so-called “generating functional for proper

substrate in the range of temperature, higher thaertices” ITe,¢] (it is the Legendre transform of j,j]
(4/9)Tgkr . It has been predicté8i?® that sixfold anisotropy  with respect to the fieldg and ¢):
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ST vanish if we set one of the two frequencies, which the vertex
ff (5(w)5(k)5_T—aw kyp(—K,—w) depends upon, equal to zero. Hence, the corrections must
kJo e(—k~w) depend on the product of the two's and are small in the
J ST framework of Sec. Ill. Considering loop-wise expansion of
R — o(—Kk,— I' in the same spirit, one finds
X&kx o(—k—w) +kyo(—k,—w) P

d or

y r=> w,I'™W~r©@4wr®+ .
_— n=0
Ky Sp(—Kk,—w)

Looking only at the divergent parts of the correctidi€
=0. (A5)  andI'™, we see that, becau$é? is just the bare action and
has no divergencies at all, the one-loop corrections to the

Now, -wrltmg dovyn the Taylf)r-hI.(e. expansion df[(’o_"’o] w-independent three-leg vertex do not diverge. As a conse-
over fieldse and ¢ and plugging it into Eq(A5), we find quence of this fact we obtain E¢S).

F<p<p<;>(0’k_’_k_)_aWk}’%Fcp;D(k_’_k_):O’ (AB) APPENDIX B: CALCULATION OF SELF-ENERGY
_ g Let us start with the Dyson Eq42) corresponding to a
wherek is used for k, ). It was proverC that there is no one-loop diagram on Fig.(4). We may integrate Eq42)
correction to the ternk§/|ky| due to analyticity. According over the contour in complex plane such that the poles of
to Eqg. (A6), it means that corrections to the three-leg vertexthe G function are outside the contour:

2c6t
20=p;77 ff2(p—0|/2,p+q/2){[0+'s(lo—q/Z)]Z—62(|0+q/2)+ib1}‘1
2 2 H -1 d2p
+H{[Q—e(p—a/2)]°— e (p+0a/2) —iby] }m- (B1)
It is convenient to change in the secoBdfunctionp on —p:
58t f2(p—a/2,p+q/2)d? “2(p—q/2 “2(p+ql2
5 =P (p—aR2p+a2d®p | € *(p—a/2) € *(p+a/2) 82)

27 ] QO+ e(p—q/2)—e(p+q/2)+ib1[[Q+e(p+q/2)+e(p—q/2)] + [Q—e(p+al2)—e(p—0q/2)]]|

Keeping only the lowest order in small momentgnand frequency) and after a simple expansion in the brackets we find

_ pactt f2(p,p)d?p —20+4[e(p+/2) — e(p—q/2)]

%0 27 | Q+e(p—al2)—e(p+q/2)+ib; 4€e*(p) B3

At this point we separate the above integral into the staticelf-energy we have to expand self-energies like Egs.
Q-independent part and the rest into the “dynamical” self- (B4,B5) in powers of the transferred momentumThis will
energy. The stati€)-independent self-energfit is always be done in Sec. IV using the static field-theoretical tech-

rea) reads nigue, not dynamical as in this appendix. The result is that
g-dependent static self-energy only matters when the spin-
pactt [ f2(p,p) 5 wave momentung is so small that anomalous diffusion sets
o= - om f €*(p) p. (B4) up. On shorter wavelengths like< ppyy we may safely ne-

glect the contribution of Eq€B4) and (B5).
Now let us take into account the static self-energy given by Now we return to the)-dependent dynamical part of the
the diagram in Fig. (b): self-energy:

s poctt [ PSPE
b— A p262(p) p.

(B5) pac’t Si(2¢)  dpdg
EO(X’q)_WZQJ’ Q—qcosp+ib; 4c%p (B6)

Comparing Eq(B4) [remember thaf (p,p) = pZp5/p?] and

Eqg. (B5), we conclude that these cancel each other in th&he integral ovep gives exactly the logarithmic factdr:

A shell. Thus, we have verified explicitly that the

Q,g-independent part of the self-energy is strictly zero as 2.2 .

guaranteed by the Ward identity due to the rotation symme- So(x,a)= PoC t|_ J S|n2¢cos’-g{> d¢. (B7)

try of the system(see Appendix A To get nonzero static ) —qcosp+ib,
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FIG. 3. Maps of the regions with different dispersion relations.

The imaginary part of Eq.B7) could be easily found in the
limit ),cg>b;. In this case we use the formula

Xx—i0

P1 i
;+|775(x)

to find theJ part of Eq.(46). ThefR part is also simple to

calculate:

Ro(x,q) =

2.2

ct Q
Po L
aa q

dJ|

and then simplify

sirfpcosp[ (— O+ gcosp) + Q]

0.6

Q—qgcosp
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do,
(B8)
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p3c2t ] Q2 [ sirf¢cosp

q ] ©—qcosp

Ro(x,0)= dé.  (B9)

We repeat the same step

2.2 2 H

_ pact Q7 [ sifgp(—Q+qcosp+Q)

9{E:‘O()(!(:l)_ . LEZ Q—qc05¢ d
(B10)

with further simplification

s _pactt 0f f sirf ¢ pac’t 02 27
o, @) =7 ?) Q—qcosp © @ @ 2°
(B11)

One could easily continue the same procedure to find

2
21
q°

= pac?tLcogycoq 2y),
(B12)

QZ
M o x,0) = pactL az(

which is exactly Eq(46) of Sec. lII.

Finally let us show that the self-energy in theshell is
negligible. We first assume that it does negligible:
a?(w,p)<€2(p). Then we consider the self-energy ER2),
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wherer=Q/cq. In the case wherg=0 andr =cosy, for-
mula (42) is recovered.

The main contribution to the integral in E5) comes
from a region of very small angles. Hence, the correction
to X, we have found above is not important in this calcula-
tions and Eq(46) still holds.

By the next step we need to plig () from Eqg. (46) to
the nonzero-angle form of Eg44)

B L. [27dy siP(2y+2¢)
E(Q,q,¢)—|Qc2potho 47 iby()+Q—cqcos)’
(C3)
Evaluating this integral, one finds
_ q |3
3(]Q|<cq)=iQcp co§(2¢)—a(p—) sin2(2¢)}
DM
(CH
_ |Q| —3/5
3(|Q>cq)=iQcp co§(2¢)—a<cp ) sin2(2¢)},
DM
(CH

provided the external frequency and momentum lies on the

mass shell inside theA shell: Q=e(g). Let also
VA/J>Qg<py. One could easily verify that the main contri-
bution comes ifg<<p. In this case we may use E(B6):

s =p306t20qf Sirf(2¢) dpde
° 2w o2+ podZ/q—qcosp+ib, 4¢P
(B13)

Integration overp gives In(y\/J/q), whereas the integration
over the relative direction of internal and external spin wave

gives factor\/qslpoqxz. Thus, the real self-energy

a*(2,q)~tLc?po\pog-
At smallt this result justifies our neglect of the self-energy in
the A shell.

APPENDIX C: THE ANGULAR DEPENDENCE
OF THE SELF-ENERGY OPERATOR

In this appendix we analyze the angular dependence of
the self-energy part found in Sec. lll. Repeating all argu-

ments, one can find that E@t1) must be written in a slightly
modified form:

Now again, assuminggs>b,, one finds

c*pidp Qsirt(2y+2¢)dy

e*(p) Q-cqcosp+ib, -
(CYy

c?p2t
Eo(Q,q,d)): 47:

So(r,¢)=c?patL| r2(2r2—1—2r\r?—1)cog4¢)

fE L iné(2

: (C2

where we denot® = Bot*L%*p,, pom= B1t¥L " Y*p,, and
a=2"%B,B,~0.54. In what follows we will also use the
notation p.=pgVtL. While Eq. (C2) for 3 holds for
cq,Q>b, (), Eqgs.(C4) and(C5) are valid in the opposite
casecq,1<<b ().

Now we can analyze the dispersion relation
0?(q) = €?(q) + = (w,q) more accurately. In experiment usu-

ally t<1 sopy>p>p.>ppw. Easy, but tedious calcula-

gions show that there can exist up to nine asymptotic regions

in the momentum space with different dispersion relations:

() w?=c?pyqsirte,

| pDMSing/Z(ZCﬁerIZ)<q<po$in2¢'
(b) wzzéczqsgg(ﬁz,

if E—§¢2(1+ %#’Z%%%’
o ebe?

2
it pow(ml2— ¢>1’2<q<%,
0

'Ol_Q
I

O N

CZ
(d)w? >

’

if pop?<q<pe,



2
(6) w=—ica? o3, ifpou #7<q< - 2
pc Po

() w=—icqmeg?,
p
it pomd ¥*<q<ppmd® d<Vp/po,

(Qo=—icq2 ¢?,
p

Vp/po< p=<1,

if pomd**<a<ppme™?
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(h) wz—icq@,
p

PPOM (12— ) 103< g 220N EDM (ml2—$)¥2,
0

0

if

C2/5po 1

; 2[5 _; -
T oy o089

5/3 ~
pﬂo) (ml2— ) P<qe o r

¢4/3( Tl2— ¢)10/3
Po '

if pDM(

where 0<¢<<w/2. In Fig. 3 we show the case~0.3,
L~1, andpy=1.
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