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Long-wavelength anomalous diffusion mode in the two-dimensionalXY dipole magnet
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In a two-dimensionalXY ferromagnet the dipole force induces a strong interaction between spin waves in
the long-wavelength limit. The major effect of this interaction is the transformation of a propagating spin wave
into a diffusion mode. We study the anomalous dynamics of such diffusion modes. We find that the
Janssen–De Dominics functional, which governs this dynamics, approaches the non-Gaussian fixed point. A
spin wave propagates by an anomalous anisotropic diffusion with the dispersion relation:iv;ky

Dy and
iv;kx

Dx , where Dy547/27 andDx547/36. The low-frequency response to the external magnetic field is
found. @S0163-1829~97!03329-8#
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I. INTRODUCTION

The notion of the ground state and independent elem
tary excitations lies in the background of condensed-ma
theory. The excitations, such as electrons, holes, phon
excitons, spin waves, etc. normally have a propagat
wavelike nature. In a homogeneous medium they are cha

terized by their momentum or quasimomentump¢ and their
energyv. Each kind of excitations has its specific dispersi
relation or spectrumv5e(p). A wide scope of physica
problems can be solved assuming the excitation to be in
pendent, or considering their interaction as a we
perturbation.1 However, in recent years more and more pro
lems have occurred to go beyond the simple picture of n
interacting or weakly interacting excitations. In his pione
ing work Migdal2 has indicated that electron-phono
interaction is not weak in a narrow range of energy, lead
to a strong renormalization of the Fermi velocity and even
an instability of the Fermi surface.

Recently a growing number of physical systems revea
excitations which bare spectrum, obtained from lineariz
equations of motion, is strongly distorted by interaction w
vacuum and thermal fluctuations. A few recent examples
the so-called marginal Fermi liquid, in which electrons inte
acts via transverse magnetic-field fluctuations,3 and n51/2
state of the fractional quantum Hall effect in which initi
electrons transform into quite different fermions.4

On the other hand, many years ago, the mode-mode in
action has been recognized as a necessary element o
critical dynamics.5–7 Particles, heat and spin diffusion mu
be considered as hydrodynamic modes in the lo
wavelength limit, as well as propagating waves, such
sounds, spin waves, etc. Their interaction has been prove
560163-1829/97/56~6!/3181~15!/$10.00
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be substantial not only in the critical region, but also for t
hydrodynamics of liquid crystals8,9 and for the charge-
density-wave phason modes interacting with impurities10

The excitation spectrum of these systems is reconstructe
effects of strong interaction.

Here we present a solvable and experimentally feas
situation where the strong interaction between spin wa
leads to the replacement of the propagating spin wave b
diffusion mode and to the appearance of a new soft mod
a certain range of momentum. This is the two-dimensio
~2D! XY ferromagnet with dipolar interaction between spin

The spin-diffusion mode appears naturally in the pa
magnetic phase and in the vicinity of the Curie point.11 We
consider, on the other hand, a low-temperature orde
phase, where no diffusion is expected but rather a propa
ing and weakly dissipating spin-wave mode.

In a 2D XY ferromagnet at low temperatures the dipo
interaction is relevant in the long-wavelength limit, even d
spite the low density of spin waves. It was shown by one
the authors12 that dipolar force induces an anomalous anis
tropic scaling of spin-spin correlations in the ordered pha
In this article we find an analogous dynamical scaling.

This paper is organized as follows. In the next section
define the model and describe the spin-wave spectrum
Sec. III we discuss the dynamics of theXY magnet with the
dipole interaction and formulate the perturbation expans
for the model, using the Janssen-De Dominics13 technique.
Section IV is devoted to the solution of the Dyson equatio
There we find the self-induced dissipation of the spin wav
In Sec. V the renormalization of the diffusion mode is co
sidered and the anomalous anisotropic exponents are fo
In Sec. VI the dynamical susceptibility is found. In concl
sion we discuss prospects of the experimental observatio
the anomalous modes. In Appendix A we use the Wa
3181 © 1997 The American Physical Society
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Takahashi identities to prove that the vertex corrections
small. Details of the Dyson equation solution can be found
Appendixes B and C. A brief report on main results of th
article has been published earlier.14

II. THE HAMILTONIAN AND THE SPIN-WAVE
SPECTRUM

Spin waves are fundamental excitations of the excha
magnet with spontaneously broken continuous symme
According to the so-called Adler principle,15 the interaction
between spin waves vanishes in the long-wavelength lim
At low temperatures the equilibrium density of spin waves
relatively small, and a long-wavelength nonequilibrium sp
wave, excited by an external source, decays into other
waves or scatters on an equilibrium spin wave slowly. Th
the dynamical properties of the exchange magnet are d
mined by the well-defined spin-wave mode. It also mea
that the imaginary part of the poles of the dynamical
sponse function becomes much smaller than their real pa
the wavelength grows to infinity.

The 2D exchange magnet with the easy-plane anisotr
is described by the following classical Hamiltonian:

HExA@S#5E d2xF J

2
~¹S!21

l

2
Sz

2G2gGmBE d2xSH,

~1!

whereJ is the exchange coupling constant,l is the strength
of the easy-plane anisotropy (l.0),16 g is the dipole inter-
action coupling constant,H is the external magnetic field
gG is gyromagnetic ratio,mB is the Bohr magneton and th
field S(x) represents the local spin of the magnet and can
normalized by a constraint

S2~x!51. ~2!

In what follows we consider very large distancesL;1mm so
the Ruderman-Kittel-Kasuga-Yosida type interactions be
nonsingular on such scales are included inJ.

The magnetic dipolar energyHdip is represented by the
sum:

Hdip5
g

4p (
xi5” xj

~Si•Sj !23~Si• n̂ !~Sj• n̂ !

uxi2xj u3 , ~3!

where n̂ is a unit vector pointing fromxi to xj , Si5S(xi),
andg52p(gGmBSa22)2 for the square lattice; for other lat
tices g52p(gGmBSs)2, wheres is the inverse area of a
plaquett of the lattice. The magnetic dipole energy can
separated into a short-range and a long-range part in the
re
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dard way.17 The short-range part renormalizes the single-
spin anisotropy and favors in-plane spin orientation. T
long-range part of the magnetic dipole energy is con
niently expressed in terms of the Fourier transformSk of the
local magnetization fieldS(x),

Hdip5
g

2(k

~Skk!~S2kk!

uku
. ~4!

Thus, the total magnetic Hamiltonian is

H5HExA1Hdip . ~5!

The dipole forces are crucial in the long-wavelength lim
Under the scaling transformation the short-range excha
interaction scales likeLd22, whereas the dipole force scale
like L2d23, whered52,3 is the spatial dimension of a mag
net andL is the scale. The dipole energy is characterized
the dipole constantg and the exchange energy is charact
ized by the exchange constantJ. Normally in ferromagnets
gad21 is much smaller thanJ (a is the lattice constant!.
However, as the scaling transformation shows, beyond
characteristic scaleLd;(J/g) in 2D andLd;AJ/g in 3D the
dipole interaction dominates the energy of a spin wave.

In the 2DXY ferromagnet, the dipole force stabilizes th
long-range order.18 According to the Landau-Peierls
Hohenberg-Mermin-Wagner theorem~see, e.g., Ref. 19! in
the absence of a long-range interaction the 2D magnet w
broken continuous symmetry exhibits the algebraic decay
the spin correlations instead of the long-range order, and
infinite susceptibility at zero magnetic field. Thus, the dipo
force plays a special role in 2DXY ferromagnet. In addition,
the dipolar force is crucial for the spin statics and dynam
in the ordered phase. In contrast to the 3D ferromag
where the spin waves are almost free, in 2D the interac
between spin waves induced by dipole force is dominan
the long-wavelength limit.

The Hamiltonian~5! has two different scales: the aniso
ropy scaleLA5AJ/l and the dipole lengthLD5J/g. We
assume that the anisotropyl is large compared to the dipola
energy (LA,LD). We direct they axis along the net magne
tization of the magnet and thez axis perpendicular to the
plane. The unit vector fieldS can be represented by tw
scalar fieldsf(x,t) andp(x,t)

S5~2A12p2sinf;A12p2cosf;p!, ~6!

where bothp andf are small due to the fact that the dipo
force stabilizes the long-range order.

With the precision to the fourth power off and p the
Hamiltonian~5! is
e

H@f#5
1

2Ek
E

v
S ~Jk21h!fk,vf2k,2v1lpk,vp2k,2v

1g
~kx~fk,v2fk,v

3 /6!1ky@f2/2#k,v!~kx~f2k,2v2f2k,2v
3 /6!1ky@f2/2#2k,2v!

uku D . ~7!

Here fk,v and pk,v are the Fourier transforms of the fieldsf(x,t) and p(x,t) respectively. We expanded the in-plan
magnetization components cosf and sinf up to the fourth power in small spin fluctuationsf. We take the uniform magnetic
field H to be directed along they axis andh5gGmBSH. The Fourier-transformed quantities are defined by
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f~x,t !5E
k
E

v
fk,vei ~kx2vt !, ~8!

where an abbreviated notation

E
k
E

v
[E E d2k

~2p!2

dv

2p

is used and@f2/2#k,v denotes the Fourier transformation off2(x,t)/2.
The interaction between the spin waves is described by the nonquadratic part of the Hamiltonian~7!:

H int5E
k1 ,k2 ,k3

E
v1 ,v2 ,v3

f ~k1 ,k2 ,k3!fk1 ,v1
fk2 ,v2

fk3 ,v3
d~k11k21k3!d~v11v21v3!

1E
k1 ,k2 ,k3 ,k4

E
v1 ,v2 ,v3 ,v4

g~k1 ,k2 ,k3 ,k4!fk1 ,v1
fk2 ,v2

fk3 ,v3
fk4 ,v4

d~k11k21k31k4!d~v11v21v31v4!, ~9!
to
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where the three-leg bare vertexf (k1 ,k2 ,k3) is

f ~k1 ,k2 ,k3!5
g

3(i 51

3
kixkiy

uk i u
~10!

and the four-leg vertex is defined as

g~k1 ,k2 ,k3 ,k4!5
g

24 (
i . j 51

4
~kiy1kjy!22~kix1kjx!2

uk i1k j u
.

~11!

The vertices~10! and~11! decrease as the momentumk goes
to zero. Besides that, these vertices are singular atuku→0.
Nevertheless, the interaction between spin waves asymp
cally vanishes in the long-wavelength limit for a 3
magnet.15 No renormalization of the bare correlator

K~k!5^dSx~k!dSx~2k!&5^fkf2k&5
T

Jk21g~kx
2/uku!

~12!

appears in this limit~we seth50).
In 2D the situation changes drastically: the interact

grows with the wavelength, resulting in strong renormaliz
tion of critical exponents. To show the difference we calc
late the upper marginal dimension of the Hamiltonian~7!.
Let us consider an arbitrary diagram from the perturbat
expansion of some correlator. In order to add an internal
to such a diagram, we need to add three bare correlatoK
given by Eq.~12!, two verticesf and one integration ove
dkxd

(D21)ky ~this particular method of regularization is ch
sen in order to preserve the rotation symmetry which will
considered in the Appendix A in detail!. From Eq.~12! we
see that for small momenta,kx;ky

3/2 andK;ky
22 . Equation

~10! gives f ;kx;ky
3/2. Hence, requiring the one-line inse

tion be dimensionless, we obtain 3•~22!12•3/213/2
1~D21!50 or D55/2. It means that the theory is renorma
izable in D<5/2. It turns out that in the static 2D case th
critical exponents can be found exactly.

Following the work,12 we rescale the fieldf2→f2/AJg
and rewrite the Hamiltonian~7! in a slightly different form:
ti-

-
-

n
e

e

H5E
k
S aky

2fkf2k1a21
kx

2

ukyu
fkf2k12w

kxky

ukyu
fkFf2

2 G
2k

1w2aukyuFf2

2 G
k
Ff2

2 G
2k

D , ~13!

wherea5AJ/g, w25Ag/J3 and we have taken into accoun
that for smallk one can substituteuku→ky @see Eq.~12!#.
Requiring that the Hamiltonian~13! does not change unde

scale transformationky→ lky , kx→ l Dx
0
kx , fk→ l Df

0
fk ,

a→ l Da
0
a, w→ l D0

w, we find the bare exponentsDx
053/2,

Da
050, Df

0 529/4, Dw
0 51/4 ~where we have taken into ac

count that@f2/2# has one more integration!. Now, according
to the standard procedure,20 we introduce the renormalize
field and charges:f25ZffR

2 , a5ZaaR , w5Zwm1/4w̃R ,

wherem is the scale at which the dimensionlessw̃R is ob-
served. The second term in the Hamiltonian~13! is nonana-
lytic at small momenta. It means that there can be no cor
tions to this term in the regular perturbation expansion.

The symmetry group consists of simultaneous rotations
the coordinate system and spins. In Appendix A it is sho
that, due to this symmetry, there is no correction to the th
term either. Hence, we can establish the relations betw
the renormalization coefficients:

Za
21Zf51, ~14!

Zf
3/2Zwm1/451. ~15!

In the renormalization-group~RG! scheme the dimensionles
chargew̃ reaches a finite value at fixed point and determin
all the critical exponent, similar to the standard proced
with the dimensionless four-leg vertex in the theoryw.4 The
reader can check this fact and find the fixed value ofw̃ in
Sec. V. Here we skip the calculation to avoid repetitio
Since w̃R5const in the fixed point, one find
Zw;(L/m)1/4, whereL is the scale at which the couplin
constant equalsw. Introducing the critical exponent
Zf;L2Df, Za;LDa, we find from Eqs.~14! and ~15! that
Df521/12 andDa521/6. Demanding that the first and th
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second terms in the Hamiltonian~13! have the same dimen
sions, we findDx54/3. Finally, from the Callan-Symanzi
equation,20 the long-range limit of the two-point correlatio
function can be found:

K~x!5~x21uyu8/3!21/4f ~x/uyu4/3!,

where f (x) is an arbitrary finite function. The dynamica
properties of the magnet, however, are still to be found.

In the conclusion of this section we draw the readers
tention to a type of critical behavior appearing in the cons
ered model. It displays the scaling behavior everywhere
low the transition point. It happened earlier, for example,
the XY model with short-range interaction. The scaling
caused by a fluctuating Goldstone mode. This situation
characterized in the renormalization-group theory as a lin
fixed points. However, unlike the classicalXY model, the
XY model with dipolar interaction produces fixed critic
exponents, independent of the point of line. In this resp
our theory reminds us more of the theory of critical poin
The reason for this intermediate behavior is that the crit
fluctuations on large distances are governed by the sing
dipolar interaction, and this singularity is not renormaliz
by the thermal motion.

III. THE DYNAMICS OF XY MAGNET

In this section we introduce equations of motion for t
magnetization, describe the path-integral formulation of
problem and establish an approximate form of Dyson eq
tion which governs the nonlinear dynamics in the lo
frequency range.

At T50 the classical magnet with the Hamiltonian~5!,
obeying the constraint~2!, follows the Landau-Lifshitz equa
tions ~see, e.g., Ref. 21!:

S\
]S~x,t !

]t
5S~x,t !3

dH

dS~x,t !
, ~16!

whereS is the absolute value of a spin localized on a ma
netic ion. In terms of the canonically conjugated fieldsp and
f, Eq. ~16! can be rewritten in the Hamiltonian form:

\S] tp~x,t !5
dH

df~x,t !
, ~17!

2\S] tf~x,t !5
dH

dp~x,t !
'lp~x,t !. ~18!

In the harmonic approximation equations~17,18! imply the
dispersion relation for the spin-wave mode16 in a XY mag-
net:

e2~k!5lS Jk21g
kx

2

uku D 5c2S k21p0

kx
2

uku D , ~19!

wherec5AlJ is the spin-wave velocity andp05g/J. The
out-of-plane anisotropyl affects the dynamics in the long
wavelength limit k!pl5Al/J considered in this article
Thus,pl is the upper cutoff momentum in our theory. A sp
wave with k@p0 has the phononlike isotropic spectru
e5ck. The rangep0!k!pl will be called acoustic shel
(A shell!. At lower momentap!p0 the spin-wave spectrum
t-
-
e-

is
of

ct
.
l

lar

e
a-

-

is dominated by the dipolar interaction:e(k)'cAp0ksinu,
whereu is the angle between the direction of the sponta
ous magnetization and the wave vector. This range of m
menta will be called dipolar shell (D shell!. The effect of the
presence of the dipolar force in the 2DXY magnet is not
limited to the change of free spin-wave spectrum. As
have mentioned earlier, it leads to strong spin-wave inter
tion and to a crucial transformation of the spin propagati

Without dipolar forces the dynamics of the 2DXY ferro-
magnet is well described by noninteracting spin waves. T
high level of fluctuations leads to a strong temperature
pendence of the dynamic spin correlators, which have a
braic character, just as static ones.22,23 The renormalized
two-point spin-correlation function features the pole with t
temperature-dependent power exponent. The dipole fo
suppresses such strong spin fluctuations, but not entirely

In addition, the dipolar interaction induces decay pr
cesses. As a result finite spin-wave lifetimeG(k) or the
width of the levelb(k)5G21(k) appears. In 3D at low tem
perature and at small momentumuku, the widthb(k) is much
smaller thanv(k). In 2D, however, the interaction is esse
tial and must be considered seriously.

To take into account the dissipation induced by therm
fluctuations at a temperatureT, we introduce a phenomeno
logical dissipation functional:24

R@f#5E dtd2xd2x8R~x2x8!ḟ~x!ḟ~x8!. ~20!

Eliminating p from Eqs.~17,18! and adding a proper dissi
pation term, one obtains the following equation forf(x,t):

2
1

l
] t

2f~x,t !5F1

l
e2~k!f~v,k!G

x,t

1
dH int

df~x,t !
1

dR

dḟ~x,t !

1h~x,t !2h~x,t !, ~21!

whereh(x,t) is the external magnetic field, and the intera
tion part of the Hamiltonian is determined by Eq.~9!. We
have introduced the random noiseh(x,t) in Eq. ~21!. The
noise, in effect, generates dissipation. We note, that on sc
under consideration the anisotropy destroys spin conse
tion in the x-y plane first, and on even larger distances t
dipole-dipole interaction destroys the conservation of thz
projection of the spin~see also Ref. 24!. As usual, the ran-
dom noise is assumed to obey the Gaussian statistics
correlation function is determined by the fluctuatio
dissipation theorem:25

^hkh2k&52TR~k!. ~22!

Here R(k) is the Fourier transform of the functio
R(x2x8). The dissipation in the exchange ferromagnet va
ishes in the long-wavelength limit:15 R(k)5bk2. In 2D XY
dipole magnet the dissipation does not vanish in the lo
wavelength limit.

We emphasize that the finite lifetimeG is determined self-
consistently by the processes of the decay and scatterin
spin waves. We neglect the spin-wave-electron and s
wave-sound interactions. The first interaction is not we
but the Fermi velocity is much higher than the spin-wa
velocity and the spin-electron interaction is not effective
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long wavelength. Even the sound velocity can be mu
larger than the spin-wave velocity, since the latter is prop
tional to smallAl.

Our aim then is to calculate the linear-response funct
G(x,t) to a weak external fieldh(x,t) @see Eq.~21!# aver-
aged over the thermal fluctuationsh(x,t). We apply the
Janssen–De Dominicis functional method13 to reformulate
stochastic equation~21! in terms of the path integral. Th
probability distribution for the noiseh(x,t) is

W@h#;expF2
1

4TE d2xd2x8E dth~x,t !

3R21~x2x8!h~x8,t !G . ~23!
to
h
r-

n

Following the standard dynamic field theory,20,9 upon aver-
aging over the noise distribution and introducing auxilia
response fieldf̂(x,t), one can reduce the solution of th
stochastic differential equation~21! to the calculation of the
dynamical partition function:

Z@ j , ĵ #5E D@f#D@ i f̂#

3expSJ@f,f̂#1E d2xE dt@ ĵ f̂1 j f# D ~24!

and its derivatives over the currentsj and ĵ . HereJ(f,f̂) is
the Janssen–De Dominics functional~JDF!:
ic
J@f,f̂#5E d2xE d2x8E dtf̂~x,t !TR~x2x8!f̂~x8,t !2f̂~x8,t !F1

l
] t

2f~x,t !d~x82x!1
dH

df~x,t !
d~x82x!

1R~x82x!] tf~x,t !G . ~25!

By differentiation of the JDF overj and ĵ one can obtain any correlation function.
From the quadratic part of the JDF one finds the bare propagator:

Ĝ05S 0 G0* ~v,k!

G0~v,k! D0~v,k!
D , ~26!

where we define the bare dynamical response and spin-spin correlation function as follows:

G0~v,k!5
l

v22e2~k!2 ivlR~k!
, ~27!

D0~v,k!5
2TlR~k!

@v22e2~k!#21v2l2R2~k!
. ~28!

They obey the standard fluctuation-dissipation relation:D052T/vImG0. The same relation is correct for the total dynam
correlationD(v,k) and the total linear-response functionG(v,k):

D5
2T

v
ImG.

The anharmonic~interaction! part ofJ is

Jint5(
v,k

f̂v,k

dH int

dfv,k
5(

v,k
f̂v,kS 3 (

v2 ,v3
(

k2 ,k3

f ~k,k2 ,k3!fk2 ,v2
fk3 ,v3

d~k1k21k3!d~v1v21v3!

14 (
v2 ,v3 ,v4

(
k2 ,k3 ,k4

g~k,k2 ,k3 ,k4!fk2 ,v2
fk3 ,v3

fk4 ,v4
d~k1k21k31k4!d~v1v21v31v4! D . ~29!
n

We define in a common way the self-energy opera
Ŝ(v,k) by the relation

Ĝ21~v,p!5Ĝ0
21~v,p!2Ŝ~v,p!, ~30!

where
r
Ĝ5S 0 G* ~v,k!

G~v,k! D~v,k!
D , ~31!

andG(v,k) andD(v,k) are the complete response functio
and correlator, respectively.

The self-energyŜ(v,k) satisfies the Dyson equation:
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Ŝ~v,k!5gE
V
E

p
Ĝ~V,p!L̂0~p,k;v,V!L̂~p,k;v,V!

3Ĝ~v2V,k2p!, ~32!

where L̂(p,k;v,V) is the full vertex andL̂0(p,k;v,V) is
the bare vertex which can be readily found from the intera
tion part of action~29!.

Further we consider a limitR(k)→10. According to the

fluctuation-dissipation theorem~FDT!, the matrix Ŝ(v,p)
must have a form:

Ŝ~v,p!5S 2T

lv
ImS~v,p!

1

l
S* ~v,p!

1

l
S~v,p! 0

D , ~33!

where the self-energy functionS(v,p) is associated with the
complete response functionG(v,p) by the same relation-
ship:

G21~v,p!5G0
21~v,p!2

1

l
S~v,p!. ~34!

In Appendix A we show that the full vertexL can be ap-
proximated with a good accuracy by its bare valuef (v,p) in
the low-frequency range. In this respect our theory is simil
to the Migdal theory of the interacting electron-phono
system.2 In the Migdal theory the simplification is due to a
narrow scale of the energy shell in which the interactio
proceeds. In our theory we assume that the frequency of s
fluctuations is small instead. Under this condition the tw
loop corrections are small, and the diagram in Fig. 1~b! con-
tributes to a negligible change of the spectrum~19!.20 Such
neglect of the two-loop diagrams~vertex correction! was a
major assumption in the so-called mode-coupling methods11

This approximation serves well in the theory of the 3D crit
cal dynamics with the dipole force being included. Later w
prove this assumption for 2D. Thus, the Dyson equation f
our problem is as follows:

FIG. 1. ~a,b! The main contribution to the self-energy. The func
tions G andD are given by Eq.~31!. The three-leg vertices in~a!
and the four-leg vertex in~b! are from Eq.~29!. ~c! Two-loop cor-
rection to the self-energy. Momenta of internal lines are indicate
-

r

in
-

r

S~V,q!518l3TE
p
E

v
f 2~p,q!D~v,p!G~v1V,q2p!.

~35!

IV. SOLUTION OF DYSON EQUATION: SOFT MODES

In this section we solve Dyson equation~35! for the spe-
cial conditions formulated below. They include low
temperature, low-frequency~wave vector! and weak dipolar
interaction. We notify the real and the imaginary part of t
self-energy term asS5a2(v,p)2 ivb(v,p). Thus, the
Green function~30! reads

G21~v,p!5v22e2~p!2a2~v,p!1 ivb~v,p!, ~36!

while the spin-spin correlation function is

D~v,p!5
b~v,p!

@v22e2~p!2a2~v,p!#21v2b2~v,p!
~37!

~we have slightly changed the definitions ofG and D and
referred the factorA2Tl3 to the vertex!.

We employ the reduced temperaturet5T/4pJ and the
ratio g/AJl5p0 /Al/J as small parameters. The latte
means that theA shell is much larger than theD shell. We
also use the notationL5 ln(AJl/g).

The main contribution to the self-energy is given by t
one-loop diagrams shown in Figs. 1~a! and 1~b!. Our theory
is valid only if the temperature is small:

t ln~AJl/g!5tL!1. ~38!

The functions b(v,p) and a(v,p) are even in both
arguments.1 The imaginary part of the self-energy is odd
v: ImS(V,q)52Vb(V,q). Hence, the equation for th
dissipation function reads

b~V,q!59l3TE
p
E

v
f 2~p,q!D~v,p!D~v1V,q2p!.

~39!
The integrand in Eq.~39! is positive. Thus, the main contri
bution tob(V,q) comes from the region where poles of th
two D functions coincide. The functionD(v,p) has poles at
v'6e(p) in theA shell. Following the terminology of the
field theory, we call the surfacev25e2(p) the mass shell.
The self-energy in theA shell is small as it is shown in
Appendix B and we neglect it. Because the dissipation
small, theD function can be represented as a sum ofd func-
tions:

D~v,p!'(
6

p

2e2~p!
d~Dv6!, ~40!

where Dv65v6e(p) ~Ref. 26! measures the deviatio
from the mass shell. After integratingv out from Eq.~39!
with the D functions from Eq.~40!, we recover the Ferm
golden rule for the probability of the spin-wave decay a
scattering processes.

Looking for the long-wavelength quasiexcitations, w
need the self-energy at very small momentaq!p0, which
we denote asS0. We anticipate the quasiexcitations to b
soft: V!cq. Here we restrict the quasiexcitation wave ve
tor q to be directed almost along the magnetizatio

.
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uqxu!q ~arbitrarily directedq are considered in Appendi
C!. The essential contribution to the integral in Eq.~35!
comes from the internal momentump being in theA shell
and the internal frequencyv5e(p). Performing the integra-
tion overv with the D function from Eq.~40!, we find

S05
c2p0

2t

4p E c4p3dp

e4~p!

Vsin2~2c!dc

V2cqcosc1 ib1
, ~41!

whereb1 is the dissipation functionb(v,p) of a spin wave
inside theA shell. Details of the derivation of Eq.~41! are
given in Appendix B. We neglect the real part of the se
energy in theA shell as it is justified in the same append
Note, that ReS0 vanishes in the static limitV50.

If cq@b1, we make the integral overc in Eq. ~41! to find

S0~x!5c2p0
2tLcos2xexp~22ix!, ~42!

wherex, defined by the equation cosx5V/cq, measures the
deviation from the mass shell. More generally, we introdu
a notationr for the ratioV/cq (r 5cosx if r<1). Then

S0~r !5c2p0
2Ltr 2~2r 22122rAr 221!. ~43!

Note that S0(r )'2c2p0
2t/4 when r→` and

uS0(r )u,c2p0
2t/4 at anyr . The self-energyS0(r ) is real for

r .1.
If q is so small thatcq!b1, Eq. ~41! implies the

q-independent dissipation constant:

b05c2p0
2tLE dc

4p

sin2~2c!

b1~c!
. ~44!

In this calculation we have used the fact that the dissipa
of a spin wave in theA shell b1 depends only on the angl
c between the direction of magnetization and the spin-w
wave vectorp which we prove below.

Now we need to calculateb1(c). An unusual feature of
our theory is that the dissipation process in theA shell is
mediated by an off-mass-shell virtual spin wave. Indeed,
dispersion relation~19! does not allow for decay or mergin
processes. Alternatively, as we will show, the dissipation
a spin wave in theA shell, propagating along the directio
specified with the anglec (sinc5qx /q), is mediated by an
internal virtual spin wave in Eq.~9!, with a momentum of
p!p0 and a frequency ofv,cp, propagating along the di
rection very close to they axisw2!1 ~where sinw5px /p), to
provide a finite attenuation of this state. The integration o
v with one of theD functions in Eq.~39!, taken in the form
~40!, leads to the following equation:

b1529c4t
f 2~0,q!

8pJ2q2E d2pD@e~p1q!2e~q!,p#. ~45!

Since v5e(p1q)2e(q), we conclude thatv5cpcosF,
whereF5c2w'c is the angle between the vectorsq and
p. According to fluctuation-dissipation theorem
D(ep1q2eq ,p)51/ep1q2eqImG(ep1q2eq ,p). Invoking
the definition of the anglex for virtual spin wave, we find
that x5F'c. Substituting f 2(0,q)5(1/9)q2sin2(2c),
e2(p)5c2p21c2p0psin2w'c2p21c2p0pw2 and taking into
account thatS0 from Eq. ~42! depends only onx5c, we
write
-

e

n

e

e

f

r

b1~c!5
c2p0

2t

2p
ImE sin2ccoscdpdw

p2sin2c1p0pw21S0~c!/c2 .

~46!

Note that the most dangerous region of integration is
region of smallp, such thatw2;p/p0!1 in Eq. ~46!. In
other words, the dissipation of a short-wavelength spin wa
propagating in the directionc, is determined by the scatter
ing on the long-wavelength virtual spin wave, with the m
mentum along theŷ direction, which lies on a specific dis
tance off the mass shell:v/cp5cosc. The integration over
p in Eq. ~46! is confined towards the crossover regio
p;pc5p0AtL.

To find the anisotropic dissipation of a spin-wave mode
the A shell, we plugS0(c) from Eq. ~42! into Eq. ~46!.
After a change of variables (p,w)→(r,q), given by formu-
las p5p0r2cosq and w5rsincsinqcos21/2q (2`,r,`
and 0,q,p/2), the integration becomes trivial and gives

b1~c!5b1t3/4cp0

sin3/2~2c!sin~c/2!

L1/4cosc
, ~47!

where the direction of the spin wave is limited to the fund
mental quadrant: 0,c,p/2, andb15G2(1/4)/4A2p'1.31.

Let us return to the range of very low momen
p!b1 /c. Plugging Eq.~47! into Eq. ~44!, one finds

b05b0cp0t1/4L5/4,

whereb0'1.24. The conditioncpDM;b1 defines the cross
over wave vector:pDM;b1p0t3/4/L1/4, between the self-
energies~42! and~44!. The dissipation functions~42, 44, and
47! represent the self-consistent solution of the Dyson eq
tion ~35, 39!.

Finally, we verify that the two-loop correction@see Fig.
1~c!# is negligible. There exist several diagrams with diffe
ent arrangements ofG andD functions. On each of the two
short loops on the diagram Fig. 1~c! there exists at least on
D function but there may be two of them. We consider on
the most ‘‘dangerous’’ diagram with each short loop havi
exactly oneD function ~see Fig. 2!. Note that the main con-
tribution to the diagram Fig. 2 comes from regions of inte
nal momenta,p1 andp2 are restricted to theA shell. Inside
theA shell the Green and theD functions have strong sin
gularities on the mass shell. As it was done in Appendix
we integrate in both short loops the internal frequenciesv1
andv2 and find that only the nonstatic term is nonzero:

FIG. 2. The most ‘‘dangerous’’ two-loop diagram.
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S0;t2E d2p1d2p2

e3~p1!e
3~p2!

V f 2~p1,p2! f ~p1,p1! f ~p2,p2!

~V2cqcosf12 ib1!~V2cqcosf22 ib2!

e22~p12p2!

@e~p1!2e~p2!2e~p12p2!#
, ~48!
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where f1 and f2 is the direction of the momentap1 and
p2. We assumed thatf1'f2. Since the three spin-wave pro
cesses are not allowed by the conservation laws, the G
functionG(v12v2 ,p12p2) is off the mass shell~the corre-
sponding last denominator in Eq.~48! reads (p11p2)(f1
2f2)21p0cos2(f1).0 if p1 ,p2@p0). Now we can count
the momenta powers in Eq.~48! to verify that the integration
is convergent towards the dipolar momentump0, and, thus
has no logarithm. A simple counting of temperatures sho
that Eq. ~48! ;t2/b1

2;t1/2. Hence the two-loop dissipatio
function is b085b0(11t1/4/L). Similar consideration show
that the functionb18(c,q)2b1(c), which represents the two
loop corrections forb1, is small in t1/4, and is also small in
the ratiop0 /q.

Having explicit expressions for the self-energy we c
analyze the dispersion relationv25e2(p)1S(v,p) in the
range of smallv and p. New results are expected for th
region p,pc5p0AtL in which S0 becomes comparabl
with e2(p). In a range of momentumpDM!p!pc and
anglesc!Ap0tL/p, we find a new propagating soft mod
with the dispersion:

v5cp~p21p0pc2!1/2/p0AtL. ~49!

The dissipation of the soft mode grows to the boundary
the region and becomes of the order of its energy
c;Ap0tL/p or p;pDM . There is no soft mode beyond th
indicated range. The spin-wave mode persists atp.p0tL. In
a rangep!pDM and small angles a new diffusion mod
occurs with the dispersion:
en

s

f
t

v52 i e2~p!t21/4L5/4/b0cp0 . ~50!

The angular range of the diffusion mode increases with
creasingp and captures the entire circle atp,p0tL.

At the end of this section we would like to remind th
reader that Eq.~44! was obtained for the quasiexcitation d
rected along they axis. It can be easily checked that in ca
of arbitrarily directedq one must write sin2(2c12f) instead
of sin(2c) in Eq. ~41!, where sinf5qx /q. However, in this
case the integral becomes singular, so one must treat
equation more carefully. We will come back to this questi
in Appendix C.

V. RENORMALIZATION OF THE DIFFUSION MODE

In this section we concern ourself with the renormaliz
tion of the diffusion mode. As we established in the previo
section, at wave vectorsp,pDM the diffusive dynamics
term dominates (l→0 limit! in the harmonic part of JDF
@Eqs. ~27! and ~28!#. The interaction between ‘‘diffusons,’
given by the anharmonic part of the JDF~32!, effectively
‘‘renormalizes’’ the diffuson dispersion at very small wav
vectors p,pa!pDM . We shall determine the anomalou
diffusion onset wave vectorpa in the end of this section.

To simplify further calculations, we introduce a sca
transformation of the fields f, f̂→(Jg/T2)21/4f,
(Jg/T2)21/4f̂. In these notations the JDF~28,32! is
tion-
J@f,f̂#5(
v,k

f̂2v,2kFa
T

G0
f̂v,k2S aky

21
kx

2

aukyu
Dfv,k2a

iv

G0
fv,k2w

kxky

ukyu
Ff2

2 G
v,k

2w(
V,p

fv2V,k2p

pxpy

upyu
fV,p

2w2a(
V,p

fv2V,k2pupyuFf2

2 G
V,p

G , ~51!

whereG05JG, a5AJ/g and

w5~T2g/J3!1/4. ~52!

Note, that it is possible to get rid of the spatial anisotropy chargea by rescaling thex coordinate only.
We have already seen from the statics consideration,~see Sec. II! that the mean-field scaling dimensions are:Da

050,
Dkx

0 53/2, Df
0 51/4, andDw

0 51/4 ~we remind the reader that the dimension ofky is accepted to be 1!. Similar simple

calculations give the dynamic mean-field exponents:D1/G
0 50, Dv

0 52, andDf̂
0

59/4.
According to the standard renormalization-group procedure, we introduce renormalization constants:f5Zf

1/2fR ,

f̂5Zf̂
1/2

f̂R , a5ZaaR , 1/G05Z1/G1/GR and w̃5Zww̃R , where

w̃5 l 1/4w. ~53!

First we note that the fieldsf andf̂ have the same renormalization coefficients. It immediately follows from the fluctua
dissipation theorem. Indeed, according to this theorem
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D~x,t;y,t !5^f~x,t !f~y,t !&52TImE
0

`

G~x,t;y,0!dt52TImE
0

`

^f̂~x,t !f~y,0!&dt.

In the standard formulation of the renormalization theory only the charges (a, G) and the fields (f, f̂) acquire the renormal-
ization coefficients, not coordinate, time or temperature. Thus, we concludeZf5Zf̂ .

Let us divide the Janssen–De Dominics functional into two parts:

J5JR1DJ.

The first one is the ‘‘renormalized’’ functionalJR

JR@fR ,f̂R#5(
v,k

f̂R2v,2kFaR

T

GR
f̂Rv,k2S aRky

21
kx

2

aRukyu
DfRv,k2aR

iv

GR
fRv,k2w̃Rl 1/4

kxky

ukyu
FfR

2

2 G
v,k

2w̃Rl 1/4(
V,p

fRv2V,k2p

pxpy

upyu
fRV,p2w̃R

2aRl 1/2(
V,p

fRv2V,k2pupyuFfR
2

2 G
V,p

G . ~54!

The second oneDJ contains the counterterms:

DJ5(
v,k

f̂R2v,2kFaR

T

GR
~ZfZaZ1/G21!f̂Rv,k2S aR~ZfZa21!ky

21~ZfZa
2121!

kx
2

aRukyu
DfRv,k

2aR

iv

GR
~ZfZaZ1/G21!fRv,k2~ZwZf

3/221!w̃Rl 1/4
kxky

ukyu
FfR

2

2 G
v,k

2~ZwZf
3/221!w̃Rl 1/4

3(
V,p

fRv2V,k2p

pxpy

upyu
fRV,p2~Zw

2 ZaZf
2 21!w̃R

2aRl 1/2(
V,p

fRv2V,k2pupyuFfR
2

2 G
V,p

G . ~55!
re

eg

er

i-
A simple power counting shows that all corrections a
only logarithmically divergent in the dimension of 5/2~see
Sec. II!. Hence, in what follows the« regularization scheme
with «51/2 is assumed.

Evaluating the diagram shown in Fig. 1~a! up to second
order inky ~using the bareG0 andD0 functions!, one finds
the one-loop correction to the second term of the JDF:

2
18

128p
aRw̃R

2 l 1/2E dky

ky
3/22~ZfZa21!aR .

In order to cancel the divergency, we set

ZfZa512
18

128p
w̃R

2 l 1/2E dky

ky
3/2 . ~56!

The same procedure for the fourth term gives

ZaZfZ1/G512
1

32p
w̃R

2 l 1/2E dky

ky
3/2 . ~57!

In Appendix A we show that both the three-leg and four-l
vertices do not have one-loop corrections. Hence

ZwZf
3/251. ~58!

One can easily see that the one-loop correction to the t
f̂kx

2/ukyuf in Eq. ~58! vanishes as well~see Refs. 12,20!. It
means that

Za
21Zf51. ~59!
m

Equations~56–59! have the following solution:

Za5Zf512
9

128p
w̃R

2 l 1/2E dky

ky
3/2 , ~60!

Z1/G511
7

64p
w̃R

2 l 1/2E dky

ky
3/2 , ~61!

Zw5S 11
27

256p
w̃R

2 l 1/2E dky

ky
3/2D . ~62!

Next we introduce the Gell-Mann-Lowb function
b5m(]wR /]m)uw,L and the Callan-Simanzik anomalous d
mensionsga5(m/aR)(]aR /]m), gG5mGR(]1/GR /]m) and
hf5(m/Zf)(]Zf /]m). We denote bym the scale at which
the coupling constant is equal tow̃R and denote byL the
scale at which the coupling constant is equal tow̃. From Eq.
~62! and the definition ofZw , one has

wR5wS L

m D 1/4S 12
27

128p
w̃2L1/2E

m

Ldky

ky
3/2D . ~63!

And finally, we find theb function, which coincides with
that found in the statics case12

b~w̃R!52
1

4
w̃R1

27

256p
w̃R

3 . ~64!

The fixed point of the renormalization-group flow is
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w̃R*
2
5

64p

27
.

After performing this procedure for anomalous dimensio
one gets

ga52
9

128p
w̃R

2 , ~65!

g1/G5
7

64p
w̃R

2 , ~66!

hf5
9

128p
w̃R

2 . ~67!

Using the result for w̃R* , it is straightforward to find
ga* 521/6,g1/G* 57/27, andhf* 51/6. The scaling dimen-
sionality of the frequencyDv can be found from compariso
of the second and third terms in the expansion~51!:
Dv522g1/G547/27.

The long-range limit of the functionsG and D is found
from the Callan-Symanzik equation:20

G~ t,x!5
1

~x21uyu8/3!65/72f S x

uyu4/3,
t

uyu47/27D , ~68!

D~ t,x!5
1

~x21uyu8/3!1/4 f̃ S x

uyu4/3,
t

uyu47/27D , ~69!

where f (x,y) and f̃ (x,y) are arbitrary functions.
In the static limit (t50) the exponents in the correlatio

function ~68! are exact, as was previously found by one
the authors:12

D~r !5^f~r !f~0!&;~x21/2,y22/3!. ~70!

For the Fourier components of the Green function Eq.~68!,
we find in the region of anomalous diffusion:

G~v,k!5 f 1S kx

ky
4/3,

v

ky
47/27D . ~71!

The anomalous dispersion of the diffusion mode announ
in the abstract follows from the last equation. We see that
static dipole contribution is not renormalized in dynamics,
it was suggested in Refs. 27,28. We also note that the
change coupling acquires an anomalous dimens
DJ51/3, whereas the dynamic termv/G acquires anomalou
a dimension12/27. Taking into account the anomalous d
mensiong1/G57/27, we conclude that the anomalous dime
sion of v is gv51/6. The interaction between the diffuson
in the scaling limit reduces the dissipation or, in other wor
hardens the diffusion.

Now we can estimate the wave vectorpa , an upper
boundary for anomalous diffusion. We assume that temp
ture is small Eq.~38!. Initially, according to Eq.~52!, the
bare vertexw05ATg1/4/J3/4, and is also small. Under th
renormalization flow, the vertexwR grows with the inverse
wave vector as the power 1/4 Eq.~53!. The RG flow starts at
pDM and approaches the fixed point at the root of the G
Mann-Low functionb(wR)50. Invoking Eq.~64!, we find
s

f

d
e
s
x-
n

-

,

a-

l-

the fixed-point solutionwR;1. Thus, the wave vectorpa is
defined as the wave vector at whichwR;1:

w0~pDM /pa!1/4;1. ~72!

We see that

pa;T2T3/4, ~73!

that is very small. Even if t is not small,
pa;pDMw0

4;p0(ga/J). It is much smaller thanp0.

VI. SUSCEPTIBILITIES

In this section we find the susceptibility to the magne
field directed along the average magnetization^S‹ (y axis!,
the so-called longitudinal susceptibility. We consider t
magnetic field in the formH5H01dH(x,t) where H0 is
independent ofx and t. When an additional magnetic fiel
dH is imposed, a new vertexdhv,k@ff̂#2v,2k emerges in
the JDF~25! ~we denoteh5gGmBSH;dh5gGmBSdH). It
leads to a correctiondD(v,k) to the correlation function
D(v,k):

dD~x15x2 ,t15t2!5E
V
E

k
E

v
E

q
h~v,q!D0~V,k!@G0~V

1v,k1q!1G0* ~V2v,k2q!#,

whereD0(v,k) andG0(v,k) are taken from Eqs.~27! and
~28!.

By definition, the susceptibilityx is

x~v,k,h!5
d

dH~v,k!
^Sy&52

1

2

d

dH~v,k!
^f~x,t !f~x,t !&

52
gGmBS

2

d

dh~v,k!
D~x15x2 ,t15t2!. ~74!

Hence,

x~v,q!52gGmBSE
V
E

k
D0~V,k!G0~V1v,k1q!.

~75!

In the most interesting case, whenq50, all integrals can be
evaluated and the final answer is

x~v,h!5gGmBS
G2~3/4!

4pAp
TS J3

g2D 1/42G

v Fh1/42S h2
iv

2G D 1/4G .
~76!

In the limiting casev50, the susceptibility reads
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x5consth23/4.

This result has been found earlier.18

VII. CONCLUSION

In conclusion we discuss how new modes can be
served in experiment. The new modes appear on a ma
scopic scale of the length of the order of magnitude 1mm.
Even rather weak in-plane anisotropy can suppress or
guise the new modes. Therefore, we can expect that the
dynamics will be observed in films with very weak in-plan
anisotropy. The best known candidates for this role are fi
grown on hexagonal substrates. The hexagonal anisotro
naturally weaker than the tetragonal one, because they
proportional to a higher degree of the relativistic parame
Besides, the hexagonal anisotropy totally vanishes at la
distances in a range of temperature from (4/9)TBKT until
TBKT , where TBKT is the temperature of Berezinski
Kosterlitz-Thouless transition.22,29The simplest idea is to us
the ~111! face of fcc crystals, such as Ag, Au, Cu. An iro
film on the ~111! face of Ar has been grown by Bader an
co-workers.30 Recently the Ru film has been grown on t
hexagonal graphite substrate.31 Thus, 2D ferromagnets with
exactXY symmetry are available.

An important question is whether the interaction of sp
with the conductivity electrons in metallic films leaves
opportunity to observe the anomalous dissipation and
modes. It seems surprising, but no dissipation of spin wa
by electrons occurs in the long-wave limit. Indeed, if a co
ductivity electron emits or absorbs a spin wave, the el
tron’s spin projection changes sign. Thus, the electron tr
sits from majority to minority band or vice versa. Since w
are interested in very long spin waves, the electron mom
tum almost does not change in such a reaction. It means
the electron energy changes by the value of self-consis
exchange field energy, much larger than the energy of a l
wave-vector spin wave. Thus, this process is forbidden
the conservation laws.

However, not only the film, but the substrate is also m
tallic. The varying magnetization in the film creates the ed
currents in the substrate which undergo Ohmic losses.
dissipation due to this mechanism is easy to calculate an
compare with the spin-wave energy. The result is

g~q!

v~q!
'

p2smB
2Al

c2\~qa!2AJ
,

whereg(q) is the width of the spin-wave energy level due
Ohmic losses,s is the substrate conductivity,mB is the Bohr
magneton and a is the lattice constant. Fo
q5p051024 cm, a53 Å, r51/s51.56 mV cm, and
l/J51/20, we find the ratiog/v'1028. This estimate
shows that the dissipation due to eddy currents is negleg
small.

The next question is: what dynamic effects can be
served and at what conditions? As we have noted earlie
the in-plane anisotropy is not especially small~less than 1 K
in energy scale!, the only opportunity is to use a sixfol
substrate in the range of temperature, higher th
(4/9)TBKT . It has been predicted22,29 that sixfold anisotropy
-
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vanishes on large scale in this range of temperature. At s
high temperatures the observation of propagating soft mo
described in Sec. III seems to be improbable, since all t
requiret!1, i.e.T!Tc . However, the anomalous diffusio
can be observed even atT;Tc , given a sufficiently large
scale of length (>10 mm!. The best way to observe it is t
apply a short and inhomogeneous pulse of magnetic fi
and follow when the secondary signal will arrive to fixe
indicators. Such a picosecond-pulse technique has bee
cently used for investigation of the film dynamics.32 We pro-
pose to use the same pulse technique to different films.

A quick estimation of the timetx,y needed for the second
ary signal to reach the indicator at distancesLx andLy along

x̂ andŷ directions shows:tx,y;(\/Jp0a)(Lx,y /a)Dx,y
a

, where
a is the lattice constant andDx,y

a are the anomalous-diffusion

dimensions for axes x̂ and ŷ, respectively. Thus,
tx;\/ga(Lx /a)47/36;103.5 s and ty;\/ga(Ly /a)47/27;1
s, where we have assumedLx;Ly;1 cm.

The retardation time for the secondary signal is mu
longer than the time for the primary signal propagation. T
strong size and direction dependence of the propagation
can be used for detecting the anomalous diffusion.
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APPENDIX A: ONE-LOOP VERTICES CORRECTIONS

First we note that the JDF~51! has the following non-
trivial symmetry:12

f~k,v!→f~k,v!1«d2~k!d~v!, ~A1!

f̂~k,v!→f̂~k,v!, ~A2!

kx→kx2«awky , ~A3!

ky→ky . ~A4!

The partition function~24! must have the same symmet
dZ@ j , ĵ #50. By a standard procedure,20 we find the implica-
tions of the symmetry~A1–A4!, known as Ward-Takahash
identities to the so-called ‘‘generating functional for prop
vertices’’ G@w,ŵ# ~it is the Legendre transform of lnZ@ j,ĵ#
with respect to the fieldsw and ŵ):
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E
k
E

v
S d~v!d~k!

dG

dw~2k,2v!
2awFkyw~2k,2v!

3
]

]kx

dG

dw~2k,2v!
1kyŵ~2k,2v!

3
]

]kx

dG

dŵ~2k,2v!
G D

50. ~A5!

Now, writing down the Taylor-like expansion ofG@w,ŵ#

over fieldsw and ŵ and plugging it into Eq.~A5!, we find

Gwwŵ~0,k̄ ,2 k̄ !2awky

]

]kx
Gwŵ~ k̄ ,2 k̄ !50, ~A6!

where k̄ is used for (k,v). It was proven20 that there is no
correction to the termkx

2/ukyu due to analyticity. According
to Eq. ~A6!, it means that corrections to the three-leg ver
at
lf

b

th
e
a
e

x

vanish if we set one of the two frequencies, which the ver
depends upon, equal to zero. Hence, the corrections m
depend on the product of the twov ’s and are small in the
framework of Sec. III. Considering loop-wise expansion
G in the same spirit, one finds

G5 (
n50

`

wnG~n!'G~0!1wG~1!1 . . . .

Looking only at the divergent parts of the correctionsG(0)

andG(1), we see that, becauseG(0) is just the bare action and
has no divergencies at all, the one-loop corrections to
v-independent three-leg vertex do not diverge. As a con
quence of this fact we obtain Eq.~58!.

APPENDIX B: CALCULATION OF SELF-ENERGY

Let us start with the Dyson Eq.~42! corresponding to a
one-loop diagram on Fig. 1~a!. We may integrate Eq.~42!
over the contour in complex planev such that the poles o
the G function are outside the contour:
nd
S05
p0

2c6t

2p E f 2~p2q/2,p1q/2!$@V1e~p2q/2!#22e2~p1q/2!1 ib1%
21

1$@V2e~p2q/2!#22e2~p1q/2!2 ib1#21%
d2p

e2~p2q/2!
. ~B1!

It is convenient to change in the secondG function p on 2p:

S05
p0

2c6t

2p E f 2~p2q/2,p1q/2!d2p

V1e~p2q/2!2e~p1q/2!1 ib1
F e22~p2q/2!

@V1e~p1q/2!1e~p2q/2!#
1

e22~p1q/2!

@V2e~p1q/2!2e~p2q/2!#G . ~B2!

Keeping only the lowest order in small momentumq and frequencyV and after a simple expansion in the brackets we fi

S05
p0

2c6t

2p E f 2~p,p!d2p

V1e~p2q/2!2e~p1q/2!1 ib1

22V14@e~p1q/2!2e~p2q/2!#

4e4~p!
. ~B3!
qs.

h-
hat
pin-
ts

e

At this point we separate the above integral into the st
V-independent part and the rest into the ‘‘dynamical’’ se
energy. The staticV-independent self-energy~it is always
real! reads

Sst52
p0

2c6t

2p E f 2~p,p!

e4~p!
d2p. ~B4!

Now let us take into account the static self-energy given
the diagram in Fig. 1~b!:

Sb5
p0c4t

4p E py
22px

2

p2e2~p!
d2p. ~B5!

Comparing Eq.~B4! @remember thatf (p,p)5px
2py

2/p2# and
Eq. ~B5!, we conclude that these cancel each other in
A shell. Thus, we have verified explicitly that th
V,q-independent part of the self-energy is strictly zero
guaranteed by the Ward identity due to the rotation symm
try of the system~see Appendix A!. To get nonzero static
ic
-

y

e

s
-

self-energy we have to expand self-energies like E
~B4,B5! in powers of the transferred momentumq. This will
be done in Sec. IV using the static field-theoretical tec
nique, not dynamical as in this appendix. The result is t
q-dependent static self-energy only matters when the s
wave momentumq is so small that anomalous diffusion se
up. On shorter wavelengths likeq,pDM we may safely ne-
glect the contribution of Eqs.~B4! and ~B5!.

Now we return to theV-dependent dynamical part of th
self-energy:

S0~x,q!5
p0

2c6t

2p
2VE sin2~2f!

V2qcosf1 ib1

dpdf

4c4p
. ~B6!

The integral overp gives exactly the logarithmic factorL:

S0~x,q!5
p0

2c2t

p
LVE sin2fcos2f

V2qcosf1 ib1
df. ~B7!
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FIG. 3. Maps of the regions with different dispersion relations.
The imaginary part of Eq.~B7! could be easily found in the
limit V,cq@b1. In this case we use the formula

1

x2 i0
5P

1

x
1 ipd~x!

to find theI part of Eq.~46!. The R part is also simple to
calculate:
RS0~x,q!5
p0

2c2t

p
L

V

q

3E sin2fcosf@~2V1qcosf!1V#

V2qcosf
df,

~B8!

and then simplify
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RS0~x,q!5
p0

2c2t

p
L

V2

q E sin2fcosf

V2qcosf
df. ~B9!

We repeat the same step

RS0~x,q!5
p0

2c2t

p
L

V2

q2 E sin2f~2V1qcosf1V!

V2qcosf
df

~B10!

with further simplification

RS0~x,q!5
p0

2c2t

p
L

V3

q2 E sin2f

V2qcosf
df2

p0
2c2t

p
L

V2

q2

2p

2
.

~B11!

One could easily continue the same procedure to find

RS0~x,q!5p0
2c2tL

V2

q2 S 2
V2

q2 21D5p0
2c2tLcos2xcos~2x!,

~B12!

which is exactly Eq.~46! of Sec. III.
Finally let us show that the self-energy in theA shell is

negligible. We first assume that it does negligib
a2(v,p)!e2(p). Then we consider the self-energy Eq.~B2!,
provided the external frequency and momentum lies on
mass shell inside theA shell: V5e(q). Let also
Al/J@q,p0. One could easily verify that the main contr
bution comes ifq!p. In this case we may use Eq.~B6!:

S05
p0

2c6t

2p
2cqE sin2~2f!

cAq21p0qx
2/q2qcosf1 ib1

dpdf

4c4p
.

~B13!

Integration overp gives ln(Al/J/q), whereas the integration
over the relative direction of internal and external spin wa
gives factorAq3/p0qx

2. Thus, the real self-energy

a2~V,q!;tLc2p0Ap0q.

At small t this result justifies our neglect of the self-energy
theA shell.

APPENDIX C: THE ANGULAR DEPENDENCE
OF THE SELF-ENERGY OPERATOR

In this appendix we analyze the angular dependence
the self-energy part found in Sec. III. Repeating all arg
ments, one can find that Eq.~41! must be written in a slightly
modified form:

S0~V,q,f!5
c2p0

2t

4p E c4p3dp

e4~p!

Vsin2~2c12f!dc

V2cqcosc1 ib1
.

~C1!

Now again, assumingcq@b1, one finds

S0~r ,f!5c2p0
2tLF r 2~2r 22122rAr 221!cos~4f!

1
1

2

r

Ar 221
sin2~2f!G , ~C2!
:

e

s

of
-

wherer 5V/cq. In the case wheref50 andr 5cosx, for-
mula ~42! is recovered.

The main contribution to the integral in Eq.~45! comes
from a region of very small anglesf. Hence, the correction
to S0 we have found above is not important in this calcu
tions and Eq.~46! still holds.

By the next step we need to plugb1(c) from Eq. ~46! to
the nonzero-angle form of Eq.~44!

S~V,q,f!5 iVc2p0
2tLE

0

2pdc

4p

sin2~2c12f!

ib1~c!1V2cqcosc
.

~C3!

Evaluating this integral, one finds

S~ uVu!cq!5 iVc p̃Fcos2~2f!2aS q

pDM
D 23/5

sin2~2f!G
~C4!

S~ uVu@cq!5 iVc p̃Fcos2~2f!2aS uVu
cpDM

D 23/5

sin2~2f!G ,
~C5!

where we denotep̃5b0t1/4L5/4p0, pDM5b1t3/4L21/4p0, and
a5221/5/b0b1'0.54. In what follows we will also use the
notation pc5p0AtL. While Eq. ~C2! for S holds for
cq,V@b1(c), Eqs.~C4! and ~C5! are valid in the opposite
casecq,V!b1(c).

Now we can analyze the dispersion relatio
v2(q)5e2(q)1S(v,q) more accurately. In experiment usu
ally t!1 so p0@ p̃@pc@pDM . Easy, but tedious calcula
tions show that there can exist up to nine asymptotic regi
in the momentum space with different dispersion relation

~a! v25c2p0qsin2f,

if pDM

sin3/2~2f!sin~f/2!

cosf
!q!p0sin2f,

~b! v25
1

2
c2q3

p0

pc
2 f2,

if
pc

2

p0
f2S 11

p0pDM

pc
2 f1/2D !q!

pc
2p0f2

p0
2f41pc

2 ,

~c! v25
1

2
c2q3

p0

pc
2 ,

if pDM~p/22f!1/2!q!
pc

2

p0
,

~d!v25
c2

2

q4

pc
2 ,

if p0f2!q!pc ,
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~e! v52 icq2
p0

pc
2 ,ifpDMf5/2!q!

pc
2

p0
f2,

~ f! v52 icq
p0

p̃
f2,

if pDMf10/3!q!pDMf5/2;f!Ap̃/p0,

~g!v52 icq
p0

p̃
f2,

if pDMf4/3!q!pDMf1/2; Ap̃/p0!f!1,
tt

el
~h! v52 icq
p0

p̃
,

if
p̃pDM

p0
~p/22f!10/3!q!

p̃pDM

p0
~p/22f!1/2,

~ i! v2/552 iq
c2/5p0

4a p̃pDM
3/5

1

cos2f
,

if pDMS p̃

p0
D 5/3

~p/22f!10/3!q!
p̃pDM

p0
f4/3~p/22f!10/3,

where 0,f,p/2. In Fig. 3 we show the caset;0.3,
L;1, andp051.
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