Out-of-plane transverse resistivity in high-T_c superconductors as a signature of flow of rigid vortex lines

Zhidong Hao
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204

Chia-Ren Hu
Department of Physics, Texas A&M University, College Station, Texas 77843

C.-S. Ting
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204
(Received 25 July 1995)

When the transport current is applied parallel to the CuO$_2$ layers, say, along the a axis, of a high-T_c superconductor, and the magnetic field B is in a direction which makes a polar angle θ with the c axis and an azimuthal angle ϕ with the ac plane, for the case of rigid flux lines, in addition to the usual longitudinal resistivity ρ_1, there should also exist an out-of-plane transverse resistivity ρ_\perp, which is of the same order of magnitude as ρ_1 and satisfies the relation $|\rho_\perp/\rho_1|=\tan \theta \cos \phi$ in the high anisotropy limit and for θ being not very close to $\pi/2$. For less rigid flux lines, reduction in $|\rho_\perp/\rho_1|$ from this prediction should be observed, and for a set of decoupled pancake vortices, ρ_\perp should vanish entirely.

Because of the layered crystal structures, magnetic vortices in the high-temperature superconductors (HTSCs) may be considered as stacks of two-dimensional pancake vortices coupled via magnetic and Josephson forces. The rigidity of the vortices in these layered materials, or the strength of the interlayer coupling, has been the subject of several recent experimental studies. In the flux transformer experiments of Busch et al. and of Safar et al., a magnetic field was applied along the c axis, a transport current was injected along one surface (ab) of the sample, and voltages along both sides were measured simultaneously. In the case of Bi2212, it was found that the voltage signal on the side of current contacts was much greater than that on the other side, indicating that vortices were sheared under the influence of a highly nonuniform Lorentz force. The smallness of the c axis conductivity in comparison with the ab plane conductivity, current flow mainly in the layers close to the surface of current contacts. In the case of Y-Ba-Cu-O (YBCO), in spite of the nonuniform current distribution, voltage signals on both sides were essentially identical, indicating that vortices were moving as rigid lines. In the experiment of decorating vortices on both sides of a Bi2212 single crystal by Yao et al., vortices (in the low-field regime) were found to be line-like objects. Lee et al. measured flux noise generated by films and crystals of Bi2212 and YBCO (in zero applied magnetic field) at opposing surfaces; their results indicates that the thermally activated vortices in both Bi2212 and YBCO move as rigid lines (at specific temperatures).

In this paper we suggest an experiment to study the rigidity of the vortices in HTSCs in the flux-flow state. When the current is applied along the ab plane and magnetic field B is tilted away from the c axis, we show that if the vortices move as rigid lines, an out-of-plane transverse resistivity should be observed, which is of the same order of magnitude as the in-plane longitudinal resistivity, and there exists a quantitative relation between them, which, for B not too close to the ab plane, is a function only of the orientation of B relative to the applied current and the c axis. For less rigid flux lines, deviations from this relation (i.e., smaller transverse resistivity) should be observed, and if the vortices move as decoupled pancake vortices, the transverse resistivity should vanish entirely. Thus, by measuring the relation between the transverse and longitudinal resistivities, one can infer the rigidity of the vortices as a function of temperature, the magnitude of the transport current, and the magnitude and orientation of the applied field. Results obtained from such an experiment can complement those from other experiments (for example, Refs. 2–6).

Let the coordinate axes x_1, x_2, and x_3 be parallel to the a, b, and c axes, respectively, and consider the configuration in which the applied current J^{ext} is parallel to x_1, and the magnetic field B is in the direction specified by the polar and azimuthal angles θ and ϕ. The microscopic electric field $E=(E_1, E_2, E_3)$ induced by the flux motion can be determined by measuring the voltages along the three axes. The longitudinal, in-plane transverse, and out-of-plane transverse resistivities are defined, respectively, by

$$
\rho_1 = \frac{E_1}{J^{\text{ext}}}, \quad \rho_\perp^{(2)} = \frac{E_2}{J^{\text{ext}}}, \quad \rho_\perp^{(3)} = \frac{E_3}{J^{\text{ext}}}.
$$

(1)

In the following we first deduce some general, model-independent expressions for ρ_1, $\rho_\perp^{(2)}$, and $\rho_\perp^{(3)}$ for the case of rigid flux lines, and then compare the results with the predictions based on the assumption of decoupled pancake vortices.

The macroscopic electric field, induced by a uniform motion of vortices with velocity \mathbf{v}, obeys $E = -(\mathbf{v} \times \mathbf{B})/c$, which shows that in the mixed state E is always perpendicular to \mathbf{B}; i.e.,
\[\mathbf{E} \cdot \mathbf{B} = 0. \]

In a recent work\(^9\) we have pointed out that, when this equation is combined with the linear response relation

\[E_i = \rho_{ij} J^T_j, \]

where \(\rho_{ij} \) is the flux-flow resistivity tensor and \(J^T \) is the dissipative transport current density, it gives

\[\rho_{11} J^T_1 B_1 + \rho_{22} J^T_2 B_3 + \rho_{33} J^T_3 B_3 = 0, \]

where we have neglected the Hall elements of the tensor \(\rho_{ij} \), since they are usually smaller than the smallest of the diagonal elements by \(O(10^{-3}) \).

As we have emphasized in Ref. 9, Eq. (4) implies a constraint on the relative orientation of \(\mathbf{J}^T \) and \(\mathbf{B} \). Thus in many experimental configurations, \(\mathbf{J}^T \) actually cannot be identified with \(\mathbf{J}^{\text{ext}} \), which, being an externally applied quantity, can be arbitrary. (Here both \(\mathbf{J}^T \) and \(\mathbf{J}^{\text{ext}} \) are assumed to be uniform.) Instead, in such cases, we have to identify \(\mathbf{J}^{\text{ext}} \) as a sum of \(\mathbf{J}^T \) and a nondissipative supercurrent density \(\mathbf{J}^S \) along \(\mathbf{B} \), i.e.,

\[\mathbf{J}^{\text{ext}} = \mathbf{J}^{T} + \mathbf{J}^{S}. \]

The current \(\mathbf{J}^{T} \parallel \mathbf{B} \) corresponds to a uniform translation of the whole “superfluid” along \(\mathbf{B} \) and is not included in Eq. (3).

In Ref. 9 (where the problem of Lorentz force independence of the longitudinal resistivity \(\rho_L \) is discussed), for the purpose of presenting the main conceptual idea using the simplest mathematical expressions, we have restricted \(\mathbf{J}^T \) to be in the \(x_1, x_3 \) plane. Then for an extremely anisotropic system we showed there that \(\mathbf{J}^{\text{ext}} \) is very nearly along \(x_1 \), but it is not exactly along this direction. A similar but slightly more complicated calculation can be carried out, in which \(\mathbf{J}^{\text{ext}} \) is strictly in the \(x_1 \) direction. We then find that all the components of \(\mathbf{J}^T \) and \(\mathbf{J}^S \) are nonzero in general, as given below:

\[J^T_1 = J^{\text{ext}}_1 - J^S_1 = J^{\text{ext}}_1 (\rho_{22} \sin^2 \theta \sin^2 \phi + \rho_{33} \cos^2 \theta) \rho \]

\[J^T_2 = -J^S_2 = -J^{\text{ext}}_2 \rho_{11} \sin^2 \theta \cos \phi \sin \phi \rho \]

\[J^T_3 = -J^S_3 = J^{\text{ext}}_3 \rho_{11} \sin \theta \cos \phi \cos \phi \rho, \]

where

\[\rho = \rho_{11} \sin^2 \theta \cos^2 \phi + \rho_{22} \sin^2 \theta \sin^2 \phi + \rho_{33} \cos^2 \theta. \]

This calculation uses only Eqs. (3)–(5) and the fact that \(\mathbf{J}^T \parallel \mathbf{B} \). It is therefore completely general and model independent.

Using Eqs. (6)–(8) and the fact that \(E_i = \rho_{ij} J^T_j \), we can easily calculate the three quantities defined in Eq. (1). The results are

\[\rho_1 = \rho_{11} (\rho_{22} \sin^2 \theta \sin^2 \phi + \rho_{33} \cos^2 \theta) / \rho \]

\[\rho^{(2)}_\perp = -\rho_{11} \rho_{22} \sin^2 \theta \cos \phi \sin \phi / \rho \]

\[\rho^{(3)}_\perp = -\rho_{11} \rho_{33} \sin \theta \cos \phi \cos \phi / \rho. \]

If the supercurrent \(\mathbf{J}^S \) along \(\mathbf{B} \) is large enough, it can induce a helical instability in the flux-line lattice,\(^10\) which in turn invalidates our assumption of rigid (straight) flux lines. Thus, Eqs. (10)–(12) are valid only under the assumption that no such instability occurs. For our case of \(\mathbf{J}^{\text{ext}} \parallel x_1 \) and assuming the extreme-anisotropy condition, \(\rho_{11} \approx \rho_{22} \ll \rho_{33} \), as can be seen in Eqs. (6)–(8), \(J^S \) is indeed always very small, except in the limit of \(\theta \to \pi/2 \), with the ratio \(J^S / J^{\text{ext}} \) being only \(O(\rho_{11}/\rho_{33}) \). [In Ref. 9, below its Eq. (10), the magnitudes of \(\rho_{11}/\rho_{33} \) for various HTSCs have been given, and are indeed all very small.] Thus except for \(\theta \to \pi/2 \) we do not have to worry about helical instabilities (unless the applied current is extremely large), and the above results are valid. In this case we also have \(J^S / J^{\text{ext}} \sim O(\rho_{11}/\rho_{33}) \) and \(J^S / J^{\text{ext}} \sim O(\rho_{11}/\rho_{33}) \). But the tiny current \(J^S \) in the \(x_3 \) direction can induce an electric field \(E_3 \) of the same order of magnitude as \(E_1 \), because \(\rho_{11} J_3^S \approx \rho_{33} J_3^S \).

Restricting here to the case that \(\theta \) is not very close to \(\pi/2 \), and \(\rho_{11} \approx \rho_{22} \ll \rho_{33} \), Eqs. (10)–(12) reduce to

\[\rho_1 = \rho_{11} [1 + O(\rho_{11}/\rho_{33})], \]

\[\rho^{(2)}_\perp = \rho_{11} O(\rho_{11}/\rho_{33}), \]

\[\rho^{(3)}_\perp = -\rho_{11} \tan \theta \cos \phi [1 + O(\rho_{11}/\rho_{33})]. \]

Clearly, for the in-plane transverse resistivity, the ratio \(\rho^{(2)}_\perp / \rho_1 \sim O(\rho_{11}/\rho_{33}) \) is negligibly small, but for the out-of-plane transverse resistivity, we have

\[\rho^{(3)}_\perp / \rho_1 = E_3 / E_1 = -\tan \theta \cos \phi. \]

We now compare the above results with the predictions based on the assumption of a system of decoupled pancake vortices. In the latter case, only the field component parallel to the \(c \) (\(x_3 \)) axis is responsible for forming the vortices, so that \(\rho^T(\mathbf{B}) = \rho_L(\mathbf{B} \cos \theta) \) (for \(\theta \) being not too close to \(\pi/2 \)) and is clearly Lorentz force independent (i.e., for a given \(\mathbf{B} \), it depends only on the angle \(\theta \) between \(\mathbf{B} \) and the \(c \) axis, but is independent of the angle between \(\mathbf{B} \) and \(\mathbf{J}^{\text{ext}} \)).\(^11\) The Lorentz-force independence (LFI) of \(\rho_L \) has been observed experimentally (including also the case of \(\theta = \pi/2 \)) (see, for example, Refs. 12–16) and was first explained in terms of the formation of pancake vortices.\(^11\) However, in Eq. (13), \(\rho_1 = \rho_{11} \) is also Lorentz-force independent, because \(\rho_{11} \), a linear transport coefficient, cannot depend on the driving current \(\mathbf{J}^{\text{ext}} \), but can only depend on the equilibrium properties of the sample. This example of the LFI of \(\rho_1 \) in terms of rigid flux lines was given in Ref. 9. It also has a \(\rho^T(\mathbf{B}) = \rho_{11} [\mathbf{B} / \mathbf{H} \cdot \mathbf{c}(\theta, \phi)] \approx \rho_L(\mathbf{B} \cos \theta) \) field dependence (for the latter point, see the discussion and the references cited in Ref. 9). Thus, from the LFI, and/or the \(\mathbf{B} \) dependence of \(\rho_1 \), one actually cannot tell whether the vortices in HTSCs are decoupled pancake vortices or rigid flux lines, as the predictions for the behavior of \(\rho_1 \) based on the two assumptions are practically the same.

As to the transverse resistivities, we have \(\rho^{(2)}_\perp = \rho^{(3)}_\perp = 0 \) for a system of decoupled pancake vortices, since the motion of the pancake vortices in the \(x_2 \) direction [under the driving force \(\mathbf{J}^{\text{ext}} \times (\mathbf{B} \cos \theta) \)] can only induce an electric field in the \(x_1 \) direction (neglecting Hall effect).

For cases of intermediate interlayer coupling strengths, it is necessary to consider the contributions from
the Josephson vortices which fit in the interlayer regions. In the presence of $J^{stm}=J^{stm} \chi_1$, the driving force acting on the Josephson vortices is always in the x_3 direction. Because of the substantial energy barrier against direct hoping of the Josephson vortices across superconducting layers, it is more likely that the hoping is mediated by the creation of pancake and antipancake vortex pairs, as described in Ref. 15. Motion of the so-created pancake and antipancake vortices in opposite directions along a Josephson vortex can contribute to both E_1 and E_2, but not to E_3, and the hoping of the Josephson vortices in the x_3 direction cannot contribute to E_3 either. Although this qualitative argument suggests that both E_1 and E_2 can likely exist in the intermediate interlayer-coupling regime, it is likely true that E_2 will be negligibly small in comparison with E_1 for extremely anisotropic systems, since it is already found here to be true for both extreme limits of strongly coupled layers and completely decoupled layers.

Since the driving (Lorentz) force acting on the Josephson vortices is always zero in any direction parallel to the layers, they can only be dragged to move along the layers by the pancake vortices in the superconducting layers. This motion can then induce an electric field E_3 in the x_3 direction, but slippage may occur between the motion of the pancake vortices and that of the Josephson vortices to make E_3 smaller than that given by Eq. (16). We expect such slippage to occur with larger frequency for weaker interlayer coupling, and therefore E_3 should be a monotonic function of the interlayer coupling strength; i.e., it is larger for stronger interlayer coupling, having maximum in the limit of rigid flux lines and minimum $\rho_3^{(3)}=0$ in the limit of decoupled pancake vortices.

Experimentalists can of course measure E_2 to see whether it is indeed always small in comparison with E_1 in extremely anisotropic superconductors, but the main point of this paper is that the most significant difference between the predictions based on the two limiting assumptions (of rigid vortex lines vs decoupled pancake vortices) is in the out-of-plane transverse resistivity $\rho_3^{(3)}$: it is finite and satisfies Eq. (16) for rigid flux lines, but is zero for decoupled pancake vortices. For intermediate cases, $\rho_3^{(3)}$ may be nonzero, but should lie between zero and that given by Eq. (16). It is also interesting to note that $\rho_3^{(3)}$ is strongly ϕ dependent [see Eq. (16)], whereas ρ_1 is ϕ independent (in the extremely anisotropic limit, and neglecting any in-plane anisotropy). Thus for experimentalists to find out whether the electric transport properties of extremely anisotropic, high-T_c or other superconductors are truly “Lorentz-force independent” (more precisely, ϕ independent), they should measure the ϕ dependence of E_3 and $\rho_3^{(3)}$, and not that of E_1 and ρ_1.

This work was supported by the Texas Center for Superconductivity at the University of Houston under the prime grant from DARPA and State of Texas and a grant from the Robert A. Welch Foundation.

7. We restrict our discussion to the region $H \gg H_{c1}$, where the difference between the applied field H and the induction B can be ignored. The lower critical field H_{c1} is very small for HTSCs, so this region covers most experimental situations.
16. For a review on the transport properties of HTSCs in the mixed state, see A. Freimuth, in Selected Topics in Superconductivity, edited by L. C. Gupta and M. S. Multani (World Scientific, Singapore, 1993).