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It is shown that the same amount of total frustration imposed on a rectangular superconducting
network produces a monotonically diminishing e6'ect as the aspect ratio a/b of the network is in-

creased. Various types of power-law behavior are found in the hmit of a/b~ ~, the most in-

teresting one being that the slope discontinuities of T,q/T, 0 at rational (p/q) ilux quanta per unit

cell approach zero according to the power law (a/b) v, so that the higher-q cusps fade away fas-
ter than the lower-q ones.

"Frustration"' is one of the most fundamental syn-
thesizing ideas in the contemporary conceptual framework
of condensed-matter physics. It underlies the basic phys-
ics of a very broad "superclass" of materials that are now
all termed "glass." Thus, such novel terms as protons
glass, electron glass, and gauge or superconductive
glass, 4 etc., have been introduced into the modern vocabu-
lary of condensed-matter physics, in addition to the more
familiar terms such as structural glass, metallic glass, and
spin glass. To put it in very simple terms, frustration
means the existence of mutually confhcting demands from
different terms in a many-body Hamiltonian, so that the
system must strike a delicate compromise to find its
lowest-energy eigenstate. Usually, frustration occurs in a
random distribution due to quenched disorder, but in
some systems frustration can also occur uniformly. A
simple example of the latter is a triangular array of Ising
spins with nearest-neighbor antiferromagnetic bonds.
These bonds give confbcting demands to any odd number
of spins that form a closed path in the lattice, including all
triplets of spins that form the elementary triangles.

Experimentally by Pennetier, Chaussy, Rammal, and
Urllegier4 and theoretically by Alexander, 5 and by Ram-
mal, Lubensky, and Toulouse, s etc., the upper critical
field H, q(T) [or the inverse function T,q(H)l of a two-
dimensional, periodic, square, superconducting network
has been studied as an example of tunable uniform frus-
tration. For example, simply by changing a magnetic field
applied perpendicular to the network, one can tune the
amount of frustration that is imposed on every closed su-
perconducting path in the network as a result of the
Aharonov-Bohm effect. 7 However, whenever the total
fiux @through each unit cell of area Ao is a rational frac-
tion p/q of the flux quantum ~—=hc/2e, some closed
paths in the network will enclose an integer multiple of
~, and therefore will not be frustrated, implying a rela-
tively more favorable situation for the nucleation of super-
conductivity in the system. Thus T,g should be relatively
less suppressed from its zero field value T,o for this value
of H. With this understanding in mind, Pennetier et al.
measured T,*q/T, o as a function of O/@o, and observed a
dense distribution of cusps (or slope discontinuities) of
various sizes at all rational values of @/eo which agree

very well with theoretical predictions. s 6 While this result
is extremely interesting, it is clear that the egect of frus-
tration to the whole network is not monotonlcally tuned
when @/~ is increased, because to any closed path of
area nAo in the network, frustration is a periodic function
of 4/ of period 1/n

The purpose of this Rapid Communication is to report a
different kind of tuning of frustration, where it is the effect
of frustration to the whole system that is rnonotonically
tuned, as if the system is made more and more immune to
the presence of frustration. The system we have studied is
only a slight generalization of the system studied by Pen-
netier etal. Namely, we study a twoMimensional rec-
tangttlar superconducting network of various aspect ratio
a/b. We find that by simply increasing a/b from unity to
infimty {or, equivalently, by decreasing a/b from unity to
zero), the egect of frustration to the whole system can be
rnonotonically reduced. For a direct quantitative measure
of the effect of frustration to the whole system, we shall
again use the general behavior of (1-T,g/T, o), but in
particular we shall look at the sizes of the slope discon-
tinuities of this quantity at the rational values of 4/4p.
We wish to emphasize that since we have kept the product
ab(—=Ao) constant as we vary a/b, we have kept the
amount of frustration imposed on any individual closed
path in the network constant. It should be further noted
that there is a one-to-one correspondence of all closed
paths in any two rectangular networks of different a/b
We may therefore say that the networks of different a/b
ratios have been subject to the same amount of total frus-
tration (as a cause) at any given values for Ao =—ab and H,
and yet the effect of frustration to these systems as mea-
sured by the said slope discontinuities, for example, is still
found to be a monotonically decreasing function of a/b.
Our result is based on a numerical study, which not only
establishes this monotonic dependence, but further reveals
many interesting types of power-law behavior in the
asymptotic regime. In particular, we find that as
a/b ~, the size of the slope discontinuity at 4/@o p/q
decays to zero according to the power law (a/b) v. This
means that those cusps in the T,2/T, o vs @/@p curve asso-
ciated with a larger integer denominator q fade away fas-
ter than those associated with a smaller q, leaving a less



CHIA-REN HU AND RAYMOND I.EI CHEN

"jerky" T,q/T, o vs +/4p curve at larger values of a/b.
The theory of superconducting networks, which is based

on the phenomenological Ginzburg-Landau theory, plus
the de Gennes boundary conditions at the nodes of the
networks, has been reviewed in many previous publica-
tions. s69 Briefiy, one must first solve the Ginzburg-

Landau equation on each strand Oinearized for obtaining
T,2(H)] in terms of the values of the order parameter at
its two end nodes. Applying the de Gennes boundary con-
ditions at a typical node then gives a linear difference
equation. For a rectangular network, this difference equa-
tion has been derived previously, 'o which reads

tt.„~+1exp(i2atte/4o)+h„, ~ l-exp( i—2rrttC/4g) —2b„,~cosfb/g(T)l W„il,~+6,,—1,
—2h„, cos[a/((T)]

g(T) sin[b/g(T) l &(T)sin[a/&(T)]

where the rectangular unit cell has length a along x, and

length b along y. g(T) go(1 —T,g/T, o) ' 2 is the coher-
ence length of the strands, 6„ is the value of the order
parameter at the (n, tts)th node with tt measured along x
and m along y, 4 -=Hah is the Sux through each elementa-

ry rectangle, and we have worked in the Landau gauge
A (O,Hx, 0). After letting has, h„exp(iktttb), Eq. (1)
reduces to a oneMimensional difference equation, which is
then solved numerically.

In Fig. 1, we have plotted [(a/b) '/2+ (b/a) '/2l

& [ab/2tr4'2(T)] I:(1 —T,g/T, o) as a function of 4'/&~H
for a/b 1, 2, 3 5, 10, 25, and 100. The factor
[(a/b) ' +(b/a) '/ ] is a normabzation factor chosen to
render all curves to have the same initial slope of unity at
4/4p 0, in agreement with a remnt theory by one of us
(C.R.H.).'o The fact that this normalization factor does
not make all curves fall on a single universal curve shows
that this scaling behavior is obeyed only in the limit
4/4o 0, T,2~ T,o, where a,b &&g(T). As a matter of
fact, in Fig. 2 we have plotted the values of in[ah/$2(T)]
at several rational values of +/@p vs I ln(a/b) I

—the ab-
solute sign indicates the symmetry of this system with
respect to the transformation of assb —revealing a
universal asymptotic slope of —1, instead of ——,

' which
was predicted in Ref. 10 for the behavior near 4/4g 0.
We can understand this as a crossover behavior. As

l

a/b oo at any fixed @/4o, which is not an integer, even-

tually a crossover into the regime a~)(T) must occur,
whereas Ref. 10 is a thcery for the limit a,b « ((T).

In Fig. 3, we have plotted the numerical derivative

d f[(a/b) ' + (b/a) '/2] (ab/2tr(2)]/d(@/~)

vs 4/~ for four values of a/b, viz. , 1, 2, 5, and 10. It is
clear from these plots that the curves become less jerky as
a/b increases, with the slope discontinuities associated
with a larger denominator integer q fading away faster
than those associated with a smaller q.

To analyze the quantitative aspects of this behavior, we
have first plotted in Fig. 4 the logarithms of the left and
right derivatives of ab/$2(T) with respect to 4/4p at
several rational values (p/q) of 4/4p, namely, 2, —,', —,',

Note that since the left derivative goes through zero for
some rational values of 4/~, we have to plot the loga-
rithm 'of its absolute value, which explains the singular
dips of some of the curves. This plot reveals that as
a/b~ ~, the left and right derivatives both approach
zero as (alb) 2 for all rational values of @/@g. This
means that the leading asymptotic term in ab/g (T) as
a/b co, which behaves as Cl(a/b) ', must be indepen-
dent of 4/40, or in other words, insensitive to frustration.
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Flo. 1. Plot or (ia/b+ db/a )(ab/2~g') «(1 —T,"2/T.s) vs

4/@ocLH for a/b (from the top down) 1, 2, 3, 5, 10, 25, and
100.

FIG. 2. Plot of ln(ab/g~) at @/4s (from the top curve
down) -'„-,', —,

' (--,'), —,', —,', —,', —,', , and ~ vs Iln(a/b) I.
The dotted line is obtained by multiplying the slope at 4/@p 0
as predicted in Ref. 11 by 4'6 .
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FIG. 3. Plot of the numerical derivative of (4o/b
+Jb/u )(ub/2xgs) with respect to e/eu vs Cp/Cps for alb l, 2,
5, and 10.

This result may also be scen from Fig. 2 where all curves
agree not only in slopes but also in values as a/b

Finally, we obtain the most interesting finding of this
work by plotting in Fig. 5 the logarithms of the slope
discontinuities at several rational values of 4/Cso, i.e., we
plot the logarithms of

d(rtb/g2) ci(ctb/g2)
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FIG. 4. Plot of the logarithms of (a) the right derivatives,
and (h) the left derivatives of ab/P with respect to +/4o at
4/4o (from the top curve down on the right-hand side of each

I in«/b) I.

FIG. 5. Plot of the logarithms of the slope discontinuities
(i.e., the right derivative minus the left derivative) of ab/g at
4/4o ~(from the top curve down on the right side of the figure)
~, 3, ~, ~, f, ~, 7, ~~, and 7 as functions of I in(a/b) I.

The curves for &, 7, and 7 are given in dashed lines to enhance
clarity.

at several values of p/q as functions of I 1n(ct/b) I, which
reveals that as a/b ~, these slope discontinuities
behave as (a/b) s. This result quantifies the finding
from Fig. 3 that the ab/(2 vs 4/eo curve becomes less
jerky as u/b increases toward infinity, with the slope
discontinuities associated with larger q's fading away fas-
ter than those associated with smaller q's.

We can first crudely understand the diminishing
infiuence of frustration as a/b increases with the following
argument: Frustration exists only if there are closed paths
in the system. Thus frustration effects should totally
disappear if one cuts all the short bonds of length b (or,
equivalently, if the order parameter is suppressed on these
short bonds). Since the total length (or mass) of all of the
short bonds per unit area is only b/a times that of the long
bonds, it is clearly easier for the system to accommodate
frustration at larger values of u/b. (See explicit examples
given later for 4/4g 2 and —,', which will show explicit-
ly how the system copes with frustration in the limit
a/b ~.)

More quantitatively, we can understand the falloff of
ab/g2 at noninteger values of @/eo according to (a/b)
as a/b ~, as simply due to the fact that as b/( 0,
a/g must approach n/2 for values of 4/4g which are not
within 0((b/()'/2) of any integer including zero. This
limiting behavior is born out in Fig. 1. To derive this re-
sult„we note that the ground state of Eq. (1) corresponds
to k 0, and Z„even. We can, therefore, recast this equa-
tion into the form

d t icos(a/g)&+ [sin(a/&)/sin(b/&)] Icos(bg) —1]~,
(2)

&.&» &
- 2cos(cr/&)&. -&+2&in(ct/g)/sin(b/&) ]

x leos(b/&) —cos(2me/ep)]a, - ) -a„-2. (3)

As b/g 0, the second equation will make Z„»~ diverge



if @/~ is not within 0((b/g) ' ) of an integer, unless E~

is infinitesimal, which is satisfied with a/g m/2. The
fact that this limiting value is independent of e/@o also
explains why the left and right derivatives of ab/(z, with

respect to e'/@o at any rational values for the latter, must

decay to zero with a po~er of bla large«han ututy. Al-

though the most natural power is then two, we do not yet
have a direct argument as to why it is so, nor why the
slope discontinuities at e/~ p/q must decay to zero as

(a/b) v as a/b ~. (However, see the conclusion. )
There is another numerical surprise discovered in this

study, which can be easily understood. By shifting all of
the curves in Fig. 1 vertically so they all have vertical
coordinates zero at e/~ —,', it is found that all curves

merge again at 4/4p -„with again a vertical coordinate
of zero. This implies that ab/g2 at 4/4o —,

' and —,
' are

equal for all values of a/b. This can be easily understood
as follows: For e/4)n —,', h„becomes a periodic function
of period two. In other words, Z2 Zp, so Eqs. (2) and (3)
reduce to two coupled equations from which we find

sinz(a/&)+sinz(b/&) sin2f(a+b)/&j, (4)

and

61/Zo bin[(a+b)/&) -sin(a/&)J/sin(b/&) . (5)

On the other hand, for 4/4)n —,', we have & Zp and

E3 ZI (since ~ is even). Equations (2) and (3) then
also give Eq. (4) as the eigencondition, and ($2/Zp)'~2

(Z&/&) is also given by Eq. (5). Equation (4) has the
solution a/g x/2-b/g, which is consistent with our ear-

lier conclusion that a/g z/2 as b/g 0 for all @/@o
that are not within 0((b/() '/ ) of an integer. In addition,
the right-hand side of Eq. (5) approaches b/2(&(l as

b/g O„confirming that the system indeed sacrifices a
good fraction of the short bonds in order to cope with frus-

tration in this limit.
In summary, we have demonstrated with a numerical

study that the same amount of frustration imposed on a
rectangular superconducting network produces diminish-

ing eff'ects as the aspect ratio a/b of the network is in-

creased toward infinity. Furthermore, various types of
power-law behavior are found in the limit a/b~ ~, in-

cluding the most interesting result that the slope discon-
tinuity of (1 —T,z/T, o) vs 4/~ at 4/4n p/q decays as
(alb) &, and therefore fade away faster for larger q.
Simple understandings are obtained for some of our
findings, but not yet on this most interesting result. How-

ever, since our explicit solutions at @/4p —,
' and & show

spontaneously broken translational symmetry, with a
discrete set of degenerate ground states, solitons clearly
play an important role when el@p is only infinitesimally

away from a rational value p/q. Attempting to under-

stand the (a/b) v behavior within this framework is

currently underway.
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